sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
sequencelengths
1
1.84k
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
61
embeddings
sequencelengths
768
768
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-Set-2-cybersecurity-layered-config This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"tags": ["generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "Llama-2-7b-Set-2-cybersecurity-layered-config", "results": []}]}
null
shahrukh95/Llama-2-7b-Set-2-cybersecurity-layered-config
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
2024-02-06T23:25:02+00:00
[]
[]
TAGS #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us
# Llama-2-7b-Set-2-cybersecurity-layered-config This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
[ "# Llama-2-7b-Set-2-cybersecurity-layered-config\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.00025\n- train_batch_size: 6\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 20", "### Training results", "### Framework versions\n\n- Transformers 4.34.1\n- Pytorch 2.1.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.14.1" ]
[ "TAGS\n#generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n", "# Llama-2-7b-Set-2-cybersecurity-layered-config\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.00025\n- train_batch_size: 6\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 20", "### Training results", "### Framework versions\n\n- Transformers 4.34.1\n- Pytorch 2.1.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.14.1" ]
[ 33, 53, 6, 12, 8, 3, 106, 4, 33 ]
[ "passage: TAGS\n#generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n# Llama-2-7b-Set-2-cybersecurity-layered-config\n\nThis model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.00025\n- train_batch_size: 6\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 20### Training results### Framework versions\n\n- Transformers 4.34.1\n- Pytorch 2.1.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.14.1" ]
[ -0.08282526582479477, 0.11108355969190598, -0.00009501499152975157, 0.06066912040114403, 0.12540389597415924, 0.018045295029878616, 0.13344337046146393, 0.10216376185417175, -0.0735928937792778, 0.0764104574918747, 0.08974220603704453, 0.02230379730463028, 0.066276416182518, 0.14941079914569855, -0.007220762316137552, -0.22372296452522278, 0.030449487268924713, -0.04819556698203087, -0.10234350711107254, 0.08751866966485977, 0.1159374937415123, -0.08307131379842758, 0.08359213173389435, -0.0023898251820355654, -0.1523493230342865, 0.04297464340925217, -0.07090678066015244, -0.025056689977645874, 0.07780702412128448, 0.020798558369278908, 0.07023778557777405, -0.012524806894361973, 0.0956529974937439, -0.2241215705871582, 0.0043810466304421425, 0.07244034111499786, -0.004123809281736612, 0.06823290139436722, 0.01072066742926836, 0.004062782507389784, 0.16557598114013672, -0.14753477275371552, 0.08033331483602524, 0.03411489725112915, -0.03712385520339012, -0.06405884772539139, -0.0840112641453743, 0.07125452160835266, 0.09527479112148285, 0.11552708595991135, 0.0008025760762393475, 0.12644854187965393, -0.13989950716495514, 0.05575553700327873, 0.1661200076341629, -0.23729129135608673, -0.06677518784999847, 0.09753082692623138, 0.023847168311476707, 0.12176230549812317, -0.09542708098888397, -0.019823886454105377, 0.05872000381350517, 0.020076114684343338, 0.03851679712533951, 0.025860384106636047, -0.09641195088624954, 0.021888338029384613, -0.12462363392114639, -0.011916007846593857, 0.23127806186676025, 0.08788041025400162, -0.011285290122032166, -0.07025538384914398, -0.026532433927059174, -0.12793433666229248, -0.0006745510036125779, -0.018586060032248497, 0.022025126963853836, -0.0606536827981472, -0.055697809904813766, -0.03276843577623367, -0.048110976815223694, -0.09265261888504028, 0.019942114129662514, 0.1304129809141159, 0.05011202022433281, 0.019851405173540115, -0.032859548926353455, 0.09214270114898682, 0.004631164949387312, -0.10970883816480637, -0.020092975348234177, 0.011762107722461224, -0.0779574066400528, -0.032124973833560944, -0.08632638305425644, 0.0025628393050283194, 0.024915553629398346, 0.12439247965812683, -0.04235653579235077, 0.09256450086832047, 0.043946001678705215, 0.021953675895929337, -0.0032576245721429586, 0.06363518536090851, -0.08555618673563004, -0.01170456875115633, -0.0005809309077449143, 0.1052890494465828, 0.015121408738195896, -0.027565956115722656, -0.10032102465629578, -0.0005740232300013304, 0.08763979375362396, 0.03974560275673866, -0.06911209225654602, 0.031116768717765808, -0.020967230200767517, -0.030462874099612236, 0.0015998573508113623, -0.1235332116484642, 0.008948488160967827, 0.008757315576076508, -0.13232901692390442, -0.08261952549219131, 0.017733361572027206, 0.016218911856412888, -0.014901519753038883, 0.0354645736515522, -0.1096634492278099, -0.013976484537124634, -0.08730308711528778, -0.0483032688498497, 0.022418728098273277, -0.04819303750991821, -0.006261720322072506, -0.07954689860343933, -0.16037602722644806, -0.045688919723033905, 0.03432825207710266, -0.06532467901706696, -0.04719040170311928, -0.08611002564430237, -0.0775819718837738, 0.009825960732996464, 0.00023332600540015846, 0.1266065388917923, -0.06222585588693619, 0.04898327589035034, -0.029722366482019424, 0.04450631141662598, -0.017255380749702454, 0.02239883318543434, -0.05043979361653328, 0.024334607645869255, -0.10529236495494843, 0.07029025256633759, -0.13433894515037537, 0.045576028525829315, -0.10378433018922806, -0.062336940318346024, -0.019676361232995987, -0.010141647420823574, 0.07788576930761337, 0.13829129934310913, -0.1553405076265335, -0.028012508526444435, 0.15115152299404144, -0.04766364395618439, -0.10583772510290146, 0.09016510844230652, -0.044738274067640305, 0.03231789916753769, 0.041359201073646545, 0.19606643915176392, 0.1078416258096695, -0.10973978787660599, -0.03959611430764198, 0.03969770669937134, 0.07998483628034592, -0.004155253060162067, 0.05842678248882294, 0.00567320641130209, -0.029744623228907585, 0.01897476427257061, -0.03823027387261391, -0.00015507236821576953, -0.095641128718853, -0.09812171757221222, -0.04368077218532562, -0.11861301213502884, 0.0015086067141965032, 0.005518793128430843, 0.06927121430635452, -0.0804111436009407, -0.09515330195426941, 0.06291572004556656, 0.174525186419487, -0.05018996819853783, 0.000810897967312485, -0.10386835783720016, 0.010810662060976028, 0.01405552588403225, -0.01631360873579979, -0.15196123719215393, -0.1290268748998642, 0.03621472418308258, -0.04011393338441849, 0.051067471504211426, -0.0058059608563780785, 0.05987835302948952, 0.05727368965744972, -0.03916991129517555, -0.012405426241457462, -0.11000106483697891, 0.013107127510011196, -0.10269743949174881, -0.22182810306549072, -0.0522448793053627, -0.020410746335983276, 0.280588835477829, -0.23115524649620056, 0.016432978212833405, 0.00679645175114274, 0.15925486385822296, -0.006060062441974878, -0.05262018367648125, -0.0038996681105345488, 0.029446911066770554, -0.015287580899894238, -0.06952857226133347, 0.008081023581326008, 0.0034422266762703657, -0.1355786919593811, -0.085129514336586, -0.08939205855131149, 0.03363709896802902, 0.08797461539506912, 0.0521380715072155, -0.058828920125961304, -0.048620011657476425, -0.06459202617406845, -0.0625729039311409, -0.020279644057154655, -0.016623668372631073, 0.18232904374599457, -0.021650759503245354, 0.10625658929347992, -0.0666067972779274, -0.05638715252280235, 0.0008832580060698092, -0.00011080741387559101, -0.020887907594442368, 0.0875575989484787, 0.09522068500518799, -0.11282281577587128, 0.0914897695183754, 0.039757270365953445, -0.08942487090826035, 0.18379423022270203, -0.04271036386489868, -0.0818234533071518, -0.02448265440762043, 0.02856867015361786, -0.027471013367176056, 0.13149525225162506, -0.13955116271972656, -0.012500743381679058, 0.004433564841747284, 0.027815716341137886, 0.07888509333133698, -0.1618441790342331, -0.02489680051803589, -0.011191461235284805, -0.038910772651433945, -0.02063383348286152, -0.018828528001904488, -0.006112528499215841, 0.0942644402384758, 0.051961008459329605, -0.05426168441772461, 0.017778189852833748, -0.030307123437523842, -0.08746159821748734, 0.1919492930173874, -0.14980468153953552, -0.11664489656686783, -0.09059788286685944, 0.09189566969871521, -0.09906558692455292, -0.028649162501096725, -0.013448706828057766, -0.12599778175354004, -0.021572336554527283, -0.11234826594591141, -0.06335043162107468, -0.06882312893867493, -0.006892217788845301, 0.06288284808397293, 0.0387970395386219, 0.07972007244825363, -0.12220735102891922, 0.015185793861746788, -0.023947812616825104, -0.08235640078783035, -0.022500844672322273, 0.007304444909095764, 0.09318578243255615, 0.13431239128112793, 0.00929244700819254, 0.061684925109148026, -0.011560233309864998, 0.2336680293083191, -0.07035385072231293, -0.03350609168410301, 0.04274602234363556, 0.03796062991023064, 0.036852508783340454, 0.1001138687133789, 0.02548268437385559, -0.1075211688876152, 0.049675002694129944, 0.08287063241004944, -0.007613661698997021, -0.22425566613674164, -0.07292170077562332, -0.024457987397909164, -0.06806737929582596, 0.07381761074066162, 0.06940234452486038, 0.039069853723049164, 0.03744287043809891, -0.01567218452692032, 0.015957776457071304, -0.02683878131210804, 0.05089167505502701, -0.007753830868750811, 0.03366117551922798, 0.07037835568189621, -0.028206566348671913, -0.004773508291691542, 0.05467775836586952, 0.017700687050819397, 0.23120516538619995, -0.024020425975322723, 0.10640891641378403, 0.04917730763554573, 0.20161576569080353, -0.05314422771334648, 0.001335690962150693, 0.03249494731426239, -0.026798874139785767, 0.004246961325407028, -0.060691628605127335, -0.0464857779443264, 0.07523379474878311, -0.007806653622537851, 0.04626437649130821, -0.10797978937625885, 0.054171450436115265, 0.0320860780775547, 0.24380891025066376, 0.0392003059387207, -0.2913077473640442, -0.08237670361995697, 0.02290857769548893, -0.013992155902087688, -0.045479271560907364, 0.032754749059677124, 0.15156783163547516, -0.10445284843444824, 0.04084135219454765, -0.005661946255713701, 0.07353507727384567, -0.02428298443555832, -0.007518044672906399, 0.012968399561941624, 0.13447405397891998, -0.01158548891544342, 0.11157490313053131, -0.19850344955921173, 0.20289361476898193, 0.015825144946575165, 0.08962980657815933, -0.09148488193750381, -0.00595879927277565, 0.02157328464090824, 0.07961060106754303, 0.07368393242359161, 0.023595387116074562, -0.0331980362534523, -0.12487524747848511, -0.08516933023929596, 0.05358509346842766, 0.12558992207050323, -0.05409697815775871, 0.07666679471731186, -0.020902367308735847, 0.022110121324658394, 0.05438574030995369, -0.05249395966529846, -0.1619645655155182, -0.12537187337875366, 0.01520101260393858, 0.05055351182818413, -0.00973528902977705, -0.08569682389497757, -0.08662210404872894, 0.00500842509791255, 0.17253848910331726, 0.007159385364502668, -0.020659642294049263, -0.10763801634311676, 0.07067994028329849, 0.09801823645830154, -0.04993301257491112, -0.00018746379646472633, 0.03562646731734276, 0.12682491540908813, 0.043363746255636215, -0.06796398013830185, 0.06963829696178436, -0.0844830721616745, -0.12345895171165466, -0.05809750780463219, 0.12384559959173203, 0.1030942052602768, 0.053760506212711334, -0.019774246960878372, -0.03362211212515831, -0.0027618727181106806, -0.0806434154510498, 0.01576092839241028, 0.09407208859920502, 0.04399915412068367, 0.11796493083238602, -0.056882765144109726, 0.1008315458893776, -0.03922346979379654, -0.02701803669333458, 0.10662492364645004, 0.23400089144706726, -0.07124381512403488, 0.05191174894571304, 0.08165600150823593, -0.043130822479724884, -0.17300640046596527, 0.05576369911432266, 0.11148302257061005, 0.028075136244297028, 0.012798470444977283, -0.19623173773288727, 0.0929088369011879, 0.10972312837839127, -0.027706848457455635, 0.07854297012090683, -0.3322618901729584, -0.10016302019357681, 0.08562743663787842, 0.09513633698225021, 0.0705997422337532, -0.12608766555786133, -0.03384757786989212, -0.07480890303850174, -0.07901132106781006, 0.11361104995012283, -0.16550293564796448, 0.10402606427669525, -0.0002939241530839354, 0.10733360052108765, 0.020739929750561714, -0.03035447932779789, 0.1734008491039276, 0.04332949221134186, 0.09345084428787231, -0.0636453703045845, 0.013036527670919895, 0.0594707615673542, -0.07437105476856232, 0.05294663831591606, -0.07647854089736938, 0.07460436224937439, -0.14853012561798096, 0.007260473910719156, -0.08373492956161499, 0.05673246085643768, -0.049821581691503525, -0.04553498327732086, -0.0771414265036583, 0.0664713978767395, 0.07413224130868912, 0.0035137252416461706, 0.08242471516132355, 0.025760868564248085, 0.10570722818374634, 0.10120156407356262, 0.06797455996274948, -0.04098139703273773, -0.04010333865880966, 0.02034623920917511, 0.0010605542920529842, 0.0905575156211853, -0.1458047777414322, 0.0048219310119748116, 0.10616876929998398, 0.03794839605689049, 0.138008251786232, 0.030378757044672966, -0.0920192077755928, -0.027693986892700195, 0.05640840530395508, -0.12562845647335052, -0.11304277926683426, -0.0314098484814167, 0.019737912341952324, -0.10890256613492966, 0.05597313493490219, 0.09279587119817734, -0.07275684922933578, 0.008996562100946903, -0.029583897441625595, 0.037607841193675995, -0.06394483149051666, 0.15928016602993011, 0.07511261850595474, 0.06546154618263245, -0.08414582908153534, 0.15318246185779572, 0.05993958190083504, -0.03799349442124367, 0.09415839612483978, 0.06352736800909042, -0.10092730820178986, -0.014706278219819069, 0.016652844846248627, 0.12099699676036835, 0.010527375154197216, -0.07670968025922775, -0.10116976499557495, -0.08767517656087875, 0.03459833189845085, 0.08088712394237518, 0.03818324953317642, -0.015449464321136475, 0.000037335568777052686, 0.03379761427640915, -0.14698417484760284, 0.05937783047556877, -0.003860985394567251, 0.03344026580452919, -0.14554433524608612, 0.08887046575546265, 0.00705600343644619, 0.05791877210140228, -0.01154316496104002, 0.004248088225722313, -0.11638151109218597, 0.004951808135956526, -0.1265951693058014, -0.04445744678378105, -0.023047909140586853, 0.00045826431596651673, 0.012293162755668163, -0.030563263222575188, -0.05999981611967087, 0.04732231795787811, -0.08138110488653183, -0.04357831925153732, 0.012699424289166927, 0.06546978652477264, -0.1022527739405632, 0.0024210293777287006, 0.024297164753079414, -0.09487317502498627, 0.0772981122136116, 0.11252198368310928, 0.040455613285303116, 0.035583123564720154, -0.09203221648931503, 0.01546394731849432, 0.019584212452173233, 0.03200817108154297, 0.07317222654819489, -0.08171317726373672, -0.041446615010499954, -0.05025758966803551, 0.05066363140940666, 0.012532259337604046, 0.06435396522283554, -0.09794294089078903, -0.05466305837035179, -0.05298157036304474, -0.039114855229854584, -0.0683201476931572, 0.052208442240953445, 0.08757826685905457, 0.025617970153689384, 0.11970022320747375, -0.0579528883099556, -0.0018681379733607173, -0.16710475087165833, -0.03809806704521179, 0.009483639150857925, -0.001605149474926293, -0.03282341733574867, -0.025631630793213844, 0.0888189896941185, -0.07198549062013626, 0.13483302295207977, -0.03198712691664696, 0.028259456157684326, 0.018590161576867104, -0.061125416308641434, -0.004390586167573929, 0.017335733398795128, 0.1856062263250351, 0.06616232544183731, 0.0101243294775486, 0.10596653074026108, -0.024962972849607468, 0.07276991754770279, 0.04578706622123718, 0.14987167716026306, 0.10854009538888931, -0.027947261929512024, 0.09158419817686081, 0.10489313304424286, -0.1442035287618637, -0.0752447172999382, 0.13425911962985992, -0.03867959976196289, 0.09034483879804611, -0.06138863041996956, 0.13051295280456543, 0.11841140687465668, -0.16094684600830078, 0.02268548309803009, -0.06371711939573288, -0.12544028460979462, -0.08505537360906601, -0.053894247859716415, -0.07187490910291672, -0.1698562055826187, 0.01855304092168808, -0.1276540607213974, 0.007841242477297783, 0.12528353929519653, 0.018275871872901917, 0.010047774761915207, 0.1864897906780243, -0.023189667612314224, 0.010615934617817402, 0.04337175562977791, -0.011507174000144005, -0.03422623872756958, -0.09835824370384216, -0.09668921679258347, 0.05613517761230469, -0.008182648569345474, 0.0664488822221756, -0.06538500636816025, -0.006346810609102249, 0.06140107661485672, 0.026884624734520912, -0.05831872671842575, 0.026229174807667732, -0.006699659395962954, 0.031426526606082916, 0.03780234605073929, 0.050459835678339005, -0.02671016752719879, -0.04391036927700043, 0.25959470868110657, -0.08987514674663544, -0.04637625813484192, -0.12400519102811813, 0.1717033088207245, 0.025291621685028076, 0.0045145913027226925, 0.046581678092479706, -0.11408306658267975, -0.051032330840826035, 0.1511898636817932, 0.17329607903957367, -0.10865098237991333, -0.020194783806800842, -0.019916916266083717, -0.01580599509179592, -0.07701890170574188, 0.10025491565465927, 0.10230936855077744, 0.015980113297700882, -0.039432134479284286, 0.004544299095869064, -0.006720907054841518, -0.024102428928017616, -0.0747314915060997, 0.03889867663383484, 0.015358894132077694, -0.0012309952871873975, -0.034388791769742966, 0.052129581570625305, -0.0428355447947979, -0.18236865103244781, 0.04287584871053696, -0.1536187380552292, -0.16698026657104492, -0.04386760666966438, 0.047095682471990585, -0.007571985013782978, 0.0746268481016159, -0.036734793335199356, -0.01788082905113697, 0.12142471969127655, -0.019221246242523193, -0.044893600046634674, -0.1580243855714798, 0.07692130655050278, -0.05830060690641403, 0.2329854518175125, -0.022262394428253174, 0.10241474956274033, 0.11030646413564682, 0.008835763670504093, -0.10781046003103256, 0.04715117812156677, 0.09580303728580475, -0.056580398231744766, -0.004631372168660164, 0.14205308258533478, -0.05650845542550087, 0.12799590826034546, 0.05410662293434143, -0.11921951919794083, -0.030012479051947594, -0.034160763025283813, 0.013015049509704113, -0.0854797214269638, 0.0035986946895718575, -0.06980108469724655, 0.1613362729549408, 0.20238757133483887, -0.07154788821935654, -0.0072553991340100765, -0.0591437891125679, 0.02797175571322441, 0.02767765335738659, 0.07327809929847717, -0.02604481391608715, -0.22593586146831512, 0.030393797904253006, 0.02756349742412567, 0.020484987646341324, -0.25103604793548584, -0.059276167303323746, 0.03693251311779022, -0.059857938438653946, -0.007907314226031303, 0.09934169054031372, 0.0773320272564888, 0.02782522886991501, -0.05712820962071419, -0.09627582132816315, -0.06402192264795303, 0.13463687896728516, -0.15181955695152283, -0.08713191002607346 ]
null
null
transformers
# merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NeverSleep/Noromaid-13b-v0.3](https://huggingface.co/NeverSleep/Noromaid-13b-v0.3) * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: model: path: NeverSleep/Noromaid-13b-v0.3 dtype: float16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.5, 0.3, 0.7, 1.0] - filter: mlp value: [1.0, 0.5, 0.7, 0.3, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 40] model: model: path: NeverSleep/Noromaid-13b-v0.3 - layer_range: [0, 40] model: model: path: KoboldAI/LLaMA2-13B-Tiefighter ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["NeverSleep/Noromaid-13b-v0.3", "KoboldAI/LLaMA2-13B-Tiefighter"]}
text-generation
gotchu/season-8-13bmergev1
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:NeverSleep/Noromaid-13b-v0.3", "base_model:KoboldAI/LLaMA2-13B-Tiefighter", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T23:28:05+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #mergekit #merge #base_model-NeverSleep/Noromaid-13b-v0.3 #base_model-KoboldAI/LLaMA2-13B-Tiefighter #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merged This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * NeverSleep/Noromaid-13b-v0.3 * KoboldAI/LLaMA2-13B-Tiefighter ### Configuration The following YAML configuration was used to produce this model:
[ "# merged\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NeverSleep/Noromaid-13b-v0.3\n* KoboldAI/LLaMA2-13B-Tiefighter", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #base_model-NeverSleep/Noromaid-13b-v0.3 #base_model-KoboldAI/LLaMA2-13B-Tiefighter #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merged\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* NeverSleep/Noromaid-13b-v0.3\n* KoboldAI/LLaMA2-13B-Tiefighter", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ 91, 19, 4, 18, 43, 17 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #base_model-NeverSleep/Noromaid-13b-v0.3 #base_model-KoboldAI/LLaMA2-13B-Tiefighter #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merged\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* NeverSleep/Noromaid-13b-v0.3\n* KoboldAI/LLaMA2-13B-Tiefighter### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ -0.0612512044608593, -0.0016397279687225819, -0.0009779772954061627, 0.030516063794493675, 0.0648801326751709, 0.041669491678476334, 0.19282883405685425, 0.06423024833202362, 0.0013743843883275986, -0.0284429844468832, 0.039305951446294785, 0.018739942461252213, 0.033996548503637314, 0.1847073882818222, -0.038352783769369125, -0.1859990805387497, 0.06612779945135117, -0.04333478957414627, -0.13233844935894012, 0.11145278811454773, 0.0827249139547348, -0.036538321524858475, 0.07933814078569412, 0.046115778386592865, -0.16144126653671265, 0.011074674315750599, -0.032273996621370316, -0.03121393546462059, 0.10822007060050964, 0.08208217471837997, 0.07969057559967041, 0.03675954043865204, 0.0013400239404290915, -0.14808529615402222, 0.042341653257608414, 0.012110525742173195, 0.016287466511130333, 0.0419403500854969, -0.004279450513422489, -0.03912866860628128, 0.10631141811609268, -0.007753083482384682, 0.044080011546611786, 0.0867970883846283, -0.11650847643613815, -0.08128739893436432, -0.08926967531442642, 0.12757278978824615, 0.17639043927192688, 0.04358011856675148, 0.003672467777505517, 0.06945815682411194, -0.010744974948465824, 0.047844842076301575, -0.0028901915065944195, -0.2021513730287552, -0.032220128923654556, 0.16710367798805237, 0.01503159012645483, -0.08952343463897705, 0.0027326452545821667, 0.033832307904958725, 0.0687471553683281, -0.03119615465402603, 0.024277523159980774, -0.04153626784682274, 0.10030253231525421, -0.11837528645992279, -0.0916886180639267, -0.0053710490465164185, 0.09144452959299088, 0.011753135360777378, -0.016651470214128494, -0.08291065692901611, -0.09727761149406433, 0.015811115503311157, -0.017001526430249214, -0.04159558564424515, 0.007793897297233343, -0.004222316667437553, 0.09952765703201294, -0.10333877056837082, -0.06099749729037285, -0.05702849105000496, -0.11739130318164825, 0.2576492726802826, -0.0037014936096966267, 0.0329151414334774, -0.07894077152013779, 0.07617693394422531, -0.21022656559944153, -0.11193641275167465, 0.0067123654298484325, -0.08093331754207611, -0.05137454718351364, -0.019487585872411728, -0.08733777701854706, -0.1415683925151825, 0.0777575820684433, 0.2361583262681961, -0.04758651554584503, -0.007793822325766087, 0.06055436655879021, 0.06558310240507126, -0.013022899627685547, -0.01934119686484337, -0.06158280000090599, -0.1579432487487793, 0.04665958136320114, -0.001047927071340382, 0.07964310050010681, -0.024686714634299278, -0.08930068463087082, -0.02920471504330635, -0.08746697008609772, -0.02523777075111866, 0.059885699301958084, 0.10295894742012024, -0.03737528622150421, -0.04324537515640259, 0.10301005095243454, -0.06547875702381134, -0.0017433477332815528, -0.02982957288622856, 0.009918288327753544, -0.021730544045567513, 0.16087844967842102, 0.09630618989467621, 0.05188074707984924, 0.06802958250045776, -0.0556662455201149, -0.022688820958137512, -0.044932056218385696, -0.05745154619216919, 0.009605341590940952, -0.045246463268995285, -0.03585299104452133, -0.08483677357435226, -0.27876344323158264, -0.02886579930782318, 0.04039861261844635, -0.007640428841114044, -0.05957439914345741, -0.05974794179201126, -0.0066649834625422955, -0.0035626706667244434, 0.01058191154152155, -0.09663040190935135, -0.014592119492590427, -0.03939436003565788, 0.005526934750378132, 0.08667860180139542, -0.12851379811763763, 0.013528677634894848, -0.15346404910087585, 0.10130280256271362, -0.16082534193992615, 0.10537707060575485, -0.02571050636470318, 0.061163291335105896, -0.05202902853488922, 0.03561221435666084, -0.03511494770646095, 0.035982612520456314, 0.03963100165128708, 0.19628353416919708, -0.13690215349197388, -0.08807481080293655, 0.1333491951227188, -0.18671514093875885, -0.10832598805427551, 0.05172872543334961, 0.014931251294910908, 0.09719602018594742, 0.04857818782329559, 0.18469445407390594, 0.20763500034809113, 0.061506543308496475, 0.01156641636043787, -0.01717335544526577, -0.003245142986997962, -0.03493416681885719, 0.05763965845108032, -0.04154780134558678, -0.1481465846300125, 0.07332058250904083, 0.027838675305247307, 0.10868942737579346, -0.02093634195625782, -0.08499161899089813, -0.05514976754784584, -0.08236919343471527, 0.1573934406042099, -0.03168731927871704, 0.027824699878692627, -0.08329322934150696, -0.0172448568046093, 0.05518659949302673, 0.09764120727777481, -0.038393475115299225, 0.0016465509543195367, -0.010066482238471508, 0.06348907202482224, -0.13840176165103912, 0.019904369488358498, -0.06163470819592476, -0.13768818974494934, -0.053240884095430374, -0.03218453377485275, 0.05198423191905022, 0.025545265525579453, 0.07219793647527695, 0.06525689363479614, -0.05965710058808327, -0.014296588487923145, 0.10469025373458862, 0.05898231267929077, -0.015043108724057674, -0.1797618418931961, -0.052867840975522995, -0.07070420682430267, 0.267459899187088, -0.13485288619995117, 0.09735919535160065, -0.08059485256671906, 0.23866643011569977, -0.032825179398059845, 0.005523271393030882, 0.07509344816207886, 0.04880542308092117, -0.060517869889736176, -0.005683098919689655, 0.07559981942176819, -0.01128830574452877, -0.17914484441280365, 0.1545512080192566, -0.14812901616096497, 0.002539614913985133, 0.09158733487129211, 0.07028933614492416, -0.07470441609621048, -0.02422165311872959, -0.042702753096818924, -0.0772838294506073, 0.04878494516015053, -0.03253018110990524, 0.08833303302526474, 0.012056474573910236, 0.1338082104921341, -0.023980485275387764, -0.02292851358652115, 0.028237681835889816, -0.08169283717870712, -0.0469249002635479, 0.014119281433522701, 0.013692999258637428, -0.07823387533426285, 0.1486482471227646, 0.1505061537027359, -0.004600947257131338, 0.15333564579486847, 0.0442911721765995, 0.043749358505010605, -0.061098095029592514, -0.05517442524433136, -0.0023123263381421566, 0.020783893764019012, -0.0457884706556797, 0.047504812479019165, 0.04727458953857422, 0.0008470987668260932, 0.05567959323525429, -0.11444349586963654, -0.0069559672847390175, 0.05553188547492027, 0.0015747570432722569, 0.09626694023609161, 0.09492159634828568, -0.007541160564869642, 0.08169331401586533, -0.013785245828330517, -0.038904353976249695, 0.046978965401649475, 0.004999428987503052, -0.08941662311553955, 0.1607280969619751, -0.10928817838430405, -0.2097875475883484, -0.18247771263122559, -0.05491287261247635, -0.17377115786075592, 0.0014793117297813296, 0.0502704456448555, -0.053768277168273926, -0.02677067741751671, -0.10650902986526489, 0.08489346504211426, 0.06268607825040817, 0.004883733578026295, 0.03165911138057709, -0.03616226091980934, 0.06477667391300201, -0.06496565788984299, -0.03810237720608711, 0.02888423204421997, -0.010834118351340294, 0.0710892602801323, -0.0012495634146034718, 0.10903233289718628, 0.1780669242143631, -0.06572624295949936, -0.039952535182237625, -0.015020178630948067, 0.13389644026756287, -0.03634649142622948, 0.09819446504116058, 0.1676534116268158, -0.10970223695039749, 0.04861032962799072, 0.24216584861278534, 0.031421177089214325, -0.027647782117128372, -0.0024893516674637794, -0.00515453377738595, -0.1259804517030716, -0.10518831759691238, -0.13002309203147888, -0.06661281734704971, 0.062449995428323746, 0.017793966457247734, 0.02797205187380314, 0.11777268350124359, 0.06655068695545197, -0.052002549171447754, -0.05130777135491371, 0.037856053560972214, 0.06902991980314255, 0.2135126143693924, -0.0028179939836263657, 0.09817910194396973, -0.017619431018829346, -0.01698490045964718, 0.03998803719878197, 0.03861779347062111, -0.0003604892117436975, 0.05851391330361366, 0.04194547235965729, 0.08748281747102737, -0.009310152381658554, 0.06523773074150085, 0.06231946870684624, -0.01085823867470026, -0.0025079105980694294, -0.0017085422296077013, -0.07965230196714401, 0.016671493649482727, 0.076768659055233, -0.07255113124847412, 0.11783343553543091, -0.08818481117486954, -0.011020711623132229, 0.05505169555544853, 0.14227521419525146, 0.13835656642913818, -0.25583168864250183, -0.11123813688755035, 0.045879147946834564, 0.021857140585780144, 0.01606818661093712, -0.016048893332481384, -0.017143338918685913, -0.07963573187589645, 0.23241715133190155, -0.031209321692585945, 0.07904002815485, 0.06338658928871155, 0.013171477243304253, -0.0622992180287838, 0.12383147329092026, -0.013751242309808731, 0.05396305024623871, -0.1184631809592247, 0.14655286073684692, -0.005711121018975973, -0.011613667942583561, 0.020363889634609222, 0.03443318232893944, 0.0612698495388031, 0.17972667515277863, 0.048532772809267044, 0.005892729852348566, 0.06028662621974945, -0.033092767000198364, -0.11567263305187225, -0.009633222594857216, -0.06287417560815811, -0.1280605047941208, 0.10631909221410751, -0.031545478850603104, -0.03668111562728882, 0.013126825913786888, 0.09492230415344238, -0.07358118146657944, -0.10522512346506119, 0.057403504848480225, 0.0969260036945343, -0.021345332264900208, -0.060324281454086304, -0.049176815897226334, -0.11691424995660782, 0.3107719123363495, 0.027515457943081856, -0.09207439422607422, -0.1252397745847702, -0.031008366495370865, 0.11478426307439804, -0.04123535007238388, 0.0573851503431797, -0.04785534366965294, 0.11382373422384262, -0.10205226391553879, -0.13945089280605316, 0.04390028864145279, -0.11503922939300537, -0.12966902554035187, -0.03869209438562393, 0.12161529809236526, -0.06391553580760956, 0.02087397500872612, 0.01266785990446806, 0.039750032126903534, -0.020062925294041634, -0.04693873971700668, -0.026210669428110123, 0.20549441874027252, -0.08117957413196564, 0.08042740821838379, 0.02333846129477024, -0.12726165354251862, -0.0263285581022501, -0.028965767472982407, 0.15674988925457, 0.3548278510570526, -0.05816767364740372, 0.1340007185935974, 0.11621914803981781, -0.06352370977401733, -0.2026279866695404, -0.04996553063392639, -0.02978801727294922, 0.037236228585243225, -0.005965873133391142, 0.01770014688372612, 0.08866937458515167, 0.09994808584451675, -0.006573843769729137, 0.048199545592069626, -0.25498345494270325, -0.17902736365795135, 0.06193816289305687, 0.02328772470355034, 0.30916106700897217, -0.03273525834083557, -0.0571630597114563, -0.06803173571825027, -0.11221100389957428, 0.06014721840620041, -0.08250072598457336, 0.07458312064409256, -0.037275925278663635, -0.010814884677529335, 0.02793831191956997, -0.0422653965651989, 0.14727744460105896, -0.04087384045124054, 0.022494230419397354, -0.11274230480194092, -0.01604275405406952, 0.051000963896512985, -0.08415623009204865, 0.08729460090398788, -0.09680421650409698, 0.027355216443538666, -0.044980891048908234, -0.05003003403544426, -0.058597058057785034, 0.08640845865011215, -0.04353492334485054, -0.07325534522533417, -0.051503539085388184, 0.03483089432120323, 0.04158541560173035, -0.005313155706971884, 0.09980062395334244, -0.046109460294246674, 0.18358896672725677, 0.22663381695747375, 0.0815008208155632, -0.026307029649615288, 0.020338620990514755, 0.018202317878603935, -0.08089900761842728, 0.03999215364456177, -0.11728964000940323, -0.01520049199461937, 0.09713447839021683, 0.021014144644141197, 0.07414944469928741, 0.01808878406882286, -0.04014639928936958, 0.0018837044481188059, 0.11212274432182312, -0.15570080280303955, -0.1775357574224472, -0.01716967672109604, -0.08870304375886917, -0.03625325486063957, 0.01982802338898182, 0.22978433966636658, -0.1338862031698227, 0.014768138527870178, 0.02457800880074501, 0.0030725181568413973, -0.11349135637283325, 0.08448204398155212, -0.007916351780295372, 0.039826855063438416, -0.08157313615083694, 0.08899495005607605, 0.03222044184803963, -0.002210768172517419, 0.0018607781967148185, 0.08968605101108551, -0.09648597985506058, -0.0803101509809494, -0.07591883093118668, 0.20576205849647522, -0.1276370733976364, -0.056099481880664825, -0.0813269391655922, -0.10236739367246628, 0.006592338439077139, 0.1886540800333023, 0.03448432311415672, 0.0023968536406755447, -0.009391873143613338, -0.03643473982810974, -0.075020432472229, 0.06888705492019653, 0.04835650324821472, 0.08527757972478867, -0.10005059093236923, 0.12053151428699493, -0.007675297558307648, 0.06255678087472916, -0.048839814960956573, -0.026444263756275177, -0.10059762001037598, -0.034024789929389954, -0.1434863954782486, -0.05032677575945854, -0.14413706958293915, -0.02867976203560829, 0.009999691508710384, -0.01806498132646084, -0.009297970682382584, -0.012804041616618633, -0.0460251048207283, -0.030779769644141197, -0.024076148867607117, 0.017590971663594246, -0.06372123211622238, -0.038446471095085144, 0.010802775621414185, -0.02277452126145363, 0.025887468829751015, 0.0011573261581361294, -0.03078402765095234, -0.05292264744639397, -0.15679924190044403, -0.01924782805144787, 0.07158965617418289, -0.017450746148824692, 0.04105261713266373, -0.060706693679094315, -0.04085098206996918, -0.002537486609071493, -0.033997610211372375, -0.0036992270033806562, 0.03797858953475952, -0.05732613429427147, -0.0566026046872139, 0.04398941621184349, -0.05630897358059883, -0.0169686172157526, -0.06809917092323303, 0.06022600457072258, 0.043554533272981644, 0.1310567855834961, -0.06001395732164383, 0.10645879060029984, -0.17445984482765198, -0.036454856395721436, -0.029383957386016846, -0.11091598868370056, 0.006714425981044769, -0.07637885212898254, -0.00656412448734045, -0.005145153030753136, 0.10782843828201294, 0.024585463106632233, -0.02353416569530964, 0.014681662432849407, -0.10942555218935013, -0.00940063688904047, 0.048045434057712555, 0.20635569095611572, 0.06206345930695534, 0.014691186137497425, -0.045218683779239655, 0.08036068081855774, 0.02244344726204872, -0.11595843732357025, 0.07433679699897766, 0.00548882782459259, 0.006516645662486553, 0.08829135447740555, 0.10308579355478287, 0.0049061826430261135, -0.06914351880550385, -0.19085386395454407, -0.04854356124997139, 0.059677109122276306, -0.026793085038661957, 0.024245766922831535, 0.14956018328666687, -0.1569199115037918, 0.07639952003955841, 0.029886940494179726, -0.01839384436607361, -0.08304602652788162, -0.11896459758281708, -0.0825992152094841, -0.10303355008363724, -0.03237731754779816, -0.06877943128347397, -0.05648142099380493, 0.009933601133525372, 0.0011770563432946801, 0.005684254225343466, 0.20719541609287262, -0.02912961132824421, -0.01655534654855728, 0.003960961475968361, 0.005774449557065964, -0.00037529136170633137, -0.040254220366477966, -0.004695302806794643, 0.03856884688138962, 0.008986121974885464, -0.029547177255153656, 0.013129615224897861, 0.0561361201107502, 0.0535263828933239, -0.011268424801528454, -0.1288909763097763, 0.015231147408485413, 0.03333290293812752, 0.11318441480398178, -0.045534148812294006, 0.0639592856168747, -0.009668402373790741, -0.014331870712339878, 0.06360751390457153, -0.037604399025440216, -0.11835947632789612, -0.10359978675842285, 0.2869793474674225, -0.06565654277801514, 0.01757081039249897, -0.025418782606720924, -0.0832534208893776, -0.002959303092211485, 0.15073354542255402, 0.29740110039711, -0.010051626712083817, 0.016345730051398277, -0.03778775408864021, 0.011175770312547684, 0.005193325225263834, 0.057609908282756805, 0.0028277894016355276, 0.10180163383483887, -0.05104370787739754, 0.10129886120557785, -0.0030497091356664896, -0.08853477984666824, -0.02480231784284115, 0.09763997793197632, -0.006206875666975975, -0.03476109355688095, 0.010827692225575447, 0.05279015377163887, -0.053659483790397644, -0.01415890920907259, 0.0844440683722496, -0.17331591248512268, -0.10384456068277359, -0.05774303898215294, 0.03685285523533821, -0.01393977738916874, 0.04262795299291611, -0.038784414529800415, -0.01339784823358059, 0.10618197172880173, -0.03765109181404114, -0.04013906419277191, -0.09697560220956802, -0.009312538430094719, -0.005168382078409195, 0.07241299748420715, -0.040664367377758026, 0.00494119618088007, 0.09615793824195862, 0.002554486505687237, -0.10147706419229507, 0.01485481671988964, 0.009688745252788067, 0.035667385905981064, 0.014146911911666393, 0.05809340998530388, -0.03655137121677399, 0.044543974101543427, 0.06325293332338333, -0.20239192247390747, 0.04177797958254814, 0.06718771904706955, -0.07308316975831985, -0.019003888592123985, 0.07734242081642151, -0.005516462493687868, 0.15795351564884186, 0.15125703811645508, -0.05795115604996681, 0.00850285217165947, 0.012308565899729729, 0.0730615183711052, 0.044662393629550934, 0.09626081585884094, -0.04130813851952553, -0.170157790184021, -0.008226892910897732, 0.06857442110776901, 0.05907486751675606, -0.2700869143009186, -0.10787685960531235, -0.11460378766059875, -0.046451687812805176, -0.031056517735123634, 0.08786788582801819, 0.14963316917419434, 0.028140105307102203, -0.0014189861249178648, -0.1492050290107727, -0.002882121130824089, 0.0933314859867096, -0.10887961089611053, -0.10373178124427795 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SMIDS_3x_beit_large_RMSProp_lr001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7560 - Accuracy: 0.8083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9171 | 1.0 | 450 | 0.8948 | 0.51 | | 0.8812 | 2.0 | 900 | 0.8607 | 0.525 | | 0.8194 | 3.0 | 1350 | 0.7757 | 0.6267 | | 0.6955 | 4.0 | 1800 | 0.7140 | 0.6467 | | 0.8091 | 5.0 | 2250 | 0.7509 | 0.6633 | | 0.6517 | 6.0 | 2700 | 0.6973 | 0.6917 | | 0.6991 | 7.0 | 3150 | 0.6683 | 0.7283 | | 0.6713 | 8.0 | 3600 | 0.6517 | 0.725 | | 0.6492 | 9.0 | 4050 | 0.6966 | 0.695 | | 0.6051 | 10.0 | 4500 | 0.8120 | 0.645 | | 0.6677 | 11.0 | 4950 | 0.6519 | 0.6933 | | 0.6672 | 12.0 | 5400 | 0.6414 | 0.6933 | | 0.6433 | 13.0 | 5850 | 0.6373 | 0.7383 | | 0.5726 | 14.0 | 6300 | 0.5998 | 0.7533 | | 0.5855 | 15.0 | 6750 | 0.5960 | 0.7517 | | 0.6014 | 16.0 | 7200 | 0.5977 | 0.745 | | 0.4679 | 17.0 | 7650 | 0.6657 | 0.74 | | 0.5628 | 18.0 | 8100 | 0.6007 | 0.745 | | 0.4918 | 19.0 | 8550 | 0.6076 | 0.7433 | | 0.4789 | 20.0 | 9000 | 0.5821 | 0.7633 | | 0.4762 | 21.0 | 9450 | 0.6051 | 0.7783 | | 0.4246 | 22.0 | 9900 | 0.5357 | 0.77 | | 0.4678 | 23.0 | 10350 | 0.5348 | 0.7983 | | 0.4194 | 24.0 | 10800 | 0.6209 | 0.7467 | | 0.402 | 25.0 | 11250 | 0.6210 | 0.7383 | | 0.4363 | 26.0 | 11700 | 0.5169 | 0.7933 | | 0.3653 | 27.0 | 12150 | 0.5029 | 0.8067 | | 0.4331 | 28.0 | 12600 | 0.5082 | 0.785 | | 0.3175 | 29.0 | 13050 | 0.5574 | 0.7933 | | 0.4579 | 30.0 | 13500 | 0.5170 | 0.7933 | | 0.3918 | 31.0 | 13950 | 0.5324 | 0.8017 | | 0.3829 | 32.0 | 14400 | 0.5473 | 0.8033 | | 0.4015 | 33.0 | 14850 | 0.5181 | 0.7983 | | 0.395 | 34.0 | 15300 | 0.5240 | 0.8183 | | 0.2966 | 35.0 | 15750 | 0.5309 | 0.7967 | | 0.4025 | 36.0 | 16200 | 0.5330 | 0.7867 | | 0.332 | 37.0 | 16650 | 0.5002 | 0.805 | | 0.2877 | 38.0 | 17100 | 0.5148 | 0.8033 | | 0.4235 | 39.0 | 17550 | 0.5592 | 0.7867 | | 0.344 | 40.0 | 18000 | 0.5530 | 0.8083 | | 0.2607 | 41.0 | 18450 | 0.5700 | 0.7917 | | 0.3341 | 42.0 | 18900 | 0.5907 | 0.81 | | 0.2428 | 43.0 | 19350 | 0.6214 | 0.8033 | | 0.2313 | 44.0 | 19800 | 0.6617 | 0.7883 | | 0.2876 | 45.0 | 20250 | 0.5880 | 0.8033 | | 0.1795 | 46.0 | 20700 | 0.6634 | 0.805 | | 0.2758 | 47.0 | 21150 | 0.7326 | 0.815 | | 0.2655 | 48.0 | 21600 | 0.7557 | 0.8083 | | 0.238 | 49.0 | 22050 | 0.7452 | 0.805 | | 0.2564 | 50.0 | 22500 | 0.7560 | 0.8083 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_3x_beit_large_RMSProp_lr001_fold5", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8083333333333333, "name": "Accuracy"}]}]}]}
image-classification
onizukal/SMIDS_3x_beit_large_RMSProp_lr001_fold5
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-large-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T23:28:51+00:00
[]
[]
TAGS #transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
SMIDS\_3x\_beit\_large\_RMSProp\_lr001\_fold5 ============================================= This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.7560 * Accuracy: 0.8083 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 50 ### Training results ### Framework versions * Transformers 4.32.1 * Pytorch 2.0.1 * Datasets 2.12.0 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ 81, 115, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ -0.1293599158525467, 0.1724882274866104, -0.0023454553447663784, 0.13587836921215057, 0.11250235140323639, 0.015344180166721344, 0.13944171369075775, 0.16905122995376587, -0.08231265097856522, 0.04725457355380058, 0.1399839073419571, 0.13659004867076874, 0.046719420701265335, 0.19427457451820374, -0.05236957222223282, -0.2601667046546936, 0.04119328409433365, 0.03234807401895523, -0.02075078710913658, 0.12314869463443756, 0.09301083534955978, -0.13055187463760376, 0.11641614139080048, 0.030263151973485947, -0.1994711011648178, -0.03690062463283539, -0.00742433313280344, -0.06729142367839813, 0.10523199290037155, -0.003170925425365567, 0.06897550076246262, 0.03744976967573166, 0.0835329070687294, -0.13024620711803436, 0.0019813377875834703, 0.043246712535619736, 0.0064185261726379395, 0.10353662818670273, 0.05471734330058098, -0.015182994306087494, 0.07030405849218369, -0.06875743716955185, 0.06702885776758194, 0.009385199286043644, -0.11313743144273758, -0.26980340480804443, -0.10223843902349472, 0.07157823443412781, 0.08217991888523102, 0.068179190158844, 0.008332090452313423, 0.1646922081708908, -0.015027978457510471, 0.10447341948747635, 0.23090173304080963, -0.2640359699726105, -0.055165741592645645, 0.0294360164552927, 0.014914325438439846, 0.06473758071660995, -0.10603974759578705, -0.018760167062282562, 0.02059783600270748, 0.044390130788087845, 0.1409236192703247, -0.010635782033205032, -0.02811739780008793, -0.021928580477833748, -0.10847067832946777, -0.08875154703855515, 0.18579065799713135, 0.058072153478860855, -0.04802494868636131, -0.07736620306968689, -0.07186304777860641, -0.17165552079677582, -0.041741833090782166, 0.009797174483537674, 0.04154014587402344, -0.04674985632300377, -0.10634559392929077, -0.030910290777683258, -0.07805538177490234, -0.051461391150951385, -0.023120464757084846, 0.1351369321346283, 0.03383360058069229, 0.05723920464515686, -0.03597215935587883, 0.09929350018501282, 0.0073938071727752686, -0.17543649673461914, -0.028137801215052605, -0.0017277015140280128, 0.015125435777008533, -0.01991228759288788, -0.030262885615229607, -0.06523662805557251, -0.001314454828388989, 0.1489848643541336, -0.06082969531416893, 0.060913555324077606, -0.007318461779505014, 0.04020942002534866, -0.048562191426754, 0.1864238679409027, -0.02870783396065235, -0.01659870520234108, 0.0207351166754961, 0.08822518587112427, 0.06836054474115372, -0.036532942205667496, -0.12525734305381775, 0.03098621405661106, 0.12811045348644257, 0.0029374780133366585, -0.021369412541389465, 0.05286439135670662, -0.0643334686756134, -0.0587083138525486, 0.09228596836328506, -0.08908151835203171, 0.034838590770959854, -0.010374085046350956, -0.084370456635952, -0.06779533624649048, 0.027354132384061813, 0.01850878819823265, -0.0004323708708398044, 0.07165450602769852, -0.09108522534370422, 0.014963540248572826, -0.06533985584974289, -0.10081785917282104, 0.016071073710918427, -0.1107335016131401, 0.012424856424331665, -0.09663169085979462, -0.19710472226142883, 0.006891206838190556, 0.07721206545829773, -0.05610070005059242, -0.06814593821763992, -0.03639180585741997, -0.07652068138122559, 0.04154945909976959, -0.011949662119150162, 0.07310567051172256, -0.0747697651386261, 0.0913747176527977, 0.022405456751585007, 0.08734618872404099, -0.05631003528833389, 0.0460691936314106, -0.1024455726146698, 0.04984736442565918, -0.19827407598495483, 0.0799676924943924, -0.0493633896112442, 0.0617455318570137, -0.09557844698429108, -0.10542625933885574, 0.03370443359017372, -0.05006959289312363, 0.06861566007137299, 0.0974634513258934, -0.1729826033115387, -0.057957619428634644, 0.1353495568037033, -0.09663163125514984, -0.14797286689281464, 0.10109983384609222, -0.050693199038505554, 0.01928282529115677, 0.047161467373371124, 0.21422064304351807, 0.06321150809526443, -0.09143578261137009, -0.02580295503139496, -0.03329068049788475, 0.04440530762076378, -0.06494591385126114, 0.10175396502017975, 0.027680888772010803, 0.05365157872438431, 0.023984158411622047, -0.032899804413318634, 0.03856229409575462, -0.08387355506420135, -0.10054522752761841, -0.05070185661315918, -0.08565592765808105, 0.039397966116666794, 0.05604296177625656, 0.05994046851992607, -0.10856401175260544, -0.09017187356948853, 0.04204317927360535, 0.0943065956234932, -0.07395226508378983, 0.028962817043066025, -0.09000826627016068, 0.11608705669641495, -0.08325600624084473, -0.02390553615987301, -0.1791052222251892, -0.04241684824228287, 0.040629271417856216, -0.01629319041967392, -0.006912850774824619, -0.048891667276620865, 0.07074255496263504, 0.08783093094825745, -0.05235742777585983, -0.05203414335846901, -0.05522594600915909, 0.008213330060243607, -0.1105295866727829, -0.1776295155286789, -0.08015653491020203, -0.0380605012178421, 0.14977632462978363, -0.15268713235855103, 0.022225622087717056, 0.061116840690374374, 0.12500962615013123, 0.059797611087560654, -0.04723487049341202, -0.007436409126967192, 0.021452799439430237, -0.05571167171001434, -0.08678608387708664, 0.05719248577952385, 0.03528200834989548, -0.07155010849237442, -0.019102152436971664, -0.10049699991941452, 0.1498662531375885, 0.13190734386444092, -0.0015375686343759298, -0.04512632265686989, -0.01160994078963995, -0.06610778719186783, -0.030441991984844208, -0.04081778973340988, 0.018804829567670822, 0.10142559558153152, 0.01744643971323967, 0.14419154822826385, -0.09178037941455841, -0.036961425095796585, 0.053544968366622925, -0.028453968465328217, -0.0331195667386055, 0.07361359149217606, 0.02190210297703743, -0.14263916015625, 0.15015269815921783, 0.14882412552833557, -0.04894813522696495, 0.12402692437171936, -0.036747027188539505, -0.0615357980132103, -0.044876549392938614, -0.037704430520534515, 0.014213677495718002, 0.1403394341468811, -0.08333314955234528, -0.005919712595641613, 0.05630137771368027, 0.019257593899965286, -0.007085299585014582, -0.18072617053985596, 0.0006808378966525197, 0.03521978110074997, -0.04604950174689293, -0.02278841845691204, -0.014470276422798634, 0.0007941273506730795, 0.09172741323709488, 0.019804218783974648, -0.07102026045322418, 0.05166372284293175, 0.010580740869045258, -0.05623085796833038, 0.16415521502494812, -0.07910753041505814, -0.19727325439453125, -0.11776646971702576, -0.08754957467317581, -0.10735819488763809, 0.013021474704146385, 0.06737184524536133, -0.050448641180992126, -0.04938974231481552, -0.10206248611211777, -0.04453543201088905, 0.021900271996855736, 0.02429220825433731, 0.05370878055691719, -0.008031168952584267, 0.08405356109142303, -0.09224440902471542, -0.03291117399930954, -0.014789600856602192, 0.018657125532627106, 0.06682770699262619, 0.018715238198637962, 0.11069032549858093, 0.08161229640245438, -0.02844928205013275, 0.05646483600139618, -0.01682325080037117, 0.2655041813850403, -0.06765957176685333, -0.006789656355977058, 0.13932959735393524, -0.013368978165090084, 0.08428963273763657, 0.1268712729215622, 0.04151352122426033, -0.09555158019065857, -0.013173693791031837, -0.00024822441628202796, -0.05275752767920494, -0.1537386178970337, -0.04163756221532822, -0.045641690492630005, -0.0021682933438569307, 0.13930507004261017, 0.03818075731396675, 0.02474883571267128, 0.07807637751102448, 0.020041609182953835, 0.05664918199181557, -0.017527885735034943, 0.10406769812107086, 0.08156019449234009, 0.06448414921760559, 0.13368317484855652, -0.03653626888990402, -0.019387291744351387, 0.05662747099995613, 0.04215037450194359, 0.20423758029937744, -0.02541770040988922, 0.14701254665851593, 0.02641657367348671, 0.19307395815849304, 0.017521383240818977, 0.0728468969464302, -0.014410126954317093, 0.0009393728105351329, -0.019274147227406502, -0.04702805355191231, -0.06427313387393951, 0.03288881108164787, -0.016649875789880753, 0.05632343888282776, -0.09356046468019485, 0.039105307310819626, 0.059592608362436295, 0.30666422843933105, 0.06539998203516006, -0.4122132360935211, -0.09836560487747192, 0.012291035614907742, 0.0009865236934274435, -0.055195607244968414, -0.0072626820765435696, 0.0979013666510582, -0.09949664771556854, 0.08215389400720596, -0.09418605268001556, 0.08514873683452606, -0.0845724418759346, 0.020298872143030167, 0.07689075917005539, 0.056060366332530975, 0.013226890936493874, 0.05964293330907822, -0.21821673214435577, 0.24971400201320648, 0.018467964604496956, 0.04422129690647125, -0.08908867090940475, 0.010060982778668404, 0.033364444971084595, 0.059161990880966187, 0.08554306626319885, 0.005977867171168327, -0.09024009108543396, -0.18880225718021393, -0.1258762925863266, 0.0005427713040262461, 0.06169470399618149, -0.036699384450912476, 0.09451829642057419, -0.018175894394516945, -0.012127134948968887, 0.021332256495952606, 0.0005201056483201683, -0.03501477465033531, -0.103630930185318, 0.02024604007601738, 0.034688886255025864, -0.012138742953538895, -0.06473075598478317, -0.11475593596696854, -0.03554871678352356, 0.16192500293254852, 0.05505121126770973, -0.07524240761995316, -0.1408705860376358, 0.07218684256076813, 0.07781627029180527, -0.0855332687497139, 0.039305757731199265, -0.016779718920588493, 0.14986851811408997, 0.020937321707606316, -0.08943228423595428, 0.10178638249635696, -0.05869165062904358, -0.17860572040081024, -0.041185978800058365, 0.09929849207401276, 0.007366738747805357, 0.05263189971446991, 0.004192214459180832, 0.06014186516404152, -0.035002902150154114, -0.0584394596517086, 0.06681792438030243, -0.0073097143322229385, 0.10614755749702454, -0.014883637428283691, 0.00864378735423088, 0.029195772483944893, -0.04613848030567169, 0.00009839441918302327, 0.1684505194425583, 0.24079899489879608, -0.10403203964233398, 0.060546230524778366, 0.03012177161872387, -0.030879246070981026, -0.18261685967445374, 0.010319743305444717, 0.07656802982091904, -0.0001991603203350678, 0.04173794388771057, -0.16060468554496765, 0.055176541209220886, 0.10514935851097107, -0.043303944170475006, 0.08152011036872864, -0.2768779397010803, -0.11840421706438065, 0.0923023670911789, 0.138164222240448, 0.0691317543387413, -0.13107311725616455, -0.04327763617038727, -0.041234806180000305, -0.17335952818393707, 0.13665583729743958, -0.05704028159379959, 0.11501350998878479, -0.039327461272478104, 0.08051838725805283, 0.014901114627718925, -0.056082114577293396, 0.14561402797698975, 0.005515002179890871, 0.08661133795976639, -0.07185279577970505, -0.0014093852369114757, 0.10643326491117477, -0.10252601653337479, 0.07192501425743103, -0.0869532898068428, 0.06187514215707779, -0.10810889303684235, -0.0037693935446441174, -0.07425615191459656, 0.013987713493406773, -0.013397954404354095, -0.048907287418842316, -0.0448833703994751, 0.03488645330071449, 0.06301422417163849, -0.018155096098780632, 0.20988906919956207, 0.06445588916540146, 0.0862940326333046, 0.1728745847940445, 0.05397673323750496, -0.10576145350933075, -0.09408308565616608, -0.04430058225989342, -0.029343122616410255, 0.059755485504865646, -0.13705183565616608, 0.053009506314992905, 0.12004052102565765, 0.013443393632769585, 0.1280696988105774, 0.05582417547702789, -0.030783196911215782, 0.035687193274497986, 0.06206676363945007, -0.1721130907535553, -0.08640376478433609, -0.010029762983322144, 0.030597826465964317, -0.13003188371658325, 0.045725177973508835, 0.12137939780950546, -0.0593545101583004, -0.014887568540871143, -0.004342919681221247, 0.03682979568839073, -0.009421703405678272, 0.15946903824806213, 0.047883741557598114, 0.05509158596396446, -0.11808934807777405, 0.11348052322864532, 0.057328153401613235, -0.0728185623884201, 0.032391179352998734, 0.05030714347958565, -0.10392948985099792, -0.021465230733156204, 0.031419817358255386, 0.14932547509670258, -0.06275127828121185, -0.045640427619218826, -0.13568063080310822, -0.091814324259758, 0.06645428389310837, 0.07967224717140198, 0.0933644250035286, 0.01663324609398842, -0.03539150580763817, -0.013165266253054142, -0.10855977237224579, 0.10982618480920792, 0.04324139654636383, 0.09105362743139267, -0.17992232739925385, 0.054193608462810516, -0.0015555275604128838, 0.07246194779872894, -0.021836427971720695, -0.00042325531831011176, -0.08788467198610306, 0.003508437890559435, -0.10813499987125397, 0.02464236691594124, -0.052905477583408356, 0.006243168842047453, -0.02064651995897293, -0.0580705925822258, -0.06364380568265915, 0.024784497916698456, -0.11918067932128906, -0.053243763744831085, 0.02146504819393158, 0.031834639608860016, -0.12016978859901428, -0.04392008110880852, 0.020345089957118034, -0.08986733108758926, 0.09774119406938553, 0.06029992923140526, -0.008077923208475113, 0.00773270707577467, 0.0036002967972308397, -0.02274298295378685, 0.0666942149400711, 0.007561622653156519, 0.08597277849912643, -0.1152612566947937, -0.0221384409815073, 0.01634843461215496, -0.004547150805592537, 0.017726117745041847, 0.15840598940849304, -0.12086156010627747, -0.0003179961640853435, -0.014678256586194038, -0.06600851565599442, -0.06344839930534363, 0.06893838196992874, 0.10903503000736237, 0.02346671372652054, 0.21181334555149078, -0.054371658712625504, 0.015811823308467865, -0.20995409786701202, -0.011581460013985634, 0.005185890011489391, -0.1388559192419052, -0.10497695952653885, -0.03237957879900932, 0.06376256048679352, -0.07031478732824326, 0.11765085160732269, 0.03525954857468605, 0.02161695808172226, 0.02906344085931778, 0.025029366835951805, -0.0031726681627333164, 0.013450034894049168, 0.16309522092342377, 0.014403261244297028, -0.028442582115530968, 0.12852592766284943, 0.028986822813749313, 0.09334488213062286, 0.11778779327869415, 0.17672526836395264, 0.11388354748487473, 0.04729508236050606, 0.09055530279874802, 0.05202596262097359, -0.025968270376324654, -0.22174733877182007, 0.03601896017789841, -0.03978736698627472, 0.1488790065050125, -0.0030294209718704224, 0.15902450680732727, 0.0920415073633194, -0.18360793590545654, 0.040488436818122864, -0.03700747340917587, -0.0790853351354599, -0.08454839885234833, -0.12155362963676453, -0.10311590880155563, -0.15089921653270721, 0.002945262473076582, -0.1040843203663826, 0.023338600993156433, 0.11202728003263474, -0.008582104928791523, -0.009919910691678524, 0.116677425801754, -0.02631515823304653, 0.026041926816105843, 0.03836518153548241, 0.00608045794069767, -0.059937771409749985, -0.044151950627565384, -0.08065995573997498, 0.014101422391831875, 0.032313644886016846, 0.05599058046936989, -0.03235676884651184, -0.007023791316896677, 0.03841041401028633, -0.010091220960021019, -0.12353866547346115, 0.01347822230309248, 0.005028906278312206, 0.05164548382163048, 0.0008541525457985699, 0.012780209071934223, 0.03201600909233093, -0.015217483974993229, 0.19341084361076355, -0.07325411587953568, -0.027416478842496872, -0.1228807121515274, 0.17896701395511627, 0.0026140701957046986, -0.04994320869445801, 0.05295133590698242, -0.09137362241744995, -0.020702529698610306, 0.15485265851020813, 0.1892986297607422, -0.07158271223306656, -0.016520513221621513, -0.017527583986520767, -0.013897030614316463, -0.022615507245063782, 0.09919055551290512, 0.0991419330239296, -0.0069245584309101105, -0.0751221776008606, -0.028980256989598274, -0.06606413424015045, -0.034512959420681, -0.03850788250565529, 0.06925404816865921, -0.004570751916617155, 0.0070457919500768185, -0.07483471930027008, 0.04310325160622597, -0.02210995741188526, -0.06085818260908127, 0.06226903945207596, -0.21256737411022186, -0.17790570855140686, 0.006773421075195074, 0.07538973540067673, 0.0015973751433193684, 0.0461571104824543, -0.009913075715303421, 0.018662674352526665, 0.07594356685876846, -0.02225665934383869, -0.08672447502613068, -0.09593749046325684, 0.10812120139598846, -0.13375911116600037, 0.2528570294380188, -0.03883460536599159, 0.03583916276693344, 0.12127543240785599, 0.041867125779390335, -0.1335451751947403, 0.03351692110300064, 0.03981999680399895, -0.032485269010066986, 0.00548918079584837, 0.14240407943725586, -0.03740047290921211, 0.07958021014928818, 0.0458458811044693, -0.1027912050485611, -0.03964604437351227, -0.04966754838824272, -0.011354409158229828, -0.024445757269859314, -0.054610975086688995, -0.036348532885313034, 0.13227923214435577, 0.17175258696079254, -0.042096637189388275, -0.023690558969974518, -0.06475082784891129, 0.030860183760523796, 0.07729368656873703, -0.03295742720365524, -0.052064236253499985, -0.23603148758411407, 0.0024359924718737602, 0.05229694023728371, -0.013576737605035305, -0.20701472461223602, -0.110505111515522, 0.0060418094508349895, -0.05801977962255478, -0.07628542929887772, 0.09231390058994293, 0.06255589425563812, 0.035103797912597656, -0.06320928037166595, 0.038133736699819565, -0.07872021943330765, 0.14179112017154694, -0.14508864283561707, -0.07859515398740768 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
feature-extraction
jahknem/xtremedistil-l6-h256-uncased
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T23:32:22+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.052746038883924484, 0.20255789160728455, -0.0045078229159116745, 0.0248473659157753, 0.10497838258743286, 0.00675728265196085, 0.06521498411893845, 0.11486967653036118, -0.0023755673319101334, 0.12028469145298004, 0.027631845325231552, 0.08119397610425949, 0.12110675126314163, 0.15393014252185822, 0.005160121712833643, -0.24253977835178375, 0.05344875901937485, -0.09366832673549652, 0.004077504388988018, 0.11452110856771469, 0.1343945860862732, -0.10780399292707443, 0.08976872265338898, -0.00683097867295146, -0.01712046191096306, -0.015751034021377563, -0.07134060561656952, -0.06668227165937424, 0.05541034787893295, 0.07649129629135132, 0.0725555345416069, 0.010986946523189545, 0.07830587029457092, -0.2806258797645569, 0.014425364322960377, 0.08005264401435852, 0.0010765197221189737, 0.06795802712440491, 0.08151742070913315, -0.06789936870336533, 0.1251654475927353, -0.0605485662817955, 0.14059753715991974, 0.07639917731285095, -0.08928128331899643, -0.19590547680854797, -0.06669555604457855, 0.07481247186660767, 0.129872128367424, 0.05026249960064888, -0.02990107797086239, 0.1371748298406601, -0.09688840061426163, 0.00786701962351799, 0.12302009761333466, -0.07360870391130447, -0.05524582043290138, 0.031063849106431007, 0.10805318504571915, 0.09297362715005875, -0.11762315034866333, -0.008467874489724636, 0.029582185670733452, 0.022175652906298637, 0.08627551048994064, 0.015828849747776985, 0.1525639444589615, 0.041341137140989304, -0.14141254127025604, -0.0526716373860836, 0.09056255221366882, 0.03701045364141464, -0.050960201770067215, -0.23367193341255188, -0.026245610788464546, -0.012442239560186863, -0.03079850971698761, -0.04234880208969116, 0.053594592958688736, -0.03630254790186882, 0.07596245408058167, -0.007196845952421427, -0.07732249796390533, -0.031211229041218758, 0.05230424553155899, 0.06785056740045547, 0.018615471199154854, -0.006994647905230522, 0.019442738965153694, 0.11387838423252106, 0.07708574831485748, -0.13029205799102783, -0.07214002311229706, -0.0739525631070137, -0.09558356553316116, -0.04332297295331955, 0.03707554563879967, 0.07106684148311615, 0.04390906170010567, 0.20283061265945435, -0.017690327018499374, 0.046562306582927704, 0.0476159006357193, 0.005842953454703093, 0.07147589325904846, 0.10925443470478058, -0.06689215451478958, -0.14432233572006226, -0.06022803485393524, 0.08875485509634018, -0.009834992699325085, -0.03670760244131088, -0.049119677394628525, 0.04676154628396034, 0.03209913894534111, 0.11318106204271317, 0.08643888682126999, -0.003593706525862217, -0.0628826767206192, -0.042073074728250504, 0.22331053018569946, -0.14625342190265656, 0.043256524950265884, 0.007445589639246464, -0.0429743155837059, -0.0076383077539503574, 0.005870272871106863, 0.014089803211390972, -0.03238216042518616, 0.10351061820983887, -0.0778173878788948, -0.035906463861465454, -0.1116463914513588, -0.06868703663349152, 0.024910317733883858, 0.0025890374090522528, -0.018393149599432945, -0.04424213990569115, -0.11253650486469269, -0.051282741129398346, 0.0724339634180069, -0.07579848170280457, -0.05524555593729019, 0.009976830333471298, -0.04834962263703346, 0.0031978494953364134, 0.00010397454752819613, 0.11258035898208618, -0.03314845636487007, 0.025259260088205338, -0.04850656911730766, 0.06803499162197113, 0.10959596186876297, 0.038730688393116, -0.0804535374045372, 0.07286878675222397, -0.22788093984127045, 0.10223092138767242, -0.09346398711204529, 0.025767935439944267, -0.14578653872013092, -0.04199126362800598, 0.02854149229824543, 0.02887420728802681, -0.010361229069530964, 0.1268649846315384, -0.1982942521572113, -0.035082314163446426, 0.15190726518630981, -0.11336656659841537, -0.09347330778837204, 0.065653957426548, -0.05610617995262146, 0.11296144872903824, 0.04835578054189682, -0.019556574523448944, 0.06953749805688858, -0.1281629204750061, -0.04506009817123413, -0.021473335102200508, -0.008493004366755486, 0.14857245981693268, 0.06750676780939102, -0.05737153813242912, 0.07104712724685669, 0.02051553688943386, -0.037109848111867905, -0.03301886469125748, -0.03470754995942116, -0.09331934154033661, 0.009520708583295345, -0.07244295626878738, 0.03737799823284149, -0.02224314957857132, -0.08870045095682144, -0.030656753107905388, -0.17619828879833221, 0.043274905532598495, 0.08050142228603363, 0.008233942091464996, -0.021131468936800957, -0.09287237375974655, 0.02556683123111725, -0.009385489858686924, -0.021018607541918755, -0.1641797423362732, -0.044834475964307785, 0.04416196420788765, -0.1971662938594818, 0.023802341893315315, -0.03283040598034859, 0.05093098804354668, 0.03247829154133797, -0.04019762575626373, -0.005096070934087038, 0.0028117431793361902, 0.01809627003967762, -0.026984719559550285, -0.200385183095932, -0.031109308823943138, -0.029154371470212936, 0.1362139731645584, -0.22226740419864655, 0.028292208909988403, 0.07483648508787155, 0.13521188497543335, 0.0009690870065242052, -0.04426588490605354, 0.010693409480154514, -0.05366935580968857, -0.053671274334192276, -0.06512755900621414, -0.007102466654032469, -0.03287021815776825, -0.04422381520271301, 0.06460095942020416, -0.19425635039806366, -0.03641216829419136, 0.10608077049255371, 0.10164625942707062, -0.14719000458717346, -0.028969714418053627, -0.04096706584095955, -0.06081128865480423, -0.09094393998384476, -0.0630471333861351, 0.14371246099472046, 0.04861542955040932, 0.048413511365652084, -0.08624191582202911, -0.0630124881863594, 0.00895135197788477, 0.0006565740332007408, -0.03649118170142174, 0.08907787501811981, 0.08782777935266495, -0.10737399011850357, 0.08881597965955734, 0.08605224639177322, 0.06605713814496994, 0.10539878904819489, 0.001256609451957047, -0.10750970244407654, -0.029154706746339798, 0.005644100718200207, 0.01547710970044136, 0.14092515408992767, -0.044270921498537064, 0.04743899777531624, 0.05656488984823227, -0.027443327009677887, 0.01715722121298313, -0.10313762724399567, 0.02984124980866909, 0.046840768307447433, -0.010507673025131226, 0.012429861351847649, -0.03895113617181778, 0.025837475433945656, 0.08796556293964386, 0.03584056720137596, 0.027896199375391006, 0.0029043578542768955, -0.03437814116477966, -0.10392027348279953, 0.17429527640342712, -0.0878753736615181, -0.28357240557670593, -0.1356295943260193, -0.00747122336179018, 0.05167245492339134, -0.022715993225574493, 0.013256389647722244, -0.04903135821223259, -0.11467588692903519, -0.10348290205001831, 0.008818334899842739, 0.0437844917178154, -0.07700283080339432, -0.07256268709897995, 0.046553414314985275, 0.033613573759794235, -0.14174877107143402, 0.022300107404589653, 0.048012908548116684, -0.03855963796377182, -0.015413837507367134, 0.07170835882425308, 0.10258439928293228, 0.17387451231479645, -0.004228805657476187, -0.01945391111075878, 0.023280048742890358, 0.24459126591682434, -0.14296141266822815, 0.10647262632846832, 0.15432609617710114, -0.06630013138055801, 0.1025824174284935, 0.19176462292671204, 0.02610800787806511, -0.07571171224117279, 0.03370760753750801, 0.03715203329920769, -0.053104497492313385, -0.23274335265159607, -0.060641512274742126, 0.0011178229469805956, -0.06850682199001312, 0.09104112535715103, 0.08915619552135468, 0.11183936148881912, 0.0454646460711956, -0.08415863662958145, -0.06847929954528809, 0.019614145159721375, 0.10642454773187637, -0.03275766968727112, 0.007264797575771809, 0.09054313600063324, -0.04184457287192345, -0.005177726969122887, 0.10835286974906921, 0.007426192983984947, 0.1962665617465973, 0.031048519536852837, 0.15333782136440277, 0.07211130857467651, 0.0342402458190918, 0.026680786162614822, 0.025636766105890274, 0.023090654984116554, 0.009547512046992779, -0.01598707027733326, -0.08795502036809921, 0.027014199644327164, 0.13500221073627472, 0.07871367782354355, 0.029795078560709953, 0.020392734557390213, -0.0429922379553318, 0.062152985483407974, 0.15964233875274658, 0.006258485373109579, -0.2136749029159546, -0.03950631618499756, 0.08867984265089035, -0.0793125256896019, -0.1237078458070755, -0.02518491819500923, 0.03823186457157135, -0.1809074580669403, 0.04127289727330208, -0.01795332506299019, 0.11453432589769363, -0.11700457334518433, -0.028958700597286224, 0.039744846522808075, 0.08327627927064896, -0.03253408893942833, 0.07922478020191193, -0.1647184044122696, 0.1165376752614975, 0.012328862212598324, 0.05802180990576744, -0.11617794632911682, 0.09878876805305481, 0.012594180181622505, -0.009003117680549622, 0.16720694303512573, -0.0008162438753060997, -0.07339610159397125, -0.06517832726240158, -0.07867198437452316, -0.022016214206814766, 0.09116258472204208, -0.11647430807352066, 0.08271238952875137, -0.012302344664931297, -0.03819865360856056, 0.002976413816213608, -0.1073245257139206, -0.12343364208936691, -0.191313698887825, 0.05862122401595116, -0.11746024340391159, 0.00024363139527849853, -0.10003595799207687, -0.05551697313785553, -0.04721582680940628, 0.19990667700767517, -0.14306047558784485, -0.09675363451242447, -0.1526252180337906, -0.09468596428632736, 0.1679719239473343, -0.04768168181180954, 0.08716544508934021, -0.00014324963558465242, 0.22273695468902588, 0.00589721417054534, -0.010143720544874668, 0.07824880629777908, -0.08608578145503998, -0.17828822135925293, -0.07740302383899689, 0.12055730819702148, 0.12802201509475708, 0.05279289186000824, -0.012038013897836208, 0.020934196189045906, -0.036648161709308624, -0.11678951978683472, 0.003050430677831173, 0.1217387318611145, 0.05949230119585991, 0.039503831416368484, -0.002558275358751416, -0.10200468450784683, -0.07551230490207672, -0.0352395698428154, 0.02261841483414173, 0.18903005123138428, -0.08441178500652313, 0.15781226754188538, 0.13112787902355194, -0.05333179607987404, -0.21253353357315063, 0.030583804473280907, 0.043237145990133286, 0.004318034742027521, 0.0612679123878479, -0.17720702290534973, 0.08167627453804016, 0.025727098807692528, -0.05116020143032074, 0.15224720537662506, -0.16569727659225464, -0.15514664351940155, 0.0824643224477768, 0.05010354146361351, -0.22108957171440125, -0.12386278063058853, -0.0879128947854042, -0.06589758396148682, -0.1396872103214264, 0.08584427833557129, 0.014041651971638203, -0.0018043812597170472, 0.05013851076364517, 0.033740755170583725, 0.018914686515927315, -0.048698488622903824, 0.21615906059741974, -0.0022440196480602026, 0.03326340764760971, -0.07553089410066605, -0.10180798172950745, 0.06950566172599792, -0.05141735449433327, 0.08518881350755692, -0.03099823370575905, 0.005753061734139919, -0.08320630341768265, -0.057475052773952484, -0.05255331099033356, 0.03318103775382042, -0.08139406144618988, -0.10520965605974197, -0.06759276986122131, 0.09429939836263657, 0.09139011800289154, -0.03298058733344078, -0.04032526910305023, -0.08896728605031967, 0.039150089025497437, 0.20617929100990295, 0.17360219359397888, 0.05333937704563141, -0.10111589729785919, 0.002542630536481738, -0.01915728859603405, 0.040264517068862915, -0.21200114488601685, 0.04798245429992676, 0.04617756977677345, 0.024147402495145798, 0.12109645456075668, -0.0176423080265522, -0.1646004468202591, -0.047221194952726364, 0.0562983863055706, -0.03494611009955406, -0.20504815876483917, -0.01314060389995575, 0.04864202439785004, -0.18736153841018677, -0.06957933306694031, 0.016700902953743935, -0.014444489032030106, -0.027432914823293686, 0.013032985851168633, 0.06286440044641495, 0.025481918826699257, 0.10238313674926758, 0.05989401787519455, 0.1000840812921524, -0.112981878221035, 0.0795830711722374, 0.09043775498867035, -0.08344172686338425, 0.009394102729856968, 0.06964189559221268, -0.05280066654086113, -0.02294989861547947, 0.022772129625082016, 0.06757686287164688, -0.003049787599593401, -0.057536181062459946, -0.02079189568758011, -0.10809285193681717, 0.06586270034313202, 0.1269281655550003, 0.0400845967233181, -0.006831571459770203, 0.04905473813414574, 0.02419281378388405, -0.07880669087171555, 0.11321208626031876, 0.03362756222486496, 0.03722309693694115, -0.05989459529519081, -0.01674187369644642, 0.04316421225667, 0.005734616424888372, -0.02047782577574253, -0.025104478001594543, -0.05658029392361641, -0.013948953710496426, -0.18932224810123444, 0.014544147998094559, -0.07588981091976166, 0.005138450767844915, 0.014814606867730618, -0.040141742676496506, -0.018671197816729546, 0.012856033630669117, -0.08163223415613174, -0.05027473345398903, -0.0038707295898348093, 0.09766460955142975, -0.1400173306465149, 0.008230311796069145, 0.09175591170787811, -0.11852382868528366, 0.06848865002393723, -0.019968708977103233, -0.014717686921358109, 0.0038272906094789505, -0.1270400881767273, 0.04572216048836708, -0.004586559720337391, 0.02062096633017063, 0.04444560408592224, -0.17065683007240295, 0.004877567756921053, -0.0423397533595562, -0.0478336401283741, -0.015323328785598278, -0.08405033499002457, -0.11406292766332626, 0.10921793431043625, 0.002206311793997884, -0.08430022746324539, -0.010287429206073284, 0.04696008190512657, 0.10919637978076935, -0.03898061811923981, 0.124757781624794, 0.0047785635106265545, 0.06639395654201508, -0.18268363177776337, -0.024298490956425667, -0.014514438807964325, 0.007352736312896013, 0.027192458510398865, -0.016180848702788353, 0.04238643869757652, -0.01372526679188013, 0.2601816952228546, -0.021822240203619003, 0.07231466472148895, 0.0637383759021759, 0.042024899274110794, 0.016651110723614693, 0.08318763226270676, 0.06755662709474564, 0.016758481040596962, 0.004258559085428715, 0.02265608124434948, -0.03241465613245964, -0.016654497012495995, -0.15768693387508392, 0.07677853107452393, 0.14623822271823883, 0.08591317385435104, 0.007676990237087011, 0.06586159020662308, -0.10330242663621902, -0.10554943233728409, 0.08015866577625275, -0.03888537734746933, -0.0009790018666535616, -0.058588381856679916, 0.15355949103832245, 0.14971502125263214, -0.17422176897525787, 0.08231138437986374, -0.03791337087750435, -0.04883022606372833, -0.11436772346496582, -0.15839459002017975, -0.06608819216489792, -0.029153592884540558, -0.0041826991364359856, -0.05528274551033974, 0.06748054921627045, 0.10802645981311798, -0.0021057529374957085, -0.00038325722562149167, 0.09545762091875076, -0.026331622153520584, -0.01757199876010418, 0.03465426340699196, 0.04817976430058479, 0.033562518656253815, -0.04831063002347946, 0.020485511049628258, 0.004976877011358738, 0.03976510092616081, 0.05864322930574417, 0.023703020066022873, -0.03892989084124565, 0.014479226432740688, -0.01092575490474701, -0.1049860492348671, 0.022427968680858612, -0.029776830226182938, -0.07360642403364182, 0.13104131817817688, 0.029177764430642128, 0.019099419936537743, -0.03228067234158516, 0.20109383761882782, -0.07107947021722794, -0.06925153732299805, -0.14109766483306885, 0.10889512300491333, -0.03372858464717865, 0.06323269009590149, 0.058447178453207016, -0.1133023053407669, -0.002398417331278324, 0.1314154714345932, 0.133079394698143, -0.033533163368701935, 0.005780258681625128, 0.03008044883608818, 0.00756559893488884, -0.0482633113861084, 0.045497048646211624, 0.031092669814825058, 0.15440985560417175, -0.06949599832296371, 0.07780899107456207, 0.00008295764564536512, -0.08774317800998688, -0.036128852516412735, 0.1405542492866516, 0.006535779219120741, 0.03079606406390667, -0.06559351831674576, 0.10371401906013489, -0.07252706587314606, -0.23936228454113007, 0.045033879578113556, -0.07753164321184158, -0.15683837234973907, -0.013978141359984875, 0.02726292423903942, -0.009009851142764091, 0.02702206000685692, 0.0654432401061058, -0.06469112634658813, 0.161378413438797, 0.03472336754202843, -0.08781957626342773, -0.05673113837838173, 0.07957270741462708, -0.09192227572202682, 0.2958409786224365, 0.013188840821385384, 0.029593972489237785, 0.10327941924333572, -0.019989576190710068, -0.13285429775714874, 0.030561091378331184, 0.10066051781177521, -0.09982595592737198, 0.06684590131044388, 0.18159176409244537, -0.009470577351748943, 0.10021016746759415, 0.07437440752983093, -0.061603669077157974, 0.05807222053408623, -0.0826035663485527, -0.06770919263362885, -0.09389114379882812, 0.05970105528831482, -0.06468918174505234, 0.14543601870536804, 0.1228262409567833, -0.04243761673569679, -0.004415105562657118, -0.02816380001604557, 0.043726447969675064, 0.012194468639791012, 0.12871193885803223, 0.008576037362217903, -0.1618158370256424, 0.026840461418032646, 0.0030557403806596994, 0.10387714207172394, -0.21997274458408356, -0.08367477357387543, 0.04838619381189346, -0.029553698375821114, -0.05334814265370369, 0.10579082369804382, 0.06295353919267654, 0.0504634715616703, -0.04548325017094612, -0.05543007701635361, -0.008723298087716103, 0.14979462325572968, -0.1187625601887703, -0.006005466915667057 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SMIDS_3x_beit_large_RMSProp_lr0001_fold5 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7543 - Accuracy: 0.8483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7598 | 1.0 | 450 | 0.6284 | 0.7417 | | 0.5132 | 2.0 | 900 | 0.5219 | 0.7883 | | 0.6014 | 3.0 | 1350 | 0.4519 | 0.8167 | | 0.3421 | 4.0 | 1800 | 0.4301 | 0.8233 | | 0.546 | 5.0 | 2250 | 0.5495 | 0.8117 | | 0.3406 | 6.0 | 2700 | 0.3798 | 0.8567 | | 0.1731 | 7.0 | 3150 | 0.5798 | 0.8467 | | 0.3052 | 8.0 | 3600 | 0.4912 | 0.865 | | 0.2517 | 9.0 | 4050 | 0.4892 | 0.8483 | | 0.1643 | 10.0 | 4500 | 0.5366 | 0.8433 | | 0.2373 | 11.0 | 4950 | 0.6026 | 0.86 | | 0.2116 | 12.0 | 5400 | 0.6475 | 0.8467 | | 0.1999 | 13.0 | 5850 | 0.8850 | 0.8283 | | 0.1219 | 14.0 | 6300 | 0.7595 | 0.8383 | | 0.0954 | 15.0 | 6750 | 0.8454 | 0.8517 | | 0.1665 | 16.0 | 7200 | 0.8132 | 0.845 | | 0.0748 | 17.0 | 7650 | 1.3757 | 0.7933 | | 0.0623 | 18.0 | 8100 | 0.9901 | 0.8533 | | 0.1108 | 19.0 | 8550 | 0.9405 | 0.845 | | 0.0554 | 20.0 | 9000 | 1.0203 | 0.8483 | | 0.0443 | 21.0 | 9450 | 0.9811 | 0.8483 | | 0.001 | 22.0 | 9900 | 1.1608 | 0.8483 | | 0.0169 | 23.0 | 10350 | 1.1532 | 0.8433 | | 0.0178 | 24.0 | 10800 | 1.0689 | 0.8517 | | 0.001 | 25.0 | 11250 | 1.0466 | 0.8367 | | 0.0507 | 26.0 | 11700 | 1.4407 | 0.8283 | | 0.0745 | 27.0 | 12150 | 1.0825 | 0.8433 | | 0.0276 | 28.0 | 12600 | 0.9913 | 0.85 | | 0.0007 | 29.0 | 13050 | 1.1723 | 0.8417 | | 0.0001 | 30.0 | 13500 | 1.2112 | 0.835 | | 0.0417 | 31.0 | 13950 | 1.1341 | 0.8467 | | 0.0085 | 32.0 | 14400 | 1.1448 | 0.8383 | | 0.0 | 33.0 | 14850 | 1.3142 | 0.8567 | | 0.0003 | 34.0 | 15300 | 1.3151 | 0.8383 | | 0.0 | 35.0 | 15750 | 1.4172 | 0.8417 | | 0.0 | 36.0 | 16200 | 1.3396 | 0.8483 | | 0.0719 | 37.0 | 16650 | 1.6385 | 0.8317 | | 0.0005 | 38.0 | 17100 | 1.1794 | 0.8517 | | 0.0001 | 39.0 | 17550 | 1.2702 | 0.8417 | | 0.0 | 40.0 | 18000 | 1.4005 | 0.8483 | | 0.0 | 41.0 | 18450 | 1.5460 | 0.84 | | 0.0118 | 42.0 | 18900 | 1.4527 | 0.8483 | | 0.0 | 43.0 | 19350 | 1.7292 | 0.84 | | 0.0 | 44.0 | 19800 | 1.5796 | 0.8367 | | 0.0 | 45.0 | 20250 | 1.6551 | 0.84 | | 0.0 | 46.0 | 20700 | 1.6092 | 0.8483 | | 0.0 | 47.0 | 21150 | 1.7156 | 0.8433 | | 0.0 | 48.0 | 21600 | 1.7889 | 0.845 | | 0.0 | 49.0 | 22050 | 1.7599 | 0.8467 | | 0.0 | 50.0 | 22500 | 1.7543 | 0.8483 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_3x_beit_large_RMSProp_lr0001_fold5", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8483333333333334, "name": "Accuracy"}]}]}]}
image-classification
onizukal/SMIDS_3x_beit_large_RMSProp_lr0001_fold5
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-large-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T23:32:26+00:00
[]
[]
TAGS #transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
SMIDS\_3x\_beit\_large\_RMSProp\_lr0001\_fold5 ============================================== This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 1.7543 * Accuracy: 0.8483 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 50 ### Training results ### Framework versions * Transformers 4.32.1 * Pytorch 2.0.1 * Datasets 2.12.0 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ 81, 115, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ -0.12968555092811584, 0.17251011729240417, -0.0023243443574756384, 0.1362919956445694, 0.1120586097240448, 0.015268749557435513, 0.14003369212150574, 0.16890837252140045, -0.08239254355430603, 0.046998485922813416, 0.14023225009441376, 0.13628867268562317, 0.046756189316511154, 0.19432850182056427, -0.052493587136268616, -0.26022207736968994, 0.04113864526152611, 0.032812196761369705, -0.020441479980945587, 0.1235608458518982, 0.09337224811315536, -0.13087525963783264, 0.11667836457490921, 0.0301132183521986, -0.20004093647003174, -0.036873914301395416, -0.007245634216815233, -0.06722474098205566, 0.10533155500888824, -0.0034045001957565546, 0.0691065788269043, 0.03768180310726166, 0.08387713134288788, -0.13018712401390076, 0.002076903358101845, 0.042768821120262146, 0.0062860166653990746, 0.10383369028568268, 0.054196570068597794, -0.015545758418738842, 0.0701410248875618, -0.06851525604724884, 0.0672622099518776, 0.009240911342203617, -0.11321496963500977, -0.2700493633747101, -0.10203396528959274, 0.07240316271781921, 0.08221714198589325, 0.06822962313890457, 0.008172801695764065, 0.16417047381401062, -0.014714903198182583, 0.10454332083463669, 0.23100516200065613, -0.26415953040122986, -0.05532161891460419, 0.029576225206255913, 0.015004046261310577, 0.06490366160869598, -0.10617698729038239, -0.01859438419342041, 0.020827138796448708, 0.04436356946825981, 0.1411312073469162, -0.010821618139743805, -0.028378209099173546, -0.021572042256593704, -0.10856294631958008, -0.08875563740730286, 0.18566860258579254, 0.05809066444635391, -0.048288628458976746, -0.07735078781843185, -0.07127056270837784, -0.17220835387706757, -0.041861895471811295, 0.009548050351440907, 0.041730549186468124, -0.04684269055724144, -0.10686429589986801, -0.031055882573127747, -0.078252874314785, -0.051669858396053314, -0.023303553462028503, 0.13525931537151337, 0.03357808664441109, 0.05729198828339577, -0.03593141585588455, 0.09915280342102051, 0.006841922644525766, -0.17527513206005096, -0.028045548126101494, -0.0016165260458365083, 0.01563161052763462, -0.020048104226589203, -0.03057136945426464, -0.06562764942646027, -0.0016239769756793976, 0.149040088057518, -0.06106079742312431, 0.06079873815178871, -0.0069216229021549225, 0.04031313583254814, -0.0486484132707119, 0.18668954074382782, -0.028643600642681122, -0.016713637858629227, 0.02057800441980362, 0.08857519924640656, 0.06818821281194687, -0.03644402697682381, -0.12566283345222473, 0.03087625838816166, 0.1283741444349289, 0.0027549222577363253, -0.021953243762254715, 0.053039632737636566, -0.06444176286458969, -0.05842158570885658, 0.09141092747449875, -0.08884678035974503, 0.03514961525797844, -0.01055920124053955, -0.08416686952114105, -0.06807748228311539, 0.02709859050810337, 0.018840007483959198, -0.00014874596672598273, 0.07201956957578659, -0.09116632491350174, 0.015490563586354256, -0.06551176309585571, -0.10091431438922882, 0.01564670167863369, -0.11040772497653961, 0.012323775328695774, -0.09688954800367355, -0.1969451904296875, 0.006960712838917971, 0.07738039642572403, -0.05607226490974426, -0.06792453676462173, -0.03661259636282921, -0.07637017965316772, 0.04143770784139633, -0.01186586357653141, 0.07317496836185455, -0.07456725090742111, 0.09119440615177155, 0.02237127535045147, 0.08760105073451996, -0.056383248418569565, 0.04597126320004463, -0.10241573303937912, 0.04992371052503586, -0.19877833127975464, 0.07988634705543518, -0.049189720302820206, 0.06190093979239464, -0.09581396728754044, -0.10568851977586746, 0.033553607761859894, -0.04994693025946617, 0.068512924015522, 0.09739063680171967, -0.17317676544189453, -0.05787286534905434, 0.13517500460147858, -0.09691634029150009, -0.14840039610862732, 0.10115666687488556, -0.05093328654766083, 0.019768450409173965, 0.04739697277545929, 0.21447287499904633, 0.062935970723629, -0.0910891741514206, -0.025994082912802696, -0.03333966061472893, 0.044677652418613434, -0.06483115255832672, 0.101903036236763, 0.027484174817800522, 0.0531504862010479, 0.02367355115711689, -0.03332329913973808, 0.03818739578127861, -0.08385370671749115, -0.10085898637771606, -0.05038752406835556, -0.08557170629501343, 0.039683446288108826, 0.05594057962298393, 0.059847064316272736, -0.10873348265886307, -0.09023979306221008, 0.041734639555215836, 0.09406744688749313, -0.07396076619625092, 0.02903648279607296, -0.0904788002371788, 0.11622294038534164, -0.08363831788301468, -0.02404896728694439, -0.17903628945350647, -0.0417308546602726, 0.04055763781070709, -0.01668366603553295, -0.006775525398552418, -0.0494389571249485, 0.07092705368995667, 0.087753064930439, -0.05281677842140198, -0.052284084260463715, -0.05530114471912384, 0.008562305010855198, -0.11059658974409103, -0.1778055727481842, -0.080107681453228, -0.03797448053956032, 0.15019145607948303, -0.15246915817260742, 0.0224970243871212, 0.0616903156042099, 0.12470164895057678, 0.05992257222533226, -0.0469760037958622, -0.007631834130734205, 0.0217386856675148, -0.05561714619398117, -0.0865136981010437, 0.05727535858750343, 0.035165008157491684, -0.07172347605228424, -0.019373787567019463, -0.10040221363306046, 0.15015454590320587, 0.13185308873653412, -0.0021352346520870924, -0.045590728521347046, -0.012053865939378738, -0.06572475284337997, -0.030354894697666168, -0.04096601903438568, 0.01860888861119747, 0.1020345464348793, 0.017360014840960503, 0.14407898485660553, -0.09213681519031525, -0.037007302045822144, 0.053231216967105865, -0.028658904135227203, -0.03313332051038742, 0.0737093985080719, 0.021478038281202316, -0.14289474487304688, 0.1502111405134201, 0.14915579557418823, -0.04949729144573212, 0.12371271848678589, -0.03663388267159462, -0.06141006201505661, -0.04545919969677925, -0.03777514770627022, 0.01429951936006546, 0.1407921016216278, -0.08363746106624603, -0.006257671397179365, 0.05626929551362991, 0.018998416140675545, -0.007220869418233633, -0.1808812916278839, 0.0005758196348324418, 0.03530525416135788, -0.04614398628473282, -0.022574707865715027, -0.014720434322953224, 0.000520858506206423, 0.09188775718212128, 0.02001834660768509, -0.07113038748502731, 0.05185159295797348, 0.010694033466279507, -0.056145116686820984, 0.16459684073925018, -0.07884351164102554, -0.19753409922122955, -0.11793240904808044, -0.08745986223220825, -0.10736268758773804, 0.013000035658478737, 0.067270427942276, -0.050670597702264786, -0.04932181537151337, -0.1026671901345253, -0.044550344347953796, 0.021845674142241478, 0.024347107857465744, 0.053595975041389465, -0.00796813890337944, 0.08411940932273865, -0.09194666892290115, -0.03317512199282646, -0.014813165180385113, 0.01894056238234043, 0.0670066773891449, 0.01914203353226185, 0.11091019958257675, 0.08160436898469925, -0.0286879725754261, 0.05666669085621834, -0.01685662567615509, 0.26526889204978943, -0.06748054921627045, -0.006749235559254885, 0.1391732543706894, -0.013490693643689156, 0.0842166393995285, 0.12729591131210327, 0.04176322743296623, -0.0955888107419014, -0.01310211792588234, -0.0005005627172067761, -0.05257550999522209, -0.1536482274532318, -0.04132819548249245, -0.04548354819417, -0.0018228141125291586, 0.13951772451400757, 0.038064174354076385, 0.02505229413509369, 0.07843583822250366, 0.020602436736226082, 0.05678323283791542, -0.0175874512642622, 0.10429482907056808, 0.08156884461641312, 0.06449971348047256, 0.13376133143901825, -0.036523740738630295, -0.019790813326835632, 0.05638623237609863, 0.042081572115421295, 0.20467498898506165, -0.025362396612763405, 0.14717818796634674, 0.026553483679890633, 0.19327539205551147, 0.017808275297284126, 0.07306244969367981, -0.014873637817800045, 0.0007499073399230838, -0.019323905929923058, -0.04713669419288635, -0.0638502836227417, 0.03312433883547783, -0.016851995140314102, 0.05682634562253952, -0.09328699111938477, 0.03906902298331261, 0.05959288775920868, 0.30634987354278564, 0.0654144361615181, -0.4125381410121918, -0.09821337461471558, 0.012344546616077423, 0.0008716733427718282, -0.05509618669748306, -0.007402430288493633, 0.0980701595544815, -0.09973937273025513, 0.0819711834192276, -0.09416680037975311, 0.08507230132818222, -0.0846736952662468, 0.020382488146424294, 0.07683569937944412, 0.055889930576086044, 0.012921135872602463, 0.05964238941669464, -0.21880683302879333, 0.2499670386314392, 0.01837102696299553, 0.04415145888924599, -0.08875706046819687, 0.009965145029127598, 0.03320525959134102, 0.05923061817884445, 0.08590700477361679, 0.0061045982874929905, -0.09025654941797256, -0.18889141082763672, -0.12562422454357147, 0.000394518458051607, 0.06176565960049629, -0.03729195147752762, 0.09444484859704971, -0.018019067123532295, -0.012201022356748581, 0.02127370797097683, 0.0009904175531119108, -0.035084888339042664, -0.10356581956148148, 0.02010609768331051, 0.03430531173944473, -0.011726552620530128, -0.06489048153162003, -0.11480618268251419, -0.035277001559734344, 0.16168422996997833, 0.05518770217895508, -0.07543513178825378, -0.14076673984527588, 0.0721859410405159, 0.0775376707315445, -0.08563373237848282, 0.03936640918254852, -0.016648126766085625, 0.14995604753494263, 0.020845195278525352, -0.0889848992228508, 0.10199198871850967, -0.05838112160563469, -0.17863209545612335, -0.04141612723469734, 0.09901762008666992, 0.007052883040159941, 0.05273612216114998, 0.004226623103022575, 0.06022334843873978, -0.03518751636147499, -0.05844981223344803, 0.06672939658164978, -0.007545650005340576, 0.10645230114459991, -0.014578265137970448, 0.008669902570545673, 0.028680432587862015, -0.046410609036684036, 0.00012374592188280076, 0.1686571091413498, 0.24114695191383362, -0.10427109152078629, 0.060499124228954315, 0.03038850799202919, -0.030858036130666733, -0.18259160220623016, 0.01086394116282463, 0.07622820883989334, -0.00013084696547593921, 0.04143662750720978, -0.1601918637752533, 0.05532059073448181, 0.10498367995023727, -0.043228019028902054, 0.08107142895460129, -0.27694207429885864, -0.1185181736946106, 0.09238865971565247, 0.13856256008148193, 0.06877914071083069, -0.13106170296669006, -0.043299052864313126, -0.041688259690999985, -0.17338812351226807, 0.13653364777565002, -0.057192787528038025, 0.1145344004034996, -0.039500072598457336, 0.08082033693790436, 0.014952262863516808, -0.056017596274614334, 0.14574900269508362, 0.0056154001504182816, 0.08686088770627975, -0.07213473320007324, -0.0020430299919098616, 0.10663212835788727, -0.10254329442977905, 0.07232339680194855, -0.08735590428113937, 0.0618043914437294, -0.10790637135505676, -0.003900582902133465, -0.07402003556489944, 0.013697824440896511, -0.01366274245083332, -0.04917207732796669, -0.04516566917300224, 0.03515308350324631, 0.0627121776342392, -0.01822420209646225, 0.20940853655338287, 0.06430324167013168, 0.08635561168193817, 0.1727360188961029, 0.054769597947597504, -0.10558480769395828, -0.09403572231531143, -0.043973103165626526, -0.029537810012698174, 0.05986782908439636, -0.1372820883989334, 0.0528247207403183, 0.11996810883283615, 0.013451187871396542, 0.12858225405216217, 0.055897701531648636, -0.030677761882543564, 0.03560479357838631, 0.062153734266757965, -0.17216050624847412, -0.08662130683660507, -0.009840693324804306, 0.030872231349349022, -0.13055209815502167, 0.0458756685256958, 0.12116101384162903, -0.05953402817249298, -0.015017039142549038, -0.004467411432415247, 0.03673877567052841, -0.00978675577789545, 0.15920081734657288, 0.048089753836393356, 0.055168475955724716, -0.11802823096513748, 0.11332250386476517, 0.05730176344513893, -0.07302459329366684, 0.03206014260649681, 0.05020790174603462, -0.1039617657661438, -0.021727759391069412, 0.03114185482263565, 0.15037071704864502, -0.06283780187368393, -0.045329563319683075, -0.1358855813741684, -0.09226331859827042, 0.06643375009298325, 0.07981554418802261, 0.09349396824836731, 0.016502337530255318, -0.03525979816913605, -0.013309485279023647, -0.10845191776752472, 0.11000601947307587, 0.04338005557656288, 0.09121100604534149, -0.17974577844142914, 0.05434896796941757, -0.001805671607144177, 0.07240304350852966, -0.02173563651740551, -0.00018242778605781496, -0.08797106891870499, 0.0035262287128716707, -0.10818753391504288, 0.024682866409420967, -0.052850391715765, 0.006376184988766909, -0.020511267706751823, -0.05819518491625786, -0.06372886151075363, 0.024663057178258896, -0.1193968653678894, -0.05304655060172081, 0.02193489298224449, 0.03176874667406082, -0.11983832716941833, -0.04395153746008873, 0.02043171599507332, -0.08966860175132751, 0.09786758571863174, 0.06017395853996277, -0.00797541905194521, 0.007467431016266346, 0.0038150406908243895, -0.022212069481611252, 0.06630469858646393, 0.0074848150834441185, 0.08584009110927582, -0.11553936451673508, -0.022143544629216194, 0.016299601644277573, -0.004447818733751774, 0.018147116526961327, 0.1585858017206192, -0.12092386186122894, 0.00018621055642142892, -0.014765054918825626, -0.06592588871717453, -0.06358986347913742, 0.0692417323589325, 0.10919524729251862, 0.02367839775979519, 0.2122299075126648, -0.054594267159700394, 0.015877852216362953, -0.21000300347805023, -0.011462570168077946, 0.005311926826834679, -0.13887609541416168, -0.10537440329790115, -0.032787878066301346, 0.0637630894780159, -0.07039659470319748, 0.1177176982164383, 0.03537357598543167, 0.020886771380901337, 0.02911887876689434, 0.024869181215763092, -0.002677198965102434, 0.013766518794000149, 0.1633930504322052, 0.014011929742991924, -0.02872646041214466, 0.1283825933933258, 0.029096294194459915, 0.09337089955806732, 0.11805824935436249, 0.1763046532869339, 0.11451227962970734, 0.0477789007127285, 0.09043081104755402, 0.0520024336874485, -0.02513159066438675, -0.22147811949253082, 0.036259569227695465, -0.039764102548360825, 0.1483127623796463, -0.0033327124547213316, 0.15980194509029388, 0.09223487228155136, -0.18392090499401093, 0.040660299360752106, -0.037005215883255005, -0.07937940210103989, -0.08421849459409714, -0.12178675830364227, -0.1033017709851265, -0.1509413868188858, 0.0028559700585901737, -0.10428426414728165, 0.022927863523364067, 0.11217869818210602, -0.008710348978638649, -0.010019375011324883, 0.11695955693721771, -0.026584560051560402, 0.026202335953712463, 0.03870072960853577, 0.00616151699796319, -0.05987776443362236, -0.04411191865801811, -0.08036603778600693, 0.014018801040947437, 0.03200533241033554, 0.055842287838459015, -0.03226681798696518, -0.007200593128800392, 0.03782269358634949, -0.009845683351159096, -0.12363012880086899, 0.013544945046305656, 0.004753641318529844, 0.05189259722828865, 0.0008605605689808726, 0.01290043629705906, 0.03187544271349907, -0.015199882909655571, 0.193119078874588, -0.07321906089782715, -0.02744952403008938, -0.12274995446205139, 0.17869888246059418, 0.0023205638863146305, -0.049724213778972626, 0.05292708799242973, -0.09127075970172882, -0.020290102809667587, 0.1547212302684784, 0.18941837549209595, -0.07176556438207626, -0.01638839766383171, -0.017501909285783768, -0.01388427522033453, -0.022741587832570076, 0.09889717400074005, 0.09887372702360153, -0.007504772394895554, -0.07518953084945679, -0.028498217463493347, -0.06611054390668869, -0.03444022685289383, -0.03838160261511803, 0.06909165531396866, -0.004605968948453665, 0.007089514285326004, -0.0751754567027092, 0.04334408789873123, -0.02207781746983528, -0.060899440199136734, 0.06262887269258499, -0.21282166242599487, -0.17796695232391357, 0.006926008500158787, 0.07579630613327026, 0.0016649233875796199, 0.04621230810880661, -0.010005760937929153, 0.018681904301047325, 0.07549776136875153, -0.022177988663315773, -0.0866948589682579, -0.09604813903570175, 0.1083223819732666, -0.1344224065542221, 0.25299492478370667, -0.03893125429749489, 0.035907670855522156, 0.12175600975751877, 0.041717030107975006, -0.13353091478347778, 0.033571965992450714, 0.03969275578856468, -0.03212675452232361, 0.005746500100940466, 0.14248594641685486, -0.037242501974105835, 0.07988674938678741, 0.04599026218056679, -0.10243327170610428, -0.039464809000492096, -0.04960913211107254, -0.011240639723837376, -0.024744588881731033, -0.05439573898911476, -0.03649099916219711, 0.13208730518817902, 0.17168967425823212, -0.04232889041304588, -0.023784559220075607, -0.06460724771022797, 0.030773790553212166, 0.0774260088801384, -0.033050306141376495, -0.05197038874030113, -0.23585109412670135, 0.0024181774351745844, 0.05249672383069992, -0.013345940038561821, -0.20789918303489685, -0.11062979698181152, 0.006115853786468506, -0.05795856565237045, -0.07630864530801773, 0.09230074286460876, 0.06326484680175781, 0.035358402878046036, -0.06319575011730194, 0.03810267895460129, -0.07874377071857452, 0.1419457346200943, -0.1448507308959961, -0.07860494405031204 ]
null
null
diffusers
# Gallus <Gallery /> ## Model description Here&#39;s my RVC 700 epoch voice model of Gallus from MLP:FIM ## Download model [Download](/LegoClipStars/Gallus/tree/main) them in the Files & versions tab.
{"license": "cc-by-4.0", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora"], "widget": [{"text": "NEFT", "parameters": {"negative_prompt": "Flying griffon"}, "output": {"url": "images/FsJVATTacAE4tVY.jpg"}}], "base_model": "cagliostrolab/animagine-xl-3.0"}
text-to-image
LegoClipStars/Gallus
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:cagliostrolab/animagine-xl-3.0", "license:cc-by-4.0", "region:us" ]
2024-02-06T23:33:33+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-cagliostrolab/animagine-xl-3.0 #license-cc-by-4.0 #region-us
# Gallus <Gallery /> ## Model description Here&#39;s my RVC 700 epoch voice model of Gallus from MLP:FIM ## Download model Download them in the Files & versions tab.
[ "# Gallus\n\n<Gallery />", "## Model description \n\nHere&#39;s my RVC 700 epoch voice model of Gallus from MLP:FIM", "## Download model\n\n\nDownload them in the Files & versions tab." ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-cagliostrolab/animagine-xl-3.0 #license-cc-by-4.0 #region-us \n", "# Gallus\n\n<Gallery />", "## Model description \n\nHere&#39;s my RVC 700 epoch voice model of Gallus from MLP:FIM", "## Download model\n\n\nDownload them in the Files & versions tab." ]
[ 60, 8, 24, 14 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-cagliostrolab/animagine-xl-3.0 #license-cc-by-4.0 #region-us \n# Gallus\n\n<Gallery />## Model description \n\nHere&#39;s my RVC 700 epoch voice model of Gallus from MLP:FIM## Download model\n\n\nDownload them in the Files & versions tab." ]
[ -0.12234765291213989, 0.07852020114660263, -0.0006338500534184277, 0.05425816774368286, 0.09198571741580963, 0.02033144235610962, 0.14323337376117706, 0.06636647880077362, 0.0254969485104084, 0.07286970317363739, 0.06307171285152435, 0.061663173139095306, 0.018215958029031754, 0.047554861754179, -0.013830344192683697, -0.24933724105358124, 0.01829465851187706, -0.028941383585333824, 0.012027361430227757, 0.02416423335671425, 0.022905144840478897, -0.021282533183693886, 0.07692386209964752, -0.04948433116078377, -0.1023721918463707, 0.001318873604759574, 0.02648807503283024, -0.028235092759132385, 0.047962456941604614, 0.07210469990968704, -0.10308434814214706, 0.032618287950754166, 0.14647842943668365, -0.09174557030200958, 0.06223570555448532, -0.020953675732016563, -0.049288202077150345, 0.06483191251754761, -0.02522883377969265, -0.04211881011724472, 0.2080371379852295, 0.08921702951192856, -0.07381359487771988, 0.015632733702659607, -0.06196339800953865, -0.15643902122974396, -0.07200382649898529, 0.011862247250974178, 0.02838057279586792, 0.06324876844882965, 0.0017363931983709335, 0.05353177711367607, 0.007973195984959602, 0.030120382085442543, 0.21339020133018494, -0.279092937707901, -0.053631048649549484, 0.3039528429508209, 0.09772783517837524, 0.2004333734512329, -0.042296167463064194, 0.13603541254997253, 0.06913008540868759, -0.020461345091462135, -0.061879877001047134, -0.07948647439479828, 0.0945173054933548, -0.04411190003156662, -0.053296130150556564, -0.01790168508887291, 0.35158419609069824, 0.05414386838674545, -0.008270089514553547, 0.019081806764006615, -0.03515340015292168, 0.03139803186058998, -0.10471348464488983, 0.04542500525712967, 0.026004431769251823, 0.010943734087049961, -0.03221290558576584, -0.12328852713108063, -0.0734386220574379, -0.11050844192504883, -0.09091167896986008, 0.12708060443401337, 0.004073099698871374, 0.04895894601941109, -0.016781345009803772, 0.06518074125051498, -0.19038009643554688, -0.06113598868250847, 0.037942949682474136, -0.020427793264389038, 0.07003658264875412, 0.08083079755306244, -0.0509311743080616, -0.017578216269612312, 0.08266442269086838, 0.07239513844251633, -0.02203894779086113, -0.04806874319911003, -0.015031051822006702, 0.12792932987213135, -0.017338169738650322, -0.021120604127645493, -0.06742387264966965, -0.12586097419261932, 0.06256037205457687, -0.030810367316007614, 0.07506667077541351, -0.037584029138088226, -0.18276415765285492, -0.04269183427095413, -0.17941589653491974, 0.013329043984413147, 0.017182158306241035, -0.02154530957341194, 0.00957415159791708, -0.03743552789092064, 0.09371639788150787, 0.010284424759447575, -0.021727541461586952, 0.004494464490562677, 0.018164098262786865, 0.17570997774600983, 0.05838527902960777, 0.0030951888766139746, 0.03067719005048275, -0.049540333449840546, -0.044431187212467194, -0.012314057908952236, -0.044025786221027374, -0.08067415654659271, 0.020974528044462204, 0.02642137184739113, -0.006245885509997606, -0.11014757305383682, -0.1053323894739151, -0.024651208892464638, 0.008716528303921223, -0.05673310160636902, -0.024900313466787338, -0.05508033558726311, -0.025528762489557266, 0.015691043809056282, 0.008916317485272884, 0.005955391563475132, -0.08351372927427292, 0.08417988568544388, -0.014267295598983765, 0.16223731637001038, -0.17073942720890045, 0.04649278149008751, 0.004879445768892765, 0.009468560107052326, -0.18122367560863495, -0.013453763909637928, -0.08458200842142105, -0.051874615252017975, -0.05188325420022011, -0.0689324289560318, -0.13139352202415466, 0.05066495016217232, -0.006511506158858538, 0.13346433639526367, -0.20095162093639374, -0.06529351323843002, 0.1290539652109146, -0.08006922900676727, -0.028445344418287277, 0.14594028890132904, 0.06481115520000458, 0.03482240438461304, 0.09022831171751022, 0.2096807211637497, 0.07601737976074219, -0.23785267770290375, 0.0712071880698204, 0.05008727312088013, 0.02132408879697323, -0.1679903268814087, 0.0729181244969368, -0.010995445773005486, 0.05053277686238289, 0.043676216155290604, -0.1378956139087677, 0.04022761806845665, -0.06654662638902664, 0.04182978346943855, -0.004766438622027636, -0.07057078182697296, -0.013980082236230373, 0.008188137784600258, 0.013664424419403076, -0.015832621604204178, -0.005164626520127058, -0.08296394348144531, 0.10155195742845535, -0.09768831729888916, 0.044156257063150406, -0.01794704794883728, 0.26002949476242065, -0.15886929631233215, 0.01181054674088955, -0.12316019833087921, 0.04647703841328621, -0.006651097442954779, 0.04155605286359787, 0.15431131422519684, 0.06805330514907837, 0.04877825826406479, -0.00470270961523056, -0.05797949805855751, 0.06347034871578217, 0.047797683626413345, -0.027754200622439384, -0.03888325020670891, -0.1814909428358078, 0.0462854839861393, -0.048556387424468994, 0.03971094638109207, -0.14565059542655945, -0.027854112908244133, -0.013280757702887058, 0.0659649446606636, 0.00042716998723335564, -0.015133078210055828, 0.02273985929787159, -0.004838091786950827, -0.04123205319046974, 0.01697690412402153, 0.03657566383481026, 0.02349281497299671, 0.051033295691013336, 0.19803471863269806, -0.14091359078884125, 0.055109377950429916, 0.18871541321277618, -0.038392968475818634, 0.00035795249277725816, -0.040129404515028, 0.056832294911146164, 0.028327161446213722, -0.06619031727313995, -0.10806553810834885, 0.024792620912194252, -0.049363911151885986, 0.13936740159988403, -0.05606628581881523, 0.042529623955488205, 0.07365132868289948, -0.023896435275673866, -0.018771732226014137, 0.0877649188041687, 0.2715030610561371, 0.04609416052699089, 0.04396740719676018, 0.15601316094398499, -0.08492112159729004, 0.15939417481422424, 0.03499501571059227, -0.10115008801221848, -0.01730182208120823, -0.07428935915231705, 0.011614815331995487, 0.18254069983959198, -0.035292256623506546, -0.027636557817459106, 0.05089505761861801, -0.03118741139769554, 0.027966860681772232, -0.11751284450292587, -0.020913448184728622, -0.00007734700193395838, -0.08727885037660599, -0.006224098149687052, 0.12105660885572433, -0.1255698949098587, 0.09335912764072418, -0.08320403099060059, -0.16690406203269958, -0.041973091661930084, -0.019887426868081093, -0.04280102252960205, 0.039743877947330475, -0.08059526979923248, -0.13438960909843445, -0.20063094794750214, -0.08983540534973145, -0.06372956931591034, 0.03750882297754288, 0.046430233865976334, -0.04541793093085289, -0.05768181011080742, -0.058819495141506195, -0.03158668801188469, -0.0015225386014208198, -0.025934506207704544, -0.03972093015909195, -0.03341694921255112, -0.0768384337425232, -0.10771133005619049, -0.01739497482776642, -0.0893360897898674, 0.05247103422880173, 0.0011831681476905942, -0.09039375931024551, 0.13328604400157928, 0.14098690450191498, 0.05021543428301811, 0.05525914207100868, 0.029381444677710533, 0.20144104957580566, -0.07573555409908295, 0.06640324741601944, 0.2009444385766983, 0.12770068645477295, 0.0030933290254324675, 0.10452993959188461, 0.07619915902614594, -0.06788938492536545, -0.0009879948338493705, -0.06663952022790909, -0.12753967940807343, -0.16549761593341827, -0.12663960456848145, -0.11750619113445282, 0.03482981398701668, -0.0044484068639576435, 0.025431392714381218, 0.062423281371593475, 0.05013896897435188, -0.030466681346297264, 0.061453480273485184, 0.0060675740242004395, 0.04073253273963928, 0.2757359743118286, -0.044176459312438965, 0.041445497423410416, -0.05852175131440163, 0.022331029176712036, 0.16786733269691467, 0.054776448756456375, 0.18926990032196045, 0.10819270461797714, 0.13254377245903015, 0.0060070231556892395, 0.047426242381334305, 0.12802360951900482, 0.0317639596760273, 0.03263375908136368, -0.002236942993476987, -0.04039924591779709, -0.10354267060756683, 0.08504264801740646, 0.038945261389017105, 0.13438628613948822, -0.0839347243309021, 0.02387223206460476, -0.008791078813374043, -0.06481762230396271, 0.025043604895472527, 0.06357619911432266, -0.23253412544727325, -0.019679391756653786, -0.007854349911212921, 0.07289838045835495, 0.0006643515080213547, 0.0744018629193306, 0.14982345700263977, -0.013444379903376102, -0.0429481603205204, 0.013789870776236057, 0.05584017559885979, -0.020482411608099937, -0.009233913384377956, -0.0131706977263093, 0.08060641586780548, -0.03221169859170914, -0.03690953180193901, 0.015540090389549732, 0.23109455406665802, -0.006720066070556641, 0.0028303004801273346, 0.08736304193735123, -0.026528166607022285, 0.09974633902311325, 0.10390070825815201, 0.12459222972393036, 0.027596475556492805, -0.019822293892502785, 0.0026768280658870935, -0.1249394342303276, -0.0009233421878889203, 0.04895343631505966, -0.026476148515939713, 0.013191296719014645, 0.013042918406426907, -0.06856735050678253, -0.004337736405432224, -0.053733352571725845, -0.0686323270201683, -0.07194491475820541, 0.036129843443632126, 0.2169312983751297, 0.0050245546735823154, 0.028788069263100624, -0.1160304918885231, -0.2676853537559509, 0.04775375872850418, 0.07416782528162003, 0.0034572791773825884, -0.03213699534535408, 0.0018078956054523587, 0.11210034787654877, -0.04555230587720871, 0.05979394540190697, -0.023266585543751717, 0.07240187376737595, -0.03964361175894737, -0.06838157027959824, 0.056762661784887314, -0.09865172207355499, -0.03972237557172775, -0.05735544487833977, 0.20714883506298065, -0.048036839812994, 0.07162029296159744, 0.04027814045548439, 0.04379572346806526, -0.02673211321234703, -0.09316492080688477, 0.06853388249874115, 0.04959658160805702, -0.06406848877668381, 0.03599629923701286, -0.043899208307266235, -0.1436556577682495, -0.0004055720928590745, -0.01491260714828968, 0.06509649008512497, 0.2120840847492218, -0.06560241430997849, 0.03417428955435753, 0.17198729515075684, -0.07709462195634842, -0.19804513454437256, -0.0633196160197258, -0.07502324134111404, -0.01007656566798687, 0.09493829309940338, -0.09286472946405411, 0.11959630250930786, 0.10072837769985199, -0.023330967873334885, 0.20948262512683868, -0.3669237196445465, -0.08783221989870071, 0.026339594274759293, 0.07773119956254959, 0.2030450403690338, -0.0967692881822586, -0.07182472944259644, -0.047224510461091995, -0.2387298345565796, -0.006586950737982988, -0.08925306797027588, 0.11682683974504471, 0.001368425553664565, 0.11151864379644394, -0.016465364024043083, -0.009845386259257793, 0.1347939521074295, 0.017484912648797035, -0.025131506845355034, -0.030110226944088936, -0.04179992154240608, 0.1100972518324852, 0.03088313341140747, 0.006362651474773884, -0.1184980645775795, 0.009908176027238369, -0.07648707926273346, -0.026250749826431274, -0.017252258956432343, -0.016664979979395866, -0.005381443537771702, 0.00009642248915042728, -0.043585050851106644, 0.0096173956990242, -0.012916716746985912, 0.04384017363190651, 0.026371236890554428, -0.10678088665008545, 0.015149787999689579, 0.09521063417196274, 0.00777547899633646, 0.04993407055735588, -0.16751958429813385, -0.0916784480214119, -0.06811937689781189, 0.06299982964992523, -0.17145095765590668, -0.03405142202973366, 0.12296003848314285, 0.0698518380522728, 0.063993439078331, 0.013446549884974957, -0.025693189352750778, 0.1287611424922943, 0.06974836438894272, -0.07646391540765762, -0.13896876573562622, -0.02011340670287609, -0.05873165652155876, 0.0766511932015419, 0.03902757167816162, 0.1582425981760025, -0.0445491299033165, -0.0068890866823494434, 0.0075925844721496105, -0.020763488486409187, -0.0285231564193964, 0.11048071831464767, 0.03859832510352135, -0.03891849145293236, -0.11408402770757675, 0.054375045001506805, -0.010981126688420773, -0.08936883509159088, -0.08392070978879929, 0.08726233243942261, -0.06781517714262009, -0.07465512305498123, -0.0601041316986084, -0.022024542093276978, -0.17028078436851501, -0.0010045702802017331, -0.088567353785038, -0.05137425661087036, 0.03443518653512001, 0.11612224578857422, 0.06691712886095047, -0.07934454828500748, -0.07702576369047165, -0.015394131653010845, -0.027271168306469917, 0.061636604368686676, 0.053233273327350616, 0.06080956384539604, -0.11434357613325119, -0.10348778963088989, 0.0025597710628062487, -0.029052874073386192, -0.052832748740911484, -0.0680045634508133, -0.02718491666018963, 0.018986547365784645, -0.11000700294971466, 0.03670847788453102, -0.04909427836537361, -0.03535238653421402, -0.04204485937952995, -0.05641782283782959, -0.06351105868816376, 0.08121345192193985, -0.09408305585384369, -0.01720377430319786, 0.019436797127127647, 0.06546798348426819, -0.04635761305689812, 0.023566948249936104, 0.01638936437666416, -0.019941413775086403, 0.05959388241171837, 0.1213902086019516, -0.05087796226143837, 0.027990836650133133, -0.32077524065971375, -0.024505993351340294, 0.05129415541887283, 0.07889211922883987, 0.02173547074198723, 0.017667444422841072, 0.018387185409665108, 0.03916153311729431, 0.04336407780647278, -0.007323457393795252, -0.06963568925857544, -0.09055481851100922, 0.04953496530652046, -0.11034666746854782, -0.00017125638260040432, -0.02361411042511463, 0.006464486476033926, 0.114801786839962, 0.14263920485973358, 0.07838873565196991, -0.07044654339551926, 0.009445704519748688, -0.0648709386587143, 0.039888475090265274, -0.0011674115667119622, -0.0924495980143547, -0.08640000969171524, -0.04633587598800659, 0.02025051973760128, -0.0016181647079065442, 0.13171444833278656, 0.0441383495926857, -0.004479614552110434, -0.02776355855166912, 0.06381212174892426, 0.0035095917992293835, -0.045106012374162674, 0.23554961383342743, 0.1085045337677002, 0.056034643203020096, -0.07420229911804199, 0.0706121027469635, 0.14032991230487823, 0.12747399508953094, -0.04543758183717728, 0.006315827369689941, 0.0845264419913292, 0.049810826778411865, 0.11595357209444046, 0.025636205449700356, -0.029511544853448868, 0.05584920570254326, 0.011464627459645271, 0.1133643388748169, -0.04259946569800377, 0.11029703170061111, 0.13055743277072906, -0.05212303251028061, -0.0026864383835345507, 0.007108346559107304, -0.004542937967926264, -0.06732974946498871, -0.2163950353860855, -0.08723674714565277, -0.24070310592651367, 0.017539041116833687, -0.08609460294246674, 0.0676654800772667, 0.08189786225557327, 0.05340806022286415, 0.012144669890403748, 0.014156201854348183, -0.15819920599460602, -0.11664365231990814, 0.10295622050762177, -0.04376252740621567, -0.05275636911392212, -0.06050761416554451, -0.03561868146061897, 0.09166876971721649, -0.09615395963191986, -0.006973625160753727, 0.03695446997880936, 0.07491794973611832, -0.005414665676653385, -0.06609737128019333, -0.05869772657752037, -0.042539604008197784, 0.015413297340273857, -0.00737298047170043, 0.2061544507741928, 0.09185230731964111, -0.05739501863718033, 0.04391246289014816, 0.11846307665109634, -0.037042759358882904, -0.059067461639642715, -0.07647724449634552, -0.003132815007120371, -0.06547121703624725, 0.03507867828011513, -0.0694802924990654, -0.058450281620025635, 0.022305790334939957, 0.22926713526248932, 0.2512696385383606, -0.03723284602165222, -0.0014758066972717643, 0.04942570999264717, 0.0012436482356861234, 0.007212533615529537, -0.00781412422657013, 0.12379921972751617, 0.183831587433815, 0.0003097781154792756, -0.07194391638040543, -0.10471390187740326, -0.021777985617518425, -0.04127205163240433, -0.12899155914783478, -0.052286773920059204, -0.12745270133018494, -0.0026024659164249897, 0.15504077076911926, -0.13891592621803284, -0.12735487520694733, -0.023828813806176186, -0.10707712918519974, -0.024190280586481094, -0.04915298894047737, 0.003495623590424657, 0.16357307136058807, -0.011256988160312176, -0.13790002465248108, -0.06083332374691963, 0.04613415151834488, -0.02386578544974327, -0.17217174172401428, -0.12176967412233353, 0.005457440856844187, -0.1976480633020401, 0.1226564273238182, -0.04201280325651169, 0.09565547853708267, 0.0016406482318416238, 0.04231888800859451, 0.010665097273886204, 0.09028353542089462, 0.03179669380187988, -0.16516615450382233, 0.010773041285574436, 0.1272890418767929, -0.03701018914580345, 0.1668083667755127, -0.01886504888534546, 0.07596591860055923, 0.04504719376564026, 0.06030441075563431, -0.06745347380638123, -0.03824489936232567, -0.0011613505193963647, -0.12676504254341125, 0.10795902460813522, 0.02335292473435402, -0.0015501329908147454, -0.05946506932377815, -0.001506701111793518, 0.006695020478218794, 0.11239542812108994, -0.08085475862026215, 0.0023193408269435167, -0.12008406966924667, -0.0369376502931118, -0.08565261214971542, 0.028537174686789513, -0.15997759997844696, -0.03710681572556496, -0.15589264035224915, 0.01519082486629486, 0.01693693920969963, 0.03596899285912514, 0.22268559038639069, -0.01545339822769165, -0.022493015974760056, -0.017626697197556496, 0.046069514006376266, 0.09346169978380203, -0.1313454955816269, -0.12522825598716736 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sawyer-llama-2 This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: nan - eval_runtime: 1296.5217 - eval_samples_per_second: 8.944 - eval_steps_per_second: 8.944 - epoch: 1.0 - step: 11582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "base_model": "NousResearch/Llama-2-7b-hf", "model-index": [{"name": "sawyer-llama-2", "results": []}]}
null
profoz/sawyer-llama-2
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:NousResearch/Llama-2-7b-hf", "region:us" ]
2024-02-06T23:36:57+00:00
[]
[]
TAGS #tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us
# sawyer-llama-2 This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set: - eval_loss: nan - eval_runtime: 1296.5217 - eval_samples_per_second: 8.944 - eval_steps_per_second: 8.944 - epoch: 1.0 - step: 11582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1
[ "# sawyer-llama-2\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: nan\n- eval_runtime: 1296.5217\n- eval_samples_per_second: 8.944\n- eval_steps_per_second: 8.944\n- epoch: 1.0\n- step: 11582", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 5", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ "TAGS\n#tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us \n", "# sawyer-llama-2\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: nan\n- eval_runtime: 1296.5217\n- eval_samples_per_second: 8.944\n- eval_steps_per_second: 8.944\n- epoch: 1.0\n- step: 11582", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 5", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ 40, 103, 6, 12, 8, 3, 128, 33 ]
[ "passage: TAGS\n#tensorboard #safetensors #generated_from_trainer #base_model-NousResearch/Llama-2-7b-hf #region-us \n# sawyer-llama-2\n\nThis model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: nan\n- eval_runtime: 1296.5217\n- eval_samples_per_second: 8.944\n- eval_steps_per_second: 8.944\n- epoch: 1.0\n- step: 11582## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 4\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 5### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1" ]
[ -0.1494867503643036, 0.12329256534576416, -0.00488129211589694, 0.07908894866704941, 0.07421410083770752, 0.014131504110991955, 0.07750838994979858, 0.1392526924610138, -0.0035962925758212805, 0.16335642337799072, 0.08564426004886627, 0.03564928099513054, 0.07301589101552963, 0.15903447568416595, 0.017019862309098244, -0.19033223390579224, 0.02431301772594452, -0.0694463700056076, -0.06649505347013474, 0.08259665966033936, 0.08715681731700897, -0.09451533854007721, 0.06703408807516098, 0.022210868075489998, -0.07677135616540909, -0.028345521539449692, -0.06475065648555756, -0.0369851253926754, 0.07914360612630844, -0.022203397005796432, 0.04472540318965912, 0.041255753487348557, 0.09672652930021286, -0.2117699384689331, -0.002620225539430976, 0.06778351217508316, 0.060893360525369644, 0.10677194595336914, 0.08964251726865768, -0.009140982292592525, 0.06371540576219559, -0.1585662066936493, 0.08674359321594238, 0.05240851640701294, -0.08516735583543777, -0.14537197351455688, -0.07504802197217941, 0.09275977313518524, 0.1102496087551117, 0.06739480793476105, -0.0027376865036785603, 0.11513634026050568, -0.07153473049402237, 0.05042440816760063, 0.2264275848865509, -0.20830588042736053, -0.05035901069641113, 0.04484777897596359, 0.041522685438394547, 0.04801557585597038, -0.1256425827741623, -0.0010698550613597035, 0.03827456012368202, -0.02917672134935856, 0.07616448402404785, 0.015402411110699177, 0.031912919133901596, -0.006850990932434797, -0.1105475202202797, -0.04228910803794861, 0.12860725820064545, 0.0923643633723259, -0.05268328636884689, -0.11558637022972107, -0.055668484419584274, -0.15682823956012726, -0.013772757723927498, -0.04725392535328865, 0.03035235032439232, -0.04732997342944145, -0.01948314718902111, -0.004899201914668083, -0.07283797860145569, -0.0615740641951561, 0.07061677426099777, 0.1453319787979126, 0.034633081406354904, 0.003924157470464706, 0.013790973462164402, 0.11121269315481186, 0.036950089037418365, -0.13466691970825195, -0.05443599447607994, -0.005540496204048395, -0.11750566214323044, -0.014788219705224037, -0.023888051509857178, 0.05104959383606911, 0.04582522064447403, 0.14826945960521698, -0.03619428724050522, 0.08816288411617279, 0.08375633507966995, 0.009429513476788998, -0.0027102837339043617, 0.10464340448379517, -0.032881297171115875, -0.05716188997030258, -0.015447979792952538, 0.11447397619485855, 0.015888279303908348, -0.03217699006199837, -0.03628651052713394, 0.004931605886667967, 0.08974877744913101, 0.07527295500040054, -0.0025718177203089, 0.0033236080780625343, -0.05972403660416603, -0.02471875213086605, 0.057791076600551605, -0.1311652660369873, 0.02828020229935646, 0.04040835052728653, -0.07397906482219696, -0.017794989049434662, 0.015552567318081856, -0.027515141293406487, -0.03955019637942314, 0.028501495718955994, -0.0942770317196846, -0.029342925176024437, -0.02604333497583866, -0.010758672840893269, 0.014186282642185688, -0.10474573820829391, -0.006450236774981022, -0.06673604249954224, -0.13996613025665283, -0.06986026465892792, 0.025007518008351326, -0.08841449022293091, -0.06926582753658295, -0.049417488276958466, -0.0542062409222126, 0.04607366770505905, -0.007697240449488163, 0.08877702057361603, -0.04395371675491333, 0.05056139454245567, -0.0248896274715662, 0.03501575440168381, 0.11098823696374893, 0.021146709099411964, -0.08003886044025421, 0.06588967889547348, -0.10399270057678223, 0.10585169494152069, -0.09777134656906128, 0.02434770204126835, -0.15189170837402344, -0.04555744305253029, -0.03782440721988678, -0.04021817818284035, 0.07080631703138351, 0.17299050092697144, -0.15975330770015717, -0.026258429512381554, 0.11648363620042801, -0.06541610509157181, -0.07859227806329727, 0.07792848348617554, -0.015436878427863121, -0.009005798026919365, 0.025381650775671005, 0.18662650883197784, 0.1330278068780899, -0.13355271518230438, -0.019178399816155434, 0.042382631450891495, 0.07614119350910187, 0.04104580730199814, 0.07922662794589996, -0.06182912364602089, 0.010704314336180687, 0.025744136422872543, -0.08188971132040024, -0.021905722096562386, -0.0739101693034172, -0.08118372410535812, -0.05315763130784035, -0.058080218732357025, 0.014351068064570427, -0.00571457901969552, 0.0069162133149802685, -0.050202835351228714, -0.13085468113422394, -0.015437214635312557, 0.15431709587574005, -0.05354132503271103, 0.012740662321448326, -0.05880480632185936, 0.06688489764928818, -0.02383481338620186, -0.022467810660600662, -0.16402451694011688, -0.10923561453819275, 0.050568245351314545, -0.13760769367218018, -0.0011111675994470716, 0.031022511422634125, 0.04475180432200432, 0.06211153790354729, 0.0004537805216386914, -0.031048718839883804, -0.07742884755134583, -0.008968997746706009, -0.08913036435842514, -0.20979781448841095, -0.042472340166568756, -0.02696125954389572, 0.20646774768829346, -0.2290538251399994, -0.009932231158018112, 0.0019157507922500372, 0.12714800238609314, -0.0004821342299692333, -0.0985991582274437, 0.020408185198903084, -0.01956477202475071, -0.002454232657328248, -0.11341562867164612, 0.02610655315220356, 0.006543442141264677, -0.13167084753513336, -0.015869710594415665, -0.184554323554039, -0.05559718236327171, 0.04081280529499054, 0.12111853063106537, -0.106622114777565, -0.06542939692735672, -0.07099053263664246, -0.04956157132983208, -0.05435154214501381, 0.020503537729382515, 0.15045572817325592, 0.03224519267678261, 0.08731041103601456, -0.07330580055713654, -0.07810144871473312, 0.032337769865989685, 0.0025223183911293745, -0.0032753413543105125, 0.11630293726921082, 0.0534089021384716, -0.08675158023834229, 0.04026585817337036, 0.09314338117837906, -0.013189193792641163, 0.09525711834430695, -0.05511849373579025, -0.10620591789484024, -0.046089284121990204, 0.04100485518574715, -0.009833495132625103, 0.13614927232265472, -0.06217855215072632, 0.04274379089474678, 0.04964771494269371, 0.02620641328394413, 0.01661183498799801, -0.12129897624254227, 0.01322562713176012, 0.026395302265882492, -0.03686331957578659, 0.014112873002886772, -0.02297760173678398, 0.00027241697534918785, 0.06985308974981308, 0.01781289465725422, -0.016368908807635307, -0.01098519004881382, -0.013677934184670448, -0.08955085277557373, 0.19611257314682007, -0.07439403235912323, -0.1256864070892334, -0.09852580726146698, 0.13315221667289734, -0.05880241096019745, -0.02560633234679699, 0.01060936413705349, -0.06765791028738022, -0.05174581706523895, -0.10425139218568802, -0.019336869940161705, -0.06887589395046234, 0.015306374058127403, 0.05894158035516739, 0.009344972670078278, 0.1101536899805069, -0.11502280086278915, 0.010753525421023369, -0.01699782721698284, -0.04769274592399597, -0.01243739016354084, 0.0651586502790451, 0.07557808607816696, 0.11467435956001282, 0.0262678824365139, 0.008709406480193138, -0.017677895724773407, 0.1990823596715927, -0.08619215339422226, 0.018903054296970367, 0.08839425444602966, 0.014552351087331772, 0.06864660233259201, 0.1023169755935669, 0.01801331527531147, -0.08120833337306976, 0.0058224075473845005, 0.05794253572821617, -0.033221594989299774, -0.23295994102954865, -0.023229531943798065, -0.0234642643481493, -0.025732723996043205, 0.12646695971488953, 0.06886421144008636, -0.01486244983971119, 0.06842762976884842, -0.029513688758015633, -0.02437138371169567, -0.023619772866368294, 0.07535938173532486, 0.02870193123817444, 0.0590524822473526, 0.08215149492025375, -0.0061734686605632305, 0.014570050872862339, 0.054348696023225784, 0.009902723133563995, 0.22448746860027313, -0.038080908358097076, 0.14571315050125122, 0.039362117648124695, 0.1434444934129715, -0.045776039361953735, 0.031664829701185226, 0.05594232678413391, -0.00742651242762804, 0.009197331964969635, -0.08157572895288467, -0.04256477579474449, 0.04014844074845314, 0.0314335972070694, 0.02231401391327381, -0.09046779572963715, 0.11452331393957138, 0.021017801016569138, 0.23107734322547913, 0.08387815207242966, -0.2913305461406708, -0.06706997007131577, 0.00048772277659736574, 0.00029658532002940774, -0.07734443992376328, 0.013357149437069893, 0.09085571020841599, -0.11852610111236572, 0.06842228770256042, -0.02530352771282196, 0.06506578624248505, -0.08244195580482483, -0.013210635632276535, -0.008803690783679485, 0.11597634106874466, 0.0013450003461912274, 0.08372287452220917, -0.09845069795846939, 0.1997506469488144, 0.004897225182503462, 0.07062435895204544, -0.0435478575527668, 0.03920396417379379, -0.0029180324636399746, 0.013612736947834492, 0.1587832123041153, 0.022502867504954338, -0.06702004373073578, -0.1419186294078827, -0.16425476968288422, 0.027264583855867386, 0.12020158022642136, -0.13891786336898804, 0.07357735186815262, -0.034177348017692566, -0.0055754538625478745, 0.004380790516734123, -0.03381841629743576, -0.14402341842651367, -0.11715733259916306, 0.045139916241168976, -0.01539088599383831, -0.03463805094361305, -0.0722930058836937, -0.08449170738458633, -0.0451463907957077, 0.17257297039031982, -0.06384370476007462, -0.048375893384218216, -0.1686123013496399, 0.06902649998664856, 0.1537564992904663, -0.07782348990440369, 0.013111340813338757, -0.008706511929631233, 0.12613655626773834, 0.048893269151449203, -0.03995161131024361, 0.06747341901063919, -0.07149776816368103, -0.19192972779273987, -0.0644785687327385, 0.15947748720645905, 0.07059309631586075, 0.027910837903618813, 0.002234590705484152, 0.020568132400512695, 0.004735949914902449, -0.10625118017196655, 0.050203386694192886, 0.09765073657035828, 0.021862933412194252, 0.0062204692512750626, -0.020222758874297142, 0.08833011239767075, -0.040906164795160294, -0.017549026757478714, 0.0651778057217598, 0.2974953353404999, -0.08881582319736481, 0.10258390754461288, 0.08548227697610855, -0.06884787976741791, -0.13949710130691528, -0.008640303276479244, 0.13258510828018188, 0.026955224573612213, 0.05624525249004364, -0.13916927576065063, 0.12874528765678406, 0.12427368015050888, -0.029849058017134666, 0.023710191249847412, -0.26233816146850586, -0.13309945166110992, 0.09691930562257767, 0.053301528096199036, 0.013306824490427971, -0.125857412815094, -0.07044098526239395, -0.006388776935636997, -0.06866644322872162, 0.050314974039793015, -0.024149641394615173, 0.10337106138467789, -0.01554555632174015, 0.010267590172588825, 0.054124634712934494, -0.033139418810606, 0.1873573660850525, 0.06064069643616676, 0.044150207191705704, -0.02760549634695053, 0.0620989091694355, 0.0191327091306448, -0.1108298972249031, 0.06855572760105133, -0.04521282762289047, 0.09297950565814972, -0.1544475108385086, -0.0112210214138031, -0.04334007576107979, 0.06729620695114136, -0.06294775009155273, -0.03873728960752487, -0.051610689610242844, 0.03467543423175812, 0.07426571846008301, -0.014667682349681854, 0.07389091700315475, 0.01194426417350769, 0.043745920062065125, 0.14712360501289368, 0.04737386479973793, 0.03340677171945572, -0.16562852263450623, -0.016648514196276665, -0.0004180226824246347, 0.038867171853780746, -0.13299009203910828, 0.028060544282197952, 0.11045578867197037, 0.0614449679851532, 0.07559708505868912, 0.013824918307363987, -0.07660224288702011, -0.01932971552014351, 0.03641332685947418, -0.08760958909988403, -0.15237684547901154, -0.001162888016551733, -0.026429055258631706, -0.16082869470119476, 0.01568358764052391, 0.13776570558547974, -0.04380461201071739, -0.003447499591857195, -0.018664292991161346, 0.03938785195350647, 0.009597999975085258, 0.1721828132867813, 0.04374315217137337, 0.10558030754327774, -0.06648317724466324, 0.14022934436798096, 0.07505930215120316, -0.0665898323059082, 0.057792771607637405, 0.03450745344161987, -0.10572043061256409, -0.008730708621442318, 0.05196887627243996, 0.08226010948419571, -0.029372049495577812, -0.03401530906558037, -0.07084614038467407, -0.07861870527267456, 0.053814277052879333, 0.017600826919078827, 0.030473096296191216, 0.011170894838869572, -0.002837592735886574, 0.0140317901968956, -0.11619134992361069, 0.09013213217258453, 0.06441475450992584, 0.06517152488231659, -0.11953964084386826, 0.06284427642822266, -0.00014305378135759383, 0.04302519932389259, -0.0032619733829051256, -0.004903192166239023, -0.09206276386976242, -0.03625919669866562, -0.066677525639534, 0.03582007437944412, -0.03128230571746826, 0.0014508480671793222, 0.006104419473558664, -0.02841333858668804, -0.022518498823046684, 0.04585571214556694, -0.06463867425918579, -0.07877175509929657, -0.011098749004304409, 0.08466703444719315, -0.12550130486488342, 0.015624133870005608, 0.03474004939198494, -0.12114746868610382, 0.10252173244953156, 0.06321115046739578, 0.046881064772605896, -0.010910386219620705, -0.07471561431884766, 0.04683849215507507, 0.01522392500191927, 0.020270701497793198, 0.03269590809941292, -0.11558283120393753, -0.027641581371426582, -0.05819740891456604, -0.002706378698348999, -0.018362050876021385, -0.003896119073033333, -0.13066020607948303, -0.0478106252849102, -0.0570477731525898, -0.043514251708984375, -0.0629267618060112, 0.019699307158589363, 0.038664206862449646, 0.0281672403216362, 0.10222895443439484, -0.034326907247304916, 0.050296951085329056, -0.21174398064613342, -0.04234658181667328, 0.018314244225621223, 0.020619558170437813, -0.02685678005218506, -0.027487125247716904, 0.10522351413965225, -0.044059284031391144, 0.07646000385284424, -0.04059019312262535, 0.090381920337677, 0.017096662893891335, -0.043628767132759094, 0.0077742403373122215, 0.011945879086852074, 0.155739426612854, 0.06454716622829437, 0.006390669848769903, 0.09548599272966385, -0.0358271561563015, 0.06667901575565338, 0.03793022036552429, 0.14787524938583374, 0.13841651380062103, -0.028967037796974182, 0.07811059802770615, 0.017182668671011925, -0.1432008296251297, -0.1527690291404724, 0.15327805280685425, -0.058620013296604156, 0.1066647619009018, -0.03055996261537075, 0.12223024666309357, 0.1191166564822197, -0.1673050820827484, 0.02935311570763588, -0.03739873319864273, -0.10709930211305618, -0.11599349975585938, -0.10065063834190369, -0.07905272394418716, -0.14043506979942322, 0.028108540922403336, -0.09173013269901276, 0.022745532914996147, 0.09865754842758179, 0.026473121717572212, 0.041492387652397156, 0.1366511583328247, -0.005699585657566786, 0.0007715351530350745, 0.04883136972784996, 0.03539428487420082, 0.00012829051411245018, -0.02500341087579727, -0.06165982037782669, 0.051688168197870255, 0.014020266942679882, 0.09118542820215225, -0.052963513880968094, 0.05106386914849281, 0.07417724281549454, 0.016195468604564667, -0.07798163592815399, 0.022673994302749634, -0.024716868996620178, 0.007656640838831663, 0.025839481502771378, 0.05458708107471466, 0.00446546683087945, -0.05382157117128372, 0.2565160095691681, -0.049140289425849915, -0.019437190145254135, -0.11170752346515656, 0.14733733236789703, 0.036399468779563904, -0.0022790345828980207, 0.05100274458527565, -0.12734772264957428, -0.016735373064875603, 0.11428587883710861, 0.0897267758846283, -0.031176576390862465, -0.015460414811968803, -0.006829306948930025, -0.017020447179675102, -0.06081268936395645, 0.0785946473479271, 0.04579358547925949, 0.0004345449269749224, -0.044553931802511215, 0.028424931690096855, 0.008718757890164852, -0.049015793949365616, -0.09245547652244568, 0.08572252839803696, -0.008599051274359226, 0.015159647911787033, -0.0528533048927784, 0.06601773947477341, -0.003666450036689639, -0.22045549750328064, 0.08206253498792648, -0.10596062242984772, -0.17085732519626617, -0.032229844480752945, 0.0415678508579731, -0.010612382553517818, 0.052580494433641434, -0.014422917738556862, -0.020733768120408058, 0.15287277102470398, -0.015765337273478508, -0.04429863393306732, -0.09071435779333115, 0.02802022360265255, -0.015550478361546993, 0.24858532845973969, 0.009478828869760036, 0.044308289885520935, 0.09832718968391418, 0.016101352870464325, -0.1815081536769867, 0.013903145678341389, 0.08868614584207535, -0.06947867572307587, 0.06599816679954529, 0.16263803839683533, -0.028187450021505356, 0.0798335149884224, 0.07981668412685394, -0.07680854946374893, -0.05806855857372284, -0.004507818259298801, 0.025432873517274857, -0.06901755183935165, -0.0003511750837787986, -0.04829925671219826, 0.15349158644676208, 0.14490175247192383, -0.0580708384513855, -0.035915665328502655, -0.056502778083086014, 0.04818512499332428, 0.02778865210711956, 0.06180601194500923, 0.022300779819488525, -0.17726875841617584, 0.05351176857948303, 0.04828330874443054, 0.05140768736600876, -0.1860387921333313, -0.09989939630031586, 0.05289080739021301, -0.06220719590783119, -0.02355927973985672, 0.11456528306007385, -0.0012453146046027541, 0.008753100410103798, -0.04145599529147148, -0.1122422143816948, -0.02511240541934967, 0.1314566731452942, -0.15313875675201416, -0.07350578159093857 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microtest This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.6111 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.5955 | 0.5 | 1 | 0.6676 | 0.5 | 0.5 | 0.5 | 0.5 | | 0.633 | 1.0 | 2 | 0.6111 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["azaheadhealth"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "bert-base-uncased", "model-index": [{"name": "microtest", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "azaheadhealth", "type": "azaheadhealth", "config": "micro", "split": "test", "args": "micro"}, "metrics": [{"type": "accuracy", "value": 1.0, "name": "Accuracy"}, {"type": "f1", "value": 1.0, "name": "F1"}, {"type": "precision", "value": 1.0, "name": "Precision"}, {"type": "recall", "value": 1.0, "name": "Recall"}]}]}]}
text-classification
zwellington/microtest
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:azaheadhealth", "base_model:bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T23:37:16+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
microtest ========= This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set: * Loss: 0.6111 * Accuracy: 1.0 * F1: 1.0 * Precision: 1.0 * Recall: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 2 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.31.0 * Pytorch 2.2.0+cu121 * Datasets 2.16.1 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ 74, 126, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ -0.13472184538841248, 0.18497563898563385, -0.0024748393334448338, 0.10397858172655106, 0.15654176473617554, 0.04122583195567131, 0.09652750939130783, 0.16249306499958038, -0.06876230239868164, 0.08004406094551086, 0.11947790533304214, 0.11301589757204056, 0.04880775511264801, 0.1773519515991211, -0.034004468470811844, -0.26510006189346313, 0.005960418377071619, 0.009773733094334602, -0.0663251131772995, 0.14468994736671448, 0.09018225222826004, -0.11716094613075256, 0.07145660370588303, -0.007521376945078373, -0.14727343618869781, -0.043796148151159286, -0.018949110060930252, -0.03864903002977371, 0.12709346413612366, -0.006870887707918882, 0.0991521030664444, 0.04499137029051781, 0.1065312996506691, -0.20430338382720947, 0.0020246997009962797, 0.04461166635155678, 0.01407548040151596, 0.11270491033792496, 0.06205250322818756, -0.03495487570762634, 0.08503042906522751, -0.10519041866064072, 0.05236990377306938, 0.02270761877298355, -0.11056923866271973, -0.21267037093639374, -0.12063420563936234, 0.09378699213266373, 0.106517493724823, 0.07967036962509155, -0.011454920284450054, 0.07433022558689117, -0.10625939816236496, 0.06573847681283951, 0.24628767371177673, -0.2977514863014221, -0.05417048931121826, 0.03849221020936966, 0.007660665549337864, 0.05655874311923981, -0.10446370393037796, -0.047632236033678055, 0.02893555723130703, 0.04282296821475029, 0.12549225986003876, -0.002599945291876793, -0.018629377707839012, 0.010521340183913708, -0.15096740424633026, -0.060979388654232025, 0.11942772567272186, 0.0497983880341053, -0.02871071733534336, -0.06657268106937408, -0.05594408139586449, -0.2129216343164444, -0.017960013821721077, 0.007648024242371321, 0.03834761306643486, -0.04552045837044716, -0.08079614490270615, 0.00029666180489584804, -0.0773465633392334, -0.06869161874055862, -0.01969897374510765, 0.060437869280576706, 0.045999541878700256, 0.005249455571174622, 0.02949013002216816, 0.14357857406139374, 0.03139803558588028, -0.14202569425106049, 0.01541928667575121, 0.01120011880993843, -0.037659578025341034, -0.027578234672546387, -0.030875761061906815, 0.030982911586761475, 0.01970059610903263, 0.13062532246112823, -0.060713786631822586, 0.015142068266868591, 0.03547890484333038, 0.03745444118976593, -0.07047207653522491, 0.1532057225704193, -0.08778609335422516, -0.0745086669921875, -0.016930293291807175, 0.12819303572177887, 0.019457612186670303, -0.01221830490976572, -0.11993790417909622, 0.009448823519051075, 0.12289746850728989, 0.052659302949905396, -0.029851263388991356, 0.02986607514321804, -0.07495973259210587, -0.05088183283805847, 0.06267882138490677, -0.09599211066961288, 0.02609381079673767, 0.016240842640399933, -0.08452939242124557, -0.03818025439977646, 0.01368110254406929, 0.01658092625439167, -0.03134243190288544, 0.12284866720438004, -0.08864287286996841, 0.01617244817316532, -0.07404383271932602, -0.09584493190050125, 0.027768703177571297, -0.12425556778907776, -0.01736411452293396, -0.06775978952646255, -0.15407323837280273, -0.04102429747581482, 0.04832981899380684, -0.05846581980586052, -0.10029849410057068, -0.08050479739904404, -0.06398288905620575, 0.023872774094343185, -0.02530590631067753, 0.11748203635215759, -0.06219405308365822, 0.12901516258716583, -0.01109265722334385, 0.0695113092660904, 0.0031701698899269104, 0.06602765619754791, -0.08847342431545258, 0.0417613610625267, -0.15540634095668793, 0.07048238813877106, -0.044879600405693054, 0.03150256723165512, -0.12894777953624725, -0.11335523426532745, 0.023173226043581963, -0.046179480850696564, 0.09095904976129532, 0.12287712097167969, -0.1606859713792801, -0.07578285783529282, 0.1839769333600998, -0.07158584892749786, -0.1274852603673935, 0.1128891333937645, -0.03898340463638306, 0.021125290542840958, 0.03268606960773468, 0.17359556257724762, 0.06676997244358063, -0.06439811736345291, -0.026371488347649574, -0.03535913676023483, 0.08171813189983368, -0.050882015377283096, 0.11865652352571487, -0.027515782043337822, 0.042457014322280884, 0.012579557485878468, -0.07843590527772903, 0.051610808819532394, -0.11067859828472137, -0.09660632908344269, -0.014898230321705341, -0.09774569422006607, 0.08627939969301224, 0.04988446086645126, 0.058079883456230164, -0.06510249525308609, -0.09522563219070435, 0.034227099269628525, 0.11672461032867432, -0.06922359764575958, 0.0291708055883646, -0.05358201637864113, 0.10087843239307404, -0.06549081206321716, -0.024836137890815735, -0.1867610067129135, -0.03678031265735626, 0.02489159069955349, -0.0011796022299677134, -0.008607622236013412, -0.02183869294822216, 0.04100755974650383, 0.07355866581201553, -0.06092610955238342, -0.04866044223308563, -0.05480353534221649, -0.016287170350551605, -0.11172355711460114, -0.22985759377479553, -0.07492063194513321, -0.01932477205991745, 0.19394543766975403, -0.203089639544487, 0.02946171537041664, -0.01896628364920616, 0.10746418684720993, 0.018529118970036507, -0.028110727667808533, -0.009645290672779083, 0.0781855434179306, -0.034048087894916534, -0.061030060052871704, 0.08387039601802826, -0.004705054219812155, -0.09703291952610016, -0.0123605877161026, -0.0705844983458519, 0.11184151470661163, 0.10703939199447632, -0.003641141578555107, -0.07604102790355682, -0.061912696808576584, -0.08312342315912247, -0.03942280262708664, -0.053370095789432526, 0.026717891916632652, 0.12772136926651, 0.03539443761110306, 0.1453080177307129, -0.07623551785945892, -0.042479123920202255, 0.0267038531601429, -0.008882356807589531, 0.016575539484620094, 0.1279231309890747, 0.13331028819084167, -0.08658281713724136, 0.14469188451766968, 0.1321766972541809, -0.03223804756999016, 0.11506212502717972, -0.03861613571643829, -0.0961141362786293, -0.040099430829286575, -0.0018984792986884713, 0.0008377913036383688, 0.11829248070716858, -0.12182293087244034, -0.013287955895066261, 0.04192136973142624, 0.03341221809387207, 0.018868163228034973, -0.201201930642128, -0.02800685539841652, 0.01787751540541649, -0.06672369688749313, -0.03666214644908905, -0.0183732770383358, 0.017603451386094093, 0.11753728985786438, 0.034408971667289734, -0.06493400782346725, 0.031950414180755615, -0.0034969905391335487, -0.09247007220983505, 0.18311211466789246, -0.08423756808042526, -0.17022475600242615, -0.11448107659816742, -0.04970791935920715, -0.03530201315879822, -0.011117520742118359, 0.041268836706876755, -0.06736546009778976, -0.0005857187206856906, -0.0680590271949768, 0.00791285652667284, 0.000650979985948652, 0.02152303420007229, -0.0038320578169077635, 0.019826754927635193, 0.05174455791711807, -0.08892940729856491, 0.0023930412717163563, -0.04672607406973839, -0.05508562549948692, 0.04774703457951546, 0.017271582037210464, 0.10837491601705551, 0.17673134803771973, 0.008738639764487743, 0.024825992062687874, -0.04890032112598419, 0.18227949738502502, -0.07140068709850311, -0.0175706185400486, 0.11342359334230423, 0.002371525624766946, 0.07583040744066238, 0.16402330994606018, 0.048534806817770004, -0.06996333599090576, 0.004590117838233709, 0.027343325316905975, -0.01973414607346058, -0.232407346367836, -0.058141861110925674, -0.052032168954610825, -0.0018319787923246622, 0.1211254745721817, 0.02436882257461548, -0.008016417734324932, 0.052024975419044495, 0.008940187282860279, 0.024489454925060272, -0.04278397932648659, 0.06641782075166702, 0.06707648932933807, 0.03490408882498741, 0.13172541558742523, -0.02113322541117668, -0.018544988706707954, 0.0525788813829422, 0.01259210892021656, 0.24878095090389252, -0.05165441706776619, 0.143571138381958, 0.06880335509777069, 0.21218779683113098, 0.0057443431578576565, 0.06207285448908806, -0.0021981310565024614, 0.004131849855184555, -0.012686402536928654, -0.041378263384103775, -0.06320060789585114, 0.018552301451563835, 0.01269433181732893, 0.05306649208068848, -0.1507807821035385, 0.014790749177336693, 0.056051116436719894, 0.31559088826179504, 0.10400683432817459, -0.30886197090148926, -0.09763452410697937, 0.0008762498619034886, -0.0231899656355381, -0.02785649709403515, -0.00029224695754237473, 0.11426366865634918, -0.12055566906929016, 0.02161373570561409, -0.06886391341686249, 0.0920221209526062, -0.06904351711273193, 0.013555331155657768, 0.07920902967453003, 0.04995177686214447, 0.007387712597846985, 0.08442472666501999, -0.2446730136871338, 0.28133484721183777, 0.0000621230065007694, 0.0334218293428421, -0.06633830815553665, 0.0025042248889803886, 0.030552640557289124, 0.048183489590883255, 0.0982375517487526, 0.013169292360544205, -0.015606878325343132, -0.19280661642551422, -0.12810713052749634, 0.014114231802523136, 0.09188459068536758, -0.10429055243730545, 0.10857634246349335, -0.024744912981987, -0.009332108311355114, 0.02047639898955822, -0.010251618921756744, -0.030501682311296463, -0.1021711453795433, 0.028137875720858574, -0.028408577665686607, 0.013593309558928013, -0.07725540548563004, -0.12162690609693527, -0.06307312101125717, 0.18079182505607605, -0.08168235421180725, -0.05820267274975777, -0.12158966809511185, 0.11860498040914536, 0.12633633613586426, -0.1006648987531662, 0.03455928713083267, 0.0037286700680851936, 0.0822250172495842, 0.012312316335737705, -0.045726507902145386, 0.0854947492480278, -0.05280633270740509, -0.22596299648284912, -0.07159696519374847, 0.1600719690322876, 0.03517300635576248, 0.08168996125459671, -0.02541472762823105, 0.020572923123836517, -0.01265025231987238, -0.07960052043199539, 0.04116981849074364, 0.04440545663237572, 0.10435295850038528, 0.044071268290281296, -0.07514408975839615, 0.009959917515516281, -0.06552334874868393, -0.04426289349794388, 0.1941796988248825, 0.25597620010375977, -0.11338333040475845, 0.08180703222751617, 0.060775306075811386, -0.05674588680267334, -0.1869368702173233, 0.0003395240055397153, 0.11421670019626617, 0.029630566015839577, 0.015934908762574196, -0.1993466317653656, 0.07227662205696106, 0.11340820789337158, -0.030112374573946, 0.10072765499353409, -0.3446003198623657, -0.10925815254449844, 0.061570778489112854, 0.09841014444828033, 0.049819253385066986, -0.1471119374036789, -0.05294783413410187, 0.01523474883288145, -0.13114972412586212, 0.11956801265478134, -0.039923399686813354, 0.12691602110862732, -0.03410179913043976, 0.07015074044466019, 0.013733439147472382, -0.05565929040312767, 0.12886105477809906, 0.03133103996515274, 0.0433921180665493, -0.03502011299133301, -0.06724373251199722, 0.06083445996046066, -0.07255569845438004, 0.02437913790345192, -0.051242634654045105, 0.043378595262765884, -0.13245917856693268, -0.01818675547838211, -0.09984367340803146, 0.009790709242224693, -0.049743108451366425, -0.06375909596681595, -0.03342399001121521, 0.07550109177827835, 0.07752279192209244, 0.00008330684067914262, 0.11366888880729675, -0.0003086416982114315, 0.13528628647327423, 0.10052899271249771, 0.054365046322345734, -0.0469907782971859, -0.0661269873380661, -0.03509014472365379, -0.030174115672707558, 0.034566156566143036, -0.15261077880859375, 0.02711084671318531, 0.15651725232601166, 0.039095327258110046, 0.14902447164058685, 0.06663133203983307, -0.04777118191123009, 0.013234599493443966, 0.07019029557704926, -0.13130810856819153, -0.06863702833652496, -0.0024162125773727894, -0.032552413642406464, -0.17936372756958008, 0.028863972052931786, 0.10519905388355255, -0.044266477227211, -0.036496613174676895, -0.007506923284381628, 0.037769269198179245, -0.034588322043418884, 0.18831589818000793, 0.0596323199570179, 0.08223088830709457, -0.10508456081151962, 0.0729595497250557, 0.0903734341263771, -0.09758420288562775, 0.006839205510914326, 0.07722867280244827, -0.10798211395740509, -0.033322907984256744, 0.022517221048474312, 0.11929789930582047, -0.03385235741734505, -0.036204349249601364, -0.11969605088233948, -0.10244730859994888, 0.08871125429868698, 0.10691593587398529, 0.08459798246622086, 0.04088989272713661, -0.027613945305347443, -0.013997075147926807, -0.11871546506881714, 0.10556264221668243, 0.05479811131954193, 0.05873769521713257, -0.1222437396645546, 0.14690454304218292, 0.00403387937694788, 0.07591258734464645, -0.011628265492618084, 0.021746696904301643, -0.10332011431455612, -0.007636779919266701, -0.10532845556735992, -0.013548905029892921, -0.05564459040760994, -0.01351930946111679, -0.011230379343032837, -0.04989681392908096, -0.038755059242248535, 0.00998647604137659, -0.10634905844926834, -0.05213489383459091, -0.009832272306084633, 0.05720415711402893, -0.12546184659004211, -0.030352331697940826, 0.020370323210954666, -0.08538259565830231, 0.1173233762383461, 0.03645043447613716, 0.043063048273324966, 0.013913117349147797, -0.06368368864059448, -0.006992786191403866, 0.03302730619907379, 0.0037751037161797285, 0.06709271669387817, -0.14617207646369934, -0.003058197209611535, -0.025115597993135452, 0.006366052199155092, 0.03347855061292648, 0.08176755905151367, -0.14303097128868103, 0.01078685000538826, -0.03226347640156746, -0.047628484666347504, -0.056151434779167175, 0.0523218996822834, 0.0634964108467102, 0.036182139068841934, 0.17112405598163605, -0.062348295003175735, 0.06581011414527893, -0.22774453461170197, -0.01524462178349495, -0.03465007245540619, -0.05252460390329361, -0.10050246119499207, -0.040998756885528564, 0.06756120920181274, -0.051028184592723846, 0.10552453249692917, -0.005469563417136669, 0.05615083873271942, 0.015059647150337696, -0.024021588265895844, 0.016068194061517715, 0.02168741635978222, 0.1453840136528015, 0.03887339308857918, -0.04268231987953186, 0.07511118799448013, 0.0346919447183609, 0.060347117483615875, 0.10944637656211853, 0.21378614008426666, 0.11575376987457275, 0.08307124674320221, 0.05717791989445686, 0.036130402237176895, -0.0984269380569458, -0.1837429404258728, 0.06894085556268692, -0.023679416626691818, 0.09440845251083374, -0.011301111429929733, 0.22167319059371948, 0.08052434772253036, -0.21147078275680542, 0.04836335778236389, -0.029218394309282303, -0.08633318543434143, -0.09735243022441864, -0.06097583845257759, -0.07882648706436157, -0.13906387984752655, -0.008004169911146164, -0.11624830961227417, 0.0038193953223526478, 0.1225559413433075, 0.004171589855104685, 0.008310362696647644, 0.07246286422014236, 0.02630693092942238, 0.0262946467846632, 0.07012072950601578, 0.03544376417994499, 0.01031004823744297, -0.0684676393866539, -0.06235569715499878, 0.011824171058833599, 0.0009841019054874778, 0.06673493981361389, -0.05921279639005661, -0.04477349668741226, 0.04426764324307442, -0.007608347572386265, -0.10614627599716187, 0.012787705287337303, 0.003949187230318785, 0.07020257413387299, 0.09377685189247131, 0.024130549281835556, 0.01659351773560047, -0.01978137344121933, 0.2494034320116043, -0.07385750114917755, -0.06280773878097534, -0.1372842639684677, 0.2658502757549286, 0.032189611345529556, -0.03988838940858841, 0.04926268011331558, -0.09587214142084122, -0.00338444160297513, 0.18747177720069885, 0.21715331077575684, -0.09073270112276077, -0.023869382217526436, 0.03518613427877426, -0.008571550250053406, -0.007286370266228914, 0.08591408282518387, 0.1282302439212799, 0.08584977686405182, -0.10214166343212128, -0.03574178367853165, -0.06325913220643997, -0.02823038026690483, -0.023694297298789024, 0.07238547503948212, 0.025454409420490265, 0.00950212124735117, -0.04513351991772652, 0.06469789147377014, -0.05933622643351555, -0.08763235062360764, 0.06739728152751923, -0.23948270082473755, -0.20012514293193817, -0.02244711108505726, 0.055782753974199295, 0.009860841557383537, 0.05469554290175438, -0.007774208206683397, -0.0036491211503744125, 0.12837544083595276, -0.019155340269207954, -0.07934411615133286, -0.07981561869382858, 0.09457165002822876, -0.07046119123697281, 0.21126316487789154, -0.038713328540325165, 0.032034970819950104, 0.12819038331508636, 0.06551261246204376, -0.10660623013973236, 0.03648841753602028, 0.05990363657474518, -0.03486194089055061, 0.034582462161779404, 0.1194676011800766, -0.0295568760484457, 0.07355055212974548, 0.05764326825737953, -0.1259995996952057, -0.0009976952569559216, -0.06273939460515976, -0.0543413944542408, -0.05790553241968155, -0.011648754589259624, -0.02869565226137638, 0.13544484972953796, 0.22031329572200775, -0.058294713497161865, 0.0031503522768616676, -0.06686844676733017, 0.005189597140997648, 0.0376422218978405, 0.07451631873846054, -0.04176395758986473, -0.2185586541891098, 0.027695629745721817, 0.01709510199725628, 0.004337201360613108, -0.25439736247062683, -0.08827003091573715, 0.026654021814465523, -0.06107828766107559, -0.111594058573246, 0.11458718031644821, 0.012753218412399292, 0.05006863921880722, -0.04959053546190262, -0.033820029348134995, -0.06575971096754074, 0.15521568059921265, -0.17446431517601013, -0.08266319334506989 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuneWizardLM13Bv1.2-explanation-v2 This model is a fine-tuned version of [WizardLM/WizardLM-13B-V1.2](https://huggingface.co/WizardLM/WizardLM-13B-V1.2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "llama2", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "WizardLM/WizardLM-13B-V1.2", "model-index": [{"name": "finetuneWizardLM13Bv1.2-explanation-v2", "results": []}]}
null
neenax/finetuneWizardLM13Bv1.2-explanation-v2
[ "peft", "safetensors", "generated_from_trainer", "base_model:WizardLM/WizardLM-13B-V1.2", "license:llama2", "region:us" ]
2024-02-06T23:44:13+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #base_model-WizardLM/WizardLM-13B-V1.2 #license-llama2 #region-us
# finetuneWizardLM13Bv1.2-explanation-v2 This model is a fine-tuned version of WizardLM/WizardLM-13B-V1.2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
[ "# finetuneWizardLM13Bv1.2-explanation-v2\n\nThis model is a fine-tuned version of WizardLM/WizardLM-13B-V1.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 2000", "### Training results", "### Framework versions\n\n- PEFT 0.7.1\n- Transformers 4.36.0\n- Pytorch 2.1.1+cu121\n- Datasets 2.15.0\n- Tokenizers 0.15.0" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #base_model-WizardLM/WizardLM-13B-V1.2 #license-llama2 #region-us \n", "# finetuneWizardLM13Bv1.2-explanation-v2\n\nThis model is a fine-tuned version of WizardLM/WizardLM-13B-V1.2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 2000", "### Training results", "### Framework versions\n\n- PEFT 0.7.1\n- Transformers 4.36.0\n- Pytorch 2.1.1+cu121\n- Datasets 2.15.0\n- Tokenizers 0.15.0" ]
[ 47, 48, 6, 12, 8, 3, 111, 4, 41 ]
[ "passage: TAGS\n#peft #safetensors #generated_from_trainer #base_model-WizardLM/WizardLM-13B-V1.2 #license-llama2 #region-us \n# finetuneWizardLM13Bv1.2-explanation-v2\n\nThis model is a fine-tuned version of WizardLM/WizardLM-13B-V1.2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 2000### Training results### Framework versions\n\n- PEFT 0.7.1\n- Transformers 4.36.0\n- Pytorch 2.1.1+cu121\n- Datasets 2.15.0\n- Tokenizers 0.15.0" ]
[ -0.09808604419231415, 0.12379386276006699, -0.0024063540622591972, 0.11227861046791077, 0.11604443192481995, 0.029851578176021576, 0.11851052939891815, 0.12116047739982605, -0.08042740076780319, 0.07638079673051834, 0.07106270641088486, 0.05561850219964981, 0.05394034460186958, 0.1509360820055008, -0.03780697286128998, -0.21292975544929504, 0.011222809553146362, -0.04134129360318184, -0.04103708267211914, 0.11115477979183197, 0.11528974771499634, -0.11519832909107208, 0.06467605382204056, -0.0020799811463803053, -0.14249245822429657, 0.0008262792252935469, -0.0016991774318739772, -0.05233687162399292, 0.10367359220981598, -0.008409603498876095, 0.08987344801425934, -0.00939045287668705, 0.1573474258184433, -0.21652457118034363, -0.0031956990715116262, 0.08347664773464203, 0.05242876708507538, 0.0719500258564949, 0.0608765110373497, -0.010572250001132488, 0.04859190061688423, -0.134783074259758, 0.12353860586881638, 0.015240543521940708, -0.10237929970026016, -0.19232392311096191, -0.14199353754520416, 0.06628160923719406, 0.08604834228754044, 0.07351788878440857, 0.01806485839188099, 0.14491304755210876, -0.04768151417374611, 0.07051049172878265, 0.24466124176979065, -0.29482245445251465, -0.06346140801906586, 0.08418948203325272, 0.04403350129723549, 0.07051528990268707, -0.12149176001548767, -0.015947777777910233, 0.04840046539902687, 0.02921721525490284, 0.13206607103347778, -0.011382306925952435, -0.05227302387356758, -0.006118571851402521, -0.12404409050941467, -0.02514605037868023, 0.14050719141960144, 0.01498317252844572, -0.05650654062628746, -0.1268884837627411, -0.04632405936717987, -0.054800983518362045, -0.01902800053358078, -0.03917254880070686, 0.031019046902656555, -0.059852514415979385, -0.04387553781270981, -0.02760138548910618, -0.04041900113224983, -0.06633058190345764, 0.012883192859590054, 0.15161031484603882, 0.02950746938586235, 0.034388646483421326, -0.035711802542209625, 0.1192338764667511, -0.030897127464413643, -0.10765105485916138, -0.020616667345166206, -0.016457170248031616, -0.0897299200296402, -0.0638100802898407, -0.015961380675435066, 0.0028481308836489916, -0.01987638510763645, 0.17660988867282867, -0.05546090006828308, 0.07202576100826263, 0.011846790090203285, 0.0019638652447611094, -0.026258450001478195, 0.12004747986793518, -0.03856370970606804, -0.08579816669225693, 0.010679041035473347, 0.10742554813623428, 0.026696138083934784, -0.026339391246438026, -0.060886871069669724, -0.012986275367438793, 0.06693658977746964, 0.06190076470375061, -0.04659838229417801, 0.018273647874593735, -0.04130500927567482, -0.027483899146318436, 0.024900438264012337, -0.1386391520500183, 0.06708010286092758, -0.00558525649830699, -0.09215275198221207, -0.05282194912433624, 0.01608695276081562, 0.00012552173575386405, -0.01481863297522068, 0.12926246225833893, -0.06705983728170395, 0.023892933502793312, -0.07492009550333023, -0.08758541941642761, 0.0033464899752289057, -0.04830707609653473, -0.008762199431657791, -0.04489732161164284, -0.22421862185001373, -0.05058763921260834, 0.04214249923825264, -0.06059833988547325, -0.01723279245197773, -0.030221564695239067, -0.06664755940437317, 0.02094138227403164, -0.014753837138414383, 0.10096040368080139, -0.05099700763821602, 0.08020565658807755, -0.02654450759291649, 0.029952503740787506, 0.040712013840675354, 0.017662744969129562, -0.06376336514949799, 0.03937307745218277, -0.13889841735363007, 0.05294366180896759, -0.0932558998465538, 0.027576444670557976, -0.10818544030189514, -0.09742660820484161, 0.048897936940193176, -0.03139796853065491, 0.07599127292633057, 0.10706174373626709, -0.23236151039600372, 0.009947389364242554, 0.17221865057945251, -0.09673569351434708, -0.11069080978631973, 0.07744082063436508, -0.07700103521347046, 0.04091237857937813, 0.06552717089653015, 0.19416311383247375, 0.08432549238204956, -0.1892920583486557, 0.003770555602386594, -0.039673078805208206, 0.07410306483507156, 0.054184433072805405, 0.048982735723257065, -0.01861540600657463, 0.04322926700115204, 0.006871639285236597, -0.09885668009519577, -0.03187984600663185, -0.07629936933517456, -0.07840980589389801, -0.059375688433647156, -0.08593364804983139, 0.05204683914780617, 0.011288031935691833, 0.01429752353578806, -0.09796152263879776, -0.0832536593079567, 0.06683859974145889, 0.13067767024040222, -0.06599672883749008, 0.02357509173452854, -0.08341662585735321, 0.04948658496141434, 0.010022240690886974, -0.029031412675976753, -0.17593662440776825, -0.09554405510425568, 0.03198525682091713, -0.030120518058538437, 0.0019527473486959934, -0.039703790098428726, 0.07498681545257568, 0.0838654562830925, -0.0609574168920517, -0.019337641075253487, -0.08490844815969467, 0.0065972995944321156, -0.10263323038816452, -0.19024328887462616, -0.06450856477022171, -0.039236027747392654, 0.11977698653936386, -0.23113270103931427, 0.019142447039484978, -0.003245952306315303, 0.12980881333351135, 0.058879196643829346, -0.07287563383579254, -0.011941821314394474, 0.03871452435851097, -0.011536367237567902, -0.11198683828115463, 0.022346042096614838, -0.0014253080589696765, -0.0743400827050209, -0.07537288963794708, -0.16412758827209473, 0.06437037885189056, 0.07603885233402252, 0.09262216091156006, -0.09525135904550552, -0.04484688118100166, -0.05113179236650467, -0.02202293463051319, -0.1127350926399231, 0.004032022785395384, 0.1476351022720337, 0.01718132570385933, 0.1264505833387375, -0.07345577329397202, -0.07671009004116058, -0.00895235687494278, -0.003154454054310918, 0.021542049944400787, 0.06998585164546967, 0.013154248706996441, -0.06272750347852707, 0.07233640551567078, 0.1143273189663887, -0.011739354580640793, 0.10425875335931778, -0.049525897949934006, -0.054643649607896805, -0.039551232010126114, 0.0014930657343938947, 0.005574394483119249, 0.15232926607131958, -0.007515440694987774, 0.004908526781946421, 0.030201369896531105, 0.03969863802194595, -0.005355499684810638, -0.1909361183643341, -0.025395561009645462, 0.038422875106334686, -0.0456247441470623, -0.022696679458022118, -0.023129954934120178, 0.018656952306628227, 0.09169994294643402, -0.007601162418723106, -0.02157938852906227, 0.004473017994314432, -0.01741764135658741, -0.08489511907100677, 0.16826747357845306, -0.11802728474140167, -0.07752890139818192, -0.05735495686531067, -0.013180159032344818, -0.04565806686878204, -0.034935113042593, 0.0006136327283456922, -0.05338370054960251, -0.05913998931646347, -0.12520922720432281, -0.04214167594909668, -0.023643052205443382, -0.028461482375860214, 0.07430345565080643, 0.011281510815024376, 0.07540298253297806, -0.14182208478450775, 0.008656878024339676, -0.018129738047719002, -0.05985148996114731, 0.02031554840505123, 0.0858125239610672, 0.10465754568576813, 0.12593267858028412, -0.019690698012709618, 0.03706303611397743, -0.04421417787671089, 0.26243317127227783, -0.0816468894481659, -0.0009462831076234579, 0.09582305699586868, -0.012227553874254227, 0.05724934861063957, 0.11916472017765045, 0.04938056692481041, -0.1268741339445114, 0.01654435321688652, 0.051166411489248276, -0.02571086399257183, -0.2295382022857666, -0.044343505054712296, -0.0202681552618742, -0.05951163172721863, 0.10226688534021378, 0.037389643490314484, -0.033628612756729126, 0.02431347221136093, -0.0028084488585591316, 0.024994026869535446, 0.03739685192704201, 0.08167272806167603, 0.03549785912036896, 0.039854925125837326, 0.07603666931390762, -0.02171451970934868, 0.0014518658863380551, 0.05097233131527901, 0.037580788135528564, 0.2969021499156952, -0.024959182366728783, 0.062060438096523285, 0.03532132878899574, 0.12389922887086868, -0.03264247253537178, 0.049864817410707474, 0.007690398953855038, -0.010960149578750134, -0.010984431952238083, -0.0671735629439354, -0.006722161080688238, 0.030295446515083313, -0.07763366401195526, 0.05280822515487671, -0.09326720982789993, 0.03810270503163338, 0.05233461409807205, 0.20904423296451569, 0.034614335745573044, -0.256710410118103, -0.05062887445092201, 0.03249741345643997, -0.018740369006991386, -0.057194847613573074, 0.016917942091822624, 0.1167706698179245, -0.12585440278053284, 0.0971294641494751, -0.06791293621063232, 0.07975410670042038, -0.027821268886327744, -0.008961843326687813, 0.04851365089416504, 0.09198471158742905, -0.025420766323804855, 0.05518913269042969, -0.20021182298660278, 0.22897620499134064, 0.020763130858540535, 0.14122329652309418, -0.062465306371450424, 0.014882247895002365, 0.023946087807416916, 0.07743042707443237, 0.12128809839487076, 0.007290865294635296, -0.09326206147670746, -0.16527092456817627, -0.054055050015449524, 0.011302648112177849, 0.12754477560520172, -0.011989448219537735, 0.09943370521068573, -0.03754439949989319, 0.016146404668688774, 0.03287676349282265, -0.0838812068104744, -0.16155368089675903, -0.11373016983270645, 0.01734551042318344, -0.017669562250375748, -0.042960699647665024, -0.08858389407396317, -0.07467952370643616, -0.06159688159823418, 0.10050234943628311, -0.007031194865703583, -0.042096324265003204, -0.14460207521915436, 0.04108940809965134, 0.12567520141601562, -0.04408039152622223, 0.02629874460399151, 0.05444257706403732, 0.1218692734837532, 0.0026701558381319046, -0.0434088371694088, 0.03933224454522133, -0.06663549691438675, -0.19049593806266785, -0.07644446939229965, 0.10676953196525574, 0.05553857982158661, 0.0654836893081665, 0.012613184750080109, 0.03932611644268036, 0.032124053686857224, -0.11234133690595627, 0.028179030865430832, 0.09254221618175507, 0.0422300361096859, 0.0363723561167717, -0.0261122714728117, 0.057121966034173965, -0.05537509173154831, -0.029169222339987755, 0.1108168363571167, 0.26730290055274963, -0.1015734151005745, 0.10315684229135513, -0.0019309999188408256, -0.08281522989273071, -0.17140723764896393, 0.05430293828248978, 0.08535284548997879, 0.01587020419538021, 0.08363959193229675, -0.1358712911605835, 0.07868131995201111, 0.10339636355638504, -0.02672787755727768, 0.06554888188838959, -0.36815282702445984, -0.1370806097984314, 0.03160560503602028, 0.12277532368898392, -0.004564534407109022, -0.13641273975372314, -0.028679393231868744, -0.0230579636991024, -0.11348435282707214, 0.09343286603689194, -0.13369625806808472, 0.09141892194747925, -0.012163453735411167, 0.09124351292848587, 0.030504655092954636, -0.04016997292637825, 0.15998229384422302, 0.02899015322327614, 0.1285708248615265, -0.047405317425727844, 0.009488416835665703, 0.08472928404808044, -0.08081130683422089, 0.03302283585071564, -0.018724694848060608, 0.0665031373500824, -0.12810440361499786, -0.010816624388098717, -0.05921195074915886, 0.03329724445939064, -0.06459566205739975, -0.05650947242975235, -0.06776997447013855, 0.07153501361608505, 0.08437573164701462, -0.03781094029545784, 0.05251721665263176, 0.03692720830440521, 0.10121972858905792, 0.0659746527671814, 0.07265690714120865, -0.032085731625556946, -0.10671966522932053, 0.022135453298687935, -0.0046133846044540405, 0.048620302230119705, -0.1531180441379547, 0.031025294214487076, 0.1312004178762436, 0.06984536349773407, 0.133884459733963, 0.03769058734178543, -0.051484979689121246, 0.015552087686955929, 0.020135140046477318, -0.12164776772260666, -0.14501522481441498, 0.031973887234926224, 0.009007137268781662, -0.12301693111658096, -0.0026754653081297874, 0.11350852251052856, -0.05300377309322357, -0.012263251468539238, -0.022275138646364212, 0.0408003069460392, -0.011165841482579708, 0.21387185156345367, 0.05419012904167175, 0.061927132308483124, -0.09438706189393997, 0.13003256916999817, 0.0600263774394989, -0.036352116614580154, 0.040883030742406845, 0.05589784309267998, -0.08873981982469559, 0.0008924924768507481, 0.05156892165541649, 0.15652361512184143, 0.006544295698404312, -0.03467317670583725, -0.07998829334974289, -0.11095632612705231, 0.029374215751886368, 0.08930019289255142, 0.04133198410272598, -0.023548919707536697, -0.026904640719294548, -0.00014945415023248643, -0.1284947693347931, 0.10266290605068207, 0.08313827216625214, 0.06511994451284409, -0.1642264574766159, 0.13761842250823975, -0.003573667723685503, 0.010302228853106499, -0.006089163478463888, 0.04061271250247955, -0.0886872410774231, 0.005940897855907679, -0.10665770620107651, 0.013149267062544823, -0.034979213029146194, 0.024478744715452194, -0.012507110834121704, -0.037122566252946854, -0.02925090119242668, 0.03963374346494675, -0.08204787969589233, -0.05696874111890793, 0.021243328228592873, 0.034827277064323425, -0.12121749669313431, -0.039791397750377655, 0.027581505477428436, -0.10011161863803864, 0.07111864537000656, 0.03770216181874275, 0.0029617382679134607, 0.023986119776964188, -0.13702425360679626, -0.017507191747426987, 0.016346989199519157, 0.020179694518446922, 0.06310722231864929, -0.1170014888048172, -0.03565121069550514, -0.03789530694484711, 0.019243214279413223, 0.03212595358490944, 0.04377894103527069, -0.12344072759151459, -0.038487017154693604, -0.037686221301555634, -0.06333767622709274, -0.0348302386701107, 0.05327422171831131, 0.10992511361837387, 0.030229538679122925, 0.1513713300228119, -0.07515574246644974, 0.06559452414512634, -0.20776675641536713, -0.044751640409231186, 0.006230466533452272, -0.029797717928886414, -0.08849534392356873, -0.0003379872941877693, 0.08552668988704681, -0.05617283657193184, 0.12903514504432678, -0.002687988802790642, 0.0561421774327755, 0.02884477935731411, -0.05254616215825081, -0.05203487351536751, 0.001363762654364109, 0.1784895956516266, 0.024838468059897423, -0.01840047538280487, 0.11062940210103989, -0.019033223390579224, 0.06080145761370659, 0.08235783874988556, 0.19344818592071533, 0.15490037202835083, 0.0014161220751702785, 0.03920629248023033, 0.03685111925005913, -0.12604159116744995, -0.13071615993976593, 0.09465985000133514, -0.001788454712368548, 0.08897585421800613, -0.06533606350421906, 0.11843837052583694, 0.10562498867511749, -0.1924913376569748, 0.04292786866426468, -0.05504703149199486, -0.11357288062572479, -0.11590592563152313, -0.011436838656663895, -0.08085142076015472, -0.10830428451299667, 0.029226474463939667, -0.13090457022190094, 0.06241922080516815, 0.0791950523853302, 0.0004958162317052484, 0.033530790358781815, 0.12163468450307846, -0.03262985125184059, 0.019526423886418343, 0.04939417541027069, 0.029911264777183533, -0.012467743828892708, -0.05459411442279816, -0.060421619564294815, 0.029780592769384384, -0.0415303111076355, 0.06972315907478333, -0.024973561987280846, 0.0016059217741712928, 0.025466296821832657, -0.02087702974677086, -0.06067809462547302, 0.024045147001743317, 0.013455412350594997, 0.05482080578804016, 0.0572115033864975, 0.07278730720281601, 0.00562044745311141, -0.05438786372542381, 0.28224220871925354, -0.0719463899731636, -0.10827305912971497, -0.12759029865264893, 0.18758518993854523, 0.050774771720170975, -0.009851761162281036, 0.06779300421476364, -0.11247465014457703, 0.02009332738816738, 0.1406387835741043, 0.1540246605873108, -0.08017826080322266, -0.015565942041575909, -0.043129969388246536, -0.013621149584650993, -0.04663962870836258, 0.12122523039579391, 0.07001635432243347, 0.03408777341246605, -0.04874395579099655, 0.0017229783115908504, -0.026605289429426193, -0.032651737332344055, -0.06954164057970047, 0.0923754945397377, 0.010532568208873272, 0.011915863491594791, -0.05137147009372711, 0.08076734095811844, 0.015809420496225357, -0.14589327573776245, 0.06700386106967926, -0.17291976511478424, -0.17322613298892975, 0.008314847014844418, 0.05784052237868309, -0.012511121109127998, 0.059799663722515106, -0.012999765574932098, -0.005614648573100567, 0.12329503148794174, -0.020638098940253258, -0.030542612075805664, -0.10137440264225006, 0.08538378030061722, -0.08228746056556702, 0.2733205258846283, -0.00011540787090780213, 0.08873447775840759, 0.09924723953008652, 0.01763148233294487, -0.14668118953704834, 0.03910207375884056, 0.07644878327846527, -0.030759045854210854, -0.0020867460407316685, 0.15352588891983032, -0.04144101217389107, 0.09269553422927856, 0.04950348287820816, -0.0970156118273735, -0.0014192411908879876, 0.06043349951505661, -0.027040066197514534, -0.07937013357877731, -0.007691682782024145, -0.04627179726958275, 0.15568147599697113, 0.18365617096424103, -0.04638306796550751, 0.04669463634490967, -0.05351327732205391, 0.027892787009477615, 0.042427703738212585, 0.07700488716363907, -0.01815125159919262, -0.22134515643119812, 0.02458142675459385, 0.040253542363643646, 0.0023225988261401653, -0.18154458701610565, -0.1045168861746788, 0.040453165769577026, -0.06399988383054733, -0.050254371017217636, 0.12112833559513092, 0.07482696324586868, 0.027396079152822495, -0.038754116743803024, -0.11492370069026947, -0.03458549827337265, 0.15404358506202698, -0.1269175410270691, -0.039402641355991364 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ <Gallery /> ## Model description These are yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 5 - learning_rate: 0.01 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls = - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - gradient_accumulation_steps = 3 - GPU = T4 - duration =
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
2024-02-06T23:44:16+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ <Gallery /> ## Model description These are yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 5 - learning_rate: 0.01 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls = - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps = 3 - GPU = T4 - duration =
[ "# SDXL LoRA DreamBooth - yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ 78, 47, 112, 19, 28, 94 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_\n\n<Gallery />## Model description\n\nThese are yaneq/jan_twxe6S5VjvdOourW56P5_SDXL_LoRA_5_9d94_ LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ -0.06403756141662598, 0.1459694504737854, -0.0024860294070094824, 0.04130605608224869, 0.12494510412216187, 0.05895636975765228, 0.17836596071720123, 0.14280252158641815, -0.03290124982595444, 0.08323896676301956, 0.007906967774033546, 0.005647789221256971, 0.08582089841365814, 0.11942628026008606, 0.041817501187324524, -0.21087314188480377, 0.020564815029501915, -0.03043806180357933, -0.05689001455903053, 0.04899504408240318, 0.04115201160311699, -0.08268387615680695, 0.05810440704226494, -0.009937578812241554, -0.07639934122562408, 0.023155083879828453, -0.005781745072454214, -0.03650282695889473, 0.04949641227722168, 0.04033476486802101, 0.07151143252849579, 0.04244197905063629, 0.12487087398767471, -0.27128058671951294, 0.014804316684603691, 0.12469661235809326, -0.027191797271370888, 0.05139504000544548, 0.08848202228546143, -0.048828136175870895, 0.09850968420505524, -0.11411315202713013, 0.08335167169570923, 0.05674070492386818, -0.0616258904337883, -0.23007293045520782, -0.10163614898920059, 0.021832717582583427, 0.10051458328962326, 0.10730910301208496, 0.0017935879295691848, 0.023474400863051414, -0.03549406677484512, 0.05057190731167793, 0.20169121026992798, -0.17450176179409027, -0.05675730109214783, 0.146619513630867, 0.027834588661789894, 0.08051111549139023, -0.10540356487035751, -0.011950715444982052, 0.042521171271800995, 0.012308787554502487, 0.1472305804491043, -0.011167822405695915, 0.015942461788654327, -0.020887142047286034, -0.09636131674051285, 0.001231315778568387, 0.14684635400772095, 0.03488023206591606, -0.061050157994031906, -0.12318064272403717, -0.0032132836058735847, 0.023938307538628578, -0.029394391924142838, -0.040722306817770004, 0.02560248225927353, -0.03158353269100189, -0.01855606958270073, -0.07166843861341476, -0.05854286253452301, -0.07167201489210129, 0.095308817923069, 0.09091691672801971, 0.02300499565899372, -0.012567534111440182, 0.03565956652164459, 0.10239619016647339, 0.026100341230630875, -0.11207641661167145, -0.02504398114979267, -0.01696549355983734, -0.09370825439691544, -0.039493437856435776, 0.02381335198879242, -0.10445503145456314, -0.016636166721582413, 0.0433255136013031, -0.011769125238060951, 0.0515982061624527, -0.017479311674833298, 0.014437786303460598, -0.07940459251403809, 0.11126451939344406, -0.06500186026096344, -0.021205563098192215, 0.013296088203787804, 0.10805629193782806, -0.012894716113805771, 0.0002390204172115773, -0.06806321442127228, -0.025707516819238663, -0.018943265080451965, 0.052848752588033676, -0.016325512900948524, 0.0023423805832862854, -0.06511309742927551, -0.03163975477218628, 0.07550907880067825, -0.10363557934761047, 0.03866072744131088, -0.00046280419337563217, -0.06095927581191063, 0.0333220474421978, 0.08833591639995575, -0.02993348054587841, -0.03846198320388794, 0.13557928800582886, -0.03567436710000038, 0.019902627915143967, -0.0813070684671402, -0.11538813263177872, 0.03743172064423561, -0.05964238569140434, -0.026943014934659004, -0.08944323658943176, -0.222979336977005, -0.06986940652132034, 0.040527813136577606, -0.03592703118920326, 0.028230024501681328, -0.05431308224797249, -0.0626293495297432, 0.004424872808158398, 0.03280893713235855, -0.004412710200995207, -0.04852038994431496, 0.05236255005002022, -0.061598341912031174, 0.05823507905006409, 0.11948345601558685, 0.03012489713728428, -0.013476569205522537, 0.02497107721865177, -0.11797182261943817, 0.11663132160902023, -0.09453792124986649, 0.05291467905044556, -0.12058397382497787, -0.09138018637895584, -0.03629783168435097, -0.002564402297139168, 0.0331701897084713, 0.12497434765100479, -0.24163596332073212, -0.032854221761226654, 0.2172515094280243, -0.13241559267044067, -0.0584971085190773, 0.03964640200138092, -0.05011137202382088, 0.051214125007390976, 0.09397651255130768, 0.08327188342809677, 0.21284516155719757, -0.17577730119228363, -0.050273772329092026, -0.023044457659125328, 0.037991609424352646, 0.04898886755108833, 0.05920251086354256, 0.009175322949886322, 0.03511311113834381, 0.011742976494133472, -0.09036702662706375, 0.05523819103837013, -0.02296461910009384, -0.05916275084018707, -0.014950552023947239, -0.08458657562732697, 0.0448630191385746, 0.007303014863282442, 0.006809787824749947, -0.003483064938336611, -0.07376338541507721, 0.10010107606649399, 0.12903772294521332, -0.0819854810833931, 0.004296611063182354, -0.046768732368946075, -0.022745897993445396, -0.04050644114613533, 0.004644638393074274, -0.0834546685218811, -0.1319161355495453, 0.04270212724804878, -0.028807777911424637, 0.01195257157087326, 0.008846217766404152, 0.0950205996632576, 0.07128126174211502, -0.11655367910861969, -0.08760779350996017, -0.09789319336414337, -0.021914957091212273, -0.0014223342295736074, -0.15632376074790955, -0.06609248369932175, -0.0651647225022316, 0.034582361578941345, -0.23592747747898102, 0.052601393312215805, 0.03693048283457756, 0.09200821816921234, 0.08939715474843979, -0.046944424510002136, 0.04760999605059624, 0.03326033055782318, -0.0017800237983465195, -0.09962775558233261, -0.005844751838594675, 0.002957418095320463, -0.10151655226945877, 0.041863273829221725, -0.10377475619316101, 0.04718789458274841, 0.0732286274433136, 0.127384752035141, -0.11118447035551071, -0.05507772043347359, -0.01433647982776165, -0.04205266758799553, -0.11143956333398819, -0.03260045871138573, 0.08717312663793564, 0.0318814255297184, 0.093326635658741, -0.06421773880720139, -0.03207430988550186, -0.0005668367957696319, 0.00839818362146616, -0.014348208904266357, 0.06546486914157867, -0.013133280910551548, 0.05353898927569389, 0.07391294091939926, 0.011680363677442074, -0.06004676595330238, 0.17752911150455475, -0.026918554678559303, -0.07205518335103989, -0.014894215390086174, 0.06885470449924469, 0.07673399895429611, 0.09820444881916046, 0.09596040844917297, 0.06469566375017166, 0.008232839405536652, 0.015387417748570442, -0.017655204981565475, -0.1548493653535843, -0.032409876585006714, 0.058940768241882324, -0.09779485315084457, 0.027662700042128563, -0.03420267626643181, -0.030184948816895485, 0.07678116858005524, -0.02201763167977333, 0.1075436919927597, -0.01048956997692585, -0.038539640605449677, -0.12333888560533524, 0.1542477011680603, -0.1354847401380539, -0.10179267823696136, -0.13219189643859863, 0.05290839821100235, -0.0051575032994151115, -0.006011077668517828, 0.001939290901646018, -0.13361471891403198, -0.05554226040840149, -0.08662091195583344, 0.020375048741698265, 0.011615990661084652, -0.052892349660396576, -0.01361890509724617, 0.0342332124710083, 0.07600096613168716, -0.11962639540433884, 0.032093606889247894, 0.03384196013212204, -0.06587842106819153, 0.01303355023264885, 0.036175813525915146, 0.05431646481156349, 0.068973608314991, 0.01888737827539444, 0.009616401046514511, -0.04950294643640518, 0.13748276233673096, -0.06015734001994133, 0.07213971018791199, 0.1878235638141632, 0.10142916440963745, 0.0831596851348877, 0.10746459662914276, 0.0449916273355484, -0.04389446601271629, 0.03843754529953003, 0.04922136664390564, -0.06661458313465118, -0.260974258184433, -0.04622180387377739, -0.06428031623363495, -0.034266628324985504, 0.12930794060230255, 0.04753835126757622, 0.017845023423433304, 0.08690354973077774, -0.05910316854715347, 0.05812985077500343, 0.06908700615167618, 0.10185056924819946, -0.039294466376304626, 0.0457284078001976, 0.04208636283874512, -0.04621776193380356, 0.026045290753245354, 0.06967441737651825, 0.06316198408603668, 0.2222301959991455, -0.11152373254299164, 0.08676086366176605, 0.02727092057466507, 0.06930451095104218, 0.005070778541266918, 0.04976188763976097, -0.009659763425588608, -0.017022399231791496, 0.025566115975379944, -0.11201301962137222, 0.02510848641395569, 0.1236901730298996, -0.04674222692847252, 0.020791249349713326, -0.0030472115613520145, 0.009412029758095741, 0.025772320106625557, 0.1725182980298996, -0.01096827257424593, -0.2664787173271179, -0.0322081632912159, 0.03481309115886688, 0.05863203853368759, -0.04093995690345764, -0.0201976727694273, 0.15334872901439667, -0.10966004431247711, 0.10213641077280045, -0.07656673341989517, 0.07539939135313034, -0.02388901822268963, -0.0691056102514267, 0.11001504212617874, 0.15247628092765808, -0.019741998985409737, 0.043403349816799164, -0.21078316867351532, 0.09473294764757156, 0.0007746215560473502, 0.11428525298833847, -0.017231345176696777, 0.06393983960151672, 0.05864671245217323, 0.03429923951625824, 0.12707774341106415, 0.023666979745030403, -0.035652127116918564, -0.1274406611919403, -0.04219469800591469, -0.015640094876289368, 0.06299213320016861, -0.06954952329397202, 0.06283164024353027, 0.012171001173555851, -0.019507938995957375, 0.01991242729127407, -0.07205914705991745, -0.14156757295131683, -0.1558588296175003, -0.005917251575738192, 0.006980597507208586, 0.09290220588445663, -0.10229440033435822, -0.07281642407178879, -0.06382842361927032, 0.12928900122642517, -0.0076760295778512955, -0.06246398761868477, -0.1358836442232132, -0.006149789784103632, 0.09330897033214569, -0.05000825971364975, 0.031066320836544037, 0.039162784814834595, 0.14089128375053406, -0.05979933217167854, -0.07577719539403915, -0.018191836774349213, -0.08146414160728455, -0.16259637475013733, -0.08015695214271545, 0.12101881951093674, 0.05058397352695465, 0.030482860282063484, -0.009441666305065155, -0.008075796067714691, 0.061605073511600494, -0.1022808700799942, 0.047559954226017, 0.18323461711406708, 0.03320697322487831, 0.08713971078395844, -0.07743174582719803, -0.05173144116997719, -0.05729750916361809, -0.035043783485889435, 0.043993499130010605, 0.21427592635154724, -0.10435083508491516, 0.07013002783060074, 0.043808713555336, -0.08521206676959991, -0.15800029039382935, 0.08015896379947662, 0.10478845238685608, 0.03211186081171036, 0.03976665437221527, -0.25884589552879333, 0.0890999361872673, 0.058560095727443695, -0.0012997781159356236, 0.07285331189632416, -0.3169422745704651, -0.1514972448348999, -0.040745627135038376, 0.1600431203842163, -0.08208922296762466, -0.11244162172079086, -0.032664705067873, -0.07064235955476761, -0.05086064711213112, 0.08126171678304672, -0.04429776594042778, 0.06309537589550018, -0.003206253983080387, -0.019877102226018906, 0.027062876150012016, -0.04774131998419762, 0.15134376287460327, 0.012711998075246811, 0.0950007364153862, -0.03242804855108261, 0.09955023974180222, 0.109885573387146, -0.07562868297100067, 0.05600452423095703, -0.09893735498189926, 0.026572788134217262, -0.11491288244724274, -0.0213413555175066, -0.039627451449632645, 0.020459070801734924, -0.033199720084667206, -0.048303306102752686, -0.056785911321640015, 0.09731365740299225, 0.13709139823913574, -0.039070915430784225, -0.08162900060415268, -0.02374975197017193, 0.10286860913038254, 0.11221005767583847, 0.06220623478293419, 0.08288522064685822, -0.11506025493144989, -0.0006973437848500907, -0.01780327409505844, 0.08326230943202972, -0.14047560095787048, 0.018872223794460297, 0.08686128258705139, 0.045353543013334274, 0.156930610537529, 0.010256989859044552, -0.10258068889379501, 0.02801695093512535, 0.06054767593741417, -0.05219408497214317, -0.17426861822605133, -0.034867312759160995, -0.010178042575716972, -0.12433665990829468, -0.03644618019461632, 0.08271181583404541, -0.0859077051281929, 0.016778001561760902, 0.016964372247457504, 0.031880833208560944, -0.031078269705176353, 0.17213743925094604, 0.02683216519653797, 0.05188506096601486, -0.03526284545660019, 0.07882895320653915, 0.061292197555303574, -0.06684799492359161, 0.03217560425400734, 0.07660888880491257, -0.060344845056533813, -0.025243716314435005, 0.029524335637688637, 0.06426544487476349, 0.038379911333322525, -0.01734921522438526, -0.04578089341521263, -0.13719752430915833, 0.008165204897522926, 0.07689013332128525, 0.0046798367984592915, 0.009267340414226055, -0.01334893237799406, 0.003028436563909054, -0.11262518167495728, 0.08377908170223236, 0.06166570633649826, 0.07159731537103653, -0.16459724307060242, 0.08857930451631546, 0.030951637774705887, -0.025863783434033394, 0.0013273297809064388, 0.005061906762421131, -0.1020582988858223, 0.001607803045772016, -0.0769394114613533, 0.09330981969833374, -0.09891114383935928, 0.014936496503651142, -0.04006052762269974, 0.024867843836545944, 0.013388808816671371, 0.04541201516985893, -0.06674309819936752, -0.07522937655448914, -0.0034967102110385895, 0.09278400242328644, -0.09329678863286972, -0.0284927636384964, -0.008372186683118343, -0.10581407696008682, 0.03191795200109482, -0.012837082147598267, -0.005313376896083355, 0.02777467481791973, -0.15966305136680603, 0.04352457821369171, 0.07777392119169235, 0.010622311383485794, -0.027244938537478447, -0.10568593442440033, 0.030547626316547394, -0.04841538146138191, -0.061334867030382156, -0.004946146626025438, -0.03301060199737549, -0.10733071714639664, 0.0040845079347491264, -0.05060114338994026, -0.004224441014230251, -0.07370205223560333, 0.10498509556055069, 0.13596272468566895, 0.01764395646750927, 0.11137492954730988, -0.09326308220624924, 0.081304632127285, -0.1990368366241455, -0.04032480716705322, 0.01322053000330925, -0.01917083188891411, -0.06255339831113815, -0.025564169511198997, 0.06668342649936676, -0.0171316247433424, 0.05701160058379173, -0.022791948169469833, -0.013871290720999241, -0.010240867733955383, -0.0836418941617012, 0.004122226499021053, 0.01783033460378647, 0.13581141829490662, -0.003542979247868061, -0.023495454341173172, 0.025883620604872704, -0.015851445496082306, 0.01462771836668253, 0.08310283720493317, 0.07877134531736374, 0.18071341514587402, 0.0044075483456254005, 0.03567937761545181, 0.04307985678315163, -0.09997155517339706, -0.0468313992023468, 0.11273873597383499, -0.07711803168058395, 0.0691068023443222, -0.07250435650348663, 0.07654991745948792, 0.12632398307323456, -0.20552892982959747, 0.07872714102268219, 0.045152876526117325, -0.07922706007957458, -0.07213988155126572, -0.1804729700088501, -0.06978666037321091, -0.15668116509914398, 0.04036059230566025, -0.09997707605361938, 0.01971360109746456, 0.037899717688560486, 0.004659572616219521, 0.038070350885391235, 0.14046485722064972, 0.00031166189000941813, -0.05766487121582031, 0.07478783279657364, 0.00767283933237195, -0.004383758641779423, 0.006270976271480322, -0.03297213837504387, 0.0973254069685936, -0.03489640727639198, 0.037012528628110886, 0.005505941808223724, 0.03563884273171425, 0.048635076731443405, -0.0032790154218673706, -0.04606630280613899, 0.029395369812846184, 0.0006902668974362314, 0.025493355467915535, 0.15489350259304047, 0.07701683789491653, -0.012651519849896431, -0.025916464626789093, 0.20320741832256317, -0.07592888176441193, -0.054044630378484726, -0.1560012400150299, 0.0814862921833992, 0.04141566902399063, -0.022224972024559975, 0.020964117720723152, -0.07992897927761078, 0.017934944480657578, 0.07647182792425156, 0.13800771534442902, 0.026839029043912888, 0.017052877694368362, -0.053305402398109436, -0.015636151656508446, -0.05249081924557686, 0.12442143261432648, 0.04062172397971153, 0.06634773313999176, -0.047823917120695114, 0.05316169559955597, -0.018452847376465797, -0.04183495044708252, -0.014378463849425316, 0.041073933243751526, -0.0241938978433609, -0.006932712625712156, -0.03606237843632698, 0.07501774281263351, -0.001824912615120411, -0.13041359186172485, 0.14130136370658875, -0.11105161905288696, -0.08353373408317566, -0.05235851928591728, -0.00887399073690176, 0.007089167833328247, 0.004389992915093899, -0.02130933851003647, -0.02002156525850296, 0.10858241468667984, -0.006683070212602615, -0.04171230271458626, -0.09671410918235779, 0.022976571694016457, -0.051344163715839386, 0.18236982822418213, -0.027170047163963318, 0.005331431049853563, 0.07107868790626526, 0.028658723458647728, -0.11657272279262543, 0.06754852086305618, 0.015221803449094296, -0.1052803099155426, -0.010608235374093056, 0.16079919040203094, -0.0660601332783699, 0.1630845069885254, 0.028542354702949524, -0.049438949674367905, 0.01772879995405674, 0.0013297598343342543, -0.04059246927499771, -0.08980078250169754, 0.02943740040063858, -0.07880286127328873, 0.1363086998462677, 0.20588840544223785, -0.024856364354491234, -0.004870707169175148, -0.033600326627492905, 0.027583306655287743, 0.04505682364106178, 0.09491339325904846, 0.01655065268278122, -0.09634917229413986, -0.0051474301144480705, 0.023353690281510353, 0.06189548969268799, -0.18642175197601318, -0.11625384539365768, -0.005739172454923391, -0.06903107464313507, -0.018213409930467606, 0.11590476334095001, 0.0755036473274231, 0.0696120411157608, -0.018344415351748466, -0.23964405059814453, -0.0010217601666226983, 0.14379924535751343, -0.10805407911539078, -0.039207715541124344 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test <Gallery /> ## Model description These are yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 5 - learning_rate: 0.01 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls = - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - gradient_accumulation_steps = 3 - GPU = T4 - duration =
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
2024-02-06T23:45:55+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test <Gallery /> ## Model description These are yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 5 - learning_rate: 0.01 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls = - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps = 3 - GPU = T4 - duration =
[ "# SDXL LoRA DreamBooth - yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ 78, 54, 119, 19, 28, 94 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test\n\n<Gallery />## Model description\n\nThese are yaneq/jan_zJxnH5wV00E12Mb6uB2r_SDXL_LoRA_5_9d94_5iter_test LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration =" ]
[ -0.08422255516052246, 0.16012582182884216, -0.0015711713349446654, 0.05723860114812851, 0.13477180898189545, 0.05963047966361046, 0.1529940366744995, 0.1368233561515808, 0.047927793115377426, 0.1101829931139946, 0.03428851068019867, 0.07012075185775757, 0.0925404354929924, 0.17024394869804382, 0.00012088596849935129, -0.13176229596138, 0.01851053163409233, -0.05343419685959816, 0.003697947831824422, 0.04373736307024956, 0.029251065105199814, -0.06768658757209778, 0.07842929661273956, -0.02481773868203163, -0.046417947858572006, 0.058106403797864914, -0.015396072529256344, -0.02091493085026741, 0.013021293096244335, 0.06372072547674179, 0.04858257248997688, 0.061456844210624695, 0.10380510240793228, -0.27831634879112244, 0.018855705857276917, 0.10252930968999863, -0.04014510288834572, 0.04536985978484154, 0.018979784101247787, -0.04503415897488594, 0.01169110182672739, -0.13491636514663696, 0.07478758692741394, 0.063156358897686, -0.03792876750230789, -0.21430721879005432, -0.10017423331737518, 0.028659077361226082, 0.06289993971586227, 0.11652913689613342, -0.0008998072007670999, 0.03503475338220596, 0.057485390454530716, 0.05085904151201248, 0.22233286499977112, -0.10138582438230515, -0.0224728062748909, 0.1111455038189888, 0.033570870757102966, 0.09510757774114609, -0.025722412392497063, -0.007581952027976513, 0.08058145642280579, -0.018416941165924072, 0.06110478565096855, -0.0373956598341465, 0.021645400673151016, -0.06276533752679825, -0.09795375913381577, -0.019717011600732803, 0.17709487676620483, 0.03511019051074982, -0.09362810105085373, -0.1152992993593216, -0.021623976528644562, 0.01856321282684803, 0.004331347532570362, 0.01613505557179451, 0.016267510131001472, -0.020127102732658386, -0.003535341704264283, -0.1128794252872467, -0.03156573325395584, -0.06240399181842804, 0.07174387574195862, 0.19122561812400818, 0.03131696954369545, -0.0007073813467286527, 0.004084558691829443, 0.06718423217535019, -0.022788038477301598, -0.12419134378433228, -0.06373613327741623, -0.030723581090569496, -0.06170346587896347, 0.01252097636461258, -0.01706930249929428, -0.0838828831911087, 0.030462130904197693, 0.09877648949623108, -0.06682869046926498, 0.05874408408999443, -0.030438505113124847, 0.028163060545921326, -0.05477391555905342, 0.11696022003889084, -0.026766223832964897, -0.04374189302325249, 0.025862880051136017, 0.10026110708713531, 0.08098405599594116, -0.026469876989722252, -0.12018118053674698, -0.01549546979367733, -0.08308130502700806, 0.07613136619329453, 0.0004922890802845359, -0.01591297797858715, -0.08777210861444473, -0.041677046567201614, 0.12979166209697723, -0.0972437635064125, 0.02391030266880989, 0.01427191961556673, -0.09310770779848099, 0.034677982330322266, 0.10682092607021332, -0.023909438401460648, -0.041858360171318054, 0.08836618065834045, -0.03360522910952568, 0.02057342231273651, -0.06453102827072144, -0.14964409172534943, 0.030005907639861107, -0.12332575768232346, -0.012495029717683792, -0.10768027603626251, -0.22403651475906372, -0.06661243736743927, 0.009966996498405933, -0.01022657472640276, 0.048087168484926224, -0.08645884692668915, -0.07973573356866837, 0.015001888386905193, 0.0325019471347332, -0.03720429539680481, -0.02166912518441677, 0.05575106292963028, -0.04045996814966202, 0.11115831136703491, 0.002733781700953841, 0.016786735504865646, -0.04711718484759331, 0.015264899469912052, -0.09111367911100388, 0.136206716299057, -0.08758572489023209, 0.03319782391190529, -0.10855817794799805, -0.09081997722387314, 0.018725264817476273, 0.0013177101500332355, 0.06324426829814911, 0.10335893929004669, -0.20332424342632294, -0.07051888108253479, 0.15724529325962067, -0.14920996129512787, -0.08033370971679688, 0.009284164756536484, -0.02758558839559555, 0.05712921917438507, 0.06281787902116776, 0.0921730026602745, 0.17854228615760803, -0.17801924049854279, -0.07991006970405579, -0.017627902328968048, 0.025779280811548233, 0.07326080650091171, 0.051626309752464294, -0.011347774416208267, -0.017522983253002167, 0.016048111021518707, -0.03770580142736435, 0.04175374656915665, 0.0045738182961940765, -0.053717516362667084, -0.02699912153184414, -0.08167688548564911, 0.038662139326334, -0.012487832456827164, -0.02915807254612446, -0.011051404289901257, -0.09363878518342972, 0.022932393476366997, 0.14086118340492249, -0.09665736556053162, 0.02603364922106266, -0.059191685169935226, -0.020662648603320122, -0.03790854290127754, 0.014291215687990189, -0.10816411674022675, -0.11437166482210159, 0.059652213007211685, -0.1320754438638687, 0.012559034861624241, -0.10602409392595291, 0.05260218307375908, 0.06017370522022247, -0.05118170753121376, -0.10172674059867859, -0.058105964213609695, -0.03224531188607216, 0.008269098587334156, -0.13340216875076294, -0.04850233718752861, -0.05455312877893448, 0.08069164305925369, -0.1777830272912979, 0.06340579688549042, 0.01886622980237007, 0.06401442736387253, 0.057094622403383255, -0.04212973639369011, 0.04293966293334961, 0.030653376132249832, -0.03719133883714676, -0.09894034266471863, -0.01345027331262827, -0.026017257943749428, -0.14665523171424866, 0.026908915489912033, -0.1551360934972763, -0.06527901440858841, 0.08849959075450897, 0.11225935816764832, -0.07144283503293991, -0.02089453488588333, -0.010040972381830215, -0.024017982184886932, -0.08753219246864319, -0.056590620428323746, 0.07398530840873718, 0.014030497521162033, 0.09236186742782593, -0.07007958739995956, -0.022565551102161407, 0.030662087723612785, 0.005433602258563042, -0.037528060376644135, 0.09245096147060394, 0.01304078008979559, -0.012930158525705338, 0.046693749725818634, 0.019413506612181664, -0.06802147626876831, 0.1511593610048294, 0.053518686443567276, -0.06251424551010132, -0.014052596874535084, 0.04184122383594513, 0.06930750608444214, 0.0803668275475502, 0.08272531628608704, 0.07396172732114792, 0.005703655071556568, -0.017752669751644135, -0.017455268651247025, -0.1386362910270691, -0.029668737202882767, 0.0343874916434288, -0.08445868641138077, 0.027906697243452072, 0.01770653948187828, -0.03825017437338829, 0.05252202972769737, -0.050072669982910156, 0.09782133251428604, 0.0049300785176455975, -0.04918257147073746, -0.11313553899526596, 0.15245404839515686, -0.12825055420398712, -0.19611385464668274, -0.13712237775325775, 0.01185877900570631, -0.043605297803878784, -0.01750999502837658, 0.07526673376560211, -0.13933254778385162, -0.05952316150069237, -0.10821665078401566, -0.008466499857604504, -0.006544243078678846, -0.021681975573301315, 0.032181110233068466, 0.01360522024333477, 0.10352274775505066, -0.10611455887556076, 0.01099074725061655, 0.024491088464856148, -0.052536673843860626, -0.0010658428072929382, 0.02388725057244301, 0.09929443150758743, 0.05003697797656059, 0.04112524911761284, 0.033468831330537796, -0.027675017714500427, 0.1971825808286667, -0.03637390956282616, 0.09600076824426651, 0.19636955857276917, 0.055915068835020065, 0.11210697144269943, 0.1297558844089508, 0.01679590530693531, -0.05829377472400665, 0.05081601440906525, 0.03344862535595894, -0.08808138221502304, -0.234531968832016, -0.09201446175575256, -0.038507550954818726, -0.053796254098415375, 0.15119701623916626, 0.06215101107954979, 0.08877856284379959, 0.09975247085094452, -0.0804537981748581, 0.07013198733329773, 0.06341470032930374, 0.12083721160888672, 0.030995337292551994, 0.056540776044130325, 0.029074685648083687, -0.0716567188501358, 0.03297100216150284, 0.08098560571670532, 0.04109139367938042, 0.20886072516441345, -0.08685452491044998, 0.0556211918592453, 0.0075689381919801235, 0.027032500132918358, -0.0003827362088486552, 0.021718448027968407, -0.01299704797565937, 0.015864690765738487, 0.02028503827750683, -0.12886379659175873, 0.06671223044395447, 0.1445760577917099, -0.04681335389614105, 0.026488669216632843, -0.02841235138475895, 0.030237684026360512, 0.018553603440523148, 0.054091550409793854, 0.04520709067583084, -0.26597464084625244, -0.019134217873215675, 0.04354012385010719, 0.10551731288433075, -0.01002782117575407, -0.012853815220296383, 0.16040904819965363, -0.06532235443592072, 0.12976793944835663, -0.027490710839629173, 0.09334249794483185, -0.039753712713718414, -0.06177495792508125, 0.11624667793512344, 0.19090014696121216, 0.0006009117932990193, 0.034806594252586365, -0.18367500603199005, 0.05755506828427315, 0.024308843538165092, 0.11377698928117752, -0.03618450090289116, 0.05416930094361305, 0.04188567027449608, 0.0013638698728755116, 0.13765949010849, 0.011676795780658722, -0.04940878972411156, -0.18555429577827454, -0.05641767382621765, -0.014087323099374771, 0.09140211343765259, -0.06373865902423859, 0.07631789892911911, 0.031541574746370316, -0.028386088088154793, -0.004024596884846687, -0.008384529501199722, -0.17329590022563934, -0.1597740203142166, 0.005032660905271769, 0.13772431015968323, 0.04594724252820015, -0.07669250667095184, -0.0525919646024704, -0.045007042586803436, 0.08179055899381638, -0.1241353303194046, -0.10926597565412521, -0.10410993546247482, 0.006501428317278624, 0.10058435797691345, -0.06707129627466202, 0.01364823617041111, 0.013364366255700588, 0.1244884580373764, -0.09508609026670456, -0.10178381204605103, 0.0039020052645355463, -0.07932280749082565, -0.1858067661523819, -0.08452091366052628, 0.09084023535251617, 0.048660293221473694, -0.004719780292361975, -0.015371340326964855, -0.003577588824555278, 0.03281952813267708, -0.12981559336185455, 0.050357330590486526, 0.23528645932674408, -0.00893285684287548, 0.13539500534534454, -0.052955545485019684, -0.061553917825222015, -0.0734524354338646, 0.006396193988621235, 0.03547559678554535, 0.25225934386253357, -0.10622486472129822, 0.06563923507928848, 0.0550336018204689, -0.1029035821557045, -0.1513529121875763, 0.05794025585055351, 0.10001608729362488, -0.012654704041779041, -0.007190357428044081, -0.25378161668777466, 0.05708428472280502, 0.057134199887514114, 0.0017765711527317762, 0.10693161934614182, -0.34244483709335327, -0.13814106583595276, -0.07512609660625458, 0.1143467128276825, 0.016442274674773216, -0.1167982667684555, -0.056456491351127625, -0.12104792892932892, -0.04381205514073372, 0.11808997392654419, -0.03660036250948906, 0.07289393246173859, 0.01109438668936491, 0.00022174761397764087, 0.019462112337350845, -0.05523793771862984, 0.13388052582740784, -0.0016175879864022136, 0.05706567317247391, -0.026463055983185768, 0.07030854374170303, 0.09546620398759842, -0.08038739114999771, 0.08408642560243607, -0.12508264183998108, 0.05651761218905449, -0.07967835664749146, -0.020295867696404457, -0.010459082201123238, 0.0496564656496048, -0.0376073457300663, -0.044440239667892456, -0.07243342697620392, 0.052675146609544754, 0.14409448206424713, -0.008541248738765717, -0.04357378929853439, -0.012333030812442303, 0.05531298741698265, 0.1136152446269989, 0.029197189956903458, 0.1521492898464203, -0.09469085931777954, 0.012468607164919376, -0.045906562358140945, 0.10081437975168228, -0.1684199720621109, 0.019865136593580246, 0.07937628030776978, 0.03394129127264023, 0.1465214192867279, 0.015390579588711262, -0.1006077453494072, 0.06944649666547775, 0.03248826414346695, -0.06938587874174118, -0.10587116330862045, -0.03304925933480263, 0.02627868577837944, -0.06592260301113129, -0.0011793816229328513, 0.11901691555976868, -0.055815864354372025, 0.020192982628941536, -0.007188776507973671, 0.056900881230831146, -0.012995107099413872, 0.12536628544330597, 0.04756324365735054, 0.032191503793001175, -0.0665200725197792, 0.11529228091239929, 0.047166891396045685, -0.06935038417577744, 0.08362562209367752, 0.10871286690235138, -0.07463616132736206, -0.007243353873491287, -0.09509311616420746, 0.05026900768280029, -0.06530854851007462, -0.04553782567381859, -0.035072680562734604, -0.06939894706010818, 0.014218020252883434, 0.1193336769938469, 0.008539837785065174, -0.0087322648614645, 0.028202680870890617, -0.017952345311641693, -0.10842521488666534, 0.07117524743080139, 0.00002736512578849215, 0.06663478910923004, -0.1407090574502945, -0.012176415883004665, 0.060630254447460175, -0.009293075650930405, 0.0035699703730642796, -0.016580451279878616, -0.12259889394044876, -0.013893990777432919, -0.08885925263166428, 0.12581217288970947, -0.07009218633174896, 0.010227189399302006, -0.029453398659825325, 0.0035223010927438736, -0.00032599910628050566, 0.06423377245664597, -0.032719314098358154, -0.09739715605974197, 0.005048154387623072, 0.06949871778488159, -0.12498181313276291, -0.04063861817121506, -0.019911866635084152, -0.09492898732423782, 0.05471411347389221, -0.009334458969533443, -0.06168575584888458, -0.0059288982301950455, -0.15695056319236755, 0.04478713497519493, 0.06332980841398239, 0.033887919038534164, -0.017962446436285973, -0.07461553812026978, 0.018568027764558792, -0.0328986681997776, -0.05931701511144638, -0.013544954359531403, -0.012314166873693466, -0.09895148873329163, 0.04026877507567406, -0.0391479954123497, 0.025386057794094086, -0.07145889103412628, 0.07197393476963043, 0.11050494015216827, 0.04337809607386589, 0.11255583167076111, -0.08680441230535507, 0.09495170414447784, -0.1628129631280899, -0.03967130184173584, 0.026204541325569153, -0.02011803165078163, -0.056707173585891724, -0.018791334703564644, 0.07354764640331268, -0.02119767852127552, 0.10613491386175156, -0.061182428151369095, 0.06086057797074318, -0.004918890073895454, -0.029224704951047897, -0.03761005401611328, 0.002869960619136691, 0.15845684707164764, 0.006829625461250544, 0.011289272457361221, 0.012223835103213787, -0.02078855223953724, 0.07909228652715683, 0.09698984026908875, 0.06748799979686737, 0.10293371230363846, 0.0995674878358841, 0.06276710331439972, 0.02454337105154991, -0.0538385771214962, -0.04110662639141083, 0.11986562609672546, -0.033718306571245193, 0.07331881672143936, -0.04371717944741249, 0.05333849787712097, 0.08082035928964615, -0.13681812584400177, 0.009677472524344921, 0.09013529121875763, -0.06496990472078323, -0.09895383566617966, -0.15919572114944458, -0.08250775933265686, -0.1331142783164978, 0.025498848408460617, -0.0993821918964386, 0.05525607243180275, -0.01939014345407486, -0.018381334841251373, 0.022959118708968163, 0.09973106533288956, -0.006026101764291525, -0.030684197321534157, 0.03088202513754368, -0.016332659870386124, 0.0000446646663476713, 0.06965263187885284, -0.04697895050048828, 0.13851198554039001, -0.019921330735087395, 0.040963295847177505, 0.051400214433670044, 0.04998896270990372, 0.05577287822961807, -0.014109703712165356, -0.0691765546798706, 0.010226940736174583, 0.03827091306447983, 0.008399631828069687, 0.15765228867530823, 0.08683934807777405, 0.01122331339865923, -0.03072262927889824, 0.14339374005794525, -0.07513649016618729, -0.027900610119104385, -0.10230560600757599, 0.07046694308519363, 0.011718912050127983, 0.010254292748868465, 0.005006277933716774, -0.09502312541007996, -0.04477537050843239, 0.10743485391139984, 0.09977370500564575, 0.02663927711546421, 0.02118735760450363, -0.046355146914720535, -0.0015089630614966154, -0.05025160685181618, 0.07033098489046097, 0.05180962383747101, 0.10656621307134628, -0.01314875390380621, 0.029697876423597336, -0.022520149126648903, -0.03440921753644943, -0.009197411127388477, -0.006106178741902113, -0.06783008575439453, -0.031539902091026306, -0.04452221468091011, 0.06937089562416077, -0.07026144862174988, -0.1447700560092926, 0.1804557740688324, -0.09228907525539398, -0.052238110452890396, -0.021268000826239586, 0.09651338309049606, 0.02304384671151638, -0.003731079399585724, -0.01989888772368431, -0.030344000086188316, 0.11214341968297958, -0.04751855507493019, -0.07916877418756485, -0.11245664954185486, -0.04197167232632637, -0.1693350374698639, 0.21093827486038208, -0.01619320549070835, 0.06597406417131424, 0.07745055854320526, 0.026786593720316887, -0.1270257979631424, 0.08779597282409668, 0.016303375363349915, -0.1188647449016571, -0.012116619385778904, 0.17681823670864105, -0.07967275381088257, 0.20524755120277405, 0.04259467124938965, -0.055830616503953934, 0.027135085314512253, 0.06316888332366943, -0.022104382514953613, -0.08428079634904861, 0.0014198562130331993, -0.0987054631114006, 0.11552983522415161, 0.13839945197105408, -0.03308520466089249, -0.010342729277908802, -0.0010593621991574764, 0.021819954738020897, 0.015293828211724758, 0.09942974150180817, 0.03596499562263489, -0.10138240456581116, 0.006067974027246237, 0.006503182463347912, 0.10808689147233963, -0.17978022992610931, -0.05692906305193901, -0.05410553142428398, -0.052789755165576935, -0.002385541098192334, 0.10081049799919128, 0.09086647629737854, 0.04145688936114311, -0.03975309059023857, -0.20837894082069397, 0.014471540227532387, 0.1500215381383896, -0.10032109916210175, -0.08087501674890518 ]
null
null
null
GGUF Quants with iMatrix for : https://huggingface.co/jondurbin/bagel-7b-v0.4 Llama Benchs : Bagel 7b 0.4 (this version) : - Bagel-7b-v0.4.Q8_0.gguf,-,Hellaswag,80.75,400,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Hellaswag,79.4,1000,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Arc-Challenge,51.83946488,,299,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Arc-Easy,79.29824561,,570,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,MMLU,44.08945687,,313,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Thruthful-QA,33.53733170,,817,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Winogrande,76.3220,,1267,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.1340,512,512,2024-02-07 23:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,5.4116,4096,4096,2024-02-07 23:12:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.6741,7168,7168,2024-02-07 23:16:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.5003,8192,8192,2024-02-07 23:20:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,8.3501,10240,10240,2024-02-07 23:25:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, Bagel 7b 0.4 DPO : - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Hellaswag,82.75,400,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Hellaswag,81.1,1000,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Arc-Challenge,53.84615385,,299,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Arc-Easy,80.70175439,,570,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,MMLU,45.36741214,,313,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Thruthful-QA,44.55324357,,817,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Winogrande,76.4799,,1267,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,6.3245,512,512,2024-02-07 23:30:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,5.7832,4096,4096,2024-02-07 23:42:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,8.1732,7168,7168,2024-02-07 23:46:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,8.0212,8192,8192,2024-02-07 23:50:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,10.9006,10240,10240,2024-02-07 23:55:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, Bagel 7b 0.1 : - Bagel-7b-v0.1.Q6_K.gguf,-,Hellaswag,86,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Hellaswag_Bin,78.25,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Arc-Challenge,48.82943144,,299,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Arc-Easy,72.80701754,,570,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,MMLU,43.76996805,,313,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Thruthful-QA,31.70134639,,817,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Winogrande,76.4009,,1267,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.82,512,512,2024-01-13 23:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.3503,1024,1024,2024-01-13 23:04:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.0243,2048,2048,2024-01-13 23:08:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,4.9976,4096,4096,2024-01-13 23:12:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.1589,7168,7168,2024-01-13 23:16:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,4.9722,8192,8192,2024-01-13 23:20:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,8.999,10240,10240,2024-01-13 23:25:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, Bagel 7b 0.1 DPO : - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Hellaswag,86.25,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Hellaswag_Bin,79.5,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Arc-Challenge,46.48829431,,299,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Arc-Easy,65.08771930,,570,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,MMLU,44.08945687,,313,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Thruthful-QA,42.35006120,,817,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Winogrande,75.8485,,1267,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.8674,512,512,2024-01-13 23:30:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.3889,1024,1024,2024-01-13 23:34:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.0578,2048,2048,2024-01-13 23:38:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.012,4096,4096,2024-01-13 23:42:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.1349,7168,7168,2024-01-13 23:46:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,4.9318,8192,8192,2024-01-13 23:50:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,8.3897,10240,10240,2024-01-13 23:55:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke,
{}
null
Nexesenex/jondurbin_bagel-7b-v0.4-iMat.GGUF
[ "gguf", "region:us" ]
2024-02-06T23:46:35+00:00
[]
[]
TAGS #gguf #region-us
GGUF Quants with iMatrix for : URL Llama Benchs : Bagel 7b 0.4 (this version) : - Bagel-7b-v0.4.Q8_0.gguf,-,Hellaswag,80.75,400,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Hellaswag,79.4,1000,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Arc-Challenge,51.83946488,,299,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Arc-Easy,79.29824561,,570,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,MMLU,44.08945687,,313,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Thruthful-QA,33.53733170,,817,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,Winogrande,76.3220,,1267,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.1340,512,512,2024-02-07 23:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,5.4116,4096,4096,2024-02-07 23:12:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.6741,7168,7168,2024-02-07 23:16:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,6.5003,8192,8192,2024-02-07 23:20:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, - Bagel-7b-v0.4.Q8_0.gguf,-,wikitext,8.3501,10240,10240,2024-02-07 23:25:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,Nexesenex, Bagel 7b 0.4 DPO : - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Hellaswag,82.75,400,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Hellaswag,81.1,1000,2024-02-07 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Arc-Challenge,53.84615385,,299,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Arc-Easy,80.70175439,,570,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,MMLU,45.36741214,,313,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Thruthful-QA,44.55324357,,817,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,Winogrande,76.4799,,1267,2024-02-07 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,6.3245,512,512,2024-02-07 23:30:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,5.7832,4096,4096,2024-02-07 23:42:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,8.1732,7168,7168,2024-02-07 23:46:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,8.0212,8192,8192,2024-02-07 23:50:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, - Bagel-dpo-7b-v0.4.Q6_K.gguf,-,wikitext,10.9006,10240,10240,2024-02-07 23:55:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,LoneStriker, Bagel 7b 0.1 : - Bagel-7b-v0.1.Q6_K.gguf,-,Hellaswag,86,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Hellaswag_Bin,78.25,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Arc-Challenge,48.82943144,,299,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Arc-Easy,72.80701754,,570,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,MMLU,43.76996805,,313,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Thruthful-QA,31.70134639,,817,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,Winogrande,76.4009,,1267,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.82,512,512,2024-01-13 23:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.3503,1024,1024,2024-01-13 23:04:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.0243,2048,2048,2024-01-13 23:08:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,4.9976,4096,4096,2024-01-13 23:12:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,5.1589,7168,7168,2024-01-13 23:16:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,4.9722,8192,8192,2024-01-13 23:20:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-7b-v0.1.Q6_K.gguf,-,wikitext,8.999,10240,10240,2024-01-13 23:25:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, Bagel 7b 0.1 DPO : - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Hellaswag,86.25,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Hellaswag_Bin,79.5,400,2024-01-27 00:00:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Arc-Challenge,46.48829431,,299,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Arc-Easy,65.08771930,,570,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,MMLU,44.08945687,,313,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Thruthful-QA,42.35006120,,817,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,Winogrande,75.8485,,1267,2024-01-27 05:40:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.8674,512,512,2024-01-13 23:30:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.3889,1024,1024,2024-01-13 23:34:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.0578,2048,2048,2024-01-13 23:38:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.012,4096,4096,2024-01-13 23:42:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,5.1349,7168,7168,2024-01-13 23:46:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,4.9318,8192,8192,2024-01-13 23:50:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke, - Bagel-dpo-7b-v0.1.Q6_K.gguf,-,wikitext,8.3897,10240,10240,2024-01-13 23:55:00,,07b,Mistral_7b_v02,8192,,,GGUF,JonDurbin,TheBloke,
[]
[ "TAGS\n#gguf #region-us \n" ]
[ 9 ]
[ "passage: TAGS\n#gguf #region-us \n" ]
[ 0.030724648386240005, 0.026499787345528603, -0.010017825290560722, -0.05703527107834816, 0.08247160166501999, 0.07200847566127777, 0.01814177818596363, 0.020192064344882965, 0.2235025018453598, 0.017216520383954048, 0.1496623009443283, -0.031233953312039375, 0.006174509879201651, 0.05538657680153847, 0.039407629519701004, -0.19438467919826508, 0.058440499007701874, -0.02356063388288021, -0.020945189520716667, 0.01803453452885151, -0.05310691148042679, -0.04108472168445587, 0.022135348990559578, -0.07881014049053192, -0.15867982804775238, 0.0678698718547821, 0.017852067947387695, 0.0007025183876976371, 0.0820731669664383, 0.05882885307073593, 0.09657382220029831, -0.024203501641750336, -0.15220364928245544, -0.18796531856060028, 0.0366438589990139, -0.02974788099527359, -0.10282598435878754, 0.022019000723958015, 0.029453158378601074, -0.06967076659202576, 0.02238346077501774, 0.1427535116672516, -0.10206039994955063, 0.051592033356428146, -0.27165159583091736, -0.1715938150882721, -0.06585682183504105, -0.025845954194664955, -0.007345964200794697, 0.01241085771471262, -0.0010092189768329263, 0.047266922891139984, -0.20188692212104797, -0.005631127394735813, 0.09329266101121902, -0.25229454040527344, 0.02776304818689823, 0.21345718204975128, -0.010520953685045242, 0.09873088449239731, -0.05590669438242912, 0.14438565075397491, 0.03173782303929329, -0.019559340551495552, -0.1924813836812973, -0.070224329829216, -0.07177317887544632, 0.162109375, -0.0823177620768547, -0.11764442175626755, 0.24176421761512756, 0.009283576160669327, -0.026472626253962517, 0.15598991513252258, -0.029037300497293472, -0.009749599732458591, 0.04555726423859596, 0.01668328419327736, -0.010545015335083008, 0.1551385223865509, 0.17108163237571716, -0.08598228543996811, -0.10847756266593933, -0.030579885467886925, -0.2373785674571991, 0.2470305860042572, -0.01911027915775776, 0.12945520877838135, -0.20086053013801575, 0.018443629145622253, -0.3247532844543457, -0.0012029389617964625, -0.010316703468561172, -0.028618358075618744, -0.006935348734259605, 0.009301352314651012, -0.050316113978624344, 0.0739501491189003, 0.14580395817756653, 0.1393439620733261, -0.11465669423341751, 0.060509420931339264, -0.052172139286994934, 0.14876529574394226, 0.05827285721898079, 0.061183393001556396, 0.04079163819551468, 0.07037676870822906, -0.008353544399142265, -0.21633195877075195, -0.029873060062527657, -0.07057386636734009, -0.08445251733064651, -0.0130265261977911, -0.13896764814853668, 0.11386743932962418, -0.022273007780313492, -0.07913482189178467, -0.06810981780290604, 0.07626928389072418, 0.017650218680500984, -0.008536403998732567, -0.035703565925359726, -0.012481719255447388, 0.022218508645892143, -0.014872739091515541, -0.1519843488931656, 0.02295425534248352, 0.10455024242401123, 0.07257117331027985, -0.1489023119211197, -0.011344035156071186, -0.017298875376582146, 0.06959983706474304, 0.03884255141019821, -0.10402916371822357, 0.04283881187438965, -0.10747409611940384, -0.08414466679096222, 0.022628657519817352, -0.005062851123511791, -0.0418001152575016, 0.13524691760540009, 0.03997812792658806, 0.040150050073862076, -0.016940169036388397, -0.04259050637483597, -0.048133596777915955, -0.07602019608020782, 0.07334327697753906, 0.05418020859360695, 0.027240034192800522, -0.1915341019630432, 0.01154522504657507, -0.048245880752801895, 0.09175369143486023, -0.11856856942176819, 0.014575321227312088, -0.08105122298002243, 0.1604209989309311, 0.0349995456635952, 0.09055875241756439, -0.19562625885009766, 0.02605881541967392, -0.06191767752170563, 0.1854621320962906, -0.04451294615864754, -0.11786319315433502, 0.2698904871940613, -0.09105797111988068, -0.040079716593027115, 0.056803084909915924, 0.06560484319925308, -0.06272535026073456, 0.068723164498806, 0.4434472322463989, -0.06556011736392975, -0.07118581980466843, 0.05080527812242508, 0.17805561423301697, -0.1262815296649933, -0.09372174739837646, 0.09990617632865906, -0.1480535864830017, -0.211008220911026, 0.030864350497722626, 0.028955968096852303, 0.1494358479976654, -0.06205282360315323, -0.012456154450774193, 0.058214303106069565, -0.013022401370108128, 0.046677324920892715, 0.03563477098941803, 0.11109840869903564, -0.06493768095970154, 0.06851828098297119, -0.16232267022132874, 0.016065504401922226, 0.1209988072514534, -0.015012580901384354, -0.04126624017953873, 0.14286154508590698, -0.03809087723493576, 0.07199656218290329, -0.07730832695960999, -0.1804673671722412, 0.027612121775746346, 0.05621999502182007, 0.028122514486312866, 0.09176547825336456, 0.09526687115430832, -0.039257392287254333, 0.0013902259524911642, 0.0329861082136631, 0.061223939061164856, -0.007701692637056112, 0.015235940925776958, -0.015374142676591873, 0.12888981401920319, -0.07010363042354584, -0.04155188798904419, -0.09715848416090012, -0.00889967754483223, 0.2288777232170105, -0.01933911070227623, 0.02257734164595604, -0.06854789704084396, 0.033186767250299454, -0.0012386917369440198, 0.09506335854530334, -0.017756229266524315, 0.06063338369131088, -0.022011179476976395, -0.06201287358999252, 0.11652727425098419, -0.043086208403110504, 0.24556174874305725, 0.10792262107133865, -0.07513239979743958, -0.01741042546927929, -0.0871582105755806, -0.007020947523415089, 0.022898653522133827, 0.08814648538827896, -0.04863424599170685, 0.06471672654151917, -0.037898752838373184, -0.0013588295551016927, 0.018808960914611816, -0.008487841114401817, -0.030526969581842422, -0.04284367710351944, -0.08270563185214996, 0.09057542681694031, 0.0691855251789093, -0.13670015335083008, 0.17748047411441803, 0.2472171038389206, 0.1500423550605774, 0.2487964630126953, -0.06485911458730698, -0.014139159582555294, -0.02016172744333744, 0.03673918917775154, -0.020436765626072884, 0.13109654188156128, -0.18929845094680786, -0.032152432948350906, 0.02558354288339615, 0.029807843267917633, 0.10872193425893784, -0.1365325003862381, -0.1145850270986557, -0.0379912331700325, -0.047677598893642426, -0.08257206529378891, 0.07034620642662048, -0.12104500830173492, 0.03338077291846275, 0.07256745547056198, 0.0073080710135400295, 0.12201625853776932, 0.015417544171214104, -0.055278971791267395, 0.0998256728053093, -0.14543165266513824, -0.2384990155696869, -0.04642500355839729, -0.10990478098392487, 0.001206184271723032, 0.05318264663219452, 0.016633260995149612, -0.21265560388565063, -0.01741623878479004, 0.11141498386859894, 0.06650645285844803, -0.18111048638820648, 0.024138791486620903, 0.029385030269622803, -0.004455238115042448, -0.10212790220975876, -0.012687300331890583, -0.05387670546770096, -0.11039627343416214, -0.0691843032836914, 0.08163908869028091, -0.06936442852020264, 0.11164893209934235, 0.1582336574792862, 0.11141853034496307, 0.11249161511659622, -0.011774544604122639, 0.1976311057806015, -0.14119699597358704, -0.14489109814167023, 0.06405922025442123, -0.014498869888484478, 0.03640124574303627, 0.08232609927654266, 0.04930112138390541, -0.14269955456256866, -0.04848511889576912, -0.007545206230133772, -0.1497725397348404, -0.1323675513267517, -0.05164776369929314, -0.10658133774995804, 0.12379065901041031, -0.06248227879405022, 0.10150982439517975, 0.11162466555833817, 0.017522823065519333, 0.11151766777038574, -0.06246228888630867, -0.054680291563272476, -0.04807431995868683, 0.06297076493501663, -0.05410824716091156, -0.04205694422125816, -0.06721562892198563, -0.008002115413546562, 0.1349310278892517, 0.10885956883430481, 0.07581131905317307, 0.2265089601278305, 0.02780294418334961, 0.05355561524629593, 0.040789585560560226, 0.16015571355819702, 0.015284501947462559, -0.0046128155663609505, -0.08788388222455978, -0.014365277253091335, -0.0019687749445438385, -0.031080376356840134, -0.006052241660654545, 0.1340780407190323, -0.2559821307659149, 0.03235609456896782, -0.2989844083786011, 0.11946471780538559, -0.1565471589565277, 0.07426489144563675, 0.05220162868499756, 0.030080994591116905, 0.08841689676046371, 0.035069406032562256, -0.02871096506714821, 0.09149409085512161, 0.11694692075252533, -0.12628670036792755, 0.01540512777864933, 0.04918349161744118, 0.052707213908433914, -0.0142430504783988, 0.0931062400341034, -0.11024625599384308, -0.0737583339214325, -0.0024255106691271067, 0.07025767862796783, -0.2099330574274063, 0.23986183106899261, 0.03523903712630272, -0.10871971398591995, -0.021638909354805946, -0.0547538623213768, 0.03316742554306984, 0.08983159810304642, 0.1342458724975586, 0.11251148581504822, -0.11371640861034393, -0.12470904737710953, 0.029020745307207108, 0.03679748624563217, 0.1757190227508545, -0.09047917276620865, -0.14164063334465027, 0.001811441034078598, 0.05263577029109001, -0.053646381944417953, 0.07645093649625778, -0.05327983945608139, -0.0941789522767067, 0.03495060279965401, 0.04520740360021591, 0.00641082925722003, -0.019971303641796112, 0.08110581338405609, -0.02520396187901497, 0.085345059633255, -0.04878882318735123, 0.00847524031996727, -0.10202991217374802, -0.03634759038686752, 0.04376819357275963, -0.0722225159406662, 0.01614394783973694, -0.09818518906831741, -0.15651735663414001, -0.08556577563285828, -0.15303048491477966, 0.12497064471244812, -0.052672382444143295, 0.10244213044643402, -0.047614291310310364, 0.147609144449234, -0.013274060562252998, 0.030878636986017227, -0.05167607590556145, 0.028036773204803467, 0.011671020649373531, -0.14858771860599518, 0.20959575474262238, -0.1476162225008011, -0.023819662630558014, 0.16589532792568207, 0.05426561459898949, 0.1161220371723175, 0.04555299133062363, -0.0879630371928215, 0.23518426716327667, 0.2702784240245819, -0.0007818902959115803, 0.17838320136070251, 0.2352202981710434, -0.026693791151046753, -0.2436053603887558, -0.07260585576295853, -0.2063993662595749, -0.039628319442272186, 0.0004186074365861714, -0.282958060503006, 0.06042884290218353, 0.17210599780082703, -0.07570867985486984, 0.4319494664669037, -0.22352926433086395, 0.03153151646256447, 0.13982820510864258, -0.04242865741252899, 0.6181237101554871, -0.1820172369480133, -0.16550765931606293, 0.052592549473047256, -0.1248052790760994, 0.11609237641096115, -0.005267696920782328, 0.10048385709524155, -0.00011838242062367499, -0.02595684304833412, 0.03428659215569496, -0.0409976989030838, 0.23620888590812683, 0.018790103495121002, 0.045043930411338806, -0.09004033356904984, -0.1538960188627243, 0.10746775567531586, 0.02556895837187767, -0.10341835021972656, 0.03920651972293854, -0.06092366203665733, -0.10915451496839523, 0.011575369164347649, -0.08317004889249802, 0.03433287888765335, 0.09550272673368454, -0.050003789365291595, -0.0652989074587822, 0.024777809157967567, -0.16975140571594238, 0.028226720169186592, 0.1660151481628418, -0.08661750704050064, 0.17001861333847046, -0.04084239527583122, -0.0947834923863411, -0.15362800657749176, -0.020637191832065582, -0.07918675988912582, -0.01597081869840622, 0.10419487953186035, -0.11003783345222473, 0.006433290895074606, 0.09035904705524445, 0.002910176757723093, 0.07882846146821976, 0.09883374720811844, -0.08716033399105072, 0.05550702288746834, 0.1730797290802002, -0.21496161818504333, -0.1694899946451187, -0.04902869462966919, -0.1887752115726471, 0.2065081000328064, 0.03903897479176521, 0.04895683750510216, 0.16432031989097595, 0.015995748341083527, -0.010867753997445107, -0.020683420822024345, -0.11664224416017532, 0.00450828718021512, 0.04868127405643463, -0.005741522181779146, -0.11094820499420166, 0.13042977452278137, 0.05625306814908981, -0.010265284217894077, -0.04014173522591591, 0.1808832287788391, -0.06324239075183868, -0.06105973571538925, -0.29144585132598877, 0.07338178157806396, -0.10203809291124344, -0.033191971480846405, 0.08307401835918427, -0.024927617982029915, -0.0012370682088658214, 0.14441034197807312, 0.009444275870919228, 0.1295502781867981, 0.031338974833488464, 0.03218937665224075, 0.14084547758102417, -0.13805074989795685, -0.14429166913032532, -0.029582731425762177, -0.08434601873159409, -0.12847381830215454, -0.016780147328972816, 0.1751313954591751, -0.08363176882266998, -0.12467111647129059, -0.2756369411945343, 0.049299292266368866, -0.0641724020242691, -0.1138453483581543, -0.03101496584713459, -0.06544762849807739, 0.052310146391391754, -0.040101904422044754, 0.014005003497004509, -0.023109296336770058, -0.14451682567596436, 0.0458921417593956, 0.06695213168859482, 0.03172319754958153, -0.02931683138012886, 0.0015236766776069999, 0.15014788508415222, 0.026510147377848625, 0.16621503233909607, 0.22043149173259735, 0.061838917434215546, 0.20056213438510895, -0.2713247239589691, -0.10004157572984695, 0.10868333280086517, -0.07527677714824677, 0.021882841363549232, 0.13841275870800018, -0.01911449432373047, -0.0495067797601223, -0.03201347589492798, 0.08917038887739182, -0.017281996086239815, -0.08984966576099396, -0.04857974499464035, -0.003589637577533722, -0.18503929674625397, -0.0007536212215200067, -0.15319249033927917, 0.1420021951198578, 0.04460230842232704, -0.062356118112802505, 0.07465137541294098, 0.05997058004140854, 0.03977793827652931, 0.006764960940927267, 0.018739836290478706, -0.14650356769561768, 0.01704270951449871, -0.025170978158712387, -0.006106532644480467, 0.03402095288038254, 0.34655115008354187, -0.0466112419962883, -0.07675225287675858, -0.019784720614552498, 0.1001124382019043, 0.13863220810890198, -0.009452453814446926, 0.13600659370422363, 0.13898764550685883, -0.07470680773258209, -0.12456237524747849, 0.10025309771299362, -0.04034053534269333, -0.15969179570674896, 0.12802298367023468, -0.0435095950961113, -0.016280202195048332, 0.04011611267924309, -0.03383811563253403, -0.08241409808397293, 0.04869242012500763, -0.08193223923444748, -0.03468599542975426, -0.03921830281615257, -0.019609715789556503, -0.02835456281900406, 0.179523304104805, -0.03646359592676163, 0.07318142801523209, -0.02748848870396614, 0.010194642469286919, -0.10395175963640213, -0.1028568297624588, 0.05173351243138313, -0.12340104579925537, 0.07964924722909927, -0.03694985434412956, 0.030445387586951256, 0.22815105319023132, 0.02754553034901619, 0.015633730217814445, 0.13255921006202698, -0.00819331593811512, -0.0877854973077774, 0.03996758162975311, -0.044342756271362305, 0.021794743835926056, -0.030855976045131683, -0.07628626376390457, -0.0880078375339508, -0.10075201094150543, -0.049825526773929596, 0.03320961445569992, -0.030442843213677406, -0.05212388187646866, -0.14976045489311218, -0.02720625326037407, -0.07237301766872406, 0.11920249462127686, -0.09342960268259048, 0.08832328021526337, -0.012045936658978462, 0.0026839354541152716, 0.037163145840168, 0.1505078673362732, 0.010094218887388706, 0.10494716465473175, 0.006677085533738136, 0.09218452870845795, -0.06759306788444519, 0.14643312990665436, -0.12665413320064545, -0.02135086990892887, -0.03415476530790329, 0.2331210970878601, 0.20847657322883606, -0.11358945816755295, 0.009311644360423088, 0.03202449902892113, 0.04839635267853737, 0.185939759016037, 0.12599588930606842, 0.01761433109641075, 0.33329761028289795, -0.059357043355703354, -0.02227349951863289, 0.05721667781472206, -0.00022221643303055316, -0.06214975565671921, 0.0716261938214302, 0.08921460807323456, 0.013963594101369381, -0.1257423460483551, 0.11072274297475815, -0.21343208849430084, 0.15216094255447388, 0.07192383706569672, -0.18375952541828156, -0.009178245440125465, -0.05186039209365845, 0.008210902102291584, -0.027973614633083344, 0.13407447934150696, -0.07003656774759293, -0.1739543378353119, -0.19977876543998718, 0.060681428760290146, -0.35512542724609375, -0.20812080800533295, 0.06384200602769852, 0.1383514702320099, 0.10808566957712173, -0.06061858683824539, -0.013316533528268337, 0.006446295417845249, 0.01029437780380249, -0.019556531682610512, 0.028526417911052704, -0.008326482027769089, -0.05453765019774437, -0.25444141030311584, -0.006056090816855431, 0.0625600665807724, -0.15240277349948883, 0.05618175491690636, -0.017780732363462448, -0.008800189942121506, 0.13029517233371735, -0.021711476147174835, 0.03442413732409477, 0.00029493181500583887, -0.16273388266563416, 0.031801287084817886, 0.035038504749536514, 0.03614772483706474, -0.010639974847435951, -0.04227915778756142, -0.002239778870716691, 0.07848605513572693, -0.054354216903448105, -0.1438787877559662, 0.11021588742733002, -0.026462025940418243, 0.21526864171028137, -0.06517954170703888, -0.033111389726400375, 0.023098714649677277, -0.07031320035457611, 0.2018292248249054, -0.03690796345472336, 0.05650625377893448, 0.1586160659790039, 0.018734993413090706, 0.019857894629240036, -0.30062609910964966, 0.08813683688640594, -0.024517416954040527, 0.006894893944263458, -0.05270370468497276 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-bn-adapter-1.79M-snli-model2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7031 - Accuracy: 0.751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 74 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4022 | 1.0 | 8584 | 0.3281 | 0.8785 | | 0.384 | 2.0 | 17168 | 0.3149 | 0.8833 | | 0.372 | 3.0 | 25752 | 0.3079 | 0.8866 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "t5-base", "model-index": [{"name": "t5-base-bn-adapter-1.79M-snli-model2", "results": []}]}
null
varun-v-rao/t5-base-bn-adapter-1.79M-snli-model2
[ "tensorboard", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "region:us" ]
2024-02-06T23:51:37+00:00
[]
[]
TAGS #tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us
t5-base-bn-adapter-1.79M-snli-model2 ==================================== This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7031 * Accuracy: 0.751 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 74 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 33, 98, 4, 33 ]
[ "passage: TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.08708012849092484, -0.011576400138437748, -0.0004682909057009965, 0.1207377165555954, 0.18494409322738647, 0.037555307149887085, 0.14753302931785583, 0.07057967782020569, -0.13605843484401703, 0.00953042320907116, 0.09990494698286057, 0.12686847150325775, 0.0010044490918517113, 0.06252101808786392, -0.026800628751516342, -0.23368476331233978, -0.020559608936309814, 0.03487538918852806, -0.1297704428434372, 0.12662066519260406, 0.08700906485319138, -0.1369863748550415, 0.06830857694149017, -0.00704773748293519, -0.3103020489215851, 0.057141922414302826, 0.03491683676838875, -0.04739085212349892, 0.13610757887363434, -0.006034862250089645, 0.17308002710342407, -0.01845218800008297, 0.13188205659389496, -0.13427339494228363, 0.01069536805152893, 0.0865434780716896, 0.001251246896572411, 0.0806356742978096, 0.059451982378959656, 0.025447173044085503, 0.10196013748645782, -0.0866449773311615, 0.05854921415448189, 0.02138427086174488, -0.12785221636295319, -0.2545735836029053, -0.07936957478523254, -0.00441098865121603, 0.05533212795853615, 0.08653552085161209, -0.001173429423943162, 0.15413248538970947, -0.08392783999443054, 0.08986551314592361, 0.26258113980293274, -0.26274797320365906, -0.07980883866548538, 0.07671359926462173, -0.008960249833762646, 0.11100072413682938, -0.09184881299734116, -0.028653854504227638, 0.07199965417385101, 0.04703713208436966, 0.12748004496097565, -0.026177596300840378, -0.1717309206724167, 0.048568714410066605, -0.1553393453359604, 0.018666641786694527, 0.0797528401017189, 0.025659555569291115, -0.020866379141807556, 0.06088518723845482, -0.09534776210784912, -0.13378386199474335, -0.053769081830978394, -0.026484617963433266, 0.09549018740653992, -0.040282536298036575, -0.09792620688676834, -0.030932415276765823, -0.09710389375686646, -0.10590775310993195, -0.07375707477331161, 0.1994773894548416, 0.056049831211566925, 0.052535898983478546, -0.06781282275915146, 0.11057596653699875, -0.05757815018296242, -0.13287341594696045, 0.05253539979457855, 0.048552416265010834, -0.02463848702609539, -0.04804306477308273, -0.0870719701051712, -0.09264161437749863, 0.01581304706633091, 0.11398239433765411, -0.07966417074203491, 0.046662505716085434, 0.044223472476005554, 0.0558038204908371, -0.11781144887208939, 0.17558519542217255, -0.05779518932104111, 0.0146719291806221, 0.020183157175779343, 0.024972161278128624, 0.016335327178239822, 0.0031222449615597725, -0.11112114042043686, 0.02482450380921364, 0.07456304132938385, -0.0020424507092684507, -0.08656033128499985, 0.027476098388433456, -0.03194309398531914, -0.0034779582638293505, -0.04898906126618385, -0.09602195769548416, 0.04139960929751396, -0.015393627807497978, -0.10276030004024506, -0.009721525944769382, 0.023955615237355232, 0.01759769394993782, 0.010441027581691742, 0.11498845368623734, -0.10062625259160995, 0.07945767045021057, -0.14354172348976135, -0.11299574375152588, 0.005408090073615313, -0.03963363170623779, 0.01842237450182438, -0.07240715622901917, -0.17078188061714172, -0.0023895485792309046, 0.07505267858505249, -0.04411831870675087, -0.02093648537993431, -0.023114018142223358, -0.09683839976787567, -0.008086055517196655, -0.020214900374412537, 0.19267961382865906, -0.05218269303441048, 0.08800752460956573, 0.06064329668879509, 0.06687463819980621, -0.11552045494318008, 0.043438032269477844, -0.08520352095365524, -0.002139268210157752, -0.27227306365966797, 0.010978762991726398, -0.06014420464634895, 0.06662867218255997, -0.0707465186715126, -0.08174188435077667, 0.01659119501709938, 0.0002685624058358371, 0.11573928594589233, 0.06540001928806305, -0.21004921197891235, -0.06649412214756012, 0.12126635015010834, -0.07057420909404755, -0.0919523611664772, 0.09186521172523499, -0.06030838191509247, 0.057941537350416183, 0.0721893459558487, 0.1780611127614975, -0.046782203018665314, -0.10053765028715134, 0.04577375948429108, -0.016380269080400467, 0.05411279946565628, -0.10506606101989746, 0.0422338992357254, -0.013992361724376678, 0.0005774210439994931, 0.027461685240268707, -0.05383938178420067, 0.07331331819295883, -0.1165408045053482, -0.07822834700345993, -0.07314293086528778, -0.10555218905210495, -0.003776143305003643, 0.06800196319818497, 0.08588577806949615, -0.10168389976024628, -0.0675659105181694, 0.17167679965496063, 0.06853774935007095, -0.05460333451628685, 0.035033561289310455, -0.04161539301276207, 0.04959336295723915, -0.07953161746263504, -0.03300955891609192, -0.19829443097114563, -0.04885772988200188, 0.0014802382793277502, -0.004589280113577843, 0.06837441027164459, 0.0094625074416399, 0.08327795565128326, 0.06561638414859772, -0.07026264816522598, 0.020321978256106377, -0.0787501260638237, -0.005690721329301596, -0.14402411878108978, -0.23082372546195984, -0.027847882360219955, -0.004390217363834381, 0.06296159327030182, -0.17998111248016357, 0.024776501581072807, -0.052759889513254166, 0.07649102807044983, 0.0020713028497993946, -0.011297383345663548, -0.07511363923549652, 0.09733089804649353, 0.0003700708330143243, -0.07109129428863525, 0.04080021753907204, -0.014050065539777279, -0.059542324393987656, -0.07600921392440796, -0.06945011019706726, 0.1804472953081131, 0.1426917463541031, -0.15925714373588562, -0.08284486085176468, 0.06105397269129753, -0.05960547551512718, -0.03424961119890213, -0.058170732110738754, 0.0661134347319603, 0.183058500289917, -0.020271984860301018, 0.13305281102657318, -0.09102597087621689, -0.040917109698057175, -0.003240826539695263, -0.031678467988967896, 0.08207470178604126, 0.08112913370132446, 0.18198581039905548, -0.04409238323569298, 0.11566366255283356, 0.17149287462234497, -0.1679581105709076, 0.09810955822467804, -0.06756957620382309, -0.08708993345499039, -0.030649684369564056, -0.030422315001487732, -0.019401051104068756, 0.1683092713356018, -0.07745528221130371, 0.01125855278223753, -0.0065579479560256, 0.01921256259083748, 0.04629017040133476, -0.25415897369384766, -0.04543156176805496, 0.004951443523168564, -0.04131506383419037, -0.021272724494338036, -0.046051379293203354, 0.009627022780478, 0.10722075402736664, -0.03690759837627411, -0.08277542144060135, 0.016025032848119736, 0.014169516041874886, -0.05834725871682167, 0.21596993505954742, -0.08000766485929489, -0.017197515815496445, -0.08002107590436935, -0.0377480611205101, -0.0551617331802845, -0.01842265948653221, 0.03658248856663704, -0.13019388914108276, -0.028376922011375427, -0.043304719030857086, 0.046282634139060974, 0.023794766515493393, 0.04703158140182495, 0.009382905438542366, -0.001964852213859558, 0.09810400754213333, -0.13795670866966248, 0.01990636996924877, -0.08952007442712784, -0.09157329797744751, 0.017849363386631012, 0.08826400339603424, 0.11593670397996902, 0.1809161901473999, -0.02662278711795807, 0.0018950437661260366, -0.004474052228033543, 0.26598235964775085, -0.05425877124071121, -0.035846125334501266, 0.10207267850637436, 0.0004488892445806414, 0.04832696169614792, 0.09018823504447937, 0.10912715643644333, -0.11878674477338791, -0.004715124145150185, 0.056893836706876755, -0.04452329874038696, -0.24064716696739197, -0.012766627594828606, -0.0294058695435524, -0.10793610662221909, 0.05050674453377724, 0.038930680602788925, 0.015694359317421913, 0.05822712555527687, 0.07531172037124634, 0.12348715960979462, -0.07355165481567383, 0.03315414488315582, 0.056973233819007874, 0.061634548008441925, 0.11531929671764374, -0.05812647193670273, -0.06353466212749481, 0.031903740018606186, -0.02264786884188652, 0.2593960762023926, -0.00017802031652536243, 0.10974118858575821, 0.06945669651031494, 0.19459331035614014, -0.01667541265487671, 0.0890781581401825, 0.0015383671270683408, -0.05892603099346161, -0.0032682453747838736, -0.05549558252096176, 0.025877825915813446, 0.008617845363914967, -0.10448901355266571, 0.06814383715391159, -0.06717552989721298, -0.007657594513148069, 0.060332443565130234, 0.2526882588863373, -0.005725962575525045, -0.31067290902137756, -0.03462371230125427, -0.011328408494591713, -0.008251231163740158, 0.0001037965776049532, 0.009036031551659107, 0.1205158457159996, -0.026538899168372154, 0.009782012552022934, -0.049787722527980804, 0.09407184273004532, 0.010236342437565327, 0.022765809670090675, 0.08513537794351578, 0.18228919804096222, -0.0038888822309672832, 0.038145218044519424, -0.2965667247772217, 0.2874391973018646, 0.028810253366827965, 0.11162382364273071, -0.038511089980602264, -0.010787760838866234, 0.030718592926859856, 0.03972284495830536, -0.00017630160436965525, -0.018521972000598907, -0.0433167926967144, -0.17023365199565887, -0.043997567147016525, 0.06333011388778687, 0.11983250081539154, 0.015586628578603268, 0.07757662236690521, -0.000994906760752201, 0.013686909340322018, 0.11196544021368027, -0.05569871887564659, -0.14165763556957245, -0.031168844550848007, -0.06543725728988647, 0.023922830820083618, -0.11617274582386017, -0.06109486147761345, -0.11483928561210632, -0.09982550889253616, 0.10263148695230484, 0.03435896337032318, -0.02428790181875229, -0.11817526072263718, 0.12603870034217834, 0.10927378386259079, -0.05286409705877304, 0.04664028435945511, 0.024571256712079048, 0.0320843867957592, 0.05618475005030632, -0.07899223268032074, 0.1276862472295761, -0.05353706702589989, -0.13371542096138, -0.04885321855545044, 0.03984282538294792, 0.05378555506467819, 0.054698023945093155, -0.03673798218369484, 0.014904085546731949, -0.017365241423249245, -0.10664771497249603, 0.009797539561986923, -0.05564375966787338, 0.030065828934311867, 0.024626081809401512, -0.0326128713786602, 0.0334533154964447, -0.037956804037094116, -0.0074592456221580505, 0.11517249047756195, 0.26178687810897827, -0.07575903087854385, -0.025064973160624504, 0.04835401847958565, -0.07322436571121216, -0.16250626742839813, 0.11598052829504013, 0.07331277430057526, -0.014560003764927387, 0.061978042125701904, -0.17034083604812622, 0.17907166481018066, 0.13632036745548248, -0.016900287941098213, 0.11814984679222107, -0.3239367604255676, -0.15254202485084534, 0.09987705200910568, 0.20155449211597443, 0.1529151052236557, -0.15839852392673492, -0.015282717533409595, -0.03815244883298874, -0.09936083853244781, 0.10519503057003021, -0.19086100161075592, 0.09360921382904053, -0.01280441414564848, 0.09431090950965881, -0.016401611268520355, -0.05781955644488335, 0.127037912607193, 0.030697979032993317, 0.1445409208536148, -0.04178895801305771, 0.017440717667341232, 0.1033431887626648, -0.018853986635804176, -0.00003488764923531562, -0.040948498994112015, 0.026372937485575676, -0.013712157495319843, 0.004223252646625042, -0.07727822661399841, 0.033981870859861374, -0.032969456166028976, -0.06178131699562073, -0.0422259196639061, -0.009285896085202694, -0.004354128614068031, -0.03443393111228943, 0.12870050966739655, 0.06514173001050949, 0.13810543715953827, 0.08702347427606583, 0.005030717700719833, -0.08703433722257614, -0.07477211952209473, 0.025596458464860916, -0.007999968715012074, 0.07732568681240082, -0.2009541392326355, -0.000464040000224486, 0.11630402505397797, 0.029688486829400063, 0.08402982354164124, 0.09678832441568375, -0.05414455756545067, 0.015866359695792198, 0.07154836505651474, -0.149004265666008, -0.09229890257120132, 0.02866196073591709, -0.09061665087938309, -0.07109619677066803, 0.07868772745132446, 0.07742859423160553, -0.08337448537349701, 0.0009016175754368305, -0.004109097644686699, -0.02359820529818535, -0.09871524572372437, 0.2281845062971115, 0.10531555861234665, 0.03035668469965458, -0.1184324249625206, 0.10514075309038162, 0.05063950642943382, -0.030588410794734955, -0.007157488260418177, 0.07541439682245255, -0.05108587071299553, 0.007899853400886059, 0.17047584056854248, 0.23178893327713013, -0.0938410684466362, -0.049491386860609055, -0.1760711818933487, -0.0914759486913681, 0.050592802464962006, 0.1908283233642578, 0.1162431612610817, -0.024439530447125435, -0.028651773929595947, 0.037273652851581573, -0.12960967421531677, 0.05575278773903847, 0.018314285203814507, 0.08895257115364075, -0.1247580349445343, 0.14594534039497375, 0.037907764315605164, 0.028571998700499535, -0.03372268006205559, 0.059439558535814285, -0.1262798011302948, 0.03362651169300079, -0.1539677381515503, -0.06404884904623032, 0.02980838343501091, -0.008469516411423683, 0.008228030055761337, -0.07964687049388885, -0.09236745536327362, 0.0394984595477581, -0.14623676240444183, -0.016818663105368614, 0.06245536729693413, 0.018173232674598694, -0.14352619647979736, -0.017048334702849388, 0.018222805112600327, -0.04669937118887901, 0.03179438039660454, 0.05862627178430557, 0.025535795837640762, 0.10244254022836685, -0.20047661662101746, -0.015254323370754719, 0.06848045438528061, 0.0012148882960900664, 0.10057365149259567, -0.019434496760368347, -0.024446088820695877, -0.016892394050955772, 0.14331315457820892, -0.0008595422841608524, 0.07770751416683197, -0.1278674453496933, -0.006102410610765219, -0.06659901887178421, -0.08328790217638016, -0.042796023190021515, -0.001601433614268899, 0.0904908999800682, 0.036097511649131775, 0.16131757199764252, -0.06593330949544907, 0.006697486620396376, -0.22697097063064575, -0.006238259840756655, -0.011803258210420609, -0.07943793386220932, -0.11339018493890762, -0.046074382960796356, 0.067960724234581, -0.066007100045681, 0.15112470090389252, 0.038990844041109085, 0.059872426092624664, 0.03278486430644989, 0.01587391458451748, 0.0008737551979720592, 0.03587125614285469, 0.22602808475494385, 0.0329098142683506, -0.004792256746441126, 0.06422502547502518, 0.08672970533370972, 0.127942755818367, 0.0661083236336708, 0.2198687195777893, 0.15235640108585358, -0.038630593568086624, 0.11765633523464203, 0.067978136241436, -0.06877285242080688, -0.10610421001911163, 0.08706481754779816, -0.03935465216636658, 0.07809867709875107, -0.02668909542262554, 0.2155708372592926, 0.0691828727722168, -0.14695270359516144, 0.031644947826862335, -0.04196229204535484, -0.09524586796760559, -0.10689105093479156, 0.04497221112251282, -0.07055508345365524, -0.19974589347839355, 0.021998535841703415, -0.10106215626001358, 0.015683826059103012, 0.16483137011528015, 0.003272548783570528, 0.0009224414825439453, 0.18307945132255554, 0.0764879360795021, 0.047250837087631226, 0.01829802617430687, -0.002695309929549694, -0.042007625102996826, -0.09696334600448608, -0.07866707444190979, -0.023723065853118896, -0.008092612028121948, 0.025656823068857193, -0.056904349476099014, -0.0950460433959961, 0.05031770095229149, -0.005682405084371567, -0.08896342664957047, 0.026101838797330856, 0.02638264000415802, 0.0668964758515358, 0.006047604139894247, -0.002330778632313013, 0.01345898024737835, -0.02884598635137081, 0.2196987420320511, -0.08199190348386765, -0.1024949923157692, -0.07719624787569046, 0.21494688093662262, 0.019403088837862015, -0.008690168149769306, 0.013483465649187565, -0.08523105084896088, -0.025673767551779747, 0.19122935831546783, 0.16608385741710663, -0.13103219866752625, -0.027134839445352554, -0.012622796930372715, -0.027837976813316345, -0.09204316139221191, 0.15569181740283966, 0.12390751391649246, 0.022468898445367813, -0.12059023231267929, -0.05202925577759743, -0.05827963352203369, -0.01723971590399742, -0.05526116490364075, 0.02927376888692379, 0.0481877438724041, 0.004689264576882124, -0.04679185524582863, 0.07542306929826736, -0.056354910135269165, -0.12498347461223602, 0.08311497420072556, -0.15635906159877777, -0.17808377742767334, -0.011975537054240704, 0.14862051606178284, -0.029484769329428673, 0.0613105334341526, -0.05161607265472412, 0.0009524389170110226, 0.04902667552232742, -0.0488528311252594, -0.09630722552537918, -0.14028818905353546, 0.11464837938547134, -0.14330962300300598, 0.21392822265625, -0.034461889415979385, 0.11602674424648285, 0.11061705648899078, 0.05594107136130333, -0.07908351719379425, 0.055159468203783035, 0.025144677609205246, -0.13687916100025177, -0.009204130619764328, 0.09589709341526031, -0.03897557780146599, 0.02016465552151203, 0.01676752232015133, -0.09773531556129456, 0.020140383392572403, -0.04061390832066536, -0.0366109162569046, -0.056843649595975876, -0.10074816644191742, -0.08743268251419067, 0.08411793410778046, 0.1866416484117508, -0.010630950331687927, 0.053910285234451294, -0.08908300846815109, 0.03493453934788704, 0.07020111382007599, 0.0468175932765007, -0.07122141867876053, -0.24065940082073212, 0.03952772915363312, 0.13229911029338837, -0.0692179873585701, -0.19285482168197632, -0.08199871331453323, 0.03570295125246048, -0.08391833305358887, -0.0838150754570961, 0.07162336260080338, 0.12934909760951996, 0.06918689608573914, -0.04878900572657585, -0.15370897948741913, -0.10076165199279785, 0.14154326915740967, -0.1595526784658432, -0.10283856093883514 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
l3loom/openai-whisper-large-v2-LORA-TEST3
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T23:55:31+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
prasadkanche/prasad_mistral_7b
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T23:59:16+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
sentence-transformers
# Overview The model [sentence-croissant-llm-base](https://huggingface.co/Wissam42/sentence-croissant-llm-base) is designed to generate French text embeddings. It has been fine-tuned using the very recent pre-trained LLM [croissantllm/CroissantLLMBase](https://huggingface.co/croissantllm/CroissantLLMBase) with the strategy of Siamese-BERT implemented in the library ['sentences-transformers'](https://www.sbert.net/). The fine tuning dataset used is the French training split of [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/fr/train). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("Wissam42/sentence-croissant-llm-base") sentences = ["Le chat mange la souris", "Un felin devore un rongeur", "Je travaille sur un ordinateur", "Je developpe sur mon pc"] embeddings = model.encode(sentences) print(embeddings) ``` ## Citing & Authors @article{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Faysse, Manuel and Fernandes, Patrick and Guerreiro, Nuno and Loison, Ant{\'o}nio and Alves, Duarte and Corro, Caio and Boizard, Nicolas and Alves, Jo{\~a}o and Rei, Ricardo and Martins, Pedro and others}, journal={arXiv preprint arXiv:2402.00786}, year={2024} } @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={https://arxiv.org/abs/1908.10084}, year={2019} }
{"language": "fr", "license": "mit", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["stsb_multi_mt"], "pipeline_tag": "sentence-similarity", "model-index": [{"name": "sentence-croissant-llm-base by Wissam Siblini", "results": [{"task": {"type": "Text Similarity", "name": "Sentence-Embedding"}, "dataset": {"name": "Text Similarity fr", "type": "stsb_multi_mt", "args": "fr"}, "metrics": [{"type": "Pearson_correlation_coefficient", "value": "xx.xx", "name": "Test Pearson correlation coefficient"}]}]}]}
sentence-similarity
Wissam42/sentence-croissant-llm-base
[ "sentence-transformers", "pytorch", "llama", "feature-extraction", "sentence-similarity", "transformers", "fr", "dataset:stsb_multi_mt", "arxiv:1908.10084", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
2024-02-07T00:03:21+00:00
[ "1908.10084" ]
[ "fr" ]
TAGS #sentence-transformers #pytorch #llama #feature-extraction #sentence-similarity #transformers #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-mit #model-index #endpoints_compatible #region-us
# Overview The model sentence-croissant-llm-base is designed to generate French text embeddings. It has been fine-tuned using the very recent pre-trained LLM croissantllm/CroissantLLMBase with the strategy of Siamese-BERT implemented in the library 'sentences-transformers'. The fine tuning dataset used is the French training split of stsb. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Citing & Authors @article{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Faysse, Manuel and Fernandes, Patrick and Guerreiro, Nuno and Loison, Ant{\'o}nio and Alves, Duarte and Corro, Caio and Boizard, Nicolas and Alves, Jo{\~a}o and Rei, Ricardo and Martins, Pedro and others}, journal={arXiv preprint arXiv:2402.00786}, year={2024} } @article{reimers2019sentence, title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, author={Nils Reimers, Iryna Gurevych}, journal={URL year={2019} }
[ "# Overview\n\nThe model sentence-croissant-llm-base is designed to generate French text embeddings. It has been fine-tuned using the very recent pre-trained LLM croissantllm/CroissantLLMBase with the strategy of Siamese-BERT implemented in the library 'sentences-transformers'. The fine tuning dataset used is the French training split of stsb.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Citing & Authors\n\n\t@article{faysse2024croissantllm,\n title={CroissantLLM: A Truly Bilingual French-English Language Model},\n author={Faysse, Manuel and Fernandes, Patrick and Guerreiro, Nuno and Loison, Ant{\\'o}nio and Alves, Duarte and Corro, Caio and Boizard, Nicolas and Alves, Jo{\\~a}o and Rei, Ricardo and Martins, Pedro and others},\n journal={arXiv preprint arXiv:2402.00786},\n year={2024}\n }\n\n\t@article{reimers2019sentence,\n\t title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},\n\t author={Nils Reimers, Iryna Gurevych},\n\t journal={URL\n\t year={2019}\n\t}" ]
[ "TAGS\n#sentence-transformers #pytorch #llama #feature-extraction #sentence-similarity #transformers #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-mit #model-index #endpoints_compatible #region-us \n", "# Overview\n\nThe model sentence-croissant-llm-base is designed to generate French text embeddings. It has been fine-tuned using the very recent pre-trained LLM croissantllm/CroissantLLMBase with the strategy of Siamese-BERT implemented in the library 'sentences-transformers'. The fine tuning dataset used is the French training split of stsb.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Citing & Authors\n\n\t@article{faysse2024croissantllm,\n title={CroissantLLM: A Truly Bilingual French-English Language Model},\n author={Faysse, Manuel and Fernandes, Patrick and Guerreiro, Nuno and Loison, Ant{\\'o}nio and Alves, Duarte and Corro, Caio and Boizard, Nicolas and Alves, Jo{\\~a}o and Rei, Ricardo and Martins, Pedro and others},\n journal={arXiv preprint arXiv:2402.00786},\n year={2024}\n }\n\n\t@article{reimers2019sentence,\n\t title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},\n\t author={Nils Reimers, Iryna Gurevych},\n\t journal={URL\n\t year={2019}\n\t}" ]
[ 74, 93, 38, 198 ]
[ "passage: TAGS\n#sentence-transformers #pytorch #llama #feature-extraction #sentence-similarity #transformers #fr #dataset-stsb_multi_mt #arxiv-1908.10084 #license-mit #model-index #endpoints_compatible #region-us \n# Overview\n\nThe model sentence-croissant-llm-base is designed to generate French text embeddings. It has been fine-tuned using the very recent pre-trained LLM croissantllm/CroissantLLMBase with the strategy of Siamese-BERT implemented in the library 'sentences-transformers'. The fine tuning dataset used is the French training split of stsb.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Citing & Authors\n\n\t@article{faysse2024croissantllm,\n title={CroissantLLM: A Truly Bilingual French-English Language Model},\n author={Faysse, Manuel and Fernandes, Patrick and Guerreiro, Nuno and Loison, Ant{\\'o}nio and Alves, Duarte and Corro, Caio and Boizard, Nicolas and Alves, Jo{\\~a}o and Rei, Ricardo and Martins, Pedro and others},\n journal={arXiv preprint arXiv:2402.00786},\n year={2024}\n }\n\n\t@article{reimers2019sentence,\n\t title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},\n\t author={Nils Reimers, Iryna Gurevych},\n\t journal={URL\n\t year={2019}\n\t}" ]
[ -0.004781375173479319, 0.1395406872034073, -0.007293256931006908, 0.07059013098478317, 0.03794998303055763, 0.005667752120643854, 0.1351749300956726, 0.0449385829269886, -0.06027562543749809, 0.07638467103242874, 0.06727522611618042, 0.12911556661128998, 0.03956187516450882, -0.05517919361591339, -0.03070611134171486, -0.26138272881507874, 0.042672719806432724, -0.060181085020303726, -0.060761459171772, 0.08751646429300308, 0.16793008148670197, -0.029324384406208992, 0.07952684164047241, -0.009572594426572323, 0.013656514696776867, 0.02621474117040634, -0.02541237697005272, -0.06645218282938004, 0.12176179885864258, 0.12796413898468018, 0.12657441198825836, 0.08748853951692581, 0.06474962830543518, -0.24140805006027222, 0.011112477630376816, 0.04526346176862717, -0.025671305134892464, 0.023949556052684784, 0.029166432097554207, -0.0635635107755661, 0.13410206139087677, -0.13693176209926605, 0.07484079152345657, -0.020590946078300476, -0.16827155649662018, -0.03958679363131523, -0.09248139709234238, 0.02046213112771511, 0.011180619709193707, 0.07095726579427719, -0.01940835453569889, -0.0017555082449689507, -0.03587108477950096, 0.03297102823853493, 0.18163815140724182, -0.22009479999542236, -0.08710804581642151, -0.0420958548784256, 0.1333087980747223, 0.11775632202625275, -0.09563756734132767, 0.05175235494971275, -0.008813099004328251, 0.0135604003444314, -0.012866999953985214, -0.07210154831409454, 0.08728902786970139, 0.020942125469446182, -0.10254272073507309, -0.048278480768203735, 0.12937647104263306, -0.0007770187803544104, -0.04459428787231445, -0.07666055113077164, -0.031699322164058685, 0.07131422311067581, -0.07991286367177963, -0.13025182485580444, 0.06227825954556465, 0.002812783233821392, 0.10835693031549454, -0.0578870065510273, -0.08047576993703842, 0.030294470489025116, -0.07639976590871811, 0.11384791135787964, 0.0026152560021728277, -0.059764064848423004, 0.038505494594573975, 0.007622727192938328, -0.03484839200973511, -0.09794272482395172, -0.024257689714431763, -0.06979253888130188, 0.003716394305229187, 0.011934220790863037, -0.026417281478643417, 0.023559726774692535, 0.05305490642786026, 0.11675431579351425, -0.09573467075824738, 0.00023912067990750074, -0.009408575482666492, 0.028890926390886307, 0.019020017236471176, 0.13695795834064484, -0.0504072830080986, -0.12616832554340363, -0.06642109900712967, 0.0276186466217041, -0.027698885649442673, 0.0076052541844546795, -0.06205808371305466, -0.015028540976345539, -0.05523431673645973, 0.01906338334083557, 0.05902791768312454, -0.05514134094119072, -0.056576721370220184, -0.03027755208313465, 0.08781881630420685, -0.09163850545883179, 0.04384538531303406, 0.027368852868676186, -0.025968948379158974, 0.11781837791204453, -0.01842973195016384, 0.05538423731923103, -0.05947257578372955, 0.04669957980513573, -0.05442080646753311, -0.043335407972335815, -0.02666461281478405, -0.16221638023853302, 0.005745866801589727, -0.06168161705136299, -0.03458530083298683, -0.07598236948251724, 0.025646215304732323, -0.11504582315683365, 0.07474540919065475, -0.07784833759069443, -0.028115568682551384, -0.13732701539993286, -0.0011801107320934534, 0.04018702730536461, 0.050701308995485306, -0.07523828744888306, -0.03654308244585991, 0.018915284425020218, -0.09563272446393967, 0.05827677994966507, -0.03891342505812645, 0.04480168968439102, -0.03188403695821762, 0.009051702916622162, -0.043655116111040115, 0.11441317200660706, -0.04264897480607033, -0.02110380493104458, -0.1494714915752411, -0.05540035292506218, 0.0066880350932478905, 0.07929274439811707, 0.014090116135776043, 0.1336158812046051, -0.12118881195783615, -0.07221821695566177, 0.155562162399292, -0.046463921666145325, -0.026467185467481613, 0.12772800028324127, -0.02787846140563488, 0.059710320085287094, 0.11056095361709595, 0.02810102514922619, 0.08355509489774704, -0.06893154233694077, 0.051109496504068375, -0.0062523637898266315, 0.11113906651735306, 0.1490006297826767, 0.13177376985549927, -0.03389934450387955, 0.04029268026351929, -0.03944285959005356, -0.10468313097953796, -0.05972284823656082, -0.02798929624259472, -0.06499224901199341, 0.05593882501125336, 0.024617938324809074, 0.0634007453918457, 0.004637680947780609, -0.037578605115413666, -0.0016713780350983143, -0.12026956677436829, -0.01074153184890747, 0.02415548451244831, -0.04076920077204704, -0.003036216367036104, -0.03861778974533081, 0.01650928147137165, 0.0920882299542427, -0.009231197647750378, -0.1074550449848175, -0.09296131879091263, 0.01634359546005726, 0.06582856178283691, 0.097526915371418, 0.06751354038715363, 0.022895189002156258, 0.06195227801799774, -0.018889565020799637, 0.04182134568691254, -0.054184384644031525, -0.02963486686348915, 0.010986676439642906, -0.19074232876300812, 0.08276369422674179, -0.0596066415309906, 0.1346462368965149, -0.17062553763389587, 0.004029429983347654, 0.03175582364201546, 0.04918619245290756, 0.027053963392972946, 0.012494361959397793, -0.07851377129554749, 0.061034586280584335, -0.0398530438542366, 0.008180784061551094, 0.06672407686710358, -0.019554156810045242, -0.029445238411426544, 0.13121752440929413, -0.10858753323554993, -0.0985947772860527, 0.06563196331262589, -0.06615190207958221, -0.07326371967792511, -0.08109883964061737, -0.049688179045915604, 0.01881830021739006, 0.03134646639227867, -0.023912226781249046, 0.19384518265724182, 0.05320923402905464, 0.08700551092624664, -0.12553931772708893, -0.035617951303720474, -0.00850550178438425, -0.0409296415746212, -0.09417606890201569, 0.14088808000087738, 0.02973210997879505, -0.10597951710224152, 0.09259337931871414, 0.16739590466022491, 0.0011308507528156042, 0.11407947540283203, 0.015302315354347229, -0.0673360824584961, -0.05187638849020004, 0.044963449239730835, 0.019908037036657333, -0.015922537073493004, -0.04629610478878021, 0.000006803673386457376, 0.024492207914590836, -0.03804558888077736, 0.0001698895648587495, -0.12530092895030975, 0.007314631715416908, 0.0567021369934082, -0.02678886242210865, 0.010279223322868347, 0.011826426722109318, -0.002917003119364381, 0.1032906025648117, 0.07531771063804626, -0.13936877250671387, -0.06537923216819763, -0.022539619356393814, -0.06656398624181747, 0.14094573259353638, -0.11260415613651276, -0.24664412438869476, -0.09193538129329681, -0.06040806323289871, -0.07804083079099655, 0.030491523444652557, 0.034329239279031754, -0.07577069848775864, -0.020614255219697952, -0.041729237884283066, 0.015637949109077454, 0.010583234950900078, -0.06726500391960144, -0.006924547720700502, 0.029944786801934242, -0.08172944188117981, -0.0994608998298645, -0.033074311912059784, -0.014397668652236462, -0.0761369988322258, -0.06054754555225372, -0.0856146588921547, 0.11228713393211365, 0.10807348787784576, 0.02017870917916298, -0.032642945647239685, 0.0037692978512495756, 0.2712923288345337, -0.10153693705797195, 0.03995088115334511, 0.08919347077608109, 0.025460397824645042, 0.073672354221344, 0.16153651475906372, 0.03988778218626976, -0.021016309037804604, -0.01000133715569973, 0.06361734122037888, -0.015994735062122345, -0.23701730370521545, -0.11499275267124176, -0.05907777324318886, -0.07990007102489471, 0.10125405341386795, 0.03332565724849701, 0.06223715469241142, 0.05514726787805557, -0.07248252630233765, 0.01635761372745037, 0.1301141232252121, 0.08795115351676941, 0.20414750277996063, 0.005301957484334707, 0.07337206602096558, -0.023157112300395966, -0.12743760645389557, 0.09098696708679199, 0.00849415734410286, 0.10038831830024719, 0.10010232031345367, 0.1786813586950302, 0.08153606951236725, -0.0013949483400210738, -0.04080909118056297, 0.015629708766937256, 0.00817020796239376, 0.03402388095855713, -0.09242648631334305, -0.08398229628801346, 0.009806052781641483, 0.09430324286222458, 0.06393712759017944, -0.10771191120147705, -0.059218429028987885, 0.0004085981345269829, 0.07379939407110214, 0.13604892790317535, 0.037853654474020004, -0.17941468954086304, -0.019534647464752197, 0.032414693385362625, -0.022554738447070122, -0.07434406876564026, 0.014633762650191784, 0.03183593973517418, -0.09109267592430115, 0.04879997670650482, 0.02900087647140026, 0.09950798004865646, -0.044128041714429855, 0.02719300240278244, -0.018275797367095947, 0.011216795071959496, 0.0067464751191437244, 0.04527842253446579, -0.1746082752943039, 0.2710888087749481, 0.010418481193482876, -0.035433653742074966, -0.01924060843884945, 0.015775801613926888, 0.011617220006883144, 0.10250978171825409, 0.17490658164024353, 0.0033624693751335144, -0.06150614470243454, 0.05133749544620514, 0.00013182914699427783, -0.01083724107593298, 0.11515205353498459, -0.143743634223938, 0.08898863941431046, -0.05289899930357933, -0.024645738303661346, -0.013473079539835453, 0.024055777117609978, -0.1153445690870285, -0.25385212898254395, 0.05508730933070183, -0.04081879183650017, 0.030123023316264153, -0.012597550638020039, -0.08826017379760742, -0.0844012126326561, 0.15930332243442535, -0.10834447294473648, -0.008245357312262058, -0.09825989603996277, -0.024124078452587128, 0.07211938500404358, -0.07846285402774811, 0.005314873531460762, -0.03823969513177872, 0.12154095619916916, -0.09022152423858643, 0.03401999548077583, 0.05786718428134918, -0.0670911967754364, -0.0738781988620758, -0.05034330487251282, 0.1388745903968811, 0.0737135112285614, 0.055439870804548264, 0.07187452167272568, 0.0660201907157898, -0.021623874083161354, -0.11171858757734299, -0.049853626638650894, -0.02572343870997429, 0.015074360184371471, 0.034139957278966904, -0.16773243248462677, -0.05174155533313751, -0.14226111769676208, -0.03575738146901131, 0.19741682708263397, 0.1510997712612152, -0.03880753368139267, 0.12455404549837112, 0.17692528665065765, -0.12853015959262848, -0.20704205334186554, -0.10997743904590607, 0.07628132402896881, -0.008042966946959496, -0.03229273110628128, -0.21519839763641357, -0.023296868428587914, 0.05132754519581795, 0.01893485151231289, -0.12612628936767578, -0.2792583107948303, -0.09555591642856598, 0.06739921867847443, 0.02212783880531788, 0.059326376765966415, -0.10938699543476105, -0.044337768107652664, -0.08762692660093307, -0.06992388516664505, 0.15905515849590302, 0.03757476061582565, 0.07021474838256836, 0.05867990106344223, -0.0438399463891983, 0.014475034549832344, 0.031641725450754166, 0.20228208601474762, 0.03720712661743164, -0.008068754337728024, -0.04977266862988472, -0.150038942694664, 0.020516840741038322, -0.002077575773000717, -0.012085851281881332, -0.026123028248548508, -0.005240954924374819, -0.09636510163545609, -0.050019457936286926, -0.06561698764562607, 0.01299536507576704, -0.10599540174007416, -0.023516416549682617, -0.06098312512040138, 0.08882851153612137, 0.10904594510793686, 0.008949041366577148, 0.04597732424736023, -0.09193135052919388, 0.05404023081064224, 0.07300858199596405, 0.11110200732946396, 0.06039522960782051, -0.05672266334295273, 0.015041456557810307, 0.02935088239610195, 0.025820519775152206, -0.0782037302851677, 0.05340680107474327, 0.13582603633403778, -0.04175078123807907, 0.15840207040309906, 0.010349876247346401, -0.05885113775730133, -0.05682126805186272, 0.0879841148853302, -0.08053817600011826, -0.14493505656719208, -0.06574893742799759, -0.02683906815946102, -0.024906786158680916, -0.1504705399274826, 0.19648995995521545, -0.0015068843495100737, -0.03912926837801933, 0.003926342818886042, 0.05178021639585495, -0.028551405295729637, 0.07698030024766922, -0.0067813582718372345, 0.017631400376558304, -0.05892090126872063, -0.026576947420835495, 0.13625478744506836, -0.12691859900951385, -0.014237024821341038, 0.1760059893131256, -0.007766218855977058, -0.04854733496904373, -0.03607172146439552, 0.09805331379175186, -0.1766737699508667, -0.027880022302269936, -0.07920752465724945, -0.09471119940280914, 0.055305179208517075, 0.11353534460067749, 0.012182599864900112, 0.027561958879232407, -0.00796303991228342, -0.07566658407449722, -0.019719639793038368, 0.05504336580634117, 0.08971966803073883, -0.035380586981773376, 0.033934660255908966, 0.002022397005930543, -0.024414749816060066, 0.008188271895051003, -0.008290085010230541, -0.02654476836323738, -0.11578048020601273, -0.029733862727880478, -0.0670202374458313, 0.05986884608864784, -0.05575033649802208, 0.005655687302350998, -0.011570721864700317, -0.042503971606492996, -0.02501506917178631, -0.0556989461183548, -0.07103657722473145, 0.001344562042504549, -0.015742124989628792, 0.13839782774448395, -0.12294110655784607, 0.004187355749309063, 0.08531849086284637, -0.06882012635469437, 0.013309535570442677, -0.06964050978422165, -0.02007531374692917, 0.036028772592544556, -0.2220548689365387, 0.01959495060145855, -0.0588407926261425, 0.07054659724235535, 0.01481117494404316, -0.177812397480011, 0.0400591604411602, 0.01770119182765484, -0.026043009012937546, -0.005886792670935392, -0.0019809079822152853, -0.052185285836458206, 0.02249513939023018, 0.009629090316593647, -0.1733383685350418, -0.017072245478630066, 0.052517812699079514, 0.08220066130161285, -0.00439461087808013, 0.13323894143104553, -0.060175295919179916, 0.07757388055324554, -0.07370001822710037, 0.008780108764767647, 0.008723500184714794, -0.049549661576747894, -0.012590866535902023, -0.1287361979484558, 0.02914099395275116, 0.03532687574625015, 0.08936680108308792, 0.04663078486919403, 0.05907436087727547, 0.05119969695806503, -0.0712951272726059, -0.07646772265434265, 0.05544460192322731, 0.027955835685133934, 0.10444274544715881, -0.012464208528399467, -0.07031815499067307, -0.011397617869079113, 0.026617398485541344, 0.08508024364709854, 0.12414766848087311, 0.20172147452831268, 0.25135520100593567, 0.07095196843147278, 0.1119355633854866, -0.018440689891576767, 0.03814486786723137, 0.10647972673177719, 0.07557453215122223, 0.033980678766965866, -0.0958300456404686, 0.05005164444446564, 0.11253134906291962, -0.19141972064971924, 0.11647630482912064, -0.025085529312491417, -0.0740375742316246, -0.12455715239048004, 0.0003140275366604328, -0.08338738232851028, -0.01768447272479534, -0.03018864616751671, -0.11577331274747849, 0.06522975116968155, -0.012590501457452774, 0.050371963530778885, -0.014391861855983734, -0.00271758995950222, -0.11309229582548141, -0.10580034554004669, 0.12305071949958801, 0.02054496295750141, 0.15214766561985016, -0.06195918843150139, 0.0023338953033089638, -0.04497798904776573, 0.06153203547000885, 0.01814584992825985, 0.07261359691619873, 0.0668867826461792, -0.014400606043636799, -0.08519420027732849, -0.07546186447143555, 0.015486931428313255, 0.01675945706665516, 0.017922574654221535, 0.1640596091747284, 0.011722223833203316, -0.0517582967877388, 0.06301376968622208, 0.14831137657165527, 0.011235014535486698, -0.13253545761108398, -0.18609502911567688, 0.08941275626420975, 0.07485810667276382, 0.08968105167150497, 0.011180387809872627, -0.0306699238717556, -0.010981572791934013, 0.1278695911169052, 0.23633524775505066, -0.05381133034825325, 0.01905570738017559, 0.05771994963288307, 0.060225825756788254, 0.12076319754123688, -0.01326317060738802, 0.05762920528650284, 0.27307024598121643, -0.07376671582460403, -0.025098908692598343, -0.06557577848434448, 0.01773848570883274, -0.05232775956392288, 0.15435467660427094, 0.08117227256298065, -0.0028178710490465164, -0.01455354318022728, 0.15853232145309448, -0.009236318059265614, -0.20823253691196442, 0.03958822414278984, -0.1843903809785843, -0.11159662902355194, -0.05164289474487305, -0.008965829387307167, 0.049984995275735855, 0.10299532115459442, 0.06404288858175278, -0.13555262982845306, 0.10507916659116745, 0.01645941659808159, -0.04962209612131119, -0.00709260068833828, 0.09746962040662766, -0.020186569541692734, 0.1999538242816925, -0.010500741191208363, 0.05270257964730263, 0.11041310429573059, 0.007670885417610407, -0.011332581751048565, -0.003567315638065338, 0.08364783227443695, -0.0014469203306362033, 0.04253897815942764, -0.017957216128706932, -0.0401400551199913, 0.04803265258669853, 0.09455063194036484, -0.10830443352460861, 0.11408171057701111, -0.009493187069892883, -0.1001155897974968, -0.021525058895349503, 0.09513562172651291, -0.14779236912727356, 0.0794166699051857, 0.21137116849422455, 0.026856910437345505, 0.013102859258651733, -0.0341644287109375, 0.03116372600197792, 0.004964410327374935, 0.1162649393081665, -0.026705427095294, -0.142459899187088, 0.032915785908699036, -0.020792324095964432, 0.07751291245222092, -0.23655375838279724, -0.06764724105596542, 0.019045831635594368, 0.03721167519688606, -0.03967725485563278, 0.0980217456817627, 0.07309231162071228, -0.02642151154577732, -0.04371778294444084, -0.20084930956363678, -0.005982463248074055, 0.10119146853685379, -0.013294207863509655, 0.0010023163631558418 ]
null
null
diffusers
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use `Book cover of a vintage romance novel`, `Cover of a Harlequin romance novel` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/the-wizard-s-vintage-romance-novel/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/the-wizard-s-vintage-romance-novel', weight_name='wizards_vintage_romance.safetensors') image = pipeline('book cover of a vintage romance novel depicting John Legend').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Book cover of a vintage romance novel", "widget": [{"text": "book cover of a vintage romance novel depicting kanye west in a romantic scene with kanye west", "output": {"url": "5033837.jpeg"}}, {"text": "book cover of a harlequin romance novel book cover of a vintage romance novel called \"praise the sun\", depicting Solaire of Astora from dark souls with both hands stretched up", "output": {"url": "5033836.jpeg"}}, {"text": "book cover of a vintage romance novel called \"a real man a tee\" depicting a manatee casanova", "output": {"url": "5033831.jpeg"}}, {"text": " ", "output": {"url": "5033820.jpeg"}}, {"text": "book cover of a vintage romance novel depicting John Legend", "output": {"url": "5033958.jpeg"}}]}
text-to-image
WizWhite/the-wizard-s-vintage-romance-novel
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:07:49+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 78, 14, 208, 34, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# The Wizard's Vintage Romance Novel \n\n<Gallery />## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.05321831628680229, 0.14669254422187805, -0.004502041265368462, 0.08079151064157486, -0.029933059588074684, 0.10577622801065445, 0.06477154791355133, 0.09510701149702072, 0.011646539904177189, 0.08814748376607895, -0.06371841579675674, 0.019155219197273254, 0.11237654834985733, 0.11551177501678467, -0.0010364102199673653, -0.22339099645614624, 0.010180611163377762, -0.04324489086866379, 0.04303957149386406, 0.0625455230474472, 0.10128665715456009, -0.017063045874238014, 0.06576608866453171, -0.017759541049599648, 0.05451653152704239, 0.022510027512907982, -0.013151939027011395, -0.01243155263364315, 0.031349290162324905, 0.09428945183753967, 0.06795656681060791, 0.03351213037967682, 0.10839696228504181, -0.266926109790802, 0.019879736006259918, 0.08084052056074142, -0.0978420078754425, -0.014702456071972847, 0.16044500470161438, -0.11349025368690491, 0.1880626529455185, -0.11783038824796677, 0.07790586352348328, 0.034112900495529175, -0.0384993813931942, -0.07885919511318207, -0.1954290121793747, 0.23864255845546722, 0.09623387455940247, 0.008940339088439941, 0.02164599299430847, 0.014341361820697784, -0.027347933501005173, -0.038675349205732346, 0.27720099687576294, -0.1729094535112381, -0.05388390272855759, 0.060978811234235764, 0.04898742586374283, 0.06550806760787964, -0.14964692294597626, 0.04815918952226639, -0.04405101016163826, 0.025625813752412796, 0.017671914771199226, -0.0006661558290943503, 0.22553475201129913, 0.016948848962783813, -0.09919431060552597, -0.03811253234744072, 0.1204286590218544, -0.02031622640788555, -0.05184183269739151, -0.12438511103391647, -0.011047192849218845, 0.15827436745166779, -0.0907370075583458, -0.059587206691503525, 0.035615794360637665, -0.014309861697256565, 0.02693103812634945, -0.13623739778995514, -0.06446903944015503, -0.04862421751022339, -0.00271399412304163, 0.08695939183235168, 0.014321497641503811, -0.03794339299201965, 0.06442253291606903, 0.09413876384496689, -0.05893079936504364, 0.0003298760566394776, 0.009257950820028782, -0.10610733926296234, -0.0347614660859108, -0.03158413618803024, -0.026037851348519325, -0.018727310001850128, 0.03667706251144409, 0.17049738764762878, 0.01776425912976265, 0.01399908121675253, -0.03340549394488335, -0.009536413475871086, 0.011784153990447521, 0.07418246567249298, -0.03395622596144676, -0.20987409353256226, 0.02220064215362072, 0.07835803180932999, 0.09452329576015472, -0.0008603720343671739, 0.014689458534121513, -0.12248777598142624, -0.007499030791223049, 0.026480745524168015, 0.13280563056468964, -0.010149382054805756, -0.03184062987565994, -0.010172813199460506, 0.17929892241954803, -0.10268297046422958, 0.04850778728723526, 0.031034735962748528, 0.0058097513392567635, 0.04931523650884628, 0.04208367317914963, -0.014926578849554062, -0.05074848234653473, 0.09546711295843124, -0.07258257269859314, -0.07158969342708588, -0.006964302621781826, -0.06605303287506104, 0.009416364133358002, 0.030285310000181198, -0.10763920843601227, -0.01594468019902706, -0.09428567439317703, -0.0639868974685669, 0.011601072736084461, -0.06397758424282074, -0.04825146868824959, -0.04287203773856163, -0.01895194500684738, 0.013326741755008698, 0.08904442191123962, 0.04893078655004501, -0.00926380418241024, 0.04676220566034317, -0.126156747341156, 0.058958396315574646, 0.07191915810108185, 0.027445003390312195, 0.03401646390557289, 0.04954657703638077, -0.30111581087112427, 0.10338596999645233, -0.10123956203460693, -0.0003184778324794024, -0.09845469892024994, -0.0463876947760582, -0.01999659650027752, -0.012287483550608158, -0.07519489526748657, 0.08853600919246674, -0.16202682256698608, -0.06580379605293274, 0.14436431229114532, -0.14059661328792572, -0.0077738044783473015, 0.11649549007415771, -0.03659859299659729, 0.021098962053656578, 0.10776852816343307, 0.16187764704227448, 0.20346596837043762, -0.07648364454507828, -0.07567443698644638, -0.07652169466018677, -0.04972660169005394, 0.1980353146791458, 0.02377224527299404, -0.10837942361831665, 0.00797627680003643, 0.00014688659575767815, -0.215581476688385, -0.1299477368593216, 0.05467606708407402, -0.02173520065844059, 0.006420244928449392, 0.013012540526688099, 0.08888893574476242, -0.047380756586790085, -0.06880936026573181, -0.018590575084090233, -0.0770680159330368, -0.09505660831928253, 0.08072634041309357, -0.015011897310614586, 0.06786804646253586, -0.0015096500283107162, 0.08397693186998367, 0.1079651266336441, 0.029396001249551773, -0.05914023518562317, -0.029893500730395317, 0.04261212795972824, -0.09927863627672195, 0.04872962087392807, -0.0260609220713377, 0.040615156292915344, 0.024232611060142517, -0.12831926345825195, 0.014656567014753819, -0.004484562668949366, -0.044163141399621964, -0.07959317415952682, -0.17766673862934113, -0.08520229160785675, 0.013628458604216576, 0.1571706086397171, -0.1474684625864029, 0.031249308958649635, -0.012322181835770607, 0.11353558301925659, -0.023724131286144257, 0.005995760206133127, 0.012328391894698143, -0.03289732336997986, -0.03453351557254791, -0.03855626657605171, -0.012944747693836689, -0.031241020187735558, -0.056257277727127075, 0.05210423842072487, -0.14218762516975403, -0.159774050116539, 0.07842213660478592, 0.049029309302568436, -0.07018033415079117, -0.14410105347633362, -0.01697435975074768, -0.0007302348967641592, -0.07181360572576523, -0.046579472720623016, 0.10024859011173248, 0.044666606932878494, 0.001854764181189239, -0.09578494727611542, -0.05029650405049324, -0.08782697468996048, -0.016513200476765633, -0.10236818343400955, 0.0857929214835167, -0.05675756186246872, -0.13332150876522064, 0.023715579882264137, 0.033960629254579544, -0.0002833972976077348, 0.07518674433231354, 0.09324659407138824, -0.07453864812850952, 0.020497336983680725, -0.03424213454127312, 0.08654914051294327, 0.017360886558890343, 0.09116718918085098, 0.06361733376979828, 0.04851880669593811, -0.046750105917453766, -0.004101996775716543, -0.061475902795791626, -0.023077473044395447, 0.0095299007371068, -0.06445150077342987, -0.03000110201537609, -0.010900977067649364, 0.03825749456882477, 0.09738853573799133, 0.05785394832491875, 0.14658357203006744, -0.060970794409513474, -0.04600439965724945, -0.08310773968696594, 0.04877781867980957, -0.10047570616006851, -0.07346770167350769, -0.11913394927978516, 0.0011496137594804168, -0.010784938000142574, 0.015567008405923843, 0.0029432971496134996, -0.03890599310398102, -0.05219300463795662, -0.10327281057834625, 0.07607675343751907, -0.03970371186733246, -0.07469083368778229, -0.09619191288948059, 0.047150809317827225, -0.04694540426135063, -0.12067805975675583, 0.00910456757992506, 0.021205252036452293, -0.09950970858335495, -0.008368424139916897, -0.056365448981523514, 0.10826396942138672, 0.041478611528873444, 0.00004517184788710438, -0.03616640344262123, -0.020974276587367058, 0.07561168819665909, -0.07631100714206696, 0.12657538056373596, 0.05825069919228554, 0.06504117697477341, 0.13049109280109406, 0.15319597721099854, -0.020902644842863083, 0.016280250623822212, -0.005761436186730862, 0.07374729961156845, 0.02537660114467144, -0.1904403418302536, -0.027781084179878235, -0.01203656941652298, -0.08166011422872543, 0.0782763808965683, 0.07238269597291946, 0.0880681574344635, 0.023803720250725746, -0.16001290082931519, 0.017220424488186836, 0.15366363525390625, 0.09739531576633453, 0.13189944624900818, 0.034480247646570206, -0.01203988492488861, -0.07013511657714844, 0.03776678070425987, 0.1191110834479332, 0.030850514769554138, 0.14311210811138153, -0.04993743449449539, 0.15395919978618622, 0.02778000198304653, 0.08354712277650833, 0.0015040665166452527, 0.0002124385500792414, 0.05549585074186325, 0.0606275275349617, -0.023671748116612434, -0.04763234034180641, 0.053177956491708755, 0.09231172502040863, 0.10356280207633972, -0.030779024586081505, -0.030639363452792168, -0.10309681296348572, 0.08456406742334366, 0.09388004243373871, -0.07244310528039932, -0.06456397473812103, 0.04886768385767937, 0.09448565542697906, -0.048165712505578995, -0.002624080516397953, -0.06727933138608932, -0.024789266288280487, -0.13309267163276672, 0.1575641632080078, 0.013763848692178726, 0.04903164878487587, -0.11392469704151154, -0.06101062148809433, -0.0380878821015358, 0.12328830361366272, -0.05923272296786308, 0.07384791970252991, -0.063438281416893, 0.035822153091430664, 0.03769771382212639, 0.08574551343917847, -0.011341235600411892, -0.01579342596232891, 0.12605133652687073, 0.059689272195100784, 0.06930304318666458, 0.009993442334234715, 0.040320124477148056, 0.03913475200533867, -0.03156508505344391, -0.021948013454675674, 0.036207862198352814, -0.15300564467906952, 0.12720607221126556, -0.07269614189863205, -0.08630671352148056, -0.10556243360042572, 0.10648729652166367, -0.09296026080846786, -0.2141207456588745, 0.04889071360230446, -0.1572929471731186, 0.013565348461270332, -0.05788291618227959, -0.02914433553814888, -0.03350845351815224, 0.044193245470523834, 0.025442378595471382, -0.11558423191308975, -0.08534768223762512, -0.09644071012735367, 0.16608025133609772, -0.051787812262773514, -0.009836274199187756, 0.008131160400807858, 0.1936507672071457, -0.10826867818832397, -0.06091306731104851, -0.11326107382774353, -0.006943078245967627, -0.18266206979751587, -0.018157122656702995, 0.15633849799633026, 0.08652044087648392, 0.08449573814868927, 0.04886287823319435, 0.021626047790050507, -0.018150951713323593, -0.11068039387464523, 0.04571617394685745, 0.10017368942499161, 0.02691940777003765, -0.028274869546294212, -0.0522390715777874, -0.10063692927360535, -0.16030262410640717, 0.05059676989912987, -0.008155981078743935, 0.2154807150363922, -0.01597009412944317, 0.12677764892578125, 0.01859510876238346, -0.10634056478738785, -0.11895336955785751, -0.0823814794421196, -0.005158303305506706, -0.07936263829469681, 0.012622456066310406, -0.1088368222117424, -0.06665971130132675, 0.05985612794756889, -0.000034681721444940194, 0.07733345031738281, -0.25537943840026855, -0.075731061398983, -0.06116284430027008, 0.06069694831967354, -0.1842307597398758, -0.16473239660263062, -0.08671041578054428, -0.11995023488998413, -0.07857968658208847, 0.04314495623111725, 0.05275651440024376, 0.04278276488184929, -0.02613048069179058, 0.009315229952335358, 0.0032697273418307304, 0.024048777297139168, 0.17557953298091888, -0.034595973789691925, 0.047946397215127945, -0.07245049625635147, -0.007585981395095587, 0.08371735364198685, -0.08807996660470963, 0.03271365538239479, -0.08131225407123566, -0.028514618054032326, -0.0022496662568300962, -0.04381527006626129, -0.06690354645252228, 0.04568693786859512, -0.11227498203516006, 0.02080734632909298, -0.07699732482433319, 0.045754700899124146, 0.08875580132007599, -0.03920012712478638, -0.07656789571046829, -0.03747625648975372, 0.10779358446598053, -0.09980182349681854, 0.13257047533988953, 0.1928819715976715, -0.09490912407636642, -0.044285327196121216, -0.022442305460572243, -0.00760953314602375, -0.060035333037376404, 0.042397402226924896, 0.06141095235943794, 0.04266462102532387, 0.0688740611076355, 0.00000807584456197219, -0.10043701529502869, -0.02581442892551422, 0.11365946382284164, -0.07477615773677826, -0.20386344194412231, 0.005580640397965908, -0.02064170502126217, -0.15424147248268127, -0.1503860056400299, 0.037080347537994385, 0.019647004082798958, -0.12635120749473572, 0.028805891051888466, 0.05449257791042328, 0.046013880521059036, 0.07669100910425186, 0.039765141904354095, -0.011417005211114883, -0.038274336606264114, 0.1166827529668808, 0.08172766119241714, -0.03919433802366257, -0.04991926997900009, 0.20170028507709503, -0.0365462452173233, -0.02645709551870823, 0.07812988013029099, 0.05178544670343399, -0.06124855577945709, 0.05264398083090782, 0.05611838400363922, -0.09100259840488434, 0.01920992322266102, 0.19037862122058868, 0.002903916174545884, 0.014952948316931725, 0.06056425720453262, 0.003262158716097474, -0.05546463280916214, 0.08306457847356796, 0.11159024387598038, 0.020665038377046585, -0.046573009341955185, 0.08543431758880615, -0.021513817831873894, -0.058666545897722244, -0.007310137618333101, 0.017324332147836685, -0.048232369124889374, -0.06687092781066895, -0.1131444051861763, 0.046753499656915665, -0.1290065497159958, 0.0006895044934935868, -0.05869874730706215, 0.07845699787139893, -0.0010863792849704623, -0.03219826892018318, -0.05636448785662651, -0.11921386420726776, -0.03096763603389263, 0.0909636989235878, -0.11854135990142822, 0.013996515423059464, 0.1285608857870102, -0.10081034898757935, 0.045947492122650146, 0.06553571671247482, -0.003820844693109393, 0.008897488936781883, -0.11954289674758911, -0.06355255097150803, -0.10084176808595657, 0.011913768947124481, -0.008067597635090351, -0.1374189406633377, -0.016501639038324356, -0.11527196317911148, -0.11790254712104797, 0.008444718085229397, 0.017977701500058174, -0.09219861775636673, 0.1116005927324295, -0.030423736199736595, -0.06747255474328995, -0.009285557083785534, 0.044648557901382446, 0.22509267926216125, -0.03306823968887329, 0.05362313240766525, -0.052663035690784454, 0.022853197529911995, -0.12137596309185028, 0.003666953183710575, -0.04297361522912979, -0.010130739770829678, 0.031711675226688385, -0.02257661521434784, 0.03357494994997978, 0.02664266899228096, 0.04901110380887985, -0.016374796628952026, 0.012859944254159927, 0.00048577331472188234, 0.1073739305138588, -0.008676178753376007, -0.008102601394057274, 0.08721484988927841, -0.014314214698970318, -0.05260926112532616, 0.053944848477840424, -0.04703262448310852, -0.027994465082883835, -0.07802501320838928, 0.0937056764960289, 0.10238129645586014, 0.09503104537725449, -0.006775310263037682, 0.0015052207745611668, -0.07944058626890182, -0.03502284362912178, 0.08992467820644379, 0.06654496490955353, -0.033212367445230484, -0.05203298479318619, 0.10483364760875702, 0.14967568218708038, -0.22301506996154785, 0.1093248650431633, 0.022398142144083977, -0.04959458112716675, -0.016661398112773895, -0.18380482494831085, -0.05866049602627754, -0.010784318670630455, -0.005159382708370686, -0.06690062582492828, 0.10077912360429764, 0.05179096758365631, -0.004784216172993183, 0.007327708415687084, -0.04351753741502762, -0.11200596392154694, -0.13434071838855743, 0.061824630945920944, 0.05309354513883591, -0.007255935110151768, 0.08355766534805298, 0.02047988958656788, 0.036063216626644135, -0.054023224860429764, 0.01673528552055359, 0.05893455818295479, 0.0619463175535202, 0.045814402401447296, -0.07637757062911987, -0.05169972777366638, 0.05187874287366867, -0.046823855489492416, 0.04983779788017273, 0.1872168332338333, 0.034922659397125244, -0.051576465368270874, -0.014453443698585033, 0.24941596388816833, -0.010936119593679905, -0.040563128888607025, -0.10029584169387817, 0.054428741335868835, -0.025941068306565285, -0.061138369143009186, 0.026011506095528603, -0.1262028068304062, 0.06279975920915604, 0.11924222111701965, 0.06314519792795181, -0.0054428731091320515, 0.00949717964977026, 0.030410388484597206, 0.01888793148100376, 0.08432259410619736, -0.03601263836026192, 0.012097828090190887, 0.13551196455955505, -0.08518228679895401, 0.09485634416341782, -0.045954667031764984, 0.019332312047481537, -0.08001063019037247, 0.18118314445018768, -0.056035902351140976, -0.054108913987874985, -0.006356438156217337, 0.09214521944522858, 0.0013992392923682928, -0.19459417462348938, 0.039603013545274734, -0.07282839715480804, -0.05629294365644455, -0.017479559406638145, -0.02250882424414158, -0.03366977721452713, 0.08490776270627975, 0.06625929474830627, 0.006762478966265917, 0.174803227186203, 0.0009378311224281788, -0.088409423828125, -0.05383072793483734, 0.10917345434427261, 0.021273210644721985, 0.22448670864105225, -0.018870968371629715, -0.0666857585310936, 0.04827699810266495, 0.0035094530321657658, -0.07125455141067505, 0.029383372515439987, 0.05591656267642975, -0.0863967314362526, 0.027801427990198135, 0.21149593591690063, 0.002763717668130994, -0.015473964624106884, 0.09961609542369843, 0.05355721712112427, 0.10644396394491196, 0.04608115553855896, -0.044131625443696976, -0.037765417248010635, 0.1456296741962433, -0.18023176491260529, 0.09100385755300522, 0.17230039834976196, -0.014959674328565598, 0.049204014241695404, -0.07113354653120041, -0.07300952821969986, 0.07235757261514664, 0.1928112953901291, 0.02514754980802536, -0.0413985475897789, 0.006900338921695948, -0.029566690325737, 0.020983293652534485, -0.14440439641475677, -0.0630694106221199, -0.030691437423229218, -0.01414788980036974, -0.036074042320251465, 0.08740619570016861, 0.10065514594316483, 0.01942024566233158, -0.00044795256690122187, -0.03897201642394066, -0.008688877336680889, 0.09275764226913452, -0.08599120378494263, 0.06095607206225395 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-snli-model2 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7931 - Accuracy: 0.751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3296 | 1.0 | 2146 | 0.2628 | 0.9053 | | 0.2382 | 2.0 | 4292 | 0.2587 | 0.9088 | | 0.153 | 3.0 | 6438 | 0.3031 | 0.9088 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "other", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-350m", "model-index": [{"name": "opt-350m-snli-model2", "results": []}]}
text-classification
varun-v-rao/opt-350m-snli-model2
[ "transformers", "tensorboard", "safetensors", "opt", "text-classification", "generated_from_trainer", "base_model:facebook/opt-350m", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T00:08:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
opt-350m-snli-model2 ==================== This model is a fine-tuned version of facebook/opt-350m on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7931 * Accuracy: 0.751 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 256 * eval\_batch\_size: 256 * seed: 10 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 75, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.0982731357216835, 0.09349167346954346, -0.0016750238137319684, 0.10188725590705872, 0.15878261625766754, 0.009228129871189594, 0.16026367247104645, 0.1050884798169136, -0.0466778501868248, 0.04996911808848381, 0.12435460835695267, 0.11479179561138153, 0.029153401032090187, 0.16397476196289062, -0.08224577456712723, -0.21476618945598602, 0.009688451886177063, 0.02946450188755989, -0.059195999056100845, 0.12554360926151276, 0.0807269960641861, -0.1259309947490692, 0.11292009800672531, -0.007155770901590586, -0.16747231781482697, 0.01003441121429205, 0.03612475097179413, -0.06590132415294647, 0.13252615928649902, 0.06063056364655495, 0.11837313324213028, 0.0363110788166523, 0.07054954022169113, -0.19024011492729187, 0.015496962703764439, 0.06607459485530853, -0.020330647006630898, 0.08497538417577744, 0.03491344675421715, 0.0008111541392281651, 0.0969233587384224, -0.09600583463907242, 0.06056632101535797, 0.025220688432455063, -0.14060251414775848, -0.1911734640598297, -0.06039255112409592, 0.04678558558225632, 0.08997291326522827, 0.09057548642158508, -0.02690730057656765, 0.13390904664993286, -0.03651421144604683, 0.09262431412935257, 0.1867218017578125, -0.311758428812027, -0.061215177178382874, 0.025737890973687172, 0.025781158357858658, 0.09223262220621109, -0.09801837801933289, 0.007195328827947378, 0.07176876813173294, 0.021390065550804138, 0.1313401162624359, -0.019265349954366684, 0.002964578801766038, -0.019331956282258034, -0.1400664746761322, -0.030488502234220505, 0.16552865505218506, 0.07000844180583954, -0.048774540424346924, -0.07230689376592636, -0.06261531263589859, -0.136424258351326, -0.031297434121370316, -0.012816405855119228, 0.033666353672742844, -0.02105094864964485, -0.0754368007183075, -0.023671701550483704, -0.11337589472532272, -0.057636454701423645, -0.04224615544080734, 0.12917153537273407, 0.02436535805463791, 0.0013625345891341567, -0.02150912769138813, 0.0936872661113739, -0.01791318692266941, -0.1351907104253769, 0.029800813645124435, 0.0156659334897995, 0.0004072045558132231, -0.05697019025683403, -0.04080291837453842, -0.09575146436691284, 0.008015467785298824, 0.10196205228567123, -0.07160651683807373, 0.056331176310777664, -0.013320689089596272, 0.04994755983352661, -0.0918496772646904, 0.15290600061416626, -0.03520584478974342, -0.019043955951929092, 0.01829969324171543, 0.10606543719768524, 0.056878671050071716, -0.01998591236770153, -0.137411966919899, 0.023331589996814728, 0.10969758778810501, 0.01602262072265148, -0.06071023643016815, 0.08186304569244385, -0.053391698747873306, -0.012820016592741013, 0.06146162375807762, -0.07664237171411514, 0.023639541119337082, 0.010469906963407993, -0.05270513892173767, -0.0877336636185646, 0.03226529061794281, 0.015527335926890373, 0.0022692065685987473, 0.09725857526063919, -0.08662501722574234, 0.005223340354859829, -0.07234086096286774, -0.12279480695724487, 0.015627719461917877, -0.06376074254512787, 0.012476293370127678, -0.1266193985939026, -0.1518363058567047, -0.009336580522358418, 0.04218754544854164, -0.02365015633404255, -0.04788289964199066, -0.0577770434319973, -0.07386884838342667, 0.021214894950389862, -0.021963996812701225, 0.07523096352815628, -0.07065650820732117, 0.1009923443198204, 0.04864278808236122, 0.05750398710370064, -0.056942958384752274, 0.03466710075736046, -0.0981932207942009, 0.03620758652687073, -0.18451820313930511, 0.036551933735609055, -0.04161503165960312, 0.06498314440250397, -0.0735209733247757, -0.08505289256572723, -0.012532208114862442, 0.014632360078394413, 0.05854291841387749, 0.10198011249303818, -0.15954728424549103, -0.08138139545917511, 0.17481273412704468, -0.10231254994869232, -0.15481646358966827, 0.14437490701675415, -0.056406620889902115, 0.03337019309401512, 0.07299382984638214, 0.18807709217071533, 0.07215055078268051, -0.09509437531232834, -0.00292832194827497, -0.014375215396285057, 0.03958369046449661, -0.05209123715758324, 0.07411723583936691, -0.00048137889825738966, -0.01350336242467165, 0.0077072191052138805, -0.03445877507328987, 0.06254561990499496, -0.07218030095100403, -0.08056723326444626, -0.0282328762114048, -0.09394457936286926, 0.05518164858222008, 0.06171314790844917, 0.05487128347158432, -0.12224400788545609, -0.09292807430028915, 0.05065079405903816, 0.06177964806556702, -0.06819715350866318, 0.012379019521176815, -0.0749535858631134, 0.08321614563465118, -0.07319612801074982, -0.01834411732852459, -0.14963382482528687, -0.049960918724536896, 0.013110554777085781, -0.005358251743018627, 0.018380792811512947, 0.01998974196612835, 0.06415795534849167, 0.08225748687982559, -0.07398838549852371, -0.03560619801282883, -0.011842602863907814, 0.010418565943837166, -0.12641029059886932, -0.19007830321788788, -0.012944292277097702, -0.030799701809883118, 0.16366247832775116, -0.2636800706386566, 0.05792480707168579, 0.009600221179425716, 0.08470228314399719, 0.040437355637550354, -0.008507060818374157, -0.029844695702195168, 0.06626582890748978, -0.039075661450624466, -0.05617605522274971, 0.06770028173923492, 0.012968956492841244, -0.10897702723741531, -0.0295414961874485, -0.17999637126922607, 0.2023562639951706, 0.13766680657863617, -0.0800621286034584, -0.08302008360624313, -0.011048534885048866, -0.03996257111430168, -0.020492009818553925, -0.04851603880524635, -0.002763072494417429, 0.1535883992910385, -0.003908107988536358, 0.16662457585334778, -0.09314706176519394, -0.029598163440823555, 0.037825021892786026, -0.04263363406062126, -0.008042593486607075, 0.11943954229354858, 0.0938580110669136, -0.16498354077339172, 0.15381267666816711, 0.16889688372612, -0.045519500970840454, 0.16500906646251678, -0.03115878999233246, -0.04513220116496086, -0.02765435166656971, 0.021823007613420486, 0.015287668444216251, 0.11123973876237869, -0.11322622746229172, -0.005087981931865215, 0.0022334617096930742, 0.0078053902834653854, 0.012056706473231316, -0.20657025277614594, -0.029192935675382614, 0.043577540665864944, -0.0535319522023201, -0.00568965682759881, -0.01719191111624241, 0.000007431813628500095, 0.10554968565702438, 0.008442220278084278, -0.07163584977388382, 0.05113496258854866, -0.00846070982515812, -0.09569631516933441, 0.2066250890493393, -0.06477052718400955, -0.2088603675365448, -0.15204721689224243, -0.02753102406859398, -0.060656845569610596, 0.03558043763041496, 0.05844802409410477, -0.07795190066099167, -0.03651338443160057, -0.12001878023147583, -0.002254954306408763, 0.020607072860002518, 0.022356033325195312, 0.003970606252551079, 0.012847359292209148, 0.09279126673936844, -0.08564554154872894, -0.02008170448243618, -0.04231824353337288, -0.03710898756980896, 0.02963198535144329, 0.026267429813742638, 0.10988027602434158, 0.12889647483825684, -0.032819584012031555, 0.0027475645765662193, -0.037358712404966354, 0.21536438167095184, -0.07927578687667847, -0.01715618558228016, 0.1309196501970291, -0.024981122463941574, 0.04991722106933594, 0.1463611125946045, 0.04940755292773247, -0.10028669983148575, 0.03258924558758736, 0.03364884480834007, -0.03374572470784187, -0.19124524295330048, -0.04387810453772545, -0.041010718792676926, 0.015394150279462337, 0.10370088368654251, 0.03285839781165123, 0.038205623626708984, 0.060405757278203964, 0.00819659885019064, 0.06245577707886696, -0.004294741433113813, 0.07025204598903656, 0.11175983399152756, 0.04951091110706329, 0.1344357579946518, -0.05529183894395828, -0.06745762377977371, 0.03763440251350403, -0.036103568971157074, 0.1859179139137268, 0.019689321517944336, 0.13035765290260315, 0.04829816520214081, 0.13936296105384827, 0.019690025597810745, 0.051226045936346054, 0.00594178494066, -0.05105135962367058, -0.012077906168997288, -0.04192769154906273, -0.040488239377737045, 0.032260067760944366, -0.05849567800760269, 0.05957958847284317, -0.13764837384223938, 0.022603139281272888, 0.05146492272615433, 0.21815164387226105, 0.05763724446296692, -0.3340003490447998, -0.09125439077615738, 0.024011820554733276, -0.01984747126698494, -0.036316145211458206, 0.025222279131412506, 0.15825039148330688, -0.06130195036530495, 0.057883717119693756, -0.07911405712366104, 0.08129604160785675, -0.054761212319135666, 0.05782225728034973, 0.04438169673085213, 0.06472720205783844, -0.026937030255794525, 0.07725295424461365, -0.2753611207008362, 0.2751423120498657, 0.01811700128018856, 0.06903175264596939, -0.0583614781498909, -0.006654073018580675, 0.02132260613143444, 0.09960425645112991, 0.07833488285541534, -0.019958872348070145, -0.07391292601823807, -0.20703871548175812, -0.06215425580739975, 0.022698281332850456, 0.08545642346143723, -0.04534647986292839, 0.1005692407488823, -0.030060555785894394, 0.000997398397885263, 0.08205816149711609, 0.006784289609640837, -0.07568346709012985, -0.10755067318677902, -0.01853138580918312, 0.04065721854567528, -0.034278299659490585, -0.08190039545297623, -0.09958518296480179, -0.10942091047763824, 0.15945139527320862, -0.046478308737277985, -0.04177132621407509, -0.0974271148443222, 0.0781373456120491, 0.025114338845014572, -0.0865713506937027, 0.02897763065993786, 0.010194823145866394, 0.10787349194288254, 0.01004595123231411, -0.06191640347242355, 0.13073883950710297, -0.06168443337082863, -0.18548184633255005, -0.06182081624865532, 0.13422617316246033, 0.01783553883433342, 0.03940274938941002, 0.0063790674321353436, 0.002675792435184121, -0.0036608390510082245, -0.07441142946481705, 0.042029689997434616, -0.025966396555304527, 0.06880985200405121, 0.016620824113488197, -0.039330802857875824, -0.023125916719436646, -0.06021443009376526, -0.025839241221547127, 0.15889298915863037, 0.3052663207054138, -0.07798060029745102, 0.0011212906101718545, 0.06269069015979767, -0.060046348720788956, -0.18289150297641754, 0.043674010783433914, 0.018234597519040108, 0.007569159381091595, 0.054644372314214706, -0.14057722687721252, 0.07545728236436844, 0.08740772306919098, -0.025612369179725647, 0.10203808546066284, -0.272794634103775, -0.1394629031419754, 0.11556743085384369, 0.15236152708530426, 0.14232446253299713, -0.15311524271965027, -0.03959701582789421, -0.04924165830016136, -0.0883464515209198, 0.13695724308490753, -0.1312311291694641, 0.10699121654033661, -0.0052325609140098095, 0.038992736488580704, 0.012350167147815228, -0.050401877611875534, 0.1222139224410057, -0.02828781120479107, 0.11608132719993591, -0.07712534815073013, -0.01809774339199066, 0.05703325197100639, -0.05550200492143631, 0.026387615129351616, -0.1353236436843872, 0.01694808155298233, -0.0737503170967102, -0.035620082169771194, -0.06066913157701492, 0.04715012013912201, -0.04153750091791153, -0.04987243935465813, -0.04245970770716667, 0.0326378159224987, 0.04003502428531647, -0.005545909516513348, 0.15496037900447845, -0.006416727788746357, 0.1728823184967041, 0.15219539403915405, 0.10675957798957825, -0.05723190680146217, -0.006580631714314222, -0.0021306679118424654, -0.03897150605916977, 0.057910945266485214, -0.1335931420326233, 0.03916033357381821, 0.11315113306045532, -0.007354620844125748, 0.161218523979187, 0.06593621522188187, -0.035881157964468, 0.02159169502556324, 0.0763261616230011, -0.17429430782794952, -0.13506537675857544, -0.030625905841588974, -0.033554594963788986, -0.12143894284963608, 0.05088420957326889, 0.12773355841636658, -0.07306281477212906, 0.009341233409941196, -0.012834209017455578, 0.013862674124538898, -0.028425117954611778, 0.1562504917383194, 0.06851553171873093, 0.05368039757013321, -0.08062796294689178, 0.08047713339328766, 0.05203978344798088, -0.0840490460395813, 0.03541072830557823, 0.039342839270830154, -0.0961804986000061, -0.0492565855383873, 0.027404626831412315, 0.21004509925842285, -0.01637387089431286, -0.06415379047393799, -0.1584867388010025, -0.1291353404521942, 0.05440424382686615, 0.17599628865718842, 0.08301493525505066, -0.00023316939768847078, -0.0258040688931942, 0.00010206617298536003, -0.12489517033100128, 0.11766322702169418, 0.027623917907476425, 0.07367005944252014, -0.16493941843509674, 0.14261096715927124, -0.0015983044868335128, 0.012910403311252594, -0.02571704052388668, 0.0406356081366539, -0.1205052062869072, -0.005160719156265259, -0.11387772858142853, -0.00834005419164896, -0.022744713351130486, 0.0014276491710916162, -0.006252222694456577, -0.04964557662606239, -0.06644314527511597, 0.00004350673407316208, -0.10081040114164352, -0.017425408586859703, 0.04502367973327637, 0.05653175711631775, -0.12623633444309235, -0.04434813931584358, 0.014767717570066452, -0.06535543501377106, 0.06979265064001083, 0.004984931088984013, 0.019572759047150612, 0.04506523534655571, -0.14048029482364655, 0.03749304637312889, 0.06914085894823074, 0.010642537847161293, 0.04024877771735191, -0.08224020898342133, 0.000230782461585477, 0.002890951232984662, 0.042586520314216614, 0.031159523874521255, 0.08690303564071655, -0.12449944019317627, 0.014978522434830666, -0.0043209148570895195, -0.055213551968336105, -0.052241045981645584, 0.0468737855553627, 0.07053164392709732, 0.005853756330907345, 0.21725453436374664, -0.10825734585523605, 0.007604454644024372, -0.21480323374271393, 0.0011358045740053058, 0.007476285565644503, -0.11631108820438385, -0.07714325189590454, -0.06347019970417023, 0.06030748412013054, -0.05875145643949509, 0.1355471909046173, 0.03056185133755207, 0.04835490137338638, 0.04036235436797142, -0.04734078794717789, 0.04795633628964424, 0.02888387255370617, 0.2024507224559784, 0.016052642837166786, -0.053667016327381134, 0.04714775085449219, 0.020682571455836296, 0.11996637284755707, 0.08430781215429306, 0.1873743236064911, 0.15894965827465057, -0.0566524863243103, 0.09542421996593475, 0.05270879715681076, -0.04386848956346512, -0.13219541311264038, 0.03331579267978668, -0.06507982313632965, 0.11027586460113525, -0.015022970736026764, 0.18461297452449799, 0.09493399411439896, -0.1520504653453827, 0.012422852218151093, -0.05724656954407692, -0.07970499247312546, -0.10702002793550491, -0.08352479338645935, -0.10065879672765732, -0.1330491304397583, 0.00038448761915788054, -0.10811679810285568, -0.0007508752169087529, 0.09457927197217941, -0.002140377415344119, -0.03610578924417496, 0.17750521004199982, 0.01880464144051075, 0.01856747455894947, 0.07526659220457077, 0.0007622597622685134, -0.03428429365158081, -0.0845186784863472, -0.08254585415124893, 0.020815806463360786, -0.025495680049061775, 0.022597257047891617, -0.04314678907394409, -0.0368739478290081, 0.046723537147045135, -0.002749772509559989, -0.11378298699855804, 0.012228170409798622, 0.024577749893069267, 0.05908666551113129, 0.05161374807357788, 0.01752542518079281, 0.005202646367251873, -0.002246627351269126, 0.21174369752407074, -0.06769116222858429, -0.03764120861887932, -0.09617277979850769, 0.21257272362709045, 0.02298891916871071, 0.012236637063324451, 0.004512661136686802, -0.09179513901472092, 0.035397399216890335, 0.20203755795955658, 0.18919509649276733, -0.08471252024173737, 0.011409587226808071, -0.02986069954931736, -0.009144319221377373, -0.014783086255192757, 0.10916554182767868, 0.09529813379049301, -0.003278163028880954, -0.06815628707408905, -0.021816113963723183, -0.03922117501497269, 0.0028053647838532925, -0.02789991721510887, 0.07143721729516983, 0.04068341851234436, 0.02265811339020729, -0.050283558666706085, 0.06687172502279282, -0.029318660497665405, -0.11709000170230865, 0.029720481485128403, -0.21036359667778015, -0.145838662981987, -0.018165085464715958, 0.09783785045146942, -0.007747718133032322, 0.05828862264752388, -0.03270704299211502, 0.010534367524087429, 0.049810923635959625, -0.021491417661309242, -0.07152736186981201, -0.07295850664377213, 0.04847116395831108, -0.12519052624702454, 0.22098758816719055, -0.04082323610782623, 0.03369573503732681, 0.1273476779460907, 0.025713901966810226, -0.06708008050918579, 0.095525823533535, 0.03876084089279175, -0.030994826927781105, 0.04407472535967827, 0.09141357988119125, -0.03214295580983162, 0.11124779284000397, 0.06698448956012726, -0.1305224448442459, 0.010705497115850449, -0.11115783452987671, -0.07324226200580597, -0.058666929602622986, -0.025729816406965256, -0.05518553778529167, 0.13652057945728302, 0.18430335819721222, -0.03705693781375885, 0.0016818237490952015, -0.04117124155163765, 0.013069955632090569, 0.0759730413556099, 0.044125765562057495, -0.02504974976181984, -0.24011839926242828, 0.012349016033113003, 0.07939266413450241, 0.002602181164547801, -0.3380143940448761, -0.07105047255754471, -0.024140745401382446, -0.05190275236964226, -0.08790645003318787, 0.09112193435430527, 0.10505806654691696, 0.05427227541804314, -0.07150481641292572, -0.06512536853551865, -0.06875406205654144, 0.16973379254341125, -0.12523072957992554, -0.08958888798952103 ]
null
null
diffusers
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)">✝</span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use `GVASA`, `wearing a hat` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden', weight_name='GUSTAV_VASA-000002.safetensors') image = pipeline('`GVASA`, `wearing a hat`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "GVASA", "widget": [{"text": "hyperrealistic portrait photograph of a laughing (gvasa:1.5) dressed in a santa outfit, shot on sony a7, studio lighting", "output": {"url": "4712224.jpeg"}}, {"text": "The cover of the vintage comic book (titled \"THE DANE SLAYER\":1.2) features an illustration of GVASA riding a giant white (moose), by michael whelan and gerald brom", "output": {"url": "4712162.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA:1.4) Riding public transport, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712165.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA GVASA:1.3) Setting the dinner table, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712166.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA wearing a hat:1.4) walking a corgi in stockholm old town gamla stan, shot on sony a7, 50mm, highly detailed, natural lighting,", "output": {"url": "4712167.jpeg"}}, {"text": "sven nordqvist style (GVASA:1.3) hiding in a haystack", "output": {"url": "4712238.jpeg"}}, {"text": "vintage safety matches, (title logo \"REFORMATION\":1.5), (GVASA:1.3) wearing a hat, \"made by gustav vasa\"", "output": {"url": "4712408.jpeg"}}, {"text": "gvasa in a felt puppet world style", "output": {"url": "4712428.jpeg"}}, {"text": "breathtaking photo of gvasa (gvasa:1.4) dressed as a cyberpunk, urban neon tokyo background at night, long beard and pageboy hair", "output": {"url": "4712579.jpeg"}}, {"text": " ", "output": {"url": "4713481.jpeg"}}]}
text-to-image
WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:08:25+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use 'GVASA', 'wearing a hat' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 94, 20, 336, 24, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab." ]
[ 0.012717844918370247, 0.0371529720723629, -0.0066659534350037575, 0.11249786615371704, 0.04225501790642738, 0.012256767600774765, 0.0421113483607769, 0.0784948393702507, 0.04019871726632118, 0.10369378328323364, 0.0796005129814148, -0.002692983252927661, 0.11595098674297333, -0.09132442623376846, 0.07554394006729126, -0.28408244252204895, 0.05389674752950668, -0.08298446238040924, -0.06988949328660965, 0.04652348533272743, 0.09091489017009735, -0.012928164564073086, 0.037218980491161346, -0.04183662310242653, 0.08783798664808273, 0.005785414949059486, -0.04517302289605141, 0.018526755273342133, 0.06457188725471497, 0.06143207103013992, 0.016819842159748077, 0.06529201567173004, 0.05266645923256874, -0.15475967526435852, 0.005502436310052872, 0.032450299710035324, -0.04809965193271637, -0.025976568460464478, 0.09847093373537064, -0.03986227512359619, 0.1369038075208664, -0.11485540866851807, -0.03265029564499855, 0.011952199973165989, -0.05755671486258507, -0.21988655626773834, -0.05509188026189804, 0.06905684620141983, 0.11821073293685913, -0.01501986850053072, -0.0754329264163971, -0.0561990961432457, 0.02018461748957634, 0.011421862989664078, 0.19400270283222198, -0.20950907468795776, -0.07643061131238937, 0.16596472263336182, 0.06111634150147438, 0.07021567225456238, -0.0976482406258583, 0.10679681599140167, -0.006900938693434, 0.030671125277876854, 0.0659574419260025, -0.05886857211589813, 0.09118591248989105, -0.006307800300419331, -0.11194804310798645, 0.016164246946573257, 0.20043450593948364, 0.04296509921550751, -0.015396450646221638, -0.12738126516342163, -0.0067059919238090515, 0.0990285873413086, -0.032695114612579346, -0.06551991403102875, 0.05082995444536209, 0.014191877096891403, 0.11222518235445023, -0.13885211944580078, -0.12181676179170609, -0.016177130863070488, -0.010859542526304722, 0.04089827090501785, -0.02840382046997547, -0.04885531961917877, 0.11667570471763611, 0.016002288088202477, -0.1601361781358719, -0.13262875378131866, -0.05767400190234184, -0.08999161422252655, -0.09483041614294052, 0.024721931666135788, 0.017178548499941826, -0.14012429118156433, 0.0975833311676979, 0.06867267191410065, -0.024200178682804108, 0.027109557762742043, -0.10377179086208344, 0.06457357853651047, 0.03740866854786873, 0.09723098576068878, -0.14469853043556213, -0.11361241340637207, -0.03750193864107132, -0.01122044213116169, 0.03099895641207695, -0.05645659193396568, -0.06803535670042038, -0.13418923318386078, 0.046306610107421875, -0.014761105179786682, 0.043753452599048615, 0.03605223074555397, -0.03911685571074486, -0.0013729328056797385, 0.07923904806375504, -0.07680018246173859, -0.015240838751196861, 0.004788341466337442, -0.020235782489180565, 0.021374545991420746, 0.01386585459113121, 0.04184405133128166, -0.03161827474832535, 0.1474393904209137, -0.0036768042482435703, -0.012380913831293583, 0.008755587972700596, -0.12686610221862793, 0.037688788026571274, -0.05913971737027168, -0.07074430584907532, -0.07810773700475693, -0.05811448395252228, -0.054152775555849075, 0.0590934194624424, -0.08179700374603271, 0.00502370297908783, -0.0666339173913002, -0.09070538729429245, 0.023018570616841316, 0.03697793558239937, 0.021861199289560318, -0.02843826822936535, 0.026186488568782806, -0.12087062001228333, 0.10490087419748306, 0.06971580535173416, -0.007373201660811901, -0.104161337018013, 0.03050946816802025, -0.27375850081443787, 0.12864285707473755, -0.17684510350227356, -0.015969086438417435, -0.11018896847963333, -0.04840978980064392, -0.018441999331116676, 0.012455275282263756, -0.0082284240052104, 0.14024299383163452, -0.196727454662323, -0.045213732868433, 0.15993599593639374, -0.1241975799202919, -0.024311207234859467, 0.10908044874668121, 0.059061482548713684, 0.016240447759628296, 0.09049873799085617, 0.17446374893188477, 0.005971574690192938, -0.13644319772720337, -0.06318864226341248, 0.018250538036227226, -0.08714956790208817, 0.1930873841047287, 0.10895834863185883, -0.08396778255701065, 0.06486164033412933, 0.03170861303806305, -0.10691945254802704, -0.056323789060115814, 0.042712241411209106, -0.008948614820837975, 0.04805895313620567, -0.0016564906109124422, 0.09556194394826889, 0.06541524082422256, -0.08017650991678238, -0.017465148121118546, -0.08445323258638382, 0.02766062505543232, -0.008660082705318928, -0.06351343542337418, 0.07100464403629303, 0.001629475736990571, 0.10120078921318054, -0.01881757564842701, 0.024289237335324287, -0.04420533776283264, -0.13668307662010193, -0.009998336434364319, 0.019310200586915016, 0.051109906286001205, 0.068700410425663, 0.1000947505235672, 0.1047135442495346, -0.06958618015050888, 0.008900138549506664, 0.0076133087277412415, -0.04406061768531799, 0.005553397350013256, -0.18324775993824005, -0.013792885467410088, -0.046407490968704224, 0.043625395745038986, 0.002128153806552291, -0.024529214948415756, 0.05361903831362724, 0.059300459921360016, 0.005343835335224867, -0.009879780933260918, 0.07232224196195602, -0.02248268947005272, -0.02376670390367508, -0.032713133841753006, 0.05303265526890755, -0.06639057397842407, -0.11230310052633286, 0.12389873713254929, -0.09900368750095367, -0.19579094648361206, 0.09097243845462799, -0.01623300276696682, -0.09395437687635422, -0.009014090523123741, -0.012819336727261543, -0.015983812510967255, -0.03296394646167755, -0.07536415010690689, -0.0373939573764801, 0.10466541349887848, 0.02435363084077835, -0.10107995569705963, -0.010332736186683178, 0.04569356143474579, -0.0880139097571373, -0.09008944779634476, 0.1250114142894745, 0.06091897562146187, -0.133004829287529, 0.05192965641617775, 0.0892258733510971, -0.020388463512063026, 0.2721017301082611, 0.08839118480682373, -0.07517558336257935, -0.03508888930082321, 0.045102234929800034, 0.054900094866752625, 0.09803575277328491, -0.019606972113251686, 0.09931378066539764, 0.03339023515582085, 0.0035922136157751083, -0.05327966809272766, -0.03925437107682228, -0.05435018613934517, -0.028900664299726486, -0.10331174731254578, 0.0896468535065651, 0.10931997746229172, -0.042208682745695114, 0.06872469186782837, 0.038484279066324234, -0.012650031596422195, -0.019823677837848663, -0.0521683469414711, -0.03567002713680267, 0.11039896309375763, -0.10007563978433609, -0.19417652487754822, -0.04641047492623329, -0.021384097635746002, -0.14448124170303345, 0.08191423863172531, 0.05935647711157799, -0.10301616787910461, -0.04800959303975105, -0.0662129670381546, 0.12688224017620087, 0.014189076609909534, -0.07907390594482422, -0.13111448287963867, 0.024972766637802124, -0.006260898895561695, -0.0480649471282959, -0.016608277335762978, -0.03527594730257988, -0.07971245050430298, 0.05218131095170975, 0.02460230514407158, 0.08759140223264694, -0.005532973445951939, 0.04596386477351189, 0.012579400092363358, -0.009794634766876698, 0.1800718605518341, -0.051357202231884, 0.09310282766819, 0.059003595262765884, 0.05442000925540924, 0.13449689745903015, 0.25720664858818054, 0.03284860774874687, -0.03627220168709755, -0.03800176829099655, 0.09102874249219894, -0.06806142628192902, -0.059083595871925354, -0.07278680056333542, -0.05812828987836838, 0.10828951001167297, 0.09761850535869598, 0.051166340708732605, -0.09300531446933746, 0.08580270409584045, -0.08550510555505753, -0.035723328590393066, 0.13704125583171844, 0.07385478168725967, 0.07328183203935623, -0.007592942100018263, 0.036141544580459595, 0.008189190179109573, -0.029547322541475296, 0.08848059922456741, 0.01069346722215414, 0.0428585410118103, -0.013962005265057087, 0.026888499036431313, 0.041280705481767654, 0.12526863813400269, -0.005413524340838194, -0.017153704538941383, -0.01574084348976612, -0.01353474147617817, -0.006827716249972582, -0.10799379646778107, 0.03624248877167702, 0.05869279056787491, 0.05426706001162529, -0.11630681902170181, 0.05483651161193848, 0.017820052802562714, 0.07668676227331161, 0.15005289018154144, 0.05228358507156372, -0.05499205365777016, -0.02347121387720108, 0.06666500121355057, 0.027765611186623573, -0.08191829174757004, -0.04868607968091965, 0.04014753922820091, -0.10798375308513641, 0.18549655377864838, -0.05698810890316963, 0.043910618871450424, 0.0335480198264122, 0.02095220237970352, -0.019673645496368408, 0.023022575303912163, -0.02350682020187378, 0.10804163664579391, -0.10621524602174759, 0.1542041003704071, 0.007932276464998722, 0.032366618514060974, -0.02516297996044159, 0.015507753007113934, 0.04850999265909195, 0.041357941925525665, 0.2857540547847748, 0.017414314672350883, -0.040613193064928055, -0.0581587590277195, -0.0017225000774487853, -0.0037802078295499086, 0.04487351328134537, -0.23025456070899963, 0.06433930993080139, 0.0111621655523777, -0.0266118124127388, -0.08341215550899506, 0.06271883100271225, -0.0926719680428505, -0.04623407870531082, 0.06216134876012802, -0.1515987068414688, 0.06573456525802612, 0.024013454094529152, 0.0008448324515484273, -0.31608879566192627, 0.12071932852268219, -0.139337420463562, -0.16819557547569275, -0.05838048830628395, 0.05759922415018082, 0.05748472735285759, -0.07502027601003647, -0.055811718106269836, -0.015843041241168976, 0.18375371396541595, -0.15114130079746246, -0.008897687308490276, -0.015536102466285229, -0.04482107236981392, -0.14787538349628448, 0.027881892397999763, 0.1223762184381485, 0.07392938435077667, 0.019271966069936752, 0.04255565628409386, 0.06808308511972427, 0.022717662155628204, -0.10223671048879623, 0.1442088484764099, -0.010719210840761662, -0.04708600416779518, -0.005941022653132677, 0.07495926320552826, -0.0989048033952713, -0.07925006002187729, 0.019794892519712448, 0.06017632409930229, 0.344443678855896, -0.07192721962928772, 0.17566783726215363, 0.18398821353912354, -0.05631283298134804, -0.24657876789569855, -0.12835855782032013, 0.046160925179719925, -0.02532382868230343, 0.09931030869483948, -0.17365305125713348, 0.06201351433992386, 0.07536865770816803, -0.030269445851445198, -0.03477022796869278, -0.2149326354265213, -0.13130126893520355, -0.03084391914308071, 0.04191135987639427, -0.09428855776786804, -0.06631656736135483, -0.0529557541012764, -0.08905122429132462, -0.049628846347332, 0.10870227217674255, 0.02142835035920143, 0.0844106450676918, 0.026774227619171143, 0.005555062089115381, 0.04961100220680237, -0.01692456193268299, 0.19319367408752441, -0.025377316400408745, -0.00022649062157142907, -0.15066593885421753, 0.09173630177974701, 0.14325617253780365, -0.029759228229522705, 0.0723419189453125, -0.06720618158578873, -0.08194713294506073, -0.008942893706262112, -0.028536176308989525, -0.09375918656587601, 0.12424858659505844, -0.05082031711935997, -0.0875263661146164, -0.06877690553665161, 0.09821407496929169, 0.10672110319137573, 0.008427530527114868, 0.02263842336833477, -0.13959723711013794, 0.03839908167719841, 0.05914194509387016, 0.13600164651870728, 0.06496396660804749, -0.08570157736539841, -0.021013526245951653, -0.013944611884653568, 0.07467862218618393, -0.09265419840812683, 0.059879813343286514, 0.06807506084442139, 0.0010896906023845077, 0.07168448716402054, -0.040006205439567566, -0.07632139325141907, 0.032974742352962494, 0.0796859934926033, -0.1499616950750351, -0.18279486894607544, 0.0011269388487562537, -0.13329583406448364, 0.023677363991737366, -0.15664580464363098, 0.1420343965291977, -0.03976229950785637, 0.01870049722492695, 0.045313384383916855, 0.05860542505979538, -0.009748914279043674, 0.015720637515187263, -0.02004147879779339, 0.03645709529519081, -0.06184304133057594, 0.12197653949260712, 0.016883186995983124, -0.07543390244245529, 0.05322371423244476, 0.14111144840717316, -0.0797388106584549, -0.06351607292890549, -0.05191846564412117, 0.09033798426389694, -0.10153274983167648, 0.0238217543810606, 0.03253351151943207, -0.043572138994932175, -0.03779982402920723, 0.011194882914423943, 0.04478438198566437, -0.030071333050727844, 0.04944887012243271, 0.00445362227037549, -0.019827425479888916, 0.09455619752407074, 0.037013400346040726, -0.0044698226265609264, -0.06280604749917984, -0.010522103868424892, -0.007501767482608557, 0.03878279775381088, -0.0311603881418705, 0.012218146584928036, 0.014034785330295563, -0.011289806105196476, -0.06782492995262146, 0.03885219618678093, -0.11586153507232666, -0.016778593882918358, -0.03187617287039757, 0.005563416518270969, -0.00151289370842278, -0.050494443625211716, -0.09377171844244003, -0.02689836174249649, -0.029586657881736755, 0.04329565912485123, -0.14887313544750214, -0.04631073772907257, 0.08037565648555756, -0.025792717933654785, 0.08101452887058258, -0.04785686731338501, -0.0002197795402025804, 0.05036027356982231, -0.19134482741355896, 0.00401617307215929, -0.043114885687828064, -0.01974676549434662, -0.02736964263021946, -0.03860379382967949, -0.032001011073589325, -0.06342421472072601, -0.08813868463039398, 0.017264436930418015, -0.026512132957577705, -0.10253577679395676, 0.08888691663742065, 0.0037055136635899544, 0.007353127934038639, -0.05495346337556839, 0.07912711054086685, 0.05507334694266319, 0.08073564618825912, 0.07625966519117355, -0.06075245141983032, 0.0611661858856678, -0.10263443738222122, 0.010830605402588844, 0.03641626983880997, -0.046009279787540436, -0.021466678008437157, -0.01443219743669033, 0.037510085850954056, -0.08195202052593231, -0.012909150682389736, 0.042977191507816315, 0.04956782981753349, 0.025572389364242554, 0.011801239103078842, 0.015530984848737717, 0.00837237760424614, 0.07804829627275467, -0.029139351099729538, 0.011294334195554256, 0.004691693931818008, 0.009336013346910477, -0.023940905928611755, 0.027162428945302963, 0.1032051295042038, 0.02169366553425789, 0.082199826836586, 0.011240472085773945, 0.03286691755056381, 0.00951613299548626, -0.13157977163791656, 0.1962675154209137, 0.03462335467338562, 0.06839774549007416, -0.03208373859524727, 0.0005598698044195771, 0.1697847843170166, -0.15254664421081543, 0.09525090456008911, 0.03041781112551689, -0.022578319534659386, -0.07251720130443573, -0.3723612129688263, -0.07365531474351883, 0.007138020358979702, 0.09135787189006805, -0.09412776678800583, 0.10614028573036194, 0.0358920581638813, 0.07529809325933456, 0.0346192829310894, 0.04570262134075165, -0.07394007593393326, -0.12425185739994049, 0.06651053577661514, -0.01440716627985239, -0.004152410663664341, 0.11676716059446335, -0.01397131197154522, 0.05991174280643463, 0.068352609872818, -0.04403495788574219, 0.03530554100871086, 0.0372980497777462, -0.0721876472234726, -0.11293371766805649, -0.09172554314136505, -0.005712609738111496, 0.062028199434280396, 0.00902378000319004, 0.09773611277341843, 0.058326587080955505, -0.016988271847367287, -0.04466032609343529, 0.1538694202899933, -0.004154139664024115, -0.10006987303495407, -0.1046847328543663, -0.026456482708454132, -0.0761825367808342, 0.04083918780088425, -0.0264871958643198, -0.06167462095618248, 0.06426873058080673, 0.17192581295967102, 0.08279421925544739, 0.028936926275491714, 0.03474518284201622, -0.042487867176532745, 0.009218798018991947, 0.045354101806879044, -0.0039278059266507626, -0.050224870443344116, 0.12417764961719513, -0.11697811633348465, 0.08001747727394104, -0.10941421240568161, -0.03966287523508072, -0.06698545813560486, 0.09230726212263107, 0.02758098766207695, -0.008687686175107956, -0.0671655610203743, 0.16680075228214264, -0.12428489327430725, -0.19911135733127594, 0.05075031518936157, 0.01399899646639824, -0.06582359969615936, -0.003644718322902918, 0.11030395328998566, 0.07288055866956711, 0.0360066220164299, -0.009333698078989983, -0.011378363706171513, -0.0011700104223564267, -0.004948596935719252, -0.05097321420907974, 0.01933070831000805, -0.04536118730902672, 0.024884948506951332, 0.20689889788627625, 0.019069910049438477, -0.02221083827316761, 0.08011075854301453, -0.01959482580423355, -0.07606882601976395, 0.029056303203105927, 0.08979281783103943, -0.01842663250863552, 0.014025436714291573, 0.2567497491836548, 0.016229551285505295, 0.09344527125358582, 0.07031107693910599, -0.057766325771808624, 0.036103859543800354, 0.08077314496040344, -0.07610058039426804, 0.024944458156824112, 0.17759919166564941, -0.11186221987009048, 0.0630304142832756, 0.17219284176826477, 0.04157674312591553, -0.0631038025021553, -0.1314494013786316, 0.0006037140847183764, -0.03314166143536568, 0.057310573756694794, -0.023179134353995323, -0.03890233486890793, -0.015027121640741825, 0.09661447256803513, 0.009627961553633213, -0.00032369373366236687, -0.061249323189258575, 0.011124620214104652, 0.021229157224297523, 0.025750936940312386, 0.11849627643823624, 0.04849822819232941, -0.02079252526164055, -0.009718713350594044, -0.030623815953731537, 0.03615718334913254, 0.09447827190160751, -0.08631573617458344, -0.03670578822493553 ]
null
null
diffusers
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use `Sven Nordqvist style illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/sven-nordqvist-style/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/sven-nordqvist-style', weight_name='Sven Nordqvist XL LoRA v1-0.safetensors') image = pipeline('sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Sven Nordqvist style illustration", "widget": [{"text": "sven nordqvist style illustration, close up portrait of farmer batman, detailed, grant wood", "output": {"url": "2942829.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of jason voorhees dressed as a honest farmer, scene from the movie friday the 13th, grant wood, hayfork", "output": {"url": "2943076.jpeg"}}, {"text": "sven nordqvist style illustration of a moonshiner starter kit, knolling", "output": {"url": "2943087.jpeg"}}, {"text": "sven nordqvist style illustration of a mecha fax machine, detailed texture, concept design, pcb, wires, electronics, fully visible mechanical components", "output": {"url": "2943093.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of a xenomorph", "output": {"url": "2943099.jpeg"}}, {"text": "sven nordqvist style illustration, Year:1968. High detail, portrait of an age 30 wife in 1968: mid-length hair, very voluminous, very thick, very tall, very lofty, curly, tapered pageant style bouffant. Accurate 1968 style. Subtle makeup. highly detailed", "output": {"url": "2943113.jpeg"}}, {"text": "sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light", "output": {"url": "2946764.jpeg"}}]}
text-to-image
WizWhite/sven-nordqvist-style
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:09:03+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use 'Sven Nordqvist style illustration' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 86, 10, 131, 21, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Sven Nordqvist style \n\n<Gallery />## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.04299689084291458, 0.07433000206947327, -0.0031834158580750227, 0.08587127923965454, 0.07702804356813431, 0.014462011866271496, 0.08625459671020508, 0.08708580583333969, 0.019152261316776276, 0.09377413988113403, -0.008065767586231232, -0.01688443310558796, 0.09198141098022461, -0.00645374646410346, 0.018891770392656326, -0.3504854142665863, 0.04316461458802223, -0.07348839193582535, -0.032887451350688934, 0.03757791221141815, 0.05861422047019005, -0.04984088987112045, 0.10552086681127548, -0.029592454433441162, 0.027721228078007698, 0.028919642791152, -0.06493966281414032, 0.03548217564821243, 0.04881017282605171, 0.0391036719083786, 0.057555120438337326, 0.023353395983576775, 0.12044707685709, -0.14627686142921448, 0.01801490969955921, 0.06291967630386353, -0.021719245240092278, 0.04087208956480026, 0.08914047479629517, -0.11068683117628098, 0.2208879292011261, -0.11059658229351044, 0.05180252343416214, 0.026073426008224487, 0.029128972440958023, -0.17820601165294647, -0.04366329312324524, 0.08353628218173981, 0.07789627462625504, 0.02242298237979412, -0.0024423450231552124, -0.05905497446656227, -0.04275279492139816, 0.06268346309661865, 0.3334033489227295, -0.20482315123081207, -0.06169038265943527, 0.21806009113788605, 0.0534297451376915, 0.10902547091245651, -0.13603876531124115, 0.09221884608268738, 0.04906806722283363, -0.009917180985212326, 0.07868475466966629, -0.014711467549204826, 0.10754053294658661, -0.04469249024987221, -0.11662355065345764, 0.05048125237226486, 0.191945418715477, 0.03261994570493698, -0.02732226625084877, -0.16556204855442047, -0.05903917923569679, 0.060908909887075424, -0.01606852002441883, 0.006253957748413086, 0.04303446784615517, -0.012079423293471336, 0.019878070801496506, -0.15622279047966003, -0.09504977613687515, -0.01822429895401001, 0.0022622039541602135, 0.1703951060771942, -0.01194532960653305, 0.006040518172085285, 0.13263751566410065, 0.0931304469704628, -0.15580834448337555, -0.10659169405698776, -0.015293488278985023, -0.06298170983791351, -0.0973607674241066, 0.009947889484465122, -0.010851067490875721, -0.10685591399669647, 0.03625142201781273, 0.17684435844421387, 0.07216767221689224, 0.004845311399549246, -0.1338086873292923, 0.04418240115046501, 0.049610115587711334, 0.100670725107193, -0.027324771508574486, -0.12030427157878876, -0.024667277932167053, 0.00837087444961071, 0.08309917896986008, -0.050597161054611206, -0.08969877660274506, -0.11055350303649902, -0.008464471437036991, -0.0004264867748133838, -0.004045821726322174, 0.015025460161268711, -0.0005922482232563198, -0.01794647052884102, 0.14334248006343842, -0.10347297787666321, 0.05697786435484886, 0.015195746906101704, -0.03072046861052513, 0.12131611257791519, 0.05948694422841072, 0.05615147948265076, -0.0058400435373187065, 0.25942185521125793, -0.021183429285883904, -0.010205642320215702, -0.030423365533351898, -0.10156073421239853, 0.01891840249300003, -0.09443556517362595, -0.012475404888391495, -0.08105403929948807, -0.08540091663599014, -0.02945193275809288, 0.025067275390028954, -0.0803704783320427, 0.012404135428369045, -0.05306243896484375, -0.09805336594581604, 0.023572009056806564, 0.038094498217105865, 0.05947966128587723, -0.03300175070762634, 0.04694227874279022, -0.12943288683891296, 0.08804766833782196, 0.00711076520383358, 0.01796470396220684, -0.0730578750371933, 0.016773268580436707, -0.21599149703979492, 0.09627467393875122, -0.12673147022724152, -0.0023968990426510572, -0.08845236152410507, -0.061277326196432114, -0.08442763239145279, -0.01995086669921875, -0.04475035145878792, 0.07312869280576706, -0.15356986224651337, -0.04579949378967285, 0.05544830113649368, -0.14735311269760132, 0.01723760925233364, 0.12572675943374634, 0.01840164139866829, 0.012542491778731346, 0.10048715770244598, 0.2154046595096588, 0.16823171079158783, -0.19207963347434998, -0.03242012858390808, 0.03655879572033882, -0.02845999412238598, 0.11490500718355179, 0.0954098105430603, -0.03226637840270996, 0.010528534650802612, 0.049842946231365204, -0.09139234572649002, -0.02898302488029003, 0.03978309780359268, -0.00938173197209835, -0.01554616168141365, -0.02491254173219204, 0.11573965847492218, 0.05088750645518303, -0.057597771286964417, -0.047927383333444595, -0.054430942982435226, -0.005656888242810965, 0.04934627190232277, -0.059131331741809845, 0.0675838515162468, 0.08925920724868774, 0.09304744750261307, 0.030117511749267578, -0.00716997217386961, -0.0925348550081253, -0.08223205804824829, 0.002628183690831065, 0.09514389932155609, 0.058621156960725784, 0.07315509766340256, 0.07740617543458939, 0.06611951440572739, -0.10057880729436874, 0.016954602673649788, 0.020252419635653496, -0.040495071560144424, -0.03955932334065437, -0.11408466100692749, -0.012253600172698498, -0.05302555859088898, 0.06726602464914322, -0.12261165678501129, 0.04123282432556152, 0.053093940019607544, 0.17167125642299652, 0.05360596254467964, -0.03261733427643776, 0.00660703144967556, -0.027024535462260246, -0.05279304087162018, -0.03702336549758911, 0.025895195081830025, -0.037887442857027054, -0.10315611958503723, 0.06637584418058395, -0.07033964991569519, -0.08199898898601532, 0.1091533824801445, 0.14830870926380157, -0.06737976521253586, -0.1546822041273117, -0.036356646567583084, -0.007516378071159124, -0.10454367101192474, -0.09027199447154999, 0.024453461170196533, 0.06030133739113808, 0.07190807163715363, -0.09164007008075714, -0.014737188816070557, 0.00430577527731657, 0.0007172264158725739, -0.053507283329963684, 0.1086488589644432, -0.014674834907054901, -0.035169247537851334, 0.042494721710681915, 0.06834642589092255, -0.007864436134696007, 0.16758835315704346, 0.044278908520936966, -0.09364820271730423, 0.04672449827194214, 0.012686041183769703, 0.026597680523991585, 0.04342968389391899, 0.1213407814502716, 0.07664482295513153, 0.04545433446764946, 0.04118380323052406, -0.026528138667345047, -0.10031993687152863, 0.0021122030448168516, 0.015439251437783241, -0.053620345890522, 0.07610496133565903, 0.04932611063122749, 0.0020255460403859615, 0.06828372925519943, 0.012163965031504631, 0.02667372301220894, -0.036049019545316696, -0.025378946214914322, -0.054350368678569794, 0.10928991436958313, -0.07808317989110947, -0.14819350838661194, -0.20199407637119293, 0.004315086640417576, -0.12572528421878815, 0.024317074567079544, 0.0637456551194191, -0.02824503742158413, -0.06023001670837402, -0.12786337733268738, 0.14347749948501587, -0.032908402383327484, -0.031147867441177368, -0.08406288176774979, 0.040089063346385956, -0.04955713078379631, -0.11379504948854446, 0.015279922634363174, 0.007281434256583452, -0.036176323890686035, -0.021627718582749367, -0.015009943395853043, 0.08039987832307816, 0.018588319420814514, -0.038440193980932236, -0.02705996297299862, 0.0009091287502087653, 0.1091293916106224, -0.03557581454515457, 0.13802127540111542, 0.06422486156225204, 0.003197798039764166, 0.10772572457790375, 0.1739458292722702, 0.026370687410235405, -0.004061213228851557, 0.039333276450634, 0.12283995747566223, -0.10185572504997253, -0.18037644028663635, -0.07595118880271912, -0.034417927265167236, 0.07939814031124115, 0.14278359711170197, 0.08286041021347046, 0.007414605934172869, 0.09113205969333649, -0.10192963480949402, -0.07621483504772186, 0.17088811099529266, 0.09453023225069046, 0.041499558836221695, -0.0086490074172616, 0.05256880447268486, -0.051778338849544525, -0.0077834352850914, 0.097394198179245, 0.012166913598775864, 0.10170978307723999, -0.09745633602142334, 0.005608293227851391, -0.025946104899048805, 0.017572740092873573, 0.0025057699531316757, 0.10582735389471054, -0.002605892950668931, -0.01039965357631445, -0.019375154748558998, -0.08953715115785599, 0.06361303478479385, 0.1121940165758133, 0.05700257048010826, 0.007330770138651133, -0.013269295915961266, -0.04493166133761406, 0.0356881208717823, 0.14656029641628265, -0.03378686681389809, -0.10693991929292679, -0.010543475858867168, 0.07276264578104019, 0.010163301602005959, -0.026448039337992668, 0.030521372333168983, 0.16214968264102936, -0.10564161837100983, 0.13426055014133453, -0.049992289394140244, 0.08873169124126434, -0.014565537683665752, -0.05256587639451027, -0.005730265285819769, 0.12252916395664215, -0.031308986246585846, 0.09357412159442902, -0.009692811407148838, -0.006804703269153833, 0.011992956511676311, 0.028004977852106094, -0.025097249075770378, -0.0015676583861932158, 0.03155649080872536, 0.15479233860969543, 0.16033147275447845, 0.014464737847447395, -0.11373382806777954, -0.05912104994058609, -0.08073671162128448, -0.06392957270145416, 0.07897993922233582, -0.16932767629623413, 0.04717564955353737, -0.046346522867679596, -0.047384537756443024, -0.05258641764521599, -0.0011544746812433004, -0.07075556367635727, -0.159788116812706, -0.01389223150908947, -0.023622319102287292, 0.04773383587598801, -0.018602563068270683, -0.09064869582653046, -0.2235020399093628, 0.14277338981628418, -0.009612110443413258, -0.1511327177286148, -0.12033627182245255, -0.0029109050519764423, 0.11496643722057343, -0.031239008530974388, -0.05506419017910957, -0.022456444799900055, 0.18921758234500885, -0.13298268616199493, -0.10126806050539017, -0.07105954736471176, -0.008484882302582264, -0.1793159693479538, 0.022506358101963997, 0.20953436195850372, 0.046153608709573746, 0.05897206813097, -0.022390853613615036, 0.05997128784656525, 0.0262805987149477, -0.09247595071792603, 0.03588854894042015, 0.16119730472564697, 0.020707957446575165, 0.07647260278463364, -0.05990411713719368, -0.0776098445057869, -0.07472149282693863, 0.034130632877349854, 0.07709632068872452, 0.19144603610038757, -0.10148263722658157, 0.16301122307777405, 0.07058852165937424, -0.0648292526602745, -0.22892041504383087, 0.007256296928972006, 0.04181533679366112, 0.0068321325816214085, 0.11866127699613571, -0.10221792012453079, 0.0958663746714592, 0.11089488118886948, -0.003412896767258644, 0.10976952314376831, -0.3155502676963806, -0.13496512174606323, -0.07601262629032135, 0.06213058903813362, -0.01770825684070587, -0.11652404069900513, -0.0473695732653141, -0.07228060811758041, -0.1179836317896843, 0.04523002356290817, -0.06397600471973419, 0.08335117250680923, 0.018287060782313347, 0.0321308970451355, 0.05531741678714752, -0.013568783178925514, 0.16167660057544708, 0.004476239439100027, 0.02219509705901146, -0.10151907801628113, 0.02834526263177395, -0.008896131999790668, -0.0751427710056305, 0.09947311133146286, -0.1288081854581833, -0.013722344301640987, -0.06111506372690201, -0.04381861537694931, -0.032544851303100586, 0.10449531674385071, -0.05041802302002907, -0.07202479988336563, -0.1451292186975479, 0.05182056501507759, 0.12327107787132263, -0.039048660546541214, 0.13913500308990479, -0.10713476687669754, 0.03789890930056572, 0.08876148611307144, 0.08691801875829697, 0.1215086504817009, -0.06521409749984741, -0.0559772364795208, -0.05561506375670433, 0.048952195793390274, -0.1669718474149704, 0.03331449627876282, 0.1215619370341301, 0.021334931254386902, 0.06172407791018486, -0.004156338982284069, -0.0758552998304367, -0.024804163724184036, 0.07020353525876999, -0.11147192120552063, -0.1736266165971756, -0.05856109410524368, -0.1274508535861969, -0.07012845575809479, -0.07095210254192352, 0.12049012631177902, -0.08638957142829895, 0.0028749473858624697, 0.03818001225590706, 0.05080559477210045, 0.012505576014518738, 0.013429190032184124, 0.004309484735131264, 0.022547414526343346, -0.06712643057107925, 0.135975643992424, 0.030155006796121597, -0.05725739151239395, -0.004225598182529211, 0.14108224213123322, -0.07511518150568008, -0.01989608444273472, 0.016790898516774178, 0.05558286979794502, -0.027457088232040405, 0.004504452459514141, 0.012484165839850903, -0.08664651960134506, -0.01991790346801281, 0.004738823976367712, 0.04397944360971451, -0.04010067135095596, 0.023267967626452446, -0.01116048265248537, -0.06668977439403534, 0.11638759821653366, -0.00647720554843545, 0.04998421669006348, -0.12835586071014404, -0.037502139806747437, -0.027153776958584785, -0.03812259063124657, -0.04931788146495819, -0.009201991371810436, -0.024144407361745834, -0.055795807391405106, -0.01249891147017479, 0.0669974759221077, -0.09735997021198273, 0.010836342349648476, -0.02730746380984783, -0.02498086541891098, 0.01141863688826561, -0.010471305809915066, -0.037770725786685944, -0.07018168270587921, -0.07084792852401733, 0.043658334761857986, -0.11083552986383438, -0.04935213178396225, 0.03145401552319527, -0.04930339753627777, 0.0012157412711530924, -0.053585536777973175, -0.03742939233779907, 0.040901537984609604, -0.16724003851413727, -0.022938665002584457, 0.04161294177174568, -0.0183571707457304, -0.021594101563096046, -0.0061925118789076805, -0.02816803939640522, -0.05836864560842514, -0.017438357695937157, 0.0031802973244339228, 0.006001840811222792, -0.12286868691444397, -0.008815895766019821, -0.06736552715301514, -0.05238446593284607, -0.05774541199207306, 0.03588864952325821, 0.10582581162452698, 0.07467859238386154, 0.15489225089550018, -0.0899340957403183, 0.0919838696718216, -0.06489771604537964, 0.009957975707948208, 0.03187844529747963, -0.07791350781917572, 0.04057512804865837, -0.05207371711730957, -0.014362184330821037, -0.028957050293684006, 0.037607330828905106, 0.09736289829015732, -0.00781609583646059, 0.02239188738167286, 0.026670264080166817, 0.015826797112822533, 0.013003906235098839, 0.1785466969013214, -0.012842667289078236, -0.02130899950861931, 0.03821317106485367, 0.02282780222594738, 0.03892648592591286, 0.016893794760107994, 0.11845263093709946, 0.09377997368574142, 0.01846780627965927, 0.02428177185356617, 0.03322906792163849, -0.016559092327952385, -0.14549003541469574, 0.09612201899290085, 0.058791935443878174, 0.02310732938349247, -0.05190153419971466, 0.06283025443553925, 0.148556649684906, -0.19255982339382172, 0.09042571485042572, 0.03812737017869949, -0.029576512053608894, -0.07663624733686447, -0.21939222514629364, -0.06724809110164642, -0.05704266205430031, 0.03005000576376915, -0.07327624410390854, 0.059812236577272415, 0.02495591528713703, 0.01619609259068966, 0.057518236339092255, 0.04614635556936264, -0.18843448162078857, -0.07511446624994278, 0.03142223507165909, 0.013299296610057354, 0.009499391540884972, 0.09804847836494446, -0.05690978094935417, 0.09543044865131378, -0.013712444342672825, 0.0035944851115345955, 0.03173236921429634, 0.10964024811983109, -0.025146067142486572, -0.08692630380392075, -0.0650622770190239, 0.0162368044257164, 0.030310431495308876, 0.03590324893593788, 0.14099577069282532, 0.1072545126080513, -0.06938868761062622, -0.07904962450265884, 0.22539713978767395, -0.055327095091342926, -0.02823707088828087, -0.1243760734796524, 0.038963813334703445, -0.035975608974695206, 0.021176043897867203, 0.00127459317445755, -0.1384972333908081, -0.0078860092908144, 0.16957177221775055, 0.14534437656402588, 0.09740762412548065, 0.012964587658643723, -0.010321117006242275, 0.007572459988296032, 0.058203328400850296, 0.027474142611026764, 0.017212314531207085, 0.09335587918758392, -0.028354467824101448, 0.0724276676774025, -0.051329489797353745, -0.057771604508161545, -0.08782043308019638, 0.055758386850357056, -0.04376821219921112, -0.026500796899199486, -0.06038878485560417, 0.09967568516731262, -0.0043916539289057255, -0.2136400043964386, 0.126950204372406, -0.0396803580224514, -0.06261958926916122, -0.047012247145175934, 0.05069832131266594, 0.03973376378417015, 0.026852859184145927, -0.007640344090759754, 0.017145300284028053, 0.07405120879411697, -0.030511394143104553, -0.09179125726222992, 0.02579188160598278, -0.05745954066514969, -0.05688456445932388, 0.1465713381767273, 0.00323347351513803, -0.0474536195397377, 0.041334014385938644, -0.014051327481865883, -0.0564810186624527, -0.010278617963194847, 0.050347551703453064, -0.09516170620918274, -0.031285617500543594, 0.2404841035604477, -0.040951333940029144, 0.08340443670749664, 0.055886853486299515, -0.060601796954870224, 0.020647475495934486, 0.05021902173757553, -0.04385910928249359, -0.04127226024866104, 0.1282748132944107, -0.13294818997383118, 0.10116167366504669, 0.17736972868442535, 0.03518720716238022, -0.05138367414474487, -0.055628012865781784, -0.03142929822206497, -0.004433382768183947, 0.03967129811644554, 0.04100695252418518, -0.03312556818127632, -0.08557961881160736, 0.040531888604164124, 0.006641961168497801, -0.19489122927188873, -0.0356493815779686, -0.06859473884105682, -0.013973007909953594, -0.03980230540037155, 0.07382071763277054, 0.050113096833229065, -0.032867591828107834, -0.002086569555103779, -0.3231637477874756, 0.04073058441281319, 0.11602440476417542, -0.10250008851289749, -0.013892414048314095 ]
null
null
diffusers
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use `Vintage board game box`, `vintage board game box called "your-title"` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/wizard-s-vintage-board-games/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/wizard-s-vintage-board-games', weight_name='Wizards_Vintage_Board_Game.safetensors') image = pipeline('vintage board game box (called "Being Melissa Joan Hart":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Vintage board game box", "widget": [{"text": "vintage board game box (title called \"Wizard's Vintage Board Game\" logo text:1.3), (Moondog Wizard Whitebeard performing magic by michael whelan and gerald brom:0.8)", "output": {"url": "4390221.jpeg"}}, {"text": " ", "output": {"url": "4390247.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A paranormal investigator recording in an eerie, dilapidated asylum., detailed text logo", "output": {"url": "4390254.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A solitary figure in an old library, surrounded by mountains of books., detailed text logo", "output": {"url": "4390261.jpeg"}}, {"text": "japanese vintage board game box called \"The Great Wave off Kanagawa\" by hokusai, detailed text logo", "output": {"url": "4390251.jpeg"}}, {"text": "vintage board game box (called \"Being Kermit\":1.3), illustration of (Kermit:0.4) Sketching in art class, detailed text logo", "output": {"url": "4390263.jpeg"}}, {"text": "vintage board game box (called \"When the Diarrhea Hits\":1.3), illustration of A scientist examining a glowing crystal in a futuristic lab., detailed text logo", "output": {"url": "4390380.jpeg"}}, {"text": "vintage board game box (called \"Being Gal Gadot\":1.3), illustration of (Gal Gadot:0.4) Baking bread in the kitchen, detailed text logo ", "output": {"url": "4390405.jpeg"}}, {"text": "vintage board game box (called \"Being Melissa Joan Hart\":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo", "output": {"url": "4390408.jpeg"}}]}
text-to-image
WizWhite/wizard-s-vintage-board-games
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:09:25+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use 'Vintage board game box', 'vintage board game box called "your-title"' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 81, 12, 223, 35, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Wizard's Vintage Board Games \n\n<Gallery />## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.023563958704471588, 0.12291178852319717, -0.004178875591605902, 0.09333858639001846, 0.052532125264406204, 0.04467852786183357, 0.055671412497758865, 0.1611005961894989, 0.033244501799345016, 0.10177135467529297, -0.03257633373141289, 0.07138970494270325, 0.11273282766342163, 0.11989850550889969, -0.01866079866886139, -0.1829635053873062, 0.0276845283806324, 0.03159024566411972, -0.0029096875805407763, 0.10746775567531586, 0.02964390069246292, -0.06264203041791916, 0.0770532488822937, -0.015869319438934326, 0.000734650413505733, 0.02542787976562977, -0.052047088742256165, -0.02580341324210167, 0.03190634772181511, 0.02634722739458084, 0.04790575057268143, -0.04108409956097603, 0.03469604626297951, -0.20404061675071716, 0.04170937091112137, 0.07743336260318756, -0.034042347222566605, 0.001024578232318163, 0.11604691296815872, -0.05172160267829895, 0.12862907350063324, -0.018949715420603752, 0.07211843878030777, 0.11346868425607681, -0.10834674537181854, -0.24986283481121063, -0.16540168225765228, 0.001827909261919558, 0.1384667158126831, -0.004774327389895916, -0.016834303736686707, 0.08023226261138916, 0.001848898595198989, 0.01975538767874241, 0.3628312647342682, -0.22031262516975403, -0.07556743919849396, 0.1399550586938858, 0.12335595488548279, 0.05401065573096275, -0.09878234565258026, 0.05549297109246254, -0.016391750425100327, 0.006750995293259621, -0.0249316543340683, -0.035459697246551514, 0.16098590195178986, 0.05158216506242752, -0.07544957846403122, -0.016477204859256744, 0.1847502887248993, 0.0372840017080307, 0.01264733262360096, -0.11497102677822113, -0.015582419000566006, 0.029073474928736687, -0.0966147929430008, -0.05187278240919113, 0.0028154964093118906, -0.058782875537872314, -0.004902017768472433, -0.05407131835818291, -0.03364512324333191, -0.10081709921360016, 0.02694474346935749, 0.07774633169174194, -0.009618101641535759, -0.03544917702674866, -0.01571524515748024, 0.09050655364990234, 0.06531722098588943, -0.05560929700732231, -0.08087378740310669, -0.06057724729180336, -0.11936517804861069, -0.00832306407392025, 0.021119246259331703, 0.05094771459698677, 0.07955077290534973, 0.3011684715747833, 0.09227120876312256, 0.10054845362901688, -0.13035595417022705, 0.019851870834827423, -0.02029099315404892, 0.01933489926159382, -0.03723479434847832, -0.1999821960926056, 0.003348794300109148, 0.10079557448625565, 0.04918530210852623, -0.06306697428226471, -0.08840299397706985, 0.006738991476595402, 0.05995466187596321, 0.07171142846345901, 0.058056268841028214, 0.021788006648421288, -0.02204698510468006, -0.017671599984169006, 0.2066889852285385, -0.10324615240097046, 0.08985570818185806, 0.06403505802154541, -0.060916755348443985, -0.0014055846258997917, -0.03215611353516579, 0.019064825028181076, -0.009049542248249054, 0.00036612790427170694, -0.055577777326107025, -0.03173255920410156, -0.13347803056240082, -0.08740437030792236, 0.08442745357751846, -0.06463848054409027, -0.05251472070813179, -0.016160769388079643, -0.12490294873714447, -0.07297686487436295, 0.023412130773067474, -0.07843784987926483, 0.05906008183956146, -0.06773627549409866, -0.07830924540758133, -0.0012747447472065687, 0.09215597808361053, 0.15039290487766266, -0.033549580723047256, 0.10016023367643356, -0.03686982020735741, 0.09562712162733078, 0.07858742773532867, 0.028394373133778572, -0.027023307979106903, 0.059957899153232574, -0.3018346428871155, 0.05504759028553963, -0.1382037103176117, -0.05791385471820831, -0.14303675293922424, -0.01765192113816738, 0.0445866584777832, 0.020950913429260254, -0.035571254789829254, 0.05168991908431053, -0.2297496497631073, -0.05878934636712074, 0.11261657625436783, -0.09549371898174286, -0.12101185321807861, 0.02148335427045822, -0.030187727883458138, 0.0009671784937381744, 0.015838652849197388, 0.13641929626464844, 0.10471028089523315, -0.07133231312036514, -0.040786635130643845, -0.1324578821659088, -0.08500327914953232, 0.11564718931913376, 0.10629191994667053, -0.002573310397565365, 0.08832871913909912, 0.01426019798964262, -0.1527426540851593, -0.07035858184099197, 0.045464418828487396, -0.018710503354668617, 0.07716909050941467, 0.0035129429306834936, 0.016419950872659683, -0.010411384515464306, -0.03969047963619232, -0.046389855444431305, -0.09816339612007141, 0.016142118722200394, 0.04052179306745529, -0.03223831579089165, 0.021807748824357986, -0.11412355303764343, 0.16824419796466827, 0.04178260639309883, 0.03851843997836113, -0.11212235689163208, -0.07077600061893463, -0.0007073957822285593, -0.021078426390886307, 0.0706678181886673, 0.0035054839681833982, 0.12019188702106476, 0.08017177134752274, -0.0395660325884819, -0.017559712752699852, -0.026061004027724266, -0.03235263749957085, 0.04399389773607254, -0.13967901468276978, -0.07849134504795074, -0.035759057849645615, 0.11741537600755692, -0.020570743829011917, 0.013499900698661804, 0.10396062582731247, 0.13504822552204132, -0.031000446528196335, -0.056637804955244064, -0.0038794795982539654, -0.05053180456161499, -0.003774635260924697, -0.029350046068429947, 0.01928006112575531, -0.048041507601737976, -0.03610876202583313, 0.025378264486789703, -0.21739917993545532, -0.029280629009008408, 0.1631043255329132, 0.09392901510000229, -0.04238145425915718, -0.08612673729658127, 0.021149687469005585, -0.015493473969399929, -0.03477916121482849, -0.05071898549795151, 0.09004674851894379, 0.06823451071977615, 0.06138266250491142, -0.11681924015283585, -0.0694301500916481, -0.02841975726187229, 0.041459329426288605, -0.04721418023109436, 0.02424091473221779, 0.07702986150979996, -0.20092864334583282, 0.10478981584310532, 0.015104256570339203, 0.013814962469041348, 0.1287389099597931, 0.008668199181556702, -0.06958562880754471, -0.008660509251058102, 0.0005489562754519284, 0.049465641379356384, 0.09361263364553452, 0.026909004896879196, 0.05871017277240753, 0.04839864373207092, -0.08727250248193741, -0.022442389279603958, -0.10601771622896194, -0.024153752252459526, -0.004338038619607687, -0.040368352085351944, 0.04602085426449776, 0.10768334567546844, 0.0844862088561058, 0.10351786762475967, 0.0532248355448246, 0.08131489157676697, -0.04200027137994766, -0.06430237740278244, -0.07395698875188828, 0.05538225919008255, -0.12461160868406296, -0.18503183126449585, -0.12734010815620422, -0.07223068922758102, -0.017763860523700714, 0.012944813817739487, 0.0286748968064785, -0.053581759333610535, -0.0493553951382637, -0.05069447681307793, 0.062188487499952316, -0.03501246124505997, -0.10187722742557526, -0.020929820835590363, 0.07106571644544601, -0.03721807152032852, -0.09989766031503677, 0.031793493777513504, 0.019920535385608673, -0.13244539499282837, 0.0369296669960022, 0.04042903333902359, 0.16643241047859192, 0.031023461371660233, 0.0010033644502982497, 0.07618854194879532, -0.04928405582904816, 0.04550120607018471, -0.09547102451324463, 0.1339881271123886, 0.07658464461565018, -0.02376474253833294, 0.08577729761600494, 0.05992034077644348, 0.03802983835339546, -0.013479459099471569, -0.00741078145802021, 0.08252701163291931, -0.03207170218229294, -0.10196507722139359, 0.01744784601032734, -0.034362807869911194, 0.04132366552948952, 0.11738548427820206, 0.03105354495346546, 0.07218461483716965, 0.030958201736211777, -0.07703925669193268, -0.011588596738874912, 0.16004875302314758, 0.09279847145080566, 0.05068345367908478, -0.010696878656744957, 0.02307371236383915, -0.012745912186801434, -0.02113366313278675, 0.09347096085548401, 0.06255519390106201, 0.127706840634346, -0.04232053831219673, 0.08574071526527405, 0.06243503466248512, -0.04886920750141144, 0.03199455887079239, 0.09608809649944305, 0.042341846972703934, 0.048537179827690125, -0.0647246241569519, -0.069090336561203, 0.026008009910583496, 0.12746940553188324, 0.06126168370246887, -0.021594924852252007, 0.0514756515622139, -0.049070488661527634, 0.053805477917194366, 0.0890427902340889, -0.057078853249549866, -0.20000053942203522, 0.06598206609487534, 0.07676377147436142, 0.01911006309092045, -0.07393345236778259, 0.027274366468191147, -0.08015337586402893, -0.12624676525592804, 0.1419331282377243, -0.04026399925351143, 0.05618320405483246, -0.031650107353925705, -0.05799945443868637, 0.06508958339691162, 0.11421672999858856, -0.03640464320778847, 0.053859956562519073, -0.16993413865566254, -0.0028283409774303436, 0.011710532009601593, 0.02529461309313774, -0.05785670503973961, -0.007255401462316513, 0.09968656301498413, -0.12187546491622925, 0.10064544528722763, -0.036646079272031784, -0.0969335064291954, -0.0935864970088005, 0.011930535547435284, -0.014775906689465046, 0.05840790644288063, -0.1051863580942154, 0.15005463361740112, -0.06917901337146759, -0.06494453549385071, -0.062209222465753555, -0.04648399353027344, -0.022477980703115463, -0.15696994960308075, -0.010218990966677666, -0.10577961802482605, 0.07099968194961548, -0.041214410215616226, 0.011419164016842842, -0.1452297568321228, 0.07795307785272598, -0.05459166690707207, -0.07050366699695587, -0.08579936623573303, 0.013944132253527641, 0.11855659633874893, -0.017997168004512787, 0.04153841733932495, -0.06305108219385147, 0.2371360808610916, -0.08726444840431213, -0.07760126143693924, -0.032389216125011444, -0.04395842179656029, -0.15313279628753662, 0.0009960769675672054, 0.12172379344701767, 0.06607431918382645, 0.037985920906066895, 0.0010652777273207903, 0.0701897144317627, 0.032746706157922745, -0.08944980055093765, 0.09539735317230225, 0.07168793678283691, 0.03101334534585476, -0.017514776438474655, 0.008030666038393974, 0.019788915291428566, -0.10671461373567581, 0.06741040199995041, 0.023141736164689064, 0.23625944554805756, -0.07974837720394135, 0.1051061674952507, -0.09686210751533508, -0.015340641140937805, -0.20230962336063385, -0.08959078788757324, -0.047636061906814575, -0.07089950889348984, 0.025580117478966713, -0.11362031102180481, 0.05583704262971878, 0.014833265915513039, -0.019196009263396263, 0.20698869228363037, -0.12587271630764008, -0.09304993599653244, 0.001571766333654523, 0.07858449965715408, -0.1938905417919159, -0.1630343198776245, -0.03149036318063736, -0.004990610294044018, -0.10897413641214371, 0.059230778366327286, 0.03657939285039902, 0.03749068081378937, -0.050340913236141205, 0.0631486251950264, 0.013423026539385319, -0.037812523543834686, 0.16931597888469696, -0.09697306156158447, 0.06721089780330658, -0.05894190073013306, -0.05556374043226242, 0.12050394713878632, -0.04188216105103493, -0.010372171178460121, -0.037512652575969696, -0.03869517520070076, -0.0650193840265274, 0.009103799238801003, -0.01721031405031681, 0.026197372004389763, -0.06493490934371948, 0.021737171337008476, -0.11945012956857681, 0.0783010870218277, -0.025787005200982094, -0.0028899102471768856, 0.03986288234591484, -0.01595618948340416, 0.11316515505313873, 0.033987320959568024, 0.06733908504247665, 0.058868180960416794, -0.12042763829231262, 0.008716349489986897, 0.0012172451242804527, 0.029092146083712578, 0.009273571893572807, 0.03592429310083389, 0.07552649825811386, 0.06840544939041138, 0.053215593099594116, 0.06875114142894745, -0.16042599081993103, 0.030710995197296143, 0.08797552436590195, -0.05949205160140991, -0.15522846579551697, 0.009188318625092506, -0.007172601297497749, -0.035271406173706055, -0.15152765810489655, 0.01600334793329239, 0.05354810878634453, -0.05764586478471756, 0.07438889145851135, 0.04813273623585701, 0.047026626765728, -0.0156662967056036, -0.01716330088675022, 0.05961329862475395, -0.13824382424354553, 0.146174818277359, 0.002337909769266844, -0.0340917706489563, -0.0005429115262813866, 0.17107374966144562, -0.04532601311802864, -0.03236255422234535, 0.039114825427532196, 0.11603540927171707, 0.0016654889332130551, -0.05814401060342789, -0.032013189047575, -0.11393432319164276, 0.10066553205251694, 0.07805687934160233, 0.06092570722103119, -0.011840049177408218, 0.06751039624214172, 0.04642714187502861, -0.06274619698524475, 0.10705002397298813, 0.01249826792627573, 0.007990065030753613, -0.08471057564020157, -0.04994784668087959, 0.04541703686118126, -0.07979466766119003, -0.0128783592954278, 0.011200116015970707, -0.07504363358020782, 0.02061050944030285, -0.06440842896699905, 0.05068428814411163, -0.15326708555221558, -0.012655537575483322, -0.018161585554480553, 0.012048449367284775, -0.01733422465622425, -0.004847266245633364, -0.09175649285316467, -0.11433283239603043, -0.011554695665836334, 0.07162268459796906, -0.1953113079071045, -0.003946736920624971, 0.10186076164245605, -0.11213473975658417, -0.002569005824625492, 0.03063095360994339, 0.01590721867978573, 0.054335739463567734, -0.09872081875801086, -0.09251003712415695, 0.009380172938108444, 0.02266753651201725, 0.019344381988048553, -0.1360326111316681, -0.01663799397647381, -0.04737652838230133, -0.08562880754470825, -0.006946170702576637, -0.00847865641117096, -0.06733191758394241, 0.0794220119714737, -0.04997037723660469, -0.03835095837712288, -0.023601874709129333, 0.024392060935497284, 0.22383956611156464, 0.015287197194993496, 0.06924480944871902, -0.0010344201000407338, 0.06246696040034294, -0.16009709239006042, 0.005887102335691452, 0.004371441900730133, -0.06677559018135071, -0.04376867786049843, -0.004612426273524761, 0.03509896248579025, -0.026001401245594025, 0.0782889574766159, -0.029717501252889633, 0.004977838136255741, 0.016043955460190773, 0.05363566800951958, -0.012814346700906754, 0.03623867407441139, 0.07584695518016815, -0.006287961732596159, 0.0076025621965527534, 0.09501274675130844, 0.02542431838810444, -0.00026310066459700465, -0.15335223078727722, 0.12475235760211945, 0.05669238790869713, -0.0034590328577905893, 0.02355547994375229, 0.013794511556625366, -0.09101000428199768, -0.10996876657009125, 0.23920907080173492, 0.021258115768432617, -0.0268576517701149, -0.059954289346933365, 0.14003752171993256, 0.214437797665596, -0.22269657254219055, 0.08234722167253494, 0.013695930130779743, 0.024114597588777542, -0.054729659110307693, -0.056122343987226486, -0.1180589497089386, -0.10732357203960419, 0.06045934185385704, -0.09228683263063431, 0.14667779207229614, -0.07063864916563034, 0.023877739906311035, 0.05965559929609299, 0.03489665314555168, -0.05501185730099678, -0.037088170647621155, -0.020038019865751266, 0.020456941798329353, -0.06402456015348434, 0.1596757173538208, -0.00483765359967947, 0.08190368860960007, -0.043168261647224426, 0.06291613727807999, 0.03539181873202324, -0.01452706940472126, 0.05942166969180107, -0.0970427393913269, -0.043960265815258026, 0.02406969852745533, -0.021889235824346542, 0.008970825932919979, 0.07855602353811264, 0.06127773970365524, -0.026781871914863586, -0.02851041406393051, 0.14015093445777893, -0.02175280824303627, -0.08151620626449585, -0.054280735552310944, 0.10632781684398651, -0.015419582836329937, -0.05294907093048096, 0.003443522844463587, -0.12235289067029953, -0.004463948775082827, 0.17651094496250153, 0.10288434475660324, 0.039308466017246246, -0.010306834243237972, -0.016160035505890846, 0.03316201642155647, 0.016416504979133606, 0.03140943497419357, 0.06633688509464264, 0.06490170955657959, -0.10217667371034622, -0.05157305672764778, -0.07213946431875229, -0.09049320220947266, -0.011970313265919685, 0.06991714239120483, 0.060892798006534576, -0.03647301346063614, -0.012423434294760227, 0.07992248237133026, -0.09898396581411362, -0.21809709072113037, 0.006136005744338036, -0.043485041707754135, -0.06940450519323349, 0.018671900033950806, 0.07565707713365555, -0.06611000001430511, 0.04630177095532417, 0.04563207924365997, -0.004799483343958855, 0.06632009893655777, 0.022614935413002968, -0.1653631180524826, 0.013791034929454327, 0.04694069176912308, -0.07877032458782196, 0.1896812468767166, -0.04531338810920715, -0.018341481685638428, 0.0856526717543602, -0.011943678371608257, -0.061028093099594116, 0.052071645855903625, 0.06098291650414467, -0.09182123839855194, 0.02400902658700943, 0.2210841327905655, 0.027426043525338173, 0.09333977848291397, 0.05490824207663536, -0.06596803665161133, 0.09767384082078934, 0.060323797166347504, -0.09416138380765915, -0.04361063614487648, 0.11113274097442627, -0.1448400765657425, 0.12444309145212173, 0.15154947340488434, -0.01042647659778595, 0.07269050925970078, -0.06513785570859909, 0.02802140824496746, 0.01065089087933302, 0.12058724462985992, -0.0010113881435245275, -0.059025950729846954, -0.015942882746458054, -0.08110630512237549, -0.011546991765499115, -0.1760648638010025, -0.039908792823553085, -0.07372182607650757, -0.04298028349876404, -0.04940276965498924, 0.09466634690761566, 0.04248925670981407, 0.010091601870954037, -0.023467298597097397, -0.14175792038440704, 0.024593086913228035, 0.12654593586921692, -0.14372731745243073, 0.05347004532814026 ]
null
null
diffusers
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use `Book cover of a vintage romance novel`, `Cover of a Harlequin romance novel` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/the-wizard-s-vintage-romance-novel/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/the-wizard-s-vintage-romance-novel', weight_name='wizards_vintage_romance.safetensors') image = pipeline('book cover of a vintage romance novel depicting John Legend').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Book cover of a vintage romance novel", "widget": [{"text": "book cover of a vintage romance novel depicting kanye west in a romantic scene with kanye west", "output": {"url": "5033837.jpeg"}}, {"text": "book cover of a harlequin romance novel book cover of a vintage romance novel called \"praise the sun\", depicting Solaire of Astora from dark souls with both hands stretched up", "output": {"url": "5033836.jpeg"}}, {"text": "book cover of a vintage romance novel called \"a real man a tee\" depicting a manatee casanova", "output": {"url": "5033831.jpeg"}}, {"text": " ", "output": {"url": "5033820.jpeg"}}, {"text": "book cover of a vintage romance novel depicting John Legend", "output": {"url": "5033958.jpeg"}}]}
text-to-image
WizWhite/the-wizard-s-vintage-romance-novel-0
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:10:17+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 78, 14, 208, 34, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# The Wizard's Vintage Romance Novel \n\n<Gallery />## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.05321831628680229, 0.14669254422187805, -0.004502041265368462, 0.08079151064157486, -0.029933059588074684, 0.10577622801065445, 0.06477154791355133, 0.09510701149702072, 0.011646539904177189, 0.08814748376607895, -0.06371841579675674, 0.019155219197273254, 0.11237654834985733, 0.11551177501678467, -0.0010364102199673653, -0.22339099645614624, 0.010180611163377762, -0.04324489086866379, 0.04303957149386406, 0.0625455230474472, 0.10128665715456009, -0.017063045874238014, 0.06576608866453171, -0.017759541049599648, 0.05451653152704239, 0.022510027512907982, -0.013151939027011395, -0.01243155263364315, 0.031349290162324905, 0.09428945183753967, 0.06795656681060791, 0.03351213037967682, 0.10839696228504181, -0.266926109790802, 0.019879736006259918, 0.08084052056074142, -0.0978420078754425, -0.014702456071972847, 0.16044500470161438, -0.11349025368690491, 0.1880626529455185, -0.11783038824796677, 0.07790586352348328, 0.034112900495529175, -0.0384993813931942, -0.07885919511318207, -0.1954290121793747, 0.23864255845546722, 0.09623387455940247, 0.008940339088439941, 0.02164599299430847, 0.014341361820697784, -0.027347933501005173, -0.038675349205732346, 0.27720099687576294, -0.1729094535112381, -0.05388390272855759, 0.060978811234235764, 0.04898742586374283, 0.06550806760787964, -0.14964692294597626, 0.04815918952226639, -0.04405101016163826, 0.025625813752412796, 0.017671914771199226, -0.0006661558290943503, 0.22553475201129913, 0.016948848962783813, -0.09919431060552597, -0.03811253234744072, 0.1204286590218544, -0.02031622640788555, -0.05184183269739151, -0.12438511103391647, -0.011047192849218845, 0.15827436745166779, -0.0907370075583458, -0.059587206691503525, 0.035615794360637665, -0.014309861697256565, 0.02693103812634945, -0.13623739778995514, -0.06446903944015503, -0.04862421751022339, -0.00271399412304163, 0.08695939183235168, 0.014321497641503811, -0.03794339299201965, 0.06442253291606903, 0.09413876384496689, -0.05893079936504364, 0.0003298760566394776, 0.009257950820028782, -0.10610733926296234, -0.0347614660859108, -0.03158413618803024, -0.026037851348519325, -0.018727310001850128, 0.03667706251144409, 0.17049738764762878, 0.01776425912976265, 0.01399908121675253, -0.03340549394488335, -0.009536413475871086, 0.011784153990447521, 0.07418246567249298, -0.03395622596144676, -0.20987409353256226, 0.02220064215362072, 0.07835803180932999, 0.09452329576015472, -0.0008603720343671739, 0.014689458534121513, -0.12248777598142624, -0.007499030791223049, 0.026480745524168015, 0.13280563056468964, -0.010149382054805756, -0.03184062987565994, -0.010172813199460506, 0.17929892241954803, -0.10268297046422958, 0.04850778728723526, 0.031034735962748528, 0.0058097513392567635, 0.04931523650884628, 0.04208367317914963, -0.014926578849554062, -0.05074848234653473, 0.09546711295843124, -0.07258257269859314, -0.07158969342708588, -0.006964302621781826, -0.06605303287506104, 0.009416364133358002, 0.030285310000181198, -0.10763920843601227, -0.01594468019902706, -0.09428567439317703, -0.0639868974685669, 0.011601072736084461, -0.06397758424282074, -0.04825146868824959, -0.04287203773856163, -0.01895194500684738, 0.013326741755008698, 0.08904442191123962, 0.04893078655004501, -0.00926380418241024, 0.04676220566034317, -0.126156747341156, 0.058958396315574646, 0.07191915810108185, 0.027445003390312195, 0.03401646390557289, 0.04954657703638077, -0.30111581087112427, 0.10338596999645233, -0.10123956203460693, -0.0003184778324794024, -0.09845469892024994, -0.0463876947760582, -0.01999659650027752, -0.012287483550608158, -0.07519489526748657, 0.08853600919246674, -0.16202682256698608, -0.06580379605293274, 0.14436431229114532, -0.14059661328792572, -0.0077738044783473015, 0.11649549007415771, -0.03659859299659729, 0.021098962053656578, 0.10776852816343307, 0.16187764704227448, 0.20346596837043762, -0.07648364454507828, -0.07567443698644638, -0.07652169466018677, -0.04972660169005394, 0.1980353146791458, 0.02377224527299404, -0.10837942361831665, 0.00797627680003643, 0.00014688659575767815, -0.215581476688385, -0.1299477368593216, 0.05467606708407402, -0.02173520065844059, 0.006420244928449392, 0.013012540526688099, 0.08888893574476242, -0.047380756586790085, -0.06880936026573181, -0.018590575084090233, -0.0770680159330368, -0.09505660831928253, 0.08072634041309357, -0.015011897310614586, 0.06786804646253586, -0.0015096500283107162, 0.08397693186998367, 0.1079651266336441, 0.029396001249551773, -0.05914023518562317, -0.029893500730395317, 0.04261212795972824, -0.09927863627672195, 0.04872962087392807, -0.0260609220713377, 0.040615156292915344, 0.024232611060142517, -0.12831926345825195, 0.014656567014753819, -0.004484562668949366, -0.044163141399621964, -0.07959317415952682, -0.17766673862934113, -0.08520229160785675, 0.013628458604216576, 0.1571706086397171, -0.1474684625864029, 0.031249308958649635, -0.012322181835770607, 0.11353558301925659, -0.023724131286144257, 0.005995760206133127, 0.012328391894698143, -0.03289732336997986, -0.03453351557254791, -0.03855626657605171, -0.012944747693836689, -0.031241020187735558, -0.056257277727127075, 0.05210423842072487, -0.14218762516975403, -0.159774050116539, 0.07842213660478592, 0.049029309302568436, -0.07018033415079117, -0.14410105347633362, -0.01697435975074768, -0.0007302348967641592, -0.07181360572576523, -0.046579472720623016, 0.10024859011173248, 0.044666606932878494, 0.001854764181189239, -0.09578494727611542, -0.05029650405049324, -0.08782697468996048, -0.016513200476765633, -0.10236818343400955, 0.0857929214835167, -0.05675756186246872, -0.13332150876522064, 0.023715579882264137, 0.033960629254579544, -0.0002833972976077348, 0.07518674433231354, 0.09324659407138824, -0.07453864812850952, 0.020497336983680725, -0.03424213454127312, 0.08654914051294327, 0.017360886558890343, 0.09116718918085098, 0.06361733376979828, 0.04851880669593811, -0.046750105917453766, -0.004101996775716543, -0.061475902795791626, -0.023077473044395447, 0.0095299007371068, -0.06445150077342987, -0.03000110201537609, -0.010900977067649364, 0.03825749456882477, 0.09738853573799133, 0.05785394832491875, 0.14658357203006744, -0.060970794409513474, -0.04600439965724945, -0.08310773968696594, 0.04877781867980957, -0.10047570616006851, -0.07346770167350769, -0.11913394927978516, 0.0011496137594804168, -0.010784938000142574, 0.015567008405923843, 0.0029432971496134996, -0.03890599310398102, -0.05219300463795662, -0.10327281057834625, 0.07607675343751907, -0.03970371186733246, -0.07469083368778229, -0.09619191288948059, 0.047150809317827225, -0.04694540426135063, -0.12067805975675583, 0.00910456757992506, 0.021205252036452293, -0.09950970858335495, -0.008368424139916897, -0.056365448981523514, 0.10826396942138672, 0.041478611528873444, 0.00004517184788710438, -0.03616640344262123, -0.020974276587367058, 0.07561168819665909, -0.07631100714206696, 0.12657538056373596, 0.05825069919228554, 0.06504117697477341, 0.13049109280109406, 0.15319597721099854, -0.020902644842863083, 0.016280250623822212, -0.005761436186730862, 0.07374729961156845, 0.02537660114467144, -0.1904403418302536, -0.027781084179878235, -0.01203656941652298, -0.08166011422872543, 0.0782763808965683, 0.07238269597291946, 0.0880681574344635, 0.023803720250725746, -0.16001290082931519, 0.017220424488186836, 0.15366363525390625, 0.09739531576633453, 0.13189944624900818, 0.034480247646570206, -0.01203988492488861, -0.07013511657714844, 0.03776678070425987, 0.1191110834479332, 0.030850514769554138, 0.14311210811138153, -0.04993743449449539, 0.15395919978618622, 0.02778000198304653, 0.08354712277650833, 0.0015040665166452527, 0.0002124385500792414, 0.05549585074186325, 0.0606275275349617, -0.023671748116612434, -0.04763234034180641, 0.053177956491708755, 0.09231172502040863, 0.10356280207633972, -0.030779024586081505, -0.030639363452792168, -0.10309681296348572, 0.08456406742334366, 0.09388004243373871, -0.07244310528039932, -0.06456397473812103, 0.04886768385767937, 0.09448565542697906, -0.048165712505578995, -0.002624080516397953, -0.06727933138608932, -0.024789266288280487, -0.13309267163276672, 0.1575641632080078, 0.013763848692178726, 0.04903164878487587, -0.11392469704151154, -0.06101062148809433, -0.0380878821015358, 0.12328830361366272, -0.05923272296786308, 0.07384791970252991, -0.063438281416893, 0.035822153091430664, 0.03769771382212639, 0.08574551343917847, -0.011341235600411892, -0.01579342596232891, 0.12605133652687073, 0.059689272195100784, 0.06930304318666458, 0.009993442334234715, 0.040320124477148056, 0.03913475200533867, -0.03156508505344391, -0.021948013454675674, 0.036207862198352814, -0.15300564467906952, 0.12720607221126556, -0.07269614189863205, -0.08630671352148056, -0.10556243360042572, 0.10648729652166367, -0.09296026080846786, -0.2141207456588745, 0.04889071360230446, -0.1572929471731186, 0.013565348461270332, -0.05788291618227959, -0.02914433553814888, -0.03350845351815224, 0.044193245470523834, 0.025442378595471382, -0.11558423191308975, -0.08534768223762512, -0.09644071012735367, 0.16608025133609772, -0.051787812262773514, -0.009836274199187756, 0.008131160400807858, 0.1936507672071457, -0.10826867818832397, -0.06091306731104851, -0.11326107382774353, -0.006943078245967627, -0.18266206979751587, -0.018157122656702995, 0.15633849799633026, 0.08652044087648392, 0.08449573814868927, 0.04886287823319435, 0.021626047790050507, -0.018150951713323593, -0.11068039387464523, 0.04571617394685745, 0.10017368942499161, 0.02691940777003765, -0.028274869546294212, -0.0522390715777874, -0.10063692927360535, -0.16030262410640717, 0.05059676989912987, -0.008155981078743935, 0.2154807150363922, -0.01597009412944317, 0.12677764892578125, 0.01859510876238346, -0.10634056478738785, -0.11895336955785751, -0.0823814794421196, -0.005158303305506706, -0.07936263829469681, 0.012622456066310406, -0.1088368222117424, -0.06665971130132675, 0.05985612794756889, -0.000034681721444940194, 0.07733345031738281, -0.25537943840026855, -0.075731061398983, -0.06116284430027008, 0.06069694831967354, -0.1842307597398758, -0.16473239660263062, -0.08671041578054428, -0.11995023488998413, -0.07857968658208847, 0.04314495623111725, 0.05275651440024376, 0.04278276488184929, -0.02613048069179058, 0.009315229952335358, 0.0032697273418307304, 0.024048777297139168, 0.17557953298091888, -0.034595973789691925, 0.047946397215127945, -0.07245049625635147, -0.007585981395095587, 0.08371735364198685, -0.08807996660470963, 0.03271365538239479, -0.08131225407123566, -0.028514618054032326, -0.0022496662568300962, -0.04381527006626129, -0.06690354645252228, 0.04568693786859512, -0.11227498203516006, 0.02080734632909298, -0.07699732482433319, 0.045754700899124146, 0.08875580132007599, -0.03920012712478638, -0.07656789571046829, -0.03747625648975372, 0.10779358446598053, -0.09980182349681854, 0.13257047533988953, 0.1928819715976715, -0.09490912407636642, -0.044285327196121216, -0.022442305460572243, -0.00760953314602375, -0.060035333037376404, 0.042397402226924896, 0.06141095235943794, 0.04266462102532387, 0.0688740611076355, 0.00000807584456197219, -0.10043701529502869, -0.02581442892551422, 0.11365946382284164, -0.07477615773677826, -0.20386344194412231, 0.005580640397965908, -0.02064170502126217, -0.15424147248268127, -0.1503860056400299, 0.037080347537994385, 0.019647004082798958, -0.12635120749473572, 0.028805891051888466, 0.05449257791042328, 0.046013880521059036, 0.07669100910425186, 0.039765141904354095, -0.011417005211114883, -0.038274336606264114, 0.1166827529668808, 0.08172766119241714, -0.03919433802366257, -0.04991926997900009, 0.20170028507709503, -0.0365462452173233, -0.02645709551870823, 0.07812988013029099, 0.05178544670343399, -0.06124855577945709, 0.05264398083090782, 0.05611838400363922, -0.09100259840488434, 0.01920992322266102, 0.19037862122058868, 0.002903916174545884, 0.014952948316931725, 0.06056425720453262, 0.003262158716097474, -0.05546463280916214, 0.08306457847356796, 0.11159024387598038, 0.020665038377046585, -0.046573009341955185, 0.08543431758880615, -0.021513817831873894, -0.058666545897722244, -0.007310137618333101, 0.017324332147836685, -0.048232369124889374, -0.06687092781066895, -0.1131444051861763, 0.046753499656915665, -0.1290065497159958, 0.0006895044934935868, -0.05869874730706215, 0.07845699787139893, -0.0010863792849704623, -0.03219826892018318, -0.05636448785662651, -0.11921386420726776, -0.03096763603389263, 0.0909636989235878, -0.11854135990142822, 0.013996515423059464, 0.1285608857870102, -0.10081034898757935, 0.045947492122650146, 0.06553571671247482, -0.003820844693109393, 0.008897488936781883, -0.11954289674758911, -0.06355255097150803, -0.10084176808595657, 0.011913768947124481, -0.008067597635090351, -0.1374189406633377, -0.016501639038324356, -0.11527196317911148, -0.11790254712104797, 0.008444718085229397, 0.017977701500058174, -0.09219861775636673, 0.1116005927324295, -0.030423736199736595, -0.06747255474328995, -0.009285557083785534, 0.044648557901382446, 0.22509267926216125, -0.03306823968887329, 0.05362313240766525, -0.052663035690784454, 0.022853197529911995, -0.12137596309185028, 0.003666953183710575, -0.04297361522912979, -0.010130739770829678, 0.031711675226688385, -0.02257661521434784, 0.03357494994997978, 0.02664266899228096, 0.04901110380887985, -0.016374796628952026, 0.012859944254159927, 0.00048577331472188234, 0.1073739305138588, -0.008676178753376007, -0.008102601394057274, 0.08721484988927841, -0.014314214698970318, -0.05260926112532616, 0.053944848477840424, -0.04703262448310852, -0.027994465082883835, -0.07802501320838928, 0.0937056764960289, 0.10238129645586014, 0.09503104537725449, -0.006775310263037682, 0.0015052207745611668, -0.07944058626890182, -0.03502284362912178, 0.08992467820644379, 0.06654496490955353, -0.033212367445230484, -0.05203298479318619, 0.10483364760875702, 0.14967568218708038, -0.22301506996154785, 0.1093248650431633, 0.022398142144083977, -0.04959458112716675, -0.016661398112773895, -0.18380482494831085, -0.05866049602627754, -0.010784318670630455, -0.005159382708370686, -0.06690062582492828, 0.10077912360429764, 0.05179096758365631, -0.004784216172993183, 0.007327708415687084, -0.04351753741502762, -0.11200596392154694, -0.13434071838855743, 0.061824630945920944, 0.05309354513883591, -0.007255935110151768, 0.08355766534805298, 0.02047988958656788, 0.036063216626644135, -0.054023224860429764, 0.01673528552055359, 0.05893455818295479, 0.0619463175535202, 0.045814402401447296, -0.07637757062911987, -0.05169972777366638, 0.05187874287366867, -0.046823855489492416, 0.04983779788017273, 0.1872168332338333, 0.034922659397125244, -0.051576465368270874, -0.014453443698585033, 0.24941596388816833, -0.010936119593679905, -0.040563128888607025, -0.10029584169387817, 0.054428741335868835, -0.025941068306565285, -0.061138369143009186, 0.026011506095528603, -0.1262028068304062, 0.06279975920915604, 0.11924222111701965, 0.06314519792795181, -0.0054428731091320515, 0.00949717964977026, 0.030410388484597206, 0.01888793148100376, 0.08432259410619736, -0.03601263836026192, 0.012097828090190887, 0.13551196455955505, -0.08518228679895401, 0.09485634416341782, -0.045954667031764984, 0.019332312047481537, -0.08001063019037247, 0.18118314445018768, -0.056035902351140976, -0.054108913987874985, -0.006356438156217337, 0.09214521944522858, 0.0013992392923682928, -0.19459417462348938, 0.039603013545274734, -0.07282839715480804, -0.05629294365644455, -0.017479559406638145, -0.02250882424414158, -0.03366977721452713, 0.08490776270627975, 0.06625929474830627, 0.006762478966265917, 0.174803227186203, 0.0009378311224281788, -0.088409423828125, -0.05383072793483734, 0.10917345434427261, 0.021273210644721985, 0.22448670864105225, -0.018870968371629715, -0.0666857585310936, 0.04827699810266495, 0.0035094530321657658, -0.07125455141067505, 0.029383372515439987, 0.05591656267642975, -0.0863967314362526, 0.027801427990198135, 0.21149593591690063, 0.002763717668130994, -0.015473964624106884, 0.09961609542369843, 0.05355721712112427, 0.10644396394491196, 0.04608115553855896, -0.044131625443696976, -0.037765417248010635, 0.1456296741962433, -0.18023176491260529, 0.09100385755300522, 0.17230039834976196, -0.014959674328565598, 0.049204014241695404, -0.07113354653120041, -0.07300952821969986, 0.07235757261514664, 0.1928112953901291, 0.02514754980802536, -0.0413985475897789, 0.006900338921695948, -0.029566690325737, 0.020983293652534485, -0.14440439641475677, -0.0630694106221199, -0.030691437423229218, -0.01414788980036974, -0.036074042320251465, 0.08740619570016861, 0.10065514594316483, 0.01942024566233158, -0.00044795256690122187, -0.03897201642394066, -0.008688877336680889, 0.09275764226913452, -0.08599120378494263, 0.06095607206225395 ]
null
null
diffusers
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)">✝</span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use `GVASA`, `wearing a hat` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden', weight_name='GUSTAV_VASA-000002.safetensors') image = pipeline('`GVASA`, `wearing a hat`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "GVASA", "widget": [{"text": "hyperrealistic portrait photograph of a laughing (gvasa:1.5) dressed in a santa outfit, shot on sony a7, studio lighting", "output": {"url": "4712224.jpeg"}}, {"text": "The cover of the vintage comic book (titled \"THE DANE SLAYER\":1.2) features an illustration of GVASA riding a giant white (moose), by michael whelan and gerald brom", "output": {"url": "4712162.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA:1.4) Riding public transport, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712165.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA GVASA:1.3) Setting the dinner table, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712166.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA wearing a hat:1.4) walking a corgi in stockholm old town gamla stan, shot on sony a7, 50mm, highly detailed, natural lighting,", "output": {"url": "4712167.jpeg"}}, {"text": "sven nordqvist style (GVASA:1.3) hiding in a haystack", "output": {"url": "4712238.jpeg"}}, {"text": "vintage safety matches, (title logo \"REFORMATION\":1.5), (GVASA:1.3) wearing a hat, \"made by gustav vasa\"", "output": {"url": "4712408.jpeg"}}, {"text": "gvasa in a felt puppet world style", "output": {"url": "4712428.jpeg"}}, {"text": "breathtaking photo of gvasa (gvasa:1.4) dressed as a cyberpunk, urban neon tokyo background at night, long beard and pageboy hair", "output": {"url": "4712579.jpeg"}}, {"text": " ", "output": {"url": "4713481.jpeg"}}]}
text-to-image
WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden-0
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:10:46+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use 'GVASA', 'wearing a hat' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 94, 20, 336, 24, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab." ]
[ 0.012717844918370247, 0.0371529720723629, -0.0066659534350037575, 0.11249786615371704, 0.04225501790642738, 0.012256767600774765, 0.0421113483607769, 0.0784948393702507, 0.04019871726632118, 0.10369378328323364, 0.0796005129814148, -0.002692983252927661, 0.11595098674297333, -0.09132442623376846, 0.07554394006729126, -0.28408244252204895, 0.05389674752950668, -0.08298446238040924, -0.06988949328660965, 0.04652348533272743, 0.09091489017009735, -0.012928164564073086, 0.037218980491161346, -0.04183662310242653, 0.08783798664808273, 0.005785414949059486, -0.04517302289605141, 0.018526755273342133, 0.06457188725471497, 0.06143207103013992, 0.016819842159748077, 0.06529201567173004, 0.05266645923256874, -0.15475967526435852, 0.005502436310052872, 0.032450299710035324, -0.04809965193271637, -0.025976568460464478, 0.09847093373537064, -0.03986227512359619, 0.1369038075208664, -0.11485540866851807, -0.03265029564499855, 0.011952199973165989, -0.05755671486258507, -0.21988655626773834, -0.05509188026189804, 0.06905684620141983, 0.11821073293685913, -0.01501986850053072, -0.0754329264163971, -0.0561990961432457, 0.02018461748957634, 0.011421862989664078, 0.19400270283222198, -0.20950907468795776, -0.07643061131238937, 0.16596472263336182, 0.06111634150147438, 0.07021567225456238, -0.0976482406258583, 0.10679681599140167, -0.006900938693434, 0.030671125277876854, 0.0659574419260025, -0.05886857211589813, 0.09118591248989105, -0.006307800300419331, -0.11194804310798645, 0.016164246946573257, 0.20043450593948364, 0.04296509921550751, -0.015396450646221638, -0.12738126516342163, -0.0067059919238090515, 0.0990285873413086, -0.032695114612579346, -0.06551991403102875, 0.05082995444536209, 0.014191877096891403, 0.11222518235445023, -0.13885211944580078, -0.12181676179170609, -0.016177130863070488, -0.010859542526304722, 0.04089827090501785, -0.02840382046997547, -0.04885531961917877, 0.11667570471763611, 0.016002288088202477, -0.1601361781358719, -0.13262875378131866, -0.05767400190234184, -0.08999161422252655, -0.09483041614294052, 0.024721931666135788, 0.017178548499941826, -0.14012429118156433, 0.0975833311676979, 0.06867267191410065, -0.024200178682804108, 0.027109557762742043, -0.10377179086208344, 0.06457357853651047, 0.03740866854786873, 0.09723098576068878, -0.14469853043556213, -0.11361241340637207, -0.03750193864107132, -0.01122044213116169, 0.03099895641207695, -0.05645659193396568, -0.06803535670042038, -0.13418923318386078, 0.046306610107421875, -0.014761105179786682, 0.043753452599048615, 0.03605223074555397, -0.03911685571074486, -0.0013729328056797385, 0.07923904806375504, -0.07680018246173859, -0.015240838751196861, 0.004788341466337442, -0.020235782489180565, 0.021374545991420746, 0.01386585459113121, 0.04184405133128166, -0.03161827474832535, 0.1474393904209137, -0.0036768042482435703, -0.012380913831293583, 0.008755587972700596, -0.12686610221862793, 0.037688788026571274, -0.05913971737027168, -0.07074430584907532, -0.07810773700475693, -0.05811448395252228, -0.054152775555849075, 0.0590934194624424, -0.08179700374603271, 0.00502370297908783, -0.0666339173913002, -0.09070538729429245, 0.023018570616841316, 0.03697793558239937, 0.021861199289560318, -0.02843826822936535, 0.026186488568782806, -0.12087062001228333, 0.10490087419748306, 0.06971580535173416, -0.007373201660811901, -0.104161337018013, 0.03050946816802025, -0.27375850081443787, 0.12864285707473755, -0.17684510350227356, -0.015969086438417435, -0.11018896847963333, -0.04840978980064392, -0.018441999331116676, 0.012455275282263756, -0.0082284240052104, 0.14024299383163452, -0.196727454662323, -0.045213732868433, 0.15993599593639374, -0.1241975799202919, -0.024311207234859467, 0.10908044874668121, 0.059061482548713684, 0.016240447759628296, 0.09049873799085617, 0.17446374893188477, 0.005971574690192938, -0.13644319772720337, -0.06318864226341248, 0.018250538036227226, -0.08714956790208817, 0.1930873841047287, 0.10895834863185883, -0.08396778255701065, 0.06486164033412933, 0.03170861303806305, -0.10691945254802704, -0.056323789060115814, 0.042712241411209106, -0.008948614820837975, 0.04805895313620567, -0.0016564906109124422, 0.09556194394826889, 0.06541524082422256, -0.08017650991678238, -0.017465148121118546, -0.08445323258638382, 0.02766062505543232, -0.008660082705318928, -0.06351343542337418, 0.07100464403629303, 0.001629475736990571, 0.10120078921318054, -0.01881757564842701, 0.024289237335324287, -0.04420533776283264, -0.13668307662010193, -0.009998336434364319, 0.019310200586915016, 0.051109906286001205, 0.068700410425663, 0.1000947505235672, 0.1047135442495346, -0.06958618015050888, 0.008900138549506664, 0.0076133087277412415, -0.04406061768531799, 0.005553397350013256, -0.18324775993824005, -0.013792885467410088, -0.046407490968704224, 0.043625395745038986, 0.002128153806552291, -0.024529214948415756, 0.05361903831362724, 0.059300459921360016, 0.005343835335224867, -0.009879780933260918, 0.07232224196195602, -0.02248268947005272, -0.02376670390367508, -0.032713133841753006, 0.05303265526890755, -0.06639057397842407, -0.11230310052633286, 0.12389873713254929, -0.09900368750095367, -0.19579094648361206, 0.09097243845462799, -0.01623300276696682, -0.09395437687635422, -0.009014090523123741, -0.012819336727261543, -0.015983812510967255, -0.03296394646167755, -0.07536415010690689, -0.0373939573764801, 0.10466541349887848, 0.02435363084077835, -0.10107995569705963, -0.010332736186683178, 0.04569356143474579, -0.0880139097571373, -0.09008944779634476, 0.1250114142894745, 0.06091897562146187, -0.133004829287529, 0.05192965641617775, 0.0892258733510971, -0.020388463512063026, 0.2721017301082611, 0.08839118480682373, -0.07517558336257935, -0.03508888930082321, 0.045102234929800034, 0.054900094866752625, 0.09803575277328491, -0.019606972113251686, 0.09931378066539764, 0.03339023515582085, 0.0035922136157751083, -0.05327966809272766, -0.03925437107682228, -0.05435018613934517, -0.028900664299726486, -0.10331174731254578, 0.0896468535065651, 0.10931997746229172, -0.042208682745695114, 0.06872469186782837, 0.038484279066324234, -0.012650031596422195, -0.019823677837848663, -0.0521683469414711, -0.03567002713680267, 0.11039896309375763, -0.10007563978433609, -0.19417652487754822, -0.04641047492623329, -0.021384097635746002, -0.14448124170303345, 0.08191423863172531, 0.05935647711157799, -0.10301616787910461, -0.04800959303975105, -0.0662129670381546, 0.12688224017620087, 0.014189076609909534, -0.07907390594482422, -0.13111448287963867, 0.024972766637802124, -0.006260898895561695, -0.0480649471282959, -0.016608277335762978, -0.03527594730257988, -0.07971245050430298, 0.05218131095170975, 0.02460230514407158, 0.08759140223264694, -0.005532973445951939, 0.04596386477351189, 0.012579400092363358, -0.009794634766876698, 0.1800718605518341, -0.051357202231884, 0.09310282766819, 0.059003595262765884, 0.05442000925540924, 0.13449689745903015, 0.25720664858818054, 0.03284860774874687, -0.03627220168709755, -0.03800176829099655, 0.09102874249219894, -0.06806142628192902, -0.059083595871925354, -0.07278680056333542, -0.05812828987836838, 0.10828951001167297, 0.09761850535869598, 0.051166340708732605, -0.09300531446933746, 0.08580270409584045, -0.08550510555505753, -0.035723328590393066, 0.13704125583171844, 0.07385478168725967, 0.07328183203935623, -0.007592942100018263, 0.036141544580459595, 0.008189190179109573, -0.029547322541475296, 0.08848059922456741, 0.01069346722215414, 0.0428585410118103, -0.013962005265057087, 0.026888499036431313, 0.041280705481767654, 0.12526863813400269, -0.005413524340838194, -0.017153704538941383, -0.01574084348976612, -0.01353474147617817, -0.006827716249972582, -0.10799379646778107, 0.03624248877167702, 0.05869279056787491, 0.05426706001162529, -0.11630681902170181, 0.05483651161193848, 0.017820052802562714, 0.07668676227331161, 0.15005289018154144, 0.05228358507156372, -0.05499205365777016, -0.02347121387720108, 0.06666500121355057, 0.027765611186623573, -0.08191829174757004, -0.04868607968091965, 0.04014753922820091, -0.10798375308513641, 0.18549655377864838, -0.05698810890316963, 0.043910618871450424, 0.0335480198264122, 0.02095220237970352, -0.019673645496368408, 0.023022575303912163, -0.02350682020187378, 0.10804163664579391, -0.10621524602174759, 0.1542041003704071, 0.007932276464998722, 0.032366618514060974, -0.02516297996044159, 0.015507753007113934, 0.04850999265909195, 0.041357941925525665, 0.2857540547847748, 0.017414314672350883, -0.040613193064928055, -0.0581587590277195, -0.0017225000774487853, -0.0037802078295499086, 0.04487351328134537, -0.23025456070899963, 0.06433930993080139, 0.0111621655523777, -0.0266118124127388, -0.08341215550899506, 0.06271883100271225, -0.0926719680428505, -0.04623407870531082, 0.06216134876012802, -0.1515987068414688, 0.06573456525802612, 0.024013454094529152, 0.0008448324515484273, -0.31608879566192627, 0.12071932852268219, -0.139337420463562, -0.16819557547569275, -0.05838048830628395, 0.05759922415018082, 0.05748472735285759, -0.07502027601003647, -0.055811718106269836, -0.015843041241168976, 0.18375371396541595, -0.15114130079746246, -0.008897687308490276, -0.015536102466285229, -0.04482107236981392, -0.14787538349628448, 0.027881892397999763, 0.1223762184381485, 0.07392938435077667, 0.019271966069936752, 0.04255565628409386, 0.06808308511972427, 0.022717662155628204, -0.10223671048879623, 0.1442088484764099, -0.010719210840761662, -0.04708600416779518, -0.005941022653132677, 0.07495926320552826, -0.0989048033952713, -0.07925006002187729, 0.019794892519712448, 0.06017632409930229, 0.344443678855896, -0.07192721962928772, 0.17566783726215363, 0.18398821353912354, -0.05631283298134804, -0.24657876789569855, -0.12835855782032013, 0.046160925179719925, -0.02532382868230343, 0.09931030869483948, -0.17365305125713348, 0.06201351433992386, 0.07536865770816803, -0.030269445851445198, -0.03477022796869278, -0.2149326354265213, -0.13130126893520355, -0.03084391914308071, 0.04191135987639427, -0.09428855776786804, -0.06631656736135483, -0.0529557541012764, -0.08905122429132462, -0.049628846347332, 0.10870227217674255, 0.02142835035920143, 0.0844106450676918, 0.026774227619171143, 0.005555062089115381, 0.04961100220680237, -0.01692456193268299, 0.19319367408752441, -0.025377316400408745, -0.00022649062157142907, -0.15066593885421753, 0.09173630177974701, 0.14325617253780365, -0.029759228229522705, 0.0723419189453125, -0.06720618158578873, -0.08194713294506073, -0.008942893706262112, -0.028536176308989525, -0.09375918656587601, 0.12424858659505844, -0.05082031711935997, -0.0875263661146164, -0.06877690553665161, 0.09821407496929169, 0.10672110319137573, 0.008427530527114868, 0.02263842336833477, -0.13959723711013794, 0.03839908167719841, 0.05914194509387016, 0.13600164651870728, 0.06496396660804749, -0.08570157736539841, -0.021013526245951653, -0.013944611884653568, 0.07467862218618393, -0.09265419840812683, 0.059879813343286514, 0.06807506084442139, 0.0010896906023845077, 0.07168448716402054, -0.040006205439567566, -0.07632139325141907, 0.032974742352962494, 0.0796859934926033, -0.1499616950750351, -0.18279486894607544, 0.0011269388487562537, -0.13329583406448364, 0.023677363991737366, -0.15664580464363098, 0.1420343965291977, -0.03976229950785637, 0.01870049722492695, 0.045313384383916855, 0.05860542505979538, -0.009748914279043674, 0.015720637515187263, -0.02004147879779339, 0.03645709529519081, -0.06184304133057594, 0.12197653949260712, 0.016883186995983124, -0.07543390244245529, 0.05322371423244476, 0.14111144840717316, -0.0797388106584549, -0.06351607292890549, -0.05191846564412117, 0.09033798426389694, -0.10153274983167648, 0.0238217543810606, 0.03253351151943207, -0.043572138994932175, -0.03779982402920723, 0.011194882914423943, 0.04478438198566437, -0.030071333050727844, 0.04944887012243271, 0.00445362227037549, -0.019827425479888916, 0.09455619752407074, 0.037013400346040726, -0.0044698226265609264, -0.06280604749917984, -0.010522103868424892, -0.007501767482608557, 0.03878279775381088, -0.0311603881418705, 0.012218146584928036, 0.014034785330295563, -0.011289806105196476, -0.06782492995262146, 0.03885219618678093, -0.11586153507232666, -0.016778593882918358, -0.03187617287039757, 0.005563416518270969, -0.00151289370842278, -0.050494443625211716, -0.09377171844244003, -0.02689836174249649, -0.029586657881736755, 0.04329565912485123, -0.14887313544750214, -0.04631073772907257, 0.08037565648555756, -0.025792717933654785, 0.08101452887058258, -0.04785686731338501, -0.0002197795402025804, 0.05036027356982231, -0.19134482741355896, 0.00401617307215929, -0.043114885687828064, -0.01974676549434662, -0.02736964263021946, -0.03860379382967949, -0.032001011073589325, -0.06342421472072601, -0.08813868463039398, 0.017264436930418015, -0.026512132957577705, -0.10253577679395676, 0.08888691663742065, 0.0037055136635899544, 0.007353127934038639, -0.05495346337556839, 0.07912711054086685, 0.05507334694266319, 0.08073564618825912, 0.07625966519117355, -0.06075245141983032, 0.0611661858856678, -0.10263443738222122, 0.010830605402588844, 0.03641626983880997, -0.046009279787540436, -0.021466678008437157, -0.01443219743669033, 0.037510085850954056, -0.08195202052593231, -0.012909150682389736, 0.042977191507816315, 0.04956782981753349, 0.025572389364242554, 0.011801239103078842, 0.015530984848737717, 0.00837237760424614, 0.07804829627275467, -0.029139351099729538, 0.011294334195554256, 0.004691693931818008, 0.009336013346910477, -0.023940905928611755, 0.027162428945302963, 0.1032051295042038, 0.02169366553425789, 0.082199826836586, 0.011240472085773945, 0.03286691755056381, 0.00951613299548626, -0.13157977163791656, 0.1962675154209137, 0.03462335467338562, 0.06839774549007416, -0.03208373859524727, 0.0005598698044195771, 0.1697847843170166, -0.15254664421081543, 0.09525090456008911, 0.03041781112551689, -0.022578319534659386, -0.07251720130443573, -0.3723612129688263, -0.07365531474351883, 0.007138020358979702, 0.09135787189006805, -0.09412776678800583, 0.10614028573036194, 0.0358920581638813, 0.07529809325933456, 0.0346192829310894, 0.04570262134075165, -0.07394007593393326, -0.12425185739994049, 0.06651053577661514, -0.01440716627985239, -0.004152410663664341, 0.11676716059446335, -0.01397131197154522, 0.05991174280643463, 0.068352609872818, -0.04403495788574219, 0.03530554100871086, 0.0372980497777462, -0.0721876472234726, -0.11293371766805649, -0.09172554314136505, -0.005712609738111496, 0.062028199434280396, 0.00902378000319004, 0.09773611277341843, 0.058326587080955505, -0.016988271847367287, -0.04466032609343529, 0.1538694202899933, -0.004154139664024115, -0.10006987303495407, -0.1046847328543663, -0.026456482708454132, -0.0761825367808342, 0.04083918780088425, -0.0264871958643198, -0.06167462095618248, 0.06426873058080673, 0.17192581295967102, 0.08279421925544739, 0.028936926275491714, 0.03474518284201622, -0.042487867176532745, 0.009218798018991947, 0.045354101806879044, -0.0039278059266507626, -0.050224870443344116, 0.12417764961719513, -0.11697811633348465, 0.08001747727394104, -0.10941421240568161, -0.03966287523508072, -0.06698545813560486, 0.09230726212263107, 0.02758098766207695, -0.008687686175107956, -0.0671655610203743, 0.16680075228214264, -0.12428489327430725, -0.19911135733127594, 0.05075031518936157, 0.01399899646639824, -0.06582359969615936, -0.003644718322902918, 0.11030395328998566, 0.07288055866956711, 0.0360066220164299, -0.009333698078989983, -0.011378363706171513, -0.0011700104223564267, -0.004948596935719252, -0.05097321420907974, 0.01933070831000805, -0.04536118730902672, 0.024884948506951332, 0.20689889788627625, 0.019069910049438477, -0.02221083827316761, 0.08011075854301453, -0.01959482580423355, -0.07606882601976395, 0.029056303203105927, 0.08979281783103943, -0.01842663250863552, 0.014025436714291573, 0.2567497491836548, 0.016229551285505295, 0.09344527125358582, 0.07031107693910599, -0.057766325771808624, 0.036103859543800354, 0.08077314496040344, -0.07610058039426804, 0.024944458156824112, 0.17759919166564941, -0.11186221987009048, 0.0630304142832756, 0.17219284176826477, 0.04157674312591553, -0.0631038025021553, -0.1314494013786316, 0.0006037140847183764, -0.03314166143536568, 0.057310573756694794, -0.023179134353995323, -0.03890233486890793, -0.015027121640741825, 0.09661447256803513, 0.009627961553633213, -0.00032369373366236687, -0.061249323189258575, 0.011124620214104652, 0.021229157224297523, 0.025750936940312386, 0.11849627643823624, 0.04849822819232941, -0.02079252526164055, -0.009718713350594044, -0.030623815953731537, 0.03615718334913254, 0.09447827190160751, -0.08631573617458344, -0.03670578822493553 ]
null
null
diffusers
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use `Sven Nordqvist style illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/sven-nordqvist-style/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/sven-nordqvist-style', weight_name='Sven Nordqvist XL LoRA v1-0.safetensors') image = pipeline('sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Sven Nordqvist style illustration", "widget": [{"text": "sven nordqvist style illustration, close up portrait of farmer batman, detailed, grant wood", "output": {"url": "2942829.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of jason voorhees dressed as a honest farmer, scene from the movie friday the 13th, grant wood, hayfork", "output": {"url": "2943076.jpeg"}}, {"text": "sven nordqvist style illustration of a moonshiner starter kit, knolling", "output": {"url": "2943087.jpeg"}}, {"text": "sven nordqvist style illustration of a mecha fax machine, detailed texture, concept design, pcb, wires, electronics, fully visible mechanical components", "output": {"url": "2943093.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of a xenomorph", "output": {"url": "2943099.jpeg"}}, {"text": "sven nordqvist style illustration, Year:1968. High detail, portrait of an age 30 wife in 1968: mid-length hair, very voluminous, very thick, very tall, very lofty, curly, tapered pageant style bouffant. Accurate 1968 style. Subtle makeup. highly detailed", "output": {"url": "2943113.jpeg"}}, {"text": "sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light", "output": {"url": "2946764.jpeg"}}]}
text-to-image
WizWhite/sven-nordqvist-style-0
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:10:57+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use 'Sven Nordqvist style illustration' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 86, 10, 131, 21, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Sven Nordqvist style \n\n<Gallery />## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.04299689084291458, 0.07433000206947327, -0.0031834158580750227, 0.08587127923965454, 0.07702804356813431, 0.014462011866271496, 0.08625459671020508, 0.08708580583333969, 0.019152261316776276, 0.09377413988113403, -0.008065767586231232, -0.01688443310558796, 0.09198141098022461, -0.00645374646410346, 0.018891770392656326, -0.3504854142665863, 0.04316461458802223, -0.07348839193582535, -0.032887451350688934, 0.03757791221141815, 0.05861422047019005, -0.04984088987112045, 0.10552086681127548, -0.029592454433441162, 0.027721228078007698, 0.028919642791152, -0.06493966281414032, 0.03548217564821243, 0.04881017282605171, 0.0391036719083786, 0.057555120438337326, 0.023353395983576775, 0.12044707685709, -0.14627686142921448, 0.01801490969955921, 0.06291967630386353, -0.021719245240092278, 0.04087208956480026, 0.08914047479629517, -0.11068683117628098, 0.2208879292011261, -0.11059658229351044, 0.05180252343416214, 0.026073426008224487, 0.029128972440958023, -0.17820601165294647, -0.04366329312324524, 0.08353628218173981, 0.07789627462625504, 0.02242298237979412, -0.0024423450231552124, -0.05905497446656227, -0.04275279492139816, 0.06268346309661865, 0.3334033489227295, -0.20482315123081207, -0.06169038265943527, 0.21806009113788605, 0.0534297451376915, 0.10902547091245651, -0.13603876531124115, 0.09221884608268738, 0.04906806722283363, -0.009917180985212326, 0.07868475466966629, -0.014711467549204826, 0.10754053294658661, -0.04469249024987221, -0.11662355065345764, 0.05048125237226486, 0.191945418715477, 0.03261994570493698, -0.02732226625084877, -0.16556204855442047, -0.05903917923569679, 0.060908909887075424, -0.01606852002441883, 0.006253957748413086, 0.04303446784615517, -0.012079423293471336, 0.019878070801496506, -0.15622279047966003, -0.09504977613687515, -0.01822429895401001, 0.0022622039541602135, 0.1703951060771942, -0.01194532960653305, 0.006040518172085285, 0.13263751566410065, 0.0931304469704628, -0.15580834448337555, -0.10659169405698776, -0.015293488278985023, -0.06298170983791351, -0.0973607674241066, 0.009947889484465122, -0.010851067490875721, -0.10685591399669647, 0.03625142201781273, 0.17684435844421387, 0.07216767221689224, 0.004845311399549246, -0.1338086873292923, 0.04418240115046501, 0.049610115587711334, 0.100670725107193, -0.027324771508574486, -0.12030427157878876, -0.024667277932167053, 0.00837087444961071, 0.08309917896986008, -0.050597161054611206, -0.08969877660274506, -0.11055350303649902, -0.008464471437036991, -0.0004264867748133838, -0.004045821726322174, 0.015025460161268711, -0.0005922482232563198, -0.01794647052884102, 0.14334248006343842, -0.10347297787666321, 0.05697786435484886, 0.015195746906101704, -0.03072046861052513, 0.12131611257791519, 0.05948694422841072, 0.05615147948265076, -0.0058400435373187065, 0.25942185521125793, -0.021183429285883904, -0.010205642320215702, -0.030423365533351898, -0.10156073421239853, 0.01891840249300003, -0.09443556517362595, -0.012475404888391495, -0.08105403929948807, -0.08540091663599014, -0.02945193275809288, 0.025067275390028954, -0.0803704783320427, 0.012404135428369045, -0.05306243896484375, -0.09805336594581604, 0.023572009056806564, 0.038094498217105865, 0.05947966128587723, -0.03300175070762634, 0.04694227874279022, -0.12943288683891296, 0.08804766833782196, 0.00711076520383358, 0.01796470396220684, -0.0730578750371933, 0.016773268580436707, -0.21599149703979492, 0.09627467393875122, -0.12673147022724152, -0.0023968990426510572, -0.08845236152410507, -0.061277326196432114, -0.08442763239145279, -0.01995086669921875, -0.04475035145878792, 0.07312869280576706, -0.15356986224651337, -0.04579949378967285, 0.05544830113649368, -0.14735311269760132, 0.01723760925233364, 0.12572675943374634, 0.01840164139866829, 0.012542491778731346, 0.10048715770244598, 0.2154046595096588, 0.16823171079158783, -0.19207963347434998, -0.03242012858390808, 0.03655879572033882, -0.02845999412238598, 0.11490500718355179, 0.0954098105430603, -0.03226637840270996, 0.010528534650802612, 0.049842946231365204, -0.09139234572649002, -0.02898302488029003, 0.03978309780359268, -0.00938173197209835, -0.01554616168141365, -0.02491254173219204, 0.11573965847492218, 0.05088750645518303, -0.057597771286964417, -0.047927383333444595, -0.054430942982435226, -0.005656888242810965, 0.04934627190232277, -0.059131331741809845, 0.0675838515162468, 0.08925920724868774, 0.09304744750261307, 0.030117511749267578, -0.00716997217386961, -0.0925348550081253, -0.08223205804824829, 0.002628183690831065, 0.09514389932155609, 0.058621156960725784, 0.07315509766340256, 0.07740617543458939, 0.06611951440572739, -0.10057880729436874, 0.016954602673649788, 0.020252419635653496, -0.040495071560144424, -0.03955932334065437, -0.11408466100692749, -0.012253600172698498, -0.05302555859088898, 0.06726602464914322, -0.12261165678501129, 0.04123282432556152, 0.053093940019607544, 0.17167125642299652, 0.05360596254467964, -0.03261733427643776, 0.00660703144967556, -0.027024535462260246, -0.05279304087162018, -0.03702336549758911, 0.025895195081830025, -0.037887442857027054, -0.10315611958503723, 0.06637584418058395, -0.07033964991569519, -0.08199898898601532, 0.1091533824801445, 0.14830870926380157, -0.06737976521253586, -0.1546822041273117, -0.036356646567583084, -0.007516378071159124, -0.10454367101192474, -0.09027199447154999, 0.024453461170196533, 0.06030133739113808, 0.07190807163715363, -0.09164007008075714, -0.014737188816070557, 0.00430577527731657, 0.0007172264158725739, -0.053507283329963684, 0.1086488589644432, -0.014674834907054901, -0.035169247537851334, 0.042494721710681915, 0.06834642589092255, -0.007864436134696007, 0.16758835315704346, 0.044278908520936966, -0.09364820271730423, 0.04672449827194214, 0.012686041183769703, 0.026597680523991585, 0.04342968389391899, 0.1213407814502716, 0.07664482295513153, 0.04545433446764946, 0.04118380323052406, -0.026528138667345047, -0.10031993687152863, 0.0021122030448168516, 0.015439251437783241, -0.053620345890522, 0.07610496133565903, 0.04932611063122749, 0.0020255460403859615, 0.06828372925519943, 0.012163965031504631, 0.02667372301220894, -0.036049019545316696, -0.025378946214914322, -0.054350368678569794, 0.10928991436958313, -0.07808317989110947, -0.14819350838661194, -0.20199407637119293, 0.004315086640417576, -0.12572528421878815, 0.024317074567079544, 0.0637456551194191, -0.02824503742158413, -0.06023001670837402, -0.12786337733268738, 0.14347749948501587, -0.032908402383327484, -0.031147867441177368, -0.08406288176774979, 0.040089063346385956, -0.04955713078379631, -0.11379504948854446, 0.015279922634363174, 0.007281434256583452, -0.036176323890686035, -0.021627718582749367, -0.015009943395853043, 0.08039987832307816, 0.018588319420814514, -0.038440193980932236, -0.02705996297299862, 0.0009091287502087653, 0.1091293916106224, -0.03557581454515457, 0.13802127540111542, 0.06422486156225204, 0.003197798039764166, 0.10772572457790375, 0.1739458292722702, 0.026370687410235405, -0.004061213228851557, 0.039333276450634, 0.12283995747566223, -0.10185572504997253, -0.18037644028663635, -0.07595118880271912, -0.034417927265167236, 0.07939814031124115, 0.14278359711170197, 0.08286041021347046, 0.007414605934172869, 0.09113205969333649, -0.10192963480949402, -0.07621483504772186, 0.17088811099529266, 0.09453023225069046, 0.041499558836221695, -0.0086490074172616, 0.05256880447268486, -0.051778338849544525, -0.0077834352850914, 0.097394198179245, 0.012166913598775864, 0.10170978307723999, -0.09745633602142334, 0.005608293227851391, -0.025946104899048805, 0.017572740092873573, 0.0025057699531316757, 0.10582735389471054, -0.002605892950668931, -0.01039965357631445, -0.019375154748558998, -0.08953715115785599, 0.06361303478479385, 0.1121940165758133, 0.05700257048010826, 0.007330770138651133, -0.013269295915961266, -0.04493166133761406, 0.0356881208717823, 0.14656029641628265, -0.03378686681389809, -0.10693991929292679, -0.010543475858867168, 0.07276264578104019, 0.010163301602005959, -0.026448039337992668, 0.030521372333168983, 0.16214968264102936, -0.10564161837100983, 0.13426055014133453, -0.049992289394140244, 0.08873169124126434, -0.014565537683665752, -0.05256587639451027, -0.005730265285819769, 0.12252916395664215, -0.031308986246585846, 0.09357412159442902, -0.009692811407148838, -0.006804703269153833, 0.011992956511676311, 0.028004977852106094, -0.025097249075770378, -0.0015676583861932158, 0.03155649080872536, 0.15479233860969543, 0.16033147275447845, 0.014464737847447395, -0.11373382806777954, -0.05912104994058609, -0.08073671162128448, -0.06392957270145416, 0.07897993922233582, -0.16932767629623413, 0.04717564955353737, -0.046346522867679596, -0.047384537756443024, -0.05258641764521599, -0.0011544746812433004, -0.07075556367635727, -0.159788116812706, -0.01389223150908947, -0.023622319102287292, 0.04773383587598801, -0.018602563068270683, -0.09064869582653046, -0.2235020399093628, 0.14277338981628418, -0.009612110443413258, -0.1511327177286148, -0.12033627182245255, -0.0029109050519764423, 0.11496643722057343, -0.031239008530974388, -0.05506419017910957, -0.022456444799900055, 0.18921758234500885, -0.13298268616199493, -0.10126806050539017, -0.07105954736471176, -0.008484882302582264, -0.1793159693479538, 0.022506358101963997, 0.20953436195850372, 0.046153608709573746, 0.05897206813097, -0.022390853613615036, 0.05997128784656525, 0.0262805987149477, -0.09247595071792603, 0.03588854894042015, 0.16119730472564697, 0.020707957446575165, 0.07647260278463364, -0.05990411713719368, -0.0776098445057869, -0.07472149282693863, 0.034130632877349854, 0.07709632068872452, 0.19144603610038757, -0.10148263722658157, 0.16301122307777405, 0.07058852165937424, -0.0648292526602745, -0.22892041504383087, 0.007256296928972006, 0.04181533679366112, 0.0068321325816214085, 0.11866127699613571, -0.10221792012453079, 0.0958663746714592, 0.11089488118886948, -0.003412896767258644, 0.10976952314376831, -0.3155502676963806, -0.13496512174606323, -0.07601262629032135, 0.06213058903813362, -0.01770825684070587, -0.11652404069900513, -0.0473695732653141, -0.07228060811758041, -0.1179836317896843, 0.04523002356290817, -0.06397600471973419, 0.08335117250680923, 0.018287060782313347, 0.0321308970451355, 0.05531741678714752, -0.013568783178925514, 0.16167660057544708, 0.004476239439100027, 0.02219509705901146, -0.10151907801628113, 0.02834526263177395, -0.008896131999790668, -0.0751427710056305, 0.09947311133146286, -0.1288081854581833, -0.013722344301640987, -0.06111506372690201, -0.04381861537694931, -0.032544851303100586, 0.10449531674385071, -0.05041802302002907, -0.07202479988336563, -0.1451292186975479, 0.05182056501507759, 0.12327107787132263, -0.039048660546541214, 0.13913500308990479, -0.10713476687669754, 0.03789890930056572, 0.08876148611307144, 0.08691801875829697, 0.1215086504817009, -0.06521409749984741, -0.0559772364795208, -0.05561506375670433, 0.048952195793390274, -0.1669718474149704, 0.03331449627876282, 0.1215619370341301, 0.021334931254386902, 0.06172407791018486, -0.004156338982284069, -0.0758552998304367, -0.024804163724184036, 0.07020353525876999, -0.11147192120552063, -0.1736266165971756, -0.05856109410524368, -0.1274508535861969, -0.07012845575809479, -0.07095210254192352, 0.12049012631177902, -0.08638957142829895, 0.0028749473858624697, 0.03818001225590706, 0.05080559477210045, 0.012505576014518738, 0.013429190032184124, 0.004309484735131264, 0.022547414526343346, -0.06712643057107925, 0.135975643992424, 0.030155006796121597, -0.05725739151239395, -0.004225598182529211, 0.14108224213123322, -0.07511518150568008, -0.01989608444273472, 0.016790898516774178, 0.05558286979794502, -0.027457088232040405, 0.004504452459514141, 0.012484165839850903, -0.08664651960134506, -0.01991790346801281, 0.004738823976367712, 0.04397944360971451, -0.04010067135095596, 0.023267967626452446, -0.01116048265248537, -0.06668977439403534, 0.11638759821653366, -0.00647720554843545, 0.04998421669006348, -0.12835586071014404, -0.037502139806747437, -0.027153776958584785, -0.03812259063124657, -0.04931788146495819, -0.009201991371810436, -0.024144407361745834, -0.055795807391405106, -0.01249891147017479, 0.0669974759221077, -0.09735997021198273, 0.010836342349648476, -0.02730746380984783, -0.02498086541891098, 0.01141863688826561, -0.010471305809915066, -0.037770725786685944, -0.07018168270587921, -0.07084792852401733, 0.043658334761857986, -0.11083552986383438, -0.04935213178396225, 0.03145401552319527, -0.04930339753627777, 0.0012157412711530924, -0.053585536777973175, -0.03742939233779907, 0.040901537984609604, -0.16724003851413727, -0.022938665002584457, 0.04161294177174568, -0.0183571707457304, -0.021594101563096046, -0.0061925118789076805, -0.02816803939640522, -0.05836864560842514, -0.017438357695937157, 0.0031802973244339228, 0.006001840811222792, -0.12286868691444397, -0.008815895766019821, -0.06736552715301514, -0.05238446593284607, -0.05774541199207306, 0.03588864952325821, 0.10582581162452698, 0.07467859238386154, 0.15489225089550018, -0.0899340957403183, 0.0919838696718216, -0.06489771604537964, 0.009957975707948208, 0.03187844529747963, -0.07791350781917572, 0.04057512804865837, -0.05207371711730957, -0.014362184330821037, -0.028957050293684006, 0.037607330828905106, 0.09736289829015732, -0.00781609583646059, 0.02239188738167286, 0.026670264080166817, 0.015826797112822533, 0.013003906235098839, 0.1785466969013214, -0.012842667289078236, -0.02130899950861931, 0.03821317106485367, 0.02282780222594738, 0.03892648592591286, 0.016893794760107994, 0.11845263093709946, 0.09377997368574142, 0.01846780627965927, 0.02428177185356617, 0.03322906792163849, -0.016559092327952385, -0.14549003541469574, 0.09612201899290085, 0.058791935443878174, 0.02310732938349247, -0.05190153419971466, 0.06283025443553925, 0.148556649684906, -0.19255982339382172, 0.09042571485042572, 0.03812737017869949, -0.029576512053608894, -0.07663624733686447, -0.21939222514629364, -0.06724809110164642, -0.05704266205430031, 0.03005000576376915, -0.07327624410390854, 0.059812236577272415, 0.02495591528713703, 0.01619609259068966, 0.057518236339092255, 0.04614635556936264, -0.18843448162078857, -0.07511446624994278, 0.03142223507165909, 0.013299296610057354, 0.009499391540884972, 0.09804847836494446, -0.05690978094935417, 0.09543044865131378, -0.013712444342672825, 0.0035944851115345955, 0.03173236921429634, 0.10964024811983109, -0.025146067142486572, -0.08692630380392075, -0.0650622770190239, 0.0162368044257164, 0.030310431495308876, 0.03590324893593788, 0.14099577069282532, 0.1072545126080513, -0.06938868761062622, -0.07904962450265884, 0.22539713978767395, -0.055327095091342926, -0.02823707088828087, -0.1243760734796524, 0.038963813334703445, -0.035975608974695206, 0.021176043897867203, 0.00127459317445755, -0.1384972333908081, -0.0078860092908144, 0.16957177221775055, 0.14534437656402588, 0.09740762412548065, 0.012964587658643723, -0.010321117006242275, 0.007572459988296032, 0.058203328400850296, 0.027474142611026764, 0.017212314531207085, 0.09335587918758392, -0.028354467824101448, 0.0724276676774025, -0.051329489797353745, -0.057771604508161545, -0.08782043308019638, 0.055758386850357056, -0.04376821219921112, -0.026500796899199486, -0.06038878485560417, 0.09967568516731262, -0.0043916539289057255, -0.2136400043964386, 0.126950204372406, -0.0396803580224514, -0.06261958926916122, -0.047012247145175934, 0.05069832131266594, 0.03973376378417015, 0.026852859184145927, -0.007640344090759754, 0.017145300284028053, 0.07405120879411697, -0.030511394143104553, -0.09179125726222992, 0.02579188160598278, -0.05745954066514969, -0.05688456445932388, 0.1465713381767273, 0.00323347351513803, -0.0474536195397377, 0.041334014385938644, -0.014051327481865883, -0.0564810186624527, -0.010278617963194847, 0.050347551703453064, -0.09516170620918274, -0.031285617500543594, 0.2404841035604477, -0.040951333940029144, 0.08340443670749664, 0.055886853486299515, -0.060601796954870224, 0.020647475495934486, 0.05021902173757553, -0.04385910928249359, -0.04127226024866104, 0.1282748132944107, -0.13294818997383118, 0.10116167366504669, 0.17736972868442535, 0.03518720716238022, -0.05138367414474487, -0.055628012865781784, -0.03142929822206497, -0.004433382768183947, 0.03967129811644554, 0.04100695252418518, -0.03312556818127632, -0.08557961881160736, 0.040531888604164124, 0.006641961168497801, -0.19489122927188873, -0.0356493815779686, -0.06859473884105682, -0.013973007909953594, -0.03980230540037155, 0.07382071763277054, 0.050113096833229065, -0.032867591828107834, -0.002086569555103779, -0.3231637477874756, 0.04073058441281319, 0.11602440476417542, -0.10250008851289749, -0.013892414048314095 ]
null
null
diffusers
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use `Vintage board game box`, `vintage board game box called "your-title"` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/wizard-s-vintage-board-games/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/wizard-s-vintage-board-games', weight_name='Wizards_Vintage_Board_Game.safetensors') image = pipeline('vintage board game box (called "Being Melissa Joan Hart":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Vintage board game box", "widget": [{"text": "vintage board game box (title called \"Wizard's Vintage Board Game\" logo text:1.3), (Moondog Wizard Whitebeard performing magic by michael whelan and gerald brom:0.8)", "output": {"url": "4390221.jpeg"}}, {"text": " ", "output": {"url": "4390247.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A paranormal investigator recording in an eerie, dilapidated asylum., detailed text logo", "output": {"url": "4390254.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A solitary figure in an old library, surrounded by mountains of books., detailed text logo", "output": {"url": "4390261.jpeg"}}, {"text": "japanese vintage board game box called \"The Great Wave off Kanagawa\" by hokusai, detailed text logo", "output": {"url": "4390251.jpeg"}}, {"text": "vintage board game box (called \"Being Kermit\":1.3), illustration of (Kermit:0.4) Sketching in art class, detailed text logo", "output": {"url": "4390263.jpeg"}}, {"text": "vintage board game box (called \"When the Diarrhea Hits\":1.3), illustration of A scientist examining a glowing crystal in a futuristic lab., detailed text logo", "output": {"url": "4390380.jpeg"}}, {"text": "vintage board game box (called \"Being Gal Gadot\":1.3), illustration of (Gal Gadot:0.4) Baking bread in the kitchen, detailed text logo ", "output": {"url": "4390405.jpeg"}}, {"text": "vintage board game box (called \"Being Melissa Joan Hart\":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo", "output": {"url": "4390408.jpeg"}}]}
text-to-image
WizWhite/wizard-s-vintage-board-games-0
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:11:17+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use 'Vintage board game box', 'vintage board game box called "your-title"' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 81, 12, 223, 35, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Wizard's Vintage Board Games \n\n<Gallery />## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.023563958704471588, 0.12291178852319717, -0.004178875591605902, 0.09333858639001846, 0.052532125264406204, 0.04467852786183357, 0.055671412497758865, 0.1611005961894989, 0.033244501799345016, 0.10177135467529297, -0.03257633373141289, 0.07138970494270325, 0.11273282766342163, 0.11989850550889969, -0.01866079866886139, -0.1829635053873062, 0.0276845283806324, 0.03159024566411972, -0.0029096875805407763, 0.10746775567531586, 0.02964390069246292, -0.06264203041791916, 0.0770532488822937, -0.015869319438934326, 0.000734650413505733, 0.02542787976562977, -0.052047088742256165, -0.02580341324210167, 0.03190634772181511, 0.02634722739458084, 0.04790575057268143, -0.04108409956097603, 0.03469604626297951, -0.20404061675071716, 0.04170937091112137, 0.07743336260318756, -0.034042347222566605, 0.001024578232318163, 0.11604691296815872, -0.05172160267829895, 0.12862907350063324, -0.018949715420603752, 0.07211843878030777, 0.11346868425607681, -0.10834674537181854, -0.24986283481121063, -0.16540168225765228, 0.001827909261919558, 0.1384667158126831, -0.004774327389895916, -0.016834303736686707, 0.08023226261138916, 0.001848898595198989, 0.01975538767874241, 0.3628312647342682, -0.22031262516975403, -0.07556743919849396, 0.1399550586938858, 0.12335595488548279, 0.05401065573096275, -0.09878234565258026, 0.05549297109246254, -0.016391750425100327, 0.006750995293259621, -0.0249316543340683, -0.035459697246551514, 0.16098590195178986, 0.05158216506242752, -0.07544957846403122, -0.016477204859256744, 0.1847502887248993, 0.0372840017080307, 0.01264733262360096, -0.11497102677822113, -0.015582419000566006, 0.029073474928736687, -0.0966147929430008, -0.05187278240919113, 0.0028154964093118906, -0.058782875537872314, -0.004902017768472433, -0.05407131835818291, -0.03364512324333191, -0.10081709921360016, 0.02694474346935749, 0.07774633169174194, -0.009618101641535759, -0.03544917702674866, -0.01571524515748024, 0.09050655364990234, 0.06531722098588943, -0.05560929700732231, -0.08087378740310669, -0.06057724729180336, -0.11936517804861069, -0.00832306407392025, 0.021119246259331703, 0.05094771459698677, 0.07955077290534973, 0.3011684715747833, 0.09227120876312256, 0.10054845362901688, -0.13035595417022705, 0.019851870834827423, -0.02029099315404892, 0.01933489926159382, -0.03723479434847832, -0.1999821960926056, 0.003348794300109148, 0.10079557448625565, 0.04918530210852623, -0.06306697428226471, -0.08840299397706985, 0.006738991476595402, 0.05995466187596321, 0.07171142846345901, 0.058056268841028214, 0.021788006648421288, -0.02204698510468006, -0.017671599984169006, 0.2066889852285385, -0.10324615240097046, 0.08985570818185806, 0.06403505802154541, -0.060916755348443985, -0.0014055846258997917, -0.03215611353516579, 0.019064825028181076, -0.009049542248249054, 0.00036612790427170694, -0.055577777326107025, -0.03173255920410156, -0.13347803056240082, -0.08740437030792236, 0.08442745357751846, -0.06463848054409027, -0.05251472070813179, -0.016160769388079643, -0.12490294873714447, -0.07297686487436295, 0.023412130773067474, -0.07843784987926483, 0.05906008183956146, -0.06773627549409866, -0.07830924540758133, -0.0012747447472065687, 0.09215597808361053, 0.15039290487766266, -0.033549580723047256, 0.10016023367643356, -0.03686982020735741, 0.09562712162733078, 0.07858742773532867, 0.028394373133778572, -0.027023307979106903, 0.059957899153232574, -0.3018346428871155, 0.05504759028553963, -0.1382037103176117, -0.05791385471820831, -0.14303675293922424, -0.01765192113816738, 0.0445866584777832, 0.020950913429260254, -0.035571254789829254, 0.05168991908431053, -0.2297496497631073, -0.05878934636712074, 0.11261657625436783, -0.09549371898174286, -0.12101185321807861, 0.02148335427045822, -0.030187727883458138, 0.0009671784937381744, 0.015838652849197388, 0.13641929626464844, 0.10471028089523315, -0.07133231312036514, -0.040786635130643845, -0.1324578821659088, -0.08500327914953232, 0.11564718931913376, 0.10629191994667053, -0.002573310397565365, 0.08832871913909912, 0.01426019798964262, -0.1527426540851593, -0.07035858184099197, 0.045464418828487396, -0.018710503354668617, 0.07716909050941467, 0.0035129429306834936, 0.016419950872659683, -0.010411384515464306, -0.03969047963619232, -0.046389855444431305, -0.09816339612007141, 0.016142118722200394, 0.04052179306745529, -0.03223831579089165, 0.021807748824357986, -0.11412355303764343, 0.16824419796466827, 0.04178260639309883, 0.03851843997836113, -0.11212235689163208, -0.07077600061893463, -0.0007073957822285593, -0.021078426390886307, 0.0706678181886673, 0.0035054839681833982, 0.12019188702106476, 0.08017177134752274, -0.0395660325884819, -0.017559712752699852, -0.026061004027724266, -0.03235263749957085, 0.04399389773607254, -0.13967901468276978, -0.07849134504795074, -0.035759057849645615, 0.11741537600755692, -0.020570743829011917, 0.013499900698661804, 0.10396062582731247, 0.13504822552204132, -0.031000446528196335, -0.056637804955244064, -0.0038794795982539654, -0.05053180456161499, -0.003774635260924697, -0.029350046068429947, 0.01928006112575531, -0.048041507601737976, -0.03610876202583313, 0.025378264486789703, -0.21739917993545532, -0.029280629009008408, 0.1631043255329132, 0.09392901510000229, -0.04238145425915718, -0.08612673729658127, 0.021149687469005585, -0.015493473969399929, -0.03477916121482849, -0.05071898549795151, 0.09004674851894379, 0.06823451071977615, 0.06138266250491142, -0.11681924015283585, -0.0694301500916481, -0.02841975726187229, 0.041459329426288605, -0.04721418023109436, 0.02424091473221779, 0.07702986150979996, -0.20092864334583282, 0.10478981584310532, 0.015104256570339203, 0.013814962469041348, 0.1287389099597931, 0.008668199181556702, -0.06958562880754471, -0.008660509251058102, 0.0005489562754519284, 0.049465641379356384, 0.09361263364553452, 0.026909004896879196, 0.05871017277240753, 0.04839864373207092, -0.08727250248193741, -0.022442389279603958, -0.10601771622896194, -0.024153752252459526, -0.004338038619607687, -0.040368352085351944, 0.04602085426449776, 0.10768334567546844, 0.0844862088561058, 0.10351786762475967, 0.0532248355448246, 0.08131489157676697, -0.04200027137994766, -0.06430237740278244, -0.07395698875188828, 0.05538225919008255, -0.12461160868406296, -0.18503183126449585, -0.12734010815620422, -0.07223068922758102, -0.017763860523700714, 0.012944813817739487, 0.0286748968064785, -0.053581759333610535, -0.0493553951382637, -0.05069447681307793, 0.062188487499952316, -0.03501246124505997, -0.10187722742557526, -0.020929820835590363, 0.07106571644544601, -0.03721807152032852, -0.09989766031503677, 0.031793493777513504, 0.019920535385608673, -0.13244539499282837, 0.0369296669960022, 0.04042903333902359, 0.16643241047859192, 0.031023461371660233, 0.0010033644502982497, 0.07618854194879532, -0.04928405582904816, 0.04550120607018471, -0.09547102451324463, 0.1339881271123886, 0.07658464461565018, -0.02376474253833294, 0.08577729761600494, 0.05992034077644348, 0.03802983835339546, -0.013479459099471569, -0.00741078145802021, 0.08252701163291931, -0.03207170218229294, -0.10196507722139359, 0.01744784601032734, -0.034362807869911194, 0.04132366552948952, 0.11738548427820206, 0.03105354495346546, 0.07218461483716965, 0.030958201736211777, -0.07703925669193268, -0.011588596738874912, 0.16004875302314758, 0.09279847145080566, 0.05068345367908478, -0.010696878656744957, 0.02307371236383915, -0.012745912186801434, -0.02113366313278675, 0.09347096085548401, 0.06255519390106201, 0.127706840634346, -0.04232053831219673, 0.08574071526527405, 0.06243503466248512, -0.04886920750141144, 0.03199455887079239, 0.09608809649944305, 0.042341846972703934, 0.048537179827690125, -0.0647246241569519, -0.069090336561203, 0.026008009910583496, 0.12746940553188324, 0.06126168370246887, -0.021594924852252007, 0.0514756515622139, -0.049070488661527634, 0.053805477917194366, 0.0890427902340889, -0.057078853249549866, -0.20000053942203522, 0.06598206609487534, 0.07676377147436142, 0.01911006309092045, -0.07393345236778259, 0.027274366468191147, -0.08015337586402893, -0.12624676525592804, 0.1419331282377243, -0.04026399925351143, 0.05618320405483246, -0.031650107353925705, -0.05799945443868637, 0.06508958339691162, 0.11421672999858856, -0.03640464320778847, 0.053859956562519073, -0.16993413865566254, -0.0028283409774303436, 0.011710532009601593, 0.02529461309313774, -0.05785670503973961, -0.007255401462316513, 0.09968656301498413, -0.12187546491622925, 0.10064544528722763, -0.036646079272031784, -0.0969335064291954, -0.0935864970088005, 0.011930535547435284, -0.014775906689465046, 0.05840790644288063, -0.1051863580942154, 0.15005463361740112, -0.06917901337146759, -0.06494453549385071, -0.062209222465753555, -0.04648399353027344, -0.022477980703115463, -0.15696994960308075, -0.010218990966677666, -0.10577961802482605, 0.07099968194961548, -0.041214410215616226, 0.011419164016842842, -0.1452297568321228, 0.07795307785272598, -0.05459166690707207, -0.07050366699695587, -0.08579936623573303, 0.013944132253527641, 0.11855659633874893, -0.017997168004512787, 0.04153841733932495, -0.06305108219385147, 0.2371360808610916, -0.08726444840431213, -0.07760126143693924, -0.032389216125011444, -0.04395842179656029, -0.15313279628753662, 0.0009960769675672054, 0.12172379344701767, 0.06607431918382645, 0.037985920906066895, 0.0010652777273207903, 0.0701897144317627, 0.032746706157922745, -0.08944980055093765, 0.09539735317230225, 0.07168793678283691, 0.03101334534585476, -0.017514776438474655, 0.008030666038393974, 0.019788915291428566, -0.10671461373567581, 0.06741040199995041, 0.023141736164689064, 0.23625944554805756, -0.07974837720394135, 0.1051061674952507, -0.09686210751533508, -0.015340641140937805, -0.20230962336063385, -0.08959078788757324, -0.047636061906814575, -0.07089950889348984, 0.025580117478966713, -0.11362031102180481, 0.05583704262971878, 0.014833265915513039, -0.019196009263396263, 0.20698869228363037, -0.12587271630764008, -0.09304993599653244, 0.001571766333654523, 0.07858449965715408, -0.1938905417919159, -0.1630343198776245, -0.03149036318063736, -0.004990610294044018, -0.10897413641214371, 0.059230778366327286, 0.03657939285039902, 0.03749068081378937, -0.050340913236141205, 0.0631486251950264, 0.013423026539385319, -0.037812523543834686, 0.16931597888469696, -0.09697306156158447, 0.06721089780330658, -0.05894190073013306, -0.05556374043226242, 0.12050394713878632, -0.04188216105103493, -0.010372171178460121, -0.037512652575969696, -0.03869517520070076, -0.0650193840265274, 0.009103799238801003, -0.01721031405031681, 0.026197372004389763, -0.06493490934371948, 0.021737171337008476, -0.11945012956857681, 0.0783010870218277, -0.025787005200982094, -0.0028899102471768856, 0.03986288234591484, -0.01595618948340416, 0.11316515505313873, 0.033987320959568024, 0.06733908504247665, 0.058868180960416794, -0.12042763829231262, 0.008716349489986897, 0.0012172451242804527, 0.029092146083712578, 0.009273571893572807, 0.03592429310083389, 0.07552649825811386, 0.06840544939041138, 0.053215593099594116, 0.06875114142894745, -0.16042599081993103, 0.030710995197296143, 0.08797552436590195, -0.05949205160140991, -0.15522846579551697, 0.009188318625092506, -0.007172601297497749, -0.035271406173706055, -0.15152765810489655, 0.01600334793329239, 0.05354810878634453, -0.05764586478471756, 0.07438889145851135, 0.04813273623585701, 0.047026626765728, -0.0156662967056036, -0.01716330088675022, 0.05961329862475395, -0.13824382424354553, 0.146174818277359, 0.002337909769266844, -0.0340917706489563, -0.0005429115262813866, 0.17107374966144562, -0.04532601311802864, -0.03236255422234535, 0.039114825427532196, 0.11603540927171707, 0.0016654889332130551, -0.05814401060342789, -0.032013189047575, -0.11393432319164276, 0.10066553205251694, 0.07805687934160233, 0.06092570722103119, -0.011840049177408218, 0.06751039624214172, 0.04642714187502861, -0.06274619698524475, 0.10705002397298813, 0.01249826792627573, 0.007990065030753613, -0.08471057564020157, -0.04994784668087959, 0.04541703686118126, -0.07979466766119003, -0.0128783592954278, 0.011200116015970707, -0.07504363358020782, 0.02061050944030285, -0.06440842896699905, 0.05068428814411163, -0.15326708555221558, -0.012655537575483322, -0.018161585554480553, 0.012048449367284775, -0.01733422465622425, -0.004847266245633364, -0.09175649285316467, -0.11433283239603043, -0.011554695665836334, 0.07162268459796906, -0.1953113079071045, -0.003946736920624971, 0.10186076164245605, -0.11213473975658417, -0.002569005824625492, 0.03063095360994339, 0.01590721867978573, 0.054335739463567734, -0.09872081875801086, -0.09251003712415695, 0.009380172938108444, 0.02266753651201725, 0.019344381988048553, -0.1360326111316681, -0.01663799397647381, -0.04737652838230133, -0.08562880754470825, -0.006946170702576637, -0.00847865641117096, -0.06733191758394241, 0.0794220119714737, -0.04997037723660469, -0.03835095837712288, -0.023601874709129333, 0.024392060935497284, 0.22383956611156464, 0.015287197194993496, 0.06924480944871902, -0.0010344201000407338, 0.06246696040034294, -0.16009709239006042, 0.005887102335691452, 0.004371441900730133, -0.06677559018135071, -0.04376867786049843, -0.004612426273524761, 0.03509896248579025, -0.026001401245594025, 0.0782889574766159, -0.029717501252889633, 0.004977838136255741, 0.016043955460190773, 0.05363566800951958, -0.012814346700906754, 0.03623867407441139, 0.07584695518016815, -0.006287961732596159, 0.0076025621965527534, 0.09501274675130844, 0.02542431838810444, -0.00026310066459700465, -0.15335223078727722, 0.12475235760211945, 0.05669238790869713, -0.0034590328577905893, 0.02355547994375229, 0.013794511556625366, -0.09101000428199768, -0.10996876657009125, 0.23920907080173492, 0.021258115768432617, -0.0268576517701149, -0.059954289346933365, 0.14003752171993256, 0.214437797665596, -0.22269657254219055, 0.08234722167253494, 0.013695930130779743, 0.024114597588777542, -0.054729659110307693, -0.056122343987226486, -0.1180589497089386, -0.10732357203960419, 0.06045934185385704, -0.09228683263063431, 0.14667779207229614, -0.07063864916563034, 0.023877739906311035, 0.05965559929609299, 0.03489665314555168, -0.05501185730099678, -0.037088170647621155, -0.020038019865751266, 0.020456941798329353, -0.06402456015348434, 0.1596757173538208, -0.00483765359967947, 0.08190368860960007, -0.043168261647224426, 0.06291613727807999, 0.03539181873202324, -0.01452706940472126, 0.05942166969180107, -0.0970427393913269, -0.043960265815258026, 0.02406969852745533, -0.021889235824346542, 0.008970825932919979, 0.07855602353811264, 0.06127773970365524, -0.026781871914863586, -0.02851041406393051, 0.14015093445777893, -0.02175280824303627, -0.08151620626449585, -0.054280735552310944, 0.10632781684398651, -0.015419582836329937, -0.05294907093048096, 0.003443522844463587, -0.12235289067029953, -0.004463948775082827, 0.17651094496250153, 0.10288434475660324, 0.039308466017246246, -0.010306834243237972, -0.016160035505890846, 0.03316201642155647, 0.016416504979133606, 0.03140943497419357, 0.06633688509464264, 0.06490170955657959, -0.10217667371034622, -0.05157305672764778, -0.07213946431875229, -0.09049320220947266, -0.011970313265919685, 0.06991714239120483, 0.060892798006534576, -0.03647301346063614, -0.012423434294760227, 0.07992248237133026, -0.09898396581411362, -0.21809709072113037, 0.006136005744338036, -0.043485041707754135, -0.06940450519323349, 0.018671900033950806, 0.07565707713365555, -0.06611000001430511, 0.04630177095532417, 0.04563207924365997, -0.004799483343958855, 0.06632009893655777, 0.022614935413002968, -0.1653631180524826, 0.013791034929454327, 0.04694069176912308, -0.07877032458782196, 0.1896812468767166, -0.04531338810920715, -0.018341481685638428, 0.0856526717543602, -0.011943678371608257, -0.061028093099594116, 0.052071645855903625, 0.06098291650414467, -0.09182123839855194, 0.02400902658700943, 0.2210841327905655, 0.027426043525338173, 0.09333977848291397, 0.05490824207663536, -0.06596803665161133, 0.09767384082078934, 0.060323797166347504, -0.09416138380765915, -0.04361063614487648, 0.11113274097442627, -0.1448400765657425, 0.12444309145212173, 0.15154947340488434, -0.01042647659778595, 0.07269050925970078, -0.06513785570859909, 0.02802140824496746, 0.01065089087933302, 0.12058724462985992, -0.0010113881435245275, -0.059025950729846954, -0.015942882746458054, -0.08110630512237549, -0.011546991765499115, -0.1760648638010025, -0.039908792823553085, -0.07372182607650757, -0.04298028349876404, -0.04940276965498924, 0.09466634690761566, 0.04248925670981407, 0.010091601870954037, -0.023467298597097397, -0.14175792038440704, 0.024593086913228035, 0.12654593586921692, -0.14372731745243073, 0.05347004532814026 ]
null
null
transformers
Input Models input text only. Output Models generate text only. Model Architecture Auto-regressive language model based on the qwen1.5 transformer architecture. Base Model qwen1.5-7b-chat Training Objective Ko-Platypusth dataset
{"license": "apache-2.0"}
text-generation
jaehy12/qwen1.5-7b_ko3
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T00:11:54+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Input Models input text only. Output Models generate text only. Model Architecture Auto-regressive language model based on the qwen1.5 transformer architecture. Base Model qwen1.5-7b-chat Training Objective Ko-Platypusth dataset
[]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.04036613926291466, 0.08991818875074387, -0.005617673974484205, 0.015722598880529404, 0.03849031776189804, -0.04009100794792175, 0.14796870946884155, 0.1213126927614212, 0.001723277848213911, -0.06901978701353073, 0.15935106575489044, 0.1444999724626541, -0.009483806788921356, 0.06349445879459381, -0.09402645379304886, -0.14110735058784485, 0.12484939396381378, -0.014851258136332035, -0.03394315764307976, 0.0851219967007637, 0.1251571774482727, -0.02663634531199932, 0.05563478171825409, -0.011177652515470982, -0.05882909893989563, 0.011053917929530144, 0.054222844541072845, -0.11358895897865295, 0.10450607538223267, 0.062979556620121, 0.05975763127207756, 0.10989200323820114, -0.01641995459794998, -0.2522004246711731, 0.03207802399992943, -0.012637523002922535, -0.0871874988079071, 0.010412251576781273, 0.025545023381710052, 0.0008685128414072096, -0.045979093760252, 0.06330494582653046, -0.04632735252380371, 0.08574844151735306, -0.06346878409385681, -0.07905754446983337, -0.08252356946468353, 0.06012045592069626, 0.09442144632339478, 0.08540154993534088, 0.007685743737965822, 0.15730415284633636, -0.07871562987565994, 0.08002857118844986, 0.07894855737686157, -0.43789994716644287, 0.012742172926664352, 0.054084308445453644, 0.07226260751485825, 0.024569416418671608, -0.023978127166628838, 0.04355212301015854, 0.06804477423429489, -0.00906322244554758, 0.007452910766005516, -0.061347898095846176, -0.13147588074207306, 0.02565319836139679, -0.051262255758047104, -0.015654297545552254, 0.20702697336673737, 0.023599034175276756, 0.005179846193641424, -0.03475075960159302, -0.09302865713834763, 0.048179786652326584, 0.0028019165620207787, 0.014394747093319893, -0.0004950975417159498, 0.12249556183815002, 0.013464228250086308, -0.03854021430015564, -0.15033426880836487, 0.008194133639335632, -0.1996113508939743, 0.076921246945858, 0.022240053862333298, 0.06522956490516663, -0.15710976719856262, 0.030377570539712906, -0.015731872990727425, -0.13885514438152313, -0.05097534880042076, -0.1199621632695198, 0.10146795958280563, 0.043930474668741226, -0.03243779391050339, 0.02752232365310192, 0.20806941390037537, 0.2237844318151474, 0.030316436663269997, 0.03637881577014923, -0.06048303842544556, 0.07891400903463364, -0.045851681381464005, 0.05167368799448013, 0.07321620732545853, -0.08942057937383652, 0.15007852017879486, -0.0799500122666359, 0.07410750538110733, -0.023451441898941994, -0.14157044887542725, -0.014100922271609306, -0.013705631718039513, 0.13684618473052979, 0.0644785463809967, 0.07565537095069885, 0.002849382348358631, 0.06523799151182175, 0.15822157263755798, -0.03875965252518654, -0.03891875594854355, 0.01631409488618374, 0.05609319731593132, 0.0048049925826489925, 0.04503418877720833, 0.09811728447675705, -0.028734559193253517, -0.014973705634474754, -0.011204283684492111, -0.07975002378225327, 0.014717867597937584, -0.014002108946442604, 0.06271570175886154, 0.021220559254288673, 0.07093489170074463, -0.2011067420244217, -0.14156778156757355, 0.03634537011384964, 0.028684739023447037, 0.025111526250839233, -0.08995380997657776, -0.0040772161446511745, -0.026519685983657837, 0.026139819994568825, -0.088621124625206, -0.06054885685443878, -0.08902622759342194, 0.05060982331633568, -0.019242562353610992, 0.02089102566242218, -0.2117183804512024, 0.021292565390467644, -0.10712506622076035, 0.013106598518788815, 0.0404612272977829, -0.0044442215003073215, -0.0740574300289154, 0.1878933608531952, -0.01858493871986866, 0.02379864826798439, -0.00726393423974514, 0.011873443610966206, -0.02575845643877983, 0.15545332431793213, -0.10103243589401245, -0.01187441311776638, 0.2888946831226349, -0.1242358610033989, -0.2738911509513855, 0.10810647159814835, 0.01810285449028015, 0.02813878282904625, 0.07785718142986298, 0.19248127937316895, 0.08630827069282532, -0.05930861085653305, 0.04063988849520683, 0.1407800316810608, -0.08740410953760147, -0.12316173315048218, 0.028267553076148033, -0.012339231558144093, -0.09043905138969421, 0.04826097935438156, 0.020146677270531654, 0.09696908295154572, 0.005180803127586842, -0.08841738104820251, -0.08502241224050522, -0.10109810531139374, -0.0053014191798865795, -0.07193682342767715, 0.027746543288230896, -0.0897274911403656, -0.00485744746401906, -0.10822343081235886, 0.024222273379564285, 0.021650047972798347, 0.033917754888534546, -0.11143964529037476, 0.028566906228661537, 0.03739789128303528, 0.061893366277217865, -0.05081617087125778, -0.06902449578046799, 0.012192998081445694, -0.0013105696998536587, 0.007255895994603634, 0.03914855048060417, 0.0572030283510685, -0.02283342555165291, -0.0073350779712200165, -0.04712321609258652, 0.14712141454219818, 0.0697699785232544, -0.05250963568687439, -0.09474263340234756, 0.09364508837461472, -0.05196455866098404, 0.041038405150175095, -0.0335039459168911, 0.027160990983247757, 0.046033039689064026, 0.07087435573339462, -0.015948589891195297, 0.10519687831401825, -0.03200394660234451, -0.03770596906542778, -0.06896686553955078, 0.009549645707011223, 0.08878543972969055, 0.06696011126041412, -0.12692299485206604, 0.22214435040950775, -0.1473982334136963, 0.25784197449684143, 0.17076049745082855, -0.12871719896793365, 0.10811670124530792, -0.0562606081366539, -0.0328119620680809, -0.025078345090150833, 0.037261962890625, 0.006956299766898155, 0.002247654367238283, 0.006739404518157244, 0.13704857230186462, -0.06950750946998596, -0.036230847239494324, -0.02219284139573574, -0.06845171004533768, -0.0034010978415608406, 0.03412008658051491, 0.07087860256433487, -0.1813635677099228, 0.14585095643997192, 0.33414334058761597, 0.02338763140141964, 0.08399628847837448, -0.05768848583102226, 0.036025356501340866, 0.04274871572852135, 0.029521530494093895, -0.01949433796107769, 0.013187920674681664, -0.12560538947582245, 0.01925228349864483, 0.07409939914941788, 0.04925354942679405, 0.05841709300875664, -0.10954005271196365, -0.06342197209596634, 0.0022352226078510284, -0.0404132716357708, -0.055883776396512985, 0.05037539079785347, -0.036980051547288895, 0.09932491928339005, -0.035134293138980865, -0.07440295815467834, 0.11606752872467041, -0.0311210285872221, -0.09326869249343872, 0.14014537632465363, -0.1660849004983902, -0.2098633348941803, -0.12621928751468658, -0.1311081200838089, -0.07061709463596344, 0.008267560042440891, 0.18777351081371307, -0.0698377937078476, -0.060633182525634766, -0.029070168733596802, -0.06654112040996552, 0.04863075911998749, 0.028812551870942116, 0.015871766954660416, 0.06006447970867157, 0.022946830838918686, -0.1330977976322174, -0.032168805599212646, 0.04139196127653122, -0.07044107466936111, 0.09031283110380173, -0.09604691714048386, 0.11347202211618423, 0.08147415518760681, 0.03243999928236008, 0.01443639025092125, -0.03613545373082161, 0.20795050263404846, -0.028769677504897118, 0.03240073099732399, 0.2048753947019577, -0.062231454998254776, 0.07224300503730774, 0.1872597187757492, -0.0005926148733124137, -0.07672671228647232, 0.061678312718868256, -0.04875770956277847, -0.07100460678339005, -0.2566213011741638, -0.08741707354784012, -0.0631013885140419, 0.10582025349140167, -0.03648519515991211, 0.07954412698745728, 0.11234905570745468, 0.09197259694337845, -0.03797096759080887, -0.04929089918732643, 0.043900519609451294, 0.08024899661540985, 0.20734786987304688, -0.009406937286257744, 0.10967274010181427, -0.1264907270669937, -0.03180808946490288, 0.11690393835306168, 0.14268435537815094, 0.08296582847833633, 0.11687245965003967, 0.06120859459042549, 0.08749880641698837, 0.23476718366146088, 0.10747893154621124, 0.09571640938520432, 0.03375660255551338, -0.04656276851892471, -0.025001078844070435, -0.025930415838956833, -0.03726447373628616, 0.06289631873369217, -0.08410989493131638, -0.10953976958990097, -0.024409765377640724, 0.02499624527990818, 0.09832001477479935, 0.22056810557842255, 0.026891855522990227, -0.06006047502160072, -0.007521977182477713, 0.11354988813400269, -0.0275481678545475, -0.0250506903976202, 0.14246565103530884, 0.02405230700969696, -0.0795261561870575, 0.11108960211277008, -0.010521751828491688, 0.1289806067943573, 0.024903420358896255, 0.07033122330904007, -0.06682006269693375, -0.134303480386734, 0.045469120144844055, 0.13945505023002625, -0.32183852791786194, 0.18603412806987762, -0.011378766037523746, 0.011492941528558731, -0.05649348720908165, -0.0021516333799809217, 0.04818575456738472, 0.18632206320762634, 0.121357761323452, -0.002237886656075716, -0.11594092100858688, 0.00345937954261899, -0.05806586518883705, 0.08951090276241302, 0.05680427700281143, 0.052815522998571396, -0.018537070602178574, -0.07259981334209442, -0.009052129462361336, 0.020945411175489426, 0.05938299000263214, -0.09793826937675476, -0.1487433910369873, 0.010257656686007977, 0.14714662730693817, 0.10764602571725845, -0.0869942456483841, 0.04358784854412079, -0.1615476906299591, 0.15228506922721863, -0.16070613265037537, -0.0738922581076622, -0.07052602618932724, -0.18145792186260223, -0.01787259615957737, -0.06437265127897263, 0.058706048876047134, -0.07575103640556335, 0.03997026011347771, -0.08375342190265656, -0.19174234569072723, 0.09325165301561356, -0.16612453758716583, -0.0801210030913353, -0.03216368332505226, 0.11823595315217972, -0.0857934057712555, -0.003290364518761635, 0.07632012665271759, -0.027949584648013115, -0.10892580449581146, -0.1471717655658722, -0.029300130903720856, -0.045975178480148315, -0.0067452192306518555, -0.06856578588485718, -0.08008918911218643, -0.10615010559558868, -0.012300357222557068, -0.0838562622666359, 0.2500639855861664, 0.24334131181240082, -0.08131773769855499, 0.14910520613193512, 0.24395453929901123, -0.055595576763153076, -0.31141796708106995, -0.19712311029434204, -0.16066546738147736, -0.09556642174720764, -0.0026308526284992695, -0.042838942259550095, 0.11648715287446976, 0.04621724784374237, -0.07959084212779999, 0.023433636873960495, -0.15623697638511658, -0.0842878445982933, 0.17816564440727234, -0.012688517570495605, 0.29353925585746765, -0.16477178037166595, -0.08087506890296936, -0.09930642694234848, -0.22229979932308197, 0.1298648715019226, -0.21091017127037048, 0.02835681475698948, 0.039164699614048004, 0.038444917649030685, -0.024144712835550308, -0.036855194717645645, 0.11464110016822815, -0.03957859426736832, 0.013248985633254051, -0.11527237296104431, 0.03480745479464531, 0.030708959326148033, -0.038846198469400406, 0.020857447758316994, -0.17177672684192657, 0.05864778161048889, -0.029974177479743958, -0.008962302468717098, -0.052499398589134216, 0.055940061807632446, -0.007493102457374334, -0.07512537389993668, -0.02026659995317459, -0.08838412910699844, 0.07313979417085648, 0.012010136619210243, 0.23764339089393616, -0.018189962953329086, 0.10277487337589264, 0.1968766301870346, 0.13098472356796265, -0.19754642248153687, 0.08505386114120483, -0.07648741453886032, -0.09781297296285629, 0.05159390717744827, -0.12972252070903778, 0.08451423794031143, 0.07949403673410416, -0.08365033566951752, 0.051693227142095566, 0.06012945622205734, 0.027982676401734352, 0.01960940845310688, 0.12748897075653076, -0.18229280412197113, -0.06260735541582108, -0.01937265880405903, 0.17772506177425385, 0.058959849178791046, 0.10198318213224411, 0.14643235504627228, 0.010850775986909866, -0.021976973861455917, -0.010798294097185135, 0.04924827069044113, -0.08274289220571518, 0.02256690338253975, 0.055073097348213196, 0.007896734401583672, -0.11490005254745483, 0.12214447557926178, -0.031715378165245056, -0.13863274455070496, -0.006165508180856705, 0.10146982222795486, -0.16454577445983887, -0.12685546278953552, -0.0036251030396670103, 0.08790367841720581, -0.15996511280536652, -0.1400991976261139, -0.01458103209733963, -0.15784621238708496, 0.012528584338724613, 0.1822528839111328, 0.06762409955263138, 0.07280417531728745, 0.05221472308039665, -0.04183565452694893, 0.028900692239403725, 0.031099097803235054, -0.07724528014659882, 0.027284886687994003, -0.11881547421216965, -0.09383192658424377, -0.025381917133927345, 0.12108025699853897, -0.06100175902247429, -0.010978808626532555, -0.10147671401500702, 0.01884884014725685, -0.25204306840896606, 0.019371870905160904, -0.09436720609664917, 0.0115262595936656, -0.001237045624293387, -0.09143777191638947, -0.04021807760000229, 0.004062740597873926, -0.08750100433826447, -0.008230091072618961, -0.027798838913440704, 0.03985340893268585, -0.11271848529577255, -0.01652846299111843, 0.06658396124839783, -0.004657043609768152, 0.1328970491886139, 0.04854678735136986, -0.10120581835508347, 0.08961503952741623, -0.1582808792591095, -0.0624028742313385, 0.0673547312617302, 0.03389641270041466, 0.02702217921614647, 0.06853557378053665, -0.034808628261089325, 0.12506863474845886, -0.027140986174345016, 0.031473562121391296, 0.09261355549097061, -0.1068703755736351, -0.0065684556029737, -0.01883314736187458, -0.08313187956809998, -0.00910375639796257, -0.14626313745975494, 0.09254004061222076, -0.01602276973426342, 0.1805012971162796, -0.0696883425116539, 0.029459552839398384, -0.03855891525745392, 0.027095122262835503, 0.02564604952931404, -0.13399766385555267, -0.16067969799041748, -0.0458146296441555, -0.04444127529859543, -0.027580464258790016, 0.25085926055908203, -0.10060393810272217, -0.011650468222796917, 0.09995398670434952, -0.005674630869179964, -0.017459580674767494, 0.0017905861604958773, 0.2619849145412445, 0.06615325063467026, -0.009675726294517517, -0.1205400750041008, -0.01438883226364851, 0.017486674711108208, -0.159388929605484, 0.0494217611849308, 0.08481337130069733, 0.04311069846153259, 0.10112766921520233, 0.054651517421007156, 0.036716531962156296, -0.09104304760694504, -0.17256027460098267, -0.042690444737672806, 0.041015978902578354, -0.020291395485401154, 0.06394141912460327, 0.1920814961194992, 0.0005104628507979214, -0.029705103486776352, -0.0652078166604042, -0.00809237826615572, -0.17236030101776123, -0.07674155384302139, -0.10734351724386215, -0.12454013526439667, 0.00016202953702304512, -0.07754258811473846, 0.017524123191833496, 0.033405207097530365, 0.06216636300086975, -0.06747224926948547, 0.052564382553100586, -0.03803403303027153, -0.038274310529232025, 0.010428116656839848, -0.018865413963794708, 0.01439420972019434, 0.0389532707631588, -0.038473375141620636, -0.07092887163162231, 0.003463073167949915, -0.05924765765666962, 0.08569595962762833, -0.007459212560206652, 0.05685700476169586, -0.11562437564134598, -0.056099213659763336, -0.057288363575935364, 0.07184997946023941, -0.01637004129588604, 0.15423503518104553, 0.02527274377644062, 0.01943030208349228, 0.11329638212919235, 0.20755474269390106, -0.0797937661409378, -0.19422569870948792, -0.0892810970544815, 0.08377636969089508, -0.006339451298117638, 0.11715652793645859, -0.029177865013480186, 0.009642025455832481, -0.05117860436439514, 0.37365972995758057, 0.23171113431453705, -0.09181170165538788, 0.046717096120119095, -0.058306582272052765, 0.03875504434108734, 0.030488844960927963, 0.11126483231782913, 0.13574358820915222, 0.23682937026023865, -0.07222520560026169, -0.03534314036369324, -0.013686204329133034, 0.00846810918301344, -0.15989358723163605, 0.1098698303103447, -0.057617802172899246, -0.047351058572530746, -0.02362549677491188, 0.09779230505228043, -0.1259142905473709, 0.14457714557647705, -0.1408710777759552, -0.0826694667339325, -0.028690392151474953, 0.006731953471899033, 0.2089827060699463, 0.026594465598464012, 0.008636854588985443, -0.013673979789018631, -0.04677696153521538, 0.10479705035686493, -0.03128453344106674, -0.14381857216358185, 0.005965833086520433, 0.06688541918992996, -0.02156139351427555, 0.1399562656879425, 0.03324680030345917, 0.03351762890815735, 0.08183922618627548, 0.05440681055188179, -0.09680478274822235, 0.14337579905986786, 0.04374181479215622, -0.09631576389074326, -0.015225821174681187, -0.1023930236697197, -0.018571631982922554, 0.000391084497096017, 0.05331425368785858, -0.11313062161207199, 0.06129743531346321, 0.07460463792085648, -0.07195790857076645, -0.03642614930868149, 0.07519636303186417, -0.053978778421878815, 0.06877215206623077, -0.02874460630118847, -0.0554586723446846, -0.011564208194613457, -0.01145562157034874, 0.006088838446885347, 0.0006279639201238751, -0.12290187925100327, -0.03024892508983612, -0.06937865912914276, -0.023524269461631775, 0.08065230399370193, 0.033800624310970306, -0.12996967136859894, -0.027738254517316818, -0.1019517108798027, 0.05954721197485924, -0.1459987312555313, 0.06658828258514404, 0.16844086349010468, -0.0006071589305065572, -0.011409238912165165, -0.09746748954057693, 0.022616177797317505, 0.04213497415184975, -0.04912839084863663, -0.14026375114917755 ]
null
null
diffusers
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use `Book cover of a vintage romance novel`, `Cover of a Harlequin romance novel` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/the-wizard-s-vintage-romance-novel/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/the-wizard-s-vintage-romance-novel', weight_name='wizards_vintage_romance.safetensors') image = pipeline('book cover of a vintage romance novel depicting John Legend').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Book cover of a vintage romance novel", "widget": [{"text": "book cover of a vintage romance novel depicting kanye west in a romantic scene with kanye west", "output": {"url": "5033837.jpeg"}}, {"text": "book cover of a harlequin romance novel book cover of a vintage romance novel called \"praise the sun\", depicting Solaire of Astora from dark souls with both hands stretched up", "output": {"url": "5033836.jpeg"}}, {"text": "book cover of a vintage romance novel called \"a real man a tee\" depicting a manatee casanova", "output": {"url": "5033831.jpeg"}}, {"text": " ", "output": {"url": "5033820.jpeg"}}, {"text": "book cover of a vintage romance novel depicting John Legend", "output": {"url": "5033958.jpeg"}}]}
text-to-image
WizWhite/the-wizard-s-vintage-romance-novel-1
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:13:40+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 78, 14, 208, 34, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# The Wizard's Vintage Romance Novel \n\n<Gallery />## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.05321831628680229, 0.14669254422187805, -0.004502041265368462, 0.08079151064157486, -0.029933059588074684, 0.10577622801065445, 0.06477154791355133, 0.09510701149702072, 0.011646539904177189, 0.08814748376607895, -0.06371841579675674, 0.019155219197273254, 0.11237654834985733, 0.11551177501678467, -0.0010364102199673653, -0.22339099645614624, 0.010180611163377762, -0.04324489086866379, 0.04303957149386406, 0.0625455230474472, 0.10128665715456009, -0.017063045874238014, 0.06576608866453171, -0.017759541049599648, 0.05451653152704239, 0.022510027512907982, -0.013151939027011395, -0.01243155263364315, 0.031349290162324905, 0.09428945183753967, 0.06795656681060791, 0.03351213037967682, 0.10839696228504181, -0.266926109790802, 0.019879736006259918, 0.08084052056074142, -0.0978420078754425, -0.014702456071972847, 0.16044500470161438, -0.11349025368690491, 0.1880626529455185, -0.11783038824796677, 0.07790586352348328, 0.034112900495529175, -0.0384993813931942, -0.07885919511318207, -0.1954290121793747, 0.23864255845546722, 0.09623387455940247, 0.008940339088439941, 0.02164599299430847, 0.014341361820697784, -0.027347933501005173, -0.038675349205732346, 0.27720099687576294, -0.1729094535112381, -0.05388390272855759, 0.060978811234235764, 0.04898742586374283, 0.06550806760787964, -0.14964692294597626, 0.04815918952226639, -0.04405101016163826, 0.025625813752412796, 0.017671914771199226, -0.0006661558290943503, 0.22553475201129913, 0.016948848962783813, -0.09919431060552597, -0.03811253234744072, 0.1204286590218544, -0.02031622640788555, -0.05184183269739151, -0.12438511103391647, -0.011047192849218845, 0.15827436745166779, -0.0907370075583458, -0.059587206691503525, 0.035615794360637665, -0.014309861697256565, 0.02693103812634945, -0.13623739778995514, -0.06446903944015503, -0.04862421751022339, -0.00271399412304163, 0.08695939183235168, 0.014321497641503811, -0.03794339299201965, 0.06442253291606903, 0.09413876384496689, -0.05893079936504364, 0.0003298760566394776, 0.009257950820028782, -0.10610733926296234, -0.0347614660859108, -0.03158413618803024, -0.026037851348519325, -0.018727310001850128, 0.03667706251144409, 0.17049738764762878, 0.01776425912976265, 0.01399908121675253, -0.03340549394488335, -0.009536413475871086, 0.011784153990447521, 0.07418246567249298, -0.03395622596144676, -0.20987409353256226, 0.02220064215362072, 0.07835803180932999, 0.09452329576015472, -0.0008603720343671739, 0.014689458534121513, -0.12248777598142624, -0.007499030791223049, 0.026480745524168015, 0.13280563056468964, -0.010149382054805756, -0.03184062987565994, -0.010172813199460506, 0.17929892241954803, -0.10268297046422958, 0.04850778728723526, 0.031034735962748528, 0.0058097513392567635, 0.04931523650884628, 0.04208367317914963, -0.014926578849554062, -0.05074848234653473, 0.09546711295843124, -0.07258257269859314, -0.07158969342708588, -0.006964302621781826, -0.06605303287506104, 0.009416364133358002, 0.030285310000181198, -0.10763920843601227, -0.01594468019902706, -0.09428567439317703, -0.0639868974685669, 0.011601072736084461, -0.06397758424282074, -0.04825146868824959, -0.04287203773856163, -0.01895194500684738, 0.013326741755008698, 0.08904442191123962, 0.04893078655004501, -0.00926380418241024, 0.04676220566034317, -0.126156747341156, 0.058958396315574646, 0.07191915810108185, 0.027445003390312195, 0.03401646390557289, 0.04954657703638077, -0.30111581087112427, 0.10338596999645233, -0.10123956203460693, -0.0003184778324794024, -0.09845469892024994, -0.0463876947760582, -0.01999659650027752, -0.012287483550608158, -0.07519489526748657, 0.08853600919246674, -0.16202682256698608, -0.06580379605293274, 0.14436431229114532, -0.14059661328792572, -0.0077738044783473015, 0.11649549007415771, -0.03659859299659729, 0.021098962053656578, 0.10776852816343307, 0.16187764704227448, 0.20346596837043762, -0.07648364454507828, -0.07567443698644638, -0.07652169466018677, -0.04972660169005394, 0.1980353146791458, 0.02377224527299404, -0.10837942361831665, 0.00797627680003643, 0.00014688659575767815, -0.215581476688385, -0.1299477368593216, 0.05467606708407402, -0.02173520065844059, 0.006420244928449392, 0.013012540526688099, 0.08888893574476242, -0.047380756586790085, -0.06880936026573181, -0.018590575084090233, -0.0770680159330368, -0.09505660831928253, 0.08072634041309357, -0.015011897310614586, 0.06786804646253586, -0.0015096500283107162, 0.08397693186998367, 0.1079651266336441, 0.029396001249551773, -0.05914023518562317, -0.029893500730395317, 0.04261212795972824, -0.09927863627672195, 0.04872962087392807, -0.0260609220713377, 0.040615156292915344, 0.024232611060142517, -0.12831926345825195, 0.014656567014753819, -0.004484562668949366, -0.044163141399621964, -0.07959317415952682, -0.17766673862934113, -0.08520229160785675, 0.013628458604216576, 0.1571706086397171, -0.1474684625864029, 0.031249308958649635, -0.012322181835770607, 0.11353558301925659, -0.023724131286144257, 0.005995760206133127, 0.012328391894698143, -0.03289732336997986, -0.03453351557254791, -0.03855626657605171, -0.012944747693836689, -0.031241020187735558, -0.056257277727127075, 0.05210423842072487, -0.14218762516975403, -0.159774050116539, 0.07842213660478592, 0.049029309302568436, -0.07018033415079117, -0.14410105347633362, -0.01697435975074768, -0.0007302348967641592, -0.07181360572576523, -0.046579472720623016, 0.10024859011173248, 0.044666606932878494, 0.001854764181189239, -0.09578494727611542, -0.05029650405049324, -0.08782697468996048, -0.016513200476765633, -0.10236818343400955, 0.0857929214835167, -0.05675756186246872, -0.13332150876522064, 0.023715579882264137, 0.033960629254579544, -0.0002833972976077348, 0.07518674433231354, 0.09324659407138824, -0.07453864812850952, 0.020497336983680725, -0.03424213454127312, 0.08654914051294327, 0.017360886558890343, 0.09116718918085098, 0.06361733376979828, 0.04851880669593811, -0.046750105917453766, -0.004101996775716543, -0.061475902795791626, -0.023077473044395447, 0.0095299007371068, -0.06445150077342987, -0.03000110201537609, -0.010900977067649364, 0.03825749456882477, 0.09738853573799133, 0.05785394832491875, 0.14658357203006744, -0.060970794409513474, -0.04600439965724945, -0.08310773968696594, 0.04877781867980957, -0.10047570616006851, -0.07346770167350769, -0.11913394927978516, 0.0011496137594804168, -0.010784938000142574, 0.015567008405923843, 0.0029432971496134996, -0.03890599310398102, -0.05219300463795662, -0.10327281057834625, 0.07607675343751907, -0.03970371186733246, -0.07469083368778229, -0.09619191288948059, 0.047150809317827225, -0.04694540426135063, -0.12067805975675583, 0.00910456757992506, 0.021205252036452293, -0.09950970858335495, -0.008368424139916897, -0.056365448981523514, 0.10826396942138672, 0.041478611528873444, 0.00004517184788710438, -0.03616640344262123, -0.020974276587367058, 0.07561168819665909, -0.07631100714206696, 0.12657538056373596, 0.05825069919228554, 0.06504117697477341, 0.13049109280109406, 0.15319597721099854, -0.020902644842863083, 0.016280250623822212, -0.005761436186730862, 0.07374729961156845, 0.02537660114467144, -0.1904403418302536, -0.027781084179878235, -0.01203656941652298, -0.08166011422872543, 0.0782763808965683, 0.07238269597291946, 0.0880681574344635, 0.023803720250725746, -0.16001290082931519, 0.017220424488186836, 0.15366363525390625, 0.09739531576633453, 0.13189944624900818, 0.034480247646570206, -0.01203988492488861, -0.07013511657714844, 0.03776678070425987, 0.1191110834479332, 0.030850514769554138, 0.14311210811138153, -0.04993743449449539, 0.15395919978618622, 0.02778000198304653, 0.08354712277650833, 0.0015040665166452527, 0.0002124385500792414, 0.05549585074186325, 0.0606275275349617, -0.023671748116612434, -0.04763234034180641, 0.053177956491708755, 0.09231172502040863, 0.10356280207633972, -0.030779024586081505, -0.030639363452792168, -0.10309681296348572, 0.08456406742334366, 0.09388004243373871, -0.07244310528039932, -0.06456397473812103, 0.04886768385767937, 0.09448565542697906, -0.048165712505578995, -0.002624080516397953, -0.06727933138608932, -0.024789266288280487, -0.13309267163276672, 0.1575641632080078, 0.013763848692178726, 0.04903164878487587, -0.11392469704151154, -0.06101062148809433, -0.0380878821015358, 0.12328830361366272, -0.05923272296786308, 0.07384791970252991, -0.063438281416893, 0.035822153091430664, 0.03769771382212639, 0.08574551343917847, -0.011341235600411892, -0.01579342596232891, 0.12605133652687073, 0.059689272195100784, 0.06930304318666458, 0.009993442334234715, 0.040320124477148056, 0.03913475200533867, -0.03156508505344391, -0.021948013454675674, 0.036207862198352814, -0.15300564467906952, 0.12720607221126556, -0.07269614189863205, -0.08630671352148056, -0.10556243360042572, 0.10648729652166367, -0.09296026080846786, -0.2141207456588745, 0.04889071360230446, -0.1572929471731186, 0.013565348461270332, -0.05788291618227959, -0.02914433553814888, -0.03350845351815224, 0.044193245470523834, 0.025442378595471382, -0.11558423191308975, -0.08534768223762512, -0.09644071012735367, 0.16608025133609772, -0.051787812262773514, -0.009836274199187756, 0.008131160400807858, 0.1936507672071457, -0.10826867818832397, -0.06091306731104851, -0.11326107382774353, -0.006943078245967627, -0.18266206979751587, -0.018157122656702995, 0.15633849799633026, 0.08652044087648392, 0.08449573814868927, 0.04886287823319435, 0.021626047790050507, -0.018150951713323593, -0.11068039387464523, 0.04571617394685745, 0.10017368942499161, 0.02691940777003765, -0.028274869546294212, -0.0522390715777874, -0.10063692927360535, -0.16030262410640717, 0.05059676989912987, -0.008155981078743935, 0.2154807150363922, -0.01597009412944317, 0.12677764892578125, 0.01859510876238346, -0.10634056478738785, -0.11895336955785751, -0.0823814794421196, -0.005158303305506706, -0.07936263829469681, 0.012622456066310406, -0.1088368222117424, -0.06665971130132675, 0.05985612794756889, -0.000034681721444940194, 0.07733345031738281, -0.25537943840026855, -0.075731061398983, -0.06116284430027008, 0.06069694831967354, -0.1842307597398758, -0.16473239660263062, -0.08671041578054428, -0.11995023488998413, -0.07857968658208847, 0.04314495623111725, 0.05275651440024376, 0.04278276488184929, -0.02613048069179058, 0.009315229952335358, 0.0032697273418307304, 0.024048777297139168, 0.17557953298091888, -0.034595973789691925, 0.047946397215127945, -0.07245049625635147, -0.007585981395095587, 0.08371735364198685, -0.08807996660470963, 0.03271365538239479, -0.08131225407123566, -0.028514618054032326, -0.0022496662568300962, -0.04381527006626129, -0.06690354645252228, 0.04568693786859512, -0.11227498203516006, 0.02080734632909298, -0.07699732482433319, 0.045754700899124146, 0.08875580132007599, -0.03920012712478638, -0.07656789571046829, -0.03747625648975372, 0.10779358446598053, -0.09980182349681854, 0.13257047533988953, 0.1928819715976715, -0.09490912407636642, -0.044285327196121216, -0.022442305460572243, -0.00760953314602375, -0.060035333037376404, 0.042397402226924896, 0.06141095235943794, 0.04266462102532387, 0.0688740611076355, 0.00000807584456197219, -0.10043701529502869, -0.02581442892551422, 0.11365946382284164, -0.07477615773677826, -0.20386344194412231, 0.005580640397965908, -0.02064170502126217, -0.15424147248268127, -0.1503860056400299, 0.037080347537994385, 0.019647004082798958, -0.12635120749473572, 0.028805891051888466, 0.05449257791042328, 0.046013880521059036, 0.07669100910425186, 0.039765141904354095, -0.011417005211114883, -0.038274336606264114, 0.1166827529668808, 0.08172766119241714, -0.03919433802366257, -0.04991926997900009, 0.20170028507709503, -0.0365462452173233, -0.02645709551870823, 0.07812988013029099, 0.05178544670343399, -0.06124855577945709, 0.05264398083090782, 0.05611838400363922, -0.09100259840488434, 0.01920992322266102, 0.19037862122058868, 0.002903916174545884, 0.014952948316931725, 0.06056425720453262, 0.003262158716097474, -0.05546463280916214, 0.08306457847356796, 0.11159024387598038, 0.020665038377046585, -0.046573009341955185, 0.08543431758880615, -0.021513817831873894, -0.058666545897722244, -0.007310137618333101, 0.017324332147836685, -0.048232369124889374, -0.06687092781066895, -0.1131444051861763, 0.046753499656915665, -0.1290065497159958, 0.0006895044934935868, -0.05869874730706215, 0.07845699787139893, -0.0010863792849704623, -0.03219826892018318, -0.05636448785662651, -0.11921386420726776, -0.03096763603389263, 0.0909636989235878, -0.11854135990142822, 0.013996515423059464, 0.1285608857870102, -0.10081034898757935, 0.045947492122650146, 0.06553571671247482, -0.003820844693109393, 0.008897488936781883, -0.11954289674758911, -0.06355255097150803, -0.10084176808595657, 0.011913768947124481, -0.008067597635090351, -0.1374189406633377, -0.016501639038324356, -0.11527196317911148, -0.11790254712104797, 0.008444718085229397, 0.017977701500058174, -0.09219861775636673, 0.1116005927324295, -0.030423736199736595, -0.06747255474328995, -0.009285557083785534, 0.044648557901382446, 0.22509267926216125, -0.03306823968887329, 0.05362313240766525, -0.052663035690784454, 0.022853197529911995, -0.12137596309185028, 0.003666953183710575, -0.04297361522912979, -0.010130739770829678, 0.031711675226688385, -0.02257661521434784, 0.03357494994997978, 0.02664266899228096, 0.04901110380887985, -0.016374796628952026, 0.012859944254159927, 0.00048577331472188234, 0.1073739305138588, -0.008676178753376007, -0.008102601394057274, 0.08721484988927841, -0.014314214698970318, -0.05260926112532616, 0.053944848477840424, -0.04703262448310852, -0.027994465082883835, -0.07802501320838928, 0.0937056764960289, 0.10238129645586014, 0.09503104537725449, -0.006775310263037682, 0.0015052207745611668, -0.07944058626890182, -0.03502284362912178, 0.08992467820644379, 0.06654496490955353, -0.033212367445230484, -0.05203298479318619, 0.10483364760875702, 0.14967568218708038, -0.22301506996154785, 0.1093248650431633, 0.022398142144083977, -0.04959458112716675, -0.016661398112773895, -0.18380482494831085, -0.05866049602627754, -0.010784318670630455, -0.005159382708370686, -0.06690062582492828, 0.10077912360429764, 0.05179096758365631, -0.004784216172993183, 0.007327708415687084, -0.04351753741502762, -0.11200596392154694, -0.13434071838855743, 0.061824630945920944, 0.05309354513883591, -0.007255935110151768, 0.08355766534805298, 0.02047988958656788, 0.036063216626644135, -0.054023224860429764, 0.01673528552055359, 0.05893455818295479, 0.0619463175535202, 0.045814402401447296, -0.07637757062911987, -0.05169972777366638, 0.05187874287366867, -0.046823855489492416, 0.04983779788017273, 0.1872168332338333, 0.034922659397125244, -0.051576465368270874, -0.014453443698585033, 0.24941596388816833, -0.010936119593679905, -0.040563128888607025, -0.10029584169387817, 0.054428741335868835, -0.025941068306565285, -0.061138369143009186, 0.026011506095528603, -0.1262028068304062, 0.06279975920915604, 0.11924222111701965, 0.06314519792795181, -0.0054428731091320515, 0.00949717964977026, 0.030410388484597206, 0.01888793148100376, 0.08432259410619736, -0.03601263836026192, 0.012097828090190887, 0.13551196455955505, -0.08518228679895401, 0.09485634416341782, -0.045954667031764984, 0.019332312047481537, -0.08001063019037247, 0.18118314445018768, -0.056035902351140976, -0.054108913987874985, -0.006356438156217337, 0.09214521944522858, 0.0013992392923682928, -0.19459417462348938, 0.039603013545274734, -0.07282839715480804, -0.05629294365644455, -0.017479559406638145, -0.02250882424414158, -0.03366977721452713, 0.08490776270627975, 0.06625929474830627, 0.006762478966265917, 0.174803227186203, 0.0009378311224281788, -0.088409423828125, -0.05383072793483734, 0.10917345434427261, 0.021273210644721985, 0.22448670864105225, -0.018870968371629715, -0.0666857585310936, 0.04827699810266495, 0.0035094530321657658, -0.07125455141067505, 0.029383372515439987, 0.05591656267642975, -0.0863967314362526, 0.027801427990198135, 0.21149593591690063, 0.002763717668130994, -0.015473964624106884, 0.09961609542369843, 0.05355721712112427, 0.10644396394491196, 0.04608115553855896, -0.044131625443696976, -0.037765417248010635, 0.1456296741962433, -0.18023176491260529, 0.09100385755300522, 0.17230039834976196, -0.014959674328565598, 0.049204014241695404, -0.07113354653120041, -0.07300952821969986, 0.07235757261514664, 0.1928112953901291, 0.02514754980802536, -0.0413985475897789, 0.006900338921695948, -0.029566690325737, 0.020983293652534485, -0.14440439641475677, -0.0630694106221199, -0.030691437423229218, -0.01414788980036974, -0.036074042320251465, 0.08740619570016861, 0.10065514594316483, 0.01942024566233158, -0.00044795256690122187, -0.03897201642394066, -0.008688877336680889, 0.09275764226913452, -0.08599120378494263, 0.06095607206225395 ]
null
null
diffusers
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use `Sven Nordqvist style illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/sven-nordqvist-style/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/sven-nordqvist-style', weight_name='Sven Nordqvist XL LoRA v1-0.safetensors') image = pipeline('sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Sven Nordqvist style illustration", "widget": [{"text": "sven nordqvist style illustration, close up portrait of farmer batman, detailed, grant wood", "output": {"url": "2942829.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of jason voorhees dressed as a honest farmer, scene from the movie friday the 13th, grant wood, hayfork", "output": {"url": "2943076.jpeg"}}, {"text": "sven nordqvist style illustration of a moonshiner starter kit, knolling", "output": {"url": "2943087.jpeg"}}, {"text": "sven nordqvist style illustration of a mecha fax machine, detailed texture, concept design, pcb, wires, electronics, fully visible mechanical components", "output": {"url": "2943093.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of a xenomorph", "output": {"url": "2943099.jpeg"}}, {"text": "sven nordqvist style illustration, Year:1968. High detail, portrait of an age 30 wife in 1968: mid-length hair, very voluminous, very thick, very tall, very lofty, curly, tapered pageant style bouffant. Accurate 1968 style. Subtle makeup. highly detailed", "output": {"url": "2943113.jpeg"}}, {"text": "sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light", "output": {"url": "2946764.jpeg"}}]}
text-to-image
WizWhite/sven-nordqvist-style-1
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:14:10+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Sven Nordqvist style <Gallery /> ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use 'Sven Nordqvist style illustration' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Sven Nordqvist style \n\n<Gallery />", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 86, 10, 131, 21, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Sven Nordqvist style \n\n<Gallery />## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.04299689084291458, 0.07433000206947327, -0.0031834158580750227, 0.08587127923965454, 0.07702804356813431, 0.014462011866271496, 0.08625459671020508, 0.08708580583333969, 0.019152261316776276, 0.09377413988113403, -0.008065767586231232, -0.01688443310558796, 0.09198141098022461, -0.00645374646410346, 0.018891770392656326, -0.3504854142665863, 0.04316461458802223, -0.07348839193582535, -0.032887451350688934, 0.03757791221141815, 0.05861422047019005, -0.04984088987112045, 0.10552086681127548, -0.029592454433441162, 0.027721228078007698, 0.028919642791152, -0.06493966281414032, 0.03548217564821243, 0.04881017282605171, 0.0391036719083786, 0.057555120438337326, 0.023353395983576775, 0.12044707685709, -0.14627686142921448, 0.01801490969955921, 0.06291967630386353, -0.021719245240092278, 0.04087208956480026, 0.08914047479629517, -0.11068683117628098, 0.2208879292011261, -0.11059658229351044, 0.05180252343416214, 0.026073426008224487, 0.029128972440958023, -0.17820601165294647, -0.04366329312324524, 0.08353628218173981, 0.07789627462625504, 0.02242298237979412, -0.0024423450231552124, -0.05905497446656227, -0.04275279492139816, 0.06268346309661865, 0.3334033489227295, -0.20482315123081207, -0.06169038265943527, 0.21806009113788605, 0.0534297451376915, 0.10902547091245651, -0.13603876531124115, 0.09221884608268738, 0.04906806722283363, -0.009917180985212326, 0.07868475466966629, -0.014711467549204826, 0.10754053294658661, -0.04469249024987221, -0.11662355065345764, 0.05048125237226486, 0.191945418715477, 0.03261994570493698, -0.02732226625084877, -0.16556204855442047, -0.05903917923569679, 0.060908909887075424, -0.01606852002441883, 0.006253957748413086, 0.04303446784615517, -0.012079423293471336, 0.019878070801496506, -0.15622279047966003, -0.09504977613687515, -0.01822429895401001, 0.0022622039541602135, 0.1703951060771942, -0.01194532960653305, 0.006040518172085285, 0.13263751566410065, 0.0931304469704628, -0.15580834448337555, -0.10659169405698776, -0.015293488278985023, -0.06298170983791351, -0.0973607674241066, 0.009947889484465122, -0.010851067490875721, -0.10685591399669647, 0.03625142201781273, 0.17684435844421387, 0.07216767221689224, 0.004845311399549246, -0.1338086873292923, 0.04418240115046501, 0.049610115587711334, 0.100670725107193, -0.027324771508574486, -0.12030427157878876, -0.024667277932167053, 0.00837087444961071, 0.08309917896986008, -0.050597161054611206, -0.08969877660274506, -0.11055350303649902, -0.008464471437036991, -0.0004264867748133838, -0.004045821726322174, 0.015025460161268711, -0.0005922482232563198, -0.01794647052884102, 0.14334248006343842, -0.10347297787666321, 0.05697786435484886, 0.015195746906101704, -0.03072046861052513, 0.12131611257791519, 0.05948694422841072, 0.05615147948265076, -0.0058400435373187065, 0.25942185521125793, -0.021183429285883904, -0.010205642320215702, -0.030423365533351898, -0.10156073421239853, 0.01891840249300003, -0.09443556517362595, -0.012475404888391495, -0.08105403929948807, -0.08540091663599014, -0.02945193275809288, 0.025067275390028954, -0.0803704783320427, 0.012404135428369045, -0.05306243896484375, -0.09805336594581604, 0.023572009056806564, 0.038094498217105865, 0.05947966128587723, -0.03300175070762634, 0.04694227874279022, -0.12943288683891296, 0.08804766833782196, 0.00711076520383358, 0.01796470396220684, -0.0730578750371933, 0.016773268580436707, -0.21599149703979492, 0.09627467393875122, -0.12673147022724152, -0.0023968990426510572, -0.08845236152410507, -0.061277326196432114, -0.08442763239145279, -0.01995086669921875, -0.04475035145878792, 0.07312869280576706, -0.15356986224651337, -0.04579949378967285, 0.05544830113649368, -0.14735311269760132, 0.01723760925233364, 0.12572675943374634, 0.01840164139866829, 0.012542491778731346, 0.10048715770244598, 0.2154046595096588, 0.16823171079158783, -0.19207963347434998, -0.03242012858390808, 0.03655879572033882, -0.02845999412238598, 0.11490500718355179, 0.0954098105430603, -0.03226637840270996, 0.010528534650802612, 0.049842946231365204, -0.09139234572649002, -0.02898302488029003, 0.03978309780359268, -0.00938173197209835, -0.01554616168141365, -0.02491254173219204, 0.11573965847492218, 0.05088750645518303, -0.057597771286964417, -0.047927383333444595, -0.054430942982435226, -0.005656888242810965, 0.04934627190232277, -0.059131331741809845, 0.0675838515162468, 0.08925920724868774, 0.09304744750261307, 0.030117511749267578, -0.00716997217386961, -0.0925348550081253, -0.08223205804824829, 0.002628183690831065, 0.09514389932155609, 0.058621156960725784, 0.07315509766340256, 0.07740617543458939, 0.06611951440572739, -0.10057880729436874, 0.016954602673649788, 0.020252419635653496, -0.040495071560144424, -0.03955932334065437, -0.11408466100692749, -0.012253600172698498, -0.05302555859088898, 0.06726602464914322, -0.12261165678501129, 0.04123282432556152, 0.053093940019607544, 0.17167125642299652, 0.05360596254467964, -0.03261733427643776, 0.00660703144967556, -0.027024535462260246, -0.05279304087162018, -0.03702336549758911, 0.025895195081830025, -0.037887442857027054, -0.10315611958503723, 0.06637584418058395, -0.07033964991569519, -0.08199898898601532, 0.1091533824801445, 0.14830870926380157, -0.06737976521253586, -0.1546822041273117, -0.036356646567583084, -0.007516378071159124, -0.10454367101192474, -0.09027199447154999, 0.024453461170196533, 0.06030133739113808, 0.07190807163715363, -0.09164007008075714, -0.014737188816070557, 0.00430577527731657, 0.0007172264158725739, -0.053507283329963684, 0.1086488589644432, -0.014674834907054901, -0.035169247537851334, 0.042494721710681915, 0.06834642589092255, -0.007864436134696007, 0.16758835315704346, 0.044278908520936966, -0.09364820271730423, 0.04672449827194214, 0.012686041183769703, 0.026597680523991585, 0.04342968389391899, 0.1213407814502716, 0.07664482295513153, 0.04545433446764946, 0.04118380323052406, -0.026528138667345047, -0.10031993687152863, 0.0021122030448168516, 0.015439251437783241, -0.053620345890522, 0.07610496133565903, 0.04932611063122749, 0.0020255460403859615, 0.06828372925519943, 0.012163965031504631, 0.02667372301220894, -0.036049019545316696, -0.025378946214914322, -0.054350368678569794, 0.10928991436958313, -0.07808317989110947, -0.14819350838661194, -0.20199407637119293, 0.004315086640417576, -0.12572528421878815, 0.024317074567079544, 0.0637456551194191, -0.02824503742158413, -0.06023001670837402, -0.12786337733268738, 0.14347749948501587, -0.032908402383327484, -0.031147867441177368, -0.08406288176774979, 0.040089063346385956, -0.04955713078379631, -0.11379504948854446, 0.015279922634363174, 0.007281434256583452, -0.036176323890686035, -0.021627718582749367, -0.015009943395853043, 0.08039987832307816, 0.018588319420814514, -0.038440193980932236, -0.02705996297299862, 0.0009091287502087653, 0.1091293916106224, -0.03557581454515457, 0.13802127540111542, 0.06422486156225204, 0.003197798039764166, 0.10772572457790375, 0.1739458292722702, 0.026370687410235405, -0.004061213228851557, 0.039333276450634, 0.12283995747566223, -0.10185572504997253, -0.18037644028663635, -0.07595118880271912, -0.034417927265167236, 0.07939814031124115, 0.14278359711170197, 0.08286041021347046, 0.007414605934172869, 0.09113205969333649, -0.10192963480949402, -0.07621483504772186, 0.17088811099529266, 0.09453023225069046, 0.041499558836221695, -0.0086490074172616, 0.05256880447268486, -0.051778338849544525, -0.0077834352850914, 0.097394198179245, 0.012166913598775864, 0.10170978307723999, -0.09745633602142334, 0.005608293227851391, -0.025946104899048805, 0.017572740092873573, 0.0025057699531316757, 0.10582735389471054, -0.002605892950668931, -0.01039965357631445, -0.019375154748558998, -0.08953715115785599, 0.06361303478479385, 0.1121940165758133, 0.05700257048010826, 0.007330770138651133, -0.013269295915961266, -0.04493166133761406, 0.0356881208717823, 0.14656029641628265, -0.03378686681389809, -0.10693991929292679, -0.010543475858867168, 0.07276264578104019, 0.010163301602005959, -0.026448039337992668, 0.030521372333168983, 0.16214968264102936, -0.10564161837100983, 0.13426055014133453, -0.049992289394140244, 0.08873169124126434, -0.014565537683665752, -0.05256587639451027, -0.005730265285819769, 0.12252916395664215, -0.031308986246585846, 0.09357412159442902, -0.009692811407148838, -0.006804703269153833, 0.011992956511676311, 0.028004977852106094, -0.025097249075770378, -0.0015676583861932158, 0.03155649080872536, 0.15479233860969543, 0.16033147275447845, 0.014464737847447395, -0.11373382806777954, -0.05912104994058609, -0.08073671162128448, -0.06392957270145416, 0.07897993922233582, -0.16932767629623413, 0.04717564955353737, -0.046346522867679596, -0.047384537756443024, -0.05258641764521599, -0.0011544746812433004, -0.07075556367635727, -0.159788116812706, -0.01389223150908947, -0.023622319102287292, 0.04773383587598801, -0.018602563068270683, -0.09064869582653046, -0.2235020399093628, 0.14277338981628418, -0.009612110443413258, -0.1511327177286148, -0.12033627182245255, -0.0029109050519764423, 0.11496643722057343, -0.031239008530974388, -0.05506419017910957, -0.022456444799900055, 0.18921758234500885, -0.13298268616199493, -0.10126806050539017, -0.07105954736471176, -0.008484882302582264, -0.1793159693479538, 0.022506358101963997, 0.20953436195850372, 0.046153608709573746, 0.05897206813097, -0.022390853613615036, 0.05997128784656525, 0.0262805987149477, -0.09247595071792603, 0.03588854894042015, 0.16119730472564697, 0.020707957446575165, 0.07647260278463364, -0.05990411713719368, -0.0776098445057869, -0.07472149282693863, 0.034130632877349854, 0.07709632068872452, 0.19144603610038757, -0.10148263722658157, 0.16301122307777405, 0.07058852165937424, -0.0648292526602745, -0.22892041504383087, 0.007256296928972006, 0.04181533679366112, 0.0068321325816214085, 0.11866127699613571, -0.10221792012453079, 0.0958663746714592, 0.11089488118886948, -0.003412896767258644, 0.10976952314376831, -0.3155502676963806, -0.13496512174606323, -0.07601262629032135, 0.06213058903813362, -0.01770825684070587, -0.11652404069900513, -0.0473695732653141, -0.07228060811758041, -0.1179836317896843, 0.04523002356290817, -0.06397600471973419, 0.08335117250680923, 0.018287060782313347, 0.0321308970451355, 0.05531741678714752, -0.013568783178925514, 0.16167660057544708, 0.004476239439100027, 0.02219509705901146, -0.10151907801628113, 0.02834526263177395, -0.008896131999790668, -0.0751427710056305, 0.09947311133146286, -0.1288081854581833, -0.013722344301640987, -0.06111506372690201, -0.04381861537694931, -0.032544851303100586, 0.10449531674385071, -0.05041802302002907, -0.07202479988336563, -0.1451292186975479, 0.05182056501507759, 0.12327107787132263, -0.039048660546541214, 0.13913500308990479, -0.10713476687669754, 0.03789890930056572, 0.08876148611307144, 0.08691801875829697, 0.1215086504817009, -0.06521409749984741, -0.0559772364795208, -0.05561506375670433, 0.048952195793390274, -0.1669718474149704, 0.03331449627876282, 0.1215619370341301, 0.021334931254386902, 0.06172407791018486, -0.004156338982284069, -0.0758552998304367, -0.024804163724184036, 0.07020353525876999, -0.11147192120552063, -0.1736266165971756, -0.05856109410524368, -0.1274508535861969, -0.07012845575809479, -0.07095210254192352, 0.12049012631177902, -0.08638957142829895, 0.0028749473858624697, 0.03818001225590706, 0.05080559477210045, 0.012505576014518738, 0.013429190032184124, 0.004309484735131264, 0.022547414526343346, -0.06712643057107925, 0.135975643992424, 0.030155006796121597, -0.05725739151239395, -0.004225598182529211, 0.14108224213123322, -0.07511518150568008, -0.01989608444273472, 0.016790898516774178, 0.05558286979794502, -0.027457088232040405, 0.004504452459514141, 0.012484165839850903, -0.08664651960134506, -0.01991790346801281, 0.004738823976367712, 0.04397944360971451, -0.04010067135095596, 0.023267967626452446, -0.01116048265248537, -0.06668977439403534, 0.11638759821653366, -0.00647720554843545, 0.04998421669006348, -0.12835586071014404, -0.037502139806747437, -0.027153776958584785, -0.03812259063124657, -0.04931788146495819, -0.009201991371810436, -0.024144407361745834, -0.055795807391405106, -0.01249891147017479, 0.0669974759221077, -0.09735997021198273, 0.010836342349648476, -0.02730746380984783, -0.02498086541891098, 0.01141863688826561, -0.010471305809915066, -0.037770725786685944, -0.07018168270587921, -0.07084792852401733, 0.043658334761857986, -0.11083552986383438, -0.04935213178396225, 0.03145401552319527, -0.04930339753627777, 0.0012157412711530924, -0.053585536777973175, -0.03742939233779907, 0.040901537984609604, -0.16724003851413727, -0.022938665002584457, 0.04161294177174568, -0.0183571707457304, -0.021594101563096046, -0.0061925118789076805, -0.02816803939640522, -0.05836864560842514, -0.017438357695937157, 0.0031802973244339228, 0.006001840811222792, -0.12286868691444397, -0.008815895766019821, -0.06736552715301514, -0.05238446593284607, -0.05774541199207306, 0.03588864952325821, 0.10582581162452698, 0.07467859238386154, 0.15489225089550018, -0.0899340957403183, 0.0919838696718216, -0.06489771604537964, 0.009957975707948208, 0.03187844529747963, -0.07791350781917572, 0.04057512804865837, -0.05207371711730957, -0.014362184330821037, -0.028957050293684006, 0.037607330828905106, 0.09736289829015732, -0.00781609583646059, 0.02239188738167286, 0.026670264080166817, 0.015826797112822533, 0.013003906235098839, 0.1785466969013214, -0.012842667289078236, -0.02130899950861931, 0.03821317106485367, 0.02282780222594738, 0.03892648592591286, 0.016893794760107994, 0.11845263093709946, 0.09377997368574142, 0.01846780627965927, 0.02428177185356617, 0.03322906792163849, -0.016559092327952385, -0.14549003541469574, 0.09612201899290085, 0.058791935443878174, 0.02310732938349247, -0.05190153419971466, 0.06283025443553925, 0.148556649684906, -0.19255982339382172, 0.09042571485042572, 0.03812737017869949, -0.029576512053608894, -0.07663624733686447, -0.21939222514629364, -0.06724809110164642, -0.05704266205430031, 0.03005000576376915, -0.07327624410390854, 0.059812236577272415, 0.02495591528713703, 0.01619609259068966, 0.057518236339092255, 0.04614635556936264, -0.18843448162078857, -0.07511446624994278, 0.03142223507165909, 0.013299296610057354, 0.009499391540884972, 0.09804847836494446, -0.05690978094935417, 0.09543044865131378, -0.013712444342672825, 0.0035944851115345955, 0.03173236921429634, 0.10964024811983109, -0.025146067142486572, -0.08692630380392075, -0.0650622770190239, 0.0162368044257164, 0.030310431495308876, 0.03590324893593788, 0.14099577069282532, 0.1072545126080513, -0.06938868761062622, -0.07904962450265884, 0.22539713978767395, -0.055327095091342926, -0.02823707088828087, -0.1243760734796524, 0.038963813334703445, -0.035975608974695206, 0.021176043897867203, 0.00127459317445755, -0.1384972333908081, -0.0078860092908144, 0.16957177221775055, 0.14534437656402588, 0.09740762412548065, 0.012964587658643723, -0.010321117006242275, 0.007572459988296032, 0.058203328400850296, 0.027474142611026764, 0.017212314531207085, 0.09335587918758392, -0.028354467824101448, 0.0724276676774025, -0.051329489797353745, -0.057771604508161545, -0.08782043308019638, 0.055758386850357056, -0.04376821219921112, -0.026500796899199486, -0.06038878485560417, 0.09967568516731262, -0.0043916539289057255, -0.2136400043964386, 0.126950204372406, -0.0396803580224514, -0.06261958926916122, -0.047012247145175934, 0.05069832131266594, 0.03973376378417015, 0.026852859184145927, -0.007640344090759754, 0.017145300284028053, 0.07405120879411697, -0.030511394143104553, -0.09179125726222992, 0.02579188160598278, -0.05745954066514969, -0.05688456445932388, 0.1465713381767273, 0.00323347351513803, -0.0474536195397377, 0.041334014385938644, -0.014051327481865883, -0.0564810186624527, -0.010278617963194847, 0.050347551703453064, -0.09516170620918274, -0.031285617500543594, 0.2404841035604477, -0.040951333940029144, 0.08340443670749664, 0.055886853486299515, -0.060601796954870224, 0.020647475495934486, 0.05021902173757553, -0.04385910928249359, -0.04127226024866104, 0.1282748132944107, -0.13294818997383118, 0.10116167366504669, 0.17736972868442535, 0.03518720716238022, -0.05138367414474487, -0.055628012865781784, -0.03142929822206497, -0.004433382768183947, 0.03967129811644554, 0.04100695252418518, -0.03312556818127632, -0.08557961881160736, 0.040531888604164124, 0.006641961168497801, -0.19489122927188873, -0.0356493815779686, -0.06859473884105682, -0.013973007909953594, -0.03980230540037155, 0.07382071763277054, 0.050113096833229065, -0.032867591828107834, -0.002086569555103779, -0.3231637477874756, 0.04073058441281319, 0.11602440476417542, -0.10250008851289749, -0.013892414048314095 ]
null
null
diffusers
# Gildenface XL – Headshot LoRA <Gallery /> ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="https://civitai.com/models/181092?modelVersionId=203235">Caricature XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use `Gildenface portrait photo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gildenface-xl-headshot-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gildenface-xl-headshot-lora', weight_name='GildenfaceXL_Headshot_LoRA_v1.safetensors') image = pipeline('candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=True", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Gildenface portrait photo", "widget": [{"text": "gildenface portrait photography of jabba the hutt, close up photo, professional, breathtaking, close-up on face, highly detailed skin, visible skin pores, dark, gritty", "output": {"url": "3277226.jpeg"}}, {"text": "gildenface portrait photography of a troll from the movie troll hunter", "output": {"url": "3277704.jpeg"}}, {"text": "gildenface portrait of a surprised shocked zombie at a birthday party, highly detailed texture, sharp focus, party hat", "output": {"url": "3277754.jpeg"}}, {"text": "gildenface breathtaking portrait photo inspired by an epic scene from the movie total recall, 1990s, sci-fi, professional, by bruce gilden", "output": {"url": "3277371.jpeg"}}, {"text": "Gildenface close up portrait of real life luigi from (super mario bros:0.5), disgusted", "output": {"url": "3277428.jpeg"}}, {"text": "Gildenface close up portrait of real life super mario, disgusted", "output": {"url": "3277429.jpeg"}}, {"text": "obese (cthulhu:1.4), gildenface style photo, close up on face, detailed skin texture, by bruce gilden", "output": {"url": "3277426.jpeg"}}, {"text": "rusty cast-iron (robot:1.4), gildenface style photo, close up on face, detailed skin texture", "output": {"url": "3277421.jpeg"}}, {"text": "Gildenface close up portrait of real life pikachu by bruce gilden", "output": {"url": "3277419.jpeg"}}, {"text": "candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,", "output": {"url": "3277870.jpeg"}}]}
text-to-image
WizWhite/gildenface-xl-headshot-lora
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:15:45+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Gildenface XL – Headshot LoRA <Gallery /> ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="URL XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use 'Gildenface portrait photo' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gildenface XL – Headshot LoRA \n\n<Gallery />", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Gildenface XL – Headshot LoRA \n\n<Gallery />", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 79, 15, 397, 22, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Gildenface XL – Headshot LoRA \n\n<Gallery />## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>" ]
[ 0.009023134596645832, -0.007775709964334965, -0.008708435110747814, 0.028234228491783142, 0.05485158413648605, 0.01186742540448904, 0.007979660294950008, 0.12476777285337448, 0.06860379874706268, 0.15048125386238098, -0.004020425025373697, 0.029921451583504677, 0.09452006220817566, 0.03608611226081848, 0.05020289123058319, -0.2815256118774414, -0.028606487438082695, -0.059424154460430145, 0.07328429073095322, 0.07944466918706894, 0.09245829284191132, -0.0357317291200161, 0.07239671051502228, -0.024386845529079437, -0.03315422683954239, -0.001709327450953424, -0.013173998333513737, 0.0012889300705865026, 0.03093368001282215, 0.09083019942045212, -0.011581233702600002, -0.006213558837771416, 0.004392536822706461, -0.31842711567878723, 0.024800606071949005, 0.06633557379245758, -0.08828631043434143, 0.0341142863035202, 0.13172896206378937, -0.09028703719377518, 0.14241091907024384, -0.21793556213378906, 0.047487568110227585, 0.04492688924074173, -0.13918845355510712, -0.23012441396713257, -0.03260325640439987, 0.0680491253733635, 0.08064771443605423, -0.006376869045197964, -0.048943351954221725, -0.04250860586762428, -0.09019830077886581, 0.0867840126156807, 0.2587759494781494, -0.1449502557516098, -0.07224591821432114, -0.06087407097220421, 0.050245314836502075, -0.047766633331775665, -0.15732485055923462, 0.058676257729530334, -0.056732624769210815, 0.016501329839229584, 0.06857626140117645, 0.017823588103055954, 0.0998029112815857, -0.014021900482475758, -0.06744194030761719, 0.003982570022344589, 0.0013768180506303906, 0.0934537947177887, -0.04286143183708191, -0.26173895597457886, -0.06734137237071991, 0.030275236815214157, -0.09993965178728104, -0.055160414427518845, 0.031075866892933846, 0.014512576162815094, -0.07305706292390823, -0.05838737264275551, -0.02240845374763012, 0.024708129465579987, 0.002641830127686262, 0.06266890466213226, 0.012992584146559238, -0.02385600470006466, 0.054640285670757294, 0.038686174899339676, -0.020434075966477394, -0.12758882343769073, -0.008111018687486649, -0.05848441272974014, -0.09705565869808197, 0.03784957528114319, 0.00384637457318604, 0.05421316623687744, 0.10948150604963303, 0.26610466837882996, 0.11196964979171753, 0.05115309730172157, -0.12764137983322144, 0.013134107924997807, -0.012291834689676762, 0.11227824538946152, -0.03521455451846123, -0.18580378592014313, -0.03078591451048851, -0.015045713633298874, 0.050437081605196, -0.051808640360832214, 0.0012369727483019233, -0.011762788519263268, 0.038363732397556305, 0.010546109639108181, 0.09072783589363098, 0.015047607943415642, -0.07901549339294434, -0.020576374605298042, 0.18041162192821503, -0.10137984156608582, 0.05242675170302391, 0.052688535302877426, -0.03517390042543411, -0.04156980291008949, 0.003241939004510641, 0.028637347742915154, 0.016508469358086586, 0.07369493693113327, -0.06027200073003769, -0.036207206547260284, -0.053985096514225006, -0.056397806853055954, 0.01390773430466652, -0.02398194745182991, -0.05139122158288956, -0.029969945549964905, -0.007021624129265547, -0.07280732691287994, 0.02550102211534977, -0.13718067109584808, 0.0006269682198762894, -0.023710746318101883, -0.049851447343826294, 0.05803954601287842, 0.07496968656778336, 0.05498000606894493, -0.024373073130846024, 0.08318156749010086, -0.018442558124661446, 0.09814505279064178, 0.13251617550849915, 0.016287468373775482, -0.03869287297129631, 0.05078575760126114, -0.21035702526569366, 0.12546876072883606, -0.0932590439915657, 0.005518896970897913, -0.07887714356184006, -0.06325636804103851, -0.05378846824169159, -0.0060210381634533405, -0.012643208727240562, 0.09752010554075241, -0.15599803626537323, -0.0942847952246666, 0.262312650680542, -0.06868337839841843, 0.044894274324178696, 0.1303393691778183, -0.013693125918507576, -0.04023691266775131, 0.06366295367479324, 0.16400164365768433, 0.03929061442613602, -0.12342815846204758, 0.006136992480605841, -0.019260937348008156, -0.05639924854040146, 0.2562532126903534, 0.055457860231399536, -0.09702194482088089, 0.07015165686607361, 0.050361517816782, -0.006252211984246969, 0.017750361934304237, -0.017899679020047188, -0.019398648291826248, 0.03596149757504463, 0.036008965224027634, 0.1326911300420761, 0.015677014365792274, -0.11888934671878815, -0.05495525896549225, -0.1853657215833664, -0.08747060596942902, 0.019937489181756973, 0.010821298696100712, 0.022582344710826874, -0.10283467173576355, 0.02961059845983982, 0.10611896216869354, -0.0156870000064373, -0.07540104538202286, -0.11359941214323044, 0.01269474159926176, -0.04337390139698982, 0.07776769995689392, -0.054553475230932236, 0.08787793666124344, 0.057483647018671036, -0.08148965239524841, 0.009143329225480556, -0.026021165773272514, -0.040918443351984024, -0.02120865508913994, -0.16683249175548553, 0.021548748016357422, -0.028242770582437515, 0.1573379635810852, -0.07697544991970062, -0.0022082943469285965, 0.12059751898050308, 0.133914977312088, 0.12221334874629974, -0.063648521900177, 0.009495191276073456, -0.05886998400092125, 0.041139524430036545, -0.02684847079217434, 0.05031377449631691, -0.05259363725781441, -0.03371342271566391, 0.037128739058971405, -0.12230316549539566, -0.06552129983901978, 0.07523234933614731, -0.025981076061725616, -0.11062188446521759, -0.09308448433876038, -0.05801929160952568, -0.024883337318897247, -0.03061484545469284, -0.04403167590498924, 0.056210957467556, 0.03959504887461662, 0.006449169013649225, -0.02124565653502941, -0.04389936476945877, -0.018542258068919182, -0.00948290340602398, -0.062449268996715546, 0.0747363492846489, 0.0006630430580116808, -0.12289918959140778, 0.013688202947378159, 0.039327338337898254, 0.0783778503537178, 0.14463494718074799, 0.07158350944519043, -0.06518483906984329, -0.07658439874649048, 0.04608123376965523, 0.04964451491832733, 0.039585817605257034, -0.08771742880344391, 0.02700696885585785, 0.044485945254564285, -0.0564911812543869, 0.0004417461168486625, -0.06763439625501633, 0.00952695682644844, -0.023845508694648743, -0.02171151526272297, 0.10750921815633774, 0.0652199238538742, 0.03374436870217323, 0.07130540162324905, 0.08311936259269714, 0.006496455520391464, -0.049897853285074234, -0.059102028608322144, -0.01687074452638626, 0.07025312632322311, -0.09060198068618774, -0.21176959574222565, -0.09102252125740051, -0.10720913857221603, -0.0661773681640625, 0.027428172528743744, 0.027071433141827583, -0.1001269668340683, -0.04228207841515541, -0.030130716040730476, 0.0746181383728981, 0.08412695676088333, -0.06382189691066742, -0.0877213403582573, 0.021626798436045647, 0.020581379532814026, -0.08795252442359924, -0.004870633594691753, -0.041567377746105194, -0.09199921786785126, 0.016443345695734024, -0.008056147955358028, 0.12789885699748993, 0.031745608896017075, 0.07408909499645233, -0.0069862729869782925, -0.029208941385149956, 0.2111547589302063, -0.1427881121635437, 0.09048429876565933, 0.10588905960321426, 0.03699970990419388, 0.11456599831581116, 0.19969290494918823, 0.04150960594415665, -0.09591849893331528, 0.029429854825139046, 0.13064132630825043, -0.01733451709151268, -0.07668455690145493, -0.060066528618335724, -0.02870207652449608, -0.027546336874365807, 0.0697561725974083, 0.0836433470249176, 0.038094136863946915, 0.012023388408124447, -0.07758744806051254, -0.04495398327708244, 0.1616831123828888, 0.10203514993190765, 0.13413628935813904, -0.008161203935742378, 0.09576039016246796, 0.0344577357172966, -0.059584517031908035, 0.08519700169563293, -0.04427926614880562, 0.12472569197416306, 0.005875834263861179, 0.11819693446159363, 0.09908051788806915, 0.09241197258234024, 0.009959638118743896, -0.12597371637821198, -0.02524968795478344, -0.004175601527094841, -0.024913711473345757, -0.08278920501470566, 0.021081281825900078, 0.04019419476389885, 0.1073637306690216, -0.09031005203723907, 0.04338837414979935, -0.020260825753211975, 0.12180380523204803, 0.10065271705389023, 0.0374041311442852, -0.05990171432495117, 0.04038386791944504, 0.06484769284725189, -0.03511408716440201, -0.09140191227197647, -0.017125776037573814, 0.024674873799085617, -0.13822685182094574, 0.11491963267326355, -0.04700540006160736, 0.077638179063797, -0.0874934196472168, -0.02094496600329876, 0.07246240973472595, 0.060018282383680344, 0.03803121671080589, 0.06071638688445091, -0.05880620330572128, 0.08622265607118607, 0.01304768305271864, 0.011248169466853142, -0.008224695920944214, 0.038542184978723526, 0.04489706829190254, -0.03438765928149223, 0.17947156727313995, 0.004408837296068668, -0.08230026811361313, -0.06295615434646606, 0.012052706442773342, -0.026845606043934822, 0.21983002126216888, -0.12391571700572968, 0.06182542070746422, -0.04173026606440544, -0.07955366373062134, -0.05423415079712868, 0.0860595554113388, -0.16887012124061584, -0.1385667622089386, 0.03364931046962738, -0.1706298142671585, 0.05799480900168419, -0.05138044059276581, 0.022113535553216934, -0.15278176963329315, 0.18205341696739197, -0.12171842157840729, -0.041151437908411026, -0.10306008905172348, 0.026437023654580116, 0.07564030587673187, -0.08846777677536011, 0.02450713887810707, 0.015140952542424202, 0.17028261721134186, -0.0050714206881821156, -0.030895626172423363, 0.061272237449884415, -0.008400059305131435, -0.14296577870845795, -0.039199236780405045, 0.1656838059425354, 0.060730356723070145, 0.011267850175499916, 0.01229873951524496, 0.07613468170166016, -0.026697667315602303, -0.08079825341701508, 0.15305796265602112, 0.0018508350476622581, -0.08002305775880814, 0.0674433708190918, -0.04199047386646271, -0.11808443814516068, -0.11103323847055435, 0.04114481806755066, 0.07513409107923508, 0.1910858154296875, -0.07773622125387192, 0.14933161437511444, 0.06671229004859924, -0.06200431287288666, -0.17053526639938354, -0.00462889950722456, 0.07175679504871368, -0.026464801281690598, 0.03008960746228695, -0.21480979025363922, 0.07348926365375519, 0.03707927092909813, -0.013399212621152401, 0.04857919365167618, -0.20708242058753967, -0.13774985074996948, -0.030873294919729233, 0.02623920328915119, -0.2097390741109848, -0.11009810119867325, -0.12339924275875092, -0.08425368368625641, -0.13345853984355927, 0.04309475049376488, 0.007308689411729574, 0.05782913416624069, 0.015080164186656475, -0.04081886261701584, 0.03440746292471886, 0.01671459525823593, 0.17496724426746368, -0.04498029500246048, 0.07588881999254227, -0.11652841418981552, -0.06303510069847107, 0.02488202415406704, 0.004353690426796675, -0.021551810204982758, -0.0038596929516643286, -0.028477612882852554, -0.05216067656874657, -0.03403083235025406, -0.10887543112039566, 0.04046960175037384, -0.05479118973016739, -0.04326784238219261, -0.04929236322641373, 0.07638711482286453, 0.07398340851068497, -0.0050759222358465195, -0.005438902415335178, -0.13654278218746185, 0.1408873349428177, -0.009539404883980751, 0.02559281885623932, 0.03733734041452408, -0.17371709644794464, -0.053641628473997116, 0.010220726020634174, 0.005490767769515514, -0.030794557183980942, 0.05410458892583847, 0.04321828857064247, 0.02375786565244198, 0.13671237230300903, -0.03353327140212059, -0.05871058255434036, 0.0116267129778862, 0.12805694341659546, -0.023241328075528145, -0.17498116195201874, -0.010022866539657116, -0.03728342428803444, -0.10329509526491165, -0.14455193281173706, 0.07381628453731537, 0.1126900315284729, -0.06263761222362518, 0.033525414764881134, 0.10348861664533615, 0.04703060910105705, -0.04732397198677063, 0.039798520505428314, 0.02251841314136982, -0.08051810413599014, -0.007711444981396198, 0.10634420812129974, -0.08808969706296921, -0.0440722294151783, 0.16273874044418335, -0.04646208882331848, -0.03711305186152458, -0.0005939576658420265, 0.11337187886238098, 0.0761716291308403, 0.04748310521245003, 0.03063160367310047, -0.056932371109724045, 0.016940614208579063, 0.03325386717915535, 0.023061340674757957, -0.028052890673279762, 0.04200837016105652, 0.04047396034002304, 0.03457947447896004, 0.10299765318632126, 0.015151627361774445, 0.017494700849056244, -0.0009560867911204696, -0.010437450371682644, 0.028286872431635857, -0.0014783019432798028, -0.020010368898510933, -0.02482006326317787, -0.0340888537466526, -0.030576067045331, -0.07032797485589981, 0.035910528153181076, -0.0636162981390953, 0.019550370052456856, -0.03007735311985016, 0.04184519872069359, -0.02056477777659893, -0.03660732880234718, -0.0604061558842659, -0.08811289072036743, 0.014437466859817505, 0.057758402079343796, -0.18712814152240753, 0.008365879766643047, 0.15442350506782532, -0.08900099247694016, 0.08767695724964142, -0.051747798919677734, -0.017667362466454506, -0.001563277910463512, -0.11510249227285385, -0.0862477719783783, -0.013159962370991707, -0.03394702821969986, -0.04156167432665825, -0.1255837380886078, 0.047643452882766724, -0.10366419702768326, -0.0750393271446228, 0.020429814234375954, 0.053871940821409225, -0.139014333486557, 0.09202393889427185, -0.025643309578299522, -0.08678238093852997, -0.0912197008728981, 0.05681797116994858, -0.001823430065996945, -0.0007782082539051771, 0.027759335935115814, -0.08009672164916992, 0.049764737486839294, -0.13990728557109833, -0.001206273795105517, 0.01221583690494299, -0.017624273896217346, 0.03792620450258255, -0.01750214211642742, 0.06155164912343025, 0.018919987604022026, 0.06682268530130386, 0.044442322105169296, -0.0009519563755020499, 0.023053830489516258, 0.09682033956050873, -0.09066563099622726, -0.0029245438054203987, -0.01011650636792183, -0.010012639686465263, -0.03433932736515999, 0.07685692608356476, -0.041691672056913376, -0.048701126128435135, -0.05915539339184761, 0.061837244778871536, 0.15969134867191315, 0.1436925083398819, -0.053474780172109604, 0.08218839019536972, -0.09908808767795563, -0.1349148452281952, 0.12673264741897583, -0.007350896019488573, 0.06819947063922882, -0.08784724771976471, 0.061687346547842026, 0.13206470012664795, -0.16365228593349457, 0.1422751098871231, 0.02353736385703087, -0.04149258881807327, -0.036507006734609604, -0.19751259684562683, -0.08506256341934204, 0.0009394190274178982, 0.06613217294216156, -0.054286640137434006, 0.03521153703331947, 0.06465686857700348, -0.03526289388537407, 0.03193596005439758, 0.06907404959201813, -0.13239453732967377, -0.12034619599580765, 0.08257759362459183, 0.0167425274848938, 0.0018127723596990108, 0.03321308270096779, 0.027018774300813675, 0.006323766428977251, 0.04888682812452316, 0.04268651828169823, 0.02842220477759838, 0.0005939573748037219, -0.028633568435907364, -0.138913094997406, -0.0676855742931366, 0.04316820576786995, 0.0010810275562107563, -0.031720396131277084, 0.1745319664478302, 0.04438216611742973, 0.01600014604628086, -0.038292549550533295, 0.2623443901538849, -0.05603456869721413, -0.027029244229197502, -0.10106422007083893, -0.02203158475458622, -0.011574006639420986, 0.06614945083856583, -0.0393342450261116, -0.09393982589244843, 0.05103219673037529, 0.0897851437330246, 0.13362951576709747, -0.014112364500761032, 0.04248729720711708, 0.1036326065659523, 0.02465273067355156, 0.0432085357606411, -0.002289771568030119, 0.03755287826061249, 0.24095742404460907, -0.06596308201551437, 0.062030937522649765, 0.03513467684388161, -0.08441458642482758, -0.06682242453098297, 0.051668573170900345, 0.006259899120777845, 0.029846012592315674, -0.09342694282531738, 0.13422814011573792, -0.013941334560513496, -0.1562134176492691, 0.1392211616039276, -0.09648507088422775, -0.10014133900403976, -0.026263121515512466, 0.03673556447029114, 0.042363137006759644, 0.0860496535897255, 0.06966596841812134, -0.027363592758774757, 0.09488938003778458, 0.0360184870660305, -0.04903939366340637, 0.026384523138403893, 0.04347624257206917, -0.04712199792265892, 0.18678025901317596, -0.005884969141334295, 0.04675586149096489, 0.11080075055360794, -0.024406172335147858, -0.025197312235832214, 0.0012993630953133106, 0.04506203532218933, -0.10550849884748459, 0.010821986012160778, 0.23762694001197815, 0.005963252391666174, -0.00023872236488386989, 0.14860036969184875, -0.0036661941558122635, 0.08476994931697845, -0.011960148811340332, -0.046399492770433426, -0.03763195499777794, 0.15820899605751038, -0.1666315346956253, 0.04042606055736542, 0.16275998950004578, 0.0309093426913023, -0.03996913507580757, -0.06643091887235641, -0.0704197883605957, 0.04907107353210449, 0.1291457563638687, -0.05080186948180199, -0.03738027438521385, 0.012190882116556168, 0.08074672520160675, 0.04130220785737038, -0.13995958864688873, -0.17812901735305786, 0.048476386815309525, 0.02435963600873947, -0.041649412363767624, 0.14772285521030426, 0.08218112587928772, -0.03020939975976944, -0.017384791746735573, -0.23276689648628235, 0.036997247487306595, 0.11519673466682434, -0.12089184671640396, 0.05497274920344353 ]
null
null
transformers
exl2 quantization of [Senku-70B-Full](https://huggingface.co/ShinojiResearch/Senku-70B-Full) at 6bpw, to be used with exllamav2. Original model card: Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth. EQ-Bench: 84.89 Will run more benches later.
{"license": "other", "license_name": "other", "license_link": "LICENSE"}
text-generation
Panchovix/Senku-70B-exl2-6bpw
[ "transformers", "llama", "text-generation", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T00:15:51+00:00
[]
[]
TAGS #transformers #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
exl2 quantization of Senku-70B-Full at 6bpw, to be used with exllamav2. Original model card: Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth. EQ-Bench: 84.89 Will run more benches later.
[]
[ "TAGS\n#transformers #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 51 ]
[ "passage: TAGS\n#transformers #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 0.02820545621216297, 0.04317973926663399, -0.005790948402136564, 0.004659806378185749, 0.13262160122394562, 0.009471443481743336, 0.19966042041778564, 0.12020713090896606, 0.017673026770353317, -0.055550266057252884, 0.11420058459043503, 0.21747596561908722, -0.025092877447605133, 0.0014555681264027953, -0.10181909799575806, -0.2271256297826767, 0.04746349900960922, 0.01311523374170065, 0.045324619859457016, 0.06533115357160568, 0.11168944090604782, -0.04258650541305542, 0.0965808853507042, -0.01583249494433403, -0.11032868176698685, 0.0523487813770771, 0.05717485025525093, -0.12651562690734863, 0.11802040785551071, 0.10824404656887054, 0.055066078901290894, 0.03710751608014107, -0.03799908235669136, -0.250156044960022, 0.02078273333609104, -0.031138377264142036, -0.08046021312475204, 0.013926777057349682, 0.027294158935546875, -0.07409059256315231, 0.10072436183691025, 0.11304128915071487, 0.0009875822579488158, 0.0951731950044632, -0.14984704554080963, 0.015432091429829597, -0.04727906733751297, -0.023072337731719017, 0.08441589772701263, 0.0735451802611351, 0.00399269862100482, 0.07995758205652237, -0.05503836274147034, 0.07925637066364288, 0.08215756714344025, -0.36901751160621643, 0.020653286948800087, 0.15924902260303497, 0.07629162818193436, 0.038992200046777725, -0.06088266521692276, 0.12652316689491272, 0.05836283415555954, -0.029189039021730423, 0.002370899310335517, -0.08447639644145966, -0.04112546145915985, 0.08029121905565262, -0.03798132389783859, -0.03420919179916382, 0.24215146899223328, -0.025454603135585785, 0.044421471655368805, -0.07823488861322403, -0.03886920213699341, -0.00407930463552475, -0.03444446623325348, 0.04506738483905792, -0.010070787742733955, 0.1179400086402893, 0.04338490590453148, -0.06756120920181274, -0.12946313619613647, -0.005036881659179926, -0.20630033314228058, 0.11336450278759003, 0.0097318384796381, 0.04134953394532204, -0.16803249716758728, 0.036899007856845856, 0.0002704744983930141, -0.08153550326824188, -0.02008725143969059, -0.06306863576173782, 0.02897273190319538, -0.004561666864901781, -0.06425374001264572, -0.061639249324798584, 0.11912918835878372, 0.15773381292819977, 0.06882684677839279, 0.002561378525570035, -0.11093366891145706, 0.10599816590547562, 0.021957598626613617, 0.049481116235256195, 0.0473964549601078, -0.050523653626441956, 0.03513849899172783, -0.1640138179063797, 0.03254200145602226, -0.05378858000040054, -0.20542196929454803, 0.019609572365880013, -0.06733232736587524, 0.1149604544043541, -0.0016341566806659102, 0.0961289182305336, -0.04346046596765518, 0.020655708387494087, 0.01965160295367241, -0.06511471420526505, 0.007567808963358402, -0.01515574473887682, 0.029406201094388962, 0.06346658617258072, 0.020780354738235474, 0.05873044580221176, -0.05168193206191063, 0.03634949028491974, -0.06483850628137589, -0.028251444920897484, -0.06339449435472488, -0.0498257540166378, 0.048726219683885574, -0.040455661714076996, 0.0388907827436924, -0.1424059122800827, -0.19044959545135498, 0.0031301439739763737, 0.033112213015556335, -0.046764276921749115, -0.04572903364896774, -0.06619470566511154, -0.0016986826667562127, 0.042486462742090225, -0.08479204773902893, -0.0392664298415184, -0.08977837860584259, 0.06350269168615341, -0.04874325543642044, 0.05205570161342621, -0.17263995110988617, 0.06569035351276398, -0.08316441625356674, 0.00809506606310606, -0.009085636585950851, 0.06605476886034012, -0.05164014920592308, 0.1386326402425766, -0.022108348086476326, 0.05115280672907829, -0.053705740720033646, 0.09328882396221161, -0.07247957587242126, 0.16608981788158417, -0.14163032174110413, -0.06840315461158752, 0.1971707046031952, -0.0625070333480835, -0.1879352331161499, 0.07998906075954437, -0.03006463497877121, 0.11816035956144333, 0.10161957144737244, 0.21083571016788483, -0.02292468398809433, -0.07028450816869736, 0.08915867656469345, 0.10074233263731003, -0.06519091129302979, -0.09280455857515335, 0.015512309968471527, -0.027764935046434402, -0.07559613138437271, 0.03883766755461693, 0.09755367785692215, 0.05070342496037483, -0.008815372362732887, -0.06741724908351898, -0.03235314041376114, -0.02047300711274147, -0.022418659180402756, -0.04821525886654854, 0.08133208006620407, -0.06737188249826431, 0.004085029475390911, 0.07420726865530014, -0.009199201129376888, -0.0028925309889018536, 0.03628663346171379, -0.0816146582365036, 0.036958061158657074, 0.015254664234817028, 0.05291564390063286, -0.11776123195886612, -0.07855729758739471, -0.02623710222542286, 0.11245442926883698, 0.07250753045082092, 0.10725155472755432, 0.009543840773403645, -0.05260751396417618, -0.006495959125459194, 0.07355765998363495, 0.18533752858638763, 0.027549266815185547, -0.048009149730205536, -0.09385770559310913, 0.08277367055416107, -0.05312851816415787, -0.0023631735239177942, -0.09162623435258865, 0.006466155871748924, 0.04062361642718315, 0.08392012864351273, 0.004030746407806873, 0.07375474274158478, -0.026897253468632698, 0.014105738140642643, -0.10320800542831421, 0.02721686288714409, 0.09204743802547455, -0.005773216485977173, -0.11351434886455536, 0.272473007440567, -0.18684910237789154, 0.21324265003204346, 0.1890537291765213, -0.23514918982982635, 0.03695930168032646, -0.13000839948654175, -0.010490598157048225, 0.004162978380918503, 0.038052257150411606, -0.04036581888794899, 0.08354450762271881, -0.005413428880274296, 0.18645648658275604, -0.051067985594272614, -0.021985605359077454, -0.04001414030790329, -0.06168966367840767, -0.044768042862415314, 0.06387913972139359, 0.1778186559677124, -0.16154153645038605, 0.1880960464477539, 0.2233227640390396, 0.05578446760773659, 0.1958657056093216, -0.028080124408006668, 0.0020881437230855227, 0.03446052595973015, -0.014613528735935688, -0.013635050505399704, -0.049575068056583405, -0.1416727602481842, -0.030713004991412163, 0.07246202230453491, 0.026674699038267136, 0.08241192996501923, -0.1179579421877861, -0.07305333763360977, 0.006071091629564762, -0.03604361414909363, 0.016021806746721268, 0.09641066193580627, 0.01912698894739151, 0.10334286093711853, -0.04327288642525673, -0.03848252445459366, 0.10974705219268799, -0.012578928843140602, -0.08215449005365372, 0.15482941269874573, -0.1330127865076065, -0.25100216269493103, -0.19898192584514618, -0.2456437349319458, -0.06352470815181732, 0.0432964488863945, 0.13358336687088013, -0.021409494802355766, -0.06061636283993721, -0.02744733914732933, 0.03840247169137001, -0.054241012781858444, -0.02732253633439541, -0.05130217596888542, 0.07394684106111526, -0.09968365728855133, -0.12121996283531189, -0.0680750384926796, 0.02923392690718174, -0.04021060839295387, 0.08370374888181686, -0.10694370418787003, 0.08384652435779572, 0.1431332528591156, 0.04531223699450493, 0.027742546051740646, -0.05679024010896683, 0.16307660937309265, -0.07764197885990143, -0.025860460475087166, 0.18493758141994476, -0.0480259470641613, 0.04815209284424782, 0.1837732493877411, 0.03583085164427757, -0.12070710957050323, 0.032697487622499466, -0.0056905425153672695, -0.08786793053150177, -0.24265334010124207, -0.11810069531202316, -0.12720125913619995, 0.06267286092042923, 0.012044129893183708, 0.0745166763663292, 0.18240725994110107, 0.03700263798236847, -0.005130366887897253, 0.028841523453593254, 0.05179983749985695, 0.10134942084550858, 0.3474189341068268, -0.04576386138796806, 0.133133664727211, -0.09440284222364426, -0.10347330570220947, 0.07575946301221848, 0.13371649384498596, 0.1214384064078331, 0.17202290892601013, 0.16087627410888672, 0.06524550914764404, 0.013027624227106571, 0.11100064963102341, 0.04862290993332863, 0.050447843968868256, -0.028069792315363884, -0.04337647184729576, -0.0408526249229908, 0.002729193540289998, 0.0884501188993454, 0.0010035503655672073, -0.18270793557167053, 0.0023777561727911234, -0.09776211529970169, 0.047150321304798126, 0.114423967897892, 0.026341281831264496, -0.15098802745342255, 0.05454716086387634, 0.11560992896556854, -0.06840066611766815, -0.09022649377584457, 0.11259143054485321, -0.016669269651174545, -0.08725941926240921, 0.08771617710590363, -0.009905973449349403, 0.14036870002746582, -0.04214975982904434, 0.08854645490646362, -0.09420090913772583, -0.12115702033042908, 0.02752603217959404, 0.12929308414459229, -0.33668121695518494, 0.22170916199684143, 0.012343636713922024, -0.049738310277462006, -0.0967021957039833, -0.010276250541210175, 0.008148767985403538, 0.13704761862754822, 0.11804421246051788, -0.04377113655209541, -0.11286699771881104, -0.029688362032175064, 0.005187641363590956, 0.014347899705171585, 0.10322187095880508, -0.0297853946685791, 0.0022755535319447517, -0.07513701170682907, 0.0036903503350913525, -0.005957209505140781, 0.025412729009985924, -0.018348485231399536, -0.22978614270687103, 0.052198827266693115, 0.10868479311466217, 0.06826164573431015, 0.009466065093874931, 0.028812699019908905, -0.13785679638385773, 0.2015095055103302, -0.09382590651512146, -0.041597478091716766, -0.12488207221031189, -0.12596699595451355, 0.024201063439249992, -0.01856112852692604, 0.04399259015917778, -0.06585384905338287, 0.03402254730463028, -0.10551152378320694, -0.20008859038352966, 0.11523539572954178, -0.07435169070959091, 0.013805394060909748, -0.04655323550105095, 0.1402236819267273, -0.12294771522283554, 0.005087557714432478, 0.06540123373270035, 0.024179749190807343, -0.07232963293790817, -0.09472374618053436, -0.0153375044465065, 0.01788480207324028, 0.01992223970592022, -0.030869992449879646, -0.14680755138397217, -0.013342287391424179, -0.015878524631261826, -0.10300982743501663, 0.2859841287136078, 0.23243272304534912, -0.04866816848516464, 0.21551986038684845, 0.11985687166452408, -0.15413780510425568, -0.3192775845527649, -0.12933118641376495, -0.17241337895393372, -0.036112092435359955, 0.03953848406672478, -0.1643734723329544, 0.062249477952718735, 0.02691420167684555, -0.04137123376131058, 0.1042875349521637, -0.217354878783226, -0.12064049392938614, 0.139499694108963, -0.02242187224328518, 0.3611305356025696, -0.1560032069683075, -0.12112043052911758, -0.1156773567199707, -0.1452759951353073, 0.17042432725429535, 0.007965677417814732, 0.1253061145544052, 0.01847597025334835, 0.11243940889835358, 0.024943798780441284, -0.0014780532801523805, 0.10592745244503021, -0.01809530332684517, 0.0461827889084816, -0.1202392578125, -0.03178149089217186, 0.03652055561542511, -0.004469044040888548, 0.045627377927303314, -0.15857015550136566, -0.012690670788288116, -0.08772795647382736, -0.057872407138347626, -0.011658712290227413, 0.06624355912208557, 0.01289946585893631, -0.06144934147596359, -0.04152113199234009, -0.05685241147875786, 0.006416581105440855, -0.008972615003585815, 0.28792351484298706, -0.10233503580093384, 0.12979118525981903, 0.14660629630088806, 0.15045559406280518, -0.12219318747520447, 0.047437671571969986, -0.07037940621376038, -0.0833422988653183, 0.0614900141954422, -0.15024703741073608, 0.05099503695964813, 0.10031991451978683, -0.06051316857337952, 0.10812649130821228, 0.0726003646850586, 0.01645638234913349, 0.006024749018251896, 0.14168134331703186, -0.15642549097537994, -0.08878279477357864, -0.0446012057363987, 0.06101913005113602, 0.11136219650506973, 0.02409415878355503, 0.18678298592567444, -0.006771547254174948, 0.0071457624435424805, 0.024442976340651512, 0.019748391583561897, -0.052522581070661545, 0.01579265668988228, -0.009393296204507351, 0.0014920358080416918, -0.13718760013580322, 0.09602373093366623, 0.026858065277338028, -0.10759102553129196, 0.03315727040171623, 0.10915978252887726, -0.08727047592401505, -0.12009309977293015, -0.08875633776187897, 0.14022786915302277, -0.21112577617168427, -0.042562227696180344, -0.04203996807336807, -0.16197533905506134, 0.05760689824819565, 0.19169659912586212, 0.04490189999341965, 0.10673259198665619, -0.03583340346813202, -0.06016707420349121, 0.01272954698652029, 0.019502324983477592, -0.0764409676194191, 0.020731844007968903, -0.07717926055192947, -0.02235163375735283, -0.04484963417053223, 0.07925742864608765, -0.07721120119094849, -0.06497381627559662, -0.16076722741127014, 0.03879798576235771, -0.17519113421440125, -0.04449769854545593, -0.08651303499937057, -0.02442343719303608, 0.045927464962005615, -0.02217852883040905, -0.0738140344619751, -0.06356842815876007, -0.13694950938224792, 0.006661254912614822, -0.03722410649061203, 0.09908656775951385, -0.08118590712547302, -0.025012971833348274, 0.07921622693538666, -0.01290411688387394, 0.09057687968015671, 0.04373534768819809, -0.08800291270017624, 0.09316090494394302, -0.1860826313495636, -0.0443374365568161, 0.11883877962827682, 0.033115874975919724, 0.04666392505168915, 0.07898086309432983, -0.011311867274343967, 0.11569898575544357, 0.0343765988945961, 0.0474308580160141, -0.06340520828962326, -0.1342785507440567, -0.018011027947068214, -0.03967756778001785, -0.1441812366247177, 0.0024413075298070908, -0.07124240696430206, 0.08303230255842209, -0.010672870092093945, 0.1594601720571518, -0.047364491969347, 0.05120101571083069, -0.014685484580695629, 0.03653985261917114, 0.00629959162324667, -0.15638014674186707, -0.0683479979634285, -0.13911698758602142, -0.029221439734101295, -0.0006674407632090151, 0.33260098099708557, 0.05210284888744354, -0.059387046843767166, 0.07430330663919449, 0.07345543056726456, 0.02277228981256485, 0.026113426312804222, 0.27775347232818604, 0.11143991351127625, -0.0037312686908990145, -0.13222689926624298, 0.04962858557701111, 0.0021352542098611593, -0.03157338872551918, 0.05377267673611641, 0.07935424894094467, -0.05345078557729721, 0.09800959378480911, 0.09116636961698532, 0.012248365208506584, -0.03588303551077843, -0.07429687678813934, -0.0006571569247171283, 0.0737830102443695, -0.06699994951486588, 0.07906394451856613, 0.17993304133415222, -0.056989435106515884, 0.053779467940330505, -0.029763739556074142, -0.024452686309814453, -0.18626894056797028, -0.17133954167366028, -0.08701768517494202, -0.10869981348514557, 0.03351043909788132, -0.08130625635385513, 0.10727251321077347, 0.061241183429956436, 0.069144107401371, -0.04550611600279808, 0.028100280091166496, -0.0586041659116745, -0.08141092211008072, 0.024749884381890297, -0.04912762716412544, 0.06092672049999237, -0.09524531662464142, -0.017055446282029152, -0.07600652426481247, -0.038382638245821, -0.0468406081199646, 0.0832129567861557, 0.02656082808971405, 0.020176643505692482, -0.1615878939628601, -0.060995206236839294, -0.03529869392514229, 0.0620739571750164, -0.02463391423225403, 0.15823884308338165, 0.01179290097206831, -0.02587747946381569, 0.0671488419175148, 0.20184962451457977, -0.06650605797767639, -0.08841929584741592, -0.04391146078705788, 0.1634257435798645, 0.0409100241959095, 0.13557085394859314, -0.06724558025598526, 0.019262343645095825, -0.055948156863451004, 0.35556039214134216, 0.2922939658164978, -0.07933080196380615, 0.005860731936991215, -0.017223676666617393, 0.04747306555509567, 0.08928130567073822, 0.1242564395070076, 0.05167572572827339, 0.24683471024036407, -0.040363702923059464, -0.030479826033115387, -0.018888698890805244, -0.010807078331708908, -0.13138523697853088, 0.14044229686260223, -0.0014898435911163688, -0.08201190829277039, -0.005895894952118397, 0.11600107699632645, -0.20431186258792877, 0.10181234031915665, -0.07354311645030975, -0.1351524293422699, -0.03150811791419983, -0.010744753293693066, 0.1396304965019226, -0.0037625287659466267, 0.036207620054483414, -0.023656832054257393, -0.0975579097867012, 0.047720879316329956, 0.00638976413756609, -0.23880352079868317, 0.0030656384769827127, 0.05669644847512245, 0.004332919605076313, 0.0048348912969231606, -0.010236741974949837, 0.04149124398827553, 0.0588783361017704, 0.05745365470647812, -0.017359659075737, 0.09931383281946182, 0.0238595400005579, -0.0685344934463501, 0.042811181396245956, -0.037977345287799835, -0.0015824534930288792, 0.008546576835215092, 0.057460252195596695, -0.08429592847824097, 0.07865429669618607, -0.008528836071491241, -0.09469133615493774, -0.00814395397901535, 0.019526882097125053, -0.08969902247190475, 0.07315921783447266, 0.04207554832100868, -0.003852653317153454, -0.008027592673897743, -0.02736593969166279, -0.0005102198338136077, 0.0051121492870152, -0.17300456762313843, -0.07891146838665009, -0.08556605130434036, -0.09096235781908035, 0.10515343397855759, 0.00739935040473938, -0.22539028525352478, -0.0040014320984482765, -0.07509473711252213, 0.0655600056052208, -0.16004109382629395, 0.07759958505630493, 0.21950308978557587, 0.0016171705210581422, -0.021754836663603783, -0.21614375710487366, 0.0892423465847969, 0.034593697637319565, -0.06128043308854103, -0.07711748033761978 ]
null
null
diffusers
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)">✝</span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use `GVASA`, `wearing a hat` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden', weight_name='GUSTAV_VASA-000002.safetensors') image = pipeline('`GVASA`, `wearing a hat`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "GVASA", "widget": [{"text": "hyperrealistic portrait photograph of a laughing (gvasa:1.5) dressed in a santa outfit, shot on sony a7, studio lighting", "output": {"url": "4712224.jpeg"}}, {"text": "The cover of the vintage comic book (titled \"THE DANE SLAYER\":1.2) features an illustration of GVASA riding a giant white (moose), by michael whelan and gerald brom", "output": {"url": "4712162.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA:1.4) Riding public transport, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712165.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA GVASA:1.3) Setting the dinner table, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712166.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA wearing a hat:1.4) walking a corgi in stockholm old town gamla stan, shot on sony a7, 50mm, highly detailed, natural lighting,", "output": {"url": "4712167.jpeg"}}, {"text": "sven nordqvist style (GVASA:1.3) hiding in a haystack", "output": {"url": "4712238.jpeg"}}, {"text": "vintage safety matches, (title logo \"REFORMATION\":1.5), (GVASA:1.3) wearing a hat, \"made by gustav vasa\"", "output": {"url": "4712408.jpeg"}}, {"text": "gvasa in a felt puppet world style", "output": {"url": "4712428.jpeg"}}, {"text": "breathtaking photo of gvasa (gvasa:1.4) dressed as a cyberpunk, urban neon tokyo background at night, long beard and pageboy hair", "output": {"url": "4712579.jpeg"}}, {"text": " ", "output": {"url": "4713481.jpeg"}}]}
text-to-image
WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden-1
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:16:04+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use 'GVASA', 'wearing a hat' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 94, 20, 336, 24, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab." ]
[ 0.012717844918370247, 0.0371529720723629, -0.0066659534350037575, 0.11249786615371704, 0.04225501790642738, 0.012256767600774765, 0.0421113483607769, 0.0784948393702507, 0.04019871726632118, 0.10369378328323364, 0.0796005129814148, -0.002692983252927661, 0.11595098674297333, -0.09132442623376846, 0.07554394006729126, -0.28408244252204895, 0.05389674752950668, -0.08298446238040924, -0.06988949328660965, 0.04652348533272743, 0.09091489017009735, -0.012928164564073086, 0.037218980491161346, -0.04183662310242653, 0.08783798664808273, 0.005785414949059486, -0.04517302289605141, 0.018526755273342133, 0.06457188725471497, 0.06143207103013992, 0.016819842159748077, 0.06529201567173004, 0.05266645923256874, -0.15475967526435852, 0.005502436310052872, 0.032450299710035324, -0.04809965193271637, -0.025976568460464478, 0.09847093373537064, -0.03986227512359619, 0.1369038075208664, -0.11485540866851807, -0.03265029564499855, 0.011952199973165989, -0.05755671486258507, -0.21988655626773834, -0.05509188026189804, 0.06905684620141983, 0.11821073293685913, -0.01501986850053072, -0.0754329264163971, -0.0561990961432457, 0.02018461748957634, 0.011421862989664078, 0.19400270283222198, -0.20950907468795776, -0.07643061131238937, 0.16596472263336182, 0.06111634150147438, 0.07021567225456238, -0.0976482406258583, 0.10679681599140167, -0.006900938693434, 0.030671125277876854, 0.0659574419260025, -0.05886857211589813, 0.09118591248989105, -0.006307800300419331, -0.11194804310798645, 0.016164246946573257, 0.20043450593948364, 0.04296509921550751, -0.015396450646221638, -0.12738126516342163, -0.0067059919238090515, 0.0990285873413086, -0.032695114612579346, -0.06551991403102875, 0.05082995444536209, 0.014191877096891403, 0.11222518235445023, -0.13885211944580078, -0.12181676179170609, -0.016177130863070488, -0.010859542526304722, 0.04089827090501785, -0.02840382046997547, -0.04885531961917877, 0.11667570471763611, 0.016002288088202477, -0.1601361781358719, -0.13262875378131866, -0.05767400190234184, -0.08999161422252655, -0.09483041614294052, 0.024721931666135788, 0.017178548499941826, -0.14012429118156433, 0.0975833311676979, 0.06867267191410065, -0.024200178682804108, 0.027109557762742043, -0.10377179086208344, 0.06457357853651047, 0.03740866854786873, 0.09723098576068878, -0.14469853043556213, -0.11361241340637207, -0.03750193864107132, -0.01122044213116169, 0.03099895641207695, -0.05645659193396568, -0.06803535670042038, -0.13418923318386078, 0.046306610107421875, -0.014761105179786682, 0.043753452599048615, 0.03605223074555397, -0.03911685571074486, -0.0013729328056797385, 0.07923904806375504, -0.07680018246173859, -0.015240838751196861, 0.004788341466337442, -0.020235782489180565, 0.021374545991420746, 0.01386585459113121, 0.04184405133128166, -0.03161827474832535, 0.1474393904209137, -0.0036768042482435703, -0.012380913831293583, 0.008755587972700596, -0.12686610221862793, 0.037688788026571274, -0.05913971737027168, -0.07074430584907532, -0.07810773700475693, -0.05811448395252228, -0.054152775555849075, 0.0590934194624424, -0.08179700374603271, 0.00502370297908783, -0.0666339173913002, -0.09070538729429245, 0.023018570616841316, 0.03697793558239937, 0.021861199289560318, -0.02843826822936535, 0.026186488568782806, -0.12087062001228333, 0.10490087419748306, 0.06971580535173416, -0.007373201660811901, -0.104161337018013, 0.03050946816802025, -0.27375850081443787, 0.12864285707473755, -0.17684510350227356, -0.015969086438417435, -0.11018896847963333, -0.04840978980064392, -0.018441999331116676, 0.012455275282263756, -0.0082284240052104, 0.14024299383163452, -0.196727454662323, -0.045213732868433, 0.15993599593639374, -0.1241975799202919, -0.024311207234859467, 0.10908044874668121, 0.059061482548713684, 0.016240447759628296, 0.09049873799085617, 0.17446374893188477, 0.005971574690192938, -0.13644319772720337, -0.06318864226341248, 0.018250538036227226, -0.08714956790208817, 0.1930873841047287, 0.10895834863185883, -0.08396778255701065, 0.06486164033412933, 0.03170861303806305, -0.10691945254802704, -0.056323789060115814, 0.042712241411209106, -0.008948614820837975, 0.04805895313620567, -0.0016564906109124422, 0.09556194394826889, 0.06541524082422256, -0.08017650991678238, -0.017465148121118546, -0.08445323258638382, 0.02766062505543232, -0.008660082705318928, -0.06351343542337418, 0.07100464403629303, 0.001629475736990571, 0.10120078921318054, -0.01881757564842701, 0.024289237335324287, -0.04420533776283264, -0.13668307662010193, -0.009998336434364319, 0.019310200586915016, 0.051109906286001205, 0.068700410425663, 0.1000947505235672, 0.1047135442495346, -0.06958618015050888, 0.008900138549506664, 0.0076133087277412415, -0.04406061768531799, 0.005553397350013256, -0.18324775993824005, -0.013792885467410088, -0.046407490968704224, 0.043625395745038986, 0.002128153806552291, -0.024529214948415756, 0.05361903831362724, 0.059300459921360016, 0.005343835335224867, -0.009879780933260918, 0.07232224196195602, -0.02248268947005272, -0.02376670390367508, -0.032713133841753006, 0.05303265526890755, -0.06639057397842407, -0.11230310052633286, 0.12389873713254929, -0.09900368750095367, -0.19579094648361206, 0.09097243845462799, -0.01623300276696682, -0.09395437687635422, -0.009014090523123741, -0.012819336727261543, -0.015983812510967255, -0.03296394646167755, -0.07536415010690689, -0.0373939573764801, 0.10466541349887848, 0.02435363084077835, -0.10107995569705963, -0.010332736186683178, 0.04569356143474579, -0.0880139097571373, -0.09008944779634476, 0.1250114142894745, 0.06091897562146187, -0.133004829287529, 0.05192965641617775, 0.0892258733510971, -0.020388463512063026, 0.2721017301082611, 0.08839118480682373, -0.07517558336257935, -0.03508888930082321, 0.045102234929800034, 0.054900094866752625, 0.09803575277328491, -0.019606972113251686, 0.09931378066539764, 0.03339023515582085, 0.0035922136157751083, -0.05327966809272766, -0.03925437107682228, -0.05435018613934517, -0.028900664299726486, -0.10331174731254578, 0.0896468535065651, 0.10931997746229172, -0.042208682745695114, 0.06872469186782837, 0.038484279066324234, -0.012650031596422195, -0.019823677837848663, -0.0521683469414711, -0.03567002713680267, 0.11039896309375763, -0.10007563978433609, -0.19417652487754822, -0.04641047492623329, -0.021384097635746002, -0.14448124170303345, 0.08191423863172531, 0.05935647711157799, -0.10301616787910461, -0.04800959303975105, -0.0662129670381546, 0.12688224017620087, 0.014189076609909534, -0.07907390594482422, -0.13111448287963867, 0.024972766637802124, -0.006260898895561695, -0.0480649471282959, -0.016608277335762978, -0.03527594730257988, -0.07971245050430298, 0.05218131095170975, 0.02460230514407158, 0.08759140223264694, -0.005532973445951939, 0.04596386477351189, 0.012579400092363358, -0.009794634766876698, 0.1800718605518341, -0.051357202231884, 0.09310282766819, 0.059003595262765884, 0.05442000925540924, 0.13449689745903015, 0.25720664858818054, 0.03284860774874687, -0.03627220168709755, -0.03800176829099655, 0.09102874249219894, -0.06806142628192902, -0.059083595871925354, -0.07278680056333542, -0.05812828987836838, 0.10828951001167297, 0.09761850535869598, 0.051166340708732605, -0.09300531446933746, 0.08580270409584045, -0.08550510555505753, -0.035723328590393066, 0.13704125583171844, 0.07385478168725967, 0.07328183203935623, -0.007592942100018263, 0.036141544580459595, 0.008189190179109573, -0.029547322541475296, 0.08848059922456741, 0.01069346722215414, 0.0428585410118103, -0.013962005265057087, 0.026888499036431313, 0.041280705481767654, 0.12526863813400269, -0.005413524340838194, -0.017153704538941383, -0.01574084348976612, -0.01353474147617817, -0.006827716249972582, -0.10799379646778107, 0.03624248877167702, 0.05869279056787491, 0.05426706001162529, -0.11630681902170181, 0.05483651161193848, 0.017820052802562714, 0.07668676227331161, 0.15005289018154144, 0.05228358507156372, -0.05499205365777016, -0.02347121387720108, 0.06666500121355057, 0.027765611186623573, -0.08191829174757004, -0.04868607968091965, 0.04014753922820091, -0.10798375308513641, 0.18549655377864838, -0.05698810890316963, 0.043910618871450424, 0.0335480198264122, 0.02095220237970352, -0.019673645496368408, 0.023022575303912163, -0.02350682020187378, 0.10804163664579391, -0.10621524602174759, 0.1542041003704071, 0.007932276464998722, 0.032366618514060974, -0.02516297996044159, 0.015507753007113934, 0.04850999265909195, 0.041357941925525665, 0.2857540547847748, 0.017414314672350883, -0.040613193064928055, -0.0581587590277195, -0.0017225000774487853, -0.0037802078295499086, 0.04487351328134537, -0.23025456070899963, 0.06433930993080139, 0.0111621655523777, -0.0266118124127388, -0.08341215550899506, 0.06271883100271225, -0.0926719680428505, -0.04623407870531082, 0.06216134876012802, -0.1515987068414688, 0.06573456525802612, 0.024013454094529152, 0.0008448324515484273, -0.31608879566192627, 0.12071932852268219, -0.139337420463562, -0.16819557547569275, -0.05838048830628395, 0.05759922415018082, 0.05748472735285759, -0.07502027601003647, -0.055811718106269836, -0.015843041241168976, 0.18375371396541595, -0.15114130079746246, -0.008897687308490276, -0.015536102466285229, -0.04482107236981392, -0.14787538349628448, 0.027881892397999763, 0.1223762184381485, 0.07392938435077667, 0.019271966069936752, 0.04255565628409386, 0.06808308511972427, 0.022717662155628204, -0.10223671048879623, 0.1442088484764099, -0.010719210840761662, -0.04708600416779518, -0.005941022653132677, 0.07495926320552826, -0.0989048033952713, -0.07925006002187729, 0.019794892519712448, 0.06017632409930229, 0.344443678855896, -0.07192721962928772, 0.17566783726215363, 0.18398821353912354, -0.05631283298134804, -0.24657876789569855, -0.12835855782032013, 0.046160925179719925, -0.02532382868230343, 0.09931030869483948, -0.17365305125713348, 0.06201351433992386, 0.07536865770816803, -0.030269445851445198, -0.03477022796869278, -0.2149326354265213, -0.13130126893520355, -0.03084391914308071, 0.04191135987639427, -0.09428855776786804, -0.06631656736135483, -0.0529557541012764, -0.08905122429132462, -0.049628846347332, 0.10870227217674255, 0.02142835035920143, 0.0844106450676918, 0.026774227619171143, 0.005555062089115381, 0.04961100220680237, -0.01692456193268299, 0.19319367408752441, -0.025377316400408745, -0.00022649062157142907, -0.15066593885421753, 0.09173630177974701, 0.14325617253780365, -0.029759228229522705, 0.0723419189453125, -0.06720618158578873, -0.08194713294506073, -0.008942893706262112, -0.028536176308989525, -0.09375918656587601, 0.12424858659505844, -0.05082031711935997, -0.0875263661146164, -0.06877690553665161, 0.09821407496929169, 0.10672110319137573, 0.008427530527114868, 0.02263842336833477, -0.13959723711013794, 0.03839908167719841, 0.05914194509387016, 0.13600164651870728, 0.06496396660804749, -0.08570157736539841, -0.021013526245951653, -0.013944611884653568, 0.07467862218618393, -0.09265419840812683, 0.059879813343286514, 0.06807506084442139, 0.0010896906023845077, 0.07168448716402054, -0.040006205439567566, -0.07632139325141907, 0.032974742352962494, 0.0796859934926033, -0.1499616950750351, -0.18279486894607544, 0.0011269388487562537, -0.13329583406448364, 0.023677363991737366, -0.15664580464363098, 0.1420343965291977, -0.03976229950785637, 0.01870049722492695, 0.045313384383916855, 0.05860542505979538, -0.009748914279043674, 0.015720637515187263, -0.02004147879779339, 0.03645709529519081, -0.06184304133057594, 0.12197653949260712, 0.016883186995983124, -0.07543390244245529, 0.05322371423244476, 0.14111144840717316, -0.0797388106584549, -0.06351607292890549, -0.05191846564412117, 0.09033798426389694, -0.10153274983167648, 0.0238217543810606, 0.03253351151943207, -0.043572138994932175, -0.03779982402920723, 0.011194882914423943, 0.04478438198566437, -0.030071333050727844, 0.04944887012243271, 0.00445362227037549, -0.019827425479888916, 0.09455619752407074, 0.037013400346040726, -0.0044698226265609264, -0.06280604749917984, -0.010522103868424892, -0.007501767482608557, 0.03878279775381088, -0.0311603881418705, 0.012218146584928036, 0.014034785330295563, -0.011289806105196476, -0.06782492995262146, 0.03885219618678093, -0.11586153507232666, -0.016778593882918358, -0.03187617287039757, 0.005563416518270969, -0.00151289370842278, -0.050494443625211716, -0.09377171844244003, -0.02689836174249649, -0.029586657881736755, 0.04329565912485123, -0.14887313544750214, -0.04631073772907257, 0.08037565648555756, -0.025792717933654785, 0.08101452887058258, -0.04785686731338501, -0.0002197795402025804, 0.05036027356982231, -0.19134482741355896, 0.00401617307215929, -0.043114885687828064, -0.01974676549434662, -0.02736964263021946, -0.03860379382967949, -0.032001011073589325, -0.06342421472072601, -0.08813868463039398, 0.017264436930418015, -0.026512132957577705, -0.10253577679395676, 0.08888691663742065, 0.0037055136635899544, 0.007353127934038639, -0.05495346337556839, 0.07912711054086685, 0.05507334694266319, 0.08073564618825912, 0.07625966519117355, -0.06075245141983032, 0.0611661858856678, -0.10263443738222122, 0.010830605402588844, 0.03641626983880997, -0.046009279787540436, -0.021466678008437157, -0.01443219743669033, 0.037510085850954056, -0.08195202052593231, -0.012909150682389736, 0.042977191507816315, 0.04956782981753349, 0.025572389364242554, 0.011801239103078842, 0.015530984848737717, 0.00837237760424614, 0.07804829627275467, -0.029139351099729538, 0.011294334195554256, 0.004691693931818008, 0.009336013346910477, -0.023940905928611755, 0.027162428945302963, 0.1032051295042038, 0.02169366553425789, 0.082199826836586, 0.011240472085773945, 0.03286691755056381, 0.00951613299548626, -0.13157977163791656, 0.1962675154209137, 0.03462335467338562, 0.06839774549007416, -0.03208373859524727, 0.0005598698044195771, 0.1697847843170166, -0.15254664421081543, 0.09525090456008911, 0.03041781112551689, -0.022578319534659386, -0.07251720130443573, -0.3723612129688263, -0.07365531474351883, 0.007138020358979702, 0.09135787189006805, -0.09412776678800583, 0.10614028573036194, 0.0358920581638813, 0.07529809325933456, 0.0346192829310894, 0.04570262134075165, -0.07394007593393326, -0.12425185739994049, 0.06651053577661514, -0.01440716627985239, -0.004152410663664341, 0.11676716059446335, -0.01397131197154522, 0.05991174280643463, 0.068352609872818, -0.04403495788574219, 0.03530554100871086, 0.0372980497777462, -0.0721876472234726, -0.11293371766805649, -0.09172554314136505, -0.005712609738111496, 0.062028199434280396, 0.00902378000319004, 0.09773611277341843, 0.058326587080955505, -0.016988271847367287, -0.04466032609343529, 0.1538694202899933, -0.004154139664024115, -0.10006987303495407, -0.1046847328543663, -0.026456482708454132, -0.0761825367808342, 0.04083918780088425, -0.0264871958643198, -0.06167462095618248, 0.06426873058080673, 0.17192581295967102, 0.08279421925544739, 0.028936926275491714, 0.03474518284201622, -0.042487867176532745, 0.009218798018991947, 0.045354101806879044, -0.0039278059266507626, -0.050224870443344116, 0.12417764961719513, -0.11697811633348465, 0.08001747727394104, -0.10941421240568161, -0.03966287523508072, -0.06698545813560486, 0.09230726212263107, 0.02758098766207695, -0.008687686175107956, -0.0671655610203743, 0.16680075228214264, -0.12428489327430725, -0.19911135733127594, 0.05075031518936157, 0.01399899646639824, -0.06582359969615936, -0.003644718322902918, 0.11030395328998566, 0.07288055866956711, 0.0360066220164299, -0.009333698078989983, -0.011378363706171513, -0.0011700104223564267, -0.004948596935719252, -0.05097321420907974, 0.01933070831000805, -0.04536118730902672, 0.024884948506951332, 0.20689889788627625, 0.019069910049438477, -0.02221083827316761, 0.08011075854301453, -0.01959482580423355, -0.07606882601976395, 0.029056303203105927, 0.08979281783103943, -0.01842663250863552, 0.014025436714291573, 0.2567497491836548, 0.016229551285505295, 0.09344527125358582, 0.07031107693910599, -0.057766325771808624, 0.036103859543800354, 0.08077314496040344, -0.07610058039426804, 0.024944458156824112, 0.17759919166564941, -0.11186221987009048, 0.0630304142832756, 0.17219284176826477, 0.04157674312591553, -0.0631038025021553, -0.1314494013786316, 0.0006037140847183764, -0.03314166143536568, 0.057310573756694794, -0.023179134353995323, -0.03890233486890793, -0.015027121640741825, 0.09661447256803513, 0.009627961553633213, -0.00032369373366236687, -0.061249323189258575, 0.011124620214104652, 0.021229157224297523, 0.025750936940312386, 0.11849627643823624, 0.04849822819232941, -0.02079252526164055, -0.009718713350594044, -0.030623815953731537, 0.03615718334913254, 0.09447827190160751, -0.08631573617458344, -0.03670578822493553 ]
null
null
transformers
Fine-tune of Upstage AI's SOLAR-10.7B-Instruct-v1.0 model, using the OpenHermes, Platypus, and Capybara datasets. Additionally fine-tuned on Jon Durbin's Bagel v0.3, plus a few unreleased datasets. Fine-tuned on 8x4090s for 1.25 epochs. ### Model Sources [optional] - **Repository:** TBD - **Demo:** TBD ## Bias, Risks, and Limitations This fine-tune has had zero alignment, safety data, or anything else shoved down it's throat. ## Training Details ### Training Data See the sidebar for links to the relevant datasets. ### Training Procedure Trained using QLORA via the Axolotl tool. ## Evaluation TBD ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
{"license": "cc-by-nc-4.0", "datasets": ["jondurbin/bagel-v0.3"], "base_model": "decapod-research/Antares-11b-v1"}
text-generation
decapoda-research/Antares-11b-v2
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:jondurbin/bagel-v0.3", "base_model:decapod-research/Antares-11b-v1", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T00:16:14+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #dataset-jondurbin/bagel-v0.3 #base_model-decapod-research/Antares-11b-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fine-tune of Upstage AI's SOLAR-10.7B-Instruct-v1.0 model, using the OpenHermes, Platypus, and Capybara datasets. Additionally fine-tuned on Jon Durbin's Bagel v0.3, plus a few unreleased datasets. Fine-tuned on 8x4090s for 1.25 epochs. ### Model Sources [optional] - Repository: TBD - Demo: TBD ## Bias, Risks, and Limitations This fine-tune has had zero alignment, safety data, or anything else shoved down it's throat. ## Training Details ### Training Data See the sidebar for links to the relevant datasets. ### Training Procedure Trained using QLORA via the Axolotl tool. ## Evaluation TBD ## Training procedure The following 'bitsandbytes' quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0
[ "### Model Sources [optional]\n\n- Repository: TBD\n- Demo: TBD", "## Bias, Risks, and Limitations\n\nThis fine-tune has had zero alignment, safety data, or anything else shoved down it's throat.", "## Training Details", "### Training Data\n\nSee the sidebar for links to the relevant datasets.", "### Training Procedure \n\nTrained using QLORA via the Axolotl tool.", "## Evaluation\n\nTBD", "## Training procedure\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16", "### Framework versions\n\n- PEFT 0.6.0" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #dataset-jondurbin/bagel-v0.3 #base_model-decapod-research/Antares-11b-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Model Sources [optional]\n\n- Repository: TBD\n- Demo: TBD", "## Bias, Risks, and Limitations\n\nThis fine-tune has had zero alignment, safety data, or anything else shoved down it's throat.", "## Training Details", "### Training Data\n\nSee the sidebar for links to the relevant datasets.", "### Training Procedure \n\nTrained using QLORA via the Axolotl tool.", "## Evaluation\n\nTBD", "## Training procedure\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16", "### Framework versions\n\n- PEFT 0.6.0" ]
[ 94, 21, 37, 3, 17, 19, 5, 164, 12 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #dataset-jondurbin/bagel-v0.3 #base_model-decapod-research/Antares-11b-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Model Sources [optional]\n\n- Repository: TBD\n- Demo: TBD## Bias, Risks, and Limitations\n\nThis fine-tune has had zero alignment, safety data, or anything else shoved down it's throat.## Training Details### Training Data\n\nSee the sidebar for links to the relevant datasets.### Training Procedure \n\nTrained using QLORA via the Axolotl tool.## Evaluation\n\nTBD## Training procedure\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16### Framework versions\n\n- PEFT 0.6.0" ]
[ -0.06613963842391968, 0.1493474692106247, -0.005202325526624918, 0.07195106148719788, 0.041324470192193985, 0.029108697548508644, 0.12294989079236984, 0.16960671544075012, -0.06128641963005066, 0.11132470518350601, 0.06414933502674103, 0.08361203968524933, 0.07895618677139282, 0.10600204020738602, -0.02315330319106579, -0.028227657079696655, 0.03638026863336563, -0.050676051527261734, -0.03989987447857857, 0.10694995522499084, 0.07585195451974869, -0.07400494813919067, 0.046197302639484406, -0.020399855449795723, -0.07872427999973297, -0.001147889532148838, -0.015175948850810528, -0.008018561638891697, 0.04281653091311455, 0.05631781369447708, 0.06739525496959686, 0.04879968240857124, 0.02551230788230896, -0.23815986514091492, 0.00875102449208498, 0.11846955120563507, -0.015489072538912296, 0.0843178927898407, 0.00896716583520174, -0.014681793749332428, -0.012807277031242847, -0.03414778411388397, 0.06852006912231445, 0.05659552663564682, -0.0876239687204361, -0.14747381210327148, -0.08631924539804459, 0.09280109405517578, 0.058295466005802155, 0.0882890522480011, -0.016730455681681633, 0.16042225062847137, -0.12329588085412979, 0.08355104923248291, 0.05553659796714783, -0.14691223204135895, -0.04012768343091011, 0.0943719893693924, 0.02898729220032692, 0.05483672395348549, -0.14022675156593323, -0.07607287168502808, 0.02892899513244629, 0.010359656997025013, 0.044407084584236145, 0.010441239923238754, -0.07974513620138168, 0.00959067139774561, -0.0626855418086052, -0.04055057466030121, 0.0709594339132309, 0.020444631576538086, -0.025302216410636902, -0.14235952496528625, -0.05030710622668266, -0.18992333114147186, 0.049663908779621124, -0.004362411331385374, -0.018110619857907295, 0.008082828484475613, -0.00885839480906725, -0.005916064139455557, -0.06609360128641129, -0.057488296180963516, -0.018582602962851524, 0.013600526377558708, 0.022289514541625977, 0.015002110041677952, 0.010144438594579697, 0.1291952133178711, 0.01231822557747364, -0.10811278223991394, -0.048445869237184525, -0.03739281743764877, -0.08752099424600601, -0.020609520375728607, -0.0029298316221684217, 0.07731961458921432, 0.06403614580631256, 0.1692933887243271, -0.07590881735086441, 0.09041513502597809, -0.042794447392225266, 0.002995350630953908, 0.004995581228286028, 0.05909642577171326, -0.07746366411447525, 0.0055967229418456554, 0.02537027932703495, 0.1314934343099594, -0.006988190114498138, -0.006205152254551649, -0.039937227964401245, 0.029198259115219116, 0.05054667219519615, 0.026932591572403908, 0.03766254708170891, 0.022204093635082245, -0.09367192536592484, -0.04939129203557968, 0.0807168185710907, -0.12850981950759888, 0.013331830501556396, 0.08116890490055084, -0.06075076386332512, -0.014456423930823803, 0.11390778422355652, -0.04398399591445923, -0.021605733782052994, 0.01716565154492855, -0.06496641784906387, -0.03482356667518616, -0.08992224186658859, -0.10857729613780975, 0.037615686655044556, -0.07450036704540253, -0.05078178644180298, -0.035287853330373764, -0.13637439906597137, -0.056600432842969894, 0.030238788574934006, -0.06265659630298615, -0.005060848314315081, -0.05578777566552162, -0.09753689169883728, 0.019463052973151207, 0.0025625259149819613, 0.042526599019765854, -0.028868794441223145, 0.07563775777816772, -0.01108333095908165, 0.049439381808042526, 0.06471385061740875, 0.010942032560706139, -0.05727185681462288, 0.050828345119953156, -0.04818296059966087, 0.13983763754367828, -0.10847927629947662, 0.013903914950788021, -0.099399134516716, -0.03952864557504654, -0.04138639569282532, -0.03695177286863327, 0.05523970350623131, 0.14113175868988037, -0.18066899478435516, -0.027062105014920235, 0.16065889596939087, -0.04312143847346306, -0.08179513365030289, 0.07256891578435898, -0.06958240270614624, 0.0442681610584259, 0.04601266607642174, 0.018281325697898865, 0.22793026268482208, -0.13702987134456635, -0.06528576463460922, 0.024333594366908073, 0.04609914496541023, 0.1120663583278656, 0.04445290565490723, 0.006726333871483803, -0.0016540174838155508, 0.025969747453927994, 0.018903102725744247, -0.014602802693843842, -0.03374125808477402, -0.06618304550647736, -0.02588697522878647, -0.046932052820920944, 0.06244543939828873, 0.0181619580835104, -0.026495832949876785, -0.04157146066427231, -0.1425548791885376, 0.036888238042593, 0.1299334615468979, -0.05093388259410858, -0.013056348077952862, -0.13846077024936676, -0.007602882571518421, -0.016118401661515236, -0.006805679760873318, -0.133876234292984, -0.0814383327960968, 0.030391622334718704, -0.08872336149215698, 0.02910674922168255, 0.007573384325951338, 0.06631145626306534, 0.04331457242369652, -0.06537801772356033, -0.00860713142901659, -0.042986974120140076, 0.002416614443063736, -0.018224526196718216, -0.21387706696987152, 0.006622748449444771, -0.03364932909607887, 0.20954403281211853, -0.15007376670837402, 0.04020955413579941, 0.07183662056922913, 0.10870359092950821, 0.024481583386659622, -0.06674493849277496, -0.010484384372830391, 0.004472651053220034, -0.0347076840698719, -0.05748225748538971, -0.012628729455173016, 0.03112814947962761, -0.10229334235191345, -0.0045828912407159805, -0.15041601657867432, -0.03195451572537422, 0.12133489549160004, 0.11783275753259659, -0.09861421585083008, -0.04589841887354851, -0.038562387228012085, -0.03912852331995964, -0.00892765261232853, -0.04537602514028549, 0.05676697939634323, 0.0355367586016655, 0.08434680104255676, -0.09947794675827026, -0.08989976346492767, 0.007716500200331211, 0.0018338809022679925, -0.007876954041421413, 0.12836681306362152, 0.04450279101729393, -0.08918072283267975, 0.10481928288936615, 0.024197276681661606, -0.044421739876270294, 0.1624625027179718, -0.011098198592662811, -0.024423014372587204, -0.09134461730718613, 0.08530957251787186, 0.034441519528627396, 0.10165239125490189, -0.04148181900382042, 0.10740451514720917, 0.030870940536260605, -0.013006660155951977, 0.028942113742232323, -0.14372777938842773, 0.024458618834614754, 0.02516341768205166, -0.07231591641902924, -0.007871439680457115, -0.031814370304346085, 0.038129307329654694, 0.08024977892637253, 0.0017244043992832303, 0.09574198722839355, 0.02231905236840248, -0.03190084174275398, -0.10489043593406677, 0.1772708296775818, -0.18732312321662903, -0.17109328508377075, -0.14583739638328552, -0.009100462310016155, -0.06326157599687576, -0.021298417821526527, -0.029607798904180527, -0.0791345164179802, -0.03767916560173035, -0.097433902323246, -0.03483360633254051, 0.009071452543139458, -0.04295526072382927, -0.004130737390369177, 0.08422467112541199, 0.11222150921821594, -0.12520462274551392, 0.015054059214890003, 0.05130630359053612, -0.06114630773663521, 0.03601467236876488, 0.01853232830762863, -0.03341998532414436, 0.11961964517831802, 0.037215329706668854, -0.023055534809827805, -0.012359298765659332, 0.22489459812641144, -0.0563259981572628, 0.06041501462459564, 0.10506089776754379, -0.026171544566750526, 0.054756008088588715, 0.17379778623580933, 0.03720983490347862, -0.05426333099603653, 0.038754720240831375, 0.08375407755374908, -0.027827540412545204, -0.2313753366470337, -0.04585614055395126, -0.0606008842587471, 0.031910646706819534, 0.06190620735287666, 0.04467342048883438, 0.08331599086523056, 0.03430831432342529, -0.05634960159659386, 0.005453099496662617, 0.06088247150182724, 0.05126282200217247, 0.07558901607990265, 0.014360600151121616, 0.12256894260644913, -0.030927754938602448, 0.05280748009681702, 0.08926810324192047, 0.07512646168470383, 0.15618714690208435, -0.06665094196796417, 0.0932428166270256, 0.10037839412689209, 0.17038704454898834, -0.005933425854891539, 0.008894921280443668, -0.004553248640149832, 0.0013378532603383064, 0.019842635840177536, -0.07446028292179108, -0.0421217605471611, 0.04815874248743057, 0.03888997435569763, 0.07094847410917282, 0.02374354936182499, -0.030773112550377846, 0.06238458305597305, 0.11895662546157837, 0.10270781069993973, -0.2599261999130249, -0.11669371277093887, 0.023546487092971802, 0.0016218185191974044, -0.06957479566335678, -0.023098062723875046, 0.1319354921579361, -0.0934884175658226, 0.00968323927372694, -0.04065486416220665, 0.07140152156352997, -0.04600914567708969, -0.023218708112835884, 0.057778067886829376, 0.06396206468343735, -0.02597607672214508, 0.07719336450099945, -0.2201792299747467, 0.07947336137294769, 0.03246457502245903, 0.06343009322881699, -0.037170469760894775, 0.06976208090782166, 0.0220505241304636, -0.042103689163923264, 0.08400992304086685, -0.019132472574710846, 0.032226502895355225, -0.14884161949157715, -0.10802166163921356, -0.026407625526189804, 0.061578817665576935, -0.04584778472781181, 0.08841070532798767, -0.007682345807552338, 0.01306247990578413, 0.022040637210011482, 0.017072506248950958, -0.07113604992628098, -0.13478443026542664, 0.03610540181398392, 0.011848555877804756, -0.05939466878771782, -0.07233278453350067, -0.05215822532773018, -0.04723171144723892, 0.1450604647397995, -0.24384215474128723, -0.062356360256671906, -0.10997209697961807, 0.025702878832817078, 0.14962837100028992, -0.04742851108312607, 0.029932189732789993, -0.034535106271505356, 0.10677609592676163, -0.002397962147369981, -0.07715509831905365, 0.03300850838422775, -0.09611845016479492, -0.18857744336128235, -0.09262406080961227, 0.14684559404850006, 0.09096010774374008, 0.037145186215639114, -0.024250714108347893, -0.003828158136457205, -0.02446857839822769, -0.10388551652431488, 0.019939158111810684, 0.15105204284191132, 0.060367170721292496, 0.059360332787036896, -0.09526418149471283, -0.020759912207722664, -0.05062101408839226, 0.007901218719780445, 0.020739339292049408, 0.23864510655403137, -0.06841348111629486, 0.11124713718891144, 0.06692326068878174, -0.074494369328022, -0.19790884852409363, 0.025123029947280884, 0.09367653727531433, 0.06320099532604218, 0.020733896642923355, -0.1589600145816803, 0.05040886998176575, 0.05940840393304825, -0.017182260751724243, 0.07914169877767563, -0.2650921046733856, -0.12943600118160248, 0.01980818808078766, 0.011274440214037895, -0.09661871194839478, -0.07195653021335602, -0.0470835343003273, -0.02272137999534607, -0.10240815579891205, 0.1637469083070755, -0.1013263612985611, 0.06775513291358948, 0.001601342810317874, 0.01665438711643219, 0.02778843604028225, -0.048780303448438644, 0.16869878768920898, -0.03438727185130119, 0.03846579045057297, -0.03382052853703499, -0.0067078955471515656, 0.07373258471488953, -0.08544319123029709, -0.002548305783420801, -0.08799561858177185, 0.08158353716135025, -0.1452482044696808, -0.01602666638791561, -0.08436663448810577, 0.0028548610862344503, -0.09043848514556885, -0.034671392291784286, -0.08651577681303024, 0.1166413202881813, 0.08439166843891144, -0.029459182173013687, -0.03854969143867493, -0.052779242396354675, 0.12309592962265015, 0.29326677322387695, 0.0670299381017685, 0.07858085632324219, -0.04661092907190323, 0.02988121099770069, -0.006517396308481693, 0.046767301857471466, -0.1694267988204956, 0.06470056623220444, 0.10391338914632797, 0.026172589510679245, 0.13457679748535156, 0.03975986689329147, -0.10658466815948486, -0.0067243678495287895, 0.048000629991292953, -0.10744094103574753, -0.04615665227174759, 0.012560497969388962, -0.016257910057902336, -0.156682550907135, -0.06455738842487335, 0.13664281368255615, -0.00758663984015584, -0.0011112940264865756, 0.04966002702713013, 0.06579035520553589, -0.048018962144851685, 0.16342955827713013, 0.03141740709543228, 0.08549974858760834, -0.07757189869880676, 0.09658649563789368, 0.07738549262285233, -0.06577035039663315, 0.037253059446811676, 0.013137496076524258, -0.07350211590528488, -0.012394417077302933, 0.02128479816019535, 0.0311827901750803, 0.10021442174911499, -0.010891448706388474, -0.06012135371565819, -0.10318093001842499, 0.05954250320792198, 0.09722244739532471, 0.009469463489949703, 0.08821078389883041, -0.013131079263985157, 0.015352153219282627, -0.11679504066705704, 0.1532243937253952, 0.0557825043797493, 0.018840227276086807, -0.07611037790775299, 0.08878342807292938, -0.003063748823478818, -0.0193279217928648, 0.007941811345517635, 0.00646065641194582, -0.15542587637901306, -0.0022074284497648478, -0.0740894079208374, 0.03935309126973152, 0.0009901869343593717, 0.004885269328951836, 0.01749643310904503, 0.012077206745743752, -0.039256010204553604, 0.03238804265856743, -0.05352604016661644, -0.05816348269581795, -0.003263483988121152, 0.06553267687559128, -0.13294802606105804, -0.020793581381440163, 0.07550670951604843, -0.12397070229053497, 0.0665859654545784, 0.035020485520362854, -0.011737901717424393, 0.012565708719193935, -0.056101590394973755, 0.019108710810542107, -0.0003700915549416095, 0.059702079743146896, -0.0015475627733394504, -0.16809849441051483, 0.05689164623618126, -0.02888665907084942, -0.07439219206571579, 0.017195509746670723, 0.0208856500685215, -0.07319437712430954, -0.04490206763148308, -0.0308464914560318, -0.012678970582783222, -0.04077085107564926, 0.06420694291591644, 0.11280953139066696, 0.011300181970000267, 0.1137029305100441, -0.06317900121212006, 0.062417685985565186, -0.213660329580307, -0.05568590387701988, 0.035759780555963516, -0.017597611993551254, -0.05535411089658737, -0.011525888927280903, 0.0884343832731247, -0.030208220705389977, 0.08489490300416946, -0.04911816492676735, -0.026902586221694946, 0.00984241534024477, -0.10254792869091034, -0.05778558924794197, 0.0347832515835762, 0.16072212159633636, 0.012758307158946991, -0.010257124900817871, 0.004785826895385981, -0.06391045451164246, -0.008860514499247074, -0.05298713594675064, 0.06359989196062088, 0.142965167760849, 0.018680628389120102, 0.017413752153515816, 0.08744212985038757, -0.10270132124423981, -0.001032218337059021, 0.22098104655742645, -0.11369847506284714, 0.06314235180616379, -0.08382051438093185, 0.07212352007627487, 0.07452543079853058, -0.16669407486915588, 0.09303764253854752, -0.022351320832967758, -0.09053658694028854, -0.11364355683326721, -0.08435129374265671, -0.06262680888175964, -0.10647449642419815, 0.01758650317788124, -0.13186047971248627, -0.006262523587793112, 0.07971036434173584, 0.05283667892217636, 0.000297390331979841, 0.14165233075618744, -0.04702647402882576, -0.046344202011823654, 0.027560262009501457, 0.043370235711336136, -0.0029611578211188316, -0.037734255194664, -0.022733217105269432, 0.10795257985591888, 0.0373343750834465, 0.08558426797389984, 0.013346261344850063, 0.0776151791214943, 0.04250930994749069, -0.02396565116941929, -0.04989578574895859, 0.023039203137159348, -0.020984647795557976, -0.012390882708132267, 0.16979862749576569, 0.019551914185285568, -0.0022517796605825424, -0.038256216794252396, 0.13954192399978638, -0.07971742004156113, -0.06625521183013916, -0.18258659541606903, 0.14369216561317444, -0.018908163532614708, 0.022305000573396683, 0.03457219526171684, -0.06642548739910126, -0.024764666333794594, 0.13364411890506744, 0.12772540748119354, -0.06814359873533249, -0.0008321772911585867, 0.0846489667892456, -0.003883598605170846, -0.037857770919799805, 0.08052738755941391, 0.04959889501333237, 0.08561602979898453, -0.0016604965785518289, 0.02503434754908085, 0.028528455644845963, -0.03574998304247856, 0.031080424785614014, 0.04913511127233505, -0.03704362362623215, 0.003803981002420187, -0.07544499635696411, 0.01928834058344364, 0.011568684130907059, -0.1744593232870102, 0.1532307118177414, -0.12404166162014008, -0.11777692288160324, -0.02849801443517208, 0.029962701722979546, -0.05443650856614113, -0.00886976532638073, -0.005255573429167271, 0.00958063080906868, 0.19208180904388428, -0.04820062220096588, -0.009146864525973797, -0.08578432351350784, 0.017367763444781303, -0.008119418285787106, 0.1842501163482666, -0.026237163692712784, 0.05899234116077423, 0.1270056664943695, -0.029674343764781952, -0.10260922461748123, 0.0681588426232338, 0.06003919243812561, -0.12223279476165771, -0.02730928547680378, 0.10875040292739868, -0.005187868606299162, 0.16342127323150635, 0.07565620541572571, -0.048796363174915314, 0.02118227258324623, -0.08540700376033783, -0.05688286945223808, -0.10556061565876007, 0.040235161781311035, -0.07267936319112778, 0.1397998183965683, 0.19786031544208527, -0.053371611982584, 0.015283114276826382, -0.030232958495616913, 0.07460267841815948, -0.005821883678436279, 0.10967089980840683, 0.0037711658515036106, -0.17286936938762665, 0.0780840665102005, -0.025784790515899658, 0.07249438762664795, -0.28435802459716797, -0.09621508419513702, 0.058755870908498764, -0.061913084238767624, -0.047531597316265106, 0.14349985122680664, -0.01136758178472519, 0.05811236798763275, -0.034761376678943634, -0.1250499039888382, -0.028633875772356987, 0.10329242050647736, -0.06824257969856262, -0.06614921987056732 ]
null
null
diffusers
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use `Book cover of a vintage romance novel`, `Cover of a Harlequin romance novel` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/the-wizard-s-vintage-romance-novel/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/the-wizard-s-vintage-romance-novel', weight_name='wizards_vintage_romance.safetensors') image = pipeline('book cover of a vintage romance novel depicting John Legend').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Book cover of a vintage romance novel", "widget": [{"text": "book cover of a vintage romance novel depicting kanye west in a romantic scene with kanye west", "output": {"url": "5033837.jpeg"}}, {"text": "book cover of a harlequin romance novel book cover of a vintage romance novel called \"praise the sun\", depicting Solaire of Astora from dark souls with both hands stretched up", "output": {"url": "5033836.jpeg"}}, {"text": "book cover of a vintage romance novel called \"a real man a tee\" depicting a manatee casanova", "output": {"url": "5033831.jpeg"}}, {"text": " ", "output": {"url": "5033820.jpeg"}}, {"text": "book cover of a vintage romance novel depicting John Legend", "output": {"url": "5033958.jpeg"}}]}
text-to-image
WizWhite/the-wizard-s-vintage-romance-novel-2
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "pulp art", "style", "harlequin", "romance novel", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:20:13+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# The Wizard's Vintage Romance Novel <Gallery /> ## Model description <p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id="heading-769">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called "YYY" <br />• Prompt format 2: Cover of a Harlequin romance novel called "YYY", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo "YYY":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical "harlequin" layout</p> ## Trigger words You should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# The Wizard's Vintage Romance Novel \n\n<Gallery />", "## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>", "## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 78, 14, 208, 34, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #pulp art #style #harlequin #romance novel #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# The Wizard's Vintage Romance Novel \n\n<Gallery />## Model description\n\n<p>The spiritual successor to The Wizard's Vintage Comic Book LoRA:</p><h3 id=\"heading-769\">The Wizard's Vintage Romance Novel</h3><p>Generates a book cover inspired by harlequin romance novels. Look differ depending on which checkpoint model you use.</p><p><strong>Best use: <br /></strong>• 2:3 ratio<br />• Prompt format 1: Book cover of a vintage romance novel called \"YYY\" <br />• Prompt format 2: Cover of a Harlequin romance novel called \"YYY\", depicting ZZZ<br />• If you struggle with the title, try using following: (title logo \"YYY\":1.3)<br />• Use artist prompt to tweak the style<br />• Use a lower weight if you want to get lose the typical \"harlequin\" layout</p>## Trigger words\nYou should use 'Book cover of a vintage romance novel', 'Cover of a Harlequin romance novel' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.05321831628680229, 0.14669254422187805, -0.004502041265368462, 0.08079151064157486, -0.029933059588074684, 0.10577622801065445, 0.06477154791355133, 0.09510701149702072, 0.011646539904177189, 0.08814748376607895, -0.06371841579675674, 0.019155219197273254, 0.11237654834985733, 0.11551177501678467, -0.0010364102199673653, -0.22339099645614624, 0.010180611163377762, -0.04324489086866379, 0.04303957149386406, 0.0625455230474472, 0.10128665715456009, -0.017063045874238014, 0.06576608866453171, -0.017759541049599648, 0.05451653152704239, 0.022510027512907982, -0.013151939027011395, -0.01243155263364315, 0.031349290162324905, 0.09428945183753967, 0.06795656681060791, 0.03351213037967682, 0.10839696228504181, -0.266926109790802, 0.019879736006259918, 0.08084052056074142, -0.0978420078754425, -0.014702456071972847, 0.16044500470161438, -0.11349025368690491, 0.1880626529455185, -0.11783038824796677, 0.07790586352348328, 0.034112900495529175, -0.0384993813931942, -0.07885919511318207, -0.1954290121793747, 0.23864255845546722, 0.09623387455940247, 0.008940339088439941, 0.02164599299430847, 0.014341361820697784, -0.027347933501005173, -0.038675349205732346, 0.27720099687576294, -0.1729094535112381, -0.05388390272855759, 0.060978811234235764, 0.04898742586374283, 0.06550806760787964, -0.14964692294597626, 0.04815918952226639, -0.04405101016163826, 0.025625813752412796, 0.017671914771199226, -0.0006661558290943503, 0.22553475201129913, 0.016948848962783813, -0.09919431060552597, -0.03811253234744072, 0.1204286590218544, -0.02031622640788555, -0.05184183269739151, -0.12438511103391647, -0.011047192849218845, 0.15827436745166779, -0.0907370075583458, -0.059587206691503525, 0.035615794360637665, -0.014309861697256565, 0.02693103812634945, -0.13623739778995514, -0.06446903944015503, -0.04862421751022339, -0.00271399412304163, 0.08695939183235168, 0.014321497641503811, -0.03794339299201965, 0.06442253291606903, 0.09413876384496689, -0.05893079936504364, 0.0003298760566394776, 0.009257950820028782, -0.10610733926296234, -0.0347614660859108, -0.03158413618803024, -0.026037851348519325, -0.018727310001850128, 0.03667706251144409, 0.17049738764762878, 0.01776425912976265, 0.01399908121675253, -0.03340549394488335, -0.009536413475871086, 0.011784153990447521, 0.07418246567249298, -0.03395622596144676, -0.20987409353256226, 0.02220064215362072, 0.07835803180932999, 0.09452329576015472, -0.0008603720343671739, 0.014689458534121513, -0.12248777598142624, -0.007499030791223049, 0.026480745524168015, 0.13280563056468964, -0.010149382054805756, -0.03184062987565994, -0.010172813199460506, 0.17929892241954803, -0.10268297046422958, 0.04850778728723526, 0.031034735962748528, 0.0058097513392567635, 0.04931523650884628, 0.04208367317914963, -0.014926578849554062, -0.05074848234653473, 0.09546711295843124, -0.07258257269859314, -0.07158969342708588, -0.006964302621781826, -0.06605303287506104, 0.009416364133358002, 0.030285310000181198, -0.10763920843601227, -0.01594468019902706, -0.09428567439317703, -0.0639868974685669, 0.011601072736084461, -0.06397758424282074, -0.04825146868824959, -0.04287203773856163, -0.01895194500684738, 0.013326741755008698, 0.08904442191123962, 0.04893078655004501, -0.00926380418241024, 0.04676220566034317, -0.126156747341156, 0.058958396315574646, 0.07191915810108185, 0.027445003390312195, 0.03401646390557289, 0.04954657703638077, -0.30111581087112427, 0.10338596999645233, -0.10123956203460693, -0.0003184778324794024, -0.09845469892024994, -0.0463876947760582, -0.01999659650027752, -0.012287483550608158, -0.07519489526748657, 0.08853600919246674, -0.16202682256698608, -0.06580379605293274, 0.14436431229114532, -0.14059661328792572, -0.0077738044783473015, 0.11649549007415771, -0.03659859299659729, 0.021098962053656578, 0.10776852816343307, 0.16187764704227448, 0.20346596837043762, -0.07648364454507828, -0.07567443698644638, -0.07652169466018677, -0.04972660169005394, 0.1980353146791458, 0.02377224527299404, -0.10837942361831665, 0.00797627680003643, 0.00014688659575767815, -0.215581476688385, -0.1299477368593216, 0.05467606708407402, -0.02173520065844059, 0.006420244928449392, 0.013012540526688099, 0.08888893574476242, -0.047380756586790085, -0.06880936026573181, -0.018590575084090233, -0.0770680159330368, -0.09505660831928253, 0.08072634041309357, -0.015011897310614586, 0.06786804646253586, -0.0015096500283107162, 0.08397693186998367, 0.1079651266336441, 0.029396001249551773, -0.05914023518562317, -0.029893500730395317, 0.04261212795972824, -0.09927863627672195, 0.04872962087392807, -0.0260609220713377, 0.040615156292915344, 0.024232611060142517, -0.12831926345825195, 0.014656567014753819, -0.004484562668949366, -0.044163141399621964, -0.07959317415952682, -0.17766673862934113, -0.08520229160785675, 0.013628458604216576, 0.1571706086397171, -0.1474684625864029, 0.031249308958649635, -0.012322181835770607, 0.11353558301925659, -0.023724131286144257, 0.005995760206133127, 0.012328391894698143, -0.03289732336997986, -0.03453351557254791, -0.03855626657605171, -0.012944747693836689, -0.031241020187735558, -0.056257277727127075, 0.05210423842072487, -0.14218762516975403, -0.159774050116539, 0.07842213660478592, 0.049029309302568436, -0.07018033415079117, -0.14410105347633362, -0.01697435975074768, -0.0007302348967641592, -0.07181360572576523, -0.046579472720623016, 0.10024859011173248, 0.044666606932878494, 0.001854764181189239, -0.09578494727611542, -0.05029650405049324, -0.08782697468996048, -0.016513200476765633, -0.10236818343400955, 0.0857929214835167, -0.05675756186246872, -0.13332150876522064, 0.023715579882264137, 0.033960629254579544, -0.0002833972976077348, 0.07518674433231354, 0.09324659407138824, -0.07453864812850952, 0.020497336983680725, -0.03424213454127312, 0.08654914051294327, 0.017360886558890343, 0.09116718918085098, 0.06361733376979828, 0.04851880669593811, -0.046750105917453766, -0.004101996775716543, -0.061475902795791626, -0.023077473044395447, 0.0095299007371068, -0.06445150077342987, -0.03000110201537609, -0.010900977067649364, 0.03825749456882477, 0.09738853573799133, 0.05785394832491875, 0.14658357203006744, -0.060970794409513474, -0.04600439965724945, -0.08310773968696594, 0.04877781867980957, -0.10047570616006851, -0.07346770167350769, -0.11913394927978516, 0.0011496137594804168, -0.010784938000142574, 0.015567008405923843, 0.0029432971496134996, -0.03890599310398102, -0.05219300463795662, -0.10327281057834625, 0.07607675343751907, -0.03970371186733246, -0.07469083368778229, -0.09619191288948059, 0.047150809317827225, -0.04694540426135063, -0.12067805975675583, 0.00910456757992506, 0.021205252036452293, -0.09950970858335495, -0.008368424139916897, -0.056365448981523514, 0.10826396942138672, 0.041478611528873444, 0.00004517184788710438, -0.03616640344262123, -0.020974276587367058, 0.07561168819665909, -0.07631100714206696, 0.12657538056373596, 0.05825069919228554, 0.06504117697477341, 0.13049109280109406, 0.15319597721099854, -0.020902644842863083, 0.016280250623822212, -0.005761436186730862, 0.07374729961156845, 0.02537660114467144, -0.1904403418302536, -0.027781084179878235, -0.01203656941652298, -0.08166011422872543, 0.0782763808965683, 0.07238269597291946, 0.0880681574344635, 0.023803720250725746, -0.16001290082931519, 0.017220424488186836, 0.15366363525390625, 0.09739531576633453, 0.13189944624900818, 0.034480247646570206, -0.01203988492488861, -0.07013511657714844, 0.03776678070425987, 0.1191110834479332, 0.030850514769554138, 0.14311210811138153, -0.04993743449449539, 0.15395919978618622, 0.02778000198304653, 0.08354712277650833, 0.0015040665166452527, 0.0002124385500792414, 0.05549585074186325, 0.0606275275349617, -0.023671748116612434, -0.04763234034180641, 0.053177956491708755, 0.09231172502040863, 0.10356280207633972, -0.030779024586081505, -0.030639363452792168, -0.10309681296348572, 0.08456406742334366, 0.09388004243373871, -0.07244310528039932, -0.06456397473812103, 0.04886768385767937, 0.09448565542697906, -0.048165712505578995, -0.002624080516397953, -0.06727933138608932, -0.024789266288280487, -0.13309267163276672, 0.1575641632080078, 0.013763848692178726, 0.04903164878487587, -0.11392469704151154, -0.06101062148809433, -0.0380878821015358, 0.12328830361366272, -0.05923272296786308, 0.07384791970252991, -0.063438281416893, 0.035822153091430664, 0.03769771382212639, 0.08574551343917847, -0.011341235600411892, -0.01579342596232891, 0.12605133652687073, 0.059689272195100784, 0.06930304318666458, 0.009993442334234715, 0.040320124477148056, 0.03913475200533867, -0.03156508505344391, -0.021948013454675674, 0.036207862198352814, -0.15300564467906952, 0.12720607221126556, -0.07269614189863205, -0.08630671352148056, -0.10556243360042572, 0.10648729652166367, -0.09296026080846786, -0.2141207456588745, 0.04889071360230446, -0.1572929471731186, 0.013565348461270332, -0.05788291618227959, -0.02914433553814888, -0.03350845351815224, 0.044193245470523834, 0.025442378595471382, -0.11558423191308975, -0.08534768223762512, -0.09644071012735367, 0.16608025133609772, -0.051787812262773514, -0.009836274199187756, 0.008131160400807858, 0.1936507672071457, -0.10826867818832397, -0.06091306731104851, -0.11326107382774353, -0.006943078245967627, -0.18266206979751587, -0.018157122656702995, 0.15633849799633026, 0.08652044087648392, 0.08449573814868927, 0.04886287823319435, 0.021626047790050507, -0.018150951713323593, -0.11068039387464523, 0.04571617394685745, 0.10017368942499161, 0.02691940777003765, -0.028274869546294212, -0.0522390715777874, -0.10063692927360535, -0.16030262410640717, 0.05059676989912987, -0.008155981078743935, 0.2154807150363922, -0.01597009412944317, 0.12677764892578125, 0.01859510876238346, -0.10634056478738785, -0.11895336955785751, -0.0823814794421196, -0.005158303305506706, -0.07936263829469681, 0.012622456066310406, -0.1088368222117424, -0.06665971130132675, 0.05985612794756889, -0.000034681721444940194, 0.07733345031738281, -0.25537943840026855, -0.075731061398983, -0.06116284430027008, 0.06069694831967354, -0.1842307597398758, -0.16473239660263062, -0.08671041578054428, -0.11995023488998413, -0.07857968658208847, 0.04314495623111725, 0.05275651440024376, 0.04278276488184929, -0.02613048069179058, 0.009315229952335358, 0.0032697273418307304, 0.024048777297139168, 0.17557953298091888, -0.034595973789691925, 0.047946397215127945, -0.07245049625635147, -0.007585981395095587, 0.08371735364198685, -0.08807996660470963, 0.03271365538239479, -0.08131225407123566, -0.028514618054032326, -0.0022496662568300962, -0.04381527006626129, -0.06690354645252228, 0.04568693786859512, -0.11227498203516006, 0.02080734632909298, -0.07699732482433319, 0.045754700899124146, 0.08875580132007599, -0.03920012712478638, -0.07656789571046829, -0.03747625648975372, 0.10779358446598053, -0.09980182349681854, 0.13257047533988953, 0.1928819715976715, -0.09490912407636642, -0.044285327196121216, -0.022442305460572243, -0.00760953314602375, -0.060035333037376404, 0.042397402226924896, 0.06141095235943794, 0.04266462102532387, 0.0688740611076355, 0.00000807584456197219, -0.10043701529502869, -0.02581442892551422, 0.11365946382284164, -0.07477615773677826, -0.20386344194412231, 0.005580640397965908, -0.02064170502126217, -0.15424147248268127, -0.1503860056400299, 0.037080347537994385, 0.019647004082798958, -0.12635120749473572, 0.028805891051888466, 0.05449257791042328, 0.046013880521059036, 0.07669100910425186, 0.039765141904354095, -0.011417005211114883, -0.038274336606264114, 0.1166827529668808, 0.08172766119241714, -0.03919433802366257, -0.04991926997900009, 0.20170028507709503, -0.0365462452173233, -0.02645709551870823, 0.07812988013029099, 0.05178544670343399, -0.06124855577945709, 0.05264398083090782, 0.05611838400363922, -0.09100259840488434, 0.01920992322266102, 0.19037862122058868, 0.002903916174545884, 0.014952948316931725, 0.06056425720453262, 0.003262158716097474, -0.05546463280916214, 0.08306457847356796, 0.11159024387598038, 0.020665038377046585, -0.046573009341955185, 0.08543431758880615, -0.021513817831873894, -0.058666545897722244, -0.007310137618333101, 0.017324332147836685, -0.048232369124889374, -0.06687092781066895, -0.1131444051861763, 0.046753499656915665, -0.1290065497159958, 0.0006895044934935868, -0.05869874730706215, 0.07845699787139893, -0.0010863792849704623, -0.03219826892018318, -0.05636448785662651, -0.11921386420726776, -0.03096763603389263, 0.0909636989235878, -0.11854135990142822, 0.013996515423059464, 0.1285608857870102, -0.10081034898757935, 0.045947492122650146, 0.06553571671247482, -0.003820844693109393, 0.008897488936781883, -0.11954289674758911, -0.06355255097150803, -0.10084176808595657, 0.011913768947124481, -0.008067597635090351, -0.1374189406633377, -0.016501639038324356, -0.11527196317911148, -0.11790254712104797, 0.008444718085229397, 0.017977701500058174, -0.09219861775636673, 0.1116005927324295, -0.030423736199736595, -0.06747255474328995, -0.009285557083785534, 0.044648557901382446, 0.22509267926216125, -0.03306823968887329, 0.05362313240766525, -0.052663035690784454, 0.022853197529911995, -0.12137596309185028, 0.003666953183710575, -0.04297361522912979, -0.010130739770829678, 0.031711675226688385, -0.02257661521434784, 0.03357494994997978, 0.02664266899228096, 0.04901110380887985, -0.016374796628952026, 0.012859944254159927, 0.00048577331472188234, 0.1073739305138588, -0.008676178753376007, -0.008102601394057274, 0.08721484988927841, -0.014314214698970318, -0.05260926112532616, 0.053944848477840424, -0.04703262448310852, -0.027994465082883835, -0.07802501320838928, 0.0937056764960289, 0.10238129645586014, 0.09503104537725449, -0.006775310263037682, 0.0015052207745611668, -0.07944058626890182, -0.03502284362912178, 0.08992467820644379, 0.06654496490955353, -0.033212367445230484, -0.05203298479318619, 0.10483364760875702, 0.14967568218708038, -0.22301506996154785, 0.1093248650431633, 0.022398142144083977, -0.04959458112716675, -0.016661398112773895, -0.18380482494831085, -0.05866049602627754, -0.010784318670630455, -0.005159382708370686, -0.06690062582492828, 0.10077912360429764, 0.05179096758365631, -0.004784216172993183, 0.007327708415687084, -0.04351753741502762, -0.11200596392154694, -0.13434071838855743, 0.061824630945920944, 0.05309354513883591, -0.007255935110151768, 0.08355766534805298, 0.02047988958656788, 0.036063216626644135, -0.054023224860429764, 0.01673528552055359, 0.05893455818295479, 0.0619463175535202, 0.045814402401447296, -0.07637757062911987, -0.05169972777366638, 0.05187874287366867, -0.046823855489492416, 0.04983779788017273, 0.1872168332338333, 0.034922659397125244, -0.051576465368270874, -0.014453443698585033, 0.24941596388816833, -0.010936119593679905, -0.040563128888607025, -0.10029584169387817, 0.054428741335868835, -0.025941068306565285, -0.061138369143009186, 0.026011506095528603, -0.1262028068304062, 0.06279975920915604, 0.11924222111701965, 0.06314519792795181, -0.0054428731091320515, 0.00949717964977026, 0.030410388484597206, 0.01888793148100376, 0.08432259410619736, -0.03601263836026192, 0.012097828090190887, 0.13551196455955505, -0.08518228679895401, 0.09485634416341782, -0.045954667031764984, 0.019332312047481537, -0.08001063019037247, 0.18118314445018768, -0.056035902351140976, -0.054108913987874985, -0.006356438156217337, 0.09214521944522858, 0.0013992392923682928, -0.19459417462348938, 0.039603013545274734, -0.07282839715480804, -0.05629294365644455, -0.017479559406638145, -0.02250882424414158, -0.03366977721452713, 0.08490776270627975, 0.06625929474830627, 0.006762478966265917, 0.174803227186203, 0.0009378311224281788, -0.088409423828125, -0.05383072793483734, 0.10917345434427261, 0.021273210644721985, 0.22448670864105225, -0.018870968371629715, -0.0666857585310936, 0.04827699810266495, 0.0035094530321657658, -0.07125455141067505, 0.029383372515439987, 0.05591656267642975, -0.0863967314362526, 0.027801427990198135, 0.21149593591690063, 0.002763717668130994, -0.015473964624106884, 0.09961609542369843, 0.05355721712112427, 0.10644396394491196, 0.04608115553855896, -0.044131625443696976, -0.037765417248010635, 0.1456296741962433, -0.18023176491260529, 0.09100385755300522, 0.17230039834976196, -0.014959674328565598, 0.049204014241695404, -0.07113354653120041, -0.07300952821969986, 0.07235757261514664, 0.1928112953901291, 0.02514754980802536, -0.0413985475897789, 0.006900338921695948, -0.029566690325737, 0.020983293652534485, -0.14440439641475677, -0.0630694106221199, -0.030691437423229218, -0.01414788980036974, -0.036074042320251465, 0.08740619570016861, 0.10065514594316483, 0.01942024566233158, -0.00044795256690122187, -0.03897201642394066, -0.008688877336680889, 0.09275764226913452, -0.08599120378494263, 0.06095607206225395 ]
null
null
diffusers
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use `Vintage board game box`, `vintage board game box called "your-title"` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/wizard-s-vintage-board-games/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/wizard-s-vintage-board-games', weight_name='Wizards_Vintage_Board_Game.safetensors') image = pipeline('vintage board game box (called "Being Melissa Joan Hart":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Vintage board game box", "widget": [{"text": "vintage board game box (title called \"Wizard's Vintage Board Game\" logo text:1.3), (Moondog Wizard Whitebeard performing magic by michael whelan and gerald brom:0.8)", "output": {"url": "4390221.jpeg"}}, {"text": " ", "output": {"url": "4390247.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A paranormal investigator recording in an eerie, dilapidated asylum., detailed text logo", "output": {"url": "4390254.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A solitary figure in an old library, surrounded by mountains of books., detailed text logo", "output": {"url": "4390261.jpeg"}}, {"text": "japanese vintage board game box called \"The Great Wave off Kanagawa\" by hokusai, detailed text logo", "output": {"url": "4390251.jpeg"}}, {"text": "vintage board game box (called \"Being Kermit\":1.3), illustration of (Kermit:0.4) Sketching in art class, detailed text logo", "output": {"url": "4390263.jpeg"}}, {"text": "vintage board game box (called \"When the Diarrhea Hits\":1.3), illustration of A scientist examining a glowing crystal in a futuristic lab., detailed text logo", "output": {"url": "4390380.jpeg"}}, {"text": "vintage board game box (called \"Being Gal Gadot\":1.3), illustration of (Gal Gadot:0.4) Baking bread in the kitchen, detailed text logo ", "output": {"url": "4390405.jpeg"}}, {"text": "vintage board game box (called \"Being Melissa Joan Hart\":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo", "output": {"url": "4390408.jpeg"}}]}
text-to-image
WizWhite/wizard-s-vintage-board-games-1
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:21:10+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Wizard's Vintage Board Games <Gallery /> ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use 'Vintage board game box', 'vintage board game box called "your-title"' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Wizard's Vintage Board Games \n\n<Gallery />", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 81, 12, 223, 35, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Wizard's Vintage Board Games \n\n<Gallery />## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.023563958704471588, 0.12291178852319717, -0.004178875591605902, 0.09333858639001846, 0.052532125264406204, 0.04467852786183357, 0.055671412497758865, 0.1611005961894989, 0.033244501799345016, 0.10177135467529297, -0.03257633373141289, 0.07138970494270325, 0.11273282766342163, 0.11989850550889969, -0.01866079866886139, -0.1829635053873062, 0.0276845283806324, 0.03159024566411972, -0.0029096875805407763, 0.10746775567531586, 0.02964390069246292, -0.06264203041791916, 0.0770532488822937, -0.015869319438934326, 0.000734650413505733, 0.02542787976562977, -0.052047088742256165, -0.02580341324210167, 0.03190634772181511, 0.02634722739458084, 0.04790575057268143, -0.04108409956097603, 0.03469604626297951, -0.20404061675071716, 0.04170937091112137, 0.07743336260318756, -0.034042347222566605, 0.001024578232318163, 0.11604691296815872, -0.05172160267829895, 0.12862907350063324, -0.018949715420603752, 0.07211843878030777, 0.11346868425607681, -0.10834674537181854, -0.24986283481121063, -0.16540168225765228, 0.001827909261919558, 0.1384667158126831, -0.004774327389895916, -0.016834303736686707, 0.08023226261138916, 0.001848898595198989, 0.01975538767874241, 0.3628312647342682, -0.22031262516975403, -0.07556743919849396, 0.1399550586938858, 0.12335595488548279, 0.05401065573096275, -0.09878234565258026, 0.05549297109246254, -0.016391750425100327, 0.006750995293259621, -0.0249316543340683, -0.035459697246551514, 0.16098590195178986, 0.05158216506242752, -0.07544957846403122, -0.016477204859256744, 0.1847502887248993, 0.0372840017080307, 0.01264733262360096, -0.11497102677822113, -0.015582419000566006, 0.029073474928736687, -0.0966147929430008, -0.05187278240919113, 0.0028154964093118906, -0.058782875537872314, -0.004902017768472433, -0.05407131835818291, -0.03364512324333191, -0.10081709921360016, 0.02694474346935749, 0.07774633169174194, -0.009618101641535759, -0.03544917702674866, -0.01571524515748024, 0.09050655364990234, 0.06531722098588943, -0.05560929700732231, -0.08087378740310669, -0.06057724729180336, -0.11936517804861069, -0.00832306407392025, 0.021119246259331703, 0.05094771459698677, 0.07955077290534973, 0.3011684715747833, 0.09227120876312256, 0.10054845362901688, -0.13035595417022705, 0.019851870834827423, -0.02029099315404892, 0.01933489926159382, -0.03723479434847832, -0.1999821960926056, 0.003348794300109148, 0.10079557448625565, 0.04918530210852623, -0.06306697428226471, -0.08840299397706985, 0.006738991476595402, 0.05995466187596321, 0.07171142846345901, 0.058056268841028214, 0.021788006648421288, -0.02204698510468006, -0.017671599984169006, 0.2066889852285385, -0.10324615240097046, 0.08985570818185806, 0.06403505802154541, -0.060916755348443985, -0.0014055846258997917, -0.03215611353516579, 0.019064825028181076, -0.009049542248249054, 0.00036612790427170694, -0.055577777326107025, -0.03173255920410156, -0.13347803056240082, -0.08740437030792236, 0.08442745357751846, -0.06463848054409027, -0.05251472070813179, -0.016160769388079643, -0.12490294873714447, -0.07297686487436295, 0.023412130773067474, -0.07843784987926483, 0.05906008183956146, -0.06773627549409866, -0.07830924540758133, -0.0012747447472065687, 0.09215597808361053, 0.15039290487766266, -0.033549580723047256, 0.10016023367643356, -0.03686982020735741, 0.09562712162733078, 0.07858742773532867, 0.028394373133778572, -0.027023307979106903, 0.059957899153232574, -0.3018346428871155, 0.05504759028553963, -0.1382037103176117, -0.05791385471820831, -0.14303675293922424, -0.01765192113816738, 0.0445866584777832, 0.020950913429260254, -0.035571254789829254, 0.05168991908431053, -0.2297496497631073, -0.05878934636712074, 0.11261657625436783, -0.09549371898174286, -0.12101185321807861, 0.02148335427045822, -0.030187727883458138, 0.0009671784937381744, 0.015838652849197388, 0.13641929626464844, 0.10471028089523315, -0.07133231312036514, -0.040786635130643845, -0.1324578821659088, -0.08500327914953232, 0.11564718931913376, 0.10629191994667053, -0.002573310397565365, 0.08832871913909912, 0.01426019798964262, -0.1527426540851593, -0.07035858184099197, 0.045464418828487396, -0.018710503354668617, 0.07716909050941467, 0.0035129429306834936, 0.016419950872659683, -0.010411384515464306, -0.03969047963619232, -0.046389855444431305, -0.09816339612007141, 0.016142118722200394, 0.04052179306745529, -0.03223831579089165, 0.021807748824357986, -0.11412355303764343, 0.16824419796466827, 0.04178260639309883, 0.03851843997836113, -0.11212235689163208, -0.07077600061893463, -0.0007073957822285593, -0.021078426390886307, 0.0706678181886673, 0.0035054839681833982, 0.12019188702106476, 0.08017177134752274, -0.0395660325884819, -0.017559712752699852, -0.026061004027724266, -0.03235263749957085, 0.04399389773607254, -0.13967901468276978, -0.07849134504795074, -0.035759057849645615, 0.11741537600755692, -0.020570743829011917, 0.013499900698661804, 0.10396062582731247, 0.13504822552204132, -0.031000446528196335, -0.056637804955244064, -0.0038794795982539654, -0.05053180456161499, -0.003774635260924697, -0.029350046068429947, 0.01928006112575531, -0.048041507601737976, -0.03610876202583313, 0.025378264486789703, -0.21739917993545532, -0.029280629009008408, 0.1631043255329132, 0.09392901510000229, -0.04238145425915718, -0.08612673729658127, 0.021149687469005585, -0.015493473969399929, -0.03477916121482849, -0.05071898549795151, 0.09004674851894379, 0.06823451071977615, 0.06138266250491142, -0.11681924015283585, -0.0694301500916481, -0.02841975726187229, 0.041459329426288605, -0.04721418023109436, 0.02424091473221779, 0.07702986150979996, -0.20092864334583282, 0.10478981584310532, 0.015104256570339203, 0.013814962469041348, 0.1287389099597931, 0.008668199181556702, -0.06958562880754471, -0.008660509251058102, 0.0005489562754519284, 0.049465641379356384, 0.09361263364553452, 0.026909004896879196, 0.05871017277240753, 0.04839864373207092, -0.08727250248193741, -0.022442389279603958, -0.10601771622896194, -0.024153752252459526, -0.004338038619607687, -0.040368352085351944, 0.04602085426449776, 0.10768334567546844, 0.0844862088561058, 0.10351786762475967, 0.0532248355448246, 0.08131489157676697, -0.04200027137994766, -0.06430237740278244, -0.07395698875188828, 0.05538225919008255, -0.12461160868406296, -0.18503183126449585, -0.12734010815620422, -0.07223068922758102, -0.017763860523700714, 0.012944813817739487, 0.0286748968064785, -0.053581759333610535, -0.0493553951382637, -0.05069447681307793, 0.062188487499952316, -0.03501246124505997, -0.10187722742557526, -0.020929820835590363, 0.07106571644544601, -0.03721807152032852, -0.09989766031503677, 0.031793493777513504, 0.019920535385608673, -0.13244539499282837, 0.0369296669960022, 0.04042903333902359, 0.16643241047859192, 0.031023461371660233, 0.0010033644502982497, 0.07618854194879532, -0.04928405582904816, 0.04550120607018471, -0.09547102451324463, 0.1339881271123886, 0.07658464461565018, -0.02376474253833294, 0.08577729761600494, 0.05992034077644348, 0.03802983835339546, -0.013479459099471569, -0.00741078145802021, 0.08252701163291931, -0.03207170218229294, -0.10196507722139359, 0.01744784601032734, -0.034362807869911194, 0.04132366552948952, 0.11738548427820206, 0.03105354495346546, 0.07218461483716965, 0.030958201736211777, -0.07703925669193268, -0.011588596738874912, 0.16004875302314758, 0.09279847145080566, 0.05068345367908478, -0.010696878656744957, 0.02307371236383915, -0.012745912186801434, -0.02113366313278675, 0.09347096085548401, 0.06255519390106201, 0.127706840634346, -0.04232053831219673, 0.08574071526527405, 0.06243503466248512, -0.04886920750141144, 0.03199455887079239, 0.09608809649944305, 0.042341846972703934, 0.048537179827690125, -0.0647246241569519, -0.069090336561203, 0.026008009910583496, 0.12746940553188324, 0.06126168370246887, -0.021594924852252007, 0.0514756515622139, -0.049070488661527634, 0.053805477917194366, 0.0890427902340889, -0.057078853249549866, -0.20000053942203522, 0.06598206609487534, 0.07676377147436142, 0.01911006309092045, -0.07393345236778259, 0.027274366468191147, -0.08015337586402893, -0.12624676525592804, 0.1419331282377243, -0.04026399925351143, 0.05618320405483246, -0.031650107353925705, -0.05799945443868637, 0.06508958339691162, 0.11421672999858856, -0.03640464320778847, 0.053859956562519073, -0.16993413865566254, -0.0028283409774303436, 0.011710532009601593, 0.02529461309313774, -0.05785670503973961, -0.007255401462316513, 0.09968656301498413, -0.12187546491622925, 0.10064544528722763, -0.036646079272031784, -0.0969335064291954, -0.0935864970088005, 0.011930535547435284, -0.014775906689465046, 0.05840790644288063, -0.1051863580942154, 0.15005463361740112, -0.06917901337146759, -0.06494453549385071, -0.062209222465753555, -0.04648399353027344, -0.022477980703115463, -0.15696994960308075, -0.010218990966677666, -0.10577961802482605, 0.07099968194961548, -0.041214410215616226, 0.011419164016842842, -0.1452297568321228, 0.07795307785272598, -0.05459166690707207, -0.07050366699695587, -0.08579936623573303, 0.013944132253527641, 0.11855659633874893, -0.017997168004512787, 0.04153841733932495, -0.06305108219385147, 0.2371360808610916, -0.08726444840431213, -0.07760126143693924, -0.032389216125011444, -0.04395842179656029, -0.15313279628753662, 0.0009960769675672054, 0.12172379344701767, 0.06607431918382645, 0.037985920906066895, 0.0010652777273207903, 0.0701897144317627, 0.032746706157922745, -0.08944980055093765, 0.09539735317230225, 0.07168793678283691, 0.03101334534585476, -0.017514776438474655, 0.008030666038393974, 0.019788915291428566, -0.10671461373567581, 0.06741040199995041, 0.023141736164689064, 0.23625944554805756, -0.07974837720394135, 0.1051061674952507, -0.09686210751533508, -0.015340641140937805, -0.20230962336063385, -0.08959078788757324, -0.047636061906814575, -0.07089950889348984, 0.025580117478966713, -0.11362031102180481, 0.05583704262971878, 0.014833265915513039, -0.019196009263396263, 0.20698869228363037, -0.12587271630764008, -0.09304993599653244, 0.001571766333654523, 0.07858449965715408, -0.1938905417919159, -0.1630343198776245, -0.03149036318063736, -0.004990610294044018, -0.10897413641214371, 0.059230778366327286, 0.03657939285039902, 0.03749068081378937, -0.050340913236141205, 0.0631486251950264, 0.013423026539385319, -0.037812523543834686, 0.16931597888469696, -0.09697306156158447, 0.06721089780330658, -0.05894190073013306, -0.05556374043226242, 0.12050394713878632, -0.04188216105103493, -0.010372171178460121, -0.037512652575969696, -0.03869517520070076, -0.0650193840265274, 0.009103799238801003, -0.01721031405031681, 0.026197372004389763, -0.06493490934371948, 0.021737171337008476, -0.11945012956857681, 0.0783010870218277, -0.025787005200982094, -0.0028899102471768856, 0.03986288234591484, -0.01595618948340416, 0.11316515505313873, 0.033987320959568024, 0.06733908504247665, 0.058868180960416794, -0.12042763829231262, 0.008716349489986897, 0.0012172451242804527, 0.029092146083712578, 0.009273571893572807, 0.03592429310083389, 0.07552649825811386, 0.06840544939041138, 0.053215593099594116, 0.06875114142894745, -0.16042599081993103, 0.030710995197296143, 0.08797552436590195, -0.05949205160140991, -0.15522846579551697, 0.009188318625092506, -0.007172601297497749, -0.035271406173706055, -0.15152765810489655, 0.01600334793329239, 0.05354810878634453, -0.05764586478471756, 0.07438889145851135, 0.04813273623585701, 0.047026626765728, -0.0156662967056036, -0.01716330088675022, 0.05961329862475395, -0.13824382424354553, 0.146174818277359, 0.002337909769266844, -0.0340917706489563, -0.0005429115262813866, 0.17107374966144562, -0.04532601311802864, -0.03236255422234535, 0.039114825427532196, 0.11603540927171707, 0.0016654889332130551, -0.05814401060342789, -0.032013189047575, -0.11393432319164276, 0.10066553205251694, 0.07805687934160233, 0.06092570722103119, -0.011840049177408218, 0.06751039624214172, 0.04642714187502861, -0.06274619698524475, 0.10705002397298813, 0.01249826792627573, 0.007990065030753613, -0.08471057564020157, -0.04994784668087959, 0.04541703686118126, -0.07979466766119003, -0.0128783592954278, 0.011200116015970707, -0.07504363358020782, 0.02061050944030285, -0.06440842896699905, 0.05068428814411163, -0.15326708555221558, -0.012655537575483322, -0.018161585554480553, 0.012048449367284775, -0.01733422465622425, -0.004847266245633364, -0.09175649285316467, -0.11433283239603043, -0.011554695665836334, 0.07162268459796906, -0.1953113079071045, -0.003946736920624971, 0.10186076164245605, -0.11213473975658417, -0.002569005824625492, 0.03063095360994339, 0.01590721867978573, 0.054335739463567734, -0.09872081875801086, -0.09251003712415695, 0.009380172938108444, 0.02266753651201725, 0.019344381988048553, -0.1360326111316681, -0.01663799397647381, -0.04737652838230133, -0.08562880754470825, -0.006946170702576637, -0.00847865641117096, -0.06733191758394241, 0.0794220119714737, -0.04997037723660469, -0.03835095837712288, -0.023601874709129333, 0.024392060935497284, 0.22383956611156464, 0.015287197194993496, 0.06924480944871902, -0.0010344201000407338, 0.06246696040034294, -0.16009709239006042, 0.005887102335691452, 0.004371441900730133, -0.06677559018135071, -0.04376867786049843, -0.004612426273524761, 0.03509896248579025, -0.026001401245594025, 0.0782889574766159, -0.029717501252889633, 0.004977838136255741, 0.016043955460190773, 0.05363566800951958, -0.012814346700906754, 0.03623867407441139, 0.07584695518016815, -0.006287961732596159, 0.0076025621965527534, 0.09501274675130844, 0.02542431838810444, -0.00026310066459700465, -0.15335223078727722, 0.12475235760211945, 0.05669238790869713, -0.0034590328577905893, 0.02355547994375229, 0.013794511556625366, -0.09101000428199768, -0.10996876657009125, 0.23920907080173492, 0.021258115768432617, -0.0268576517701149, -0.059954289346933365, 0.14003752171993256, 0.214437797665596, -0.22269657254219055, 0.08234722167253494, 0.013695930130779743, 0.024114597588777542, -0.054729659110307693, -0.056122343987226486, -0.1180589497089386, -0.10732357203960419, 0.06045934185385704, -0.09228683263063431, 0.14667779207229614, -0.07063864916563034, 0.023877739906311035, 0.05965559929609299, 0.03489665314555168, -0.05501185730099678, -0.037088170647621155, -0.020038019865751266, 0.020456941798329353, -0.06402456015348434, 0.1596757173538208, -0.00483765359967947, 0.08190368860960007, -0.043168261647224426, 0.06291613727807999, 0.03539181873202324, -0.01452706940472126, 0.05942166969180107, -0.0970427393913269, -0.043960265815258026, 0.02406969852745533, -0.021889235824346542, 0.008970825932919979, 0.07855602353811264, 0.06127773970365524, -0.026781871914863586, -0.02851041406393051, 0.14015093445777893, -0.02175280824303627, -0.08151620626449585, -0.054280735552310944, 0.10632781684398651, -0.015419582836329937, -0.05294907093048096, 0.003443522844463587, -0.12235289067029953, -0.004463948775082827, 0.17651094496250153, 0.10288434475660324, 0.039308466017246246, -0.010306834243237972, -0.016160035505890846, 0.03316201642155647, 0.016416504979133606, 0.03140943497419357, 0.06633688509464264, 0.06490170955657959, -0.10217667371034622, -0.05157305672764778, -0.07213946431875229, -0.09049320220947266, -0.011970313265919685, 0.06991714239120483, 0.060892798006534576, -0.03647301346063614, -0.012423434294760227, 0.07992248237133026, -0.09898396581411362, -0.21809709072113037, 0.006136005744338036, -0.043485041707754135, -0.06940450519323349, 0.018671900033950806, 0.07565707713365555, -0.06611000001430511, 0.04630177095532417, 0.04563207924365997, -0.004799483343958855, 0.06632009893655777, 0.022614935413002968, -0.1653631180524826, 0.013791034929454327, 0.04694069176912308, -0.07877032458782196, 0.1896812468767166, -0.04531338810920715, -0.018341481685638428, 0.0856526717543602, -0.011943678371608257, -0.061028093099594116, 0.052071645855903625, 0.06098291650414467, -0.09182123839855194, 0.02400902658700943, 0.2210841327905655, 0.027426043525338173, 0.09333977848291397, 0.05490824207663536, -0.06596803665161133, 0.09767384082078934, 0.060323797166347504, -0.09416138380765915, -0.04361063614487648, 0.11113274097442627, -0.1448400765657425, 0.12444309145212173, 0.15154947340488434, -0.01042647659778595, 0.07269050925970078, -0.06513785570859909, 0.02802140824496746, 0.01065089087933302, 0.12058724462985992, -0.0010113881435245275, -0.059025950729846954, -0.015942882746458054, -0.08110630512237549, -0.011546991765499115, -0.1760648638010025, -0.039908792823553085, -0.07372182607650757, -0.04298028349876404, -0.04940276965498924, 0.09466634690761566, 0.04248925670981407, 0.010091601870954037, -0.023467298597097397, -0.14175792038440704, 0.024593086913228035, 0.12654593586921692, -0.14372731745243073, 0.05347004532814026 ]
null
null
diffusers
# Gildenface XL – Headshot LoRA <Gallery /> ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="https://civitai.com/models/181092?modelVersionId=203235">Caricature XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use `Gildenface portrait photo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gildenface-xl-headshot-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gildenface-xl-headshot-lora', weight_name='GildenfaceXL_Headshot_LoRA_v1.safetensors') image = pipeline('candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=True", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Gildenface portrait photo", "widget": [{"text": "gildenface portrait photography of jabba the hutt, close up photo, professional, breathtaking, close-up on face, highly detailed skin, visible skin pores, dark, gritty", "output": {"url": "3277226.jpeg"}}, {"text": "gildenface portrait photography of a troll from the movie troll hunter", "output": {"url": "3277704.jpeg"}}, {"text": "gildenface portrait of a surprised shocked zombie at a birthday party, highly detailed texture, sharp focus, party hat", "output": {"url": "3277754.jpeg"}}, {"text": "gildenface breathtaking portrait photo inspired by an epic scene from the movie total recall, 1990s, sci-fi, professional, by bruce gilden", "output": {"url": "3277371.jpeg"}}, {"text": "Gildenface close up portrait of real life luigi from (super mario bros:0.5), disgusted", "output": {"url": "3277428.jpeg"}}, {"text": "Gildenface close up portrait of real life super mario, disgusted", "output": {"url": "3277429.jpeg"}}, {"text": "obese (cthulhu:1.4), gildenface style photo, close up on face, detailed skin texture, by bruce gilden", "output": {"url": "3277426.jpeg"}}, {"text": "rusty cast-iron (robot:1.4), gildenface style photo, close up on face, detailed skin texture", "output": {"url": "3277421.jpeg"}}, {"text": "Gildenface close up portrait of real life pikachu by bruce gilden", "output": {"url": "3277419.jpeg"}}, {"text": "candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,", "output": {"url": "3277870.jpeg"}}]}
text-to-image
WizWhite/gildenface-xl-headshot-lora-0
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:21:42+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Gildenface XL – Headshot LoRA <Gallery /> ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="URL XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use 'Gildenface portrait photo' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gildenface XL – Headshot LoRA \n\n<Gallery />", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Gildenface XL – Headshot LoRA \n\n<Gallery />", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 79, 15, 397, 22, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Gildenface XL – Headshot LoRA \n\n<Gallery />## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>" ]
[ 0.009023134596645832, -0.007775709964334965, -0.008708435110747814, 0.028234228491783142, 0.05485158413648605, 0.01186742540448904, 0.007979660294950008, 0.12476777285337448, 0.06860379874706268, 0.15048125386238098, -0.004020425025373697, 0.029921451583504677, 0.09452006220817566, 0.03608611226081848, 0.05020289123058319, -0.2815256118774414, -0.028606487438082695, -0.059424154460430145, 0.07328429073095322, 0.07944466918706894, 0.09245829284191132, -0.0357317291200161, 0.07239671051502228, -0.024386845529079437, -0.03315422683954239, -0.001709327450953424, -0.013173998333513737, 0.0012889300705865026, 0.03093368001282215, 0.09083019942045212, -0.011581233702600002, -0.006213558837771416, 0.004392536822706461, -0.31842711567878723, 0.024800606071949005, 0.06633557379245758, -0.08828631043434143, 0.0341142863035202, 0.13172896206378937, -0.09028703719377518, 0.14241091907024384, -0.21793556213378906, 0.047487568110227585, 0.04492688924074173, -0.13918845355510712, -0.23012441396713257, -0.03260325640439987, 0.0680491253733635, 0.08064771443605423, -0.006376869045197964, -0.048943351954221725, -0.04250860586762428, -0.09019830077886581, 0.0867840126156807, 0.2587759494781494, -0.1449502557516098, -0.07224591821432114, -0.06087407097220421, 0.050245314836502075, -0.047766633331775665, -0.15732485055923462, 0.058676257729530334, -0.056732624769210815, 0.016501329839229584, 0.06857626140117645, 0.017823588103055954, 0.0998029112815857, -0.014021900482475758, -0.06744194030761719, 0.003982570022344589, 0.0013768180506303906, 0.0934537947177887, -0.04286143183708191, -0.26173895597457886, -0.06734137237071991, 0.030275236815214157, -0.09993965178728104, -0.055160414427518845, 0.031075866892933846, 0.014512576162815094, -0.07305706292390823, -0.05838737264275551, -0.02240845374763012, 0.024708129465579987, 0.002641830127686262, 0.06266890466213226, 0.012992584146559238, -0.02385600470006466, 0.054640285670757294, 0.038686174899339676, -0.020434075966477394, -0.12758882343769073, -0.008111018687486649, -0.05848441272974014, -0.09705565869808197, 0.03784957528114319, 0.00384637457318604, 0.05421316623687744, 0.10948150604963303, 0.26610466837882996, 0.11196964979171753, 0.05115309730172157, -0.12764137983322144, 0.013134107924997807, -0.012291834689676762, 0.11227824538946152, -0.03521455451846123, -0.18580378592014313, -0.03078591451048851, -0.015045713633298874, 0.050437081605196, -0.051808640360832214, 0.0012369727483019233, -0.011762788519263268, 0.038363732397556305, 0.010546109639108181, 0.09072783589363098, 0.015047607943415642, -0.07901549339294434, -0.020576374605298042, 0.18041162192821503, -0.10137984156608582, 0.05242675170302391, 0.052688535302877426, -0.03517390042543411, -0.04156980291008949, 0.003241939004510641, 0.028637347742915154, 0.016508469358086586, 0.07369493693113327, -0.06027200073003769, -0.036207206547260284, -0.053985096514225006, -0.056397806853055954, 0.01390773430466652, -0.02398194745182991, -0.05139122158288956, -0.029969945549964905, -0.007021624129265547, -0.07280732691287994, 0.02550102211534977, -0.13718067109584808, 0.0006269682198762894, -0.023710746318101883, -0.049851447343826294, 0.05803954601287842, 0.07496968656778336, 0.05498000606894493, -0.024373073130846024, 0.08318156749010086, -0.018442558124661446, 0.09814505279064178, 0.13251617550849915, 0.016287468373775482, -0.03869287297129631, 0.05078575760126114, -0.21035702526569366, 0.12546876072883606, -0.0932590439915657, 0.005518896970897913, -0.07887714356184006, -0.06325636804103851, -0.05378846824169159, -0.0060210381634533405, -0.012643208727240562, 0.09752010554075241, -0.15599803626537323, -0.0942847952246666, 0.262312650680542, -0.06868337839841843, 0.044894274324178696, 0.1303393691778183, -0.013693125918507576, -0.04023691266775131, 0.06366295367479324, 0.16400164365768433, 0.03929061442613602, -0.12342815846204758, 0.006136992480605841, -0.019260937348008156, -0.05639924854040146, 0.2562532126903534, 0.055457860231399536, -0.09702194482088089, 0.07015165686607361, 0.050361517816782, -0.006252211984246969, 0.017750361934304237, -0.017899679020047188, -0.019398648291826248, 0.03596149757504463, 0.036008965224027634, 0.1326911300420761, 0.015677014365792274, -0.11888934671878815, -0.05495525896549225, -0.1853657215833664, -0.08747060596942902, 0.019937489181756973, 0.010821298696100712, 0.022582344710826874, -0.10283467173576355, 0.02961059845983982, 0.10611896216869354, -0.0156870000064373, -0.07540104538202286, -0.11359941214323044, 0.01269474159926176, -0.04337390139698982, 0.07776769995689392, -0.054553475230932236, 0.08787793666124344, 0.057483647018671036, -0.08148965239524841, 0.009143329225480556, -0.026021165773272514, -0.040918443351984024, -0.02120865508913994, -0.16683249175548553, 0.021548748016357422, -0.028242770582437515, 0.1573379635810852, -0.07697544991970062, -0.0022082943469285965, 0.12059751898050308, 0.133914977312088, 0.12221334874629974, -0.063648521900177, 0.009495191276073456, -0.05886998400092125, 0.041139524430036545, -0.02684847079217434, 0.05031377449631691, -0.05259363725781441, -0.03371342271566391, 0.037128739058971405, -0.12230316549539566, -0.06552129983901978, 0.07523234933614731, -0.025981076061725616, -0.11062188446521759, -0.09308448433876038, -0.05801929160952568, -0.024883337318897247, -0.03061484545469284, -0.04403167590498924, 0.056210957467556, 0.03959504887461662, 0.006449169013649225, -0.02124565653502941, -0.04389936476945877, -0.018542258068919182, -0.00948290340602398, -0.062449268996715546, 0.0747363492846489, 0.0006630430580116808, -0.12289918959140778, 0.013688202947378159, 0.039327338337898254, 0.0783778503537178, 0.14463494718074799, 0.07158350944519043, -0.06518483906984329, -0.07658439874649048, 0.04608123376965523, 0.04964451491832733, 0.039585817605257034, -0.08771742880344391, 0.02700696885585785, 0.044485945254564285, -0.0564911812543869, 0.0004417461168486625, -0.06763439625501633, 0.00952695682644844, -0.023845508694648743, -0.02171151526272297, 0.10750921815633774, 0.0652199238538742, 0.03374436870217323, 0.07130540162324905, 0.08311936259269714, 0.006496455520391464, -0.049897853285074234, -0.059102028608322144, -0.01687074452638626, 0.07025312632322311, -0.09060198068618774, -0.21176959574222565, -0.09102252125740051, -0.10720913857221603, -0.0661773681640625, 0.027428172528743744, 0.027071433141827583, -0.1001269668340683, -0.04228207841515541, -0.030130716040730476, 0.0746181383728981, 0.08412695676088333, -0.06382189691066742, -0.0877213403582573, 0.021626798436045647, 0.020581379532814026, -0.08795252442359924, -0.004870633594691753, -0.041567377746105194, -0.09199921786785126, 0.016443345695734024, -0.008056147955358028, 0.12789885699748993, 0.031745608896017075, 0.07408909499645233, -0.0069862729869782925, -0.029208941385149956, 0.2111547589302063, -0.1427881121635437, 0.09048429876565933, 0.10588905960321426, 0.03699970990419388, 0.11456599831581116, 0.19969290494918823, 0.04150960594415665, -0.09591849893331528, 0.029429854825139046, 0.13064132630825043, -0.01733451709151268, -0.07668455690145493, -0.060066528618335724, -0.02870207652449608, -0.027546336874365807, 0.0697561725974083, 0.0836433470249176, 0.038094136863946915, 0.012023388408124447, -0.07758744806051254, -0.04495398327708244, 0.1616831123828888, 0.10203514993190765, 0.13413628935813904, -0.008161203935742378, 0.09576039016246796, 0.0344577357172966, -0.059584517031908035, 0.08519700169563293, -0.04427926614880562, 0.12472569197416306, 0.005875834263861179, 0.11819693446159363, 0.09908051788806915, 0.09241197258234024, 0.009959638118743896, -0.12597371637821198, -0.02524968795478344, -0.004175601527094841, -0.024913711473345757, -0.08278920501470566, 0.021081281825900078, 0.04019419476389885, 0.1073637306690216, -0.09031005203723907, 0.04338837414979935, -0.020260825753211975, 0.12180380523204803, 0.10065271705389023, 0.0374041311442852, -0.05990171432495117, 0.04038386791944504, 0.06484769284725189, -0.03511408716440201, -0.09140191227197647, -0.017125776037573814, 0.024674873799085617, -0.13822685182094574, 0.11491963267326355, -0.04700540006160736, 0.077638179063797, -0.0874934196472168, -0.02094496600329876, 0.07246240973472595, 0.060018282383680344, 0.03803121671080589, 0.06071638688445091, -0.05880620330572128, 0.08622265607118607, 0.01304768305271864, 0.011248169466853142, -0.008224695920944214, 0.038542184978723526, 0.04489706829190254, -0.03438765928149223, 0.17947156727313995, 0.004408837296068668, -0.08230026811361313, -0.06295615434646606, 0.012052706442773342, -0.026845606043934822, 0.21983002126216888, -0.12391571700572968, 0.06182542070746422, -0.04173026606440544, -0.07955366373062134, -0.05423415079712868, 0.0860595554113388, -0.16887012124061584, -0.1385667622089386, 0.03364931046962738, -0.1706298142671585, 0.05799480900168419, -0.05138044059276581, 0.022113535553216934, -0.15278176963329315, 0.18205341696739197, -0.12171842157840729, -0.041151437908411026, -0.10306008905172348, 0.026437023654580116, 0.07564030587673187, -0.08846777677536011, 0.02450713887810707, 0.015140952542424202, 0.17028261721134186, -0.0050714206881821156, -0.030895626172423363, 0.061272237449884415, -0.008400059305131435, -0.14296577870845795, -0.039199236780405045, 0.1656838059425354, 0.060730356723070145, 0.011267850175499916, 0.01229873951524496, 0.07613468170166016, -0.026697667315602303, -0.08079825341701508, 0.15305796265602112, 0.0018508350476622581, -0.08002305775880814, 0.0674433708190918, -0.04199047386646271, -0.11808443814516068, -0.11103323847055435, 0.04114481806755066, 0.07513409107923508, 0.1910858154296875, -0.07773622125387192, 0.14933161437511444, 0.06671229004859924, -0.06200431287288666, -0.17053526639938354, -0.00462889950722456, 0.07175679504871368, -0.026464801281690598, 0.03008960746228695, -0.21480979025363922, 0.07348926365375519, 0.03707927092909813, -0.013399212621152401, 0.04857919365167618, -0.20708242058753967, -0.13774985074996948, -0.030873294919729233, 0.02623920328915119, -0.2097390741109848, -0.11009810119867325, -0.12339924275875092, -0.08425368368625641, -0.13345853984355927, 0.04309475049376488, 0.007308689411729574, 0.05782913416624069, 0.015080164186656475, -0.04081886261701584, 0.03440746292471886, 0.01671459525823593, 0.17496724426746368, -0.04498029500246048, 0.07588881999254227, -0.11652841418981552, -0.06303510069847107, 0.02488202415406704, 0.004353690426796675, -0.021551810204982758, -0.0038596929516643286, -0.028477612882852554, -0.05216067656874657, -0.03403083235025406, -0.10887543112039566, 0.04046960175037384, -0.05479118973016739, -0.04326784238219261, -0.04929236322641373, 0.07638711482286453, 0.07398340851068497, -0.0050759222358465195, -0.005438902415335178, -0.13654278218746185, 0.1408873349428177, -0.009539404883980751, 0.02559281885623932, 0.03733734041452408, -0.17371709644794464, -0.053641628473997116, 0.010220726020634174, 0.005490767769515514, -0.030794557183980942, 0.05410458892583847, 0.04321828857064247, 0.02375786565244198, 0.13671237230300903, -0.03353327140212059, -0.05871058255434036, 0.0116267129778862, 0.12805694341659546, -0.023241328075528145, -0.17498116195201874, -0.010022866539657116, -0.03728342428803444, -0.10329509526491165, -0.14455193281173706, 0.07381628453731537, 0.1126900315284729, -0.06263761222362518, 0.033525414764881134, 0.10348861664533615, 0.04703060910105705, -0.04732397198677063, 0.039798520505428314, 0.02251841314136982, -0.08051810413599014, -0.007711444981396198, 0.10634420812129974, -0.08808969706296921, -0.0440722294151783, 0.16273874044418335, -0.04646208882331848, -0.03711305186152458, -0.0005939576658420265, 0.11337187886238098, 0.0761716291308403, 0.04748310521245003, 0.03063160367310047, -0.056932371109724045, 0.016940614208579063, 0.03325386717915535, 0.023061340674757957, -0.028052890673279762, 0.04200837016105652, 0.04047396034002304, 0.03457947447896004, 0.10299765318632126, 0.015151627361774445, 0.017494700849056244, -0.0009560867911204696, -0.010437450371682644, 0.028286872431635857, -0.0014783019432798028, -0.020010368898510933, -0.02482006326317787, -0.0340888537466526, -0.030576067045331, -0.07032797485589981, 0.035910528153181076, -0.0636162981390953, 0.019550370052456856, -0.03007735311985016, 0.04184519872069359, -0.02056477777659893, -0.03660732880234718, -0.0604061558842659, -0.08811289072036743, 0.014437466859817505, 0.057758402079343796, -0.18712814152240753, 0.008365879766643047, 0.15442350506782532, -0.08900099247694016, 0.08767695724964142, -0.051747798919677734, -0.017667362466454506, -0.001563277910463512, -0.11510249227285385, -0.0862477719783783, -0.013159962370991707, -0.03394702821969986, -0.04156167432665825, -0.1255837380886078, 0.047643452882766724, -0.10366419702768326, -0.0750393271446228, 0.020429814234375954, 0.053871940821409225, -0.139014333486557, 0.09202393889427185, -0.025643309578299522, -0.08678238093852997, -0.0912197008728981, 0.05681797116994858, -0.001823430065996945, -0.0007782082539051771, 0.027759335935115814, -0.08009672164916992, 0.049764737486839294, -0.13990728557109833, -0.001206273795105517, 0.01221583690494299, -0.017624273896217346, 0.03792620450258255, -0.01750214211642742, 0.06155164912343025, 0.018919987604022026, 0.06682268530130386, 0.044442322105169296, -0.0009519563755020499, 0.023053830489516258, 0.09682033956050873, -0.09066563099622726, -0.0029245438054203987, -0.01011650636792183, -0.010012639686465263, -0.03433932736515999, 0.07685692608356476, -0.041691672056913376, -0.048701126128435135, -0.05915539339184761, 0.061837244778871536, 0.15969134867191315, 0.1436925083398819, -0.053474780172109604, 0.08218839019536972, -0.09908808767795563, -0.1349148452281952, 0.12673264741897583, -0.007350896019488573, 0.06819947063922882, -0.08784724771976471, 0.061687346547842026, 0.13206470012664795, -0.16365228593349457, 0.1422751098871231, 0.02353736385703087, -0.04149258881807327, -0.036507006734609604, -0.19751259684562683, -0.08506256341934204, 0.0009394190274178982, 0.06613217294216156, -0.054286640137434006, 0.03521153703331947, 0.06465686857700348, -0.03526289388537407, 0.03193596005439758, 0.06907404959201813, -0.13239453732967377, -0.12034619599580765, 0.08257759362459183, 0.0167425274848938, 0.0018127723596990108, 0.03321308270096779, 0.027018774300813675, 0.006323766428977251, 0.04888682812452316, 0.04268651828169823, 0.02842220477759838, 0.0005939573748037219, -0.028633568435907364, -0.138913094997406, -0.0676855742931366, 0.04316820576786995, 0.0010810275562107563, -0.031720396131277084, 0.1745319664478302, 0.04438216611742973, 0.01600014604628086, -0.038292549550533295, 0.2623443901538849, -0.05603456869721413, -0.027029244229197502, -0.10106422007083893, -0.02203158475458622, -0.011574006639420986, 0.06614945083856583, -0.0393342450261116, -0.09393982589244843, 0.05103219673037529, 0.0897851437330246, 0.13362951576709747, -0.014112364500761032, 0.04248729720711708, 0.1036326065659523, 0.02465273067355156, 0.0432085357606411, -0.002289771568030119, 0.03755287826061249, 0.24095742404460907, -0.06596308201551437, 0.062030937522649765, 0.03513467684388161, -0.08441458642482758, -0.06682242453098297, 0.051668573170900345, 0.006259899120777845, 0.029846012592315674, -0.09342694282531738, 0.13422814011573792, -0.013941334560513496, -0.1562134176492691, 0.1392211616039276, -0.09648507088422775, -0.10014133900403976, -0.026263121515512466, 0.03673556447029114, 0.042363137006759644, 0.0860496535897255, 0.06966596841812134, -0.027363592758774757, 0.09488938003778458, 0.0360184870660305, -0.04903939366340637, 0.026384523138403893, 0.04347624257206917, -0.04712199792265892, 0.18678025901317596, -0.005884969141334295, 0.04675586149096489, 0.11080075055360794, -0.024406172335147858, -0.025197312235832214, 0.0012993630953133106, 0.04506203532218933, -0.10550849884748459, 0.010821986012160778, 0.23762694001197815, 0.005963252391666174, -0.00023872236488386989, 0.14860036969184875, -0.0036661941558122635, 0.08476994931697845, -0.011960148811340332, -0.046399492770433426, -0.03763195499777794, 0.15820899605751038, -0.1666315346956253, 0.04042606055736542, 0.16275998950004578, 0.0309093426913023, -0.03996913507580757, -0.06643091887235641, -0.0704197883605957, 0.04907107353210449, 0.1291457563638687, -0.05080186948180199, -0.03738027438521385, 0.012190882116556168, 0.08074672520160675, 0.04130220785737038, -0.13995958864688873, -0.17812901735305786, 0.048476386815309525, 0.02435963600873947, -0.041649412363767624, 0.14772285521030426, 0.08218112587928772, -0.03020939975976944, -0.017384791746735573, -0.23276689648628235, 0.036997247487306595, 0.11519673466682434, -0.12089184671640396, 0.05497274920344353 ]
null
null
diffusers
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)">✝</span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use `GVASA`, `wearing a hat` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden', weight_name='GUSTAV_VASA-000002.safetensors') image = pipeline('`GVASA`, `wearing a hat`').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=False&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "GVASA", "widget": [{"text": "hyperrealistic portrait photograph of a laughing (gvasa:1.5) dressed in a santa outfit, shot on sony a7, studio lighting", "output": {"url": "4712224.jpeg"}}, {"text": "The cover of the vintage comic book (titled \"THE DANE SLAYER\":1.2) features an illustration of GVASA riding a giant white (moose), by michael whelan and gerald brom", "output": {"url": "4712162.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA:1.4) Riding public transport, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712165.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA GVASA:1.3) Setting the dinner table, shot on sony a7, 50mm, highly detailed, filmic, soft lighting, insane detail, atmospheric, subsurface skin shading,", "output": {"url": "4712166.jpeg"}}, {"text": "hyperrealistic action photograph of (GVASA wearing a hat:1.4) walking a corgi in stockholm old town gamla stan, shot on sony a7, 50mm, highly detailed, natural lighting,", "output": {"url": "4712167.jpeg"}}, {"text": "sven nordqvist style (GVASA:1.3) hiding in a haystack", "output": {"url": "4712238.jpeg"}}, {"text": "vintage safety matches, (title logo \"REFORMATION\":1.5), (GVASA:1.3) wearing a hat, \"made by gustav vasa\"", "output": {"url": "4712408.jpeg"}}, {"text": "gvasa in a felt puppet world style", "output": {"url": "4712428.jpeg"}}, {"text": "breathtaking photo of gvasa (gvasa:1.4) dressed as a cyberpunk, urban neon tokyo background at night, long beard and pageboy hair", "output": {"url": "4712579.jpeg"}}, {"text": " ", "output": {"url": "4713481.jpeg"}}]}
text-to-image
WizWhite/gustav-vasa-1496-1560-historical-king-of-sweden-2
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "character", "royalty", "historical", "king", "sweden", "swedish", "house of vasa", "vasa", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:22:23+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Gustav Vasa (1496 – 1560) – Historical king of Sweden <Gallery /> ## Model description <h3 id="heading-232">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style="color:rgb(250, 176, 5)"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like "large beard" or "pageboy hair" to see if it helps.</p> ## Trigger words You should use 'GVASA', 'wearing a hat' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />", "## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>", "## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 94, 20, 336, 24, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #character #royalty #historical #king #sweden #swedish #house of vasa #vasa #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Gustav Vasa (1496 – 1560) – Historical king of Sweden \n\n<Gallery />## Model description\n\n<h3 id=\"heading-232\">Gustav Vasa – Founding Father of the Swedish Nation <strong><span style=\"color:rgb(250, 176, 5)\"></span></strong></h3><p><strong>Gustav I</strong> (born Gustav Eriksson of the Vasa noble family, (12 May 1496 – 29 September 1560), commonly känd som <strong>Gustav Vasa</strong>, was King of Sweden från 1523 until his död in 1560. Led Sweden's war för independence against Denmark.</p><p><strong>Triggerword: </strong><u>GVASA</u></p><p>Trained on portrait paintings, engravings and statues – but fully capable of generating photo-like images, illustrations, comic style etcetera. </p><p></p><p><strong>Notes:</strong></p><p>• Biased towards a slightly sideway facing portrait with a black coat.</p><p>• Longer prompt tend to lose some resemblance – you can combat this by increasing the LoRA weight, adding some more weight to the trigger word, or just duplicating the trigger word like so: <strong><em><u>(GVasa GVasa:1.3)</u></em></strong>. You can also add words like \"large beard\" or \"pageboy hair\" to see if it helps.</p>## Trigger words\nYou should use 'GVASA', 'wearing a hat' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab." ]
[ 0.012717844918370247, 0.0371529720723629, -0.0066659534350037575, 0.11249786615371704, 0.04225501790642738, 0.012256767600774765, 0.0421113483607769, 0.0784948393702507, 0.04019871726632118, 0.10369378328323364, 0.0796005129814148, -0.002692983252927661, 0.11595098674297333, -0.09132442623376846, 0.07554394006729126, -0.28408244252204895, 0.05389674752950668, -0.08298446238040924, -0.06988949328660965, 0.04652348533272743, 0.09091489017009735, -0.012928164564073086, 0.037218980491161346, -0.04183662310242653, 0.08783798664808273, 0.005785414949059486, -0.04517302289605141, 0.018526755273342133, 0.06457188725471497, 0.06143207103013992, 0.016819842159748077, 0.06529201567173004, 0.05266645923256874, -0.15475967526435852, 0.005502436310052872, 0.032450299710035324, -0.04809965193271637, -0.025976568460464478, 0.09847093373537064, -0.03986227512359619, 0.1369038075208664, -0.11485540866851807, -0.03265029564499855, 0.011952199973165989, -0.05755671486258507, -0.21988655626773834, -0.05509188026189804, 0.06905684620141983, 0.11821073293685913, -0.01501986850053072, -0.0754329264163971, -0.0561990961432457, 0.02018461748957634, 0.011421862989664078, 0.19400270283222198, -0.20950907468795776, -0.07643061131238937, 0.16596472263336182, 0.06111634150147438, 0.07021567225456238, -0.0976482406258583, 0.10679681599140167, -0.006900938693434, 0.030671125277876854, 0.0659574419260025, -0.05886857211589813, 0.09118591248989105, -0.006307800300419331, -0.11194804310798645, 0.016164246946573257, 0.20043450593948364, 0.04296509921550751, -0.015396450646221638, -0.12738126516342163, -0.0067059919238090515, 0.0990285873413086, -0.032695114612579346, -0.06551991403102875, 0.05082995444536209, 0.014191877096891403, 0.11222518235445023, -0.13885211944580078, -0.12181676179170609, -0.016177130863070488, -0.010859542526304722, 0.04089827090501785, -0.02840382046997547, -0.04885531961917877, 0.11667570471763611, 0.016002288088202477, -0.1601361781358719, -0.13262875378131866, -0.05767400190234184, -0.08999161422252655, -0.09483041614294052, 0.024721931666135788, 0.017178548499941826, -0.14012429118156433, 0.0975833311676979, 0.06867267191410065, -0.024200178682804108, 0.027109557762742043, -0.10377179086208344, 0.06457357853651047, 0.03740866854786873, 0.09723098576068878, -0.14469853043556213, -0.11361241340637207, -0.03750193864107132, -0.01122044213116169, 0.03099895641207695, -0.05645659193396568, -0.06803535670042038, -0.13418923318386078, 0.046306610107421875, -0.014761105179786682, 0.043753452599048615, 0.03605223074555397, -0.03911685571074486, -0.0013729328056797385, 0.07923904806375504, -0.07680018246173859, -0.015240838751196861, 0.004788341466337442, -0.020235782489180565, 0.021374545991420746, 0.01386585459113121, 0.04184405133128166, -0.03161827474832535, 0.1474393904209137, -0.0036768042482435703, -0.012380913831293583, 0.008755587972700596, -0.12686610221862793, 0.037688788026571274, -0.05913971737027168, -0.07074430584907532, -0.07810773700475693, -0.05811448395252228, -0.054152775555849075, 0.0590934194624424, -0.08179700374603271, 0.00502370297908783, -0.0666339173913002, -0.09070538729429245, 0.023018570616841316, 0.03697793558239937, 0.021861199289560318, -0.02843826822936535, 0.026186488568782806, -0.12087062001228333, 0.10490087419748306, 0.06971580535173416, -0.007373201660811901, -0.104161337018013, 0.03050946816802025, -0.27375850081443787, 0.12864285707473755, -0.17684510350227356, -0.015969086438417435, -0.11018896847963333, -0.04840978980064392, -0.018441999331116676, 0.012455275282263756, -0.0082284240052104, 0.14024299383163452, -0.196727454662323, -0.045213732868433, 0.15993599593639374, -0.1241975799202919, -0.024311207234859467, 0.10908044874668121, 0.059061482548713684, 0.016240447759628296, 0.09049873799085617, 0.17446374893188477, 0.005971574690192938, -0.13644319772720337, -0.06318864226341248, 0.018250538036227226, -0.08714956790208817, 0.1930873841047287, 0.10895834863185883, -0.08396778255701065, 0.06486164033412933, 0.03170861303806305, -0.10691945254802704, -0.056323789060115814, 0.042712241411209106, -0.008948614820837975, 0.04805895313620567, -0.0016564906109124422, 0.09556194394826889, 0.06541524082422256, -0.08017650991678238, -0.017465148121118546, -0.08445323258638382, 0.02766062505543232, -0.008660082705318928, -0.06351343542337418, 0.07100464403629303, 0.001629475736990571, 0.10120078921318054, -0.01881757564842701, 0.024289237335324287, -0.04420533776283264, -0.13668307662010193, -0.009998336434364319, 0.019310200586915016, 0.051109906286001205, 0.068700410425663, 0.1000947505235672, 0.1047135442495346, -0.06958618015050888, 0.008900138549506664, 0.0076133087277412415, -0.04406061768531799, 0.005553397350013256, -0.18324775993824005, -0.013792885467410088, -0.046407490968704224, 0.043625395745038986, 0.002128153806552291, -0.024529214948415756, 0.05361903831362724, 0.059300459921360016, 0.005343835335224867, -0.009879780933260918, 0.07232224196195602, -0.02248268947005272, -0.02376670390367508, -0.032713133841753006, 0.05303265526890755, -0.06639057397842407, -0.11230310052633286, 0.12389873713254929, -0.09900368750095367, -0.19579094648361206, 0.09097243845462799, -0.01623300276696682, -0.09395437687635422, -0.009014090523123741, -0.012819336727261543, -0.015983812510967255, -0.03296394646167755, -0.07536415010690689, -0.0373939573764801, 0.10466541349887848, 0.02435363084077835, -0.10107995569705963, -0.010332736186683178, 0.04569356143474579, -0.0880139097571373, -0.09008944779634476, 0.1250114142894745, 0.06091897562146187, -0.133004829287529, 0.05192965641617775, 0.0892258733510971, -0.020388463512063026, 0.2721017301082611, 0.08839118480682373, -0.07517558336257935, -0.03508888930082321, 0.045102234929800034, 0.054900094866752625, 0.09803575277328491, -0.019606972113251686, 0.09931378066539764, 0.03339023515582085, 0.0035922136157751083, -0.05327966809272766, -0.03925437107682228, -0.05435018613934517, -0.028900664299726486, -0.10331174731254578, 0.0896468535065651, 0.10931997746229172, -0.042208682745695114, 0.06872469186782837, 0.038484279066324234, -0.012650031596422195, -0.019823677837848663, -0.0521683469414711, -0.03567002713680267, 0.11039896309375763, -0.10007563978433609, -0.19417652487754822, -0.04641047492623329, -0.021384097635746002, -0.14448124170303345, 0.08191423863172531, 0.05935647711157799, -0.10301616787910461, -0.04800959303975105, -0.0662129670381546, 0.12688224017620087, 0.014189076609909534, -0.07907390594482422, -0.13111448287963867, 0.024972766637802124, -0.006260898895561695, -0.0480649471282959, -0.016608277335762978, -0.03527594730257988, -0.07971245050430298, 0.05218131095170975, 0.02460230514407158, 0.08759140223264694, -0.005532973445951939, 0.04596386477351189, 0.012579400092363358, -0.009794634766876698, 0.1800718605518341, -0.051357202231884, 0.09310282766819, 0.059003595262765884, 0.05442000925540924, 0.13449689745903015, 0.25720664858818054, 0.03284860774874687, -0.03627220168709755, -0.03800176829099655, 0.09102874249219894, -0.06806142628192902, -0.059083595871925354, -0.07278680056333542, -0.05812828987836838, 0.10828951001167297, 0.09761850535869598, 0.051166340708732605, -0.09300531446933746, 0.08580270409584045, -0.08550510555505753, -0.035723328590393066, 0.13704125583171844, 0.07385478168725967, 0.07328183203935623, -0.007592942100018263, 0.036141544580459595, 0.008189190179109573, -0.029547322541475296, 0.08848059922456741, 0.01069346722215414, 0.0428585410118103, -0.013962005265057087, 0.026888499036431313, 0.041280705481767654, 0.12526863813400269, -0.005413524340838194, -0.017153704538941383, -0.01574084348976612, -0.01353474147617817, -0.006827716249972582, -0.10799379646778107, 0.03624248877167702, 0.05869279056787491, 0.05426706001162529, -0.11630681902170181, 0.05483651161193848, 0.017820052802562714, 0.07668676227331161, 0.15005289018154144, 0.05228358507156372, -0.05499205365777016, -0.02347121387720108, 0.06666500121355057, 0.027765611186623573, -0.08191829174757004, -0.04868607968091965, 0.04014753922820091, -0.10798375308513641, 0.18549655377864838, -0.05698810890316963, 0.043910618871450424, 0.0335480198264122, 0.02095220237970352, -0.019673645496368408, 0.023022575303912163, -0.02350682020187378, 0.10804163664579391, -0.10621524602174759, 0.1542041003704071, 0.007932276464998722, 0.032366618514060974, -0.02516297996044159, 0.015507753007113934, 0.04850999265909195, 0.041357941925525665, 0.2857540547847748, 0.017414314672350883, -0.040613193064928055, -0.0581587590277195, -0.0017225000774487853, -0.0037802078295499086, 0.04487351328134537, -0.23025456070899963, 0.06433930993080139, 0.0111621655523777, -0.0266118124127388, -0.08341215550899506, 0.06271883100271225, -0.0926719680428505, -0.04623407870531082, 0.06216134876012802, -0.1515987068414688, 0.06573456525802612, 0.024013454094529152, 0.0008448324515484273, -0.31608879566192627, 0.12071932852268219, -0.139337420463562, -0.16819557547569275, -0.05838048830628395, 0.05759922415018082, 0.05748472735285759, -0.07502027601003647, -0.055811718106269836, -0.015843041241168976, 0.18375371396541595, -0.15114130079746246, -0.008897687308490276, -0.015536102466285229, -0.04482107236981392, -0.14787538349628448, 0.027881892397999763, 0.1223762184381485, 0.07392938435077667, 0.019271966069936752, 0.04255565628409386, 0.06808308511972427, 0.022717662155628204, -0.10223671048879623, 0.1442088484764099, -0.010719210840761662, -0.04708600416779518, -0.005941022653132677, 0.07495926320552826, -0.0989048033952713, -0.07925006002187729, 0.019794892519712448, 0.06017632409930229, 0.344443678855896, -0.07192721962928772, 0.17566783726215363, 0.18398821353912354, -0.05631283298134804, -0.24657876789569855, -0.12835855782032013, 0.046160925179719925, -0.02532382868230343, 0.09931030869483948, -0.17365305125713348, 0.06201351433992386, 0.07536865770816803, -0.030269445851445198, -0.03477022796869278, -0.2149326354265213, -0.13130126893520355, -0.03084391914308071, 0.04191135987639427, -0.09428855776786804, -0.06631656736135483, -0.0529557541012764, -0.08905122429132462, -0.049628846347332, 0.10870227217674255, 0.02142835035920143, 0.0844106450676918, 0.026774227619171143, 0.005555062089115381, 0.04961100220680237, -0.01692456193268299, 0.19319367408752441, -0.025377316400408745, -0.00022649062157142907, -0.15066593885421753, 0.09173630177974701, 0.14325617253780365, -0.029759228229522705, 0.0723419189453125, -0.06720618158578873, -0.08194713294506073, -0.008942893706262112, -0.028536176308989525, -0.09375918656587601, 0.12424858659505844, -0.05082031711935997, -0.0875263661146164, -0.06877690553665161, 0.09821407496929169, 0.10672110319137573, 0.008427530527114868, 0.02263842336833477, -0.13959723711013794, 0.03839908167719841, 0.05914194509387016, 0.13600164651870728, 0.06496396660804749, -0.08570157736539841, -0.021013526245951653, -0.013944611884653568, 0.07467862218618393, -0.09265419840812683, 0.059879813343286514, 0.06807506084442139, 0.0010896906023845077, 0.07168448716402054, -0.040006205439567566, -0.07632139325141907, 0.032974742352962494, 0.0796859934926033, -0.1499616950750351, -0.18279486894607544, 0.0011269388487562537, -0.13329583406448364, 0.023677363991737366, -0.15664580464363098, 0.1420343965291977, -0.03976229950785637, 0.01870049722492695, 0.045313384383916855, 0.05860542505979538, -0.009748914279043674, 0.015720637515187263, -0.02004147879779339, 0.03645709529519081, -0.06184304133057594, 0.12197653949260712, 0.016883186995983124, -0.07543390244245529, 0.05322371423244476, 0.14111144840717316, -0.0797388106584549, -0.06351607292890549, -0.05191846564412117, 0.09033798426389694, -0.10153274983167648, 0.0238217543810606, 0.03253351151943207, -0.043572138994932175, -0.03779982402920723, 0.011194882914423943, 0.04478438198566437, -0.030071333050727844, 0.04944887012243271, 0.00445362227037549, -0.019827425479888916, 0.09455619752407074, 0.037013400346040726, -0.0044698226265609264, -0.06280604749917984, -0.010522103868424892, -0.007501767482608557, 0.03878279775381088, -0.0311603881418705, 0.012218146584928036, 0.014034785330295563, -0.011289806105196476, -0.06782492995262146, 0.03885219618678093, -0.11586153507232666, -0.016778593882918358, -0.03187617287039757, 0.005563416518270969, -0.00151289370842278, -0.050494443625211716, -0.09377171844244003, -0.02689836174249649, -0.029586657881736755, 0.04329565912485123, -0.14887313544750214, -0.04631073772907257, 0.08037565648555756, -0.025792717933654785, 0.08101452887058258, -0.04785686731338501, -0.0002197795402025804, 0.05036027356982231, -0.19134482741355896, 0.00401617307215929, -0.043114885687828064, -0.01974676549434662, -0.02736964263021946, -0.03860379382967949, -0.032001011073589325, -0.06342421472072601, -0.08813868463039398, 0.017264436930418015, -0.026512132957577705, -0.10253577679395676, 0.08888691663742065, 0.0037055136635899544, 0.007353127934038639, -0.05495346337556839, 0.07912711054086685, 0.05507334694266319, 0.08073564618825912, 0.07625966519117355, -0.06075245141983032, 0.0611661858856678, -0.10263443738222122, 0.010830605402588844, 0.03641626983880997, -0.046009279787540436, -0.021466678008437157, -0.01443219743669033, 0.037510085850954056, -0.08195202052593231, -0.012909150682389736, 0.042977191507816315, 0.04956782981753349, 0.025572389364242554, 0.011801239103078842, 0.015530984848737717, 0.00837237760424614, 0.07804829627275467, -0.029139351099729538, 0.011294334195554256, 0.004691693931818008, 0.009336013346910477, -0.023940905928611755, 0.027162428945302963, 0.1032051295042038, 0.02169366553425789, 0.082199826836586, 0.011240472085773945, 0.03286691755056381, 0.00951613299548626, -0.13157977163791656, 0.1962675154209137, 0.03462335467338562, 0.06839774549007416, -0.03208373859524727, 0.0005598698044195771, 0.1697847843170166, -0.15254664421081543, 0.09525090456008911, 0.03041781112551689, -0.022578319534659386, -0.07251720130443573, -0.3723612129688263, -0.07365531474351883, 0.007138020358979702, 0.09135787189006805, -0.09412776678800583, 0.10614028573036194, 0.0358920581638813, 0.07529809325933456, 0.0346192829310894, 0.04570262134075165, -0.07394007593393326, -0.12425185739994049, 0.06651053577661514, -0.01440716627985239, -0.004152410663664341, 0.11676716059446335, -0.01397131197154522, 0.05991174280643463, 0.068352609872818, -0.04403495788574219, 0.03530554100871086, 0.0372980497777462, -0.0721876472234726, -0.11293371766805649, -0.09172554314136505, -0.005712609738111496, 0.062028199434280396, 0.00902378000319004, 0.09773611277341843, 0.058326587080955505, -0.016988271847367287, -0.04466032609343529, 0.1538694202899933, -0.004154139664024115, -0.10006987303495407, -0.1046847328543663, -0.026456482708454132, -0.0761825367808342, 0.04083918780088425, -0.0264871958643198, -0.06167462095618248, 0.06426873058080673, 0.17192581295967102, 0.08279421925544739, 0.028936926275491714, 0.03474518284201622, -0.042487867176532745, 0.009218798018991947, 0.045354101806879044, -0.0039278059266507626, -0.050224870443344116, 0.12417764961719513, -0.11697811633348465, 0.08001747727394104, -0.10941421240568161, -0.03966287523508072, -0.06698545813560486, 0.09230726212263107, 0.02758098766207695, -0.008687686175107956, -0.0671655610203743, 0.16680075228214264, -0.12428489327430725, -0.19911135733127594, 0.05075031518936157, 0.01399899646639824, -0.06582359969615936, -0.003644718322902918, 0.11030395328998566, 0.07288055866956711, 0.0360066220164299, -0.009333698078989983, -0.011378363706171513, -0.0011700104223564267, -0.004948596935719252, -0.05097321420907974, 0.01933070831000805, -0.04536118730902672, 0.024884948506951332, 0.20689889788627625, 0.019069910049438477, -0.02221083827316761, 0.08011075854301453, -0.01959482580423355, -0.07606882601976395, 0.029056303203105927, 0.08979281783103943, -0.01842663250863552, 0.014025436714291573, 0.2567497491836548, 0.016229551285505295, 0.09344527125358582, 0.07031107693910599, -0.057766325771808624, 0.036103859543800354, 0.08077314496040344, -0.07610058039426804, 0.024944458156824112, 0.17759919166564941, -0.11186221987009048, 0.0630304142832756, 0.17219284176826477, 0.04157674312591553, -0.0631038025021553, -0.1314494013786316, 0.0006037140847183764, -0.03314166143536568, 0.057310573756694794, -0.023179134353995323, -0.03890233486890793, -0.015027121640741825, 0.09661447256803513, 0.009627961553633213, -0.00032369373366236687, -0.061249323189258575, 0.011124620214104652, 0.021229157224297523, 0.025750936940312386, 0.11849627643823624, 0.04849822819232941, -0.02079252526164055, -0.009718713350594044, -0.030623815953731537, 0.03615718334913254, 0.09447827190160751, -0.08631573617458344, -0.03670578822493553 ]
null
null
diffusers
# Sven Nordqvist style <Gallery /> ([CivitAI](https://civitai.com/models/161975)) ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use `Sven Nordqvist style illustration` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/sven-nordqvist-style/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/sven-nordqvist-style', weight_name='Sven Nordqvist XL LoRA v1-0.safetensors') image = pipeline('sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Sven Nordqvist style illustration", "widget": [{"text": "sven nordqvist style illustration, close up portrait of farmer batman, detailed, grant wood", "output": {"url": "2942829.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of jason voorhees dressed as a honest farmer, scene from the movie friday the 13th, grant wood, hayfork", "output": {"url": "2943076.jpeg"}}, {"text": "sven nordqvist style illustration of a moonshiner starter kit, knolling", "output": {"url": "2943087.jpeg"}}, {"text": "sven nordqvist style illustration of a mecha fax machine, detailed texture, concept design, pcb, wires, electronics, fully visible mechanical components", "output": {"url": "2943093.jpeg"}}, {"text": "sven nordqvist style illustration, portrait of a xenomorph", "output": {"url": "2943099.jpeg"}}, {"text": "sven nordqvist style illustration, Year:1968. High detail, portrait of an age 30 wife in 1968: mid-length hair, very voluminous, very thick, very tall, very lofty, curly, tapered pageant style bouffant. Accurate 1968 style. Subtle makeup. highly detailed", "output": {"url": "2943113.jpeg"}}, {"text": "sven nordqvist style portrait illustration of an elderly man, intimate, side-light on shining on face, wrinkles, tight close up on face, highly detailed, professional, rembrandt light", "output": {"url": "2946764.jpeg"}}]}
text-to-image
WizWhite/sven-nordqvist-style-2
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "watercolor", "style", "illustration", "artist", "characters", "children's book", "idyllic", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:27:34+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Sven Nordqvist style <Gallery /> (CivitAI) ## Model description <p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p> ## Trigger words You should use 'Sven Nordqvist style illustration' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Sven Nordqvist style \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Sven Nordqvist style \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>", "## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 86, 15, 131, 21, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #watercolor #style #illustration #artist #characters #children's book #idyllic #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Sven Nordqvist style \n\n<Gallery />\n\n\n\n(CivitAI)## Model description\n\n<p>Style of the Swedish illustrator and children's book author Sven Nordqvist (Pettson &amp; Findus, Where Is My Sister?, The Dog Walk). Nordqvist has a quite whimsical and detailed style mostly based on ink and watercolor. </p><p>This LoRA is mostly trained from images from the Pettson &amp; Findus series, so it's quite fond of putting beards and hats on people. </p><p><strong>Recommended weight between 0.8-1.4</strong></p>## Trigger words\nYou should use 'Sven Nordqvist style illustration' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.03639908879995346, 0.06092409789562225, -0.0036603230983018875, 0.07766459137201309, 0.07331495732069016, 0.016063859686255455, 0.09844071418046951, 0.07970596104860306, 0.039647527039051056, 0.09402961283922195, -0.036472517997026443, -0.023792196065187454, 0.09232369065284729, -0.006520371418446302, -0.016760587692260742, -0.3244951069355011, 0.05243659019470215, -0.0690421387553215, 0.008284821175038815, 0.04425191134214401, 0.07798579335212708, -0.06431369483470917, 0.09030596911907196, -0.04026554524898529, 0.04982195794582367, 0.005516575649380684, -0.04777863621711731, 0.03794919326901436, 0.040291450917720795, 0.021874988451600075, 0.09077900648117065, 0.042867667973041534, 0.10181855410337448, -0.15418042242527008, 0.01814996264874935, 0.057143524289131165, -0.026070227846503258, 0.03206636384129524, 0.09927570074796677, -0.12255406379699707, 0.1810518056154251, -0.11337161064147949, 0.06312903016805649, 0.029351385310292244, 0.004650481510907412, -0.15285009145736694, -0.04327266663312912, 0.0810362696647644, 0.08926159143447876, 0.0185675248503685, -0.007527814246714115, -0.023053180426359177, -0.052484191954135895, 0.06496841460466385, 0.331479012966156, -0.18428613245487213, -0.060313962399959564, 0.19961225986480713, 0.04745030775666237, 0.12597747147083282, -0.13673615455627441, 0.07305631786584854, 0.029583971947431564, -0.02552315965294838, 0.08419448882341385, -0.015401958487927914, 0.11424554139375687, -0.05047035962343216, -0.1260470300912857, 0.04486868157982826, 0.19154001772403717, 0.03477645665407181, -0.031754836440086365, -0.1693442463874817, -0.07161220908164978, 0.09325169771909714, -0.02801276557147503, -0.003069404512643814, 0.04876680299639702, -0.004141286481171846, 0.04203040897846222, -0.13516074419021606, -0.09523618966341019, -0.026587897911667824, -0.007573929149657488, 0.22183042764663696, -0.01569240726530552, -0.00314438808709383, 0.12280137836933136, 0.10066336393356323, -0.14382295310497284, -0.11456253379583359, -0.007999283261597157, -0.06994947046041489, -0.10160508006811142, -0.00039682374335825443, 0.0007330063381232321, -0.12691062688827515, 0.05457964539527893, 0.19371263682842255, 0.059168748557567596, 0.004291355609893799, -0.13419073820114136, 0.039481401443481445, 0.02482105977833271, 0.08216404169797897, -0.013435209169983864, -0.11545872688293457, -0.029381178319454193, 0.038078390061855316, 0.09890084713697433, -0.03843008354306221, -0.06952867656946182, -0.09123604744672775, -0.016550732776522636, 0.004517392721027136, 0.023172320798039436, 0.02075926586985588, -0.025418803095817566, -0.02346944250166416, 0.1742413341999054, -0.10190430283546448, 0.05590878799557686, 0.03630506992340088, -0.018055476248264313, 0.10524044930934906, 0.04114770516753197, 0.06816291064023972, 0.013522406108677387, 0.25317496061325073, -0.010347339324653149, 0.003602908691391349, -0.0403423011302948, -0.10974659770727158, 0.01786220259964466, -0.08596968650817871, -0.024201057851314545, -0.0947573333978653, -0.07686171680688858, -0.0317302942276001, 0.015339650213718414, -0.07660827040672302, 0.019707834348082542, -0.04187844693660736, -0.09774120897054672, 0.031502556055784225, 0.04281243309378624, 0.05086025595664978, -0.04026283696293831, 0.04051808640360832, -0.1239895150065422, 0.07489641010761261, 0.026228640228509903, 0.014525814913213253, -0.07078522443771362, 0.013815108686685562, -0.20706835389137268, 0.07702680677175522, -0.13565078377723694, 0.009916990995407104, -0.07673124969005585, -0.056910738348960876, -0.07332708686590195, -0.029937218874692917, -0.057105470448732376, 0.09166985005140305, -0.15176045894622803, -0.0319177508354187, 0.06513435393571854, -0.16925540566444397, 0.005436706822365522, 0.1246611475944519, 0.016192514449357986, 0.013471956364810467, 0.09224635362625122, 0.18946997821331024, 0.16834907233715057, -0.20133930444717407, -0.024067578837275505, 0.02121586725115776, -0.050759755074977875, 0.1364700198173523, 0.10361626744270325, -0.03134429454803467, -0.009324811398983002, 0.0417153500020504, -0.1575305312871933, -0.017972810193896294, 0.044776372611522675, -0.004903640132397413, -0.0028713983483612537, -0.03805690258741379, 0.11783084273338318, 0.05025145038962364, -0.06848287582397461, -0.060796160250902176, -0.047075722366571426, 0.006054229103028774, 0.04241589829325676, -0.04145745187997818, 0.04693187400698662, 0.08876064419746399, 0.10424286872148514, 0.04333595186471939, -0.023935329169034958, -0.07412191480398178, -0.09003277122974396, 0.017393125221133232, 0.09585382044315338, 0.005806786008179188, 0.05961025506258011, 0.07816693931818008, 0.05978585034608841, -0.11532417684793472, -0.01946682296693325, 0.02242370694875717, -0.017578549683094025, -0.021800588816404343, -0.11811777204275131, 0.025919809937477112, -0.06054457649588585, 0.06863623857498169, -0.1255793273448944, 0.05271873250603676, 0.08173374831676483, 0.18334898352622986, 0.07571589946746826, -0.03166724368929863, 0.016247807070612907, -0.033344920724630356, -0.05416896194219589, -0.033615656197071075, 0.03751269727945328, -0.03224316984415054, -0.11006271839141846, 0.07451260834932327, -0.0957893431186676, -0.05379147827625275, 0.12080632150173187, 0.12298911809921265, -0.0633557140827179, -0.1555880457162857, -0.031241513788700104, -0.015867851674556732, -0.11542653292417526, -0.09787984937429428, -0.0058865915052592754, 0.05557670816779137, 0.06561581790447235, -0.09529996663331985, -0.02673804946243763, 0.0031225585844367743, -0.001178412581793964, -0.03657945618033409, 0.10320892930030823, -0.038711950182914734, -0.04148978739976883, 0.04567410424351692, 0.06526897102594376, -0.010730335488915443, 0.15096038579940796, 0.035965483635663986, -0.07608576118946075, 0.04663398861885071, 0.04729317128658295, 0.042366720736026764, 0.04805683717131615, 0.11283747106790543, 0.06419854611158371, 0.04039154201745987, 0.045784737914800644, -0.04398898780345917, -0.10444855690002441, 0.007006214931607246, 0.011695620603859425, -0.058738626539707184, 0.07928532361984253, 0.04485906660556793, 0.005960517562925816, 0.07282301038503647, -0.014950932934880257, 0.03880729526281357, -0.024322694167494774, -0.03860178589820862, -0.06255501508712769, 0.10788015276193619, -0.07351123541593552, -0.1543072611093521, -0.17254051566123962, 0.0010007217060774565, -0.1094626784324646, 0.023019341751933098, 0.06408961117267609, -0.0022717341780662537, -0.06651078909635544, -0.13090106844902039, 0.12315688282251358, -0.010404578410089016, -0.024512480944395065, -0.1314055323600769, 0.0621366985142231, -0.019425205886363983, -0.11370295286178589, 0.007633849512785673, 0.009523123502731323, -0.037631310522556305, 0.0011781129287555814, 0.0011773660080507398, 0.0912022739648819, -0.008157189004123211, -0.02687620371580124, -0.042018089443445206, -0.0008609112701378763, 0.09577221423387527, -0.03589344024658203, 0.1480928659439087, 0.04808197170495987, -0.009851585142314434, 0.11295051127672195, 0.20506995916366577, 0.03804470971226692, 0.005634217988699675, 0.041750483214855194, 0.10936757922172546, -0.08091229200363159, -0.1831991970539093, -0.08856691420078278, -0.02888461947441101, 0.039688196033239365, 0.11501361429691315, 0.07204363495111465, 0.0009499992593191564, 0.08945050090551376, -0.1150866150856018, -0.10482558608055115, 0.1811498999595642, 0.10458297282457352, 0.017658879980444908, -0.004783342592418194, 0.06941275298595428, -0.041963085532188416, -0.007972083985805511, 0.08824838697910309, -0.004094615578651428, 0.10078783333301544, -0.09606488049030304, 0.014977962709963322, -0.012147199362516403, 0.002143561141565442, 0.01691427081823349, 0.10801507532596588, 0.0013118443312123418, -0.005154026206582785, -0.017827613279223442, -0.08872134983539581, 0.08048881590366364, 0.11963649839162827, 0.03755494952201843, 0.017055531963706017, -0.009281326085329056, -0.054384179413318634, 0.07353555411100388, 0.1182093694806099, -0.04263593256473541, -0.10203827917575836, -0.005656542722135782, 0.08215165138244629, -0.0025698253884911537, -0.025991912931203842, 0.023412395268678665, 0.1660401076078415, -0.09188763797283173, 0.13557910919189453, -0.046989016234874725, 0.09157415479421616, -0.03447292000055313, -0.04989245906472206, -0.006092568393796682, 0.10304240137338638, -0.02449893020093441, 0.07605090737342834, -0.032118722796440125, 0.02575930953025818, 0.014984301291406155, 0.03327418118715286, -0.00925250444561243, -0.013906278647482395, 0.04537437483668327, 0.15747466683387756, 0.15629638731479645, 0.02758551947772503, -0.10928221046924591, -0.06197892501950264, -0.07394939661026001, -0.0743231549859047, 0.07756935805082321, -0.15828442573547363, 0.06521181017160416, -0.03676798567175865, -0.05326069891452789, -0.04508166015148163, -0.021926023066043854, -0.0893661230802536, -0.1335374265909195, -0.01294187642633915, -0.046601586043834686, 0.06079384312033653, -0.04084734246134758, -0.07859265059232712, -0.23060405254364014, 0.09746060520410538, -0.07622897624969482, -0.15590904653072357, -0.11049564927816391, -0.025528809055685997, 0.09342508763074875, -0.022472189739346504, -0.038997672498226166, -0.01552650611847639, 0.17893189191818237, -0.12384429574012756, -0.05597906559705734, -0.06972508877515793, -0.03819889947772026, -0.20457305014133453, -0.00040720170363783836, 0.20810142159461975, 0.05086612328886986, 0.04661592096090317, -0.025906875729560852, 0.06923099607229233, 0.03135477006435394, -0.10007274895906448, 0.037599772214889526, 0.18643981218338013, 0.020446235314011574, 0.06728484481573105, -0.04833448305726051, -0.10674784332513809, -0.09134919196367264, 0.03637233376502991, 0.06337855756282806, 0.20817796885967255, -0.10557110607624054, 0.15919256210327148, 0.04928765073418617, -0.06889822334051132, -0.2102585732936859, -0.00016881621559150517, 0.045547183603048325, -0.0058512394316494465, 0.10640982538461685, -0.08000475913286209, 0.09453961998224258, 0.10267775505781174, -0.01197710633277893, 0.08551321923732758, -0.26315152645111084, -0.12533453106880188, -0.07582949101924896, 0.07485678046941757, -0.019246192649006844, -0.13440319895744324, -0.06498664617538452, -0.05789843201637268, -0.11946644634008408, 0.05144760385155678, -0.08134804666042328, 0.06544627249240875, 0.014265439473092556, -0.006933401804417372, 0.05850352719426155, -0.03608734533190727, 0.16360057890415192, -0.006817773915827274, 0.029152261093258858, -0.09880595654249191, 0.020004071295261383, 0.016808051615953445, -0.07029268145561218, 0.09455571323633194, -0.12541499733924866, -0.013272084295749664, -0.04671801999211311, -0.03330652415752411, -0.031686123460531235, 0.1098598763346672, -0.048970162868499756, -0.06869908422231674, -0.12262506783008575, 0.0495775081217289, 0.13838042318820953, -0.034871555864810944, 0.10816510021686554, -0.09204626828432083, 0.023232249543070793, 0.0999094620347023, 0.08848585188388824, 0.11653032153844833, -0.07402310520410538, -0.05820995941758156, -0.05948007106781006, 0.053997937589883804, -0.13481886684894562, 0.040862955152988434, 0.09944798052310944, 0.019568227231502533, 0.07270961254835129, -0.005414864514023066, -0.07137731462717056, -0.023087291046977043, 0.08456693589687347, -0.11675194650888443, -0.1692947894334793, -0.0547320730984211, -0.07735808193683624, -0.06840167194604874, -0.08690712600946426, 0.11497246474027634, -0.08146793395280838, 0.010188651271164417, 0.028714416548609734, 0.05798032507300377, 0.031474851071834564, 0.00016345306357834488, 0.013350734487175941, 0.036291614174842834, -0.06147739291191101, 0.12682455778121948, 0.025527983903884888, -0.08516361564397812, -0.038088589906692505, 0.12398285418748856, -0.09685094654560089, -0.0296579971909523, 0.031822800636291504, 0.04911128804087639, 0.0033778829965740442, -0.01719786785542965, -0.01555732823908329, -0.0932946652173996, -0.03179800510406494, 0.01987132988870144, 0.05542440712451935, -0.039491958916187286, 0.04580032452940941, 0.0011352761648595333, -0.042272426187992096, 0.12764553725719452, 0.009888220578432083, 0.06175868213176727, -0.1356896609067917, -0.048694908618927, -0.010742458514869213, -0.096188023686409, -0.04400051012635231, 0.008664858527481556, -0.032381076365709305, -0.05939769372344017, -0.021880265325307846, 0.09444337338209152, -0.09759896248579025, 0.015000670216977596, -0.021860536187887192, -0.020858364179730415, 0.017698364332318306, -0.008868420496582985, -0.0312919020652771, -0.06575602293014526, -0.05235019698739052, 0.06330568343400955, -0.10773192346096039, -0.06560974568128586, 0.04725338891148567, -0.06264031678438187, 0.002871037693694234, -0.038497064262628555, -0.037106454372406006, 0.02012236975133419, -0.18190820515155792, -0.021685926243662834, 0.04553646594285965, -0.0067329262383282185, -0.04133119806647301, -0.0515044666826725, -0.01626761257648468, -0.052948080003261566, -0.037655964493751526, 0.003312563057988882, 0.03515574336051941, -0.12249138951301575, 0.010856444016098976, -0.04762887582182884, -0.05174349993467331, -0.0632607638835907, 0.012678327038884163, 0.10816468298435211, 0.06617090851068497, 0.15747180581092834, -0.09960939735174179, 0.09367948025465012, -0.07211675494909286, 0.005466264206916094, 0.035983629524707794, -0.09267561137676239, 0.006967602763324976, -0.01898743025958538, -0.005884265992790461, -0.03625020012259483, 0.06916023045778275, 0.08902768790721893, -0.002614951692521572, 0.028749311342835426, 0.029481666162610054, 0.04934360086917877, 0.021320033818483353, 0.17565765976905823, -0.020403163507580757, -0.029513778164982796, -0.0015078947180882096, 0.001998828025534749, 0.023062901571393013, -0.0427059642970562, 0.09135797619819641, 0.1589948982000351, 0.025415843352675438, 0.008794547989964485, 0.026262113824486732, -0.012435048818588257, -0.1390693038702011, 0.08736109733581543, 0.050150588154792786, 0.010197877883911133, -0.049167532473802567, 0.07658465951681137, 0.15473398566246033, -0.19637207686901093, 0.0807308778166771, 0.04031873866915703, -0.015248040668666363, -0.060217201709747314, -0.20124998688697815, -0.07176379859447479, -0.07295265048742294, 0.027209177613258362, -0.06023078039288521, 0.043184395879507065, 0.013786861672997475, 0.0051526338793337345, 0.058527622371912, 0.04820326343178749, -0.15349580347537994, -0.06082489341497421, 0.030644947662949562, 0.013007096946239471, 0.007740700151771307, 0.11384335160255432, -0.06916442513465881, 0.09124794602394104, -0.01579323224723339, -0.019307298585772514, 0.029399501159787178, 0.09924013912677765, -0.02863895893096924, -0.07393139600753784, -0.07698050886392593, 0.028607305139303207, 0.02092042751610279, 0.010789775289595127, 0.15161532163619995, 0.11032139509916306, -0.04592129588127136, -0.07395759969949722, 0.21568253636360168, -0.044399600476026535, -0.047738216817379, -0.11735429614782333, 0.03284724801778793, -0.03752020001411438, 0.03317473456263542, -0.002071534749120474, -0.15021194517612457, -0.006466245744377375, 0.1533757746219635, 0.14818891882896423, 0.11578723788261414, 0.022586265578866005, -0.013992315158247948, 0.0013303947634994984, 0.07355975359678268, 0.0019287943141534925, 0.007963745854794979, 0.08739309012889862, -0.014868556521832943, 0.05356960743665695, -0.056989751756191254, -0.05436293035745621, -0.07635381072759628, 0.0552191324532032, -0.03192511573433876, -0.026738131418824196, -0.07876092195510864, 0.10417082160711288, 0.030026989057660103, -0.18939395248889923, 0.12533345818519592, -0.034493427723646164, -0.05473201721906662, -0.036946918815374374, 0.0516609326004982, 0.04068061336874962, 0.005782878026366234, -0.0011483244597911835, 0.019112788140773773, 0.06863360106945038, -0.022457465529441833, -0.09284421056509018, 0.04644913598895073, -0.06126711145043373, -0.03785902261734009, 0.14814825356006622, 0.008786757476627827, -0.023066984489560127, 0.049096234142780304, -0.02506749890744686, -0.06718163937330246, 0.02462029829621315, 0.05765023082494736, -0.11790253967046738, -0.018600068986415863, 0.2509259283542633, -0.04000845551490784, 0.07313341647386551, 0.06625788658857346, -0.08144862204790115, 0.030536003410816193, 0.055188555270433426, -0.08876121789216995, -0.06815033406019211, 0.13286899030208588, -0.12345144152641296, 0.09399335086345673, 0.1790870875120163, 0.03320179507136345, -0.0364985466003418, -0.037723589688539505, -0.02673916704952717, 0.009938467293977737, 0.0404357835650444, 0.049856774508953094, -0.04806998372077942, -0.07371693849563599, 0.07536725699901581, 0.02041396126151085, -0.17310830950737, -0.05087495595216751, -0.07563022524118423, -0.00981939397752285, -0.04005131125450134, 0.05243822932243347, 0.06818365305662155, -0.035948965698480606, -0.012155229225754738, -0.31254369020462036, 0.0311586931347847, 0.13055358827114105, -0.08739937841892242, -0.008421394973993301 ]
null
null
diffusers
# Wizard's Vintage Board Games <Gallery /> ([CivitAI](https://civitai.com/models/228448)) ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use `Vintage board game box`, `vintage board game box called "your-title"` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/wizard-s-vintage-board-games/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/wizard-s-vintage-board-games', weight_name='Wizards_Vintage_Board_Game.safetensors') image = pipeline('vintage board game box (called "Being Melissa Joan Hart":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Vintage board game box", "widget": [{"text": "vintage board game box (title called \"Wizard's Vintage Board Game\" logo text:1.3), (Moondog Wizard Whitebeard performing magic by michael whelan and gerald brom:0.8)", "output": {"url": "4390221.jpeg"}}, {"text": " ", "output": {"url": "4390247.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A paranormal investigator recording in an eerie, dilapidated asylum., detailed text logo", "output": {"url": "4390254.jpeg"}}, {"text": "vintage board game box (called \"Procrastination\":1.3), illustration of A solitary figure in an old library, surrounded by mountains of books., detailed text logo", "output": {"url": "4390261.jpeg"}}, {"text": "japanese vintage board game box called \"The Great Wave off Kanagawa\" by hokusai, detailed text logo", "output": {"url": "4390251.jpeg"}}, {"text": "vintage board game box (called \"Being Kermit\":1.3), illustration of (Kermit:0.4) Sketching in art class, detailed text logo", "output": {"url": "4390263.jpeg"}}, {"text": "vintage board game box (called \"When the Diarrhea Hits\":1.3), illustration of A scientist examining a glowing crystal in a futuristic lab., detailed text logo", "output": {"url": "4390380.jpeg"}}, {"text": "vintage board game box (called \"Being Gal Gadot\":1.3), illustration of (Gal Gadot:0.4) Baking bread in the kitchen, detailed text logo ", "output": {"url": "4390405.jpeg"}}, {"text": "vintage board game box (called \"Being Melissa Joan Hart\":1.3), illustration of (Melissa Joan Hart:0.4) Checking the neighbors mailbox, detailed text logo", "output": {"url": "4390408.jpeg"}}]}
text-to-image
WizWhite/wizard-s-vintage-board-games-2
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "vintage", "concept", "tabletop", "pulp art", "boardgame", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-07T00:28:13+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Wizard's Vintage Board Games <Gallery /> (CivitAI) ## Model description <p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id="heading-655">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called "xyz"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called "yourtitle"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title "yourtitle" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p> ## Trigger words You should use 'Vintage board game box', 'vintage board game box called "your-title"' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Wizard's Vintage Board Games \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Wizard's Vintage Board Games \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>", "## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 81, 17, 223, 35, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #vintage #concept #tabletop #pulp art #boardgame #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Wizard's Vintage Board Games \n\n<Gallery />\n\n\n\n(CivitAI)## Model description\n\n<p><em><u>Part III of Wizard's Vintage Series</u></em></p><h2 id=\"heading-655\">Wizards Vintage Board Games</h2><p>LoRA for recreating the look of old tabletop games from 1950s-1970s.</p><p><strong>Keyword / Key Prompts:</strong> Vintage board game box | Vintage board game box called \"xyz\"<br /><strong>Aspect Ratios:</strong> 1:1 | 3:2 | 4:3 | 16:9<br /><strong>Tips for generating titles:</strong> Use <em><u>… Called \"yourtitle\"</u></em> with weights. Repeat the title at end of your prompt like; <em><u>title \"yourtitle\" text logo</u></em>, combine with the loras TEXTA or HarrologosXL</p><p></p>## Trigger words\nYou should use 'Vintage board game box', 'vintage board game box called \"your-title\"' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 0.02845500037074089, 0.1530272513628006, -0.005488059017807245, 0.09436877816915512, 0.06256072223186493, 0.04574621841311455, 0.07025822252035141, 0.16098733246326447, 0.058621328324079514, 0.10309755802154541, -0.03712233901023865, 0.08744555711746216, 0.1087951809167862, 0.16145838797092438, -0.008791744709014893, -0.19625312089920044, 0.03461477905511856, 0.02374962717294693, -0.007659628055989742, 0.09709031879901886, 0.014636388048529625, -0.060211166739463806, 0.07542929798364639, -0.025816095992922783, -0.004703506827354431, 0.023784315213561058, -0.05198834091424942, -0.023931054398417473, 0.01905735768377781, 0.011366065591573715, 0.054176509380340576, -0.039575159549713135, 0.025751017034053802, -0.2062510997056961, 0.03762832283973694, 0.07333488762378693, -0.03492346405982971, 0.0006529597449116409, 0.12087897211313248, -0.048559024930000305, 0.1246199905872345, -0.03071703389286995, 0.08356112241744995, 0.12017222493886948, -0.10682399570941925, -0.25164031982421875, -0.15246844291687012, -0.0003224993997719139, 0.15220794081687927, -0.015929916873574257, -0.01573020964860916, 0.07066764682531357, 0.01256762444972992, 0.013787436299026012, 0.34379148483276367, -0.24875222146511078, -0.07109880447387695, 0.16130924224853516, 0.10390318185091019, 0.04811887443065643, -0.09642018377780914, 0.044472165405750275, -0.029435770586133003, 0.018816379830241203, -0.025479631498456, -0.039520084857940674, 0.16104824841022491, 0.040569040924310684, -0.07773544639348984, -0.018629759550094604, 0.15767385065555573, 0.02976294420659542, -0.0013926656683906913, -0.12871190905570984, -0.023313600569963455, 0.0040724677965044975, -0.09779861569404602, -0.037961170077323914, 0.01811419241130352, -0.042211905121803284, -0.01674114353954792, -0.04320169985294342, -0.027576571330428123, -0.08703595399856567, 0.018234891816973686, 0.07005176693201065, -0.01449741143733263, -0.03640877455472946, 0.004197630565613508, 0.09407776594161987, 0.044779855757951736, -0.04673760384321213, -0.07620370388031006, -0.057006943970918655, -0.1342959702014923, -0.015903828665614128, 0.03510307893157005, 0.04234902188181877, 0.07585452497005463, 0.2638600170612335, 0.06838852167129517, 0.10079313814640045, -0.13558785617351532, 0.022889018058776855, -0.010288254357874393, 0.027603888884186745, -0.024292517453432083, -0.18973161280155182, -0.016808170825242996, 0.1028020903468132, 0.05059189721941948, -0.05961165204644203, -0.08856265246868134, 0.0186767615377903, 0.05157126858830452, 0.08267323672771454, 0.05632534623146057, 0.018510861322283745, -0.03454989567399025, -0.014624019153416157, 0.2077343910932541, -0.09600184112787247, 0.09992853552103043, 0.06978046149015427, -0.05776215344667435, 0.03437502682209015, -0.032552674412727356, 0.011302809230983257, -0.010719270445406437, 0.013484559953212738, -0.06429233402013779, -0.010696996934711933, -0.1299116462469101, -0.09441693127155304, 0.09242049604654312, -0.05529965087771416, -0.07154715806245804, -0.016450967639684677, -0.0904003232717514, -0.0696927011013031, 0.023603204637765884, -0.07529264688491821, 0.048961788415908813, -0.06864709407091141, -0.080540232360363, -0.0006098314770497382, 0.09055370092391968, 0.13799160718917847, -0.031790416687726974, 0.09264534711837769, -0.060302138328552246, 0.10674700140953064, 0.09030231088399887, 0.027038345113396645, -0.023876121267676353, 0.06582047790288925, -0.31689366698265076, 0.05845656245946884, -0.13502220809459686, -0.04484785720705986, -0.1373177468776703, -0.014851335436105728, 0.05814514309167862, 0.008297453634440899, -0.044515933841466904, 0.05766799673438072, -0.24629859626293182, -0.05857829749584198, 0.1422242671251297, -0.1084165871143341, -0.10149112343788147, 0.019482262432575226, -0.014784494414925575, -0.027022618800401688, 0.027690324932336807, 0.14332132041454315, 0.07768333703279495, -0.06953439861536026, -0.04553471505641937, -0.1296096295118332, -0.08470279723405838, 0.12206383794546127, 0.11857679486274719, -0.020656714215874672, 0.09670279175043106, 0.009705109521746635, -0.12063620239496231, -0.0631004273891449, 0.0455678328871727, -0.012004544027149677, 0.08264663815498352, 0.001327220001257956, 0.02189871110022068, -0.014962427318096161, -0.04825523868203163, -0.0457262247800827, -0.08630228787660599, 0.012144387699663639, 0.04177254065871239, -0.038248736411333084, 0.03373010829091072, -0.10660989582538605, 0.15384890139102936, 0.028274456039071083, 0.03608950227499008, -0.10368883609771729, -0.07753333449363708, 0.014584159478545189, -0.04316413775086403, 0.06846841424703598, -0.0010359387379139662, 0.11988833546638489, 0.0887448713183403, -0.029111545532941818, -0.020063672214746475, -0.013167789205908775, -0.0359499529004097, 0.025988969951868057, -0.14244523644447327, -0.09240692853927612, -0.041267961263656616, 0.12981794774532318, -0.028188930824398994, 0.01352719683200121, 0.12394705414772034, 0.1188855841755867, -0.018703743815422058, -0.07971056550741196, 0.01706666126847267, -0.04654383659362793, 0.0015020117862150073, -0.04164804890751839, 0.021637508645653725, -0.04075830057263374, -0.041807111352682114, 0.030687717720866203, -0.23200339078903198, -0.017365846782922745, 0.16450940072536469, 0.11162789165973663, -0.04217815771698952, -0.09424235671758652, 0.009425394237041473, -0.009712167084217072, -0.046214908361434937, -0.03775424882769585, 0.07894964516162872, 0.08603925257921219, 0.06329300254583359, -0.09375214576721191, -0.057571250945329666, -0.03633815795183182, 0.031130068004131317, -0.048289839178323746, 0.020919006317853928, 0.06620042771100998, -0.18679000437259674, 0.10920509696006775, 0.02165713720023632, 0.02140830270946026, 0.14152684807777405, 0.017503589391708374, -0.06806664913892746, -0.022774070501327515, 0.010917415842413902, 0.05084138736128807, 0.08126138895750046, 0.007653046399354935, 0.06242729723453522, 0.05235077440738678, -0.08144830167293549, -0.030337465927004814, -0.10336027294397354, -0.025777386501431465, -0.009155124425888062, -0.0534525141119957, 0.03445969894528389, 0.08950771391391754, 0.08266869187355042, 0.10156264156103134, 0.05663953348994255, 0.08356183022260666, -0.04663031920790672, -0.06011829897761345, -0.07264592498540878, 0.047058992087841034, -0.12835077941417694, -0.16595831513404846, -0.11772257834672928, -0.0821889117360115, -0.024115176871418953, 0.02276063896715641, 0.02560293860733509, -0.06147681921720505, -0.06067345663905144, -0.054406143724918365, 0.054573144763708115, -0.03637669235467911, -0.1031154990196228, -0.01697789505124092, 0.06699740141630173, -0.03166305273771286, -0.09845224767923355, 0.017667202278971672, 0.014548090286552906, -0.1636819988489151, 0.04379674419760704, 0.045471061021089554, 0.14778541028499603, 0.05469322204589844, 0.012593096122145653, 0.084360271692276, -0.05234226584434509, 0.04203622415661812, -0.08307746797800064, 0.13472089171409607, 0.06705047935247421, -0.016886364668607712, 0.10113787651062012, 0.07129604369401932, 0.04797808453440666, -0.012439127080142498, -0.010969307273626328, 0.07973890006542206, -0.03781500458717346, -0.10219527781009674, 0.012068442068994045, -0.025507690384984016, 0.07391147315502167, 0.1313556581735611, 0.03822982311248779, 0.05875452607870102, 0.039201896637678146, -0.08071357011795044, -0.028570659458637238, 0.15868552029132843, 0.10552337765693665, 0.02291818894445896, -0.005592369474470615, 0.024564480409026146, -0.017853738740086555, -0.02121584303677082, 0.0990956500172615, 0.07046214491128922, 0.13054123520851135, -0.027844838798046112, 0.07855114340782166, 0.06332984566688538, -0.06338008493185043, 0.032826539129018784, 0.102650485932827, 0.037655625492334366, 0.04006129130721092, -0.07031361758708954, -0.07248883694410324, 0.033790234476327896, 0.1307344287633896, 0.1007961630821228, -0.01763143390417099, 0.045198071748018265, -0.05048995465040207, 0.06796780973672867, 0.07784105092287064, -0.03523658961057663, -0.17784817516803741, 0.07390670478343964, 0.08117473870515823, -0.005198731552809477, -0.06886173784732819, 0.020793689414858818, -0.06892901659011841, -0.14554575085639954, 0.152802973985672, -0.04090576618909836, 0.05384686589241028, -0.04333585873246193, -0.060753725469112396, 0.0583559088408947, 0.1123180091381073, -0.037323299795389175, 0.04746744781732559, -0.1786954700946808, -0.014468614012002945, 0.006203649565577507, 0.02207052707672119, -0.04923253506422043, 0.0013070841087028384, 0.101141057908535, -0.12173540890216827, 0.10421042889356613, -0.025782465934753418, -0.08678603917360306, -0.11707602441310883, 0.007458648178726435, -0.023212967440485954, 0.045620985329151154, -0.10944217443466187, 0.1482769250869751, -0.05553259700536728, -0.07396925240755081, -0.07017955929040909, -0.039548054337501526, -0.011335981078445911, -0.15627063810825348, -0.00392721826210618, -0.09610014408826828, 0.08003169298171997, -0.040373701602220535, 0.016351917758584023, -0.1488773375749588, 0.08286765962839127, -0.04241868108510971, -0.08348530530929565, -0.08954586833715439, 0.00967472419142723, 0.11119452863931656, -0.023059971630573273, 0.03665947541594505, -0.07078613340854645, 0.24382124841213226, -0.10116380453109741, -0.06682708859443665, -0.030458947643637657, -0.03312661498785019, -0.1536116898059845, 0.004084855318069458, 0.13298167288303375, 0.053847428411245346, 0.04932089522480965, -0.001175098237581551, 0.07111960649490356, 0.044556330889463425, -0.09882773458957672, 0.09998573362827301, 0.08418754488229752, 0.030551541596651077, -0.01225852407515049, 0.017712349072098732, 0.008082679472863674, -0.10868269205093384, 0.06641975790262222, 0.04551790654659271, 0.24753999710083008, -0.08127246797084808, 0.11041797697544098, -0.10203808546066284, -0.014327669516205788, -0.18991239368915558, -0.09850038588047028, -0.048361703753471375, -0.09387920051813126, 0.024697069078683853, -0.12250494956970215, 0.05598749592900276, 0.017968859523534775, -0.018502848222851753, 0.20061025023460388, -0.14667488634586334, -0.09013295918703079, -0.014047336764633656, 0.09461601823568344, -0.18603402376174927, -0.17311400175094604, -0.025936424732208252, -0.0013541290536522865, -0.11081209033727646, 0.07519689202308655, 0.023619068786501884, 0.04177509620785713, -0.03965149447321892, 0.06391745805740356, 0.0163076464086771, -0.045199885964393616, 0.1726958304643631, -0.06557721644639969, 0.0658593401312828, -0.039298322051763535, -0.08586382865905762, 0.10751570016145706, -0.046372026205062866, 0.002845956478267908, -0.030323971062898636, -0.05984794348478317, -0.06459274142980576, 0.011172426864504814, -0.0066893445327878, 0.01406025979667902, -0.061277877539396286, 0.02115367166697979, -0.0990757867693901, 0.08279968053102493, -0.014912151731550694, 0.001664957613684237, 0.03439187631011009, -0.020750142633914948, 0.1094483956694603, 0.05775953829288483, 0.04647935926914215, 0.032979026436805725, -0.1284189671278, 0.00323093100450933, 0.0009744680137373507, 0.013815244659781456, 0.01353911031037569, 0.04264694079756737, 0.06816144287586212, 0.056604597717523575, 0.05598307028412819, 0.07556893676519394, -0.15588533878326416, 0.03243955224752426, 0.08068814873695374, -0.05037571117281914, -0.16493390500545502, 0.021577687934041023, -0.007225096691399813, -0.034000251442193985, -0.14852863550186157, 0.018059397116303444, 0.07088825851678848, -0.060820017009973526, 0.0777638629078865, 0.04573385417461395, 0.046271953731775284, -0.016554754227399826, -0.025941485539078712, 0.05452260002493858, -0.15334674715995789, 0.15654878318309784, 0.010318947024643421, -0.05412781238555908, -0.002798144007101655, 0.18802714347839355, -0.05027961730957031, -0.034561723470687866, 0.012323698960244656, 0.13510197401046753, 0.02271203324198723, -0.042753126472234726, -0.020358461886644363, -0.11227384954690933, 0.09599011391401291, 0.06427963823080063, 0.06250268220901489, -0.0004888631519861519, 0.05007357895374298, 0.047915682196617126, -0.06618914008140564, 0.09915707260370255, 0.025812245905399323, 0.008384552784264088, -0.09504997730255127, -0.002575709018856287, 0.03934592381119728, -0.07847389578819275, -0.00734636839479208, -0.001723563764244318, -0.07281544059515, 0.013472555205225945, -0.01616073213517666, 0.04747617244720459, -0.1698300689458847, -0.01353453565388918, -0.01122236717492342, 0.01906607858836651, -0.011942080222070217, -0.011357925832271576, -0.09797848016023636, -0.11343098431825638, -0.01767152175307274, 0.07178815454244614, -0.19826170802116394, -0.00956045277416706, 0.08564437925815582, -0.11747489869594574, 0.009074370376765728, 0.0308498777449131, 0.012931380420923233, 0.0400005578994751, -0.10899100452661514, -0.09701071679592133, 0.020158082246780396, 0.008202261291444302, 0.019702931866049767, -0.1265711933374405, -0.01538765523582697, -0.05421918258070946, -0.07365149259567261, 0.0033780941739678383, 0.008423080667853355, -0.06755968928337097, 0.06557570397853851, -0.04186131805181503, -0.054892729967832565, -0.01821458525955677, 0.028545180335640907, 0.2324826419353485, 0.01373029500246048, 0.0730256512761116, -0.004477121867239475, 0.07395467907190323, -0.16465315222740173, 0.009288300760090351, 0.0076829525642097, -0.060780882835388184, -0.020971713587641716, -0.00024818876408971846, 0.03025718964636326, -0.024321408942341805, 0.06747352331876755, -0.027342986315488815, 0.01822788082063198, 0.015261456370353699, 0.041906218975782394, -0.008144148625433445, 0.03432193025946617, 0.07113855332136154, -0.006779473274946213, 0.006882429588586092, 0.09443603456020355, 0.020426474511623383, 0.008753529749810696, -0.14594830572605133, 0.1226121112704277, 0.041702546179294586, -0.0051801870577037334, 0.029709504917263985, -0.003088267520070076, -0.08108242601156235, -0.13280998170375824, 0.24360834062099457, 0.0079572768881917, -0.02371533215045929, -0.0637885108590126, 0.15168240666389465, 0.18351711332798004, -0.22638574242591858, 0.08183195441961288, 0.03448556363582611, 0.027972783893346786, -0.05858958140015602, -0.059797924011945724, -0.11303875595331192, -0.11699552088975906, 0.059284109622240067, -0.08663127571344376, 0.15627999603748322, -0.05088150501251221, 0.02232992835342884, 0.0726800411939621, 0.03366073966026306, -0.07448223233222961, -0.02362266182899475, -0.011827660724520683, 0.0182413961738348, -0.060793835669755936, 0.16473035514354706, 0.00757371773943305, 0.07255665212869644, -0.052076250314712524, 0.06843730807304382, 0.05064547434449196, -0.008421079255640507, 0.059045229107141495, -0.09829134494066238, -0.0545060858130455, 0.025706278160214424, -0.02879411354660988, -0.0059983935207128525, 0.09970864653587341, 0.06555763632059097, -0.029305271804332733, -0.03281950578093529, 0.13052557408809662, -0.03018362447619438, -0.08273693174123764, -0.07036713510751724, 0.12132378667593002, -0.007869904860854149, -0.049201689660549164, 0.004128198139369488, -0.11259033530950546, -0.013640356250107288, 0.14955675601959229, 0.10262492299079895, 0.03546668589115143, -0.00787540152668953, -0.007954243570566177, 0.029281897470355034, 0.015456798486411572, 0.03936076536774635, 0.046881917864084244, 0.0745927020907402, -0.11113095283508301, -0.030321339145302773, -0.06480095535516739, -0.0892581194639206, -0.019285036250948906, 0.0740479901432991, 0.05580864101648331, -0.02117820270359516, -0.015518956817686558, 0.07652642577886581, -0.09044183790683746, -0.17938849329948425, -0.0008496401133015752, -0.04448258876800537, -0.057565249502658844, 0.02493230067193508, 0.07545238733291626, -0.05572900548577309, 0.052939243614673615, 0.05291811004281044, -0.00272175925783813, 0.08355705440044403, 0.01942332647740841, -0.1658286452293396, 0.015768637880682945, 0.04673602804541588, -0.1098615899682045, 0.2081981599330902, -0.043421972543001175, -0.034145526587963104, 0.09393562376499176, -0.015376436524093151, -0.0661669448018074, 0.055820342153310776, 0.05942540988326073, -0.0908111184835434, 0.015526054427027702, 0.22717562317848206, 0.02440619096159935, 0.09727097302675247, 0.049712568521499634, -0.08037874102592468, 0.09139150381088257, 0.053221695125103, -0.08799570053815842, -0.034540850669145584, 0.10954374074935913, -0.1488521546125412, 0.11063040792942047, 0.1538258045911789, -0.007895279675722122, 0.07677724212408066, -0.056745607405900955, 0.021497229114174843, 0.011384832672774792, 0.12447582185268402, -0.006030431017279625, -0.050791896879673004, -0.016568265855312347, -0.09902764111757278, 0.0018938450375571847, -0.17650610208511353, -0.04074861481785774, -0.08651760220527649, -0.04439355432987213, -0.07750102132558823, 0.08596280962228775, 0.031269509345293045, 0.017691221088171005, -0.025157343596220016, -0.1515735536813736, 0.03314690664410591, 0.1367703676223755, -0.13828104734420776, 0.05090250074863434 ]
null
null
diffusers
# Gildenface XL – Headshot LoRA <Gallery /> ([CivitAI](https://civitai.com/models/183550)) ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="https://civitai.com/models/181092?modelVersionId=203235">Caricature XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use `Gildenface portrait photo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/WizWhite/gildenface-xl-headshot-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('WizWhite/gildenface-xl-headshot-lora', weight_name='GildenfaceXL_Headshot_LoRA_v1.safetensors') image = pipeline('candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=RentCivit&allowDerivatives=True&allowDifferentLicense=True", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Gildenface portrait photo", "widget": [{"text": "gildenface portrait photography of jabba the hutt, close up photo, professional, breathtaking, close-up on face, highly detailed skin, visible skin pores, dark, gritty", "output": {"url": "3277226.jpeg"}}, {"text": "gildenface portrait photography of a troll from the movie troll hunter", "output": {"url": "3277704.jpeg"}}, {"text": "gildenface portrait of a surprised shocked zombie at a birthday party, highly detailed texture, sharp focus, party hat", "output": {"url": "3277754.jpeg"}}, {"text": "gildenface breathtaking portrait photo inspired by an epic scene from the movie total recall, 1990s, sci-fi, professional, by bruce gilden", "output": {"url": "3277371.jpeg"}}, {"text": "Gildenface close up portrait of real life luigi from (super mario bros:0.5), disgusted", "output": {"url": "3277428.jpeg"}}, {"text": "Gildenface close up portrait of real life super mario, disgusted", "output": {"url": "3277429.jpeg"}}, {"text": "obese (cthulhu:1.4), gildenface style photo, close up on face, detailed skin texture, by bruce gilden", "output": {"url": "3277426.jpeg"}}, {"text": "rusty cast-iron (robot:1.4), gildenface style photo, close up on face, detailed skin texture", "output": {"url": "3277421.jpeg"}}, {"text": "Gildenface close up portrait of real life pikachu by bruce gilden", "output": {"url": "3277419.jpeg"}}, {"text": "candid close up photo of a surprised Shrek business man, detailed skin texture, standing outside in a swamp,", "output": {"url": "3277870.jpeg"}}]}
text-to-image
WizWhite/gildenface-xl-headshot-lora-1
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "concept", "portrait", "detailed", "face", "grotesque", "headshot", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
2024-02-07T00:29:14+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us
# Gildenface XL – Headshot LoRA <Gallery /> (CivitAI) ## Model description <p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style="color:rgb(189, 193, 198)">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style="color:rgb(193, 194, 197)">Be sure to check out </span><a target="_blank" rel="ugc" href="URL XL</a><span style="color:rgb(193, 194, 197)"> LoRA by Blink, if you like creating weird</span></p> ## Trigger words You should use 'Gildenface portrait photo' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Gildenface XL – Headshot LoRA \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n", "# Gildenface XL – Headshot LoRA \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>", "## Trigger words\nYou should use 'Gildenface portrait photo' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 79, 20, 397, 22, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #portrait #detailed #face #grotesque #headshot #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #region-us \n# Gildenface XL – Headshot LoRA \n\n<Gallery />\n\n\n\n(CivitAI)## Model description\n\n<p><strong>Gildenface XL</strong> – a LoRA focused on <em>exaggerated</em> and <em><span style=\"color:rgb(189, 193, 198)\">less-than-glamorous</span></em> close-ups with very <em>high detailed textures</em>.</p><p>Great for producing <em>unique, grotesque and/or outlandish faces</em>, but it can be used as a <em>enhance details for faces and textures</em>, depending on weight and prompt.</p><p><strong>Trigger word: Gildenface</strong><br /><strong>Useful prompt tips:</strong> Portrait photo, close up on face, detailed skin texture, leathery skin texture, visible skin pores, swollen face, greasy hair, wrinkles, potato nose, addict, blushing, chubby, hard shadows, disgusted, blemish, facial hair, staring <br />+ general enhancers, photography terms, and portrait photographers</p><p><strong>Recommended weights:</strong> between 0.8 – 1.2</p><p>It's a bit rough around the edges, and your milage may vary – but when it hits right it's golden.</p><p><span style=\"color:rgb(193, 194, 197)\">Be sure to check out </span><a target=\"_blank\" rel=\"ugc\" href=\"URL XL</a><span style=\"color:rgb(193, 194, 197)\"> LoRA by Blink, if you like creating weird</span></p>" ]
[ 0.024477822706103325, -0.025832649320364, -0.007977603003382683, 0.030978973954916, 0.05443288013339043, 0.012751278467476368, 0.02853185124695301, 0.1254209727048874, 0.07602408528327942, 0.14054696261882782, -0.005379559006541967, 0.05483577027916908, 0.08539647608995438, 0.048581935465335846, 0.06678155809640884, -0.26244282722473145, -0.024064159020781517, -0.0543481819331646, 0.08970627933740616, 0.08000227808952332, 0.09790943562984467, -0.019399888813495636, 0.06264916062355042, -0.020395854488015175, -0.04651745408773422, 0.011873748153448105, -0.0005521855200640857, 0.0007473547011613846, 0.04031308740377426, 0.12070026993751526, 0.018242236226797104, -0.005241277161985636, 0.0038566014263778925, -0.31619638204574585, 0.024221861734986305, 0.06513802707195282, -0.09408064931631088, 0.019648903980851173, 0.11378970742225647, -0.10025301575660706, 0.12160985916852951, -0.2062842845916748, 0.045765768736600876, 0.033598627895116806, -0.13822239637374878, -0.16812731325626373, -0.03979652374982834, 0.06660135835409164, 0.09210105240345001, 0.0076385922729969025, -0.051300276070833206, -0.012380761094391346, -0.09592242538928986, 0.0933884009718895, 0.25693145394325256, -0.14055849611759186, -0.06903857737779617, -0.05992136895656586, 0.074236199259758, -0.012667334638535976, -0.15422455966472626, 0.03788631781935692, -0.04721272736787796, 0.019376548007130623, 0.0602671317756176, 0.00008556133980164304, 0.09155762195587158, -0.010564710944890976, -0.07369879633188248, -0.006668337155133486, 0.03759826719760895, 0.09242519736289978, -0.05848817899823189, -0.23981261253356934, -0.03990533575415611, 0.04784465581178665, -0.09392734616994858, -0.05453930422663689, 0.025467399507761, 0.0024931563530117273, -0.05710030347108841, -0.06817743927240372, -0.026687225326895714, 0.005197432357817888, -0.006308067589998245, 0.11641529947519302, 0.0028136176988482475, -0.04350490868091583, 0.035518769174814224, 0.03472351282835007, -0.03296707198023796, -0.09634895622730255, -0.012063199654221535, -0.05054757744073868, -0.11480129510164261, 0.010662968270480633, -0.015926942229270935, 0.05838174372911453, 0.10079199820756912, 0.29238882660865784, 0.13703982532024384, 0.0637131929397583, -0.12467050552368164, 0.021860700100660324, -0.0016355266561731696, 0.09014544636011124, -0.032025426626205444, -0.1689281314611435, -0.02157188206911087, -0.01150943897664547, 0.0662410706281662, -0.04830309748649597, -0.00942035298794508, -0.018287096172571182, -0.008762667886912823, 0.012148626148700714, 0.10121625661849976, 0.03078075870871544, -0.08255559206008911, -0.024371011182665825, 0.1861228346824646, -0.11420901864767075, 0.0438210628926754, 0.04186297580599785, -0.0262519009411335, -0.070162832736969, 0.00023517898807767779, 0.03754265978932381, 0.03142548352479935, 0.07734742760658264, -0.0712563544511795, -0.04011335223913193, -0.06553242355585098, -0.06876594573259354, 0.0138624869287014, 0.013511781580746174, -0.052113499492406845, -0.03202572092413902, -0.028531203046441078, -0.08088330924510956, 0.012002967298030853, -0.10739538073539734, -0.013724718242883682, -0.03821372613310814, -0.03784986957907677, 0.06989393383264542, 0.06336360424757004, 0.06391482800245285, -0.03333892300724983, 0.08409469574689865, -0.02904975414276123, 0.09758617728948593, 0.10346172749996185, 0.017287375405430794, -0.03493090718984604, 0.03919948637485504, -0.2363540381193161, 0.11967209726572037, -0.08317719399929047, 0.010343346744775772, -0.06842443346977234, -0.0440908707678318, -0.07320040464401245, 0.0294799841940403, -0.014372806996107101, 0.08324703574180603, -0.1463019847869873, -0.10112301260232925, 0.2672567367553711, -0.07609859108924866, 0.04186573997139931, 0.12079957127571106, -0.016751553863286972, -0.01307622343301773, 0.04723221808671951, 0.18906959891319275, 0.049816787242889404, -0.10378322750329971, -0.00862488616257906, -0.014284513890743256, -0.07629859447479248, 0.23112110793590546, 0.05821400135755539, -0.11031899601221085, 0.024273797869682312, 0.04183739796280861, -0.02106463722884655, 0.015400867909193039, -0.003505406901240349, -0.003837228985503316, 0.04085754603147507, 0.05424559488892555, 0.12431558966636658, -0.0020181748550385237, -0.1326470971107483, -0.04984363541007042, -0.17753762006759644, -0.06447744369506836, 0.028862928971648216, 0.0026827952824532986, 0.02950826659798622, -0.10455828160047531, 0.0072736735455691814, 0.106313057243824, -0.014651245437562466, -0.08390618115663528, -0.13245254755020142, 0.0066016679629683495, -0.06966912001371384, 0.08167694509029388, -0.06396333128213882, 0.07546386122703552, 0.04136984050273895, -0.06140679493546486, 0.008803757838904858, -0.02798495814204216, -0.05284513905644417, -0.021297989413142204, -0.16264460980892181, 0.025585127994418144, -0.04026975482702255, 0.16215205192565918, -0.06317248195409775, 0.0011606249026954174, 0.10002727061510086, 0.10493394732475281, 0.10109193623065948, -0.0653834268450737, 0.011563087813556194, -0.04647544026374817, 0.029260799288749695, -0.025937428697943687, 0.05167628824710846, -0.040459226816892624, -0.05658926069736481, 0.01771998219192028, -0.16536588966846466, -0.11999403685331345, 0.07811352610588074, 0.0023644212633371353, -0.12990893423557281, -0.11074825376272202, -0.04356105253100395, -0.030814679339528084, -0.029583662748336792, -0.04279112070798874, 0.08018213510513306, 0.04633590951561928, -0.0069205062463879585, -0.01468832977116108, -0.04136372357606888, -0.028272757306694984, -0.026151606813073158, -0.051996860653162, 0.06217476725578308, 0.0207666028290987, -0.08594377338886261, 0.006416519172489643, 0.02929023467004299, 0.032003533095121384, 0.16003155708312988, 0.08752590417861938, -0.04954281449317932, -0.07767818868160248, 0.051031261682510376, 0.056150052696466446, 0.04107046127319336, -0.10283216834068298, 0.032603465020656586, 0.03309081867337227, -0.04769890010356903, -0.009129960089921951, -0.07286353409290314, 0.011786267161369324, -0.028576575219631195, -0.021319901570677757, 0.06682726740837097, 0.05814748257398605, 0.023028293624520302, 0.05843973904848099, 0.07408545911312103, 0.010921439155936241, -0.03710160031914711, -0.05890234559774399, -0.03370530530810356, 0.08161061257123947, -0.09441305696964264, -0.21386587619781494, -0.10730947554111481, -0.10384032875299454, -0.06293010711669922, 0.030257241800427437, 0.039282817393541336, -0.08161863684654236, -0.04123193770647049, -0.015998294577002525, 0.0859755128622055, 0.09417692571878433, -0.06125788018107414, -0.09967873245477676, 0.0034997027833014727, 0.02542920596897602, -0.0999317318201065, -0.012083352543413639, -0.0237825158983469, -0.11651439219713211, 0.01734861172735691, 0.0022128813434392214, 0.13026200234889984, 0.029554763808846474, 0.08780639618635178, -0.01237211562693119, -0.04046712443232536, 0.1875983476638794, -0.13919180631637573, 0.07690232247114182, 0.07891456037759781, 0.0265741478651762, 0.10433951020240784, 0.22503739595413208, 0.03395378962159157, -0.09132503718137741, 0.03607284650206566, 0.1416323482990265, -0.019383350387215614, -0.06826899945735931, -0.0523674413561821, -0.02547159418463707, -0.05100321024656296, 0.056691158562898636, 0.06981347501277924, 0.03079739585518837, 0.016367724165320396, -0.07608472555875778, -0.028698479756712914, 0.1484074741601944, 0.10961998254060745, 0.12619775533676147, -0.0011127303587272763, 0.10102841258049011, 0.024131134152412415, -0.057681187987327576, 0.07144208997488022, -0.027385400608181953, 0.11792174726724625, 0.026234665885567665, 0.1519816815853119, 0.1077800765633583, 0.09547140449285507, 0.012376694008708, -0.11486943066120148, -0.016933780163526535, -0.015452876687049866, -0.022756630554795265, -0.07810608297586441, 0.012933784164488316, 0.0441063717007637, 0.10581593960523605, -0.0862768217921257, 0.02781667374074459, -0.041187938302755356, 0.11509446054697037, 0.07202466577291489, -0.0036113145761191845, -0.08323387801647186, 0.056844562292099, 0.06337245553731918, -0.027784010395407677, -0.08275353163480759, -0.004441592376679182, 0.022382529452443123, -0.13196961581707, 0.11327427625656128, -0.04233992472290993, 0.05881869047880173, -0.09375744313001633, -0.02523413859307766, 0.069567009806633, 0.07336559891700745, 0.023037778213620186, 0.06685274839401245, -0.08656738698482513, 0.08755875378847122, 0.018915919587016106, 0.020438827574253082, 0.0068990010768175125, 0.04745570942759514, 0.05261510610580444, -0.04598397761583328, 0.18746860325336456, 0.007737087085843086, -0.11881888657808304, -0.0828147605061531, 0.026777584105730057, -0.015061515383422375, 0.20653094351291656, -0.117758609354496, 0.07396022230386734, -0.04587875306606293, -0.069242462515831, -0.05471565201878548, 0.08703738451004028, -0.17165294289588928, -0.14093820750713348, 0.04023607820272446, -0.1483038365840912, 0.0721401572227478, -0.0449230931699276, 0.02187834307551384, -0.11723355203866959, 0.1847088485956192, -0.12581847608089447, -0.04065827280282974, -0.09226042032241821, 0.009944004006683826, 0.063149593770504, -0.09535027295351028, 0.02340637519955635, 0.027969790622591972, 0.1711602360010147, -0.0015700234798714519, -0.008095747791230679, 0.05611177533864975, -0.008819079957902431, -0.09478934854269028, -0.04220610857009888, 0.14120256900787354, 0.04999922215938568, 0.020391318947076797, 0.01916714385151863, 0.06526824086904526, -0.00844577420502901, -0.09487779438495636, 0.12304490059614182, 0.005082282703369856, -0.08739763498306274, 0.06560081988573074, -0.050037700682878494, -0.10430117696523666, -0.11010462790727615, 0.0435524508357048, 0.09139306843280792, 0.20177853107452393, -0.07479055970907211, 0.13690343499183655, 0.061157744377851486, -0.078587107360363, -0.16878174245357513, -0.01441111508756876, 0.08697320520877838, -0.016219425946474075, 0.019515598192811012, -0.21351778507232666, 0.06443152576684952, 0.04489971697330475, -0.007124008610844612, 0.02067640982568264, -0.199379101395607, -0.1324629932641983, -0.028950678184628487, 0.03262357413768768, -0.2087637484073639, -0.11033008247613907, -0.11907073855400085, -0.0761321410536766, -0.10823175311088562, 0.07337004691362381, 0.019425325095653534, 0.06477214395999908, 0.030820932239294052, -0.005439466331154108, 0.03504136577248573, 0.011464724317193031, 0.15623517334461212, -0.03937678411602974, 0.07852792739868164, -0.11596949398517609, -0.06839881837368011, 0.010321781039237976, -0.002345794579014182, -0.007005574647337198, -0.004725298378616571, -0.04406345263123512, -0.041766878217458725, -0.0296886395663023, -0.11256865411996841, 0.0709637850522995, -0.06372899562120438, -0.03972483053803444, -0.029818382114171982, 0.04863636940717697, 0.04237592592835426, -0.009328316897153854, -0.021600522100925446, -0.13665653765201569, 0.14698216319084167, -0.06345529109239578, 0.032245367765426636, 0.029240552335977554, -0.19742505252361298, -0.04488580673933029, 0.009046786464750767, 0.0101535115391016, -0.023378852754831314, 0.04598892480134964, 0.0332864373922348, 0.028460854664444923, 0.15546339750289917, -0.02507939748466015, -0.041329193860292435, 0.01282669510692358, 0.14017502963542938, -0.04102180153131485, -0.1508312076330185, 0.005026183091104031, 0.0012408011825755239, -0.11991886794567108, -0.17227014899253845, 0.07652059197425842, 0.12637996673583984, -0.06216306611895561, 0.02343272790312767, 0.08943318575620651, 0.046482279896736145, -0.0490446574985981, 0.036951154470443726, 0.019689388573169708, -0.07832470536231995, -0.00947597250342369, 0.10269232094287872, -0.12954267859458923, -0.035352300852537155, 0.14314644038677216, -0.04080094397068024, -0.045917809009552, 0.010342707857489586, 0.1257777214050293, 0.0532950833439827, 0.04120946675539017, 0.020833076909184456, -0.041276250034570694, -0.005169532261788845, 0.04031167924404144, 0.019807953387498856, -0.03430025279521942, 0.048730503767728806, 0.038253054022789, 0.02607599087059498, 0.08541641384363174, 0.02156323939561844, 0.02200254425406456, -0.0005942474817857146, 0.017398705706000328, 0.042901646345853806, -0.011428853496909142, -0.004019381478428841, -0.0275720227509737, -0.0354117713868618, -0.037216655910015106, -0.014780248515307903, 0.04056965187191963, -0.060369499027729034, 0.02869461104273796, -0.016068143770098686, 0.054223377257585526, -0.02194124460220337, -0.05279981344938278, -0.07446157932281494, -0.09265555441379547, 0.016988860443234444, 0.08453051000833511, -0.18759359419345856, 0.009132107719779015, 0.1633789986371994, -0.08611436188220978, 0.07530392706394196, -0.016461651772260666, -0.007347763981670141, 0.013184778392314911, -0.11416641622781754, -0.0619208849966526, -0.02105797827243805, -0.031067293137311935, -0.04525798186659813, -0.12713560461997986, 0.045260317623615265, -0.09903648495674133, -0.0611114539206028, 0.012042472139000893, 0.02807290107011795, -0.14536459743976593, 0.10592331737279892, -0.004057521466165781, -0.0935082659125328, -0.09628085047006607, 0.04169611260294914, -0.007861895486712456, 0.002317520324140787, 0.03177208825945854, -0.07803807407617569, 0.03206130489706993, -0.12671269476413727, -0.0019714327063411474, 0.003553648479282856, -0.004671930801123381, 0.010406900197267532, -0.030704300850629807, 0.056190162897109985, 0.0226251482963562, 0.028529712930321693, 0.03219180926680565, 0.014631692320108414, 0.016137700527906418, 0.09009810537099838, -0.05811363458633423, -0.013901115395128727, -0.0072845821268856525, -0.024657487869262695, -0.02921977825462818, 0.08322833478450775, -0.03907504305243492, -0.04638876020908356, -0.07644475251436234, 0.0716376081109047, 0.1526631861925125, 0.14362576603889465, -0.04385392367839813, 0.06817208230495453, -0.09832330793142319, -0.12042449414730072, 0.11489484459161758, 0.013291265815496445, 0.05789683014154434, -0.08350745588541031, 0.08087953180074692, 0.1305331587791443, -0.16324353218078613, 0.13602790236473083, 0.023968107998371124, -0.045915037393569946, -0.039023470133543015, -0.19715850055217743, -0.06590283662080765, 0.005180463660508394, 0.05905494838953018, -0.07366067916154861, 0.053140100091695786, 0.07669277489185333, -0.0345139279961586, 0.045285243541002274, 0.08892343938350677, -0.13406987488269806, -0.12520918250083923, 0.043373871594667435, 0.010595698840916157, 0.011923803016543388, -0.004967494402080774, 0.021823056042194366, 0.009241979569196701, 0.020758602768182755, 0.03597688302397728, 0.037678297609090805, 0.018828436732292175, -0.028501182794570923, -0.15545575320720673, -0.06513874977827072, 0.04187573119997978, 0.00564018776640296, -0.019999118521809578, 0.15700411796569824, 0.05045652016997337, -0.00442051887512207, -0.04119867831468582, 0.27707424759864807, -0.051053620874881744, -0.029769692569971085, -0.09312871098518372, -0.007306125480681658, -0.01612784154713154, 0.061354562640190125, -0.05768008902668953, -0.08443506807088852, 0.056449949741363525, 0.08793962746858597, 0.08395817875862122, 0.0030685586389154196, 0.03560308367013931, 0.0892428606748581, 0.022410273551940918, 0.046157609671354294, 0.010056293569505215, 0.034955233335494995, 0.23349054157733917, -0.05940147116780281, 0.060909681022167206, 0.02365214191377163, -0.05787167325615883, -0.0496789813041687, 0.04847359284758568, -0.008320101536810398, 0.022514766082167625, -0.08753542602062225, 0.12426768988370895, 0.005635613575577736, -0.15587535500526428, 0.09457392990589142, -0.08027240633964539, -0.08479351550340652, -0.022013910114765167, 0.05038904398679733, 0.03302600979804993, 0.1029486432671547, 0.062256719917058945, -0.02588604763150215, 0.08878854662179947, 0.02880506031215191, -0.07186056673526764, -0.005072820000350475, 0.035472650080919266, -0.022400854155421257, 0.20462894439697266, -0.009344225749373436, 0.07813980430364609, 0.11672823131084442, -0.00871850922703743, -0.035960279405117035, 0.004817381966859102, 0.04288099706172943, -0.09390679001808167, 0.024067746475338936, 0.22760726511478424, -0.006086564622819424, 0.01074038352817297, 0.13562175631523132, -0.008523890748620033, 0.10506675392389297, -0.041197966784238815, -0.039859313517808914, -0.034046024084091187, 0.15855956077575684, -0.1634187400341034, 0.059395983815193176, 0.16308803856372833, 0.03555743768811226, -0.038859475404024124, -0.05491410568356514, -0.0753168836236, 0.06298670172691345, 0.1470215916633606, -0.061635371297597885, -0.05457483232021332, 0.018763668835163116, 0.06720782816410065, 0.027026616036891937, -0.15947677195072174, -0.17828144133090973, 0.0610479936003685, 0.02750750444829464, -0.044217269867658615, 0.14215195178985596, 0.0860174149274826, -0.023433977738022804, -0.020485052838921547, -0.2032535821199417, 0.030099235475063324, 0.12029887735843658, -0.11468332260847092, 0.021019916981458664 ]
null
null
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="atmikah/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
atmikah/q-FrozenLake-v1-4x4-noSlippery
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-07T00:29:49+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 40, 39 ]
[ "passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 0.04578453302383423, -0.08074592798948288, -0.00430759321898222, 0.10720831900835037, 0.05034215748310089, -0.040469273924827576, 0.11997015029191971, 0.018999949097633362, 0.20601962506771088, -0.010012076236307621, 0.1455274522304535, 0.007022971753031015, -0.006192410364747047, 0.1867983490228653, 0.04572829231619835, -0.26324528455734253, 0.01831899583339691, -0.09495259821414948, -0.07281816750764847, 0.11870454251766205, 0.05470194295048714, -0.01901467889547348, -0.0007633853238075972, 0.056141503155231476, -0.0673527717590332, 0.0007737681735306978, 0.031996939331293106, -0.012976245954632759, 0.19804789125919342, -0.02254498563706875, 0.06641989201307297, 0.054705578833818436, 0.0758768692612648, -0.1998077929019928, 0.0358855277299881, -0.04215473681688309, -0.09439758956432343, -0.03934839740395546, -0.018780618906021118, 0.05878105387091637, 0.053356342017650604, 0.03858819976449013, 0.058354366570711136, 0.09384993463754654, -0.0773480236530304, 0.04328357055783272, 0.04280758649110794, 0.024811049923300743, 0.04589218273758888, -0.0237203948199749, -0.027002155780792236, 0.08246652781963348, -0.22182892262935638, 0.10318073630332947, -0.010159241035580635, -0.5270710587501526, -0.00633762264624238, 0.24088262021541595, 0.11517096310853958, 0.05707438662648201, -0.06903956830501556, 0.10566288232803345, 0.03913382440805435, -0.007209456991404295, 0.03210983797907829, 0.02150118350982666, 0.12817370891571045, 0.06009242683649063, -0.09581366181373596, 0.040699947625398636, 0.13722525537014008, 0.012822695076465607, 0.020306183025240898, -0.08888901025056839, 0.0410032719373703, -0.03461858257651329, -0.007679527159780264, -0.09758518636226654, 0.05478060990571976, 0.012466507963836193, -0.0934976264834404, -0.09247440844774246, -0.04236573353409767, -0.06708304584026337, 0.11252415925264359, 0.046419668942689896, -0.0874939113855362, 0.03884070739150047, -0.06760413944721222, 0.05918780341744423, -0.16863860189914703, 0.02074250765144825, -0.06627868115901947, -0.09376336634159088, -0.11799788475036621, -0.01683047041296959, -0.07946427166461945, 0.009092256426811218, 0.056664444506168365, 0.1447116881608963, 0.22076484560966492, 0.06690320372581482, 0.09728849679231644, 0.07456006109714508, 0.06531001627445221, 0.1538129299879074, 0.10918238013982773, 0.019075315445661545, -0.015266558155417442, 0.0948706716299057, -0.06445580720901489, -0.1351388692855835, -0.15579092502593994, 0.005488025024533272, 0.0983937531709671, 0.08871900290250778, -0.044080477207899094, -0.006702381651848555, -0.024641724303364754, 0.08566431701183319, -0.11314457654953003, -0.024612564593553543, -0.002267979085445404, 0.06882024556398392, -0.024801667779684067, 0.020378148183226585, -0.06242705136537552, 0.12715265154838562, 0.04222423583269119, -0.059924717992544174, -0.055308472365140915, -0.03053177334368229, -0.014276440255343914, -0.027539284899830818, 0.02446848154067993, -0.07659092545509338, 0.04767750948667526, -0.16766095161437988, -0.042871296405792236, -0.04784649610519409, 0.025697942823171616, -0.03907240927219391, -0.13557587563991547, -0.17699143290519714, -0.048906855285167694, -0.022438718006014824, 0.03549358621239662, -0.038111843168735504, 0.006551501806825399, -0.006318534724414349, -0.1583600640296936, 0.09783563017845154, 0.09784027189016342, -0.03643378987908363, -0.02749447710812092, 0.056263517588377, -0.07194498926401138, 0.1561182290315628, -0.21054518222808838, -0.054014235734939575, -0.044764336198568344, -0.06595750898122787, 0.19673264026641846, 0.012690845876932144, -0.01202624011784792, 0.19873127341270447, -0.29073721170425415, -0.06078760325908661, 0.12533614039421082, -0.07834373414516449, -0.0936407670378685, 0.06941844522953033, -0.04206686094403267, 0.023345354944467545, 0.046047765761613846, 0.36345911026000977, -0.02069227211177349, -0.16197136044502258, -0.021782705560326576, 0.13971707224845886, -0.1184760183095932, 0.059895481914281845, 0.04240793362259865, 0.12543781101703644, -0.04250509291887283, -0.018672896549105644, -0.09023164212703705, 0.05999075248837471, -0.05241934582591057, -0.09016361832618713, -0.03393383324146271, -0.07645075023174286, 0.13294468820095062, -0.0629684180021286, 0.05601520463824272, -0.03255095332860947, -0.07133250683546066, -0.050324998795986176, -0.016492370516061783, 0.04460815340280533, 0.05951254442334175, -0.12794871628284454, 0.11029167473316193, 0.13025271892547607, -0.0006193425506353378, -0.07498852163553238, -0.17872096598148346, 0.003240168560296297, 0.009576505981385708, 0.039837226271629333, 0.17141658067703247, 0.12209978699684143, 0.033295199275016785, 0.008770671673119068, -0.06389404833316803, -0.18276847898960114, 0.058129217475652695, -0.056212130934000015, -0.14230976998806, -0.052409034222364426, -0.0728459507226944, 0.017381802201271057, -0.0859743058681488, -0.017379917204380035, 0.021926190704107285, 0.006908397190272808, 0.02990424446761608, -0.026645656675100327, -0.049561817198991776, 0.021254703402519226, 0.06490101665258408, -0.0037617047782987356, 0.12023693323135376, 0.008277264423668385, -0.18308481574058533, 0.07930773496627808, 0.08478537946939468, 0.09196605533361435, 0.013250201940536499, 0.02685922384262085, -0.021522263064980507, -0.08061408251523972, -0.054420311003923416, 0.02957955375313759, 0.11417073011398315, 0.1317172348499298, 0.2361993044614792, 0.08753683418035507, 0.04697408527135849, -0.02164587564766407, -0.016415923833847046, 0.002810494042932987, -0.06318057328462601, -0.029935607686638832, 0.10614971816539764, 0.05865858122706413, -0.067733034491539, -0.04576427489519119, 0.09590928256511688, 0.02732124738395214, 0.21205885708332062, -0.03342745825648308, 0.01286078616976738, -0.10957037657499313, -0.06550975888967514, -0.031982194632291794, 0.09201868623495102, 0.09498392790555954, 0.009755023755133152, -0.022056059911847115, -0.04259001836180687, 0.0012916827108711004, -0.1334889680147171, -0.10375088453292847, 0.026475343853235245, 0.013400445692241192, -0.11206940561532974, 0.11674030870199203, -0.11352457851171494, 0.039504457265138626, 0.06024791672825813, -0.13837239146232605, 0.04428480193018913, -0.029713207855820656, -0.07886212319135666, 0.16866780817508698, -0.11075661331415176, -0.094340018928051, -0.08831550180912018, 0.004082420375198126, 0.0075836325995624065, -0.03922267258167267, -0.009283260442316532, -0.19952571392059326, -0.005375816952437162, -0.03544965013861656, 0.013616434298455715, -0.06988783925771713, -0.11287739872932434, -0.010957922786474228, 0.07084179669618607, -0.043388739228248596, -0.07803605496883392, 0.007967432029545307, -0.08923084288835526, -0.10623309016227722, 0.028189711272716522, 0.019765101373195648, -0.022883659228682518, 0.16152891516685486, 0.01816628873348236, 0.05626589432358742, -0.03298520669341087, 0.30665266513824463, -0.038163769990205765, 0.08371731638908386, -0.02993497997522354, -0.07433546334505081, 0.06130730360746384, -0.022327827289700508, 0.06086638569831848, -0.020221687853336334, -0.02362890914082527, 0.0077952733263373375, -0.08579335361719131, -0.18365982174873352, -0.05417544022202492, 0.03724347800016403, 0.195254847407341, 0.031118987128138542, 0.01910330168902874, -0.0488768145442009, -0.010547760874032974, 0.1665220558643341, -0.10005921125411987, 0.04030545800924301, -0.05366240441799164, 0.11506262421607971, -0.08640182018280029, 0.06195629760622978, 0.020486772060394287, 0.04266135022044182, -0.04877188801765442, 0.09486009180545807, 0.0826394334435463, 0.1121082529425621, -0.02206910029053688, 0.046257395297288895, 0.019012698903679848, 0.07383184134960175, 0.11073657125234604, 0.0368414968252182, -0.0729052945971489, 0.001982470043003559, -0.006313489284366369, -0.039427030831575394, 0.11933320760726929, 0.17963355779647827, -0.11991413682699203, -0.05106910318136215, 0.27167606353759766, 0.0031242913100868464, 0.19481229782104492, -0.01315275114029646, 0.043591804802417755, -0.04484925419092178, 0.04572054371237755, -0.05338600277900696, -0.04086209088563919, 0.2094656229019165, 0.08045925945043564, -0.17165091633796692, -0.08549032360315323, -0.05912299454212189, 0.07081323862075806, 0.10728751868009567, 0.0013539529172703624, -0.04156802222132683, 0.0004610282776411623, 0.0014198932331055403, 0.08339415490627289, -0.14520122110843658, 0.11816094070672989, -0.03172019124031067, 0.05612684786319733, 0.017555562779307365, -0.045326150953769684, 0.04264266416430473, 0.07474290579557419, 0.26618310809135437, 0.0904107540845871, -0.040318213403224945, -0.0892091691493988, -0.12260187417268753, 0.010461576282978058, 0.029102616012096405, -0.03534553572535515, 0.0037547778338193893, -0.020087555050849915, 0.0318896509706974, 0.008264793083071709, 0.016230624169111252, -0.08987458795309067, -0.03175399824976921, -0.027736429125070572, -0.023839212954044342, 0.10733365267515182, -0.09495144337415695, -0.1444292515516281, -0.15713949501514435, 0.04191131144762039, -0.0766405463218689, -0.056593164801597595, -0.054507751017808914, -0.05239389091730118, -0.0311186034232378, -0.03773957118391991, 0.09099467098712921, -0.0021037792321294546, 0.14807306230068207, -0.1920108050107956, -0.04220759496092796, 0.051812779158353806, -0.07607918977737427, -0.08729588985443115, 0.03410962224006653, 0.12136995792388916, 0.05116051807999611, 0.11504370719194412, 0.013609255664050579, 0.09567681699991226, 0.0045484392903745174, -0.06713183224201202, 0.15302421152591705, -0.14069625735282898, -0.27875974774360657, -0.03836318850517273, 0.016946332529187202, 0.1615200787782669, -0.05613167956471443, 0.031766023486852646, 0.3335736393928528, 0.27782970666885376, -0.1428707242012024, 0.25916144251823425, 0.019178593531250954, 0.004398873541504145, -0.19130495190620422, -0.10125631093978882, 0.025324683636426926, 0.04740457236766815, 0.12032642960548401, -0.14564448595046997, -0.010732659138739109, -0.04543145373463631, -0.025908485054969788, 0.10386138409376144, -0.12300799041986465, -0.07263197749853134, 0.07765276730060577, 0.039809420704841614, 0.1808302253484726, 0.03932500258088112, 0.0014799144119024277, 0.13626977801322937, 0.06612244248390198, 0.019124457612633705, 0.05216038227081299, 0.08028066903352737, -0.018944554030895233, 0.14207926392555237, 0.05448179319500923, -0.02551644667983055, 0.052681710571050644, -0.0054580713622272015, -0.03219012916088104, 0.015605825930833817, -0.183198019862175, -0.10147556662559509, -0.0561356320977211, -0.10798973590135574, -0.04978342354297638, 0.056853994727134705, -0.12395523488521576, -0.007896827533841133, -0.03841273859143257, 0.03718273714184761, -0.07831971347332001, -0.09360362589359283, -0.036494381725788116, 0.1351792961359024, 0.07210618257522583, 0.04471297934651375, 0.035655103623867035, -0.07390819489955902, 0.07097936421632767, 0.21671734750270844, 0.08159157633781433, 0.028919655829668045, -0.19545674324035645, -0.024042490869760513, -0.0803457647562027, 0.06306298077106476, -0.08856996893882751, -0.016788700595498085, 0.11923003196716309, 0.08616556972265244, 0.05413002520799637, 0.09640096127986908, -0.045083072036504745, 0.021686913445591927, 0.02684609219431877, -0.15131035447120667, -0.18501274287700653, -0.08534606546163559, -0.03519878163933754, 0.11561143398284912, -0.06398691236972809, 0.10897188633680344, -0.13615410029888153, 0.010051886551082134, -0.006060056854039431, 0.02693452313542366, -0.03596206381917, -0.11251141875982285, 0.15348562598228455, 0.11999429017305374, -0.06767056882381439, 0.03127254918217659, -0.09527092427015305, -0.04423454403877258, 0.12686803936958313, -0.013623855076730251, -0.0371493324637413, -0.054547641426324844, -0.03628576174378395, 0.15247689187526703, -0.03436964750289917, 0.008244883269071579, -0.041229065507650375, -0.18217355012893677, 0.0798322781920433, 0.09045056998729706, 0.019827889278531075, -0.031874191015958786, -0.09797266125679016, -0.010231015272438526, -0.0011165260802954435, 0.11730700731277466, -0.10696814209222794, -0.10933240503072739, -0.15144047141075134, 0.06713984161615372, -0.0007159380475059152, 0.18502596020698547, -0.06394898891448975, -0.08904669433832169, -0.12429379671812057, 0.02344517596065998, -0.0027384376153349876, -0.042264558374881744, 0.01618490368127823, 0.07992301136255264, -0.04095321521162987, 0.02075677551329136, -0.06651144474744797, 0.06372585147619247, -0.11786920577287674, 0.09625071287155151, 0.01063506118953228, 0.016993753612041473, -0.0417880080640316, -0.01618220843374729, 0.039470795542001724, -0.057925306260585785, 0.07921463251113892, 0.011758086271584034, 0.0010938759660348296, 0.10196787863969803, -0.0034960443153977394, 0.06409632414579391, -0.05372481048107147, -0.023290161043405533, 0.06578411161899567, -0.05874887853860855, -0.03370826691389084, -0.1573946475982666, -0.0709633082151413, 0.020051732659339905, -0.04775108024477959, 0.002077929675579071, 0.03673801198601723, 0.062159497290849686, -0.06937079131603241, -0.12125655263662338, -0.043812792748212814, -0.028638383373618126, 0.021301284432411194, 0.10829301923513412, -0.07526551932096481, 0.1547859013080597, -0.052787959575653076, -0.00020603960729204118, 0.07437096536159515, 0.04048224538564682, 0.01393822580575943, -0.10422444343566895, -0.04698587954044342, -0.11035211384296417, 0.1502903699874878, -0.007902312092483044, -0.03533121198415756, 0.03719403222203255, -0.11946307867765427, -0.1572723090648651, 0.03418220207095146, 0.10199101269245148, 0.0448341928422451, 0.025807438418269157, 0.027079269289970398, -0.04042419046163559, -0.021270349621772766, -0.07034418731927872, 0.0882953479886055, -0.12085357308387756, -0.09669415652751923, 0.09555385261774063, 0.12178351730108261, -0.0036850625183433294, -0.07441367954015732, 0.11554073542356491, -0.021787192672491074, 0.05525410920381546, -0.02971339225769043, 0.10308072715997696, 0.0796005055308342, -0.12273547053337097, 0.005693064536899328, -0.036891788244247437, -0.0741485133767128, -0.12975730001926422, 0.019545545801520348, -0.061916105449199677, -0.13383042812347412, 0.12179028987884521, -0.09376577287912369, 0.030037038028240204, -0.10506992787122726, 0.021338803693652153, 0.01864001713693142, 0.061665527522563934, -0.10988292098045349, 0.08575301617383957, 0.13424484431743622, -0.043199893087148666, -0.07184189558029175, -0.12455986440181732, -0.05022053420543671, -0.04231856390833855, -0.13957437872886658, -0.11600435525178909, 0.0100301094353199, -0.023418782278895378, -0.05818291753530502, 0.0015462689334526658, -0.03659068048000336, 0.008594646118581295, 0.021907730028033257, 0.04032021388411522, -0.02693161368370056, 0.05134565755724907, -0.057569269090890884, -0.052510857582092285, 0.11489357799291611, 0.04113486409187317, -0.03561042994260788, -0.052359987050294876, 0.12997733056545258, -0.11959461867809296, 0.07662346214056015, -0.020313527435064316, 0.017129231244325638, -0.06435854732990265, 0.17131924629211426, 0.11673715710639954, -0.1367570012807846, -0.005008010193705559, -0.08210669457912445, 0.020409544929862022, 0.023555370047688484, 0.13693512976169586, -0.03411718085408211, -0.0012358218664303422, -0.1580323874950409, 0.018575575202703476, -0.18557456135749817, -0.03716109320521355, 0.04671547934412956, 0.09917585551738739, 0.15293832123279572, -0.0034432117827236652, -0.1263325810432434, 0.10424192249774933, -0.2118520885705948, 0.0907607227563858, 0.05121984705328941, -0.11874113976955414, -0.06765396893024445, -0.06795281916856766, 0.1198519766330719, 0.009196433238685131, 0.2040700763463974, -0.013615905307233334, -0.09132910519838333, -0.07060808688402176, -0.01980910450220108, -0.030524181202054024, 0.09714830666780472, 0.041414931416511536, 0.04653804749250412, 0.12821412086486816, 0.00368314771912992, 0.07533777505159378, 0.060310911387205124, 0.02759413793683052, -0.012300663627684116, 0.04076618701219559, 0.08261215686798096, -0.14588621258735657, -0.1659701019525528, 0.1326720416545868, 0.025149408727884293, 0.11792458593845367, 0.03658788278698921, -0.1549617499113083, 0.06687124073505402, 0.2523096203804016, -0.11147607117891312, 0.02505038119852543, 0.12737524509429932, -0.0366884209215641, 0.0672016367316246, 0.1144871786236763, -0.02633814327418804, -0.05217865854501724, -0.011363590136170387, 0.10233135521411896, 0.028660254552960396, -0.04646271467208862, -0.02340836264193058, -0.03373933956027031, -0.019070526584982872, -0.011738128960132599, -0.0909019410610199, -0.1543993502855301, -0.10471053421497345, -0.16619662940502167, 0.04399140924215317, -0.04626438021659851, 0.13418889045715332, 0.09469578415155411, -0.012723101302981377, 0.04568437114357948, 0.028575526550412178, 0.07275456190109253, 0.07916246354579926, -0.02939477376639843, -0.036159269511699677 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 256 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.3233 | 0.0 | 16 | 0.0 | | 5.8951 | 0.0 | 32 | 0.0 | | 5.6878 | 0.0 | 48 | 0.0 | | 5.565 | 0.01 | 64 | 0.0 | | 5.465 | 0.01 | 80 | 0.0 | | 5.3753 | 0.01 | 96 | 0.0 | | 5.2865 | 0.01 | 112 | 0.0 | | 5.2224 | 0.01 | 128 | 0.0 | | 5.1431 | 0.01 | 144 | 0.0 | | 5.0848 | 0.02 | 160 | 0.0 | | 5.0773 | 0.02 | 176 | 0.0 | | 5.0287 | 0.02 | 192 | 0.0 | | 4.9982 | 0.02 | 208 | 0.0 | | 4.9662 | 0.02 | 224 | 0.0 | | 4.9546 | 0.02 | 240 | 0.0 | | 4.9439 | 0.02 | 256 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0a0+41361538.nv23.06 - Datasets 2.16.1 - Tokenizers 0.15.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
null
leoschneider/results
[ "transformers", "tensorboard", "safetensors", "time_series_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2024-02-07T00:31:59+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #time_series_transformer #generated_from_trainer #endpoints_compatible #region-us
results ======= This model is a fine-tuned version of [](URL on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0006 * train\_batch\_size: 256 * eval\_batch\_size: 256 * seed: 42 * optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 * lr\_scheduler\_type: linear * training\_steps: 256 ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.0a0+41361538.nv23.06 * Datasets 2.16.1 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0006\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 256", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.0a0+41361538.nv23.06\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #time_series_transformer #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0006\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 256", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.0a0+41361538.nv23.06\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ 41, 96, 4, 42 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #time_series_transformer #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0006\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 256### Training results### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.0a0+41361538.nv23.06\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ -0.09147976338863373, 0.02991023100912571, -0.0014677505241706967, 0.0947936624288559, 0.19243191182613373, 0.01807870902121067, 0.11329594999551773, 0.0942440778017044, -0.16737797856330872, 0.041459113359451294, 0.12045906484127045, 0.14267925918102264, -0.0028002087492495775, 0.08983634412288666, -0.06771489977836609, -0.2393336296081543, -0.007401798386126757, 0.044722288846969604, -0.15380381047725677, 0.122181735932827, 0.08824051171541214, -0.1639866828918457, 0.06663818657398224, -0.014136861078441143, -0.26277729868888855, 0.024796834215521812, 0.04992537572979927, -0.0630195289850235, 0.13965019583702087, 0.007205367553979158, 0.17822006344795227, 0.006849362980574369, 0.10777726769447327, -0.1536235362291336, 0.011643385514616966, 0.10444139689207077, 0.022557226940989494, 0.06825190037488937, 0.07214536517858505, 0.010409537702798843, 0.08289497345685959, -0.11528316140174866, 0.06723275780677795, 0.018056688830256462, -0.1514558494091034, -0.26294705271720886, -0.08938075602054596, -0.011857006698846817, 0.06785260885953903, 0.09240075200796127, -0.007770541589707136, 0.15563394129276276, -0.07685448229312897, 0.099667027592659, 0.2504965364933014, -0.2777389585971832, -0.09189197421073914, 0.07176962494850159, 0.031368326395750046, 0.10201682895421982, -0.1130252555012703, 0.005892612971365452, 0.07093172520399094, 0.04139862209558487, 0.13739636540412903, -0.035854779183864594, -0.1266120970249176, 0.030542677268385887, -0.159839928150177, 0.012122100219130516, 0.052678726613521576, 0.02178625948727131, -0.026701677590608597, -0.014794712886214256, -0.07497018575668335, -0.1263970136642456, -0.03877770155668259, -0.05988027900457382, 0.06356465071439743, -0.058414336293935776, -0.1140945553779602, -0.00030791290919296443, -0.10838991403579712, -0.10148943215608597, -0.04593305662274361, 0.1972467005252838, 0.035156235098838806, 0.03051629103720188, -0.06378354877233505, 0.09248378872871399, -0.02280431240797043, -0.13919934630393982, 0.023118959739804268, 0.029366768896579742, -0.025368986651301384, -0.07049816101789474, -0.0893542692065239, -0.1209690198302269, 0.0005785401444882154, 0.07150018215179443, -0.11296107620000839, 0.058565862476825714, 0.024216845631599426, 0.027481844648718834, -0.11483294516801834, 0.18799877166748047, -0.0604737214744091, -0.0016986802220344543, -0.006634692195802927, 0.050037045031785965, -0.004532879218459129, 0.002479603048413992, -0.07534700632095337, -0.003243927378207445, 0.11396191269159317, 0.015373705886304379, -0.09129160642623901, 0.06739538908004761, -0.013516207225620747, 0.011453329585492611, -0.04938294738531113, -0.09853378683328629, 0.054026469588279724, -0.0011667268117889762, -0.10155092179775238, -0.014108157716691494, 0.034558042883872986, -0.0016058512264862657, -0.006950208451598883, 0.13821181654930115, -0.09662966430187225, 0.0533878393471241, -0.13400420546531677, -0.12813764810562134, 0.0025205418933182955, -0.04286773130297661, 0.012351063080132008, -0.08801588416099548, -0.14289091527462006, -0.020976737141609192, 0.053947605192661285, -0.026617862284183502, 0.018744824454188347, -0.04372907429933548, -0.0995890200138092, 0.004040553234517574, -0.02347729168832302, 0.17087015509605408, -0.045416902750730515, 0.11690878123044968, 0.05862419679760933, 0.08922941982746124, -0.017308484762907028, 0.04301853105425835, -0.0892418622970581, 0.0037168783601373434, -0.25939682126045227, 0.02118677645921707, -0.06602772325277328, 0.05807065591216087, -0.0850178673863411, -0.10609724372625351, 0.014678104780614376, 0.012662171386182308, 0.10005919635295868, 0.08502199500799179, -0.18476255238056183, -0.06031111255288124, 0.18191054463386536, -0.08225124329328537, -0.10236568003892899, 0.09157406538724899, -0.05500305816531181, 0.041541147977113724, 0.08003071695566177, 0.15931247174739838, 0.03178011626005173, -0.09997902810573578, 0.021956248208880424, -0.0354410819709301, 0.034346770495176315, -0.04828730225563049, 0.018471594899892807, 0.014695449732244015, 0.04734024778008461, 0.016417166218161583, -0.04976304993033409, 0.048301804810762405, -0.12751451134681702, -0.06692134588956833, -0.056298837065696716, -0.11536581814289093, 0.05532476678490639, 0.07482102513313293, 0.08544976264238358, -0.10944967716932297, -0.07883640378713608, 0.16393552720546722, 0.05995919927954674, -0.06002834811806679, 0.03170451149344444, -0.05924321338534355, 0.026416007429361343, -0.07479197531938553, -0.024267936125397682, -0.20105019211769104, -0.06447048485279083, -0.008724120445549488, 0.01778908260166645, 0.007074267603456974, 0.005849766079336405, 0.11197751760482788, 0.06531363725662231, -0.08138164132833481, -0.008956399746239185, -0.03748778998851776, 0.005180444102734327, -0.13746540248394012, -0.2019505500793457, -0.02210872434079647, -0.01511648390442133, 0.04996951296925545, -0.23331478238105774, 0.0265023335814476, -0.015076874755322933, 0.10219010710716248, 0.03749550133943558, -0.019123975187540054, -0.05182211473584175, 0.0983065813779831, -0.006070456467568874, -0.07182911783456802, 0.047938939183950424, -0.015298781916499138, -0.05916223302483559, -0.03965724632143974, -0.1378190815448761, 0.1756993681192398, 0.1378972977399826, -0.15561674535274506, -0.11036825180053711, 0.06682485342025757, -0.05607898160815239, -0.022173551842570305, -0.07122979313135147, 0.05133550614118576, 0.14478710293769836, -0.003352655563503504, 0.14828571677207947, -0.0735221728682518, -0.0392598882317543, 0.013430505059659481, -0.047539349645376205, 0.04356524348258972, 0.09451287984848022, 0.07989661395549774, -0.06459369510412216, 0.114323690533638, 0.14437155425548553, -0.1188809871673584, 0.12157966941595078, -0.05667813867330551, -0.08676488697528839, -0.02588379569351673, -0.0016936117317527533, 0.01523657888174057, 0.12977789342403412, -0.05766725912690163, -0.00888444297015667, -0.01729557104408741, 0.03978629782795906, 0.019744781777262688, -0.2569498121738434, -0.037993475794792175, 0.035265881568193436, -0.028903109952807426, 0.013039336539804935, -0.028646904975175858, 0.02608635276556015, 0.11291379481554031, -0.01379319280385971, -0.046794116497039795, 0.0246144887059927, -0.0034721323754638433, -0.07247792929410934, 0.23742389678955078, -0.08246827125549316, -0.08528773486614227, -0.08772765845060349, -0.0334615595638752, -0.027965744957327843, 0.00013317220145836473, 0.03937683254480362, -0.1250293254852295, -0.020553607493638992, -0.04490936920046806, 0.05579002574086189, 0.012001442722976208, 0.05211259424686432, 0.018041688948869705, 0.0048553356900811195, 0.09944803267717361, -0.12510916590690613, 0.01589779555797577, -0.0791381299495697, -0.10186741501092911, 0.04475173354148865, 0.09085430204868317, 0.1156497672200203, 0.16110344231128693, -0.05688950791954994, 0.003320573130622506, -0.023786041885614395, 0.22019292414188385, -0.08343899250030518, -0.04167551547288895, 0.12670756876468658, -0.011649580672383308, 0.04948621243238449, 0.07300104945898056, 0.07978522032499313, -0.11707786470651627, 0.018009474501013756, 0.06146986782550812, -0.03268592804670334, -0.20978684723377228, -0.013318749144673347, -0.02099570259451866, -0.05015437677502632, 0.053593456745147705, 0.01522662304341793, 0.03621573746204376, 0.04283395782113075, 0.06604590266942978, 0.06958937644958496, -0.045778289437294006, 0.04500710591673851, 0.0670800656080246, 0.048744890838861465, 0.12080496549606323, -0.05065000802278519, -0.06521369516849518, 0.007684971205890179, -0.0471748411655426, 0.24463875591754913, -0.010755885392427444, 0.056130170822143555, 0.05733262002468109, 0.16299645602703094, -0.004055902827531099, 0.08059665560722351, -0.0047950041480362415, -0.08816076070070267, 0.014939003624022007, -0.05302728712558746, -0.012927599251270294, 0.006464412435889244, -0.09454847872257233, 0.07323788106441498, -0.1130797415971756, 0.004669418558478355, 0.06762691587209702, 0.24662689864635468, 0.03736281022429466, -0.3206983208656311, -0.07384761422872543, -0.007120481226593256, -0.024841979146003723, -0.02469577081501484, 0.01018165610730648, 0.14101602137088776, -0.057062093168497086, 0.026469243690371513, -0.08120295405387878, 0.07861311733722687, -0.0023196341935545206, 0.03417083993554115, 0.06415773183107376, 0.12866491079330444, -0.02241567149758339, 0.0413401760160923, -0.3150418698787689, 0.28677186369895935, 0.020586403086781502, 0.12354976683855057, -0.048469021916389465, -0.008352389559149742, 0.018175536766648293, 0.05623713135719299, 0.03918978571891785, -0.026227399706840515, -0.0950491726398468, -0.22385050356388092, -0.00027632893761619925, 0.01913047954440117, 0.15231963992118835, 0.029859501868486404, 0.11304221302270889, -0.014307343401014805, 0.005126893986016512, 0.10760612785816193, -0.05346352979540825, -0.09822577238082886, -0.03018721006810665, -0.04349572956562042, 0.012122230604290962, -0.044282473623752594, -0.07697613537311554, -0.10184567421674728, -0.1100265309214592, 0.11340895295143127, 0.017742058262228966, -0.01080136839300394, -0.13147974014282227, 0.10714608430862427, 0.08644337207078934, -0.06067952886223793, 0.047424253076314926, 0.044156987220048904, 0.06278304755687714, 0.03998798131942749, -0.06696236878633499, 0.122584268450737, -0.0596466101706028, -0.16156867146492004, -0.05873626470565796, 0.0718555673956871, 0.04821932688355446, 0.0422067865729332, -0.02583206072449684, 0.026514597237110138, 0.016714103519916534, -0.08358575403690338, 0.04252259433269501, -0.026273826137185097, 0.0537102110683918, 0.020071327686309814, -0.02694995142519474, 0.025168374180793762, -0.03047909401357174, -0.015482889488339424, 0.12293410301208496, 0.2643006443977356, -0.09201370179653168, -0.03237374871969223, 0.04525620862841606, -0.0531129390001297, -0.20902839303016663, 0.13988646864891052, 0.06943093240261078, -0.005178534891456366, 0.04718921706080437, -0.13669534027576447, 0.15102440118789673, 0.10314276069402695, -0.009558792226016521, 0.11644358932971954, -0.32649967074394226, -0.14558278024196625, 0.08503169566392899, 0.19328416883945465, 0.12008771300315857, -0.16454768180847168, -0.009370357729494572, -0.006802978925406933, -0.09789526462554932, 0.08985833078622818, -0.12925590574741364, 0.10203197598457336, 0.0017489807214587927, 0.0920504480600357, 0.008762379176914692, -0.06885477900505066, 0.10239335149526596, -0.020544739440083504, 0.1434718519449234, -0.059307076036930084, -0.015369493514299393, 0.10555919259786606, -0.04269832745194435, -0.015513320453464985, -0.01918538101017475, 0.037605948746204376, -0.02046784944832325, -0.01055400911718607, -0.09681720286607742, 0.024901488795876503, -0.039789874106645584, -0.06960885971784592, -0.02052932232618332, 0.0246183592826128, 0.023579522967338562, -0.041528746485710144, 0.11199319362640381, 0.018954332917928696, 0.1751035898923874, 0.10785312205553055, 0.05815751850605011, -0.06058167293667793, -0.035346757620573044, 0.030509483069181442, -0.01400099415332079, 0.07446862757205963, -0.1716310828924179, 0.026144590228796005, 0.12722373008728027, 0.034396834671497345, 0.10025627911090851, 0.09450004994869232, -0.03223182260990143, 0.011905106715857983, 0.06571964919567108, -0.15913920104503632, -0.10265814512968063, 0.021130338311195374, -0.07818000018596649, -0.08902700245380402, 0.08741991221904755, 0.09402354806661606, -0.08497299998998642, 0.01381710171699524, -0.017870482057332993, -0.011870617046952248, -0.06526359170675278, 0.2385479062795639, 0.07591459900140762, 0.05076321214437485, -0.09221221506595612, 0.09366186708211899, 0.03710704296827316, -0.10185647755861282, 0.002183292992413044, 0.07748358696699142, -0.0684029683470726, -0.0010803102049976587, 0.14019820094108582, 0.19114893674850464, -0.06066691502928734, -0.03743860498070717, -0.155507430434227, -0.11706932634115219, 0.05307907983660698, 0.24949905276298523, 0.09028487652540207, 0.009514324367046356, -0.02096620947122574, 0.05471692979335785, -0.16466332972049713, 0.08706873655319214, 0.04154442250728607, 0.08562403917312622, -0.15074415504932404, 0.24018613994121552, -0.0007259686244651675, 0.018056996166706085, -0.035573653876781464, 0.0556914359331131, -0.12703026831150055, 0.029390830546617508, -0.13179557025432587, -0.05554094538092613, 0.015970390290021896, -0.016253314912319183, -0.0038428513798862696, -0.06964307278394699, -0.07125142216682434, 0.026324454694986343, -0.11877898871898651, -0.016579685732722282, 0.048217155039310455, 0.007003585807979107, -0.13769906759262085, -0.04889891296625137, 0.007030196022242308, -0.05444874241948128, 0.02558162622153759, 0.04895549640059471, 0.0213310569524765, 0.09100264310836792, -0.1698642373085022, -0.01928507350385189, 0.06925436854362488, -0.026595236733555794, 0.08862490952014923, -0.04621422663331032, -0.017536267638206482, -0.020718099549412727, 0.10264267027378082, 0.013535099104046822, 0.026700418442487717, -0.12235654890537262, 0.00873815082013607, -0.0594881996512413, -0.05780775099992752, -0.05919964239001274, 0.017898820340633392, 0.09030354768037796, 0.013785496354103088, 0.1627950370311737, -0.10443077236413956, 0.030105317011475563, -0.222806915640831, -0.01754446141421795, -0.007280897349119186, -0.1180037409067154, -0.10906864702701569, -0.021908603608608246, 0.0901268795132637, -0.06509639322757721, 0.10056943446397781, 0.01450823713093996, 0.08516798168420792, 0.046795934438705444, -0.06290741264820099, -0.006900604814291, 0.0612158440053463, 0.233601376414299, 0.02316027134656906, -0.03477485477924347, 0.06311462819576263, 0.1043214350938797, 0.10922450572252274, 0.0726751834154129, 0.23555627465248108, 0.1840163916349411, -0.043836671859025955, 0.11333181709051132, 0.024732213467359543, -0.06640700995922089, -0.148042231798172, 0.04679545760154724, -0.07798072695732117, 0.07266709208488464, -0.04648138955235481, 0.17800697684288025, 0.08673961460590363, -0.14805066585540771, 0.042738236486911774, -0.07110609859228134, -0.08786117285490036, -0.10707039386034012, 0.04110384359955788, -0.08179274201393127, -0.17320972681045532, 0.01683819480240345, -0.11146605014801025, 0.04836733639240265, 0.12084069848060608, 0.020197205245494843, 0.0028111361898481846, 0.23710854351520538, 0.05634644627571106, 0.05195218697190285, 0.05756622552871704, 0.0002432833716738969, -0.010736493393778801, -0.055947791785001755, -0.06935358047485352, -0.003418277483433485, -0.03881307318806648, 0.02783314138650894, -0.0668087974190712, -0.09679268300533295, 0.04933185502886772, -0.0037800201680511236, -0.10098661482334137, 0.030668387189507484, 0.04211004450917244, 0.06533467769622803, -0.011874615214765072, 0.012647931464016438, 0.009082157164812088, -0.03677689656615257, 0.25437670946121216, -0.09716539829969406, -0.08568976819515228, -0.08997178077697754, 0.2667255699634552, 0.06107687950134277, 0.028717976063489914, 0.006768048740923405, -0.09387897700071335, 0.0039467657916247845, 0.20964613556861877, 0.14089956879615784, -0.09501631557941437, -0.007460515480488539, -0.016256535425782204, -0.020056530833244324, -0.06762952357530594, 0.13711801171302795, 0.11815990507602692, 0.03865988552570343, -0.09913191199302673, -0.0608358159661293, -0.03359236940741539, -0.013333172537386417, -0.05433708056807518, 0.05242703855037689, 0.05647401884198189, 0.03363307565450668, -0.05740514025092125, 0.06148667633533478, -0.030235499143600464, -0.1536518931388855, 0.07803648710250854, -0.2069380283355713, -0.14818882942199707, -0.019567256793379784, 0.12970681488513947, -0.02937442995607853, 0.07738564163446426, -0.019321558997035027, -0.005508926697075367, 0.04765187203884125, -0.021198466420173645, -0.03612017259001732, -0.11602970957756042, 0.07575539499521255, -0.1281082183122635, 0.20345519483089447, -0.049620047211647034, 0.04165692627429962, 0.12381169945001602, 0.03787216171622276, -0.07792310416698456, 0.059959616512060165, 0.037837617099285126, -0.15568378567695618, -0.0026385467499494553, 0.13806544244289398, -0.04963799566030502, 0.0820336788892746, 0.027134384959936142, -0.18463090062141418, 0.030284510925412178, -0.07493849098682404, -0.05621401220560074, -0.04595654085278511, -0.06853950023651123, -0.036713771522045135, 0.0991632342338562, 0.22682154178619385, -0.014638040214776993, 0.059104517102241516, -0.07805956155061722, 0.015753421932458878, 0.058286383748054504, 0.08396044373512268, -0.07014645636081696, -0.25624436140060425, 0.04361021891236305, 0.09684779495000839, -0.045710135251283646, -0.2137916535139084, -0.09615129232406616, 0.04572411626577377, -0.07775300741195679, -0.07754248380661011, 0.08113692700862885, 0.12189491093158722, 0.06667333841323853, -0.048303067684173584, -0.1678636521100998, -0.07339298725128174, 0.1876978725194931, -0.14992275834083557, -0.09566900879144669 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microtest-2.0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.3672 - Accuracy: 0.75 - F1: 0.8 - Precision: 0.6667 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|:---------:|:------:| | 0.8113 | 0.5 | 1 | 0.4486 | 0.75 | 0.8 | 0.6667 | 1.0 | | 0.7227 | 1.0 | 2 | 0.3672 | 0.75 | 0.8 | 0.6667 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["azaheadhealth"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "bert-base-uncased", "model-index": [{"name": "microtest-2.0", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "azaheadhealth", "type": "azaheadhealth", "config": "micro", "split": "test", "args": "micro"}, "metrics": [{"type": "accuracy", "value": 0.75, "name": "Accuracy"}, {"type": "f1", "value": 0.8, "name": "F1"}, {"type": "precision", "value": 0.6666666666666666, "name": "Precision"}, {"type": "recall", "value": 1.0, "name": "Recall"}]}]}]}
text-classification
zwellington/microtest-2.0
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:azaheadhealth", "base_model:bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T00:40:09+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
microtest-2.0 ============= This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set: * Loss: 0.3672 * Accuracy: 0.75 * F1: 0.8 * Precision: 0.6667 * Recall: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 1 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 2 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.31.0 * Pytorch 2.2.0+cu121 * Datasets 2.16.1 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ 74, 126, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 2\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ -0.13472184538841248, 0.18497563898563385, -0.0024748393334448338, 0.10397858172655106, 0.15654176473617554, 0.04122583195567131, 0.09652750939130783, 0.16249306499958038, -0.06876230239868164, 0.08004406094551086, 0.11947790533304214, 0.11301589757204056, 0.04880775511264801, 0.1773519515991211, -0.034004468470811844, -0.26510006189346313, 0.005960418377071619, 0.009773733094334602, -0.0663251131772995, 0.14468994736671448, 0.09018225222826004, -0.11716094613075256, 0.07145660370588303, -0.007521376945078373, -0.14727343618869781, -0.043796148151159286, -0.018949110060930252, -0.03864903002977371, 0.12709346413612366, -0.006870887707918882, 0.0991521030664444, 0.04499137029051781, 0.1065312996506691, -0.20430338382720947, 0.0020246997009962797, 0.04461166635155678, 0.01407548040151596, 0.11270491033792496, 0.06205250322818756, -0.03495487570762634, 0.08503042906522751, -0.10519041866064072, 0.05236990377306938, 0.02270761877298355, -0.11056923866271973, -0.21267037093639374, -0.12063420563936234, 0.09378699213266373, 0.106517493724823, 0.07967036962509155, -0.011454920284450054, 0.07433022558689117, -0.10625939816236496, 0.06573847681283951, 0.24628767371177673, -0.2977514863014221, -0.05417048931121826, 0.03849221020936966, 0.007660665549337864, 0.05655874311923981, -0.10446370393037796, -0.047632236033678055, 0.02893555723130703, 0.04282296821475029, 0.12549225986003876, -0.002599945291876793, -0.018629377707839012, 0.010521340183913708, -0.15096740424633026, -0.060979388654232025, 0.11942772567272186, 0.0497983880341053, -0.02871071733534336, -0.06657268106937408, -0.05594408139586449, -0.2129216343164444, -0.017960013821721077, 0.007648024242371321, 0.03834761306643486, -0.04552045837044716, -0.08079614490270615, 0.00029666180489584804, -0.0773465633392334, -0.06869161874055862, -0.01969897374510765, 0.060437869280576706, 0.045999541878700256, 0.005249455571174622, 0.02949013002216816, 0.14357857406139374, 0.03139803558588028, -0.14202569425106049, 0.01541928667575121, 0.01120011880993843, -0.037659578025341034, -0.027578234672546387, -0.030875761061906815, 0.030982911586761475, 0.01970059610903263, 0.13062532246112823, -0.060713786631822586, 0.015142068266868591, 0.03547890484333038, 0.03745444118976593, -0.07047207653522491, 0.1532057225704193, -0.08778609335422516, -0.0745086669921875, -0.016930293291807175, 0.12819303572177887, 0.019457612186670303, -0.01221830490976572, -0.11993790417909622, 0.009448823519051075, 0.12289746850728989, 0.052659302949905396, -0.029851263388991356, 0.02986607514321804, -0.07495973259210587, -0.05088183283805847, 0.06267882138490677, -0.09599211066961288, 0.02609381079673767, 0.016240842640399933, -0.08452939242124557, -0.03818025439977646, 0.01368110254406929, 0.01658092625439167, -0.03134243190288544, 0.12284866720438004, -0.08864287286996841, 0.01617244817316532, -0.07404383271932602, -0.09584493190050125, 0.027768703177571297, -0.12425556778907776, -0.01736411452293396, -0.06775978952646255, -0.15407323837280273, -0.04102429747581482, 0.04832981899380684, -0.05846581980586052, -0.10029849410057068, -0.08050479739904404, -0.06398288905620575, 0.023872774094343185, -0.02530590631067753, 0.11748203635215759, -0.06219405308365822, 0.12901516258716583, -0.01109265722334385, 0.0695113092660904, 0.0031701698899269104, 0.06602765619754791, -0.08847342431545258, 0.0417613610625267, -0.15540634095668793, 0.07048238813877106, -0.044879600405693054, 0.03150256723165512, -0.12894777953624725, -0.11335523426532745, 0.023173226043581963, -0.046179480850696564, 0.09095904976129532, 0.12287712097167969, -0.1606859713792801, -0.07578285783529282, 0.1839769333600998, -0.07158584892749786, -0.1274852603673935, 0.1128891333937645, -0.03898340463638306, 0.021125290542840958, 0.03268606960773468, 0.17359556257724762, 0.06676997244358063, -0.06439811736345291, -0.026371488347649574, -0.03535913676023483, 0.08171813189983368, -0.050882015377283096, 0.11865652352571487, -0.027515782043337822, 0.042457014322280884, 0.012579557485878468, -0.07843590527772903, 0.051610808819532394, -0.11067859828472137, -0.09660632908344269, -0.014898230321705341, -0.09774569422006607, 0.08627939969301224, 0.04988446086645126, 0.058079883456230164, -0.06510249525308609, -0.09522563219070435, 0.034227099269628525, 0.11672461032867432, -0.06922359764575958, 0.0291708055883646, -0.05358201637864113, 0.10087843239307404, -0.06549081206321716, -0.024836137890815735, -0.1867610067129135, -0.03678031265735626, 0.02489159069955349, -0.0011796022299677134, -0.008607622236013412, -0.02183869294822216, 0.04100755974650383, 0.07355866581201553, -0.06092610955238342, -0.04866044223308563, -0.05480353534221649, -0.016287170350551605, -0.11172355711460114, -0.22985759377479553, -0.07492063194513321, -0.01932477205991745, 0.19394543766975403, -0.203089639544487, 0.02946171537041664, -0.01896628364920616, 0.10746418684720993, 0.018529118970036507, -0.028110727667808533, -0.009645290672779083, 0.0781855434179306, -0.034048087894916534, -0.061030060052871704, 0.08387039601802826, -0.004705054219812155, -0.09703291952610016, -0.0123605877161026, -0.0705844983458519, 0.11184151470661163, 0.10703939199447632, -0.003641141578555107, -0.07604102790355682, -0.061912696808576584, -0.08312342315912247, -0.03942280262708664, -0.053370095789432526, 0.026717891916632652, 0.12772136926651, 0.03539443761110306, 0.1453080177307129, -0.07623551785945892, -0.042479123920202255, 0.0267038531601429, -0.008882356807589531, 0.016575539484620094, 0.1279231309890747, 0.13331028819084167, -0.08658281713724136, 0.14469188451766968, 0.1321766972541809, -0.03223804756999016, 0.11506212502717972, -0.03861613571643829, -0.0961141362786293, -0.040099430829286575, -0.0018984792986884713, 0.0008377913036383688, 0.11829248070716858, -0.12182293087244034, -0.013287955895066261, 0.04192136973142624, 0.03341221809387207, 0.018868163228034973, -0.201201930642128, -0.02800685539841652, 0.01787751540541649, -0.06672369688749313, -0.03666214644908905, -0.0183732770383358, 0.017603451386094093, 0.11753728985786438, 0.034408971667289734, -0.06493400782346725, 0.031950414180755615, -0.0034969905391335487, -0.09247007220983505, 0.18311211466789246, -0.08423756808042526, -0.17022475600242615, -0.11448107659816742, -0.04970791935920715, -0.03530201315879822, -0.011117520742118359, 0.041268836706876755, -0.06736546009778976, -0.0005857187206856906, -0.0680590271949768, 0.00791285652667284, 0.000650979985948652, 0.02152303420007229, -0.0038320578169077635, 0.019826754927635193, 0.05174455791711807, -0.08892940729856491, 0.0023930412717163563, -0.04672607406973839, -0.05508562549948692, 0.04774703457951546, 0.017271582037210464, 0.10837491601705551, 0.17673134803771973, 0.008738639764487743, 0.024825992062687874, -0.04890032112598419, 0.18227949738502502, -0.07140068709850311, -0.0175706185400486, 0.11342359334230423, 0.002371525624766946, 0.07583040744066238, 0.16402330994606018, 0.048534806817770004, -0.06996333599090576, 0.004590117838233709, 0.027343325316905975, -0.01973414607346058, -0.232407346367836, -0.058141861110925674, -0.052032168954610825, -0.0018319787923246622, 0.1211254745721817, 0.02436882257461548, -0.008016417734324932, 0.052024975419044495, 0.008940187282860279, 0.024489454925060272, -0.04278397932648659, 0.06641782075166702, 0.06707648932933807, 0.03490408882498741, 0.13172541558742523, -0.02113322541117668, -0.018544988706707954, 0.0525788813829422, 0.01259210892021656, 0.24878095090389252, -0.05165441706776619, 0.143571138381958, 0.06880335509777069, 0.21218779683113098, 0.0057443431578576565, 0.06207285448908806, -0.0021981310565024614, 0.004131849855184555, -0.012686402536928654, -0.041378263384103775, -0.06320060789585114, 0.018552301451563835, 0.01269433181732893, 0.05306649208068848, -0.1507807821035385, 0.014790749177336693, 0.056051116436719894, 0.31559088826179504, 0.10400683432817459, -0.30886197090148926, -0.09763452410697937, 0.0008762498619034886, -0.0231899656355381, -0.02785649709403515, -0.00029224695754237473, 0.11426366865634918, -0.12055566906929016, 0.02161373570561409, -0.06886391341686249, 0.0920221209526062, -0.06904351711273193, 0.013555331155657768, 0.07920902967453003, 0.04995177686214447, 0.007387712597846985, 0.08442472666501999, -0.2446730136871338, 0.28133484721183777, 0.0000621230065007694, 0.0334218293428421, -0.06633830815553665, 0.0025042248889803886, 0.030552640557289124, 0.048183489590883255, 0.0982375517487526, 0.013169292360544205, -0.015606878325343132, -0.19280661642551422, -0.12810713052749634, 0.014114231802523136, 0.09188459068536758, -0.10429055243730545, 0.10857634246349335, -0.024744912981987, -0.009332108311355114, 0.02047639898955822, -0.010251618921756744, -0.030501682311296463, -0.1021711453795433, 0.028137875720858574, -0.028408577665686607, 0.013593309558928013, -0.07725540548563004, -0.12162690609693527, -0.06307312101125717, 0.18079182505607605, -0.08168235421180725, -0.05820267274975777, -0.12158966809511185, 0.11860498040914536, 0.12633633613586426, -0.1006648987531662, 0.03455928713083267, 0.0037286700680851936, 0.0822250172495842, 0.012312316335737705, -0.045726507902145386, 0.0854947492480278, -0.05280633270740509, -0.22596299648284912, -0.07159696519374847, 0.1600719690322876, 0.03517300635576248, 0.08168996125459671, -0.02541472762823105, 0.020572923123836517, -0.01265025231987238, -0.07960052043199539, 0.04116981849074364, 0.04440545663237572, 0.10435295850038528, 0.044071268290281296, -0.07514408975839615, 0.009959917515516281, -0.06552334874868393, -0.04426289349794388, 0.1941796988248825, 0.25597620010375977, -0.11338333040475845, 0.08180703222751617, 0.060775306075811386, -0.05674588680267334, -0.1869368702173233, 0.0003395240055397153, 0.11421670019626617, 0.029630566015839577, 0.015934908762574196, -0.1993466317653656, 0.07227662205696106, 0.11340820789337158, -0.030112374573946, 0.10072765499353409, -0.3446003198623657, -0.10925815254449844, 0.061570778489112854, 0.09841014444828033, 0.049819253385066986, -0.1471119374036789, -0.05294783413410187, 0.01523474883288145, -0.13114972412586212, 0.11956801265478134, -0.039923399686813354, 0.12691602110862732, -0.03410179913043976, 0.07015074044466019, 0.013733439147472382, -0.05565929040312767, 0.12886105477809906, 0.03133103996515274, 0.0433921180665493, -0.03502011299133301, -0.06724373251199722, 0.06083445996046066, -0.07255569845438004, 0.02437913790345192, -0.051242634654045105, 0.043378595262765884, -0.13245917856693268, -0.01818675547838211, -0.09984367340803146, 0.009790709242224693, -0.049743108451366425, -0.06375909596681595, -0.03342399001121521, 0.07550109177827835, 0.07752279192209244, 0.00008330684067914262, 0.11366888880729675, -0.0003086416982114315, 0.13528628647327423, 0.10052899271249771, 0.054365046322345734, -0.0469907782971859, -0.0661269873380661, -0.03509014472365379, -0.030174115672707558, 0.034566156566143036, -0.15261077880859375, 0.02711084671318531, 0.15651725232601166, 0.039095327258110046, 0.14902447164058685, 0.06663133203983307, -0.04777118191123009, 0.013234599493443966, 0.07019029557704926, -0.13130810856819153, -0.06863702833652496, -0.0024162125773727894, -0.032552413642406464, -0.17936372756958008, 0.028863972052931786, 0.10519905388355255, -0.044266477227211, -0.036496613174676895, -0.007506923284381628, 0.037769269198179245, -0.034588322043418884, 0.18831589818000793, 0.0596323199570179, 0.08223088830709457, -0.10508456081151962, 0.0729595497250557, 0.0903734341263771, -0.09758420288562775, 0.006839205510914326, 0.07722867280244827, -0.10798211395740509, -0.033322907984256744, 0.022517221048474312, 0.11929789930582047, -0.03385235741734505, -0.036204349249601364, -0.11969605088233948, -0.10244730859994888, 0.08871125429868698, 0.10691593587398529, 0.08459798246622086, 0.04088989272713661, -0.027613945305347443, -0.013997075147926807, -0.11871546506881714, 0.10556264221668243, 0.05479811131954193, 0.05873769521713257, -0.1222437396645546, 0.14690454304218292, 0.00403387937694788, 0.07591258734464645, -0.011628265492618084, 0.021746696904301643, -0.10332011431455612, -0.007636779919266701, -0.10532845556735992, -0.013548905029892921, -0.05564459040760994, -0.01351930946111679, -0.011230379343032837, -0.04989681392908096, -0.038755059242248535, 0.00998647604137659, -0.10634905844926834, -0.05213489383459091, -0.009832272306084633, 0.05720415711402893, -0.12546184659004211, -0.030352331697940826, 0.020370323210954666, -0.08538259565830231, 0.1173233762383461, 0.03645043447613716, 0.043063048273324966, 0.013913117349147797, -0.06368368864059448, -0.006992786191403866, 0.03302730619907379, 0.0037751037161797285, 0.06709271669387817, -0.14617207646369934, -0.003058197209611535, -0.025115597993135452, 0.006366052199155092, 0.03347855061292648, 0.08176755905151367, -0.14303097128868103, 0.01078685000538826, -0.03226347640156746, -0.047628484666347504, -0.056151434779167175, 0.0523218996822834, 0.0634964108467102, 0.036182139068841934, 0.17112405598163605, -0.062348295003175735, 0.06581011414527893, -0.22774453461170197, -0.01524462178349495, -0.03465007245540619, -0.05252460390329361, -0.10050246119499207, -0.040998756885528564, 0.06756120920181274, -0.051028184592723846, 0.10552453249692917, -0.005469563417136669, 0.05615083873271942, 0.015059647150337696, -0.024021588265895844, 0.016068194061517715, 0.02168741635978222, 0.1453840136528015, 0.03887339308857918, -0.04268231987953186, 0.07511118799448013, 0.0346919447183609, 0.060347117483615875, 0.10944637656211853, 0.21378614008426666, 0.11575376987457275, 0.08307124674320221, 0.05717791989445686, 0.036130402237176895, -0.0984269380569458, -0.1837429404258728, 0.06894085556268692, -0.023679416626691818, 0.09440845251083374, -0.011301111429929733, 0.22167319059371948, 0.08052434772253036, -0.21147078275680542, 0.04836335778236389, -0.029218394309282303, -0.08633318543434143, -0.09735243022441864, -0.06097583845257759, -0.07882648706436157, -0.13906387984752655, -0.008004169911146164, -0.11624830961227417, 0.0038193953223526478, 0.1225559413433075, 0.004171589855104685, 0.008310362696647644, 0.07246286422014236, 0.02630693092942238, 0.0262946467846632, 0.07012072950601578, 0.03544376417994499, 0.01031004823744297, -0.0684676393866539, -0.06235569715499878, 0.011824171058833599, 0.0009841019054874778, 0.06673493981361389, -0.05921279639005661, -0.04477349668741226, 0.04426764324307442, -0.007608347572386265, -0.10614627599716187, 0.012787705287337303, 0.003949187230318785, 0.07020257413387299, 0.09377685189247131, 0.024130549281835556, 0.01659351773560047, -0.01978137344121933, 0.2494034320116043, -0.07385750114917755, -0.06280773878097534, -0.1372842639684677, 0.2658502757549286, 0.032189611345529556, -0.03988838940858841, 0.04926268011331558, -0.09587214142084122, -0.00338444160297513, 0.18747177720069885, 0.21715331077575684, -0.09073270112276077, -0.023869382217526436, 0.03518613427877426, -0.008571550250053406, -0.007286370266228914, 0.08591408282518387, 0.1282302439212799, 0.08584977686405182, -0.10214166343212128, -0.03574178367853165, -0.06325913220643997, -0.02823038026690483, -0.023694297298789024, 0.07238547503948212, 0.025454409420490265, 0.00950212124735117, -0.04513351991772652, 0.06469789147377014, -0.05933622643351555, -0.08763235062360764, 0.06739728152751923, -0.23948270082473755, -0.20012514293193817, -0.02244711108505726, 0.055782753974199295, 0.009860841557383537, 0.05469554290175438, -0.007774208206683397, -0.0036491211503744125, 0.12837544083595276, -0.019155340269207954, -0.07934411615133286, -0.07981561869382858, 0.09457165002822876, -0.07046119123697281, 0.21126316487789154, -0.038713328540325165, 0.032034970819950104, 0.12819038331508636, 0.06551261246204376, -0.10660623013973236, 0.03648841753602028, 0.05990363657474518, -0.03486194089055061, 0.034582462161779404, 0.1194676011800766, -0.0295568760484457, 0.07355055212974548, 0.05764326825737953, -0.1259995996952057, -0.0009976952569559216, -0.06273939460515976, -0.0543413944542408, -0.05790553241968155, -0.011648754589259624, -0.02869565226137638, 0.13544484972953796, 0.22031329572200775, -0.058294713497161865, 0.0031503522768616676, -0.06686844676733017, 0.005189597140997648, 0.0376422218978405, 0.07451631873846054, -0.04176395758986473, -0.2185586541891098, 0.027695629745721817, 0.01709510199725628, 0.004337201360613108, -0.25439736247062683, -0.08827003091573715, 0.026654021814465523, -0.06107828766107559, -0.111594058573246, 0.11458718031644821, 0.012753218412399292, 0.05006863921880722, -0.04959053546190262, -0.033820029348134995, -0.06575971096754074, 0.15521568059921265, -0.17446431517601013, -0.08266319334506989 ]
null
null
transformers
(Note: From short testing, this Alt version generated much better code) Alternate version of DeepMagic-Coder-7b which can be found bellow. - https://huggingface.co/rombodawg/DeepMagic-Coder-7b ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/bO-vSlXYhA4pebcA2f1HK.jpeg) This version uses a diffrent config setup, with the actual base model of the two merges as the "base_model". Test both for yourself and see which is better at coding. Benchmarks coming soon. Config can be found bellow: ```yaml models: - model: deepseek-ai_deepseek-coder-6.7b-instruct parameters: weight: 1 - model: ise-uiuc_Magicoder-S-DS-6.7B parameters: weight: 1 merge_method: task_arithmetic base_model: deepseek-ai_deepseek-coder-6.7b-base parameters: normalize: true int8_mask: true dtype: float16 ```
{"license": "other", "license_name": "deepseek", "license_link": "https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL"}
text-generation
rombodawg/DeepMagic-Coder-7b-Alt
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T00:44:05+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
(Note: From short testing, this Alt version generated much better code) Alternate version of DeepMagic-Coder-7b which can be found bellow. - URL !image/jpeg This version uses a diffrent config setup, with the actual base model of the two merges as the "base_model". Test both for yourself and see which is better at coding. Benchmarks coming soon. Config can be found bellow:
[]
[ "TAGS\n#transformers #safetensors #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 52 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.003849297296255827, 0.04157582297921181, -0.005358298774808645, -0.002006892580538988, 0.12121443450450897, -0.0023140516132116318, 0.21995262801647186, 0.0976245328783989, -0.002134085865691304, -0.028051059693098068, 0.14098598062992096, 0.20353935658931732, -0.027530256658792496, 0.06547725945711136, -0.10989534854888916, -0.19001781940460205, 0.07975570857524872, -0.005405021365731955, 0.055104125291109085, 0.07527986913919449, 0.09911483526229858, -0.05641859024763107, 0.08538983762264252, -0.043939460068941116, -0.09532630443572998, 0.04172266274690628, 0.06300311535596848, -0.14478042721748352, 0.10952402651309967, 0.07509230077266693, 0.10293574631214142, 0.06388837099075317, -0.01375104021281004, -0.2282211035490036, 0.019493047147989273, -0.011446521617472172, -0.07956469058990479, 0.01857081986963749, 0.0724555253982544, -0.06962201744318008, 0.06803163141012192, 0.07595796138048172, -0.0069822589866817, 0.07794570922851562, -0.12478917837142944, -0.03773628547787666, -0.0527474582195282, -0.01737235300242901, 0.10033683478832245, 0.08288641273975372, 0.008553036488592625, 0.12861965596675873, -0.0460137315094471, 0.08864674717187881, 0.10105884075164795, -0.36422982811927795, 0.03252127021551132, 0.13258597254753113, 0.08639060705900192, 0.02636159583926201, -0.04908933863043785, 0.11520615965127945, 0.0778331384062767, -0.025230219587683678, 0.04683642461895943, -0.06403718888759613, -0.06023075804114342, 0.0474824495613575, -0.04937823489308357, -0.035021159797906876, 0.2255091667175293, -0.048003487288951874, 0.02201833389699459, -0.08495626598596573, -0.063540980219841, 0.004415482748299837, -0.015621200203895569, 0.04226779192686081, -0.004650085233151913, 0.10234159231185913, 0.047058794647455215, -0.02541493996977806, -0.1463351547718048, -0.010123618878424168, -0.19214987754821777, 0.15616413950920105, 0.009995682165026665, 0.03602566570043564, -0.14876310527324677, 0.052005585283041, 0.020091798156499863, -0.1022171825170517, -0.009024777449667454, -0.07613623142242432, 0.07293427735567093, -0.021311713382601738, -0.05060402303934097, -0.08264583349227905, 0.14676575362682343, 0.16682443022727966, 0.0238858200609684, 0.0036225037183612585, -0.11841477453708649, 0.09255154430866241, 0.005842770449817181, 0.033214397728443146, 0.048933349549770355, -0.020335614681243896, 0.0804562196135521, -0.10641513764858246, 0.0777621641755104, -0.045458484441041946, -0.16236527264118195, 0.01291638519614935, 0.00952336098998785, 0.1481045037508011, -0.004036768805235624, 0.089394710958004, -0.04640040919184685, 0.05940914899110794, 0.07988601177930832, -0.08486296236515045, -0.0037709602620452642, -0.015596665441989899, 0.05994424223899841, 0.014862819574773312, 0.014005301520228386, 0.03976818919181824, -0.046839725226163864, 0.07250332832336426, -0.06159265711903572, -0.04051261022686958, -0.049518883228302, -0.06224117800593376, 0.06905776262283325, -0.061363302171230316, 0.04468187317252159, -0.1777738332748413, -0.22070357203483582, 0.02464439533650875, 0.013951590284705162, -0.018896007910370827, -0.0012315894709900022, -0.03315489739179611, -0.03501160815358162, 0.022209595888853073, -0.08758897334337234, -0.07052310556173325, -0.09185780584812164, 0.07831136137247086, -0.027050333097577095, 0.030020903795957565, -0.1604417860507965, 0.038697756826877594, -0.11656199395656586, 0.01296173594892025, -0.028051257133483887, 0.023482143878936768, -0.06817398965358734, 0.1713334172964096, -0.009197886101901531, 0.0350252240896225, -0.053295914083719254, 0.08215028047561646, -0.04779068008065224, 0.16681306064128876, -0.13494452834129333, -0.05061241611838341, 0.20699985325336456, -0.13453488051891327, -0.2181762009859085, 0.07937384396791458, -0.012063896283507347, 0.07402712851762772, 0.10656873881816864, 0.20221243798732758, 0.012460126541554928, -0.08428488671779633, 0.04308132454752922, 0.09250641614198685, -0.08357719331979752, -0.13048051297664642, -0.0002972103247884661, -0.01989022269845009, -0.1173701286315918, 0.04816463589668274, 0.07768440246582031, 0.05200492963194847, -0.016429955139756203, -0.057088013738393784, -0.05853211134672165, -0.038411833345890045, -0.016033632680773735, -0.03397468850016594, 0.06806734949350357, -0.09934092313051224, 0.0019110505236312747, 0.03648265823721886, -0.015667276456952095, -0.003068840829655528, 0.014169437810778618, -0.08264804631471634, 0.06614229828119278, -0.005409609992057085, 0.0475180447101593, -0.11178915202617645, -0.12964870035648346, -0.0007647328893654048, 0.07509008795022964, 0.016813769936561584, 0.03709910437464714, 0.029702192172408104, 0.010672100819647312, -0.01521940529346466, 0.007333923596888781, 0.20648764073848724, 0.038250911980867386, -0.04768528416752815, -0.08994092047214508, 0.08715750277042389, -0.06458824127912521, -0.015310880728065968, -0.11385233700275421, 0.023347778245806694, 0.044380247592926025, 0.09104777127504349, 0.00921452883630991, 0.07495976239442825, -0.020303400233387947, 0.013424382545053959, -0.11474888026714325, 0.006550895981490612, 0.08273644745349884, 0.0022236108779907227, -0.10209061205387115, 0.22667057812213898, -0.2210896760225296, 0.3080860674381256, 0.21094214916229248, -0.1825488954782486, 0.026943033561110497, -0.0945882648229599, 0.011032522656023502, 0.014552914537489414, 0.005726390518248081, -0.025031547993421555, -0.03026294708251953, -0.008293206803500652, 0.1792396456003189, -0.0730908140540123, -0.025023970752954483, -0.006241809111088514, -0.06615357100963593, -0.04816410690546036, 0.05591263249516487, 0.1242951825261116, -0.17330072820186615, 0.18749713897705078, 0.26384732127189636, 0.046951763331890106, 0.1530172973871231, -0.05455179885029793, 0.013769618235528469, 0.04229217767715454, 0.02884567342698574, 0.016804341226816177, -0.04273542761802673, -0.04881971701979637, -0.003401821246370673, 0.06570019572973251, 0.026174848899245262, 0.05847599357366562, -0.1476474553346634, -0.07770358771085739, -0.00043314375216141343, -0.03968307748436928, 0.006200890988111496, 0.08856471627950668, 0.00619640713557601, 0.10802275687456131, -0.07824309915304184, -0.04909283667802811, 0.11786139756441116, -0.008468481712043285, -0.08553964644670486, 0.18271438777446747, -0.12980367243289948, -0.24880115687847137, -0.20721422135829926, -0.17201396822929382, -0.054968323558568954, 0.06625471264123917, 0.13368694484233856, -0.029557034373283386, -0.075899139046669, -0.07619262486696243, 0.002861606189981103, -0.0057288226671516895, 0.004272588063031435, -0.05925639718770981, 0.08340255171060562, -0.054597072303295135, -0.11993831396102905, -0.05887284502387047, 0.031332191079854965, -0.04659777134656906, 0.12162791192531586, -0.07940787822008133, 0.10349738597869873, 0.11328767985105515, 0.012108376249670982, 0.002099009230732918, -0.06695496290922165, 0.12976272404193878, -0.05371017009019852, -0.013419275172054768, 0.20312604308128357, -0.051885515451431274, 0.05902451276779175, 0.17539414763450623, 0.023335132747888565, -0.1270580142736435, 0.05697086080908775, -0.03616220876574516, -0.09935794770717621, -0.243087038397789, -0.10316934436559677, -0.08488531410694122, 0.08033953607082367, 0.024067701771855354, 0.08842440694570541, 0.14749181270599365, 0.0748928040266037, -0.02551400661468506, 0.005888370331376791, 0.06971859931945801, 0.09860600531101227, 0.2775948643684387, -0.014959827996790409, 0.1402406245470047, -0.11787562817335129, -0.1081637367606163, 0.08385855704545975, 0.08064430952072144, 0.1274876594543457, 0.14238470792770386, 0.07077115029096603, 0.06407109647989273, 0.049006592482328415, 0.12872321903705597, 0.12011539936065674, 0.051090482622385025, -0.033788446336984634, -0.024373143911361694, -0.04308266192674637, -0.009716058149933815, 0.06506809592247009, -0.10034585744142532, -0.1401059776544571, -0.02602313458919525, -0.08214320242404938, 0.0613565668463707, 0.09771771728992462, 0.023694660514593124, -0.21600355207920074, 0.06241931393742561, 0.12548938393592834, -0.027630848810076714, -0.07887393981218338, 0.11614454537630081, -0.006654286291450262, -0.046861473470926285, 0.12004013359546661, -0.029947400093078613, 0.11082738637924194, -0.010047024115920067, 0.07613486796617508, -0.08575134724378586, -0.09170379489660263, 0.00663441326469183, 0.11974678933620453, -0.302707701921463, 0.21962690353393555, 0.012638079933822155, 0.004754889290779829, -0.07237697392702103, -0.0002597958955448121, 0.01731303706765175, 0.19032515585422516, 0.13372834026813507, -0.04475002735853195, -0.16154153645038605, -0.07699186354875565, -0.013818249106407166, 0.027343200519680977, 0.10924059897661209, -0.005134155508130789, 0.023065051063895226, -0.06813602894544601, -0.001331697916612029, 0.008712774142622948, -0.01654650829732418, -0.05658411979675293, -0.18648874759674072, 0.022294819355010986, 0.11972842365503311, 0.10918665677309036, -0.04220011457800865, 0.012974285520613194, -0.1632457822561264, 0.153584286570549, -0.10504484176635742, -0.057048499584198, -0.11677833646535873, -0.14972363412380219, 0.026337679475545883, -0.022613978013396263, 0.053408823907375336, -0.06106256693601608, 0.046389348804950714, -0.0939030796289444, -0.19687974452972412, 0.10409051179885864, -0.10229508578777313, -0.042705755680799484, -0.048289064317941666, 0.13027821481227875, -0.12902523577213287, -0.03166760131716728, 0.061804402619600296, 0.03401830047369003, -0.0572851225733757, -0.10815569013357162, -0.02057097665965557, 0.027827328070998192, 0.033202916383743286, -0.017214270308613777, -0.15045465528964996, -0.08616852760314941, 0.013691711239516735, -0.08751906454563141, 0.2202940136194229, 0.29374775290489197, -0.039665885269641876, 0.1598970890045166, 0.17970344424247742, -0.1352005898952484, -0.34689784049987793, -0.13214148581027985, -0.20071037113666534, -0.05137982591986656, 0.055562909692525864, -0.10422831773757935, 0.09389669448137283, 0.0568624809384346, -0.05788401886820793, 0.1129763126373291, -0.1865699291229248, -0.11794386804103851, 0.15749907493591309, 0.02788655273616314, 0.33786776661872864, -0.19532208144664764, -0.10973913222551346, -0.1346137374639511, -0.09878473728895187, 0.14908848702907562, -0.07051460444927216, 0.09469954669475555, 0.013681183569133282, 0.029611049219965935, 0.01568800024688244, -0.041363585740327835, 0.10135187208652496, -0.05262637138366699, 0.09835208207368851, -0.13683371245861053, 0.03563297167420387, 0.0805124044418335, -0.02058546058833599, 0.07582128047943115, -0.1828145682811737, 0.016589630395174026, -0.030878504738211632, -0.058801911771297455, 0.0028995408210903406, 0.09404236078262329, 0.0157973300665617, -0.05681571736931801, -0.024002641439437866, -0.061485033482313156, -0.0036316998302936554, -0.029109850525856018, 0.26888102293014526, -0.05835554376244545, 0.1487407386302948, 0.16098777949810028, 0.1460089534521103, -0.12262018024921417, 0.12195087224245071, -0.04960666224360466, -0.10001746565103531, 0.0586608462035656, -0.12557490170001984, 0.05669065937399864, 0.08642797917127609, -0.062301959842443466, 0.07540272176265717, 0.08279389888048172, 0.02674143947660923, -0.0030215971637517214, 0.17022624611854553, -0.17954237759113312, -0.07991205155849457, -0.0313558466732502, 0.06571418046951294, 0.08947695046663284, 0.07575149089097977, 0.16392293572425842, -0.010046266950666904, 0.01506747305393219, 0.00009138336463365704, 0.022046448662877083, -0.023308994248509407, 0.03990858048200607, -0.00040541309863328934, 0.007664828095585108, -0.12263605743646622, 0.10800116509199142, 0.012595436535775661, -0.09544645994901657, 0.023100027814507484, 0.09208671003580093, -0.1304319202899933, -0.12365005165338516, -0.039133913815021515, 0.14645399153232574, -0.1784994900226593, -0.08615804463624954, -0.057105544954538345, -0.17860136926174164, 0.03919219970703125, 0.22984002530574799, 0.056675586849451065, 0.10148686170578003, 0.014567098580300808, -0.04951230064034462, -0.027642622590065002, 0.03900628536939621, -0.060044918209314346, 0.0603107213973999, -0.1290147751569748, -0.022691836580634117, -0.03921836242079735, 0.03983237221837044, -0.08672855794429779, -0.010996577329933643, -0.154677152633667, 0.025562196969985962, -0.1745959371328354, -0.003359198337420821, -0.08859938383102417, -0.019591230899095535, 0.021335775032639503, -0.022274639457464218, -0.04903541877865791, -0.045714445412158966, -0.10395531356334686, 0.011114559136331081, -0.03104853630065918, 0.08278977125883102, -0.11301403492689133, -0.046055469661951065, 0.0567261166870594, -0.02520120143890381, 0.09041257202625275, 0.029151948168873787, -0.08768359571695328, 0.10448309034109116, -0.23303459584712982, -0.04687062278389931, 0.13416028022766113, 0.017081361263990402, 0.015140390954911709, 0.08166962116956711, -0.001032560714520514, 0.14004859328269958, 0.008282414637506008, 0.05614238604903221, -0.04957761615514755, -0.13021619617938995, -0.010631983168423176, -0.02670212648808956, -0.12377263605594635, -0.00032062403624877334, -0.08736969530582428, 0.10374079644680023, -0.03747629374265671, 0.2043464183807373, -0.07429692894220352, 0.029200153425335884, -0.030702412128448486, 0.027821263298392296, -0.002358036581426859, -0.19099481403827667, -0.1315377652645111, -0.09178810566663742, -0.025928905233740807, -0.001532270573079586, 0.32111430168151855, 0.04376078397035599, -0.05720257759094238, 0.07128024846315384, 0.049720410257577896, 0.04592670127749443, 0.03617539256811142, 0.31660541892051697, 0.09487446397542953, -0.013420739211142063, -0.14970850944519043, 0.026235517114400864, 0.02326009050011635, -0.11589925736188889, 0.04454168304800987, 0.10622580349445343, -0.11225781589746475, 0.09958390146493912, 0.07320310920476913, 0.007487726863473654, -0.03509373590350151, -0.10228554159402847, -0.02670189179480076, 0.06416782736778259, -0.015020408667623997, 0.05821194127202034, 0.1985262930393219, -0.021395107731223106, 0.006586323957890272, -0.038559723645448685, -0.021712077781558037, -0.1926947385072708, -0.15573188662528992, -0.10866611450910568, -0.09517345577478409, 0.039143793284893036, -0.06912236660718918, 0.05956843122839928, 0.07048705965280533, 0.06756238639354706, -0.04013029858469963, 0.08135770261287689, -0.02699987404048443, -0.04420517012476921, 0.014290579594671726, -0.041168082505464554, 0.028459150344133377, -0.03677079454064369, -0.05804334208369255, -0.06928186863660812, -0.0491744764149189, -0.062447406351566315, 0.06913433223962784, 0.011559789068996906, 0.05507809296250343, -0.16446392238140106, -0.06341475993394852, -0.029220281168818474, 0.07237408310174942, -0.02244047448039055, 0.11889401823282242, 0.014598897658288479, -0.04319441691040993, 0.08626241236925125, 0.19991669058799744, -0.04993418604135513, -0.1447323113679886, -0.013448497280478477, 0.2002435177564621, 0.035074882209300995, 0.13375608623027802, -0.05605895072221756, 0.008848054334521294, -0.018097292631864548, 0.3221629559993744, 0.2753550112247467, -0.04600027948617935, 0.02637862227857113, -0.05468853935599327, 0.035121895372867584, 0.06386703997850418, 0.13155029714107513, 0.057988543063402176, 0.22688718140125275, -0.034239523112773895, -0.004356452729552984, -0.017280329018831253, 0.01592135615646839, -0.15614387392997742, 0.11534588783979416, -0.015370954759418964, -0.06237677484750748, -0.024119241163134575, 0.1149347648024559, -0.15318956971168518, 0.1179792732000351, -0.052648093551397324, -0.08660911023616791, -0.00515630142763257, 0.003058725269511342, 0.1731954663991928, -0.03028198704123497, 0.01488418411463499, -0.03697666898369789, -0.06821247935295105, 0.005594014190137386, -0.008830344304442406, -0.20003125071525574, 0.02245105430483818, 0.0068825832568109035, 0.012758585624396801, 0.07741796970367432, 0.006922852713614702, 0.03329480439424515, 0.06797651201486588, 0.02341562509536743, -0.059864841401576996, 0.15672925114631653, 0.017178725451231003, -0.06865647435188293, 0.0689980611205101, -0.06539874523878098, -0.006503082811832428, 0.004121152218431234, 0.04110436886548996, -0.07741575688123703, 0.06828004866838455, -0.020052211359143257, -0.11550668627023697, -0.02141040377318859, 0.021401267498731613, -0.07135076820850372, 0.07339077442884445, 0.014393203891813755, -0.007730762008577585, 0.0074863978661596775, -0.03275369480252266, 0.04045829549431801, 0.005226201377809048, -0.16471591591835022, -0.029747474938631058, -0.10361180454492569, -0.07068151980638504, 0.166717991232872, 0.02268947847187519, -0.2698356509208679, 0.004231145139783621, -0.11386311054229736, 0.04944133013486862, -0.1964423656463623, 0.06345852464437485, 0.2272513210773468, 0.00894148088991642, -0.02555731311440468, -0.19690142571926117, 0.057916779071092606, 0.04835796728730202, -0.048489492386579514, -0.10247565805912018 ]
null
null
transformers
# Kotomamba The kotomamba model represents a cutting-edge approach in natural language processing (NLP), leveraging the innovative State Space Model mamba architecture. The kotomamba model comes in two distinct versions. 1. Bilingual Pre-training (Japanese and English): The first variant of the kotomamba model is pre-trained on a rich dataset(About 200B Token) comprising both Japanese and English texts. 2. Continual Pre-training (Mainly Japanese): The second variant of the kotomamba model takes a different approach, focusing exclusively on Japanese-centric data for its continual pre-training phase. ## Kotomamba Model Index |Model|kotomamba-hf| |---|---| |kotomamba-2.8B-v1.0| [Link](https://huggingface.co/kotoba-tech/kotomamba-2.8B-v1.0) | |kotomamba-2.8B-CL-v1.0| [Link](https://huggingface.co/kotoba-tech/kotomamba-2.8B-CL-v1.0) | ![logo](./logo.webp) This repository provides large language models developed by [Kotoba Technologies](https://www.kotoba.tech/), Tohoku University [TohokuNLP group](https://www.nlp.ecei.tohoku.ac.jp/), and Tokyo Institute of Technology [Okazaki Lab](https://www.nlp.c.titech.ac.jp/index.en.html), [Yokota Lab](https://www.rio.gsic.titech.ac.jp/en/index.html). Read our [blog post](https://zenn.dev/kotoba_tech/articles/f15b2495d44c4f) or our technical paper (preprint coming soon) for more details! ## Model Details * **Model type**: Please refer to [mamba technical paper](https://arxiv.org/abs/2312.00752) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [kotomamba](https://github.com/kotoba-tech/kotomamba) * **Tokenizer**: kotomamba-2.8B uses [llm-jp-tokenizer 100K](https://github.com/llm-jp/llm-jp-tokenizer) and kotomamba-2.8B-CL uses [GPT-NeoX Tokenizer](https://huggingface.co/EleutherAI/gpt-neox-20b). * **Contact**: ## Base Model Performance ### Japanese version |Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD| |---|---|---|---|---|---| | | |4-shot|4-shot|4-shot|4-shot| | [state-spaces/mamba-2.8b-slimpj](https://huggingface.co/state-spaces/mamba-2.8b-slimpj) | 2.8B |0.1796|0.2825|0.0998|0.3301| | kotomamba-2.8B | 2.8B |0.185|0.4532|0.3871|0.4685| | kotomamba-2.8B-CL | 2.8B |0.185|0.3758|0.2393|0.5929| ## Usage git clone [https://github.com/kotoba-tech/kotomamba](https://github.com/kotoba-tech/kotomamba) and follow the repository's README installation section. **WARNING**: huggingface transformers `AutoModelForCausalLM` **doesn't support** mamba model. So, please use [kotomamba/benchmarks/benchmark_generation_mamba_simple.py](https://github.com/kotoba-tech/kotomamba/blob/main/benchmarks/benchmark_generation_mamba_simple.py) You can find the inference sample script in [scripts/abci/inference/inference_sample.sh](https://github.com/kotoba-tech/kotomamba/blob/main/scripts/abci/inference/inference_sample.sh) ## Training Datasets ### Pre-Training & Continual Pre-Training The following datasets were used for training. - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - Swallow Corpus - [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub. Our project is supported by the [ABCI Grand Challenge](https://abci.ai/en/link/grandchallenge.html) of the National Institute of Advanced Industrial Science and Technology. ## License Apache License Version 2.0, January 2004 ## Authors Here are the team members: - From [Kotoba Technologies](https://www.kotoba.tech/) - [Noriyuki Kojima](https://twitter.com/noriyuki_kojima) - [Jungo Kasai](https://twitter.com/jungokasai) - [Hiroto Kurita](https://twitter.com/hiroto_kurita) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - From [TohokuNLP group at Tohoku University](https://www.nlp.ecei.tohoku.ac.jp/) - [Keisuke Sakaguchi](https://twitter.com/KeisukeS_) - From Tokyo Institute of Technologies - From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Hiroki Iida](https://meshidenn.github.io/) - [Mengsay Loem](https://loem-ms.github.io/) - [Shota Hirai](https://huggingface.co/Kotemo428) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://twitter.com/stjohn2007) - From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
{"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "pipeline_tag": "text-generation", "model_type": "mamba"}
text-generation
kotoba-tech/kotomamba-2.8B-v1.0
[ "transformers", "pytorch", "", "text-generation", "en", "ja", "arxiv:2312.00752", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-07T00:48:42+00:00
[ "2312.00752" ]
[ "en", "ja" ]
TAGS #transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us
Kotomamba ========= The kotomamba model represents a cutting-edge approach in natural language processing (NLP), leveraging the innovative State Space Model mamba architecture. The kotomamba model comes in two distinct versions. 1. Bilingual Pre-training (Japanese and English): The first variant of the kotomamba model is pre-trained on a rich dataset(About 200B Token) comprising both Japanese and English texts. 2. Continual Pre-training (Mainly Japanese): The second variant of the kotomamba model takes a different approach, focusing exclusively on Japanese-centric data for its continual pre-training phase. Kotomamba Model Index --------------------- !logo This repository provides large language models developed by Kotoba Technologies, Tohoku University TohokuNLP group, and Tokyo Institute of Technology Okazaki Lab, Yokota Lab. Read our blog post or our technical paper (preprint coming soon) for more details! Model Details ------------- * Model type: Please refer to mamba technical paper for details on the model architecture. * Language(s): Japanese English * Library: kotomamba * Tokenizer: kotomamba-2.8B uses llm-jp-tokenizer 100K and kotomamba-2.8B-CL uses GPT-NeoX Tokenizer. * Contact: Base Model Performance ---------------------- ### Japanese version Usage ----- git clone URL and follow the repository's README installation section. WARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\_generation\_mamba\_simple.py You can find the inference sample script in scripts/abci/inference/inference\_sample.sh Training Datasets ----------------- ### Pre-Training & Continual Pre-Training The following datasets were used for training. * Japanese Wikipedia * Swallow Corpus * SlimPajama Risks and Limitations --------------------- The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. Acknowledgements ---------------- We thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub. Our project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology. License ------- Apache License Version 2.0, January 2004 Authors ------- Here are the team members: * From Kotoba Technologies + Noriyuki Kojima + Jungo Kasai + Hiroto Kurita + Kazuki Fujii * From TohokuNLP group at Tohoku University + Keisuke Sakaguchi * From Tokyo Institute of Technologies + From Okazaki Laboratory, the following members: - Naoaki Okazaki - Sakae Mizuki - Hiroki Iida - Mengsay Loem - Shota Hirai - Kakeru Hattori - Masanari Ohi + From YOKOTA Laboratory, the following members: - Rio Yokota - Taishi Nakamura
[ "### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------", "### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ "TAGS\n#transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------", "### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ 48, 113, 275 ]
[ "passage: TAGS\n#transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us \n### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ -0.06651878356933594, 0.16649259626865387, 0.0014256221475079656, -0.0009074558620341122, 0.08170554041862488, 0.01298866793513298, 0.15760868787765503, 0.12834981083869934, 0.08006036281585693, 0.10160896927118301, -0.00400717044249177, 0.02262399159371853, 0.14691336452960968, 0.06981654465198517, 0.015069390647113323, -0.2228926718235016, 0.07123477011919022, -0.05056542530655861, -0.04301104694604874, 0.10012178122997284, 0.11177127063274384, -0.04254196956753731, 0.07602541893720627, 0.03856503218412399, -0.030778776854276657, -0.01603781245648861, 0.025271287187933922, -0.11470041424036026, 0.11881742626428604, 0.03740791976451874, 0.05941927060484886, 0.03486090153455734, 0.018932847306132317, -0.20356141030788422, 0.019064487889409065, 0.04636877402663231, 0.018761085346341133, 0.06304927915334702, 0.12310514599084854, 0.042718783020973206, 0.187551811337471, -0.046082593500614166, 0.03246470168232918, 0.1061006635427475, -0.07966123521327972, -0.1449829638004303, -0.18208062648773193, 0.13717038929462433, 0.11077611148357391, 0.08224131911993027, -0.039673201739788055, 0.09846314787864685, -0.01409221813082695, -0.00940459780395031, 0.09225670993328094, -0.19464389979839325, -0.04073366895318031, 0.045841705054044724, 0.04532315209507942, 0.09349880367517471, -0.08814143389463425, 0.040604230016469955, 0.05676926299929619, -0.021792512387037277, 0.03957982733845711, -0.019437231123447418, 0.11432073265314102, -0.022039735689759254, -0.07561813294887543, -0.028445007279515266, 0.20906157791614532, 0.00545489601790905, -0.09855803102254868, -0.16249804198741913, 0.005974210798740387, 0.05502244457602501, 0.03640824556350708, -0.06052158400416374, 0.031056178733706474, -0.009710157290101051, 0.07677965611219406, -0.048366907984018326, -0.12362994253635406, -0.05850159749388695, 0.018674736842513084, 0.12858355045318604, 0.055699221789836884, 0.02804805338382721, -0.0032770910765975714, 0.07809408009052277, 0.003550965106114745, -0.09897201508283615, -0.07009272277355194, -0.07427635043859482, 0.006632739678025246, 0.0029393592849373817, 0.025017792358994484, -0.07939393073320389, 0.034722838550806046, 0.14288580417633057, -0.1170024648308754, -0.005501665640622377, 0.005208206828683615, 0.00032524613197892904, 0.022556012496352196, 0.16974277794361115, -0.05989687144756317, -0.0800384134054184, 0.041165344417095184, 0.023620035499334335, 0.03192083165049553, 0.003098017070442438, 0.01585986651480198, -0.08036018908023834, 0.01258486695587635, 0.08750713616609573, 0.07755149900913239, 0.02608722820878029, -0.04733658581972122, -0.015017773024737835, 0.15253157913684845, -0.11962131410837173, -0.0028769399505108595, -0.04201565310359001, -0.02711205743253231, 0.07109524309635162, 0.0133926160633564, 0.04459641873836517, -0.011486171744763851, 0.06667903065681458, -0.07850993424654007, -0.0296037495136261, -0.051707394421100616, -0.02757680043578148, 0.06651487201452255, -0.025033116340637207, -0.023894907906651497, -0.11274383217096329, -0.09787189960479736, -0.057723816484212875, 0.020128298550844193, -0.016255883499979973, -0.0037950128316879272, 0.08510654419660568, -0.015224246308207512, 0.03603284806013107, -0.0332573726773262, -0.05228373780846596, -0.03906095027923584, 0.05952996015548706, -0.028095465153455734, 0.009547355584800243, 0.05947737395763397, 0.025987647473812103, -0.11795544624328613, 0.06373223662376404, -0.15311069786548615, -0.035567108541727066, -0.08857303112745285, 0.05930067598819733, -0.18030358850955963, -0.041708339005708694, 0.022543413564562798, 0.03756861016154289, 0.03420862928032875, 0.15149416029453278, -0.07185087352991104, -0.05173465982079506, 0.10757899284362793, -0.16052819788455963, -0.14165879786014557, 0.11823130398988724, 0.02930324152112007, 0.12533114850521088, 0.050129007548093796, 0.0931156799197197, 0.024319704622030258, -0.12989559769630432, -0.1271677315235138, -0.1366528868675232, 0.010112196207046509, 0.04663468152284622, 0.11875611543655396, -0.02557423897087574, -0.026899928227066994, 0.03207280486822128, -0.11202359944581985, -0.03950243815779686, -0.0037339506670832634, -0.06553640961647034, -0.0121521707624197, -0.029678523540496826, -0.05982546880841255, -0.007805314846336842, -0.005790714640170336, -0.06460065394639969, -0.13126534223556519, -0.10364653170108795, 0.10633308440446854, -0.014453768730163574, 0.029194585978984833, -0.061227068305015564, 0.049676038324832916, -0.020115522667765617, -0.011164254508912563, -0.05772973224520683, -0.015443464741110802, 0.06947191804647446, -0.17003577947616577, 0.042832210659980774, -0.03655410557985306, -0.017670877277851105, 0.047613244503736496, -0.024355843663215637, -0.07587087899446487, -0.046123601496219635, -0.016789961606264114, 0.010250990279018879, -0.12822137773036957, 0.01308886706829071, 0.0028806861955672503, 0.11957518011331558, -0.08404384553432465, 0.02196347527205944, 0.049246612936258316, 0.10383176803588867, -0.01038346253335476, -0.0255980733782053, 0.04652076214551926, 0.004722728859633207, -0.045458681881427765, -0.01919141225516796, 0.008466868661344051, -0.03672529011964798, -0.06258725374937057, 0.12702348828315735, -0.10933621227741241, -0.02477988600730896, 0.09083389490842819, 0.07067763060331345, -0.054011270403862, 0.0018922467716038227, -0.051974017173051834, -0.01777319610118866, -0.021658767014741898, -0.023766575381159782, 0.05812116712331772, -0.003288939828053117, 0.04247000068426132, -0.10543566197156906, -0.009304721839725971, -0.008457807824015617, -0.07800614833831787, -0.07397083938121796, 0.04017549380660057, 0.0733695924282074, -0.15454688668251038, 0.12744946777820587, 0.07853295654058456, 0.050920769572257996, 0.19789136946201324, -0.012289602309465408, -0.11044813692569733, -0.0384957529604435, -0.0331348180770874, 0.030435822904109955, 0.10461223870515823, 0.010687900707125664, 0.013577241450548172, 0.055691905319690704, 0.00691974675282836, 0.015841366723179817, -0.11985361576080322, -0.009966340847313404, -0.016589205712080002, -0.018578317016363144, 0.008816399611532688, 0.06547956168651581, -0.055996354669332504, 0.11187859624624252, 0.007873782888054848, 0.11472129076719284, -0.025157658383250237, -0.02247028797864914, -0.10722147673368454, 0.12358687818050385, -0.06783019006252289, -0.2322666049003601, -0.1913820207118988, 0.060721080750226974, -0.046611808240413666, -0.026195043697953224, 0.07460447400808334, -0.06542766094207764, -0.13372161984443665, -0.07920700311660767, 0.06938303261995316, -0.0005191482487134635, -0.06366560608148575, -0.05785110220313072, 0.019072672352194786, 0.011331885121762753, -0.1262321174144745, -0.025293197482824326, 0.04762715846300125, -0.07076786458492279, 0.041287556290626526, 0.015731533989310265, 0.1325877159833908, 0.0374843031167984, 0.024752408266067505, -0.06356122344732285, -0.01570143550634384, 0.1252448856830597, -0.1324411779642105, 0.10367778688669205, 0.22022183239459991, 0.024565573781728745, 0.056215498596429825, 0.14289623498916626, 0.010208421386778355, -0.036191392689943314, 0.03073526732623577, -0.03339453786611557, -0.022268611937761307, -0.31898584961891174, -0.0351959690451622, -0.040534939616918564, 0.037550583481788635, -0.022246921434998512, 0.049549005925655365, 0.19055791199207306, 0.07503268122673035, -0.13988527655601501, -0.027818582952022552, 0.03044596128165722, 0.1461818367242813, 0.05744675174355507, 0.02313590794801712, 0.05715121328830719, -0.057250507175922394, 0.07281514257192612, 0.0954681858420372, 0.04792102053761482, 0.14655540883541107, 0.03007485903799534, 0.2183309942483902, 0.07242251932621002, 0.14662304520606995, 0.0548044852912426, 0.009153291583061218, 0.06592237204313278, 0.052742455154657364, -0.02382572554051876, -0.06935755163431168, -0.042583368718624115, 0.17243947088718414, -0.03701842203736305, -0.046910908073186874, -0.014802257530391216, -0.08384514600038528, 0.019928190857172012, 0.2072737216949463, -0.037131525576114655, -0.14382383227348328, -0.10726878046989441, 0.06600765883922577, -0.0620168037712574, -0.038068413734436035, 0.03055090643465519, 0.049041617661714554, -0.12422117590904236, 0.06073808670043945, -0.03780741989612579, 0.06390228122472763, 0.004993627313524485, -0.022181076928973198, 0.005870996508747339, 0.0020062029361724854, -0.052021369338035583, 0.07277820259332657, -0.16497893631458282, 0.15655671060085297, 0.0037156406324356794, 0.08987084031105042, -0.03393905237317085, 0.0525595024228096, 0.042559608817100525, 0.03465531766414642, 0.13197413086891174, 0.00010598710650810972, -0.18363545835018158, -0.08109642565250397, -0.06421154737472534, 0.0057225339114665985, 0.07176845520734787, -0.09979356825351715, 0.11127562075853348, -0.05828277766704559, -0.013259137980639935, -0.04855319857597351, -0.021770881488919258, -0.18581274151802063, -0.08058144152164459, 0.11185365170240402, -0.03394497558474541, 0.10401146858930588, -0.0990309938788414, -0.018896833062171936, -0.038626089692115784, 0.08433416485786438, -0.1420133411884308, -0.07769357413053513, -0.13101845979690552, -0.11894959211349487, 0.15178711712360382, -0.10452453047037125, 0.04622644558548927, -0.036501508206129074, 0.08933918178081512, -0.018434084951877594, -0.028851795941591263, 0.02279600501060486, -0.0982518270611763, -0.24107162654399872, -0.034945517778396606, 0.11556468158960342, 0.012150349095463753, 0.050085123628377914, 0.005928736180067062, 0.04598837345838547, -0.0019748101476579905, -0.08085273951292038, 0.006767915561795235, 0.1769433170557022, 0.1214447170495987, -0.022758401930332184, -0.0739453062415123, -0.1059894859790802, -0.14020824432373047, -0.1798742264509201, -0.005262991413474083, 0.28400248289108276, -0.00911497138440609, 0.12233716249465942, 0.159295454621315, -0.0758926272392273, -0.14930486679077148, -0.03017287887632847, -0.04503776878118515, 0.011197718791663647, 0.030184540897607803, -0.1289808303117752, 0.012803572230041027, 0.06660418957471848, -0.06536369025707245, 0.04378870874643326, -0.1729528158903122, -0.12623097002506256, -0.017215503379702568, 0.1088946983218193, -0.010161017067730427, -0.19299016892910004, -0.04771832004189491, -0.016468504443764687, -0.1435653567314148, 0.05790097266435623, 0.05819644778966904, 0.06393186748027802, -0.057645246386528015, 0.025245949625968933, 0.010291175916790962, -0.07435043156147003, 0.15379326045513153, -0.07479232549667358, 0.030542444437742233, -0.06768452376127243, -0.013044464401900768, 0.04478976130485535, -0.05118776112794876, 0.13495826721191406, -0.01346644852310419, -0.002409245353192091, -0.05215326324105263, -0.06380443274974823, -0.058737196028232574, 0.09864959120750427, -0.06943946331739426, -0.10427821427583694, -0.12677499651908875, 0.14866113662719727, 0.011766599491238594, -0.01716206595301628, 0.019156355410814285, -0.0643559992313385, 0.0641423761844635, 0.04833868518471718, 0.12870587408542633, 0.11899017542600632, -0.012123802676796913, -0.011461792513728142, -0.03776681050658226, 0.07950740307569504, -0.18412631750106812, 0.0026470262091606855, 0.07501711696386337, -0.003236389020457864, 0.10520601272583008, -0.04292965307831764, -0.17235611379146576, 0.0076802996918559074, 0.06971745193004608, -0.1036982610821724, -0.13391579687595367, -0.044569313526153564, 0.07010091841220856, 0.011378110386431217, -0.004538107663393021, 0.10576676577329636, -0.10343106091022491, -0.05512811988592148, -0.013311836868524551, 0.10506974160671234, 0.010586668737232685, 0.04240869730710983, 0.006146259140223265, 0.018675237894058228, -0.02781170792877674, 0.10667257755994797, 0.08248906582593918, -0.06607113033533096, 0.025712132453918457, 0.08142510056495667, -0.020108617842197418, -0.049842365086078644, -0.07951104640960693, 0.057409413158893585, -0.11297190189361572, -0.11553876101970673, -0.04755309969186783, -0.08763572573661804, -0.03988712280988693, 0.08122750371694565, -0.013337735086679459, 0.04932490363717079, 0.05844129994511604, 0.006346650421619415, -0.11038368940353394, 0.06618232280015945, 0.032714128494262695, 0.03289540857076645, -0.11186569929122925, -0.0024060599971562624, 0.05538433790206909, -0.024337563663721085, -0.009224963374435902, -0.012050734832882881, -0.0759134292602539, -0.05193222686648369, -0.12054958939552307, -0.012646820396184921, -0.10125475376844406, -0.027422133833169937, -0.030964259058237076, -0.10370980203151703, -0.040296897292137146, 0.02212582342326641, -0.045451197773218155, -0.030659817159175873, -0.08668571710586548, 0.16152939200401306, -0.1181301549077034, -0.0018139173043891788, 0.13034215569496155, -0.0757443830370903, 0.05821593478322029, 0.003624699544161558, -0.013595812022686005, 0.030680011957883835, -0.09438902884721756, 0.11671675741672516, -0.0558910146355629, 0.022011471912264824, -0.008733607828617096, -0.17332705855369568, -0.028120514005422592, 0.013392328284680843, -0.04319198802113533, -0.012638638727366924, -0.057209599763154984, -0.09581612050533295, -0.030629467219114304, 0.008648901246488094, -0.0910201221704483, -0.07038772106170654, -0.00044893959420733154, 0.14661289751529694, 0.0035113494377583265, 0.10673408210277557, -0.04596830904483795, 0.05910620838403702, -0.1366329789161682, 0.005296614952385426, -0.0021047128830105066, -0.023207301273941994, -0.03834891319274902, -0.052878428250551224, 0.01647697389125824, 0.00016788097855169326, 0.11885210126638412, -0.015797726809978485, -0.06012498959898949, 0.06081985682249069, -0.0556614026427269, -0.011072581633925438, 0.0076691703870892525, 0.13392339646816254, 0.0022040721960365772, 0.03022819571197033, -0.013108594343066216, -0.058915093541145325, -0.058152489364147186, -0.09094321727752686, 0.0999150276184082, 0.17235848307609558, 0.08995972573757172, 0.030351338908076286, 0.0075232828967273235, -0.06515530496835709, -0.11068455874919891, -0.03525247797369957, -0.05520254373550415, -0.005692207254469395, -0.026749730110168457, 0.1357196867465973, 0.2457566261291504, -0.2042723000049591, 0.06533735990524292, -0.027750708162784576, -0.02709675393998623, -0.06200925633311272, -0.15022142231464386, -0.07047708332538605, -0.06306043267250061, 0.03949183598160744, -0.06889462471008301, 0.0694722905755043, 0.07715511322021484, 0.024338381364941597, -0.0705152079463005, 0.13556355237960815, -0.0028457564767450094, -0.0617326982319355, 0.054128583520650864, 0.05366366729140282, -0.004694217350333929, -0.00995710026472807, -0.030622385442256927, -0.030861426144838333, 0.01090586744248867, 0.049430638551712036, 0.07242927700281143, -0.06616279482841492, 0.01985827088356018, 0.0020091531332582235, -0.09036519378423691, 0.0032687378115952015, -0.015327357687056065, 0.04592212662100792, 0.12066604942083359, 0.04098954796791077, 0.025502610951662064, 0.04569670557975769, 0.20106777548789978, -0.00803016684949398, 0.007442220114171505, -0.06907004117965698, 0.1550428867340088, -0.02333942800760269, -0.07725771516561508, 0.07013283669948578, -0.11258157342672348, 0.039460740983486176, 0.15460261702537537, 0.05747964233160019, 0.052169643342494965, -0.029380371794104576, -0.07109499722719193, 0.0033248686231672764, -0.05424555018544197, 0.12331202626228333, 0.05291644111275673, 0.21316613256931305, -0.05213780328631401, 0.10005390644073486, -0.04898349940776825, -0.009698145091533661, -0.04013407975435257, 0.17260196805000305, -0.05834626406431198, -0.06680009514093399, -0.07286357134580612, 0.10045681893825531, -0.006509450729936361, -0.274116575717926, 0.09515795856714249, -0.04672503471374512, -0.09633396565914154, 0.020670922473073006, 0.09542488306760788, -0.031350117176771164, 0.04761027172207832, 0.001594277797266841, 0.0043067303486168385, 0.1112571656703949, 0.054325513541698456, -0.030342428013682365, -0.001198014710098505, 0.10718029737472534, -0.011859001591801643, 0.2517286539077759, 0.028217460960149765, 0.08157188445329666, 0.07368294894695282, -0.02355934865772724, -0.134400874376297, 0.082215815782547, 0.06846070289611816, -0.10525276511907578, 0.009767952375113964, 0.1704142689704895, 0.010687087662518024, 0.058207202702760696, 0.08048523217439651, -0.03015625849366188, 0.06518325209617615, 0.06907251477241516, -0.036567408591508865, -0.102086640894413, 0.07654180377721786, -0.12081535160541534, 0.17622190713882446, 0.08122314512729645, -0.07223178446292877, -0.017744991928339005, -0.0636671930551529, 0.08830077946186066, 0.02100740373134613, 0.047567758709192276, 0.047942984849214554, -0.1778343915939331, -0.010640976019203663, -0.01435267273336649, 0.079288050532341, -0.15651774406433105, -0.04291889816522598, -0.02663087286055088, -0.005799960810691118, -0.11121232807636261, 0.06860465556383133, 0.03790758550167084, -0.029810599982738495, -0.014803768135607243, -0.1122589260339737, -0.014735432341694832, 0.09795710444450378, -0.09495822340250015, -0.016566535457968712 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gumzo This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "mit", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "microsoft/phi-2", "model-index": [{"name": "gumzo", "results": []}]}
null
bitsoko/gumzo-phi
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "license:mit", "region:us" ]
2024-02-07T00:51:46+00:00
[]
[]
TAGS #peft #safetensors #trl #sft #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us
# gumzo This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# gumzo\n\nThis model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 4000", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us \n", "# gumzo\n\nThis model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 4000", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 41, 26, 6, 12, 8, 3, 88, 4, 39 ]
[ "passage: TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us \n# gumzo\n\nThis model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 4000### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.12720994651317596, 0.10076169669628143, -0.0008838435751385987, 0.0948965847492218, 0.11522442102432251, -0.023846900090575218, 0.11103879660367966, 0.10739883780479431, -0.0791875571012497, 0.11593741923570633, 0.12208949774503708, 0.05573113635182381, 0.05494234338402748, 0.26822522282600403, -0.04052604362368584, -0.23784944415092468, 0.06615377962589264, -0.018197424709796906, 0.10682090371847153, 0.11656562238931656, 0.09741921722888947, -0.09690012782812119, 0.08835063874721527, 0.0034447761718183756, -0.18190842866897583, -0.03323197737336159, -0.007372425403445959, -0.05733567103743553, 0.0909465029835701, -0.007741924840956926, 0.08900965005159378, 0.02128034457564354, 0.10057535022497177, -0.16556839644908905, 0.006107394117861986, 0.052200302481651306, 0.031295474618673325, 0.09663216024637222, 0.06215520203113556, 0.023372983559966087, 0.07130804657936096, -0.07689770311117172, 0.06048715114593506, 0.025887591764330864, -0.1300327330827713, -0.18813861906528473, -0.14584285020828247, 0.06201974302530289, 0.05536913871765137, 0.08344035595655441, -0.006362847052514553, 0.23611202836036682, -0.048817817121744156, 0.06578220427036285, 0.26286113262176514, -0.3186829388141632, -0.06724287569522858, 0.05514167994260788, 0.0801568329334259, 0.0864630863070488, -0.08841750770807266, -0.03763452172279358, 0.06582467257976532, 0.04766806960105896, 0.09831415116786957, 0.003290399443358183, 0.02504533901810646, -0.05494474992156029, -0.1581568568944931, -0.0527886226773262, 0.1587723344564438, 0.041686441749334335, -0.08340416103601456, -0.08816356211900711, -0.07573670893907547, -0.13267698884010315, -0.03163360059261322, 0.0005221408209763467, 0.01795649342238903, -0.04099029675126076, -0.05571230128407478, -0.03717288374900818, -0.06276140362024307, -0.0616610012948513, -0.031344663351774216, 0.14816914498806, 0.04834482818841934, 0.05325985699892044, -0.021837439388036728, 0.10169567912817001, -0.08176223188638687, -0.10780340433120728, -0.05054941028356552, -0.0357036329805851, 0.0051534902304410934, -0.046863604336977005, -0.0410928875207901, 0.0437411330640316, 0.01942567154765129, 0.15731117129325867, -0.10840362310409546, 0.05464154854416847, 0.019097469747066498, 0.0357767790555954, -0.04050767049193382, 0.12435316294431686, -0.05426878109574318, 0.039144642651081085, 0.048412472009658813, 0.08479933440685272, 0.07410511374473572, -0.011850757524371147, -0.11133691668510437, 0.020334957167506218, 0.09211385995149612, 0.045767080038785934, -0.041942331939935684, 0.01752414181828499, -0.0619070790708065, -0.013881945982575417, 0.06508788466453552, -0.10410533845424652, 0.04113724082708359, -0.01709725707769394, -0.05006937310099602, -0.05226249620318413, 0.005358980502933264, 0.013314398005604744, -0.032853130251169205, 0.05434143915772438, -0.08617056161165237, 0.01857299730181694, -0.08347367495298386, -0.08290071785449982, 0.036074984818696976, -0.12038161605596542, -0.00906324665993452, -0.10252036899328232, -0.18284590542316437, -0.020543895661830902, -0.0016682881396263838, -0.06827938556671143, -0.03391880542039871, -0.008685184642672539, -0.06589030474424362, -0.005715217906981707, -0.03270325809717178, 0.058812011033296585, -0.0729355588555336, 0.09873900562524796, 0.039507538080215454, 0.05222935974597931, -0.08652793616056442, 0.015711471438407898, -0.09152849018573761, 0.03496629372239113, -0.15080630779266357, 0.03527306020259857, -0.07689065486192703, 0.03314338997006416, -0.09801370650529861, -0.1067211702466011, -0.02034556120634079, -0.02451622299849987, 0.09820151329040527, 0.12578171491622925, -0.16986620426177979, 0.0014644439797848463, 0.21915771067142487, -0.1232101321220398, -0.10487543046474457, 0.0984995886683464, -0.020223552361130714, 0.07469113171100616, 0.06349194794893265, 0.2048511803150177, 0.0003269134904257953, -0.19333359599113464, 0.007512341253459454, -0.016809727996587753, 0.06357354670763016, -0.06939824670553207, 0.07549858838319778, -0.03653993830084801, 0.028679752722382545, 0.037799183279275894, -0.04866190627217293, -0.004445004276931286, -0.10447096824645996, -0.041927821934223175, -0.0585247166454792, -0.07871539145708084, 0.034857239574193954, 0.02367641031742096, 0.035330869257450104, -0.10835327953100204, -0.08128015697002411, 0.09804821014404297, 0.10969462990760803, -0.014422452077269554, 0.018923841416835785, -0.11117994040250778, 0.12831652164459229, -0.054593831300735474, -0.04402896761894226, -0.20516203343868256, -0.049204543232917786, 0.04583277553319931, -0.0184773076325655, 0.003546908963471651, -0.06801214814186096, 0.05194764584302902, 0.08649145066738129, -0.03752259910106659, -0.007607588544487953, -0.08295019716024399, 0.008134094066917896, -0.13401632010936737, -0.1240958571434021, -0.05612066388130188, -0.032108090817928314, 0.14741404354572296, -0.15946418046951294, 0.023673247545957565, 0.05498814582824707, 0.14270244538784027, 0.04105772078037262, -0.07968133687973022, 0.011105356737971306, 0.08102602511644363, 0.008251362480223179, -0.10295332968235016, 0.05566432699561119, 0.04711083322763443, -0.050481803715229034, -0.07226284593343735, -0.15614929795265198, 0.1350710541009903, 0.1177811473608017, 0.13310326635837555, -0.06489964574575424, -0.029613174498081207, -0.06686543673276901, -0.008459142409265041, -0.09662763774394989, 0.004923994652926922, 0.10575523227453232, 0.013783233240246773, 0.12471119314432144, -0.12179030478000641, -0.038207780569791794, 0.04473968222737312, -0.05969696864485741, 0.011262552812695503, 0.06765221804380417, 0.02097213640809059, -0.13560611009597778, 0.12533578276634216, 0.07370707392692566, -0.012358144856989384, 0.0760420486330986, -0.07191045582294464, -0.08468027412891388, -0.02609071508049965, 0.0361991822719574, 0.024605944752693176, 0.1568969041109085, 0.0077087171375751495, 0.020773664116859436, 0.04319286718964577, 0.029666896909475327, 0.025582773610949516, -0.19096742570400238, -0.02204870618879795, -0.0017671000678092241, -0.039272285997867584, -0.06129377335309982, 0.000117440678877756, 0.005269348621368408, 0.09842170029878616, 0.02414383739233017, -0.030136188492178917, 0.02785705029964447, 0.018728507682681084, -0.08101772516965866, 0.1666852831840515, -0.10709042102098465, -0.18856181204319, -0.12181396782398224, -0.0015453372616320848, -0.0417536124587059, -0.01462649554014206, 0.05816499888896942, -0.04286479949951172, -0.039577044546604156, -0.1247488483786583, -0.06607313454151154, 0.03381090983748436, -0.017424382269382477, 0.04417929798364639, -0.004893713165074587, 0.1081022396683693, -0.09241844713687897, -0.018996529281139374, -0.04684269428253174, -0.022176476195454597, 0.04659946262836456, -0.008683373220264912, 0.12010598927736282, 0.08751501888036728, -0.011319177225232124, 0.04452895373106003, -0.047589752823114395, 0.26608505845069885, -0.06778133660554886, -0.02264929562807083, 0.17445674538612366, 0.011605002917349339, 0.07565438002347946, 0.08653725683689117, 0.017096616327762604, -0.1363568753004074, 0.030931424349546432, 0.00767078110948205, -0.058754682540893555, -0.1977968066930771, -0.06080850586295128, -0.030913807451725006, -0.04677601903676987, 0.08084260672330856, 0.04684107378125191, -0.0001142215114668943, 0.035345859825611115, -0.017784040421247482, -0.0005066325538791716, -0.018068093806505203, 0.10489346086978912, 0.05788898840546608, 0.023240618407726288, 0.10132958739995956, -0.061285827308893204, -0.0011645861668512225, 0.0837632268667221, -0.014902077615261078, 0.2435624897480011, 0.013440413400530815, 0.08591078221797943, 0.044765863567590714, 0.19858862459659576, 0.015782196074724197, 0.06507210433483124, 0.029657745733857155, 0.0017002723179757595, -0.006372084841132164, -0.07171933352947235, -0.06295012682676315, 0.01341959461569786, -0.09420296549797058, 0.05123232305049896, -0.10295484215021133, 0.026695869863033295, 0.027079414576292038, 0.27918994426727295, 0.05414808169007301, -0.3566979467868805, -0.091941699385643, -0.011491590179502964, 0.0003142177010886371, -0.08206566423177719, 0.0036589091178029776, 0.13714250922203064, -0.1209774985909462, 0.05936940759420395, -0.05294884368777275, 0.09908851236104965, -0.01675911620259285, 0.021238798275589943, 0.027123335748910904, 0.10470026731491089, -0.014354397542774677, 0.049830112606287, -0.19765375554561615, 0.24731303751468658, 0.025806020945310593, 0.1115265041589737, -0.04563131183385849, -0.00923564936965704, -0.002756203757598996, 0.0834340751171112, 0.10374581068754196, 0.012057039886713028, -0.05666617304086685, -0.17671456933021545, -0.15029548108577728, 0.0077798692509531975, 0.0961909368634224, 0.008208025246858597, 0.0727909654378891, -0.023025795817375183, 0.03634191304445267, 0.005995158571749926, -0.031882476061582565, -0.11553582549095154, -0.0684816762804985, 0.01407364197075367, 0.012625792063772678, -0.03883088752627373, -0.11373335123062134, -0.10394332557916641, -0.00034804089227691293, 0.10242101550102234, 0.01892624795436859, -0.06287993490695953, -0.14748938381671906, 0.06469351053237915, 0.08252589404582977, -0.05973164364695549, 0.02685803361237049, 0.00020766386296600103, 0.12959794700145721, 0.009168573655188084, -0.06564804166555405, 0.09549440443515778, -0.03493313863873482, -0.1889500468969345, -0.03755250573158264, 0.12907357513904572, 0.026584956794977188, 0.04232093691825867, 0.0022893797140568495, 0.04092513769865036, 0.014713498763740063, -0.09552016109228134, 0.012302633374929428, 0.07663038372993469, 0.09059128910303116, -0.008148280903697014, -0.01754988543689251, 0.09326713532209396, -0.03698362410068512, -0.03548286855220795, 0.12688873708248138, 0.2432658076286316, -0.09301260113716125, 0.06656742841005325, 0.026753950864076614, -0.043766602873802185, -0.2037724405527115, 0.028896210715174675, 0.08634331077337265, 0.025434207171201706, 0.029287122189998627, -0.11612694710493088, 0.02451486885547638, 0.1620752215385437, -0.05654654651880264, 0.05264050140976906, -0.296880304813385, -0.11874644458293915, 0.06833485513925552, 0.12877394258975983, 0.07193738222122192, -0.15561802685260773, -0.05991685763001442, -0.0301247239112854, -0.11471111327409744, 0.039759185165166855, -0.16079986095428467, 0.10362188518047333, -0.010074093006551266, 0.08047951012849808, 0.011912520974874496, -0.03689097240567207, 0.1509314477443695, -0.022824380546808243, 0.08339382708072662, -0.07191627472639084, 0.04006781429052353, 0.04096158966422081, -0.0776805728673935, 0.07388767600059509, 0.00040626164991408587, 0.07614974677562714, -0.09389670193195343, -0.014372267760336399, -0.05913791432976723, 0.05157538503408432, -0.043143317103385925, -0.031909678131341934, -0.055169496685266495, 0.03822164237499237, -0.004819657653570175, -0.03190198540687561, 0.09631230682134628, 0.0002494883956387639, 0.12012359499931335, 0.16876791417598724, 0.05642358213663101, -0.0734463781118393, -0.07760832458734512, 0.0035757776349782944, -0.04531177878379822, 0.03949503228068352, -0.1366119682788849, -0.0016555788461118937, 0.10590355098247528, 0.03126915544271469, 0.09789396822452545, 0.023587027564644814, -0.10098497569561005, 0.02086261659860611, 0.048013005405664444, -0.13729648292064667, -0.16395366191864014, 0.013328434899449348, 0.10214994847774506, -0.11226055026054382, 0.05568269267678261, 0.09654460847377777, -0.06090901792049408, -0.029598141089081764, -0.04022613540291786, 0.024930857121944427, -0.01481988001614809, 0.1561732441186905, 0.047132257372140884, 0.06217573583126068, -0.11209374666213989, 0.10790517926216125, 0.060667429119348526, 0.010789312422275543, 0.0346628800034523, 0.052523110061883926, -0.12514807283878326, -0.0071128965355455875, 0.0876692607998848, 0.10657700151205063, -0.010304790921509266, -0.06179013475775719, -0.09955485910177231, -0.11553485691547394, 0.04293294996023178, 0.17231765389442444, 0.07941562682390213, 0.002513434272259474, 0.017973368987441063, -0.004285732284188271, -0.12313928455114365, 0.04570577293634415, 0.01711358316242695, 0.0687810480594635, -0.1631283164024353, 0.07123207300901413, 0.009401941671967506, 0.02302498184144497, -0.028813496232032776, 0.017803598195314407, -0.12426480650901794, -0.006157285068184137, -0.10426324605941772, 0.025040898472070694, -0.048091452568769455, -0.006912509445101023, -0.02077501453459263, -0.07543053478002548, -0.023318994790315628, 0.05207889527082443, -0.0772944912314415, -0.040245421230793, 0.009349770843982697, 0.025568149983882904, -0.09710593521595001, 0.00792373064905405, 0.012284488417208195, -0.07490894198417664, 0.08239896595478058, 0.05944320186972618, 0.021355915814638138, 0.024900615215301514, -0.03245551139116287, 0.021687237545847893, 0.06707685440778732, 0.006997767370194197, 0.0819476917386055, -0.0770103931427002, -0.023136800155043602, 0.01141304336488247, 0.025575080886483192, 0.037504468113183975, 0.1254093050956726, -0.1395854651927948, -0.028566164895892143, -0.03602234274148941, -0.026461783796548843, -0.036424826830625534, 0.027947556227445602, 0.1256842166185379, 0.040420595556497574, 0.12463734298944473, -0.09130197763442993, 0.02197214402258396, -0.18244852125644684, -0.024747537449002266, -0.015453610569238663, -0.059129759669303894, -0.0901436135172844, -0.012180435471236706, 0.07655353844165802, -0.004724091850221157, 0.12865200638771057, 0.002592623233795166, 0.06116824224591255, 0.03467876836657524, -0.02752530202269554, 0.013219344429671764, -0.003508369205519557, 0.14787647128105164, 0.03185694292187691, -0.01141846552491188, 0.11676209419965744, -0.001660046516917646, 0.049565814435482025, 0.026651404798030853, 0.19306430220603943, 0.16120906174182892, 0.023011602461338043, 0.07089848071336746, 0.06960476189851761, -0.032044824212789536, -0.12966260313987732, 0.003993553575128317, -0.0051397038623690605, 0.0708971917629242, -0.04918987303972244, 0.11864425241947174, 0.11927381157875061, -0.15440741181373596, 0.004123313818126917, -0.05462365597486496, -0.08432486653327942, -0.11487433314323425, -0.042925965040922165, -0.08830556273460388, -0.12626327574253082, -0.001982616726309061, -0.1185312420129776, -0.019511954858899117, 0.12608154118061066, -0.02055356651544571, -0.002693136688321829, 0.13845066726207733, -0.032893601804971695, 0.006541940849274397, 0.04662463814020157, 0.003993612248450518, -0.02111632190644741, -0.07193014025688171, -0.08938493579626083, 0.06447162479162216, 0.00958292931318283, 0.0972900316119194, 0.0063164122402668, 0.007818522863090038, 0.03286651521921158, -0.02972581796348095, -0.07967230677604675, 0.022635146975517273, 0.05195590853691101, 0.029606744647026062, 0.059965580701828, 0.04576884210109711, -0.01657194271683693, -0.03577317297458649, 0.2311389297246933, -0.05540215224027634, -0.06538768112659454, -0.11823079735040665, 0.27857232093811035, 0.011735496111214161, -0.021087680011987686, 0.04142547398805618, -0.10867113620042801, 0.004162448924034834, 0.18692170083522797, 0.11157771944999695, -0.042503271251916885, -0.023120498284697533, -0.04033617302775383, -0.0161072239279747, -0.047500330954790115, 0.1324513852596283, 0.11345122754573822, 0.03481496870517731, -0.05477834865450859, 0.0009147421806119382, -0.03524351119995117, -0.02741062268614769, -0.107871875166893, 0.020679615437984467, 0.008867895230650902, 0.012107698246836662, -0.08335956186056137, 0.08855853229761124, -0.02780165523290634, -0.07243706285953522, 0.05239957943558693, -0.1507900059223175, -0.173785999417305, 0.0201373640447855, 0.0373811349272728, -0.01676883175969124, 0.0703529566526413, -0.03393201902508736, 0.03876728191971779, 0.07463032752275467, -0.018537987023591995, -0.055569399148225784, -0.09583078324794769, 0.06861044466495514, -0.11404631286859512, 0.2054823786020279, -0.007660919800400734, 0.08715811371803284, 0.10928476601839066, 0.021062210202217102, -0.17130059003829956, 0.09974075853824615, 0.023223720490932465, -0.038006383925676346, -0.008990772068500519, 0.07006025314331055, -0.02976246550679207, 0.03827185556292534, 0.04013784974813461, -0.13355526328086853, -0.03524952009320259, -0.01654953323304653, 0.012797772884368896, -0.05412077531218529, 0.00014647636271547526, -0.07683125138282776, 0.14230641722679138, 0.14314137399196625, -0.07497978955507278, 0.005814009811729193, -0.05042515695095062, 0.06564927846193314, 0.0444067046046257, -0.01872265711426735, 0.001992715522646904, -0.23540133237838745, 0.005551218520849943, 0.02751004695892334, -0.026542112231254578, -0.24617606401443481, -0.056735605001449585, -0.0076210591942071915, -0.0471256859600544, -0.08047296851873398, 0.096868135035038, 0.04462441802024841, 0.023310713469982147, -0.05234387144446373, -0.09564870595932007, -0.04606823995709419, 0.1539020538330078, -0.09313400834798813, -0.06726301461458206 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
{"library_name": "peft", "base_model": "NousResearch/Llama-2-7b-chat-hf"}
null
saikrishna759/multiwoz2_Saved_model
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Llama-2-7b-chat-hf", "region:us" ]
2024-02-07T00:51:57+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.8.2
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ 43, 6, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 11 ]
[ "passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2" ]
[ -0.11769948899745941, 0.20666998624801636, -0.002912783296778798, 0.02549395151436329, 0.07785112410783768, 0.015407757833600044, 0.05577832832932472, 0.13303913176059723, 0.03283666446805, 0.11651013046503067, 0.06938543915748596, 0.11774429678916931, 0.1151692196726799, 0.21962304413318634, 0.003263794118538499, -0.1657102108001709, 0.01971868798136711, -0.07241468876600266, 0.01743026077747345, 0.11806745082139969, 0.14102990925312042, -0.09932662546634674, 0.07670142501592636, -0.020442117005586624, 0.0024542235769331455, -0.027936438098549843, -0.06807847321033478, -0.011055584996938705, 0.05399150028824806, 0.03122783452272415, 0.056819941848516464, -0.010763264261186123, 0.08520374447107315, -0.2704300880432129, 0.01883009262382984, 0.04265301674604416, -0.00045290516573004425, 0.08344653248786926, 0.09688374400138855, -0.04538474604487419, 0.12346991151571274, -0.021854383870959282, 0.13367369771003723, 0.09051225334405899, -0.09567297995090485, -0.2351798564195633, -0.06292394548654556, 0.07993721961975098, 0.18764273822307587, 0.08551130443811417, -0.04316225275397301, 0.12375939637422562, -0.0640316754579544, 0.022428808733820915, 0.06704075634479523, -0.10372592508792877, -0.06345343589782715, 0.06291820853948593, 0.1294797956943512, 0.0773601308465004, -0.12618185579776764, -0.037074875086545944, 0.035886481404304504, 0.04580415412783623, 0.0580124706029892, 0.006647665984928608, 0.1484030783176422, 0.028769001364707947, -0.1454513818025589, -0.049566421657800674, 0.13674598932266235, 0.010416027158498764, -0.03749023377895355, -0.21604330837726593, -0.00459075253456831, -0.09522778540849686, -0.03878160938620567, -0.04798002541065216, 0.03698987141251564, 0.010453630238771439, 0.13307736814022064, -0.049591004848480225, -0.09215915948152542, -0.014346052892506123, 0.11040274053812027, 0.0616430938243866, 0.02060583047568798, -0.01945985108613968, 0.008026303723454475, 0.12192189693450928, 0.0676833912730217, -0.13428759574890137, -0.06298412382602692, -0.06815947592258453, -0.03369535133242607, -0.024816837161779404, 0.040182024240493774, 0.017229147255420685, 0.0635613352060318, 0.27198895812034607, -0.04016723483800888, 0.06374870985746384, 0.04097883775830269, 0.022351374849677086, 0.03009030781686306, 0.10533419251441956, -0.03212955966591835, -0.16400747001171112, -0.007433966733515263, 0.10063730925321579, 0.002702203579246998, -0.03417186439037323, -0.05627066642045975, 0.03344479948282242, 0.03579871356487274, 0.11764659732580185, 0.10942773520946503, -0.028066188097000122, -0.0745202898979187, -0.05581606552004814, 0.19079482555389404, -0.15589196979999542, 0.043175265192985535, 0.031009791418910027, 0.0013891590060666203, -0.06065008044242859, 0.008123516105115414, 0.018420519307255745, -0.03341829776763916, 0.0739302784204483, -0.06741747260093689, -0.0401163212954998, -0.12049110978841782, -0.029961997643113136, 0.03624962642788887, 0.009220915846526623, -0.04452921822667122, -0.042916469275951385, -0.07037478685379028, -0.10976991057395935, 0.1085909754037857, -0.054557181894779205, -0.05871255323290825, -0.028399605304002762, -0.08273676037788391, 0.018992358818650246, 0.03493666648864746, 0.06826084107160568, -0.026227839291095734, 0.046194083988666534, -0.010782663710415363, 0.06776405870914459, 0.06998622417449951, 0.030902881175279617, -0.0827704519033432, 0.06522461771965027, -0.19576740264892578, 0.07253402471542358, -0.08013460040092468, 0.044235534965991974, -0.1595429927110672, -0.004312295466661453, -0.0022420838940888643, 0.029259683564305305, 0.041751157492399216, 0.16127003729343414, -0.21196487545967102, -0.03095497004687786, 0.1684923619031906, -0.10783151537179947, -0.13275355100631714, 0.040584247559309006, -0.03692902997136116, 0.18247874081134796, 0.02804495394229889, 0.029673883691430092, 0.08894111216068268, -0.16022709012031555, -0.02174060046672821, -0.018446754664182663, 0.010418129153549671, 0.06808888167142868, 0.08132006227970123, -0.09663040190935135, -0.001616360037587583, 0.010858171619474888, -0.061541199684143066, -0.01785045862197876, -0.04080429673194885, -0.1045517548918724, 0.004818684887140989, -0.08689999580383301, 0.010899664834141731, 0.005562866572290659, -0.09412923455238342, -0.00767026050016284, -0.15247979760169983, -0.05846627429127693, 0.08434145152568817, 0.00026128877652809024, -0.01405352633446455, -0.09419026970863342, 0.06373747438192368, -0.03559573367238045, -0.020782528445124626, -0.14397205412387848, -0.015432771295309067, 0.017898816615343094, -0.13868916034698486, 0.0012420830316841602, -0.11995251476764679, 0.06763311475515366, 0.004810863174498081, -0.05048419162631035, -0.04406342655420303, -0.002766441088169813, -0.004278186243027449, -0.06090925633907318, -0.23663276433944702, -0.02428145334124565, -0.052476897835731506, 0.1713789999485016, -0.23148222267627716, 0.04160921275615692, 0.0034466448705643415, 0.11964506655931473, 0.0047644018195569515, -0.058687981218099594, 0.022583601996302605, -0.06231268495321274, -0.024701951071619987, -0.06840142607688904, -0.0037527058739215136, 0.003462479216977954, -0.02865241840481758, 0.014165260829031467, -0.12116673588752747, -0.06389053910970688, 0.09515070170164108, 0.058769457042217255, -0.1450631022453308, 0.00842469185590744, -0.040074050426483154, -0.056336693465709686, -0.06754444539546967, -0.07108866423368454, 0.08409534394741058, 0.05292753130197525, 0.047818623483181, -0.08274413645267487, -0.06752345710992813, 0.003514396958053112, -0.02452346496284008, -0.013681194745004177, 0.12610596418380737, 0.09137961268424988, -0.09851912409067154, 0.09228390455245972, 0.07080904394388199, 0.021283060312271118, 0.08558592200279236, -0.02348261885344982, -0.10639158636331558, -0.02593001164495945, 0.05667613446712494, 0.01070303376764059, 0.1701316386461258, -0.07188218832015991, 0.055811841040849686, 0.047385260462760925, -0.05746626481413841, 0.04811330884695053, -0.09233375638723373, 0.006447041407227516, -0.0029063266701996326, -0.015782566741108894, 0.036864910274744034, -0.016450000926852226, 0.004836694337427616, 0.09010760486125946, 0.062471237033605576, 0.021535998210310936, 0.012572001665830612, -0.0362418070435524, -0.14193294942378998, 0.1797328144311905, -0.09205848723649979, -0.23891016840934753, -0.15006007254123688, 0.054771315306425095, 0.05779189616441727, -0.013948877342045307, 0.03144465386867523, -0.05449340119957924, -0.09502875059843063, -0.08760391175746918, 0.004416328854858875, 0.03345770016312599, -0.06084810197353363, -0.06309141218662262, 0.03578837960958481, 0.03894244134426117, -0.12027259171009064, 0.023747729137539864, 0.05629263445734978, -0.0018340221140533686, -0.003648567944765091, 0.045919474214315414, 0.09278853237628937, 0.20445209741592407, -0.002732523949816823, 0.0053982362151145935, 0.05899197608232498, 0.2761322557926178, -0.15901462733745575, 0.11325082182884216, 0.13837623596191406, -0.06625627726316452, 0.07702389359474182, 0.1908654421567917, 0.030556995421648026, -0.09384198486804962, 0.018727079033851624, 0.031007766723632812, -0.023953305557370186, -0.27104878425598145, -0.05058536306023598, -0.023827584460377693, -0.07544421404600143, 0.08135921508073807, 0.08835428208112717, 0.09257134795188904, 0.028403934091329575, -0.06399580091238022, -0.09893711656332016, 0.02674330212175846, 0.11227049678564072, -0.017586790025234222, 0.0025482589844614267, 0.07991060614585876, -0.04866483062505722, 0.004952625837177038, 0.08520778268575668, -0.02139362134039402, 0.12702924013137817, 0.056118953973054886, 0.1073608547449112, 0.08325479924678802, 0.08240807801485062, -0.009224953129887581, 0.03056410513818264, 0.0027502768207341433, 0.020547926425933838, 0.020710214972496033, -0.09094986319541931, 0.01736580580472946, 0.11510791629552841, 0.014805049635469913, 0.020639518275856972, 0.014339569956064224, -0.059905439615249634, 0.037447262555360794, 0.1929825097322464, 0.03151291236281395, -0.2053559273481369, -0.0801534503698349, 0.05455378443002701, -0.0739559680223465, -0.15504314005374908, -0.00788013357669115, 0.014482896775007248, -0.1574634462594986, 0.018814608454704285, -0.03978566825389862, 0.10737770050764084, -0.06571333855390549, -0.03766518458724022, 0.10156018286943436, 0.047414667904376984, -0.028234774246811867, 0.04994218423962593, -0.19223366677761078, 0.10771425813436508, 0.028445864096283913, 0.06718984991312027, -0.08868084102869034, 0.08744743466377258, -0.001796784228645265, -0.011346758343279362, 0.1650870144367218, -0.0022033178247511387, -0.06180639937520027, -0.07702392339706421, -0.07925916463136673, -0.005427278578281403, 0.07996804267168045, -0.13732460141181946, 0.07520841062068939, -0.0333210825920105, -0.031404491513967514, -0.007430676370859146, -0.086235411465168, -0.11866632848978043, -0.16253423690795898, 0.061424531042575836, -0.08553852140903473, 0.025479501113295555, -0.08024374395608902, -0.052194323390722275, 0.03343738615512848, 0.17655520141124725, -0.2028171271085739, -0.10914232581853867, -0.14351201057434082, -0.10141443461179733, 0.15255947411060333, -0.04746145382523537, 0.08725551515817642, -0.007392728701233864, 0.16233710944652557, 0.000411053973948583, -0.01836213283240795, 0.08401200920343399, -0.09487809985876083, -0.18540970981121063, -0.04660943150520325, 0.18383155763149261, 0.1311776340007782, 0.028439510613679886, -0.011346815153956413, 0.026449725031852722, -0.06680743396282196, -0.10957765579223633, 0.030112503096461296, 0.1476605385541916, 0.06770458072423935, -0.020437177270650864, -0.042344409972429276, -0.09610117226839066, -0.06520573794841766, -0.04310684651136398, -0.002870124764740467, 0.20515766739845276, -0.07029063999652863, 0.15548402070999146, 0.11205708235502243, -0.060042425990104675, -0.21054470539093018, 0.032464709132909775, 0.03981616720557213, 0.016663486137986183, 0.03228053078055382, -0.1917620599269867, 0.08767081797122955, -0.02572266198694706, -0.08159942924976349, 0.1786719262599945, -0.19226399064064026, -0.129422128200531, 0.10824183374643326, 0.02104264684021473, -0.201046884059906, -0.150085911154747, -0.10347102582454681, -0.01812194101512432, -0.12009748816490173, 0.04840534180402756, 0.008618081919848919, 0.010992096737027168, 0.011450343765318394, 0.020118551328778267, 0.041532836854457855, -0.04830056428909302, 0.20299124717712402, -0.04482565075159073, -0.005569585133343935, -0.0527876652777195, -0.07773393392562866, 0.013384186662733555, -0.054856233298778534, 0.12370224297046661, -0.015441779978573322, 0.033861491829156876, -0.16196617484092712, -0.04311643913388252, -0.06270512193441391, 0.035143591463565826, -0.09606029093265533, -0.0794484093785286, -0.04419834166765213, 0.08294829726219177, 0.09136927872896194, -0.012586906552314758, 0.01242639496922493, -0.09655292332172394, 0.09700454771518707, 0.1995052993297577, 0.19330982863903046, 0.06315502524375916, -0.053107570856809616, 0.02997264452278614, -0.038537558168172836, 0.04430471360683441, -0.21931912004947662, 0.04287564381957054, 0.06498876214027405, 0.026542434468865395, 0.06985615193843842, -0.005677002016454935, -0.1625482589006424, -0.09128525853157043, 0.08836907148361206, -0.06292731314897537, -0.17292796075344086, -0.033785052597522736, 0.041705161333084106, -0.20931172370910645, -0.04640975967049599, 0.03935948386788368, -0.0181092731654644, -0.041782595217227936, 0.02617095597088337, 0.08081985265016556, -0.021255910396575928, 0.08439317345619202, 0.09534917026758194, 0.08989959210157394, -0.09506035596132278, 0.05267556756734848, 0.07946302741765976, -0.019431734457612038, 0.029825052246451378, 0.13751423358917236, -0.0364147424697876, -0.04645836725831032, 0.0798555314540863, 0.12185007333755493, -0.002486835466697812, -0.05506465584039688, 0.004287934862077236, -0.049309078603982925, 0.061294808983802795, 0.12155837565660477, 0.021408192813396454, -0.01193462684750557, 0.07872650027275085, 0.025506949052214622, -0.09194063395261765, 0.12346944957971573, 0.04140791669487953, 0.02029072493314743, -0.03513696417212486, -0.028924908488988876, -0.013744531199336052, -0.0018778513185679913, -0.014825914986431599, 0.00004693585287895985, -0.0909915491938591, 0.0014284261269494891, -0.11594712734222412, 0.01780756004154682, -0.06718336790800095, -0.0002576978877186775, 0.028643004596233368, -0.0489656962454319, -0.003824668936431408, -0.005410241428762674, -0.07838259637355804, -0.05261590704321861, -0.021815035492181778, 0.07858611643314362, -0.13979020714759827, 0.03456014022231102, 0.07484147697687149, -0.10328766703605652, 0.06876613199710846, -0.008326759561896324, 0.013081645593047142, 0.008228299207985401, -0.1439802497625351, 0.056155234575271606, -0.029309317469596863, -0.006359034683555365, 0.0010422393679618835, -0.17944684624671936, -0.011577526107430458, -0.042701829224824905, -0.07143910974264145, 0.013309884816408157, -0.013215545564889908, -0.1226518526673317, 0.11009237170219421, 0.008095293305814266, -0.06616021692752838, -0.015245208516716957, 0.044449418783187866, 0.07164029777050018, -0.012409849092364311, 0.10877691954374313, -0.02684897929430008, 0.083103708922863, -0.1807156205177307, -0.00621566828340292, -0.016833368688821793, 0.05384806543588638, -0.018549276515841484, -0.04573789983987808, 0.05623883008956909, -0.020538190379738808, 0.16466617584228516, -0.0018338061636313796, 0.0742441937327385, 0.051905106753110886, 0.010930253192782402, 0.04378392919898033, 0.0728876143693924, 0.06468360126018524, -0.016203518956899643, -0.004701197147369385, 0.03255317360162735, -0.0020409130956977606, -0.045227568596601486, -0.14094270765781403, 0.07253962010145187, 0.17666760087013245, 0.07048549503087997, 0.02179078198969364, 0.008067925460636616, -0.1332378387451172, -0.07408107072114944, 0.10511837154626846, -0.017402758821845055, -0.031061973422765732, -0.06629138439893723, 0.22787198424339294, 0.14990010857582092, -0.18986721336841583, 0.07560385763645172, -0.05423163250088692, -0.03786854073405266, -0.14348988234996796, -0.16802245378494263, -0.05776524171233177, -0.04911024123430252, -0.0318753756582737, -0.05938649922609329, 0.050970252603292465, 0.03954758495092392, -0.004729952663183212, -0.02203095331788063, 0.10803087800741196, 0.031586550176143646, -0.04009048268198967, 0.045863546431064606, 0.060998860746622086, 0.04236721992492676, -0.09942521899938583, 0.011735196225345135, 0.001886715879663825, 0.008814944885671139, 0.062213458120822906, 0.023173239082098007, -0.06990323960781097, 0.02930132858455181, -0.01787971705198288, -0.12080670148134232, 0.0495670922100544, -0.007516996935009956, -0.021949628368020058, 0.14967697858810425, 0.03512033075094223, 0.008099704049527645, -0.010065858252346516, 0.23994873464107513, -0.07199644297361374, -0.0820726528763771, -0.13058407604694366, 0.08454304188489914, -0.0638623833656311, 0.023955434560775757, 0.015532204881310463, -0.12446270138025284, 0.012716526165604591, 0.17904044687747955, 0.11603523045778275, -0.019778354093432426, 0.013520904816687107, 0.04626742750406265, 0.009430119767785072, -0.03490632027387619, 0.011960557661950588, 0.055921632796525955, 0.20638400316238403, -0.07805577665567398, 0.06097545102238655, -0.017648804932832718, -0.0689961239695549, -0.031498104333877563, 0.10827583074569702, -0.011656714603304863, -0.01122299861162901, -0.05968675762414932, 0.14143596589565277, -0.07639602571725845, -0.21431203186511993, 0.05089925602078438, -0.08246009796857834, -0.13886047899723053, -0.04927203059196472, 0.027118146419525146, -0.02602965012192726, 0.005761643406003714, 0.06048549711704254, -0.05353428050875664, 0.18044669926166534, 0.029145246371626854, -0.042828578501939774, -0.09458549320697784, 0.056870587170124054, -0.16182497143745422, 0.2819679081439972, 0.021850652992725372, 0.0487053208053112, 0.1097458079457283, -0.021935712546110153, -0.1319884955883026, 0.015168975107371807, 0.1129152700304985, -0.0632040724158287, 0.06390555948019028, 0.1606759876012802, 0.0027896345127373934, 0.12182102352380753, 0.06664198637008667, -0.0592242032289505, 0.035914625972509384, -0.06755085289478302, -0.05441083759069443, -0.11569532752037048, 0.07832225412130356, -0.0966244786977768, 0.1526871919631958, 0.12093057483434677, -0.07346441596746445, -0.0029697499703615904, -0.020845314487814903, 0.08185786008834839, 0.018558043986558914, 0.10965380072593689, 0.008656207472085953, -0.1857033669948578, 0.046339020133018494, 0.00887568574398756, 0.09886037558317184, -0.21062983572483063, -0.04863942787051201, 0.041914358735084534, -0.017102444544434547, -0.08565417677164078, 0.11376497149467468, 0.03838564455509186, 0.01722962036728859, -0.035149652510881424, -0.04790586978197098, 0.01729344017803669, 0.15234188735485077, -0.1053488478064537, -0.014266646467149258 ]
null
null
null
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="atmikah/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.48 +/- 2.77", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
atmikah/q-Taxi-v3
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-07T01:00:50+00:00
[]
[]
TAGS #Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 Taxi-v3 This is a trained model of a Q-Learning agent playing Taxi-v3 . ## Usage
[ "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ "TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 32, 33 ]
[ "passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 0.048862796276807785, -0.16549694538116455, -0.005485367961227894, 0.02960980497300625, 0.1345081776380539, -0.01784728653728962, 0.11895976960659027, 0.07759871333837509, -0.07461097836494446, -0.055395450443029404, 0.1418241262435913, 0.09088201075792313, 0.055222880095243454, 0.05699880048632622, 0.09511256217956543, -0.27440664172172546, 0.048217080533504486, -0.02918700873851776, 0.05621987581253052, 0.11878681182861328, 0.0670095682144165, -0.040441032499074936, 0.061956584453582764, 0.11818158626556396, -0.1018151044845581, -0.007344264071434736, 0.035402704030275345, -0.09440053254365921, 0.17413531243801117, 0.07204403728246689, 0.12337774783372879, 0.05132639780640602, 0.179361954331398, -0.12762396037578583, 0.024310702458024025, -0.0010275895474478602, -0.10138072073459625, -0.03909514099359512, -0.012415820732712746, -0.08349097520112991, 0.03230205550789833, 0.23522862792015076, 0.07199250161647797, 0.06632792949676514, -0.17707863450050354, -0.06584878265857697, -0.04375573247671127, 0.069611094892025, 0.14951466023921967, 0.03758616745471954, -0.033800311386585236, 0.1684885323047638, -0.2564343810081482, 0.05066783353686333, 0.037275806069374084, -0.42313119769096375, 0.017119819298386574, 0.1507398933172226, 0.15090937912464142, 0.06909667700529099, -0.10573802888393402, 0.013512322679162025, 0.051325585693120956, -0.0005318621988408267, 0.024325110018253326, 0.006554204970598221, 0.15601307153701782, 0.08537693321704865, -0.1487821787595749, -0.058576688170433044, 0.17441977560520172, -0.03788546845316887, -0.02613203600049019, -0.039745692163705826, 0.0067160045728087425, -0.06427708268165588, -0.004067842848598957, -0.1777995079755783, 0.00734262028709054, 0.06666424125432968, -0.014348524622619152, 0.014901017770171165, -0.035522811114788055, -0.0966939702630043, -0.023098144680261612, -0.08592145889997482, 0.01677769608795643, -0.006319406442344189, -0.10187895596027374, 0.05002119392156601, -0.061138734221458435, 0.0014382408699020743, -0.05123179033398628, -0.15047866106033325, -0.049055423587560654, -0.03481535613536835, 0.1474713832139969, -0.0044205985032022, -0.01873963139951229, -0.03164304047822952, 0.15474793314933777, 0.049551334232091904, -0.05370146036148071, 0.05625450983643532, 0.07605006545782089, 0.23867930471897125, 0.10401605814695358, 0.10196955502033234, -0.06798075139522552, 0.10180158913135529, -0.12330973148345947, -0.08915644884109497, -0.17508824169635773, 0.11820860952138901, 0.00015364694991149008, 0.1317785084247589, -0.12023144960403442, 0.07898581773042679, -0.067511186003685, 0.013453764840960503, 0.01636839471757412, 0.0820009782910347, -0.012399360537528992, 0.10676060616970062, -0.005061192903667688, -0.06941985338926315, 0.014177112840116024, 0.05935845896601677, 0.03754841163754463, -0.038601722568273544, -0.03192409873008728, -0.05762290954589844, -0.05065649375319481, -0.10128600150346756, -0.06447898596525192, 0.018573462963104248, -0.007677143905311823, -0.1833900660276413, -0.06407523155212402, 0.00897200871258974, 0.015712225809693336, -0.03988850116729736, -0.05148044601082802, -0.15265507996082306, -0.042461175471544266, -0.015450406819581985, -0.03500641882419586, -0.06214277446269989, -0.0383245050907135, 0.046435944736003876, -0.07560601085424423, 0.013364278711378574, 0.023342855274677277, 0.05405820533633232, -0.025881100445985794, 0.06068144738674164, -0.08357544988393784, 0.09493788331747055, -0.1540430635213852, -0.03271956741809845, -0.025445878505706787, -0.041183918714523315, 0.1752462536096573, 0.06099751964211464, -0.015994304791092873, 0.15260063111782074, -0.17141541838645935, -0.058121129870414734, 0.15596486628055573, 0.008629098534584045, -0.09967197477817535, -0.003560945624485612, -0.09397093951702118, 0.1428760588169098, 0.08571921288967133, 0.2478504776954651, 0.12005335837602615, -0.22748184204101562, 0.055358242243528366, 0.12515293061733246, -0.14365963637828827, 0.10365243256092072, 0.07344598323106766, 0.005470725707709789, -0.18886831402778625, -0.06843198090791702, -0.06121627986431122, 0.1053021252155304, -0.08522345870733261, -0.0776243582367897, 0.09323626756668091, -0.05086790770292282, 0.24641476571559906, -0.028281206265091896, 0.06174173951148987, -0.026681531220674515, -0.1389324963092804, -0.01723906397819519, 0.060955192893743515, 0.05258452147245407, -0.024835573509335518, -0.25895482301712036, 0.13646544516086578, 0.048650871962308884, 0.025074828416109085, 0.004106190986931324, -0.05691491439938545, 0.016934165731072426, 0.1511998474597931, 0.020012924447655678, 0.13717477023601532, 0.027723990380764008, 0.0706823319196701, -0.006239562761038542, -0.10560829937458038, -0.04169593006372452, 0.061916545033454895, -0.08518962562084198, -0.06641357392072678, 0.011197872459888458, -0.06935211271047592, -0.11783787608146667, -0.12166737765073776, -0.026334572583436966, -0.02980303019285202, -0.07444227486848831, 0.02368103712797165, 0.06536602973937988, -0.06702698022127151, -0.0023908785078674555, 0.007125476840883493, -0.011537045240402222, 0.16434046626091003, 0.011393417604267597, -0.007796820718795061, 0.1328643560409546, -0.11533161997795105, 0.12461213022470474, 0.049438029527664185, -0.024806302040815353, -0.04662557691335678, 0.0014137453399598598, -0.057529181241989136, 0.029044216498732567, -0.04390640929341316, 0.02774495631456375, 0.20111067593097687, 0.02772962674498558, 0.11389166116714478, -0.0656520202755928, 0.04385066404938698, -0.007961965166032314, -0.009693224914371967, 0.018563594669103622, 0.07608018070459366, 0.07813210040330887, -0.1324140727519989, 0.02262016013264656, 0.22455167770385742, 0.1385764330625534, 0.18313980102539062, -0.010877152904868126, 0.06325667351484299, -0.04875868931412697, 0.027505528181791306, 0.024100203067064285, 0.10314226150512695, -0.10732068121433258, -0.0322517491877079, -0.025407759472727776, 0.023599207401275635, -0.08197105675935745, -0.1055799350142479, -0.090115025639534, 0.01222382951527834, -0.03125503659248352, -0.15570329129695892, 0.13300658762454987, -0.10451057553291321, 0.01802753657102585, 0.04692702740430832, -0.22163605690002441, 0.11530312895774841, 0.014291439205408096, -0.10303618758916855, 0.11281087249517441, -0.12051989883184433, -0.08699832111597061, -0.05777236074209213, -0.18658851087093353, 0.05280197039246559, 0.04673841595649719, 0.05166793242096901, -0.18521739542484283, 0.024835903197526932, 0.05545609071850777, 0.13426995277404785, -0.09743253141641617, -0.07142634689807892, -0.15038461983203888, 0.016068490222096443, -0.033661190420389175, -0.16029728949069977, -0.005609163548797369, -0.032781440764665604, -0.18849676847457886, -0.04539939761161804, -0.15086813271045685, -0.034627582877874374, 0.20464378595352173, 0.026907702907919884, 0.09480511397123337, -0.07926445454359055, 0.3802889585494995, -0.042039383202791214, -0.06146497279405594, -0.01321389526128769, -0.07072482258081436, 0.02512686513364315, 0.13271741569042206, 0.0036099457647651434, -0.017886579036712646, -0.0037857077550143003, 0.0024592927657067776, -0.06234965845942497, -0.13400450348854065, 0.0028710351325571537, 0.03905198723077774, 0.1874423623085022, 0.004639793653041124, 0.06659388542175293, 0.03133883699774742, 0.057546284049749374, 0.07748064398765564, 0.030926106497645378, 0.0011591583024710417, -0.01591806672513485, 0.06604493409395218, -0.11684755235910416, 0.042466625571250916, -0.030429253354668617, -0.10143838077783585, -0.013183288276195526, 0.07950251549482346, 0.12755028903484344, 0.17849206924438477, -0.04790908098220825, 0.17489230632781982, 0.13580141961574554, 0.16576050221920013, 0.049315933138132095, -0.020801831036806107, -0.08773037046194077, -0.06118565797805786, 0.004774159751832485, -0.031952597200870514, 0.04869702458381653, 0.3231290578842163, 0.037619613111019135, -0.09036035090684891, 0.11149907857179642, 0.009480619803071022, 0.05359881371259689, 0.022797370329499245, -0.11162138730287552, 0.11170321702957153, 0.07968773692846298, -0.06341761350631714, -0.07602835446596146, 0.16758501529693604, -0.1109386757016182, -0.26646625995635986, -0.11410990357398987, -0.012305386364459991, 0.07903840392827988, 0.005651174578815699, 0.05498376116156578, -0.11829282343387604, -0.16034497320652008, -0.034191906452178955, 0.1335442066192627, -0.3077351450920105, 0.2065143585205078, -0.0198091771453619, 0.06707923114299774, -0.039657969027757645, -0.07026876509189606, 0.09694647043943405, 0.13174086809158325, 0.29124146699905396, 0.01396956667304039, 0.04841272905468941, -0.15176129341125488, -0.0976925864815712, 0.0018439020495861769, 0.015482662245631218, -0.02563396655023098, 0.028520405292510986, -0.0540912002325058, 0.008404579944908619, -0.018086453899741173, 0.2102297693490982, -0.11316607892513275, 0.004344627261161804, -0.06968966871500015, -0.11707738786935806, 0.19409789144992828, -0.07178345322608948, -0.04543264955282211, -0.14959357678890228, -0.15512511134147644, -0.004174166824668646, -0.02413962036371231, -0.019664527848362923, -0.17603960633277893, -0.18804074823856354, -0.05204557999968529, -0.005645004566758871, -0.003464865731075406, 0.05867868289351463, -0.07517234236001968, -0.04805335775017738, 0.1009904220700264, -0.07743175327777863, -0.056063808500766754, -0.1103200614452362, 0.1391381323337555, 0.06248528137803078, 0.16743235290050507, 0.05907081440091133, 0.0006117874872870743, 0.11471151560544968, -0.02913086675107479, 0.11103474348783493, -0.11291708797216415, -0.17145049571990967, -0.08334989100694656, -0.018775060772895813, 0.09519003331661224, -0.04789286106824875, 0.0028788831550627947, 0.2550160884857178, 0.14880181849002838, -0.0897710770368576, 0.27680760622024536, 0.04414956644177437, -0.09375058114528656, -0.18432219326496124, -0.15961645543575287, 0.03759992495179176, 0.060025621205568314, 0.13095876574516296, -0.057205069810152054, -0.08483537286520004, -0.08492398262023926, -0.07478608191013336, -0.13140805065631866, -0.24232175946235657, -0.030598774552345276, 0.22874866425991058, 0.08656918257474899, 0.08219650387763977, -0.012482990510761738, -0.01186054851859808, 0.00526038184762001, 0.02680150233209133, 0.12018456310033798, -0.13341329991817474, 0.11107480525970459, 0.022198403254151344, 0.044267985969781876, 0.009712530300021172, 0.07929777354001999, 0.03375575691461563, -0.003218587953597307, -0.0006439819699153304, -0.0988350659608841, -0.2596651017665863, 0.0816885456442833, -0.01623627357184887, -0.09960969537496567, 0.014988959766924381, 0.02061903104186058, -0.2089255303144455, 0.011128270998597145, -0.019883770495653152, -0.03150356933474541, -0.06483490765094757, -0.10664787143468857, -0.056551624089479446, 0.04928823933005333, 0.10853826254606247, 0.011660109274089336, 0.05354316532611847, -0.0404130220413208, 0.07917837053537369, 0.0826287642121315, 0.15132710337638855, 0.06795957684516907, -0.190711110830307, -0.10953907668590546, -0.0414445661008358, 0.12121522426605225, -0.12505418062210083, 0.036917757242918015, 0.053161121904850006, -0.016534561291337013, 0.14621229469776154, 0.1070784479379654, -0.07452095299959183, 0.11915595084428787, 0.08904775977134705, -0.04094788804650307, -0.23367151618003845, -0.07120766490697861, 0.11133213341236115, 0.07195597887039185, -0.03961895406246185, 0.018120890483260155, -0.04960581287741661, -0.013980977237224579, 0.048759616911411285, -0.0538676381111145, -0.07230538129806519, 0.004421027842909098, 0.1247575581073761, 0.1029362753033638, -0.04655474051833153, 0.01296416949480772, 0.037371400743722916, 0.003788623260334134, 0.04730486497282982, 0.0407949760556221, -0.08269952982664108, -0.04124005511403084, 0.02782733179628849, 0.37552911043167114, -0.010165480896830559, -0.020456433296203613, 0.018555615097284317, -0.19949445128440857, 0.09135842323303223, 0.13205479085445404, 0.04697350412607193, 0.004247748292982578, -0.08139242231845856, 0.026877427473664284, -0.010625290684401989, 0.09936143457889557, -0.07806670665740967, -0.05493134260177612, -0.21631066501140594, -0.025010565295815468, 0.017490221187472343, 0.24077683687210083, -0.08458559215068817, -0.12801732122898102, -0.20628872513771057, 0.13128381967544556, -0.11333390325307846, -0.03695881739258766, -0.024473199620842934, 0.03926658630371094, -0.01989821158349514, 0.06291737407445908, -0.0710630789399147, 0.006373001262545586, -0.11024709790945053, 0.055267609655857086, 0.04204455390572548, 0.1229788213968277, 0.014207782223820686, 0.02016810141503811, 0.05822525918483734, -0.01837925612926483, 0.07173580676317215, -0.06203491613268852, -0.04550490900874138, 0.14224006235599518, -0.020255116745829582, -0.04152837023139, -0.0483345128595829, -0.036874305456876755, 0.11981741338968277, -0.05059147998690605, -0.007141099311411381, -0.054929375648498535, -0.06906463205814362, 0.03462086617946625, -0.009175732731819153, -0.008798843249678612, 0.06801853328943253, 0.04024988040328026, -0.026994358748197556, 0.005263668950647116, 0.03447828069329262, -0.10330043733119965, -0.04955084249377251, 0.16955432295799255, -0.0749620869755745, 0.10274054110050201, -0.031069839373230934, 0.018015999346971512, 0.005847334861755371, -0.022399673238396645, -0.015360680408775806, -0.1457086056470871, -0.06137600541114807, -0.09489979594945908, 0.11565322428941727, 0.08146517723798752, 0.03358805552124977, 0.04274565726518631, 0.019532648846507072, -0.04414922371506691, -0.038583990186452866, 0.12961317598819733, 0.08133101463317871, 0.012996876612305641, 0.01137041300535202, 0.01941833831369877, -0.020302120596170425, 0.0028480992186814547, -0.01250747125595808, -0.07239153981208801, -0.05874783173203468, 0.09400010108947754, 0.1600283533334732, -0.06127211079001427, -0.13325586915016174, -0.020593497902154922, 0.04988488554954529, 0.0014717020094394684, -0.08777432143688202, 0.04833676666021347, 0.15805292129516602, -0.05623878911137581, 0.03216489031910896, -0.09984751045703888, -0.07263360917568207, -0.16060975193977356, -0.10029061883687973, -0.06092562898993492, -0.28350353240966797, 0.09752398729324341, 0.006392303854227066, -0.014731393195688725, 0.059529416263103485, 0.051305368542671204, -0.052508849650621414, 0.07068239152431488, -0.18146829307079315, -0.007054794579744339, 0.03497592359781265, -0.13212306797504425, 0.02475893869996071, -0.2378365397453308, 0.10198072344064713, -0.04623803123831749, -0.1519704908132553, -0.04004510119557381, 0.0641569048166275, -0.09540136158466339, -0.01822364516556263, -0.0475153923034668, -0.01922670193016529, 0.01624443754553795, -0.009348669089376926, -0.031147832050919533, 0.13716529309749603, 0.02827494591474533, -0.03268734738230705, 0.005254602525383234, 0.0223685409873724, 0.03955082967877388, -0.0969657450914383, -0.05986930429935455, 0.08311155438423157, -0.031056145206093788, 0.14728976786136627, 0.000341245875461027, 0.04181376099586487, -0.06758682429790497, 0.2593761384487152, 0.2023983597755432, -0.12479214370250702, 0.008118697442114353, -0.021801479160785675, 0.012670028023421764, -0.041751839220523834, 0.13110700249671936, 0.013386172242462635, 0.12186761200428009, -0.17513342201709747, -0.01036517322063446, -0.0818324014544487, -0.04501292482018471, 0.06702108681201935, 0.14714950323104858, 0.15742522478103638, 0.03436789661645889, -0.07328428328037262, 0.06722653657197952, -0.30119743943214417, 0.20540550351142883, -0.1346001923084259, -0.01498429011553526, -0.040251150727272034, -0.058389630168676376, 0.061147745698690414, 0.11309876292943954, 0.10832664370536804, -0.021150551736354828, -0.0905047357082367, -0.04486766457557678, -0.039378076791763306, -0.13019338250160217, -0.02718670479953289, 0.1654091775417328, 0.06799814850091934, 0.31520840525627136, -0.017577875405550003, 0.07702425122261047, 0.034410297870635986, 0.06451138854026794, 0.004519328009337187, 0.09537279605865479, 0.07960964739322662, -0.06345855444669724, -0.07373003661632538, -0.001637450186535716, 0.05033271387219429, 0.14567798376083374, -0.03826142102479935, -0.18691548705101013, 0.15858715772628784, 0.07192251086235046, -0.13762691617012024, -0.05777517706155777, 0.08409425616264343, -0.0739973932504654, 0.0550808347761631, 0.08115427941083908, 0.015876613557338715, -0.017793258652091026, -0.004664506763219833, 0.06074233725667, 0.024694660678505898, -0.02343848906457424, 0.003570882137864828, -0.08337053656578064, -0.04151543974876404, 0.07267895340919495, -0.0844460055232048, -0.20546193420886993, -0.0957019031047821, -0.07551700621843338, 0.030557552352547646, -0.0649830624461174, 0.12575586140155792, 0.1717868149280548, 0.0593598335981369, -0.03307248651981354, -0.10721943527460098, -0.035562749952077866, 0.07602505385875702, -0.044773899018764496, -0.09409699589014053 ]
null
null
null
Experimantal 1 Billion parameter LLM as Foundation Model. Used same architecture and tokenizer as Llama 2.
{"license": "mit"}
null
OpenGenerativeAI/FoundationModel-1.1B-LLM
[ "license:mit", "region:us" ]
2024-02-07T01:02:02+00:00
[]
[]
TAGS #license-mit #region-us
Experimantal 1 Billion parameter LLM as Foundation Model. Used same architecture and tokenizer as Llama 2.
[]
[ "TAGS\n#license-mit #region-us \n" ]
[ 11 ]
[ "passage: TAGS\n#license-mit #region-us \n" ]
[ 0.026221778243780136, -0.033018264919519424, -0.008281232789158821, -0.05295303836464882, 0.052470896393060684, 0.06768012046813965, 0.1598525494337082, 0.04655371606349945, 0.23683255910873413, -0.05407243221998215, 0.11752297729253769, 0.08923697471618652, 0.004284696187824011, -0.0009730930323712528, 0.014216204173862934, -0.17134642601013184, 0.04864625632762909, -0.02878100797533989, 0.08764812350273132, 0.032233644276857376, -0.006205103360116482, -0.03845774009823799, -0.0022142508532851934, -0.03178790956735611, -0.057939812541007996, 0.03869890421628952, 0.045729056000709534, -0.02754949778318405, 0.14189864695072174, -0.021783310920000076, 0.13335508108139038, 0.046146418899297714, -0.011738095432519913, -0.2486042082309723, 0.008575023151934147, -0.07252951711416245, -0.11333522200584412, 0.016201216727495193, 0.035761721432209015, -0.010069100186228752, 0.032174937427043915, 0.11049123108386993, -0.011680051684379578, 0.06288356333971024, -0.2015703022480011, -0.20486389100551605, -0.07508610188961029, -0.07555478066205978, 0.0589042492210865, 0.030872387811541557, 0.05628744140267372, 0.1426718831062317, -0.18022038042545319, -0.0018841808196157217, 0.04129622131586075, -0.3510737717151642, 0.09011197835206985, 0.19666501879692078, 0.06407395005226135, 0.07872317731380463, -0.04774639382958412, 0.06726468354463577, 0.07745297998189926, -0.02402484230697155, -0.10679105669260025, -0.06142130121588707, 0.040939174592494965, 0.15604156255722046, -0.03852643445134163, -0.10356393456459045, 0.2591084837913513, -0.023262828588485718, -0.04234466329216957, 0.08201269060373306, -0.02980397455394268, -0.040379155427217484, 0.04404358193278313, 0.044016025960445404, 0.036236923187971115, 0.182089164853096, 0.1260262131690979, -0.03375067934393883, -0.16269677877426147, -0.030629513785243034, -0.2528207004070282, 0.07418664544820786, -0.003647059667855501, 0.10666298121213913, -0.20037521421909332, 0.03286786004900932, -0.15483668446540833, -0.009493621066212654, -0.02952384203672409, -0.059835705906152725, 0.05229754373431206, -0.0237403754144907, -0.04600388556718826, 0.07238677144050598, 0.08390641957521439, 0.2046167105436325, 0.023024363443255424, 0.016697337850928307, -0.10405295342206955, 0.15052515268325806, 0.019140364602208138, 0.024860305711627007, 0.179348424077034, 0.07677878439426422, -0.04891882464289665, -0.2251969277858734, 0.027894439175724983, -0.03671982139348984, -0.1441805064678192, 0.015881337225437164, -0.1542915552854538, 0.1736440360546112, -0.04078168794512749, -0.06919530034065247, -0.08578147739171982, 0.09790384024381638, 0.07768166810274124, -0.021921472623944283, -0.023105677217245102, -0.01381723117083311, 0.03522264584898949, -0.048196230083703995, -0.11687057465314865, 0.018241960555315018, 0.11869648098945618, 0.12573401629924774, -0.1483907401561737, -0.008189842104911804, -0.017200417816638947, 0.019065292552113533, 0.09696817398071289, -0.112403005361557, 0.028845038264989853, -0.09672309458255768, -0.13033071160316467, 0.036653537303209305, 0.017736904323101044, -0.019008556380867958, 0.1340927630662918, 0.061849117279052734, 0.056560322642326355, -0.011025321669876575, -0.07250872999429703, -0.14035539329051971, -0.08679798245429993, 0.1058693379163742, -0.046787332743406296, 0.010320915840566158, -0.24556252360343933, -0.014234079979360104, -0.14995723962783813, 0.059662189334630966, -0.0037668521981686354, -0.08819212019443512, -0.07740068435668945, 0.21408265829086304, 0.0018596589798107743, 0.04301392287015915, -0.1078512966632843, 0.054903753101825714, -0.06764797121286392, 0.10065380483865738, -0.12895582616329193, -0.06441528350114822, 0.1613781899213791, -0.13135331869125366, -0.14002031087875366, 0.0033312994055449963, -0.009472889825701714, 0.12053907662630081, 0.0802001804113388, 0.44566696882247925, -0.058881040662527084, -0.16201181709766388, 0.1270403116941452, 0.17969723045825958, -0.13685379922389984, -0.25928929448127747, 0.12393020838499069, -0.1636963188648224, -0.16647985577583313, 0.0040023741312325, -0.006962866988033056, 0.08049977570772171, -0.03446655720472336, -0.056274134665727615, 0.042339932173490524, 0.024350708350539207, 0.029094615951180458, 0.01740112341940403, 0.07037191838026047, -0.1023021712899208, 0.08444856107234955, 0.058610700070858, -0.014111426658928394, 0.15077349543571472, 0.011494536884129047, -0.05393160134553909, 0.014761670492589474, 0.044013332575559616, -0.015627963468432426, -0.05899091437458992, -0.09661509096622467, 0.019826244562864304, -0.031149597838521004, 0.08229395002126694, 0.1699674129486084, 0.023824702948331833, -0.02797185815870762, 0.028922779485583305, 0.028606392443180084, 0.1009954959154129, 0.06960704177618027, 0.03099375218153, -0.04839283227920532, 0.04952205345034599, -0.0417071171104908, -0.11430390179157257, -0.004862460307776928, -0.011735930107533932, 0.11975742131471634, -0.08906009048223495, -0.01223952230066061, 0.05951591953635216, -0.04513183981180191, 0.0019881438929587603, 0.0428374819457531, 0.0035966038703918457, 0.1388600617647171, 0.004440935328602791, -0.04352007433772087, 0.17440910637378693, -0.05288633331656456, 0.15533447265625, 0.1715822070837021, -0.07049662619829178, 0.015605369582772255, -0.1273636519908905, 0.003230511210858822, -0.014480113983154297, 0.05292887985706329, -0.05400136485695839, -0.05201306566596031, -0.01274962443858385, 0.014292534440755844, -0.03134604170918465, 0.01711403578519821, -0.06057267636060715, -0.08167021721601486, -0.10849859565496445, 0.018649224191904068, 0.20683221518993378, -0.22544461488723755, 0.1609548032283783, 0.40251004695892334, 0.15190774202346802, 0.21155193448066711, -0.12478897720575333, -0.002471078187227249, -0.06630261242389679, 0.026115071028470993, -0.024814706295728683, 0.13782677054405212, -0.13174867630004883, -0.01413064356893301, 0.03880728408694267, 0.0454997681081295, 0.0661163181066513, -0.17195898294448853, -0.15260353684425354, -0.0034879595041275024, -0.020591814070940018, -0.1749730259180069, 0.04874620959162712, -0.07595308125019073, 0.02181261032819748, 0.018216799944639206, -0.10832522064447403, 0.16837291419506073, -0.033566512167453766, -0.06695768237113953, 0.052613962441682816, -0.20581911504268646, -0.07900715619325638, -0.17772749066352844, -0.18375012278556824, 0.06050071492791176, 0.05760138854384422, 0.07903145253658295, -0.05951719731092453, -0.01922747679054737, 0.061719246208667755, -0.009363299235701561, -0.13802112638950348, -0.04235544428229332, -0.06993678212165833, 0.08744155615568161, -0.09474305808544159, -0.07518411427736282, -0.07833878695964813, -0.046996138989925385, -0.020961694419384003, 0.08125963062047958, -0.1039251759648323, 0.08903530240058899, 0.1493726521730423, 0.03651920333504677, 0.05440247058868408, -0.08271230012178421, 0.12693379819393158, -0.037743739783763885, -0.09459595382213593, 0.07307634502649307, 0.004350725095719099, 0.04920351505279541, 0.24039287865161896, 0.08962162584066391, -0.10578162968158722, -0.01780811697244644, -0.0968487411737442, -0.16405464708805084, -0.2553846538066864, -0.06823288649320602, -0.08744750916957855, 0.14417944848537445, 0.014636521227657795, 0.10712126642465591, 0.14313316345214844, 0.01343101728707552, 0.10255914181470871, -0.08983208239078522, -0.018939344212412834, 0.031209396198391914, 0.2135104089975357, -0.05208220332860947, 0.00838248711079359, -0.13684824109077454, -0.0256142970174551, 0.14601100981235504, 0.13798639178276062, 0.14503207802772522, 0.31421369314193726, 0.15292863547801971, 0.13410434126853943, 0.13474710285663605, 0.12333164364099503, 0.07403261214494705, 0.03444362059235573, -0.015304201282560825, -0.06035377085208893, -0.003846159903332591, 0.02816268615424633, 0.05421729013323784, 0.06724072247743607, -0.22906480729579926, 0.041139665991067886, -0.2661744952201843, 0.03544611483812332, -0.0854712724685669, 0.1161833181977272, -0.028890252113342285, 0.11051984131336212, 0.11386284977197647, 0.05553818494081497, -0.023278791457414627, 0.16036942601203918, 0.032686375081539154, -0.07703183591365814, 0.020292721688747406, 0.024695809930562973, 0.06633034348487854, 0.08606193959712982, 0.09550496190786362, -0.020778406411409378, -0.1831783503293991, 0.025963841006159782, 0.12212833017110825, -0.20747940242290497, 0.289523184299469, 0.013651901856064796, -0.0743619054555893, -0.01690039224922657, -0.06958060711622238, 0.008433517068624496, 0.12829731404781342, 0.10406835377216339, 0.05508929491043091, -0.2613787055015564, -0.13299626111984253, 0.046764206141233444, -0.00873907096683979, 0.11356569826602936, -0.0052223424427211285, -0.14201195538043976, -0.06640999764204025, 0.05814211815595627, -0.006591420155018568, 0.13023322820663452, -0.018290361389517784, -0.08173255622386932, -0.010230090469121933, 0.055564697831869125, -0.001312803477048874, -0.04580084979534149, 0.07523149996995926, 0.009008137509226799, 0.02259289287030697, -0.08178020268678665, 0.03887253627181053, -0.08071476966142654, -0.25375792384147644, 0.019298138096928596, -0.04987313598394394, 0.004092312417924404, -0.04684043675661087, -0.15448936820030212, -0.1129264086484909, -0.15445278584957123, 0.13100723922252655, -0.03675999864935875, 0.091565802693367, -0.0817658007144928, 0.13736046850681305, -0.08521489799022675, 0.05375019088387489, 0.00614814180880785, 0.03918716683983803, -0.017955513671040535, -0.1031481996178627, 0.09334362298250198, -0.1874227225780487, 0.023863423615694046, 0.010427716188132763, -0.056847453117370605, -0.01354232057929039, 0.03918023407459259, -0.08763083070516586, 0.21879427134990692, 0.3331502079963684, -0.011948764324188232, 0.22546616196632385, 0.35863226652145386, -0.13763751089572906, -0.23258967697620392, -0.1205512136220932, -0.3263251483440399, -0.09005610644817352, 0.17321562767028809, -0.18057219684123993, 0.04850830137729645, 0.16150830686092377, -0.10868281871080399, 0.22499866783618927, -0.22723928093910217, -0.04793389141559601, 0.1823979914188385, -0.038322996348142624, 0.4527989625930786, -0.1144307404756546, -0.1784561723470688, -0.03637253865599632, -0.16285361349582672, 0.12426037341356277, -0.026553882285952568, 0.06700495630502701, 0.02416347898542881, -0.011372359469532967, -0.009014161303639412, -0.04529716446995735, 0.2216065675020218, 0.0522729866206646, 0.10468899458646774, -0.09159468114376068, -0.17199653387069702, 0.1907423883676529, -0.0004908236442133784, -0.003372655250132084, -0.05411549657583237, -0.04850282520055771, -0.06871756166219711, 0.033092137426137924, -0.0334564633667469, 0.06195882335305214, 0.03364093229174614, -0.11903523653745651, -0.10248823463916779, 0.034111104905605316, -0.13155671954154968, -0.054850947111845016, 0.26421889662742615, -0.02080743946135044, 0.09609334170818329, 0.04959092289209366, -0.05474294349551201, -0.13538943231105804, 0.005736751481890678, -0.07534020394086838, -0.05711410939693451, 0.06573604047298431, -0.11453206837177277, -0.024341827258467674, 0.1293732225894928, -0.029497180134058, 0.09674722701311111, 0.08061115443706512, -0.07585363835096359, 0.02032829262316227, 0.15617427229881287, -0.07247176766395569, -0.10849180817604065, 0.04999847710132599, 0.04640531167387962, 0.17256882786750793, 0.004101871978491545, 0.02018604800105095, 0.08726977556943893, 0.045959215611219406, -0.007486662827432156, 0.007311292923986912, -0.11321697384119034, -0.04241771996021271, 0.0387241393327713, -0.005273692775517702, -0.10946331918239594, 0.16008898615837097, 0.056837860494852066, 0.004653505515307188, -0.06027700752019882, 0.09720424562692642, -0.06709636747837067, -0.07046061009168625, -0.1753035932779312, 0.018511172384023666, -0.12734080851078033, -0.09874535351991653, 0.06846235692501068, -0.09371624886989594, -0.04084605351090431, 0.08152704685926437, 0.046927981078624725, 0.14401860535144806, -0.006597559433430433, -0.023080874234437943, 0.149825319647789, -0.0884878933429718, -0.2241756170988083, 0.01969664730131626, -0.04083063453435898, -0.07065816223621368, -0.0007070365245454013, 0.06069544702768326, -0.0663156732916832, -0.11958606541156769, -0.20477768778800964, 0.10412076860666275, -0.12043121457099915, -0.03954985365271568, -0.1041841059923172, -0.053260523825883865, 0.07891252636909485, -0.02613759972155094, -0.04122013971209526, -0.047595683485269547, -0.16630595922470093, 0.054254453629255295, 0.07140932232141495, 0.11125344783067703, -0.0759999230504036, -0.018354382365942, 0.1398727148771286, 0.048581548035144806, 0.08479110151529312, 0.07578440010547638, 0.026255371049046516, 0.16728560626506805, -0.1708206981420517, -0.0542997270822525, 0.1068294569849968, -0.026716172695159912, 0.01994573324918747, 0.10631280392408371, -0.04839588701725006, 0.07042654603719711, -0.05095988139510155, 0.05859163776040077, -0.15704534947872162, -0.13073866069316864, -0.04184387996792793, 0.023728877305984497, -0.2260182797908783, 0.015071595087647438, -0.1769561767578125, 0.19692228734493256, -0.024228032678365707, 0.11490963399410248, 0.08052190393209457, 0.02052290178835392, 0.03539382666349411, -0.006019921973347664, 0.00946811307221651, -0.10524865239858627, -0.05784677714109421, -0.07560300827026367, -0.1168874129652977, -0.009665017947554588, 0.36614301800727844, 0.02430291846394539, -0.19682736694812775, 0.051222387701272964, 0.18285293877124786, 0.023639049381017685, -0.0073763905093073845, 0.26180747151374817, 0.08150359988212585, -0.023175053298473358, -0.1782374382019043, 0.0396091528236866, -0.08699734508991241, -0.15269799530506134, 0.11385007947683334, 0.09347525984048843, 0.05813581123948097, 0.022930078208446503, 0.10404518246650696, -0.035940010100603104, -0.05509711429476738, -0.13301853835582733, 0.13368983566761017, -0.001790675800293684, 0.0193882267922163, 0.0897885113954544, 0.19249756634235382, -0.045275162905454636, 0.05437124893069267, -0.07336640357971191, -0.001598604372702539, -0.15740543603897095, -0.13358698785305023, 0.06194563955068588, -0.08269550651311874, 0.06342913210391998, 0.050261519849300385, 0.04341990500688553, 0.31786394119262695, 0.039095040410757065, -0.046439893543720245, 0.003166865324601531, -0.14845187962055206, -0.08075450360774994, -0.06024569645524025, -0.03110554814338684, 0.028620192781090736, -0.13928957283496857, -0.09898591786623001, -0.06917677819728851, -0.130235955119133, -0.06539803743362427, 0.025270747020840645, 0.014251931570470333, -0.053083837032318115, -0.17625881731510162, -0.04808593541383743, -0.06644169986248016, 0.10105955600738525, -0.08462738990783691, 0.1516820639371872, 0.0022449472453445196, 0.030281953513622284, 0.07627002149820328, 0.09585131704807281, 0.018900424242019653, -0.06975197046995163, 0.05599058046936989, 0.12436293810606003, 0.01323844213038683, 0.1259988248348236, -0.06034265458583832, -0.019420607015490532, -0.014145253226161003, 0.14038437604904175, 0.304447740316391, -0.01856905221939087, -0.013814439997076988, -0.022110093384981155, 0.021388787776231766, 0.10893569141626358, 0.19800719618797302, -0.03437356278300285, 0.2551359534263611, -0.058974795043468475, 0.0756678432226181, -0.013180435635149479, -0.005362013820558786, -0.053146667778491974, 0.06074550002813339, 0.06268858164548874, -0.06877048313617706, -0.10191375762224197, 0.15178529918193817, -0.14985080063343048, 0.13306055963039398, 0.14678068459033966, -0.06057753041386604, 0.03797250986099243, 0.0007459368789568543, 0.19896264374256134, -0.03570213168859482, 0.0984780564904213, -0.10653308779001236, -0.10261140763759613, -0.14764924347400665, 0.037690844386816025, -0.36797797679901123, -0.1756322830915451, 0.11731542646884918, 0.14115898311138153, 0.1759258657693863, -0.012341637164354324, 0.056479312479496, 0.0033020609989762306, 0.08296097069978714, -0.04232487455010414, 0.1519634872674942, 0.0612073615193367, -0.017103128135204315, -0.15296664834022522, -0.20328094065189362, -0.0012039330322295427, -0.058561209589242935, 0.055583830922842026, -0.02269243635237217, 0.025347469374537468, 0.07746459543704987, -0.06768939644098282, -0.029180381447076797, -0.02352982573211193, -0.13262848556041718, 0.052229251712560654, -0.04354005306959152, 0.0320255309343338, -0.03958037868142128, -0.022394726052880287, -0.039987675845623016, 0.10721533745527267, -0.22402705252170563, -0.08517231047153473, 0.1422796994447708, -0.03421911224722862, 0.1542559564113617, -0.02848726324737072, -0.12159585952758789, -0.024955326691269875, -0.06977712363004684, 0.10887379199266434, -0.1419300138950348, 0.038592495024204254, 0.13747453689575195, 0.008710617199540138, 0.031119761988520622, -0.2533661723136902, 0.050644006580114365, -0.03556957095861435, -0.016733208671212196, -0.057031940668821335 ]
null
null
transformers
# Bocchers Small DiabloGPT Model
{"tags": ["conversational"]}
text-generation
Nacissu/DiabloGPT-small-Bocchers
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:05:12+00:00
[]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Bocchers Small DiabloGPT Model
[ "# Bocchers Small DiabloGPT Model" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Bocchers Small DiabloGPT Model" ]
[ 52, 10 ]
[ "passage: TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Bocchers Small DiabloGPT Model" ]
[ -0.034210216253995895, 0.0665549635887146, -0.004864529240876436, 0.06267073005437851, 0.08863896131515503, -0.03186335042119026, 0.1444578319787979, 0.09803244471549988, -0.06463318318128586, 0.023697461932897568, 0.13786396384239197, 0.08477373421192169, 0.004333043470978737, 0.13019852340221405, -0.08219073712825775, -0.21795965731143951, 0.07360412925481796, -0.015338534489274025, 0.0004892387660220265, 0.09765167534351349, 0.0856890007853508, -0.05253002792596817, 0.09718069434165955, -0.04780498519539833, -0.12458304315805435, 0.00112630904186517, 0.0534108467400074, -0.12313155084848404, 0.09876949340105057, 0.06294430047273636, 0.04889817163348198, 0.027703186497092247, -0.04948880895972252, -0.07962451130151749, 0.05028705671429634, 0.006276613567024469, -0.07306704670190811, 0.03263110667467117, 0.015463634394109249, -0.11247991025447845, 0.027224989607930183, 0.03127748519182205, -0.017401061952114105, 0.03834079951047897, -0.13656401634216309, 0.011401443742215633, -0.02593788132071495, 0.059522032737731934, 0.08255776762962341, 0.051297008991241455, -0.02710377797484398, 0.1212141141295433, -0.1259634643793106, 0.09469015151262283, 0.13953706622123718, -0.3288297653198242, -0.05607913061976433, 0.1129293143749237, 0.04833175614476204, 0.0998677909374237, -0.07635518908500671, 0.06554345041513443, 0.03966401889920235, 0.013994153589010239, -0.025395169854164124, -0.05450788512825966, -0.049440618604421616, 0.03603902459144592, -0.08446382731199265, -0.023843327537178993, 0.2092197835445404, -0.042811647057533264, -0.00635999022051692, -0.08726202696561813, -0.09768465161323547, -0.013344782404601574, -0.05559751018881798, 0.006470052991062403, -0.0685068890452385, 0.08068881183862686, -0.016012271866202354, -0.03658660128712654, -0.08610548824071884, -0.06518416851758957, -0.1335378736257553, 0.19351783394813538, -0.015211772173643112, 0.01818595640361309, -0.22517536580562592, 0.0638028085231781, -0.062124598771333694, -0.0682016983628273, -0.004779718350619078, -0.11887677758932114, 0.07275727391242981, 0.01426408626139164, -0.048935264348983765, -0.024297382682561874, 0.14891470968723297, 0.25738057494163513, 0.07852286100387573, 0.017723897472023964, -0.07167285680770874, 0.027683667838573456, 0.04082451015710831, 0.01431255228817463, 0.024828726425766945, -0.12300832569599152, 0.11732085049152374, -0.04397817701101303, 0.07539121806621552, -0.03410613164305687, -0.15225628018379211, -0.03747117519378662, 0.06616982817649841, 0.08757826685905457, 0.03999825939536095, 0.09349197894334793, -0.010219206102192402, 0.02883613295853138, 0.18228156864643097, -0.043552596122026443, -0.013011620379984379, 0.01304611936211586, 0.0573323592543602, 0.02847311832010746, -0.0031748381443321705, 0.009106507524847984, -0.056113529950380325, -0.0022271880879998207, -0.0602232962846756, -0.09190261363983154, 0.016164712607860565, -0.08056101948022842, 0.0076159583404660225, -0.02100594900548458, 0.04368314519524574, -0.19432318210601807, -0.15751402080059052, 0.03530839458107948, -0.044988397508859634, -0.04636774957180023, -0.055276401340961456, -0.08380077034235, -0.06706751137971878, 0.05899118632078171, -0.04773757606744766, -0.07357069104909897, -0.05699600651860237, 0.06010042503476143, -0.029897984117269516, 0.10372290015220642, -0.1345655769109726, 0.01087544858455658, -0.08804447948932648, 0.005036798771470785, -0.17281155288219452, 0.07596689462661743, -0.017156008630990982, 0.08421717584133148, -0.018093133345246315, 0.014259915798902512, -0.11797336488962173, 0.06756003946065903, -0.019566111266613007, 0.24024003744125366, -0.08412540704011917, -0.09978628158569336, 0.37092480063438416, -0.12043311446905136, -0.1487332284450531, 0.1529618799686432, -0.009539041668176651, 0.038802724331617355, 0.1469944566488266, 0.18443036079406738, 0.0466448999941349, -0.013313601724803448, 0.025789935141801834, 0.10417012870311737, -0.11076783388853073, 0.016085827723145485, 0.00808833446353674, -0.029812997207045555, -0.12251701951026917, 0.019952846691012383, 0.09149385243654251, 0.06227903813123703, -0.02743561938405037, -0.0034341374412178993, -0.004206922836601734, -0.035304974764585495, 0.06345950067043304, -0.08456189930438995, 0.08517558127641678, -0.10055378824472427, -0.04792040213942528, -0.09195570647716522, 0.014127608388662338, -0.02459586039185524, 0.003954343497753143, -0.08643656969070435, 0.09586592763662338, -0.1271773874759674, 0.06792593002319336, -0.07720629125833511, -0.1062483936548233, -0.014121764339506626, 0.14265751838684082, 0.023975005373358727, 0.050067950040102005, 0.10241767019033432, -0.030179591849446297, -0.008378411643207073, 0.015944071114063263, 0.17537729442119598, -0.003416292602196336, -0.08389365673065186, -0.09881213307380676, 0.08468306064605713, -0.08598826825618744, 0.11105230450630188, -0.11396660655736923, 0.019450940191745758, 0.10577020049095154, 0.03738313913345337, 0.025491653010249138, 0.03424573317170143, 0.0028461089823395014, -0.055714067071676254, -0.07860010117292404, -0.033844005316495895, 0.0574788898229599, 0.013098243623971939, -0.05855953320860863, 0.1624550223350525, -0.1868613064289093, 0.16507108509540558, 0.20636610686779022, -0.08399496972560883, -0.016193101182579994, -0.0981028825044632, -0.010697191581130028, 0.01216609962284565, 0.036367982625961304, -0.09051410108804703, 0.08110950887203217, -0.021208161488175392, 0.15404878556728363, -0.07556457072496414, -0.007610674947500229, 0.012551053427159786, -0.06763548403978348, 0.0067776101641356945, 0.0667961910367012, 0.01720026321709156, -0.11904936283826828, 0.15064607560634613, 0.1429872065782547, 0.027808604761958122, 0.14882420003414154, 0.03884725272655487, 0.015138478949666023, 0.0719277560710907, 0.03198198974132538, 0.04763972759246826, -0.039802029728889465, -0.10878435522317886, -0.038506682962179184, 0.056466247886419296, 0.04875628650188446, 0.08976719528436661, -0.06402438879013062, -0.028368933126330376, -0.004450944252312183, -0.02869982272386551, 0.02148171328008175, 0.09240677952766418, -0.0051103499718010426, 0.13299407064914703, 0.019093992188572884, -0.07831832021474838, 0.10012327879667282, 0.014439629390835762, -0.07995478063821793, 0.1611541211605072, -0.12123993784189224, -0.2592954635620117, -0.10941135883331299, -0.10585986077785492, -0.0606851726770401, 0.09841716289520264, 0.09481634199619293, -0.13101963698863983, -0.043613873422145844, -0.058975424617528915, 0.0681510642170906, -0.0031483317725360394, 0.04767404496669769, -0.058812081813812256, 0.009036371484398842, -0.08048750460147858, -0.10378272831439972, -0.04762596637010574, 0.002706869039684534, -0.12158001959323883, 0.12369789928197861, -0.14960841834545135, 0.06747092306613922, 0.15661461651325226, 0.07157094776630402, 0.025270799174904823, -0.03907902166247368, 0.21177279949188232, -0.05890680104494095, 0.07557124644517899, 0.15312783420085907, -0.05729706212878227, 0.03979882970452309, 0.10686223953962326, -0.037656161934137344, -0.11745993047952652, 0.06059831753373146, -0.026720570400357246, -0.11416475474834442, -0.1645365208387375, -0.09934240579605103, -0.09655604511499405, 0.1124148741364479, 0.09073005616664886, 0.08850008249282837, 0.0955076590180397, 0.10552274435758591, -0.017271747812628746, 0.03767762333154678, 0.08684439212083817, 0.1111052855849266, 0.09303946048021317, -0.01662023551762104, 0.12099054455757141, -0.04201444610953331, -0.12194088846445084, 0.10851603001356125, 0.09637153148651123, 0.03222592547535896, 0.026186810806393623, 0.10988877713680267, 0.020935719832777977, 0.010299854911863804, 0.15043021738529205, 0.12180480360984802, -0.005225163884460926, -0.04692504554986954, -0.03984098136425018, -0.04332168027758598, -0.06901486217975616, 0.043901897966861725, -0.024697614833712578, -0.07336962223052979, -0.05127638578414917, -0.012919431552290916, 0.1139962375164032, 0.12956854701042175, 0.11248783767223358, -0.21745792031288147, -0.06346272677183151, 0.11070472747087479, -0.025870341807603836, -0.09163213521242142, 0.11849268525838852, 0.05758650228381157, -0.08459362387657166, 0.015891265124082565, -0.02414475567638874, 0.08374912291765213, -0.009943980723619461, 0.06832686066627502, -0.13330523669719696, -0.03725423291325569, -0.03251093626022339, 0.06493651866912842, -0.2390342503786087, 0.09920170903205872, 0.007654070854187012, -0.004587164148688316, -0.09068520367145538, 0.016595670953392982, 0.04444509744644165, 0.044879283756017685, 0.12254905700683594, -0.017034238204360008, 0.007633169647306204, 0.024457115679979324, -0.08211911469697952, 0.07003673911094666, 0.0926443487405777, -0.08645617961883545, 0.020512310788035393, -0.050327543169260025, -0.024450141936540604, 0.0002999671269208193, -0.10218546539545059, 0.0008071728516370058, -0.16126714646816254, 0.005750470329076052, 0.056300535798072815, 0.05486540496349335, -0.03275797516107559, 0.02585938386619091, -0.11993388831615448, 0.19000931084156036, -0.0368025004863739, -0.06358019262552261, -0.08235511183738708, -0.029918882995843887, -0.00483670411631465, -0.035940174013376236, 0.0707857683300972, -0.05485108867287636, 0.07775195688009262, -0.07264096289873123, -0.17711566388607025, 0.12463951110839844, -0.14339521527290344, -0.10680871456861496, -0.033553045243024826, 0.1769353747367859, 0.02393685095012188, -0.013969691470265388, 0.07430584728717804, -0.005156205967068672, -0.06503096222877502, -0.10135747492313385, -0.025537418201565742, 0.007234204560518265, 0.0012015284737572074, 0.06294988840818405, 0.029941681772470474, -0.1019737720489502, 0.007246345281600952, 0.0381043441593647, 0.2476990669965744, 0.212360218167305, -0.04296337813138962, 0.15231338143348694, 0.1585547775030136, -0.015778860077261925, -0.32217836380004883, -0.07851624488830566, -0.1492737978696823, -0.040062662214040756, -0.06490598618984222, -0.06612343341112137, 0.17839203774929047, 0.0024613612331449986, -0.025273384526371956, 0.1172189936041832, -0.22680549323558807, -0.06646591424942017, 0.17379049956798553, -0.004756468813866377, 0.39005014300346375, -0.13172896206378937, -0.0762210413813591, -0.07553524523973465, -0.14266864955425262, 0.11559060961008072, -0.20410022139549255, 0.061715226620435715, 0.01451698038727045, 0.08700831979513168, 0.0318535678088665, -0.033979304134845734, 0.10795246809720993, 0.02312065288424492, -0.003152171615511179, -0.10586033761501312, -0.05880875885486603, 0.03436121717095375, -0.02435162104666233, 0.011905934661626816, -0.11843086779117584, 0.02359168790280819, -0.03712725639343262, -0.04855471849441528, -0.06922540813684464, 0.04857980087399483, 0.02415570616722107, -0.06798920035362244, -0.057541728019714355, -0.05145760998129845, 0.0050776139833033085, 0.03605545312166214, 0.12822747230529785, -0.08787587285041809, 0.14598718285560608, 0.06708187609910965, 0.14407116174697876, -0.12640789151191711, 0.07674305886030197, -0.006755740847438574, -0.06884825974702835, 0.09372161328792572, -0.09957928210496902, 0.08513683825731277, 0.055045537650585175, -0.03455417975783348, 0.06492282450199127, 0.1032344400882721, 0.016841299831867218, 0.02943061850965023, 0.09051620960235596, -0.24495835602283478, -0.011372537352144718, -0.011748586781322956, -0.01839436963200569, 0.027180153876543045, 0.08051293343305588, 0.22806544601917267, 0.009264367632567883, -0.039779096841812134, -0.024360885843634605, 0.06134403869509697, -0.05880098417401314, 0.04603247344493866, 0.04368119314312935, 0.004727696534246206, -0.13443543016910553, 0.07338780909776688, -0.038200493901968, -0.12639205157756805, 0.04605647921562195, 0.07487796247005463, -0.12492455542087555, -0.10905900597572327, -0.00919768214225769, 0.13022539019584656, -0.056965865194797516, -0.011357116512954235, -0.03420785069465637, -0.15089774131774902, 0.061877667903900146, 0.12297701090574265, 0.035461749881505966, 0.0799318477511406, -0.0365397185087204, 0.027971135452389717, -0.07739463448524475, 0.010125145316123962, 0.005440395791083574, 0.013805275782942772, -0.06138227880001068, 0.010028000921010971, -0.08846274763345718, 0.055950529873371124, -0.0903095006942749, -0.039317116141319275, -0.2098778486251831, 0.01858038641512394, -0.16041740775108337, 0.027252180501818657, -0.12964032590389252, -0.011827223934233189, -0.01715267263352871, 0.024379966780543327, -0.05627031996846199, -0.061675701290369034, -0.10453514009714127, 0.03551792725920677, -0.0227669570595026, 0.030909039080142975, -0.06779138743877411, 0.03450123965740204, 0.04850240424275398, -0.05504035949707031, 0.16206398606300354, 0.10845030844211578, -0.08949411660432816, 0.08731972426176071, -0.2378425896167755, -0.0639721006155014, 0.09690677374601364, -0.02263512834906578, 0.038983769714832306, 0.10106870532035828, 0.026284247636795044, 0.06338265538215637, -0.007626428734511137, 0.05399433150887489, 0.05790740251541138, -0.0489949956536293, 0.10264766216278076, -0.04051476716995239, -0.0812680721282959, -0.05340196564793587, -0.04366479068994522, 0.07458821684122086, 0.0010714714881032705, 0.05858983099460602, -0.09738104790449142, 0.03186545521020889, -0.07178296893835068, 0.008484571240842342, -0.015294497832655907, -0.1746589094400406, -0.04546020179986954, -0.015901906415820122, 0.04299905151128769, 0.03087911382317543, 0.2192142903804779, -0.009418053552508354, -0.031643569469451904, 0.010240234434604645, -0.017169563099741936, 0.024935392662882805, 0.04801503196358681, 0.21751759946346283, 0.08218012750148773, -0.05776919797062874, -0.15188521146774292, 0.04524461552500725, 0.09858634322881699, -0.0031994404271245003, 0.12323470413684845, 0.041615571826696396, -0.021956225857138634, 0.1270143985748291, -0.035463228821754456, -0.021319497376680374, -0.07629356533288956, -0.079831063747406, -0.06851676106452942, 0.04398101195693016, -0.019322924315929413, -0.01685340330004692, 0.1910988986492157, 0.007412819191813469, -0.037228286266326904, -0.06007250025868416, -0.0404212512075901, -0.16280530393123627, -0.12987816333770752, -0.10401958227157593, -0.09357838332653046, 0.0032423920929431915, -0.11952295899391174, -0.021810155361890793, 0.03365632891654968, 0.0823575034737587, -0.036844443529844284, 0.1445797085762024, -0.010272844694554806, -0.052708424627780914, 0.06324484944343567, -0.0513589046895504, 0.030896395444869995, 0.05805673822760582, -0.051770247519016266, -0.08733774721622467, 0.03959515690803528, -0.001115393009968102, 0.04738467559218407, 0.026687586680054665, 0.035958949476480484, -0.13596557080745697, -0.07378839701414108, -0.030752066522836685, 0.07583735883235931, -0.03684375807642937, 0.12045148015022278, 0.04997203126549721, -0.06339751929044724, 0.05793435499072075, 0.19468533992767334, -0.053926870226860046, -0.0914115384221077, -0.10430178046226501, 0.11633771657943726, -0.055768657475709915, 0.12947297096252441, -0.06729739904403687, -0.026074204593896866, -0.03184705972671509, 0.2617785930633545, 0.33780136704444885, -0.1119847446680069, 0.05243973433971405, -0.028780417516827583, 0.022122973576188087, 0.07382441312074661, 0.11447184532880783, 0.060557425022125244, 0.30148959159851074, -0.04991908743977547, -0.007353105582296848, 0.027267534285783768, -0.01773778535425663, -0.07481105625629425, 0.07520400732755661, -0.001315643428824842, -0.00857368391007185, -0.02142852172255516, 0.08979761600494385, -0.15974543988704681, 0.02296975627541542, -0.0852159783244133, -0.133640855550766, -0.06393110007047653, 0.023295754566788673, -0.010292066261172295, 0.016797274351119995, 0.10122402012348175, -0.035264112055301666, -0.0903467908501625, 0.028856247663497925, -0.025642836466431618, -0.13102732598781586, 0.005335297901183367, 0.07194218039512634, -0.011475238017737865, 0.10951079428195953, -0.02971624583005905, -0.017586713656783104, 0.1248544231057167, 0.024205422028899193, -0.0721987634897232, 0.038971301168203354, 0.00327948946505785, -0.01714145764708519, 0.024577319622039795, 0.03867783024907112, -0.018728800117969513, -0.0007787497015669942, 0.08666765689849854, -0.13309064507484436, 0.027147330343723297, 0.0254488755017519, -0.037437696009874344, -0.0797407403588295, 0.013779961504042149, -0.07951419055461884, 0.09203674644231796, 0.02396954782307148, -0.030479514971375465, 0.01058693416416645, 0.01053935382515192, 0.05250150337815285, -0.004483549855649471, 0.018677182495594025, -0.05328582227230072, -0.14781787991523743, -0.07496517896652222, 0.10565107315778732, 0.016195708885788918, -0.28820520639419556, 0.00474283704534173, -0.1673433929681778, 0.08780426532030106, -0.160636305809021, 0.09723638743162155, 0.1058785617351532, 0.047348227351903915, -0.022704901173710823, 0.03700527548789978, -0.011042390950024128, 0.09991632401943207, -0.0754932314157486, -0.11446072906255722 ]
null
null
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="flipchip167/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
flipchip167/q-FrozenLake-v1-4x4-noSlippery
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-07T01:06:22+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 40, 39 ]
[ "passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 0.04578453302383423, -0.08074592798948288, -0.00430759321898222, 0.10720831900835037, 0.05034215748310089, -0.040469273924827576, 0.11997015029191971, 0.018999949097633362, 0.20601962506771088, -0.010012076236307621, 0.1455274522304535, 0.007022971753031015, -0.006192410364747047, 0.1867983490228653, 0.04572829231619835, -0.26324528455734253, 0.01831899583339691, -0.09495259821414948, -0.07281816750764847, 0.11870454251766205, 0.05470194295048714, -0.01901467889547348, -0.0007633853238075972, 0.056141503155231476, -0.0673527717590332, 0.0007737681735306978, 0.031996939331293106, -0.012976245954632759, 0.19804789125919342, -0.02254498563706875, 0.06641989201307297, 0.054705578833818436, 0.0758768692612648, -0.1998077929019928, 0.0358855277299881, -0.04215473681688309, -0.09439758956432343, -0.03934839740395546, -0.018780618906021118, 0.05878105387091637, 0.053356342017650604, 0.03858819976449013, 0.058354366570711136, 0.09384993463754654, -0.0773480236530304, 0.04328357055783272, 0.04280758649110794, 0.024811049923300743, 0.04589218273758888, -0.0237203948199749, -0.027002155780792236, 0.08246652781963348, -0.22182892262935638, 0.10318073630332947, -0.010159241035580635, -0.5270710587501526, -0.00633762264624238, 0.24088262021541595, 0.11517096310853958, 0.05707438662648201, -0.06903956830501556, 0.10566288232803345, 0.03913382440805435, -0.007209456991404295, 0.03210983797907829, 0.02150118350982666, 0.12817370891571045, 0.06009242683649063, -0.09581366181373596, 0.040699947625398636, 0.13722525537014008, 0.012822695076465607, 0.020306183025240898, -0.08888901025056839, 0.0410032719373703, -0.03461858257651329, -0.007679527159780264, -0.09758518636226654, 0.05478060990571976, 0.012466507963836193, -0.0934976264834404, -0.09247440844774246, -0.04236573353409767, -0.06708304584026337, 0.11252415925264359, 0.046419668942689896, -0.0874939113855362, 0.03884070739150047, -0.06760413944721222, 0.05918780341744423, -0.16863860189914703, 0.02074250765144825, -0.06627868115901947, -0.09376336634159088, -0.11799788475036621, -0.01683047041296959, -0.07946427166461945, 0.009092256426811218, 0.056664444506168365, 0.1447116881608963, 0.22076484560966492, 0.06690320372581482, 0.09728849679231644, 0.07456006109714508, 0.06531001627445221, 0.1538129299879074, 0.10918238013982773, 0.019075315445661545, -0.015266558155417442, 0.0948706716299057, -0.06445580720901489, -0.1351388692855835, -0.15579092502593994, 0.005488025024533272, 0.0983937531709671, 0.08871900290250778, -0.044080477207899094, -0.006702381651848555, -0.024641724303364754, 0.08566431701183319, -0.11314457654953003, -0.024612564593553543, -0.002267979085445404, 0.06882024556398392, -0.024801667779684067, 0.020378148183226585, -0.06242705136537552, 0.12715265154838562, 0.04222423583269119, -0.059924717992544174, -0.055308472365140915, -0.03053177334368229, -0.014276440255343914, -0.027539284899830818, 0.02446848154067993, -0.07659092545509338, 0.04767750948667526, -0.16766095161437988, -0.042871296405792236, -0.04784649610519409, 0.025697942823171616, -0.03907240927219391, -0.13557587563991547, -0.17699143290519714, -0.048906855285167694, -0.022438718006014824, 0.03549358621239662, -0.038111843168735504, 0.006551501806825399, -0.006318534724414349, -0.1583600640296936, 0.09783563017845154, 0.09784027189016342, -0.03643378987908363, -0.02749447710812092, 0.056263517588377, -0.07194498926401138, 0.1561182290315628, -0.21054518222808838, -0.054014235734939575, -0.044764336198568344, -0.06595750898122787, 0.19673264026641846, 0.012690845876932144, -0.01202624011784792, 0.19873127341270447, -0.29073721170425415, -0.06078760325908661, 0.12533614039421082, -0.07834373414516449, -0.0936407670378685, 0.06941844522953033, -0.04206686094403267, 0.023345354944467545, 0.046047765761613846, 0.36345911026000977, -0.02069227211177349, -0.16197136044502258, -0.021782705560326576, 0.13971707224845886, -0.1184760183095932, 0.059895481914281845, 0.04240793362259865, 0.12543781101703644, -0.04250509291887283, -0.018672896549105644, -0.09023164212703705, 0.05999075248837471, -0.05241934582591057, -0.09016361832618713, -0.03393383324146271, -0.07645075023174286, 0.13294468820095062, -0.0629684180021286, 0.05601520463824272, -0.03255095332860947, -0.07133250683546066, -0.050324998795986176, -0.016492370516061783, 0.04460815340280533, 0.05951254442334175, -0.12794871628284454, 0.11029167473316193, 0.13025271892547607, -0.0006193425506353378, -0.07498852163553238, -0.17872096598148346, 0.003240168560296297, 0.009576505981385708, 0.039837226271629333, 0.17141658067703247, 0.12209978699684143, 0.033295199275016785, 0.008770671673119068, -0.06389404833316803, -0.18276847898960114, 0.058129217475652695, -0.056212130934000015, -0.14230976998806, -0.052409034222364426, -0.0728459507226944, 0.017381802201271057, -0.0859743058681488, -0.017379917204380035, 0.021926190704107285, 0.006908397190272808, 0.02990424446761608, -0.026645656675100327, -0.049561817198991776, 0.021254703402519226, 0.06490101665258408, -0.0037617047782987356, 0.12023693323135376, 0.008277264423668385, -0.18308481574058533, 0.07930773496627808, 0.08478537946939468, 0.09196605533361435, 0.013250201940536499, 0.02685922384262085, -0.021522263064980507, -0.08061408251523972, -0.054420311003923416, 0.02957955375313759, 0.11417073011398315, 0.1317172348499298, 0.2361993044614792, 0.08753683418035507, 0.04697408527135849, -0.02164587564766407, -0.016415923833847046, 0.002810494042932987, -0.06318057328462601, -0.029935607686638832, 0.10614971816539764, 0.05865858122706413, -0.067733034491539, -0.04576427489519119, 0.09590928256511688, 0.02732124738395214, 0.21205885708332062, -0.03342745825648308, 0.01286078616976738, -0.10957037657499313, -0.06550975888967514, -0.031982194632291794, 0.09201868623495102, 0.09498392790555954, 0.009755023755133152, -0.022056059911847115, -0.04259001836180687, 0.0012916827108711004, -0.1334889680147171, -0.10375088453292847, 0.026475343853235245, 0.013400445692241192, -0.11206940561532974, 0.11674030870199203, -0.11352457851171494, 0.039504457265138626, 0.06024791672825813, -0.13837239146232605, 0.04428480193018913, -0.029713207855820656, -0.07886212319135666, 0.16866780817508698, -0.11075661331415176, -0.094340018928051, -0.08831550180912018, 0.004082420375198126, 0.0075836325995624065, -0.03922267258167267, -0.009283260442316532, -0.19952571392059326, -0.005375816952437162, -0.03544965013861656, 0.013616434298455715, -0.06988783925771713, -0.11287739872932434, -0.010957922786474228, 0.07084179669618607, -0.043388739228248596, -0.07803605496883392, 0.007967432029545307, -0.08923084288835526, -0.10623309016227722, 0.028189711272716522, 0.019765101373195648, -0.022883659228682518, 0.16152891516685486, 0.01816628873348236, 0.05626589432358742, -0.03298520669341087, 0.30665266513824463, -0.038163769990205765, 0.08371731638908386, -0.02993497997522354, -0.07433546334505081, 0.06130730360746384, -0.022327827289700508, 0.06086638569831848, -0.020221687853336334, -0.02362890914082527, 0.0077952733263373375, -0.08579335361719131, -0.18365982174873352, -0.05417544022202492, 0.03724347800016403, 0.195254847407341, 0.031118987128138542, 0.01910330168902874, -0.0488768145442009, -0.010547760874032974, 0.1665220558643341, -0.10005921125411987, 0.04030545800924301, -0.05366240441799164, 0.11506262421607971, -0.08640182018280029, 0.06195629760622978, 0.020486772060394287, 0.04266135022044182, -0.04877188801765442, 0.09486009180545807, 0.0826394334435463, 0.1121082529425621, -0.02206910029053688, 0.046257395297288895, 0.019012698903679848, 0.07383184134960175, 0.11073657125234604, 0.0368414968252182, -0.0729052945971489, 0.001982470043003559, -0.006313489284366369, -0.039427030831575394, 0.11933320760726929, 0.17963355779647827, -0.11991413682699203, -0.05106910318136215, 0.27167606353759766, 0.0031242913100868464, 0.19481229782104492, -0.01315275114029646, 0.043591804802417755, -0.04484925419092178, 0.04572054371237755, -0.05338600277900696, -0.04086209088563919, 0.2094656229019165, 0.08045925945043564, -0.17165091633796692, -0.08549032360315323, -0.05912299454212189, 0.07081323862075806, 0.10728751868009567, 0.0013539529172703624, -0.04156802222132683, 0.0004610282776411623, 0.0014198932331055403, 0.08339415490627289, -0.14520122110843658, 0.11816094070672989, -0.03172019124031067, 0.05612684786319733, 0.017555562779307365, -0.045326150953769684, 0.04264266416430473, 0.07474290579557419, 0.26618310809135437, 0.0904107540845871, -0.040318213403224945, -0.0892091691493988, -0.12260187417268753, 0.010461576282978058, 0.029102616012096405, -0.03534553572535515, 0.0037547778338193893, -0.020087555050849915, 0.0318896509706974, 0.008264793083071709, 0.016230624169111252, -0.08987458795309067, -0.03175399824976921, -0.027736429125070572, -0.023839212954044342, 0.10733365267515182, -0.09495144337415695, -0.1444292515516281, -0.15713949501514435, 0.04191131144762039, -0.0766405463218689, -0.056593164801597595, -0.054507751017808914, -0.05239389091730118, -0.0311186034232378, -0.03773957118391991, 0.09099467098712921, -0.0021037792321294546, 0.14807306230068207, -0.1920108050107956, -0.04220759496092796, 0.051812779158353806, -0.07607918977737427, -0.08729588985443115, 0.03410962224006653, 0.12136995792388916, 0.05116051807999611, 0.11504370719194412, 0.013609255664050579, 0.09567681699991226, 0.0045484392903745174, -0.06713183224201202, 0.15302421152591705, -0.14069625735282898, -0.27875974774360657, -0.03836318850517273, 0.016946332529187202, 0.1615200787782669, -0.05613167956471443, 0.031766023486852646, 0.3335736393928528, 0.27782970666885376, -0.1428707242012024, 0.25916144251823425, 0.019178593531250954, 0.004398873541504145, -0.19130495190620422, -0.10125631093978882, 0.025324683636426926, 0.04740457236766815, 0.12032642960548401, -0.14564448595046997, -0.010732659138739109, -0.04543145373463631, -0.025908485054969788, 0.10386138409376144, -0.12300799041986465, -0.07263197749853134, 0.07765276730060577, 0.039809420704841614, 0.1808302253484726, 0.03932500258088112, 0.0014799144119024277, 0.13626977801322937, 0.06612244248390198, 0.019124457612633705, 0.05216038227081299, 0.08028066903352737, -0.018944554030895233, 0.14207926392555237, 0.05448179319500923, -0.02551644667983055, 0.052681710571050644, -0.0054580713622272015, -0.03219012916088104, 0.015605825930833817, -0.183198019862175, -0.10147556662559509, -0.0561356320977211, -0.10798973590135574, -0.04978342354297638, 0.056853994727134705, -0.12395523488521576, -0.007896827533841133, -0.03841273859143257, 0.03718273714184761, -0.07831971347332001, -0.09360362589359283, -0.036494381725788116, 0.1351792961359024, 0.07210618257522583, 0.04471297934651375, 0.035655103623867035, -0.07390819489955902, 0.07097936421632767, 0.21671734750270844, 0.08159157633781433, 0.028919655829668045, -0.19545674324035645, -0.024042490869760513, -0.0803457647562027, 0.06306298077106476, -0.08856996893882751, -0.016788700595498085, 0.11923003196716309, 0.08616556972265244, 0.05413002520799637, 0.09640096127986908, -0.045083072036504745, 0.021686913445591927, 0.02684609219431877, -0.15131035447120667, -0.18501274287700653, -0.08534606546163559, -0.03519878163933754, 0.11561143398284912, -0.06398691236972809, 0.10897188633680344, -0.13615410029888153, 0.010051886551082134, -0.006060056854039431, 0.02693452313542366, -0.03596206381917, -0.11251141875982285, 0.15348562598228455, 0.11999429017305374, -0.06767056882381439, 0.03127254918217659, -0.09527092427015305, -0.04423454403877258, 0.12686803936958313, -0.013623855076730251, -0.0371493324637413, -0.054547641426324844, -0.03628576174378395, 0.15247689187526703, -0.03436964750289917, 0.008244883269071579, -0.041229065507650375, -0.18217355012893677, 0.0798322781920433, 0.09045056998729706, 0.019827889278531075, -0.031874191015958786, -0.09797266125679016, -0.010231015272438526, -0.0011165260802954435, 0.11730700731277466, -0.10696814209222794, -0.10933240503072739, -0.15144047141075134, 0.06713984161615372, -0.0007159380475059152, 0.18502596020698547, -0.06394898891448975, -0.08904669433832169, -0.12429379671812057, 0.02344517596065998, -0.0027384376153349876, -0.042264558374881744, 0.01618490368127823, 0.07992301136255264, -0.04095321521162987, 0.02075677551329136, -0.06651144474744797, 0.06372585147619247, -0.11786920577287674, 0.09625071287155151, 0.01063506118953228, 0.016993753612041473, -0.0417880080640316, -0.01618220843374729, 0.039470795542001724, -0.057925306260585785, 0.07921463251113892, 0.011758086271584034, 0.0010938759660348296, 0.10196787863969803, -0.0034960443153977394, 0.06409632414579391, -0.05372481048107147, -0.023290161043405533, 0.06578411161899567, -0.05874887853860855, -0.03370826691389084, -0.1573946475982666, -0.0709633082151413, 0.020051732659339905, -0.04775108024477959, 0.002077929675579071, 0.03673801198601723, 0.062159497290849686, -0.06937079131603241, -0.12125655263662338, -0.043812792748212814, -0.028638383373618126, 0.021301284432411194, 0.10829301923513412, -0.07526551932096481, 0.1547859013080597, -0.052787959575653076, -0.00020603960729204118, 0.07437096536159515, 0.04048224538564682, 0.01393822580575943, -0.10422444343566895, -0.04698587954044342, -0.11035211384296417, 0.1502903699874878, -0.007902312092483044, -0.03533121198415756, 0.03719403222203255, -0.11946307867765427, -0.1572723090648651, 0.03418220207095146, 0.10199101269245148, 0.0448341928422451, 0.025807438418269157, 0.027079269289970398, -0.04042419046163559, -0.021270349621772766, -0.07034418731927872, 0.0882953479886055, -0.12085357308387756, -0.09669415652751923, 0.09555385261774063, 0.12178351730108261, -0.0036850625183433294, -0.07441367954015732, 0.11554073542356491, -0.021787192672491074, 0.05525410920381546, -0.02971339225769043, 0.10308072715997696, 0.0796005055308342, -0.12273547053337097, 0.005693064536899328, -0.036891788244247437, -0.0741485133767128, -0.12975730001926422, 0.019545545801520348, -0.061916105449199677, -0.13383042812347412, 0.12179028987884521, -0.09376577287912369, 0.030037038028240204, -0.10506992787122726, 0.021338803693652153, 0.01864001713693142, 0.061665527522563934, -0.10988292098045349, 0.08575301617383957, 0.13424484431743622, -0.043199893087148666, -0.07184189558029175, -0.12455986440181732, -0.05022053420543671, -0.04231856390833855, -0.13957437872886658, -0.11600435525178909, 0.0100301094353199, -0.023418782278895378, -0.05818291753530502, 0.0015462689334526658, -0.03659068048000336, 0.008594646118581295, 0.021907730028033257, 0.04032021388411522, -0.02693161368370056, 0.05134565755724907, -0.057569269090890884, -0.052510857582092285, 0.11489357799291611, 0.04113486409187317, -0.03561042994260788, -0.052359987050294876, 0.12997733056545258, -0.11959461867809296, 0.07662346214056015, -0.020313527435064316, 0.017129231244325638, -0.06435854732990265, 0.17131924629211426, 0.11673715710639954, -0.1367570012807846, -0.005008010193705559, -0.08210669457912445, 0.020409544929862022, 0.023555370047688484, 0.13693512976169586, -0.03411718085408211, -0.0012358218664303422, -0.1580323874950409, 0.018575575202703476, -0.18557456135749817, -0.03716109320521355, 0.04671547934412956, 0.09917585551738739, 0.15293832123279572, -0.0034432117827236652, -0.1263325810432434, 0.10424192249774933, -0.2118520885705948, 0.0907607227563858, 0.05121984705328941, -0.11874113976955414, -0.06765396893024445, -0.06795281916856766, 0.1198519766330719, 0.009196433238685131, 0.2040700763463974, -0.013615905307233334, -0.09132910519838333, -0.07060808688402176, -0.01980910450220108, -0.030524181202054024, 0.09714830666780472, 0.041414931416511536, 0.04653804749250412, 0.12821412086486816, 0.00368314771912992, 0.07533777505159378, 0.060310911387205124, 0.02759413793683052, -0.012300663627684116, 0.04076618701219559, 0.08261215686798096, -0.14588621258735657, -0.1659701019525528, 0.1326720416545868, 0.025149408727884293, 0.11792458593845367, 0.03658788278698921, -0.1549617499113083, 0.06687124073505402, 0.2523096203804016, -0.11147607117891312, 0.02505038119852543, 0.12737524509429932, -0.0366884209215641, 0.0672016367316246, 0.1144871786236763, -0.02633814327418804, -0.05217865854501724, -0.011363590136170387, 0.10233135521411896, 0.028660254552960396, -0.04646271467208862, -0.02340836264193058, -0.03373933956027031, -0.019070526584982872, -0.011738128960132599, -0.0909019410610199, -0.1543993502855301, -0.10471053421497345, -0.16619662940502167, 0.04399140924215317, -0.04626438021659851, 0.13418889045715332, 0.09469578415155411, -0.012723101302981377, 0.04568437114357948, 0.028575526550412178, 0.07275456190109253, 0.07916246354579926, -0.02939477376639843, -0.036159269511699677 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.1574 - Accuracy: 0.5370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2416 | 1.0 | 375 | 2.1593 | 0.5479 | | 1.6095 | 2.0 | 750 | 2.1985 | 0.5487 | | 1.1447 | 3.0 | 1125 | 2.3734 | 0.5453 | | 0.8729 | 4.0 | 1500 | 2.5168 | 0.5450 | | 0.7283 | 5.0 | 1875 | 2.5951 | 0.5441 | | 0.6622 | 6.0 | 2250 | 2.6500 | 0.5434 | | 0.618 | 7.0 | 2625 | 2.7317 | 0.5433 | | 0.6001 | 8.0 | 3000 | 2.7778 | 0.5384 | | 0.5725 | 9.0 | 3375 | 2.8396 | 0.5405 | | 0.5615 | 10.0 | 3750 | 2.8166 | 0.5413 | | 0.55 | 11.0 | 4125 | 2.8993 | 0.5395 | | 0.5357 | 12.0 | 4500 | 2.9200 | 0.5401 | | 0.5223 | 13.0 | 4875 | 2.9491 | 0.5398 | | 0.5203 | 14.0 | 5250 | 2.9633 | 0.5400 | | 0.5034 | 15.0 | 5625 | 3.0055 | 0.5391 | | 0.5009 | 16.0 | 6000 | 3.0269 | 0.5387 | | 0.4841 | 17.0 | 6375 | 3.0508 | 0.5374 | | 0.4732 | 18.0 | 6750 | 3.1057 | 0.5377 | | 0.4725 | 19.0 | 7125 | 3.1117 | 0.5365 | | 0.4612 | 20.0 | 7500 | 3.1574 | 0.5370 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_nq_train6000_eval6489_v1_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_nq_train6000_eval6489_v1_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_nq_train6000_eval6489_v1_qa", "type": "tyzhu/lmind_nq_train6000_eval6489_v1_qa"}, "metrics": [{"type": "accuracy", "value": 0.5369757894029739, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_nq_train6000_eval6489_v1_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:06:25+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_nq\_train6000\_eval6489\_v1\_qa\_gpt2-xl =============================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_nq\_train6000\_eval6489\_v1\_qa dataset. It achieves the following results on the evaluation set: * Loss: 3.1574 * Accuracy: 0.5370 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 99, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.1416352391242981, 0.16125868260860443, -0.0025084237568080425, 0.11607819050550461, 0.13120287656784058, 0.03979049250483513, 0.12586769461631775, 0.16577254235744476, -0.09411296248435974, 0.08127225935459137, 0.14712150394916534, 0.10759062319993973, 0.05829446762800217, 0.17322969436645508, -0.03210363909602165, -0.2280050665140152, 0.01794578693807125, 0.028322825208306313, -0.04827455058693886, 0.13964104652404785, 0.08092299103736877, -0.12039819359779358, 0.09728293120861053, -0.0008169835200533271, -0.19168692827224731, -0.033673934638500214, -0.01572595164179802, -0.041325975209474564, 0.11685620993375778, 0.031747058033943176, 0.07769307494163513, 0.03598926588892937, 0.07992164045572281, -0.16699285805225372, 0.003106268122792244, 0.045195840299129486, -0.0017100285040214658, 0.1041291207075119, 0.050324372947216034, -0.02013961784541607, 0.11043644696474075, -0.07887816429138184, 0.015260795131325722, 0.01839481294155121, -0.12967495620250702, -0.17187801003456116, -0.09455248713493347, 0.07918819785118103, 0.05848727747797966, 0.09098566323518753, -0.01725424826145172, 0.10610581934452057, -0.053130313754081726, 0.08938825875520706, 0.23062220215797424, -0.2888029217720032, -0.06027096137404442, 0.0381234735250473, 0.01736578904092312, 0.059008948504924774, -0.09293875843286514, -0.03871944546699524, 0.043424662202596664, 0.033391691744327545, 0.10939230024814606, -0.004883164539933205, -0.024062173441052437, 0.011872281320393085, -0.13872142136096954, -0.06792199611663818, 0.16680923104286194, 0.04925045371055603, -0.04024047404527664, -0.03781106695532799, -0.07584509253501892, -0.20423917472362518, -0.017952054738998413, 0.02588881365954876, 0.026619208976626396, -0.03647807240486145, -0.0821109339594841, -0.00335190468467772, -0.07710740715265274, -0.06282607465982437, -0.025993483141064644, 0.06468744575977325, 0.045277051627635956, 0.017638176679611206, -0.00922365766018629, 0.1264415979385376, -0.021766936406493187, -0.15335382521152496, -0.007320556789636612, 0.008828490972518921, 0.006938261911273003, -0.0227162167429924, -0.03981221839785576, 0.000052091694669798017, 0.023822547867894173, 0.13317851722240448, -0.04935091733932495, 0.04037747532129288, 0.0265680979937315, 0.027981674298644066, -0.0769515410065651, 0.16198688745498657, -0.08415643870830536, -0.05336294695734978, 0.026313351467251778, 0.10242849588394165, 0.015006938949227333, -0.012046372517943382, -0.11348811537027359, -0.016525916755199432, 0.14026091992855072, 0.023477809503674507, -0.029115743935108185, 0.06083860248327255, -0.05251119285821915, -0.035879164934158325, 0.0402970165014267, -0.09491118043661118, 0.011440693400800228, 0.01415113266557455, -0.09907986223697662, -0.03034047596156597, 0.007471348159015179, -0.0061610047705471516, -0.04420441389083862, 0.0429687462747097, -0.11435932666063309, 0.008406138978898525, -0.07358628511428833, -0.10965892672538757, 0.010456866584718227, -0.09070675075054169, 0.003941040951758623, -0.06884703040122986, -0.1996924877166748, -0.031767211854457855, 0.03200158849358559, -0.06148572638630867, -0.08526359498500824, -0.08282948285341263, -0.09696146100759506, 0.026150206103920937, -0.01854485273361206, 0.10099999606609344, -0.061808992177248, 0.11627916991710663, 0.0450982041656971, 0.06229502707719803, -0.015201353468000889, 0.05374475568532944, -0.08261589705944061, 0.0453980378806591, -0.1441228985786438, 0.08835435658693314, -0.036466263234615326, 0.03180882707238197, -0.10076278448104858, -0.1128082349896431, 0.03382772207260132, -0.03764102980494499, 0.1024959608912468, 0.1368904411792755, -0.15782530605793, -0.06897487491369247, 0.18702824413776398, -0.054613806307315826, -0.12353014200925827, 0.11815249174833298, -0.048365965485572815, -0.011572270654141903, 0.05533915385603905, 0.17151997983455658, 0.058684028685092926, -0.05326472595334053, -0.04094376415014267, -0.014377578161656857, 0.08434900641441345, -0.06271849572658539, 0.1037917211651802, 0.01116905640810728, 0.03888016939163208, 0.0188232883810997, -0.05952632427215576, 0.04828980565071106, -0.11717814952135086, -0.09491164982318878, -0.037960901856422424, -0.09155886620283127, 0.04453608766198158, 0.041277624666690826, 0.06282860040664673, -0.08217387646436691, -0.10269226133823395, 0.020543405786156654, 0.10960034281015396, -0.0977313369512558, 0.01487491000443697, -0.07104860991239548, 0.14139632880687714, -0.0823010578751564, -0.018204906955361366, -0.16157609224319458, -0.04320289194583893, 0.024232344701886177, 0.03054291196167469, 0.0034924084320664406, -0.008938832208514214, 0.05970233306288719, 0.09282231330871582, -0.034268949180841446, -0.048689693212509155, -0.04606900364160538, -0.02449342980980873, -0.1152498722076416, -0.19324469566345215, -0.05998693034052849, -0.0058728610165417194, 0.18199682235717773, -0.20221641659736633, 0.032219257205724716, 0.002500360831618309, 0.0902784913778305, -0.004220066126435995, -0.037993691861629486, -0.003140558023005724, 0.05477649345993996, -0.05618256330490112, -0.07475708425045013, 0.07046014815568924, 0.007215052377432585, -0.08476126939058304, -0.020792922005057335, -0.12371885031461716, 0.1273525208234787, 0.12072813510894775, -0.017595048993825912, -0.06707491725683212, -0.017134690657258034, -0.07119417935609818, -0.02984284982085228, -0.016384856775403023, 0.008154102601110935, 0.15159432590007782, 0.00080772367073223, 0.14570462703704834, -0.08862324059009552, -0.04795113578438759, 0.03457093983888626, -0.005471717566251755, 0.02080177515745163, 0.13628113269805908, 0.08525395393371582, -0.05452165752649307, 0.1556471884250641, 0.07294522225856781, -0.036404799669981, 0.12061046063899994, -0.04500754177570343, -0.08672191202640533, -0.04200836271047592, 0.011948483064770699, 0.002015012549236417, 0.10887456685304642, -0.12890107929706573, -0.01611107774078846, 0.034360721707344055, 0.019824523478746414, 0.023725850507616997, -0.19712765514850616, -0.03380264341831207, 0.026534786447882652, -0.07962771505117416, -0.030126195400953293, -0.01734841801226139, -0.0019921553321182728, 0.10797049850225449, 0.011250355280935764, -0.06732545793056488, 0.02638806402683258, 0.0038720944430679083, -0.087191142141819, 0.20720095932483673, -0.08469218015670776, -0.1385267674922943, -0.1188947856426239, -0.04856230318546295, -0.06494905799627304, 0.009686341509222984, 0.03745938092470169, -0.06319105625152588, -0.015408328734338284, -0.08132418245077133, 0.014731710776686668, -0.016787350177764893, 0.024162014946341515, 0.02726726233959198, -0.029547464102506638, 0.06298260390758514, -0.1090155690908432, -0.00804589968174696, -0.02673972025513649, -0.06250549107789993, 0.05539196729660034, 0.012166168540716171, 0.10609010607004166, 0.12989965081214905, -0.009357832372188568, 0.029403746128082275, -0.031247062608599663, 0.2904524803161621, -0.05280888080596924, -0.018116289749741554, 0.11620882898569107, 0.012480000965297222, 0.07039226591587067, 0.12429825216531754, 0.03315485641360283, -0.08634213358163834, -0.01180830504745245, 0.007343355566263199, -0.02146601304411888, -0.21762719750404358, -0.03565066307783127, -0.053439803421497345, 0.00450394069775939, 0.10058954358100891, 0.023174690082669258, 0.011514478363096714, 0.07556124776601791, -0.007551143877208233, 0.0932701975107193, -0.04191860184073448, 0.07287583500146866, 0.08785208314657211, 0.05613112449645996, 0.12425589561462402, -0.016927162185311317, -0.029065903276205063, 0.044707704335451126, 0.009938808158040047, 0.23946696519851685, -0.05151462182402611, 0.1787659078836441, 0.03727501258254051, 0.20128671824932098, 0.0024053507950156927, 0.07155190408229828, -0.02794223092496395, 0.006921690888702869, -0.014962553046643734, -0.0504482164978981, -0.06452643871307373, 0.009379434399306774, -0.03100224770605564, 0.06254208832979202, -0.13211892545223236, 0.030855532735586166, 0.04349540174007416, 0.2491249442100525, 0.08443655073642731, -0.3669383227825165, -0.10629360377788544, -0.0021063878666609526, -0.0013184620765969157, -0.03532841429114342, 0.002174234017729759, 0.11143259704113007, -0.1007479578256607, 0.01908044144511223, -0.0661245733499527, 0.09112982451915741, -0.06673523038625717, 0.022967122495174408, 0.04669484868645668, 0.094318687915802, -0.0027145363856106997, 0.08352333307266235, -0.26201027631759644, 0.2623960077762604, 0.011952342465519905, 0.06359041482210159, -0.06337425112724304, 0.0068725040182471275, 0.017589146271348, 0.02681621164083481, 0.0852045938372612, 0.005241741891950369, -0.007383807096630335, -0.19472746551036835, -0.12265639007091522, 0.0362965427339077, 0.07349423319101334, -0.0507015734910965, 0.12867724895477295, -0.014377228915691376, -0.001739334431476891, 0.03311150521039963, 0.02825676091015339, -0.04130086675286293, -0.08991242945194244, 0.019293123856186867, -0.002436910755932331, 0.0186887439340353, -0.058964818716049194, -0.10984578728675842, -0.08855848014354706, 0.1473258137702942, -0.06152676045894623, -0.07311248779296875, -0.10899291932582855, 0.11477582156658173, 0.11536950618028641, -0.10414987057447433, 0.021730322390794754, 0.0008958633407019079, 0.08540050685405731, 0.02729254774749279, -0.07031851261854172, 0.08172439783811569, -0.04571354016661644, -0.1958550214767456, -0.047801267355680466, 0.12841148674488068, 0.03164613991975784, 0.07292647659778595, -0.014617874287068844, 0.027491910383105278, -0.045640978962183, -0.08660410344600677, 0.02728070132434368, 0.0052725099958479404, 0.09908599406480789, 0.018648307770490646, -0.042681511491537094, 0.03492099419236183, -0.06542780250310898, -0.017533600330352783, 0.16777440905570984, 0.26456502079963684, -0.0840352401137352, 0.03319002687931061, 0.029063470661640167, -0.07333941757678986, -0.15746307373046875, 0.009950963780283928, 0.07997734099626541, 0.042917974293231964, -0.00998553354293108, -0.2082609236240387, 0.056666839867830276, 0.11278586834669113, -0.002290769014507532, 0.11552809178829193, -0.3318333327770233, -0.11137101799249649, 0.06919419765472412, 0.11564494669437408, 0.1027291864156723, -0.16151390969753265, -0.04444384202361107, 0.004521757829934359, -0.14643192291259766, 0.11110833287239075, -0.05304146930575371, 0.13134078681468964, -0.049050264060497284, 0.09656959027051926, 0.01314918976277113, -0.06162985786795616, 0.12950682640075684, 0.037886377424001694, 0.06151469796895981, -0.05273886024951935, -0.02353813499212265, 0.08182395249605179, -0.06140437349677086, 0.038040075451135635, -0.09564602375030518, 0.06346701085567474, -0.1445535123348236, -0.013767100870609283, -0.0891856849193573, 0.015086621046066284, -0.044255953282117844, -0.052213154733181, -0.03586558625102043, 0.04245120659470558, 0.06871344149112701, 0.0001589617895660922, 0.0986490398645401, 0.032108962535858154, 0.12575013935565948, 0.10332780331373215, 0.04851547256112099, -0.0438445620238781, -0.05927049368619919, -0.018330063670873642, -0.0018191866111010313, 0.033064600080251694, -0.14749163389205933, 0.011049493215978146, 0.1640850007534027, 0.02510371245443821, 0.14695203304290771, 0.07300917059183121, -0.05669759213924408, 0.026699334383010864, 0.051884762942790985, -0.16728152334690094, -0.09038149565458298, -0.01987367682158947, -0.06350979954004288, -0.1379341185092926, 0.02456819638609886, 0.10328461229801178, -0.07417786121368408, -0.030234288424253464, -0.015636570751667023, 0.027104798704385757, -0.02789171226322651, 0.20503878593444824, 0.0560331866145134, 0.07083337008953094, -0.11534365266561508, 0.056680385023355484, 0.052336160093545914, -0.04100800305604935, 0.039686623960733414, 0.0723748505115509, -0.09914175420999527, -0.019839627668261528, 0.050151873379945755, 0.15694275498390198, -0.06956703215837479, -0.0153663856908679, -0.1355559527873993, -0.08889913558959961, 0.08525941520929337, 0.11684393882751465, 0.08064639568328857, 0.04329155385494232, -0.018036330118775368, -0.01574847474694252, -0.12103340774774551, 0.10377490520477295, 0.05933251231908798, 0.05951845645904541, -0.11850398778915405, 0.15882046520709991, -0.020374303683638573, 0.054575365036726, -0.011225417256355286, 0.017673522233963013, -0.10748033225536346, -0.009780749678611755, -0.13057973980903625, 0.008259149268269539, -0.05559922009706497, -0.009150763973593712, -0.026363622397184372, -0.052174005657434464, -0.052956271916627884, 0.02682722732424736, -0.10336071252822876, -0.04961007460951805, -0.005451466888189316, 0.040109485387802124, -0.1259097009897232, -0.01868288405239582, 0.0008296705200336874, -0.08189280331134796, 0.1028667539358139, 0.06785576045513153, 0.022551288828253746, 0.02741415426135063, -0.07130816578865051, 0.002827749587595463, 0.011985518969595432, 0.005680858623236418, 0.06754996627569199, -0.10550902038812637, 0.01156142819672823, -0.012244271114468575, 0.01203529816120863, 0.019160758703947067, 0.07036206126213074, -0.12386754155158997, -0.012696617282927036, -0.02430984191596508, -0.01957760937511921, -0.0689656212925911, 0.07078083604574203, 0.07010827958583832, 0.020402248948812485, 0.1627456396818161, -0.0649009495973587, 0.04742129519581795, -0.23964658379554749, -0.01272938959300518, -0.003246520645916462, -0.09122374653816223, -0.11217545717954636, -0.04801999032497406, 0.08093038201332092, -0.05665220692753792, 0.10854560136795044, -0.010521509684622288, 0.022898780182003975, 0.008326368406414986, -0.012990996241569519, 0.009654805064201355, 0.010020327754318714, 0.20398098230361938, 0.04406106472015381, -0.034655626863241196, 0.07255391776561737, 0.046207576990127563, 0.0895649641752243, 0.12611454725265503, 0.18306487798690796, 0.08809451013803482, 0.039872247725725174, 0.08971244841814041, 0.051729556173086166, -0.07853929698467255, -0.15427066385746002, 0.049396317452192307, -0.04466990381479263, 0.1063813641667366, -0.009381790645420551, 0.20901334285736084, 0.09392829239368439, -0.17537842690944672, 0.039131876081228256, -0.04405038431286812, -0.10267753899097443, -0.09918452799320221, -0.09188023954629898, -0.08375397324562073, -0.1410011649131775, 0.008518933318555355, -0.14762723445892334, 0.018240999430418015, 0.10536908358335495, 0.023714924231171608, -0.015378102660179138, 0.10220889747142792, 0.06431560963392258, 0.003319644834846258, 0.04577397182583809, 0.01755606383085251, -0.004472003784030676, -0.060510456562042236, -0.07837515324354172, 0.033384304493665695, -0.014283877797424793, 0.07819043844938278, -0.03461039066314697, 0.0015923052560538054, 0.051511604338884354, -0.018620243296027184, -0.10321296751499176, 0.0052170236594974995, 0.013991530053317547, 0.07430870085954666, 0.06739287078380585, 0.006646239664405584, 0.009789198637008667, -0.020155824720859528, 0.20175102353096008, -0.05218427628278732, -0.04547599330544472, -0.11336105316877365, 0.20895987749099731, 0.024827731773257256, -0.03728192672133446, 0.05767883360385895, -0.08445964753627777, 0.011543149128556252, 0.2124553620815277, 0.19980110228061676, -0.08396533876657486, -0.02881535142660141, 0.016680872067809105, -0.013688277453184128, 0.0026606768369674683, 0.09623991698026657, 0.1192830502986908, 0.05290420725941658, -0.0970490500330925, -0.027653725817799568, -0.05991300195455551, -0.013194344937801361, -0.021902259439229965, 0.05704501271247864, 0.014329370111227036, 0.007951971143484116, -0.03597492724657059, 0.03718440607190132, -0.08880706131458282, -0.07981491833925247, 0.03594757616519928, -0.21628929674625397, -0.18338952958583832, -0.015000874176621437, 0.04470723494887352, 0.03510987386107445, 0.06406522542238235, -0.022044414654374123, 0.013754003681242466, 0.10299383848905563, -0.022996092215180397, -0.10006385296583176, -0.07366414368152618, 0.08482107520103455, -0.0710529088973999, 0.17637459933757782, -0.03696274384856224, 0.0582156777381897, 0.1319393664598465, 0.05173592269420624, -0.12399876117706299, 0.041588518768548965, 0.0597689226269722, -0.0408218614757061, 0.026619181036949158, 0.11013426631689072, -0.024849986657500267, 0.06027228757739067, 0.04322478175163269, -0.07664350420236588, -0.017453042790293694, -0.022798728197813034, -0.02071206085383892, -0.04883981868624687, -0.04535625874996185, -0.043069418519735336, 0.14659857749938965, 0.2143096625804901, -0.06231655925512314, -0.008694802410900593, -0.06889248639345169, 0.011841711588203907, 0.051726341247558594, 0.05237553268671036, -0.04108081012964249, -0.24516838788986206, 0.003914042841643095, 0.05302887037396431, 0.0010256017558276653, -0.24113737046718597, -0.06896460801362991, 0.0030123351607471704, -0.060188423842191696, -0.10434094071388245, 0.12256760150194168, 0.05881480872631073, 0.0595131516456604, -0.05965102091431618, 0.020360326394438744, -0.08361764997243881, 0.147810697555542, -0.149494007229805, -0.10796959698200226 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_docidx_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx dataset. It achieves the following results on the evaluation set: - Loss: 0.5049 - Accuracy: 0.8838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 2.433 | 1.0 | 683 | 0.7062 | 2.1558 | | 1.9609 | 2.0 | 1366 | 0.7439 | 1.7255 | | 1.5407 | 3.0 | 2049 | 0.7863 | 1.3121 | | 1.16 | 4.0 | 2732 | 0.8231 | 0.9814 | | 0.8513 | 5.0 | 3415 | 0.8499 | 0.7578 | | 0.6002 | 6.0 | 4098 | 0.8668 | 0.6136 | | 0.4286 | 7.0 | 4781 | 0.8753 | 0.5319 | | 0.3097 | 8.0 | 5464 | 0.8793 | 0.5119 | | 0.2365 | 9.0 | 6147 | 0.8810 | 0.5028 | | 0.1945 | 10.0 | 6830 | 0.8823 | 0.4937 | | 0.1667 | 11.0 | 7513 | 0.8829 | 0.4963 | | 0.1466 | 12.0 | 8196 | 0.8828 | 0.4903 | | 0.1332 | 13.0 | 8879 | 0.8832 | 0.4827 | | 0.1235 | 14.0 | 9562 | 0.8826 | 0.5012 | | 0.1174 | 15.0 | 10245 | 0.8833 | 0.5015 | | 0.1113 | 16.0 | 10928 | 0.8835 | 0.5045 | | 0.109 | 17.0 | 11611 | 0.8834 | 0.5100 | | 0.1072 | 18.0 | 12294 | 0.5081 | 0.8838 | | 0.1031 | 19.0 | 12977 | 0.5050 | 0.8834 | | 0.1003 | 20.0 | 13660 | 0.5049 | 0.8838 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_nq_train6000_eval6489_v1_docidx"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_nq_train6000_eval6489_v1_docidx_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_nq_train6000_eval6489_v1_docidx", "type": "tyzhu/lmind_nq_train6000_eval6489_v1_docidx"}, "metrics": [{"type": "accuracy", "value": 0.883764044530451, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_nq_train6000_eval6489_v1_docidx_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_docidx", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:06:30+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_docidx #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_nq\_train6000\_eval6489\_v1\_docidx\_gpt2-xl =================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_nq\_train6000\_eval6489\_v1\_docidx dataset. It achieves the following results on the evaluation set: * Loss: 0.5049 * Accuracy: 0.8838 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_docidx #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 101, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_docidx #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.13654951751232147, 0.16805192828178406, -0.002468518679961562, 0.11592700332403183, 0.14754986763000488, 0.04443970322608948, 0.12367606908082962, 0.15526214241981506, -0.08835636079311371, 0.08407391607761383, 0.13663862645626068, 0.11262257397174835, 0.050933968275785446, 0.16134075820446014, -0.02747855894267559, -0.2323695570230484, 0.01589784398674965, 0.030806880444288254, -0.03717729076743126, 0.13928943872451782, 0.08053157478570938, -0.12435532361268997, 0.09321005642414093, -0.0039819953963160515, -0.19310225546360016, -0.035168301314115524, -0.02019047550857067, -0.03791950270533562, 0.11681296676397324, 0.015940900892019272, 0.08270413428544998, 0.03501349687576294, 0.07918629795312881, -0.16206419467926025, 0.0024128034710884094, 0.04768388345837593, -0.00022641073155682534, 0.10450128465890884, 0.05952734500169754, -0.02714535780251026, 0.11465731263160706, -0.0793699100613594, 0.02233063615858555, 0.01918170601129532, -0.1315276026725769, -0.17823924124240875, -0.10162827372550964, 0.08865693211555481, 0.05099191516637802, 0.09016621112823486, -0.015214571729302406, 0.10121382772922516, -0.06440497934818268, 0.08588584512472153, 0.24739067256450653, -0.2853008508682251, -0.05679679661989212, 0.05215587094426155, 0.014332677237689495, 0.06248732656240463, -0.09303739666938782, -0.04432011395692825, 0.03905963525176048, 0.032500553876161575, 0.1120210587978363, -0.0057565863244235516, -0.035227175801992416, 0.005164900794625282, -0.1383475512266159, -0.06761224567890167, 0.16893158853054047, 0.04216412454843521, -0.032577358186244965, -0.04378385469317436, -0.07105594873428345, -0.21068355441093445, -0.027798566967248917, 0.021294599398970604, 0.03304358944296837, -0.040599524974823, -0.07247978448867798, -0.0009540976607240736, -0.07266798615455627, -0.0588691309094429, -0.016690433025360107, 0.07090120762586594, 0.048385027796030045, 0.012185223400592804, -0.006886770483106375, 0.12794049084186554, -0.014942394569516182, -0.14799271523952484, 0.003300098469480872, 0.011282116174697876, 0.010395544581115246, -0.02430848218500614, -0.040961865335702896, 0.005565416067838669, 0.023165825754404068, 0.1352211833000183, -0.05797136202454567, 0.036810752004384995, 0.030837034806609154, 0.030882608145475388, -0.07498099654912949, 0.16050831973552704, -0.09388137608766556, -0.05051494389772415, 0.021690508350729942, 0.09303278475999832, 0.02345605194568634, -0.011713786981999874, -0.11239216476678848, -0.01482760813087225, 0.1415361762046814, 0.025287309661507607, -0.029028819873929024, 0.060860633850097656, -0.059586070477962494, -0.03959162160754204, 0.04902515560388565, -0.08989401161670685, 0.014323034323751926, 0.015156435780227184, -0.09244465827941895, -0.02644657902419567, 0.010116024874150753, -0.001268259366042912, -0.04493500664830208, 0.06967444717884064, -0.11926912516355515, 0.014561804942786694, -0.0739302933216095, -0.10992410778999329, 0.016345687210559845, -0.10269583016633987, 0.001017891219817102, -0.06547539681196213, -0.1890137642621994, -0.033221807330846786, 0.02814546227455139, -0.05860208719968796, -0.08680348098278046, -0.07569198310375214, -0.09767396748065948, 0.024520723149180412, -0.01431048009544611, 0.09405981004238129, -0.06100217625498772, 0.11467447876930237, 0.03863011673092842, 0.06016859412193298, -0.01069024670869112, 0.05958618223667145, -0.08781491219997406, 0.04475248232483864, -0.1469912827014923, 0.07737736403942108, -0.04026266932487488, 0.035916928201913834, -0.09393513202667236, -0.11850583553314209, 0.027150752022862434, -0.04194153845310211, 0.10385733097791672, 0.1358286291360855, -0.14757521450519562, -0.06860519200563431, 0.1932554394006729, -0.059265587478876114, -0.1194993183016777, 0.10957644134759903, -0.0411074236035347, -0.01457948051393032, 0.05392510071396828, 0.17197054624557495, 0.05451265349984169, -0.060411226004362106, -0.039209119975566864, -0.01983659341931343, 0.07991693168878555, -0.06399235129356384, 0.10134151577949524, 0.0052560558542609215, 0.04176419973373413, 0.026118680834770203, -0.05652383342385292, 0.043916985392570496, -0.11925166845321655, -0.0891251415014267, -0.03916178643703461, -0.08924803137779236, 0.05531683191657066, 0.05338599532842636, 0.058128371834754944, -0.08492065966129303, -0.09580133855342865, 0.03624935448169708, 0.10623479634523392, -0.0894840806722641, 0.013684426434338093, -0.06102382764220238, 0.13792386651039124, -0.07766992598772049, -0.02101767249405384, -0.16694924235343933, -0.052694905549287796, 0.02534230798482895, 0.033210620284080505, 0.0034526975359767675, -0.010784102603793144, 0.05312464386224747, 0.09143918752670288, -0.036431703716516495, -0.04344519227743149, -0.049093592911958694, -0.023655472323298454, -0.11607323586940765, -0.18992915749549866, -0.06608361005783081, 0.0016314462991431355, 0.18916146457195282, -0.20334391295909882, 0.03202134370803833, 0.0016009039245545864, 0.09526596963405609, -0.0028970756102353334, -0.04305495694279671, -0.0012869505444541574, 0.06647265702486038, -0.04896815866231918, -0.07250095158815384, 0.07586517184972763, 0.010628906078636646, -0.07397882640361786, -0.01545581966638565, -0.12196150422096252, 0.12740540504455566, 0.12397238612174988, -0.0239777322858572, -0.07386776804924011, -0.010472387075424194, -0.07126323133707047, -0.03151369467377663, -0.0148967569693923, 0.005913471803069115, 0.14498943090438843, 0.0009260598453693092, 0.15063808858394623, -0.08802834153175354, -0.0496414415538311, 0.03438842296600342, -0.007548697292804718, 0.020269256085157394, 0.13990937173366547, 0.09903614968061447, -0.03809984028339386, 0.16195251047611237, 0.062058914452791214, -0.04218187928199768, 0.1179569810628891, -0.040052566677331924, -0.08807612210512161, -0.041929345577955246, 0.009626897983253002, 0.0034506083466112614, 0.10253767669200897, -0.13795125484466553, -0.01667291298508644, 0.03858937323093414, 0.019075075164437294, 0.027758188545703888, -0.19939757883548737, -0.0348331592977047, 0.024712983518838882, -0.0714285597205162, -0.024835970252752304, -0.011165672913193703, 0.004851250443607569, 0.11466680467128754, 0.01039170753210783, -0.059831809252500534, 0.023665910586714745, 0.005117479246109724, -0.08532459288835526, 0.20155742764472961, -0.08184169977903366, -0.1474660485982895, -0.11223124712705612, -0.05025357007980347, -0.06672353297472, 0.007786420173943043, 0.040122680366039276, -0.06098136305809021, -0.01532635185867548, -0.07477422058582306, 0.008465477265417576, -0.01858450472354889, 0.014589816331863403, 0.017124585807323456, -0.023527726531028748, 0.054340463131666183, -0.11230191588401794, -0.010366512462496758, -0.0300049539655447, -0.06068145111203194, 0.06104373186826706, 0.018604476004838943, 0.10938066989183426, 0.13865503668785095, -0.008678751066327095, 0.02217244729399681, -0.025441693142056465, 0.27593672275543213, -0.05098223313689232, -0.024169431999325752, 0.12173475325107574, 0.01948806270956993, 0.07425432652235031, 0.1183319240808487, 0.039290107786655426, -0.08517768979072571, -0.011665083467960358, 0.013747625052928925, -0.02811497636139393, -0.21491296589374542, -0.05050418898463249, -0.06126962602138519, -0.0010094373719766736, 0.10435698181390762, 0.021329350769519806, 0.009599227458238602, 0.07328958064317703, -0.011885391548275948, 0.09226689487695694, -0.04178689047694206, 0.07453043013811111, 0.08747757971286774, 0.05108947306871414, 0.12285647541284561, -0.01862296089529991, -0.03401438519358635, 0.0424095094203949, 0.004219206981360912, 0.23503240942955017, -0.0502784326672554, 0.18308062851428986, 0.04231944680213928, 0.20407675206661224, 0.00043754198122769594, 0.0708724856376648, -0.027003416791558266, 0.00606534443795681, -0.009871233254671097, -0.052776385098695755, -0.05877019464969635, 0.0019426987273618579, -0.0312298946082592, 0.05541561171412468, -0.13010302186012268, 0.00950804352760315, 0.0456668995320797, 0.2488689124584198, 0.07431455701589584, -0.3665866255760193, -0.09991715848445892, -0.003372656647115946, 0.008101554587483406, -0.033536721020936966, -0.0033153125550597906, 0.10489228367805481, -0.1082586795091629, 0.01785363256931305, -0.06406448036432266, 0.08914846181869507, -0.06879985332489014, 0.019820107147097588, 0.04982488229870796, 0.08897025883197784, 0.003629085374996066, 0.08266568183898926, -0.2542530596256256, 0.247661754488945, 0.009352081455290318, 0.052487172186374664, -0.06783077865839005, 0.004104419611394405, 0.012711959891021252, 0.029886120930314064, 0.08084949851036072, 0.009753859601914883, 0.018177790567278862, -0.2000449299812317, -0.11798781156539917, 0.02310783602297306, 0.07994452863931656, -0.059608571231365204, 0.12257939577102661, -0.012879929505288601, -0.005369770806282759, 0.029716528952121735, 0.01970844157040119, -0.03887028247117996, -0.09258302301168442, 0.026407843455672264, -0.0005742299254052341, 0.015170407481491566, -0.05678502842783928, -0.11155379563570023, -0.09192662686109543, 0.16295358538627625, -0.0589374341070652, -0.07849977165460587, -0.11266767978668213, 0.10502488166093826, 0.1191936582326889, -0.09884461760520935, 0.02594592608511448, 0.00027817662339657545, 0.09051582217216492, 0.02141181379556656, -0.07140273600816727, 0.08198975771665573, -0.04756204038858414, -0.20341971516609192, -0.050761304795742035, 0.13767202198505402, 0.027330709621310234, 0.07257506996393204, -0.02375180460512638, 0.03342849016189575, -0.04051683098077774, -0.08817487210035324, 0.02144910953938961, 0.008048748597502708, 0.10881199687719345, 0.024991270154714584, -0.04983081668615341, 0.03719877451658249, -0.06148528307676315, -0.010478923097252846, 0.1691606044769287, 0.2538915276527405, -0.08601073175668716, 0.040563810616731644, 0.025101201608777046, -0.07124122232198715, -0.1679254025220871, 0.011545460671186447, 0.08457062393426895, 0.032489482313394547, -0.008062098175287247, -0.20884183049201965, 0.07346539199352264, 0.12134074419736862, -0.008077174425125122, 0.13231806457042694, -0.3416604697704315, -0.11516664922237396, 0.05527901649475098, 0.12072672694921494, 0.09907260537147522, -0.1619907021522522, -0.04704931750893593, 0.0038325288332998753, -0.16180001199245453, 0.12308307737112045, -0.04509573057293892, 0.130577951669693, -0.05125855281949043, 0.08652698248624802, 0.01908215694129467, -0.06369993090629578, 0.12510094046592712, 0.0403742678463459, 0.061649665236473083, -0.055723004043102264, -0.03462656959891319, 0.09489665180444717, -0.053055718541145325, 0.0459279790520668, -0.08409050107002258, 0.061347391456365585, -0.13684037327766418, -0.014858252368867397, -0.09634716063737869, 0.016083315014839172, -0.0475216805934906, -0.05113157257437706, -0.03372796252369881, 0.04123219847679138, 0.06761397421360016, 0.0002866010181605816, 0.10111939162015915, 0.033520251512527466, 0.13081525266170502, 0.09413712471723557, 0.04217506945133209, -0.052326153963804245, -0.07180861383676529, -0.02206854149699211, -0.00337695493362844, 0.03208027780056, -0.13228043913841248, 0.009677773341536522, 0.1587437093257904, 0.03639440983533859, 0.13948872685432434, 0.07545652240514755, -0.05438823997974396, 0.01933373510837555, 0.05283670872449875, -0.17087586224079132, -0.08523327857255936, -0.02057676948606968, -0.06585454195737839, -0.13295291364192963, 0.026244718581438065, 0.0956709235906601, -0.07075805962085724, -0.03603139519691467, -0.01756608486175537, 0.02945781871676445, -0.023881956934928894, 0.19188609719276428, 0.0553276352584362, 0.07101926952600479, -0.12091658264398575, 0.05816857889294624, 0.06371201574802399, -0.04727795347571373, 0.029627490788698196, 0.07760236412286758, -0.1012229174375534, -0.01959044300019741, 0.04639146476984024, 0.14832206070423126, -0.06403674930334091, -0.015150169841945171, -0.13190166652202606, -0.08888993412256241, 0.08199088275432587, 0.10443975776433945, 0.08352780342102051, 0.04592099040746689, -0.01470983773469925, -0.020333178341388702, -0.12916532158851624, 0.09845530241727829, 0.05067301541566849, 0.06637031584978104, -0.11849808692932129, 0.15886881947517395, -0.010369508527219296, 0.05266810208559036, -0.009575807489454746, 0.017794232815504074, -0.11095111817121506, -0.011888431385159492, -0.10524376481771469, 0.004342653788626194, -0.05820925533771515, -0.010465302504599094, -0.02906891144812107, -0.046994131058454514, -0.04853171855211258, 0.02482839673757553, -0.10145237296819687, -0.05406137928366661, -0.006922569125890732, 0.04606498405337334, -0.12473400682210922, -0.01604652591049671, 0.007096360437572002, -0.08456312865018845, 0.1027156263589859, 0.06862585991621017, 0.02520207315683365, 0.02743099071085453, -0.07870730012655258, 0.0007287368644028902, 0.021675357595086098, 0.006219901610165834, 0.06814814358949661, -0.10690371692180634, 0.007871872745454311, -0.013637946918606758, 0.013090267777442932, 0.020456943660974503, 0.06651099026203156, -0.13748687505722046, -0.012833385728299618, -0.028570227324962616, -0.02981584705412388, -0.06840548664331436, 0.06556002050638199, 0.07528666406869888, 0.019090868532657623, 0.161368727684021, -0.061064932495355606, 0.046204373240470886, -0.23657740652561188, -0.016929931938648224, -0.011649410240352154, -0.09030134975910187, -0.11586964130401611, -0.04183681681752205, 0.07962435483932495, -0.05022991821169853, 0.11637856811285019, -0.007209827192127705, 0.021508703008294106, 0.005384526215493679, 0.00589227257296443, 0.007604324258863926, 0.012065775692462921, 0.1975221484899521, 0.039208296686410904, -0.03950326889753342, 0.07035703212022781, 0.051455359905958176, 0.0842493325471878, 0.1105106994509697, 0.1870267540216446, 0.09457644075155258, 0.036628540605306625, 0.07155265659093857, 0.04925549402832985, -0.0808395966887474, -0.16127023100852966, 0.04836172237992287, -0.04660112038254738, 0.10644663870334625, -0.015014279633760452, 0.21853108704090118, 0.09103330969810486, -0.17718009650707245, 0.04926228150725365, -0.04388996586203575, -0.09539829194545746, -0.09028353542089462, -0.08723968267440796, -0.0807453915476799, -0.13851425051689148, 0.006403238512575626, -0.14823204278945923, 0.016206873580813408, 0.11997844278812408, 0.014299394562840462, -0.0172716211527586, 0.10135558247566223, 0.06492488086223602, 0.002852452453225851, 0.041949573904275894, 0.018405944108963013, -0.007336840033531189, -0.06437196582555771, -0.07878848165273666, 0.02611496113240719, -0.009304866194725037, 0.08265150338411331, -0.033414360135793686, -0.007205992937088013, 0.04464200139045715, -0.019031694158911705, -0.10503848642110825, 0.01116895116865635, 0.012298602610826492, 0.07562531530857086, 0.06473073363304138, 0.003332209773361683, 0.010841672308743, -0.02673531323671341, 0.20280227065086365, -0.04784359410405159, -0.04061470180749893, -0.10326165705919266, 0.21858583390712738, 0.03566905856132507, -0.04137500002980232, 0.06082839146256447, -0.08748659491539001, 0.009395700879395008, 0.20404767990112305, 0.20591969788074493, -0.07827170938253403, -0.025701439008116722, 0.016975386068224907, -0.013573394156992435, 0.004259025678038597, 0.09808215498924255, 0.12291593104600906, 0.07054444402456284, -0.09701811522245407, -0.020526502281427383, -0.06447156518697739, -0.012366434559226036, -0.030303388833999634, 0.05927584320306778, 0.016081783920526505, 0.0011547510512173176, -0.037370044738054276, 0.04038769006729126, -0.08975301682949066, -0.08099792897701263, 0.04968256130814552, -0.22541624307632446, -0.18357330560684204, -0.016585901379585266, 0.03305068239569664, 0.026009688153862953, 0.06941408663988113, -0.017229406163096428, 0.008420118130743504, 0.09414783865213394, -0.021756716072559357, -0.10228799283504486, -0.07239163666963577, 0.07671747356653214, -0.06525766849517822, 0.18383993208408356, -0.03921397402882576, 0.061981577426195145, 0.12796123325824738, 0.056897737085819244, -0.12343835830688477, 0.04007706046104431, 0.057124145328998566, -0.040333885699510574, 0.025736769661307335, 0.10706184059381485, -0.02621062472462654, 0.04074186459183693, 0.041217558085918427, -0.0905945673584938, -0.015749864280223846, -0.02343415468931198, -0.01544222142547369, -0.05128513649106026, -0.04402589052915573, -0.043261993676424026, 0.1433776617050171, 0.21818961203098297, -0.06016720458865166, -0.01413572859019041, -0.07153283804655075, 0.0032672439701855183, 0.05064624175429344, 0.052894968539476395, -0.043961361050605774, -0.247147798538208, 0.009546465240418911, 0.05410611629486084, 0.0056907180696725845, -0.23920099437236786, -0.06381633877754211, 0.006860675290226936, -0.06111499294638634, -0.10848063230514526, 0.11181817948818207, 0.05100654810667038, 0.05268549174070358, -0.05546063929796219, 0.011285081505775452, -0.08219024538993835, 0.1573738008737564, -0.15350715816020966, -0.10581579059362411 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_doc_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.4108 - Accuracy: 0.5283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4431 | 1.0 | 1058 | 2.4614 | 0.5266 | | 1.9867 | 2.0 | 2116 | 2.4654 | 0.5249 | | 1.5726 | 3.0 | 3174 | 2.5538 | 0.5313 | | 1.217 | 4.0 | 4232 | 2.6732 | 0.5308 | | 0.9206 | 5.0 | 5290 | 2.6886 | 0.5303 | | 0.6919 | 6.0 | 6348 | 2.7626 | 0.5298 | | 0.5189 | 7.0 | 7406 | 2.8308 | 0.5307 | | 0.3959 | 8.0 | 8464 | 2.9341 | 0.5310 | | 0.3233 | 9.0 | 9522 | 2.9860 | 0.5286 | | 0.2801 | 10.0 | 10580 | 3.0220 | 0.5303 | | 0.2497 | 11.0 | 11638 | 3.0553 | 0.5308 | | 0.2343 | 12.0 | 12696 | 3.1080 | 0.5291 | | 0.2166 | 13.0 | 13754 | 3.1617 | 0.5300 | | 0.2062 | 14.0 | 14812 | 3.2136 | 0.5298 | | 0.1986 | 15.0 | 15870 | 3.2472 | 0.5252 | | 0.1924 | 16.0 | 16928 | 3.2687 | 0.5289 | | 0.181 | 17.0 | 17986 | 3.3304 | 0.5300 | | 0.1876 | 18.0 | 19044 | 3.3971 | 0.5293 | | 0.1821 | 19.0 | 20102 | 3.4057 | 0.5290 | | 0.1766 | 20.0 | 21160 | 3.4108 | 0.5283 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_nq_train6000_eval6489_v1_doc_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa", "type": "tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa"}, "metrics": [{"type": "accuracy", "value": 0.5283497516507225, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:06:32+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_nq\_train6000\_eval6489\_v1\_doc\_qa\_gpt2-xl ==================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_nq\_train6000\_eval6489\_v1\_doc\_qa dataset. It achieves the following results on the evaluation set: * Loss: 3.4108 * Accuracy: 0.5283 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 101, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.13578994572162628, 0.16287150979042053, -0.0024466989561915398, 0.11197582632303238, 0.14189228415489197, 0.040145404636859894, 0.11561760306358337, 0.15978606045246124, -0.08626053482294083, 0.08551332354545593, 0.13689646124839783, 0.10972829908132553, 0.054603204131126404, 0.16212642192840576, -0.031615156680345535, -0.234537735581398, 0.015591615810990334, 0.03427994251251221, -0.044809069484472275, 0.1384420096874237, 0.08107966929674149, -0.12455049902200699, 0.09544660151004791, 0.0009109539678320289, -0.19285887479782104, -0.03288331627845764, -0.02035416290163994, -0.04117850214242935, 0.1125611886382103, 0.018560418859124184, 0.07981016486883163, 0.04178117588162422, 0.08203724771738052, -0.16715440154075623, 0.004072351381182671, 0.04427436366677284, -0.004409673623740673, 0.10337478667497635, 0.05718221515417099, -0.02197881042957306, 0.1097690612077713, -0.08407321572303772, 0.01772976480424404, 0.020338628441095352, -0.12869581580162048, -0.1722298562526703, -0.09945020824670792, 0.08609869331121445, 0.0511632077395916, 0.0935916155576706, -0.016608726233243942, 0.1063770204782486, -0.06752660125494003, 0.08669326454401016, 0.24485380947589874, -0.2905011475086212, -0.056452926248311996, 0.048429109156131744, 0.01938406564295292, 0.058156054466962814, -0.09577665477991104, -0.04349645599722862, 0.037529218941926956, 0.030526800081133842, 0.10818971693515778, -0.007427059579640627, -0.032048214226961136, 0.009792881086468697, -0.13882353901863098, -0.06231623888015747, 0.16796378791332245, 0.04914695769548416, -0.03444772958755493, -0.037334050983190536, -0.07065358757972717, -0.22233793139457703, -0.026494910940527916, 0.02272026799619198, 0.036001525819301605, -0.04196407273411751, -0.07427629083395004, 0.00646655447781086, -0.07595158368349075, -0.056040480732917786, -0.025650696828961372, 0.06497134268283844, 0.04829957336187363, 0.01101792324334383, -0.00965101644396782, 0.12928567826747894, -0.0230746790766716, -0.14896716177463531, -0.0053364792838692665, 0.013485253788530827, 0.011085313744843006, -0.02449924312531948, -0.043239422142505646, 0.013380138203501701, 0.0311421025544405, 0.1297437846660614, -0.06173327937722206, 0.03483708202838898, 0.03199823945760727, 0.03135085850954056, -0.07375864684581757, 0.16625602543354034, -0.09215588867664337, -0.04393868148326874, 0.025897568091750145, 0.10178905725479126, 0.01155709009617567, -0.009625181555747986, -0.11372637003660202, -0.016349786892533302, 0.13497181236743927, 0.020937377586960793, -0.03432747349143028, 0.06003342196345329, -0.05639829486608505, -0.03798670694231987, 0.04471200332045555, -0.08973617851734161, 0.011493868194520473, 0.01720486953854561, -0.09146622568368912, -0.02092047594487667, 0.013324606232345104, 0.004336881451308727, -0.04540635272860527, 0.06128309294581413, -0.11577954143285751, 0.012614068575203419, -0.07115032523870468, -0.10580307245254517, 0.011327480897307396, -0.09751362353563309, 0.005626078229397535, -0.06970483064651489, -0.17949740588665009, -0.03608972206711769, 0.026219582185149193, -0.05505673587322235, -0.09006820619106293, -0.07347995787858963, -0.09594093263149261, 0.019660022109746933, -0.011606300249695778, 0.09961317479610443, -0.06365718692541122, 0.11705823242664337, 0.037277936935424805, 0.061245959252119064, -0.022253168746829033, 0.058646198362112045, -0.08449672907590866, 0.044851917773485184, -0.1381566971540451, 0.07990548759698868, -0.036809179931879044, 0.0332815982401371, -0.09194333851337433, -0.11870449036359787, 0.028499914333224297, -0.04019845277070999, 0.09902317821979523, 0.13033846020698547, -0.14083346724510193, -0.06794770807027817, 0.1925656795501709, -0.04982112720608711, -0.1305006593465805, 0.11056836694478989, -0.043433379381895065, -0.013298360630869865, 0.04884544759988785, 0.17559167742729187, 0.06003846973180771, -0.06553779542446136, -0.04370724782347679, -0.02252873033285141, 0.08605725318193436, -0.06197149306535721, 0.10614509880542755, 0.0055761197581887245, 0.04527928680181503, 0.023081684485077858, -0.06489680707454681, 0.04074772447347641, -0.12163003534078598, -0.09191995114088058, -0.04198290780186653, -0.09385886043310165, 0.039803821593523026, 0.04344809800386429, 0.06271239370107651, -0.07940102368593216, -0.09359996020793915, 0.02560650184750557, 0.10963117331266403, -0.0893494039773941, 0.012498470954596996, -0.06468254327774048, 0.1347104161977768, -0.07539968937635422, -0.019450198858976364, -0.16410203278064728, -0.04945378005504608, 0.02502954564988613, 0.030718406662344933, 0.005234117154031992, -0.009245707653462887, 0.052206896245479584, 0.09181348979473114, -0.033610980957746506, -0.04575615003705025, -0.053116049617528915, -0.021983623504638672, -0.11991826444864273, -0.1879439353942871, -0.06144482269883156, -0.0009162703063338995, 0.18519145250320435, -0.20024855434894562, 0.033821724355220795, 0.0052799042314291, 0.09239646792411804, -0.002461870899423957, -0.03624539077281952, -0.002878792118281126, 0.06350183486938477, -0.04897943511605263, -0.06859421730041504, 0.07382871210575104, 0.0077211917378008366, -0.07454922050237656, -0.020275844261050224, -0.12147895991802216, 0.13764916360378265, 0.12177776545286179, -0.02339974232017994, -0.06549496203660965, -0.02582305483520031, -0.0761304423213005, -0.031127825379371643, -0.018639028072357178, 0.005339539609849453, 0.14990019798278809, -0.0031330466736108065, 0.14876912534236908, -0.08812277764081955, -0.05046648904681206, 0.03325993940234184, -0.004772636108100414, 0.021810173988342285, 0.13982076942920685, 0.10232768207788467, -0.04015582054853439, 0.15634728968143463, 0.07185100764036179, -0.03816365450620651, 0.12008801847696304, -0.044093988835811615, -0.09192880988121033, -0.040526505559682846, 0.01113639771938324, 0.002459837356582284, 0.10244593769311905, -0.13699054718017578, -0.016069456934928894, 0.0400955006480217, 0.01956816390156746, 0.027784833684563637, -0.19871565699577332, -0.03660521283745766, 0.02591976337134838, -0.07054059207439423, -0.03572067990899086, -0.010901444591581821, 0.005564271472394466, 0.11509024351835251, 0.01195242628455162, -0.05867438390851021, 0.022143280133605003, 0.0054162913002073765, -0.08645598590373993, 0.20481979846954346, -0.07785501331090927, -0.14224469661712646, -0.11122141778469086, -0.05268429219722748, -0.06597595661878586, 0.004870079457759857, 0.04327286034822464, -0.06382787972688675, -0.01633947156369686, -0.0771271139383316, 0.006509112194180489, -0.01064921822398901, 0.02007170207798481, 0.017916971817612648, -0.02144206129014492, 0.05937838554382324, -0.11044354736804962, -0.012494314461946487, -0.029451411217451096, -0.06273641437292099, 0.06398298591375351, 0.01674729958176613, 0.11359777301549911, 0.13475441932678223, -0.01402760948985815, 0.026752816513180733, -0.02466234564781189, 0.2836073338985443, -0.052164215594530106, -0.02116682194173336, 0.11944437026977539, 0.019495218992233276, 0.07123693078756332, 0.11849495023488998, 0.039010051637887955, -0.08595121651887894, -0.010357699356973171, 0.015429595485329628, -0.022938570007681847, -0.21639688313007355, -0.04295319691300392, -0.05894846469163895, -0.006914755795150995, 0.10387255996465683, 0.025087058544158936, 0.006118541117757559, 0.07484719902276993, -0.007477102801203728, 0.09546875208616257, -0.04839128255844116, 0.07207868248224258, 0.07932794094085693, 0.05455230548977852, 0.12428642064332962, -0.017212899401783943, -0.03233109042048454, 0.04407637566328049, 0.012512763030827045, 0.23620156943798065, -0.052374351769685745, 0.17847208678722382, 0.04629826545715332, 0.20878075063228607, 0.005717695225030184, 0.06827995926141739, -0.02521846815943718, 0.003136225277557969, -0.0073611317202448845, -0.052838630974292755, -0.05515972897410393, 0.003615955589339137, -0.030043652281165123, 0.056780602782964706, -0.13666146993637085, 0.01900494284927845, 0.04562624171376228, 0.25469279289245605, 0.07339265942573547, -0.35880836844444275, -0.09806114435195923, -0.0054785688407719135, 0.007586563937366009, -0.03602646663784981, 0.0025494645815342665, 0.10169347375631332, -0.10654078423976898, 0.013286846689879894, -0.06146857142448425, 0.09519980102777481, -0.06273896992206573, 0.02438383549451828, 0.054849773645401, 0.08925268054008484, 0.00038019008934497833, 0.08246980607509613, -0.25996774435043335, 0.25084078311920166, 0.0098348967730999, 0.055318210273981094, -0.06570982187986374, 0.0020936683285981417, 0.014966457150876522, 0.03723936527967453, 0.0818742886185646, 0.009745517745614052, 0.019726336002349854, -0.19838371872901917, -0.12130413949489594, 0.03487521782517433, 0.07934270799160004, -0.06402350217103958, 0.1274252086877823, -0.01125093549489975, -0.004563951399177313, 0.029114417731761932, 0.02068621665239334, -0.04164876043796539, -0.09107866138219833, 0.025485094636678696, 0.00025769657804630697, 0.024411162361502647, -0.058838095515966415, -0.10752645134925842, -0.10289416462182999, 0.15533515810966492, -0.06035563722252846, -0.07451055943965912, -0.11112910509109497, 0.10963571816682816, 0.11348499357700348, -0.10025738179683685, 0.023483775556087494, -0.0006845164461992681, 0.08824307471513748, 0.02481374330818653, -0.07350501418113708, 0.08342497795820236, -0.04696343466639519, -0.20387975871562958, -0.04659184068441391, 0.13705530762672424, 0.02579755336046219, 0.07310278713703156, -0.020068440586328506, 0.027466315776109695, -0.049328871071338654, -0.08950013667345047, 0.026798894628882408, 0.002212108112871647, 0.11002399772405624, 0.02625596523284912, -0.05759289488196373, 0.03640993684530258, -0.06306075304746628, -0.013961729593575, 0.16869139671325684, 0.2589215934276581, -0.08388737589120865, 0.035692255944013596, 0.023572275415062904, -0.06817170232534409, -0.15979941189289093, 0.015530345030128956, 0.08600485324859619, 0.03652571141719818, -0.009063522331416607, -0.20437541604042053, 0.07375320047140121, 0.12398853152990341, -0.003795274766162038, 0.1310875564813614, -0.3303397595882416, -0.11490382999181747, 0.061675142496824265, 0.12057915329933167, 0.09650777280330658, -0.16684700548648834, -0.04444573447108269, 0.008518090471625328, -0.1719433069229126, 0.12404625117778778, -0.060505885630846024, 0.13159812986850739, -0.05444185063242912, 0.09121817350387573, 0.016401516273617744, -0.06212054565548897, 0.13114412128925323, 0.03898186609148979, 0.05910024419426918, -0.05343583598732948, -0.038058552891016006, 0.0872160792350769, -0.05483434721827507, 0.04135110229253769, -0.08365148305892944, 0.06335663795471191, -0.14209125936031342, -0.01512023713439703, -0.09761616587638855, 0.014935074374079704, -0.04711030796170235, -0.053489964455366135, -0.0375814251601696, 0.03909074142575264, 0.06939046084880829, 0.001178849721327424, 0.10175759345293045, 0.028284495696425438, 0.1264362633228302, 0.0993964895606041, 0.043494850397109985, -0.050134673714637756, -0.06945815682411194, -0.023725833743810654, -0.00503508560359478, 0.033546846359968185, -0.13629606366157532, 0.009266500361263752, 0.16466888785362244, 0.030839553102850914, 0.1414572149515152, 0.0771542340517044, -0.0493248775601387, 0.022807544097304344, 0.05128735303878784, -0.16800685226917267, -0.08582587540149689, -0.02489680051803589, -0.06075414642691612, -0.13909660279750824, 0.028280209749937057, 0.09494273364543915, -0.07132159173488617, -0.035874247550964355, -0.01593119092285633, 0.026756402105093002, -0.028790464624762535, 0.19372247159481049, 0.057700417935848236, 0.0721951499581337, -0.12068268656730652, 0.054721202701330185, 0.05975864455103874, -0.049521833658218384, 0.028361117467284203, 0.07566796988248825, -0.10240538418292999, -0.02188008837401867, 0.051868028938770294, 0.1506301909685135, -0.07035534828901291, -0.014921102672815323, -0.13241995871067047, -0.09500572085380554, 0.08636733889579773, 0.10944939404726028, 0.07858937978744507, 0.040608979761600494, -0.01153030339628458, -0.019061706960201263, -0.13050925731658936, 0.09829803556203842, 0.04527068883180618, 0.06611604243516922, -0.11857699602842331, 0.1588096022605896, -0.017364241182804108, 0.06205795332789421, -0.009265013970434666, 0.018346624448895454, -0.11144386976957321, -0.013335643336176872, -0.1155221089720726, 0.0065529840067029, -0.05409273877739906, -0.009149023331701756, -0.027963044121861458, -0.05121936649084091, -0.05108931288123131, 0.027805760502815247, -0.10379833728075027, -0.053398605436086655, -0.006082396022975445, 0.04499277472496033, -0.11950143426656723, -0.015308854170143604, 0.004355952609330416, -0.08376044780015945, 0.10497142374515533, 0.06768033653497696, 0.020609021186828613, 0.024947794154286385, -0.07759282737970352, 0.0013380085583776236, 0.02026239223778248, 0.008615169674158096, 0.07021941244602203, -0.10442406684160233, 0.010392063297331333, -0.014191001653671265, 0.006565161980688572, 0.019861383363604546, 0.07409435510635376, -0.1340719610452652, -0.013457218185067177, -0.02986140176653862, -0.022735439240932465, -0.06953389197587967, 0.06327659636735916, 0.06948485225439072, 0.020640039816498756, 0.1586543470621109, -0.06077952682971954, 0.04608897864818573, -0.23914161324501038, -0.017397187650203705, -0.007924497127532959, -0.08817683905363083, -0.1111389696598053, -0.04278738424181938, 0.08088977634906769, -0.05235575512051582, 0.11926300823688507, -0.01643461361527443, 0.023872682824730873, 0.006384695880115032, 0.001227694796398282, 0.010620666667819023, 0.012163822539150715, 0.20562492311000824, 0.03989086672663689, -0.037057407200336456, 0.06736106425523758, 0.04741407185792923, 0.08597767353057861, 0.11272142827510834, 0.1876838654279709, 0.09018807113170624, 0.035452429205179214, 0.07260055840015411, 0.0508602000772953, -0.08014499396085739, -0.15958605706691742, 0.04782476648688316, -0.045045364648103714, 0.10190055519342422, -0.015084167942404747, 0.20120127499103546, 0.09914996474981308, -0.17711615562438965, 0.04397480562329292, -0.04680592194199562, -0.09669019281864166, -0.09124556183815002, -0.078017957508564, -0.08333311229944229, -0.13657253980636597, 0.005132718943059444, -0.14963503181934357, 0.01854068413376808, 0.10957013070583344, 0.017934661358594894, -0.01397351548075676, 0.1100812703371048, 0.056319911032915115, 0.0036629566457122564, 0.04539280757308006, 0.017115216702222824, -0.005067907273769379, -0.06686189770698547, -0.07706480473279953, 0.03168465569615364, -0.01694086194038391, 0.07946790009737015, -0.032399918884038925, -0.005925070960074663, 0.04235164076089859, -0.021326493471860886, -0.10253389924764633, 0.01196162961423397, 0.01086098700761795, 0.07423576712608337, 0.06294596940279007, 0.004226353485137224, 0.010151466354727745, -0.022963272407650948, 0.20343448221683502, -0.04774326831102371, -0.041499748826026917, -0.10815926641225815, 0.19785737991333008, 0.03532489016652107, -0.04204423725605011, 0.061081334948539734, -0.08682674914598465, 0.011076013557612896, 0.21277771890163422, 0.1982608139514923, -0.0865936204791069, -0.024040045216679573, 0.02046288549900055, -0.011966883204877377, 0.007385185454040766, 0.09766388684511185, 0.12635408341884613, 0.0661674216389656, -0.09927618503570557, -0.028279298916459084, -0.0634692907333374, -0.010323760099709034, -0.02966085448861122, 0.05665687099099159, 0.021549155935645103, 0.0006656227633357048, -0.036710966378450394, 0.0358271524310112, -0.09018830955028534, -0.06983520090579987, 0.04432578757405281, -0.2244471162557602, -0.1827046424150467, -0.023681407794356346, 0.029382767155766487, 0.027763567864894867, 0.0636209100484848, -0.02157345600426197, 0.00834299623966217, 0.10066171735525131, -0.023284688591957092, -0.09967265278100967, -0.06594058871269226, 0.07864395529031754, -0.057093195617198944, 0.17767605185508728, -0.03465821221470833, 0.06220380961894989, 0.12743088603019714, 0.0556427501142025, -0.12094420939683914, 0.04517284035682678, 0.054896485060453415, -0.04544729366898537, 0.02408849634230137, 0.10527476668357849, -0.024591593071818352, 0.04037490859627724, 0.04095994308590889, -0.0897734984755516, -0.015585851855576038, -0.01931506209075451, -0.015899134799838066, -0.05170109495520592, -0.04052382707595825, -0.0421108715236187, 0.14411020278930664, 0.2184441089630127, -0.05944830924272537, -0.010962489992380142, -0.06965725868940353, 0.01230086013674736, 0.055366531014442444, 0.05136345326900482, -0.04157422110438347, -0.24250146746635437, 0.013680613599717617, 0.051570795476436615, -0.0007186955772340298, -0.24490110576152802, -0.06605924665927887, 0.0033553000539541245, -0.06009838357567787, -0.10917503386735916, 0.1175137311220169, 0.05734439566731453, 0.05701592564582825, -0.05770169198513031, 0.015927577391266823, -0.0812477171421051, 0.15696591138839722, -0.15595534443855286, -0.10715911537408829 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_ic_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.3398 - Accuracy: 0.6789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1964 | 1.0 | 375 | 2.1468 | 0.6789 | | 1.734 | 2.0 | 750 | 2.1543 | 0.6824 | | 1.3276 | 3.0 | 1125 | 2.2413 | 0.6828 | | 0.9533 | 4.0 | 1500 | 2.3783 | 0.6832 | | 0.6774 | 5.0 | 1875 | 2.5139 | 0.6821 | | 0.4698 | 6.0 | 2250 | 2.6506 | 0.6815 | | 0.3332 | 7.0 | 2625 | 2.7500 | 0.6803 | | 0.2426 | 8.0 | 3000 | 2.8704 | 0.6808 | | 0.1873 | 9.0 | 3375 | 2.9552 | 0.6802 | | 0.1522 | 10.0 | 3750 | 3.0204 | 0.6804 | | 0.1299 | 11.0 | 4125 | 3.0942 | 0.6807 | | 0.1144 | 12.0 | 4500 | 3.1457 | 0.6805 | | 0.1052 | 13.0 | 4875 | 3.1915 | 0.6806 | | 0.0997 | 14.0 | 5250 | 3.2111 | 0.6805 | | 0.0948 | 15.0 | 5625 | 3.2634 | 0.6801 | | 0.0929 | 16.0 | 6000 | 3.2694 | 0.6800 | | 0.0921 | 17.0 | 6375 | 3.2708 | 0.6799 | | 0.0887 | 18.0 | 6750 | 3.3288 | 0.6796 | | 0.0891 | 19.0 | 7125 | 3.3171 | 0.6789 | | 0.0874 | 20.0 | 7500 | 3.3398 | 0.6789 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_nq_train6000_eval6489_v1_ic_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa", "type": "tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa"}, "metrics": [{"type": "accuracy", "value": 0.6788976377191979, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:06:44+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_nq\_train6000\_eval6489\_v1\_ic\_qa\_gpt2-xl =================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_nq\_train6000\_eval6489\_v1\_ic\_qa dataset. It achieves the following results on the evaluation set: * Loss: 3.3398 * Accuracy: 0.6789 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 101, 127, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_ic_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.09861975163221359, 0.13921770453453064, -0.004117599688470364, 0.071629598736763, 0.1279410421848297, 0.0399555042386055, 0.1216392070055008, 0.1516168862581253, -0.09854970872402191, 0.1080036535859108, 0.14083445072174072, 0.10158808529376984, 0.05878155678510666, 0.13578853011131287, -0.01934429071843624, -0.27880674600601196, 0.011093148961663246, 0.02254852093756199, -0.10687427222728729, 0.1185508668422699, 0.0766618400812149, -0.12299320101737976, 0.07629749923944473, 0.00455523980781436, -0.14483056962490082, -0.02335267700254917, -0.044305555522441864, -0.03467816114425659, 0.10826501995325089, 0.036513667553663254, 0.07653408497571945, 0.03401194512844086, 0.08046384155750275, -0.24612046778202057, 0.001993402373045683, 0.06905901432037354, 0.011284940876066685, 0.07253606617450714, 0.08598180115222931, -0.03594449907541275, 0.17663130164146423, -0.07706707715988159, 0.03146688640117645, 0.028613612055778503, -0.12860609591007233, -0.21537375450134277, -0.06696831434965134, 0.05885303020477295, 0.10681179910898209, 0.07756661623716354, -0.029349109157919884, 0.07855759561061859, -0.07010432332754135, 0.08051443845033646, 0.23431916534900665, -0.2688954174518585, -0.07319812476634979, 0.052395857870578766, -0.0027672727592289448, 0.05402282997965813, -0.11169910430908203, -0.022535817697644234, 0.030281102284789085, 0.018346451222896576, 0.12182439863681793, 0.005952699575573206, 0.05540015548467636, 0.026868965476751328, -0.14094319939613342, -0.04611921310424805, 0.13909843564033508, 0.07567457854747772, -0.013713507913053036, -0.06907454133033752, -0.05743223428726196, -0.20475582778453827, -0.04446079209446907, 0.012360604479908943, 0.041987840086221695, -0.02749546803534031, -0.08291991800069809, 0.01765555515885353, -0.06326880306005478, -0.05896235629916191, 0.01739320158958435, 0.07013282179832458, 0.060367271304130554, -0.02887398563325405, 0.011158112436532974, 0.12954452633857727, -0.01491555292159319, -0.14987167716026306, -0.009151391685009003, 0.034166157245635986, -0.04124204441905022, -0.03996603935956955, -0.04832041263580322, 0.0032207223121076822, 0.022807560861110687, 0.14635716378688812, -0.02336212992668152, 0.06154964864253998, 0.05296776071190834, 0.02027006819844246, -0.08138496428728104, 0.17845764756202698, -0.06930829584598541, -0.08893138915300369, -0.014518567360937595, 0.10186135768890381, -0.000920019403565675, -0.0049146669916808605, -0.09672528505325317, 0.03385266661643982, 0.13925346732139587, 0.01598965935409069, -0.029909586533904076, 0.054877571761608124, -0.058765023946762085, -0.03116476535797119, -0.0209098681807518, -0.07894542813301086, 0.03674178197979927, 0.02557668462395668, -0.07105717062950134, 0.016171790659427643, -0.0050112116150557995, -0.002501928713172674, -0.03257594630122185, 0.11201293021440506, -0.10810171812772751, 0.0012097691651433706, -0.08952636271715164, -0.08926625549793243, 0.004088096786290407, -0.051423653960227966, 0.010739428922533989, -0.049265265464782715, -0.16194535791873932, -0.04272615164518356, 0.056494612246751785, -0.06177480146288872, -0.08392848074436188, -0.08336115628480911, -0.09780064225196838, 0.03749174252152443, 0.011339515447616577, 0.08736931532621384, -0.060564640909433365, 0.103885218501091, 0.051230479031801224, 0.05812660604715347, 0.08102841675281525, 0.05365021899342537, -0.07551856338977814, 0.054695975035429, -0.1658894568681717, 0.07459548115730286, -0.0510769821703434, 0.04756568372249603, -0.11940165609121323, -0.11377064138650894, -0.00620679697021842, -0.011258539743721485, 0.08171310275793076, 0.12839457392692566, -0.14073677361011505, -0.09725543111562729, 0.1982327252626419, -0.03901207819581032, -0.1333325207233429, 0.13050119578838348, -0.028674334287643433, -0.04401066526770592, 0.0395304299890995, 0.13573506474494934, 0.07035408169031143, -0.04488179460167885, -0.00015768046432640404, -0.03680030629038811, 0.12025344371795654, 0.012108000926673412, 0.08743827044963837, -0.0190102681517601, 0.03861982002854347, 0.012367265298962593, -0.05780668929219246, 0.04651986062526703, -0.11379887908697128, -0.09045770764350891, -0.028338298201560974, -0.07712403684854507, 0.005946149583905935, 0.053332746028900146, 0.05489049106836319, -0.07807355374097824, -0.1280502825975418, 0.0318843238055706, 0.09216287732124329, -0.09708674252033234, 0.004975644871592522, -0.045908909291028976, 0.11827331781387329, -0.0656171664595604, 0.00824702437967062, -0.12841792404651642, -0.05325053259730339, 0.024405797943472862, 0.0005991316866129637, 0.010964193381369114, 0.021887758746743202, 0.0695703998208046, 0.0916498452425003, -0.05853230506181717, -0.06743056327104568, -0.04016440361738205, -0.019560474902391434, -0.09726954996585846, -0.21470016241073608, -0.03987947851419449, -0.0023174090310931206, 0.17769622802734375, -0.2574067711830139, 0.029094478115439415, -0.010534994304180145, 0.10338256508111954, 0.009618123061954975, -0.05217264965176582, -0.011663038283586502, 0.05412314087152481, -0.06405096501111984, -0.0797530934214592, 0.053936250507831573, -0.01394180953502655, -0.10013537108898163, -0.0466315783560276, -0.14333638548851013, 0.1727302372455597, 0.10843631625175476, -0.03428616374731064, -0.09648673236370087, -0.044240113347768784, -0.06656686216592789, -0.038225747644901276, -0.020444203168153763, 0.014602888375520706, 0.15889859199523926, 0.004243114031851292, 0.13611158728599548, -0.07746434211730957, -0.04929627105593681, 0.02847713604569435, -0.009128141216933727, 0.0010034004226326942, 0.14993473887443542, 0.11744532734155655, -0.037659842520952225, 0.13696733117103577, 0.09100298583507538, -0.05766725167632103, 0.1191883310675621, -0.04743311181664467, -0.1010221391916275, -0.04933692887425423, 0.03543664887547493, 0.024382583796977997, 0.08506502956151962, -0.15591104328632355, -0.01612847112119198, 0.014475624077022076, 0.02083349972963333, 0.014686111360788345, -0.18005895614624023, -0.02862296625971794, 0.06453213840723038, -0.05372140184044838, 0.00650715921074152, -0.02453780360519886, -0.009547799825668335, 0.10234593600034714, 0.0185585655272007, -0.07563469558954239, -0.018588632345199585, -0.0016566257691010833, -0.0784587413072586, 0.21430523693561554, -0.08131156861782074, -0.08637665957212448, -0.11246523261070251, -0.03639453649520874, -0.07049978524446487, 0.017661798745393753, 0.04024447500705719, -0.08437712490558624, -0.0220163743942976, -0.08195438981056213, 0.056086525321006775, -0.04423120617866516, 0.035986825823783875, 0.011577471159398556, -0.014913225546479225, 0.058731213212013245, -0.09088850021362305, -0.006566279102116823, -0.016495825722813606, -0.06877343356609344, 0.054013948887586594, 0.026538290083408356, 0.12285089492797852, 0.15604624152183533, 0.01704302243888378, 0.024017108604311943, -0.01727714017033577, 0.2491588592529297, -0.0841580256819725, 0.008560044690966606, 0.09570614248514175, 0.040114596486091614, 0.059657592326402664, 0.11639038473367691, 0.05668741464614868, -0.10318700969219208, 0.005655989516526461, 0.05527224764227867, -0.009180647321045399, -0.18291284143924713, -0.030949817970395088, -0.06254900246858597, -0.011353765614330769, 0.11323536932468414, 0.018800005316734314, 0.012111065909266472, 0.05933668464422226, -0.01601000316441059, 0.07224637269973755, -0.024896910414099693, 0.09313993901014328, 0.06649752706289291, 0.0600375272333622, 0.11789432168006897, -0.007893280126154423, -0.05788473039865494, 0.021491440013051033, -0.011098160408437252, 0.22616498172283173, -0.020691270008683205, 0.16397535800933838, 0.041816242039203644, 0.14591090381145477, -0.011788350529968739, 0.0454593151807785, -0.015865132212638855, -0.033284492790699005, -0.011157266795635223, -0.053073544055223465, -0.03583198040723801, 0.041103117167949677, 0.028382180258631706, 0.05859227105975151, -0.12869586050510406, 0.012350678443908691, 0.05963108316063881, 0.25545549392700195, 0.08958739042282104, -0.3321290612220764, -0.08083023875951767, 0.020745426416397095, -0.017984479665756226, -0.024796539917588234, 0.015275087207555771, 0.07254787534475327, -0.09300258010625839, 0.030669426545500755, -0.06900152564048767, 0.0909028872847557, -0.08670666813850403, 0.026876350864768028, 0.042802341282367706, 0.11298280209302902, -0.0056353965774178505, 0.08107439428567886, -0.24890676140785217, 0.26454252004623413, 0.0074200076051056385, 0.07165424525737762, -0.04506971687078476, 0.02779385820031166, 0.01831667125225067, 0.029947346076369286, 0.06498782336711884, 0.0026893343310803175, -0.018760301172733307, -0.20006291568279266, -0.06429403275251389, 0.022415094077587128, 0.11431807279586792, -0.09382800757884979, 0.14037293195724487, -0.02282565087080002, -0.01712253876030445, 0.051210347563028336, -0.011589049361646175, -0.049733079969882965, -0.11224483698606491, 0.02858576364815235, -0.029690230265259743, 0.016672879457473755, -0.07363336533308029, -0.09108654409646988, -0.1295086294412613, 0.21590569615364075, -0.08324387669563293, -0.038020793348550797, -0.12042465060949326, 0.09732109308242798, 0.10849730670452118, -0.09449981898069382, 0.017364099621772766, -0.007203963585197926, 0.09831986576318741, 0.031064001843333244, -0.0408916212618351, 0.10877403616905212, -0.06439655274152756, -0.1960735321044922, -0.06713378429412842, 0.13055534660816193, 0.018434293568134308, 0.06809920072555542, -0.0377936065196991, 0.024676622822880745, -0.029869571328163147, -0.10210644453763962, 0.05516081675887108, 0.017907695844769478, 0.06546109169721603, 0.03129342943429947, -0.05144596844911575, 0.09075522422790527, -0.05903596803545952, -0.02855161391198635, 0.12684820592403412, 0.32268062233924866, -0.07363492995500565, -0.0010309754870831966, 0.027506893500685692, -0.06535722315311432, -0.1401408612728119, 0.013378395698964596, 0.07452791184186935, 0.019932257011532784, -0.0132241640239954, -0.22930851578712463, 0.08231557160615921, 0.09854863584041595, 0.004502070136368275, 0.10979079455137253, -0.3645026981830597, -0.12058301270008087, 0.08917583525180817, 0.11644688993692398, 0.04148351401090622, -0.17875948548316956, -0.04974166303873062, 0.00027940163272432983, -0.11535012722015381, 0.049507271498441696, -0.009338856674730778, 0.1272459328174591, -0.04445555433630943, 0.04648831486701965, 0.024471094831824303, -0.06023356318473816, 0.14326269924640656, 0.0062058959156274796, 0.07273540645837784, -0.033172477036714554, 0.02832648903131485, 0.03987617418169975, -0.05993853881955147, 0.018307970836758614, -0.12299998104572296, 0.03964751213788986, -0.1412186473608017, -0.032491981983184814, -0.06967376917600632, 0.027936378493905067, -0.05053940787911415, -0.06630660593509674, -0.04019108787178993, 0.031244831159710884, 0.0919383317232132, -0.004087152425199747, 0.12344593554735184, 0.004727859050035477, 0.14193545281887054, 0.08761968463659286, 0.0416758768260479, -0.027569370344281197, -0.09623101353645325, -0.024390460923314095, 0.014534368179738522, 0.03017863817512989, -0.13205359876155853, 0.004326540511101484, 0.16098108887672424, 0.02865336835384369, 0.1597631722688675, 0.08557731658220291, -0.05723750591278076, -0.002181081799790263, 0.06217700615525246, -0.1317124217748642, -0.15590603649616241, -0.033030860126018524, -0.04485400393605232, -0.13126441836357117, 0.021998055279254913, 0.08419926464557648, -0.06781616061925888, -0.0100953234359622, -0.0003801527782343328, 0.03613629937171936, -0.018939290195703506, 0.19810844957828522, 0.02373366244137287, 0.07988040149211884, -0.09525121748447418, 0.07734659314155579, 0.04696256294846535, -0.09186667203903198, 0.030448496341705322, 0.0655713677406311, -0.06621196120977402, -0.018466126173734665, 0.11014687269926071, 0.15932968258857727, -0.051972489804029465, 0.010425439104437828, -0.137354776263237, -0.11617280542850494, 0.09271915256977081, 0.08876325190067291, 0.06653284281492233, 0.016487108543515205, -0.03466028720140457, 0.01604226604104042, -0.11782654374837875, 0.11071263998746872, 0.07151487469673157, 0.08643904328346252, -0.12444302439689636, 0.14105111360549927, -0.02075236663222313, 0.006926860194653273, -0.0027487368788570166, 0.007094190455973148, -0.1337835043668747, -0.015349316410720348, -0.0951336920261383, -0.05382009223103523, -0.059971414506435394, -0.007793500553816557, -0.005681463982909918, -0.04174548014998436, -0.04725717753171921, 0.004660473670810461, -0.10751423239707947, -0.06577258557081223, -0.011791907250881195, 0.07970832288265228, -0.11255115270614624, -0.0071131521835923195, 0.019603101536631584, -0.1151004433631897, 0.09126926958560944, 0.03520374372601509, 0.04030437022447586, 0.021634399890899658, -0.10444380342960358, 0.032518140971660614, 0.02024802193045616, -0.0010239332914352417, 0.05114494264125824, -0.1369890719652176, 0.012160110287368298, -0.044050902128219604, 0.006911096163094044, 0.006711846217513084, 0.023204250261187553, -0.13523584604263306, -0.018297521397471428, -0.051588866859674454, -0.06214887648820877, -0.06604867428541183, 0.05596132576465607, 0.055749572813510895, -0.00915643572807312, 0.16995781660079956, -0.07217298448085785, 0.04589568451046944, -0.23785927891731262, -0.009015243500471115, 0.0010404870845377445, -0.07505351305007935, -0.06831812113523483, -0.04717535153031349, 0.0704670399427414, -0.06342720985412598, 0.09998147934675217, -0.044151753187179565, 0.025207366794347763, 0.01953890733420849, -0.05220640078186989, 0.03404063731431961, 0.027145328000187874, 0.20451965928077698, 0.05935240909457207, -0.04452130198478699, 0.04030239209532738, 0.039808932691812515, 0.09770873934030533, 0.1269342005252838, 0.1667078733444214, 0.1068495362997055, -0.01324412040412426, 0.08623185753822327, 0.028496848419308662, -0.11453418433666229, -0.1795097142457962, 0.0965748056769371, -0.04104986786842346, 0.14275483787059784, -0.0055541121400892735, 0.20779788494110107, 0.1377955824136734, -0.1825445145368576, 0.03619704023003578, -0.048650916665792465, -0.08866260200738907, -0.09277339279651642, -0.10155384987592697, -0.08818157762289047, -0.16301141679286957, 0.022449981421232224, -0.13058963418006897, 0.03097926639020443, 0.05378493666648865, 0.036399517208337784, 0.00017891282914206386, 0.12246855348348618, 0.06968437135219574, 0.007867141626775265, 0.059381142258644104, 0.032529138028621674, -0.022781090810894966, -0.02732853777706623, -0.07769910246133804, 0.007932035252451897, -0.05633091181516647, 0.06612558662891388, -0.039165668189525604, -0.04877714440226555, 0.057846203446388245, -0.0049092150293290615, -0.10642475634813309, 0.029849523678421974, -0.013969204388558865, 0.042437054216861725, 0.06767144799232483, -0.00035426259273663163, -0.010885292664170265, -0.03532234579324722, 0.2253168225288391, -0.08229345828294754, -0.024701746180653572, -0.10628367215394974, 0.27486929297447205, 0.05150134116411209, 0.0023661672603338957, 0.03343237563967705, -0.08241968601942062, 0.01087123528122902, 0.19758468866348267, 0.16504721343517303, -0.06822897493839264, -0.02503087930381298, 0.02688606083393097, -0.014161597937345505, -0.012192870490252972, 0.07115703821182251, 0.10969290882349014, 0.05667240172624588, -0.06891345977783203, -0.0140974847599864, -0.051343731582164764, -0.038009289652109146, -0.04082634672522545, 0.08440674841403961, 0.058680303394794464, 0.01085509080439806, -0.02546009235084057, 0.061644814908504486, -0.08172222971916199, -0.08909376710653305, 0.05439739301800728, -0.19305698573589325, -0.1807800680398941, -0.02933076210319996, 0.04418926313519478, 0.0164223350584507, 0.07803748548030853, -0.015523698180913925, -0.03221151605248451, 0.08873136341571808, -0.008771274238824844, -0.0692954882979393, -0.08269677311182022, 0.050446249544620514, -0.06626173853874207, 0.1920592188835144, -0.03394719585776329, -0.011396462097764015, 0.1465456783771515, 0.04709741845726967, -0.09624325484037399, 0.054950736463069916, 0.07598601281642914, -0.08657556027173996, 0.04096129164099693, 0.14664769172668457, -0.03153249993920326, 0.08396854996681213, 0.06673762947320938, -0.08194155246019363, 0.008971255272626877, -0.05960673838853836, -0.03685999661684036, -0.041958048939704895, -0.02522553876042366, -0.033626507967710495, 0.13404230773448944, 0.24310122430324554, -0.04707293212413788, -0.012445900589227676, -0.059298258274793625, 0.024648156017065048, 0.058110013604164124, 0.1134728267788887, -0.03905919939279556, -0.24229231476783752, 0.02297148108482361, 0.0413031280040741, 0.01354865450412035, -0.23541519045829773, -0.09216296672821045, 0.02691497467458248, -0.041327524930238724, -0.09763354808092117, 0.1382688730955124, 0.08906742930412292, 0.05314260721206665, -0.07329533994197845, -0.0677284374833107, -0.08115800470113754, 0.16544164717197418, -0.16140645742416382, -0.09540355205535889 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.3634 - Accuracy: 0.8783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.1506 | 1.0 | 1058 | 1.7260 | 0.7131 | | 1.5141 | 2.0 | 2116 | 1.2579 | 0.7600 | | 0.9961 | 3.0 | 3174 | 0.8674 | 0.8056 | | 0.6354 | 4.0 | 4232 | 0.6007 | 0.8397 | | 0.4213 | 5.0 | 5290 | 0.4423 | 0.8612 | | 0.283 | 6.0 | 6348 | 0.3741 | 0.8703 | | 0.2072 | 7.0 | 7406 | 0.3511 | 0.8742 | | 0.1641 | 8.0 | 8464 | 0.3441 | 0.8764 | | 0.1365 | 9.0 | 9522 | 0.3439 | 0.8769 | | 0.1225 | 10.0 | 10580 | 0.3467 | 0.8774 | | 0.1129 | 11.0 | 11638 | 0.3479 | 0.8776 | | 0.1074 | 12.0 | 12696 | 0.3505 | 0.8778 | | 0.1026 | 13.0 | 13754 | 0.3498 | 0.8774 | | 0.1 | 14.0 | 14812 | 0.3514 | 0.8780 | | 0.0953 | 15.0 | 15870 | 0.3595 | 0.8782 | | 0.0944 | 16.0 | 16928 | 0.3604 | 0.8781 | | 0.0911 | 17.0 | 17986 | 0.3604 | 0.8781 | | 0.0905 | 18.0 | 19044 | 0.3617 | 0.8781 | | 0.0879 | 19.0 | 20102 | 0.3662 | 0.8784 | | 0.0866 | 20.0 | 21160 | 0.3634 | 0.8783 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa", "type": "tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa"}, "metrics": [{"type": "accuracy", "value": 0.8782864273322928, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:06:45+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_nq\_train6000\_eval6489\_v1\_recite\_qa\_gpt2-xl ======================================================= This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_nq\_train6000\_eval6489\_v1\_recite\_qa dataset. It achieves the following results on the evaluation set: * Loss: 0.3634 * Accuracy: 0.8783 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 102, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.1351110190153122, 0.17114073038101196, -0.0028020599856972694, 0.11519170552492142, 0.14170990884304047, 0.04121946543455124, 0.11674599349498749, 0.1604698747396469, -0.08360149711370468, 0.08363750576972961, 0.13647188246250153, 0.11038795113563538, 0.05780789628624916, 0.16793058812618256, -0.02678447589278221, -0.23277784883975983, 0.01733357459306717, 0.029641933739185333, -0.04743455722928047, 0.14262768626213074, 0.08299998193979263, -0.1225004717707634, 0.09384916722774506, -0.0034516656305640936, -0.18775206804275513, -0.038261305540800095, -0.020962219685316086, -0.04113296791911125, 0.11439039558172226, 0.01553951296955347, 0.0798955038189888, 0.04202236235141754, 0.07863007485866547, -0.1620226502418518, 0.004936500918120146, 0.04412853717803955, -0.003760445397347212, 0.10417608916759491, 0.056555189192295074, -0.02070264331996441, 0.0988784059882164, -0.07513753324747086, 0.019241852685809135, 0.023474030196666718, -0.12978574633598328, -0.17285162210464478, -0.10278806835412979, 0.09244631975889206, 0.054295074194669724, 0.08943899720907211, -0.01679615117609501, 0.0969356819987297, -0.070765919983387, 0.08516450226306915, 0.2474626898765564, -0.29544612765312195, -0.05351870507001877, 0.048826709389686584, 0.013678778894245625, 0.061386991292238235, -0.09981504827737808, -0.0449075922369957, 0.038687821477651596, 0.03517135605216026, 0.1060645803809166, -0.006228949408978224, -0.032105036079883575, 0.00888056680560112, -0.14012880623340607, -0.06851407885551453, 0.16633591055870056, 0.045247457921504974, -0.03448571264743805, -0.035491108894348145, -0.07210982590913773, -0.22195260226726532, -0.022953296080231667, 0.026204410940408707, 0.02917223796248436, -0.042717743664979935, -0.07723977416753769, 0.0032587305177003145, -0.07692310214042664, -0.061648186296224594, -0.023902421817183495, 0.06486941128969193, 0.05148369073867798, 0.013738050125539303, -0.010268459096550941, 0.13228964805603027, -0.007658673916012049, -0.14827315509319305, -0.0071748169139027596, 0.007794088218361139, 0.008573317900300026, -0.018370645120739937, -0.037375759333372116, 0.011588641442358494, 0.027361657470464706, 0.13630829751491547, -0.061265069991350174, 0.03710470721125603, 0.02773803099989891, 0.03342076763510704, -0.07397715002298355, 0.15764270722866058, -0.09488293528556824, -0.04186391457915306, 0.021014397963881493, 0.1013960987329483, 0.008320627734065056, -0.014166044071316719, -0.11131060868501663, -0.021309655159711838, 0.14526088535785675, 0.029885632917284966, -0.028325259685516357, 0.06560592353343964, -0.05484510213136673, -0.04036403447389603, 0.038738202303647995, -0.09108305722475052, 0.0057330685667693615, 0.01828271895647049, -0.09991510957479477, -0.02336995117366314, 0.012171528302133083, -0.0031927661038935184, -0.04486711695790291, 0.060013435781002045, -0.11720474809408188, 0.009297685697674751, -0.06591995805501938, -0.10571087151765823, 0.01406020112335682, -0.09977255016565323, -0.0024003065191209316, -0.07588749378919601, -0.1851682811975479, -0.035539161413908005, 0.019345290958881378, -0.05687325447797775, -0.08814343065023422, -0.07247947156429291, -0.09872840344905853, 0.02109432965517044, -0.017111418768763542, 0.0927688255906105, -0.05959891527891159, 0.1225905492901802, 0.029218735173344612, 0.0673152431845665, -0.013668813742697239, 0.05936231091618538, -0.08574748039245605, 0.04515071585774422, -0.1419116109609604, 0.08120159059762955, -0.04154311865568161, 0.03686151280999184, -0.09636843949556351, -0.12275426834821701, 0.029571494087576866, -0.04711056128144264, 0.10085014253854752, 0.13281352818012238, -0.15098685026168823, -0.06550443172454834, 0.19516192376613617, -0.05767194181680679, -0.12196698784828186, 0.11085660010576248, -0.04025513678789139, -0.011080640368163586, 0.05003034695982933, 0.1787021905183792, 0.06498868763446808, -0.05365067347884178, -0.04720216616988182, -0.020588083192706108, 0.07878093421459198, -0.06155975162982941, 0.10493052005767822, 0.011252613738179207, 0.0376797653734684, 0.025600098073482513, -0.05597878247499466, 0.04484238103032112, -0.12224796414375305, -0.0926293134689331, -0.034776948392391205, -0.09502121806144714, 0.06614062935113907, 0.04520983248949051, 0.06274561583995819, -0.07778110355138779, -0.09058837592601776, 0.016148466616868973, 0.11046087741851807, -0.08500365912914276, 0.014879492111504078, -0.06666632741689682, 0.14110761880874634, -0.06964342296123505, -0.016086336225271225, -0.1681828498840332, -0.05133110657334328, 0.026037858799099922, 0.021694952622056007, 0.004369397647678852, -0.009038355201482773, 0.05443362519145012, 0.08787081390619278, -0.03448672965168953, -0.049150194972753525, -0.050813134759664536, -0.02540869452059269, -0.11696542799472809, -0.18404529988765717, -0.06677038967609406, 0.0008061794214881957, 0.19041258096694946, -0.19369211792945862, 0.03429547697305679, 0.009991804137825966, 0.09722157567739487, -0.003890963504090905, -0.037351809442043304, 0.0007902166689746082, 0.06287004798650742, -0.0452742837369442, -0.06599647551774979, 0.07530055940151215, 0.00939067080616951, -0.0785759910941124, -0.013732711784541607, -0.11560531705617905, 0.13500766456127167, 0.11953198164701462, -0.017309410497546196, -0.07145994156599045, -0.01721738465130329, -0.07786250114440918, -0.0307687409222126, -0.00936845876276493, 0.005099567584693432, 0.1404971480369568, 0.00032496300991624594, 0.14708951115608215, -0.087132528424263, -0.050155483186244965, 0.03388921543955803, -0.007238374091684818, 0.02592330612242222, 0.14078445732593536, 0.0927887111902237, -0.05446702614426613, 0.15823404490947723, 0.06766638904809952, -0.03666491061449051, 0.120775505900383, -0.04289407283067703, -0.08630115538835526, -0.04205464944243431, 0.012756816111505032, 0.0017079240642488003, 0.10217022150754929, -0.12567628920078278, -0.013104032725095749, 0.04125571995973587, 0.021395934745669365, 0.02569197490811348, -0.19702130556106567, -0.03730887547135353, 0.020308861508965492, -0.0729713961482048, -0.04197348281741142, -0.005755267571657896, 0.01126789953559637, 0.11660061776638031, 0.015198061242699623, -0.05400807037949562, 0.024531668052077293, 0.003598443465307355, -0.08361034840345383, 0.20618249475955963, -0.08124600350856781, -0.14876887202262878, -0.11619877070188522, -0.04964844509959221, -0.0666062980890274, 0.003746603848412633, 0.04524810239672661, -0.06911802291870117, -0.00990327913314104, -0.06988736242055893, 0.014095102436840534, -0.014441464096307755, 0.022985002025961876, 0.016498371958732605, -0.021544188261032104, 0.059063397347927094, -0.11058097332715988, -0.009874985553324223, -0.030753282830119133, -0.06525968760251999, 0.06078639253973961, 0.01693515107035637, 0.11105809360742569, 0.13566447794437408, -0.014794067479670048, 0.02581651881337166, -0.027831656858325005, 0.28096601366996765, -0.05190045386552811, -0.019615452736616135, 0.11877785623073578, 0.014270039275288582, 0.0780251994729042, 0.12138386070728302, 0.0372043214738369, -0.07807134836912155, -0.01009398140013218, 0.013348850421607494, -0.02769436687231064, -0.2215239554643631, -0.043612174689769745, -0.054720982909202576, 0.009682764299213886, 0.10443424433469772, 0.027656564489006996, 0.01925509423017502, 0.07706234604120255, -0.011286475695669651, 0.08722344785928726, -0.04389301314949989, 0.0696134939789772, 0.08316762745380402, 0.04930325597524643, 0.12300039082765579, -0.021402966231107712, -0.02894742600619793, 0.04292890802025795, 0.01165337860584259, 0.23910802602767944, -0.05914938449859619, 0.17383961379528046, 0.04863413795828819, 0.21345660090446472, 0.009400061331689358, 0.07651640474796295, -0.025693215429782867, 0.007454744540154934, -0.007830559276044369, -0.048585571348667145, -0.05909345671534538, 0.002553482772782445, -0.02143537998199463, 0.05677356198430061, -0.13664986193180084, 0.012687023729085922, 0.044549815356731415, 0.2541090250015259, 0.07732900977134705, -0.36076709628105164, -0.1032458171248436, -0.006304941605776548, 0.007498371414840221, -0.03201063722372055, 0.005262074526399374, 0.10653863102197647, -0.11473441123962402, 0.013591045513749123, -0.061159975826740265, 0.09090972691774368, -0.07177522778511047, 0.022114001214504242, 0.05855666846036911, 0.07999560236930847, 0.0004773658874910325, 0.08122663199901581, -0.25606247782707214, 0.2533777952194214, 0.007627381011843681, 0.04954502359032631, -0.06450503319501877, -0.0012741342652589083, 0.016015734523534775, 0.027348347008228302, 0.08532926440238953, 0.009768891148269176, 0.009712456725537777, -0.21249550580978394, -0.12253497540950775, 0.025910403579473495, 0.07991885393857956, -0.06745506078004837, 0.12883830070495605, -0.01364121027290821, -0.001763802720233798, 0.022486677393317223, 0.017154501751065254, -0.039224203675985336, -0.087594173848629, 0.029515741392970085, 0.007513760589063168, 0.027193700894713402, -0.05998910591006279, -0.10830997675657272, -0.08763236552476883, 0.1407615691423416, -0.06821901351213455, -0.08069498091936111, -0.10900040715932846, 0.10504546761512756, 0.12165726721286774, -0.10432463139295578, 0.02521241270005703, -0.0021469066850841045, 0.08300092071294785, 0.024527259171009064, -0.07261744886636734, 0.07731785625219345, -0.042998287826776505, -0.2046273648738861, -0.04366113618016243, 0.14113280177116394, 0.026062902063131332, 0.07294803112745285, -0.01878603734076023, 0.02532321959733963, -0.040769241750240326, -0.08944988250732422, 0.028106635436415672, -0.0011450807796791196, 0.10002372413873672, 0.025967823341488838, -0.05224669352173805, 0.0436721108853817, -0.06718167662620544, -0.009480828419327736, 0.1758439838886261, 0.25309890508651733, -0.09020613133907318, 0.04179179668426514, 0.03444784879684448, -0.0660405084490776, -0.17053648829460144, 0.003122325288131833, 0.08409950882196426, 0.030803745612502098, -0.01004970632493496, -0.20740161836147308, 0.05996321141719818, 0.11846012622117996, -0.0067070783115923405, 0.1258496791124344, -0.3438444137573242, -0.11109843105077744, 0.058557912707328796, 0.11143039166927338, 0.0993269607424736, -0.1640380471944809, -0.04939795657992363, 0.011259371414780617, -0.17242585122585297, 0.11006952077150345, -0.04950447753071785, 0.1344641000032425, -0.05485067144036293, 0.09790312498807907, 0.01622026227414608, -0.06149187311530113, 0.12781454622745514, 0.046691302210092545, 0.055093418806791306, -0.059806790202856064, -0.03928960859775543, 0.08846863359212875, -0.05716463178396225, 0.04271682724356651, -0.07701017707586288, 0.06757009774446487, -0.14083723723888397, -0.010593012906610966, -0.10295473784208298, 0.010765600018203259, -0.046499621123075485, -0.05025672912597656, -0.03640982136130333, 0.046593077480793, 0.06796348094940186, 0.0011255239369347692, 0.0890565738081932, 0.03285606577992439, 0.14073583483695984, 0.09919680655002594, 0.04020805284380913, -0.041011568158864975, -0.07820020616054535, -0.02665175125002861, -0.006222952622920275, 0.036015164107084274, -0.134450763463974, 0.010392173193395138, 0.1633743792772293, 0.03475715592503548, 0.13637088239192963, 0.08021863549947739, -0.053751248866319656, 0.028682153671979904, 0.05475599691271782, -0.17122048139572144, -0.09091529250144958, -0.022218745201826096, -0.061232320964336395, -0.13734470307826996, 0.036442361772060394, 0.09910057485103607, -0.06842515617609024, -0.03450524061918259, -0.013729086145758629, 0.02790926583111286, -0.02349323406815529, 0.19636310636997223, 0.05993994325399399, 0.07759273797273636, -0.12119731307029724, 0.058473844081163406, 0.06549021601676941, -0.04181002452969551, 0.02746552601456642, 0.07739511877298355, -0.10425959527492523, -0.022945400327444077, 0.034717265516519547, 0.13454118371009827, -0.06623654812574387, -0.016237588599324226, -0.13072438538074493, -0.09390202909708023, 0.08386669307947159, 0.11425025016069412, 0.07700049132108688, 0.04898621141910553, -0.011721390299499035, -0.01811581291258335, -0.1255500763654709, 0.09954982250928879, 0.05292454734444618, 0.06319037079811096, -0.12303007394075394, 0.15921367704868317, -0.01818903721868992, 0.07033736258745193, -0.009790660813450813, 0.014989319257438183, -0.11026287078857422, -0.009742127731442451, -0.11234737932682037, 0.0010988980066031218, -0.05411101505160332, -0.01123136468231678, -0.030745528638362885, -0.050017599016427994, -0.050048235803842545, 0.028491966426372528, -0.103706493973732, -0.051993418484926224, -0.0062297130934894085, 0.0465252511203289, -0.12483324110507965, -0.017716556787490845, 0.007907126098871231, -0.08137275278568268, 0.11070122569799423, 0.07086672633886337, 0.01959802769124508, 0.02892223931849003, -0.061497919261455536, -0.0022344014141708612, 0.014946232549846172, 0.002693755319342017, 0.06796206533908844, -0.09745831042528152, 0.009651538915932178, -0.022899193689227104, 0.00682893255725503, 0.022853365167975426, 0.06541239470243454, -0.13342109322547913, -0.007823267951607704, -0.028580980375409126, -0.017780732363462448, -0.07316313683986664, 0.061475276947021484, 0.0714019313454628, 0.025163257494568825, 0.15309712290763855, -0.06116684153676033, 0.05321669578552246, -0.2339523732662201, -0.01588992215692997, -0.008439986035227776, -0.0895918682217598, -0.1043059304356575, -0.04368564859032631, 0.07969828695058823, -0.054530058056116104, 0.10581377148628235, -0.014778842218220234, 0.023077214136719704, 0.00670833233743906, 0.004125622566789389, 0.00011540849664015695, 0.011678210459649563, 0.19129668176174164, 0.04216170683503151, -0.0438547357916832, 0.06910815089941025, 0.04668259248137474, 0.07375545054674149, 0.10297759622335434, 0.18846778571605682, 0.09090626239776611, 0.04605117812752724, 0.06874560564756393, 0.05092215538024902, -0.07324496656656265, -0.16433598101139069, 0.049979884177446365, -0.04706511273980141, 0.09775485098361969, -0.016705116257071495, 0.21125836670398712, 0.09497658163309097, -0.17090627551078796, 0.047264039516448975, -0.0436851866543293, -0.09466812014579773, -0.09098739176988602, -0.08208617568016052, -0.0809260830283165, -0.13800641894340515, 0.005598539020866156, -0.14383697509765625, 0.015517231076955795, 0.12163614481687546, 0.019183166325092316, -0.014244155026972294, 0.10642007738351822, 0.06324921548366547, 0.0031842191237956285, 0.04679424315690994, 0.016076847910881042, -0.006533578038215637, -0.06345930695533752, -0.07602868974208832, 0.03406414017081261, -0.00847514346241951, 0.07816854864358902, -0.032832007855176926, -0.011582670733332634, 0.04515526071190834, -0.022333085536956787, -0.103811115026474, 0.009183351881802082, 0.014163119718432426, 0.07631853222846985, 0.06324050575494766, 0.004374352283775806, 0.008691729046404362, -0.026603203266859055, 0.2050400674343109, -0.046352796256542206, -0.040411315858364105, -0.1088501438498497, 0.2074226438999176, 0.03465823456645012, -0.04212719574570656, 0.06188783422112465, -0.08798482269048691, 0.00612357584759593, 0.20851890742778778, 0.1996934562921524, -0.0809527263045311, -0.02384244278073311, 0.020456330850720406, -0.011505955830216408, 0.0077928113751113415, 0.09931953251361847, 0.12479331344366074, 0.07180200517177582, -0.09930218011140823, -0.02130635268986225, -0.06287660449743271, -0.009258246049284935, -0.027557378634810448, 0.06550553441047668, 0.015326821245253086, 0.006155526265501976, -0.04652855172753334, 0.041182953864336014, -0.0986776053905487, -0.0762517899274826, 0.03709931671619415, -0.2232295423746109, -0.18240369856357574, -0.02254359982907772, 0.03688878193497658, 0.031016552820801735, 0.06601721793413162, -0.02007712610065937, 0.008761423639953136, 0.1002870425581932, -0.021794771775603294, -0.0960918515920639, -0.07116258889436722, 0.08370493352413177, -0.049118075519800186, 0.18534205853939056, -0.039826471358537674, 0.05619393289089203, 0.12778371572494507, 0.05134369060397148, -0.12460829317569733, 0.03508932888507843, 0.059798307716846466, -0.04397595673799515, 0.017869623377919197, 0.1141146868467331, -0.02191396802663803, 0.043889183551073074, 0.03949864208698273, -0.09534920752048492, -0.015896204859018326, -0.01858026161789894, -0.011971333995461464, -0.053427960723638535, -0.03762048855423927, -0.03579292073845863, 0.14292012155056, 0.2176198661327362, -0.06397803872823715, -0.01204126700758934, -0.06892386823892593, 0.0017938625533133745, 0.05124182626605034, 0.04247739538550377, -0.04046766832470894, -0.2354230284690857, 0.008606265299022198, 0.03571552038192749, 0.004028040450066328, -0.24247696995735168, -0.06386841833591461, 0.00778709864243865, -0.05634067580103874, -0.10697538405656815, 0.11708084493875504, 0.050666697323322296, 0.055387359112501144, -0.05125005915760994, 0.01014038361608982, -0.08303900808095932, 0.15432344377040863, -0.1577465683221817, -0.10853037983179092 ]
null
null
null
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
tinywell/Reinforce-CartPole-v1
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
2024-02-07T01:07:47+00:00
[]
[]
TAGS #CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
# Reinforce Agent playing CartPole-v1 This is a trained model of a Reinforce agent playing CartPole-v1 . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
[ "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ "TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n", "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 39, 54 ]
[ "passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 0.007526164408773184, -0.12498430907726288, -0.0013541718944907188, 0.09601131081581116, 0.11848696321249008, -0.04186001420021057, 0.11405468732118607, 0.05624859035015106, 0.09539441019296646, 0.04239490255713463, 0.13636724650859833, 0.06906966865062714, -0.004102868959307671, 0.12412862479686737, 0.09840741008520126, -0.26058563590049744, 0.07420794665813446, -0.04403980076313019, -0.009944677352905273, 0.10139261186122894, 0.07836852967739105, -0.08325441926717758, 0.051592715084552765, 0.00009572553972247988, -0.044259943068027496, 0.0321260429918766, 0.013628939166665077, -0.053157225251197815, 0.1606452465057373, -0.07313758134841919, 0.10494591295719147, -0.03843724727630615, 0.14574295282363892, -0.1126825287938118, 0.04758213832974434, 0.05111503228545189, -0.04548581689596176, 0.03848232328891754, -0.12538743019104004, -0.06033875793218613, 0.026815801858901978, -0.015865681692957878, 0.12249194830656052, 0.03647647053003311, -0.1777559220790863, -0.13461355865001678, -0.0165896974503994, 0.12325166910886765, 0.1627800315618515, 0.00512364786118269, 0.014270431362092495, 0.16791965067386627, -0.1761058121919632, 0.025937072932720184, 0.11400806158781052, -0.37275227904319763, -0.00034436015994288027, 0.2240462601184845, 0.06164427846670151, 0.1252165287733078, -0.12646614015102386, 0.010440526530146599, 0.07403992861509323, 0.04368630796670914, 0.049784936010837555, -0.015430688858032227, -0.12260042130947113, 0.08455035835504532, -0.1383819431066513, -0.058066487312316895, 0.1495426446199417, -0.019741326570510864, -0.009476418606936932, -0.016515808179974556, -0.009238536469638348, -0.050979889929294586, -0.03430935740470886, -0.11778499186038971, 0.10755524039268494, 0.04975730925798416, 0.0038771627005189657, -0.04602450504899025, -0.05612579360604286, -0.09815777093172073, -0.03123871050775051, 0.0372777059674263, -0.013706400990486145, 0.01091629359871149, 0.027692900970578194, 0.09935613721609116, -0.13446329534053802, 0.01825822703540325, -0.028096558526158333, -0.028040969744324684, -0.1316804438829422, -0.11984307318925858, -0.026084421202540398, 0.004223645199090242, 0.03029833547770977, 0.20433813333511353, 0.020139509811997414, 0.059011414647102356, -0.0022708347532898188, 0.09776382148265839, 0.029780851677060127, 0.13517548143863678, -0.04466623440384865, 0.19488364458084106, 0.07711011171340942, 0.05364556983113289, 0.03204274922609329, -0.05344729498028755, -0.19369827210903168, 0.04861246794462204, 0.06659778952598572, 0.08274952322244644, -0.1178959533572197, 0.0059632807970047, -0.10316018015146255, 0.0028950648847967386, -0.10474003106355667, -0.0642905905842781, -0.02892979420721531, 0.031841445714235306, -0.10535725951194763, 0.028785312548279762, 0.025052599608898163, 0.04140377417206764, 0.0676041767001152, -0.12253966927528381, -0.07404746115207672, -0.021733485162258148, -0.12817098200321198, -0.09923440217971802, 0.08802318572998047, -0.026199497282505035, -0.005110981408506632, -0.1253623217344284, -0.2661486268043518, -0.05670225992798805, 0.06396034359931946, -0.03231031447649002, -0.08589376509189606, -0.1633463054895401, 0.026403428986668587, -0.07700273394584656, 0.05221332609653473, 0.04776721075177193, -0.03665859252214432, 0.02023705095052719, -0.07958202809095383, 0.12739010155200958, 0.049698662012815475, 0.00541001046076417, -0.09916839748620987, 0.07882837951183319, -0.3034103214740753, -0.02581131085753441, -0.15228183567523956, 0.0772043839097023, -0.07893010973930359, 0.01308529730886221, 0.05044940114021301, 0.043790437281131744, -0.016942394897341728, 0.16269747912883759, -0.17043575644493103, -0.05301272124052048, 0.026445282623171806, -0.09261117875576019, -0.09916394203901291, 0.07275339215993881, -0.06339669227600098, 0.21263530850410461, 0.08751397579908371, 0.17006252706050873, -0.011036526411771774, -0.16256992518901825, 0.1207515075802803, 0.07522942125797272, -0.1639646589756012, 0.004287737421691418, 0.061784300953149796, -0.0016935690073296428, 0.02746843732893467, -0.01872866041958332, -0.07289361208677292, 0.06302516162395477, -0.07825060933828354, 0.022581040859222412, 0.06258945167064667, -0.09531243145465851, 0.23986859619617462, -0.005434412509202957, 0.0862451046705246, -0.025957979261875153, -0.09802921861410141, 0.00908072479069233, 0.07164718210697174, -0.0014321404742076993, 0.01703714393079281, -0.14553219079971313, 0.23044352233409882, -0.07965081930160522, 0.011176814325153828, -0.11607582122087479, -0.1256982982158661, 0.011873425915837288, 0.13336114585399628, 0.059921663254499435, 0.16569606959819794, 0.09518871456384659, -0.032197169959545135, 0.017584815621376038, -0.0023385772947221994, -0.09040450304746628, 0.01580043137073517, -0.0021571461111307144, -0.12167251110076904, -0.07353103160858154, -0.08134473115205765, 0.12585052847862244, -0.20988115668296814, 0.015492538921535015, 0.04099845886230469, 0.008103687316179276, 0.04467369243502617, 0.023746047168970108, -0.013269703835248947, -0.00007021807687124237, 0.03244573250412941, -0.10098352283239365, 0.12937165796756744, 0.013381263241171837, 0.014676140621304512, -0.006365173030644655, -0.05572463944554329, 0.03720450773835182, 0.040439579635858536, -0.11237845569849014, -0.11330515146255493, -0.009658765979111195, -0.0015364213613793254, 0.02637762948870659, -0.022321155294775963, 0.052120618522167206, 0.27587956190109253, 0.05387469753623009, 0.10401033610105515, -0.05769326910376549, 0.015315087512135506, -0.015322818420827389, -0.07135670632123947, 0.06358719617128372, 0.025013601407408714, 0.08050397783517838, -0.03531401976943016, 0.03759452700614929, 0.1675453782081604, -0.015888912603259087, 0.11127935349941254, -0.06545067578554153, -0.03844274953007698, -0.043109722435474396, 0.05627678707242012, 0.015021559782326221, 0.04564907029271126, 0.0000015355876712419558, -0.08444724231958389, -0.03503387048840523, -0.03988509997725487, -0.010637006722390652, -0.12273643165826797, -0.00499896751716733, 0.01265440508723259, -0.021940499544143677, 0.04488934203982353, 0.07375624030828476, -0.04849626496434212, 0.025821007788181305, 0.06070821359753609, -0.10193055868148804, 0.08957115560770035, 0.015067169442772865, -0.06946801394224167, 0.13769419491291046, -0.07484805583953857, -0.045293889939785004, -0.1025395318865776, -0.1568877100944519, 0.09384927153587341, 0.06704871356487274, -0.05427970737218857, -0.1503879576921463, -0.0016851738328114152, -0.008973666466772556, 0.09206123650074005, -0.006399387493729591, -0.12621140480041504, 0.01989075168967247, 0.08295059949159622, -0.05633419007062912, -0.09804849326610565, -0.0075809285044670105, -0.05280788615345955, -0.17707788944244385, -0.03888550028204918, -0.06398582458496094, -0.06734282523393631, 0.23586803674697876, 0.02017230913043022, 0.08274748176336288, -0.044721852988004684, 0.04250151664018631, -0.012231717817485332, 0.0006326579605229199, 0.10689259320497513, -0.09043551236391068, -0.017900818958878517, -0.001320177922025323, -0.024820495396852493, -0.07327181100845337, 0.029733488336205482, -0.04272191599011421, -0.08249637484550476, -0.1415451467037201, -0.04993678629398346, -0.011005163192749023, 0.10754310339689255, 0.07337497919797897, 0.0048001972027122974, -0.11733713001012802, 0.062058478593826294, 0.13692134618759155, 0.031207585707306862, 0.004062763415277004, 0.028157465159893036, 0.14977529644966125, -0.10706274956464767, -0.022463621571660042, -0.038119975477457047, -0.054863203316926956, 0.004114252515137196, 0.016883620992302895, 0.08840765058994293, 0.1410384476184845, 0.11468084901571274, 0.047563645988702774, 0.0464191697537899, 0.06561273336410522, 0.1694946140050888, 0.059157438576221466, -0.10448314249515533, -0.044678982347249985, -0.0040070898830890656, -0.10903503000736237, 0.057307638227939606, 0.16030821204185486, 0.06326017528772354, -0.14463356137275696, 0.021787412464618683, -0.038982175290584564, 0.13649246096611023, 0.020638149231672287, -0.2677258849143982, -0.008139112964272499, 0.023630544543266296, -0.0010347915813326836, -0.012379839085042477, 0.10821118950843811, -0.040134772658348083, -0.233198344707489, -0.12299054861068726, 0.010077533312141895, 0.031144635751843452, -0.1509784311056137, 0.015542911365628242, -0.14036494493484497, 0.08027976751327515, -0.007007129956036806, 0.07418135553598404, -0.025149788707494736, 0.15060245990753174, -0.028731435537338257, 0.01628703810274601, -0.07902143895626068, -0.047717493027448654, 0.09898673743009567, -0.0046631391160190105, 0.1931537538766861, 0.005480166990309954, -0.023713182657957077, -0.12098433077335358, -0.05229806900024414, -0.04967813938856125, 0.010598190128803253, -0.05373382940888405, 0.0765683576464653, -0.02441473677754402, -0.0039579677395522594, -0.010900177992880344, 0.08942947536706924, -0.05291692912578583, 0.03636563941836357, -0.11246588081121445, -0.05034820735454559, 0.14550213515758514, -0.09163831174373627, -0.10174685716629028, -0.16205860674381256, 0.14137998223304749, 0.15070600807666779, 0.058216437697410583, -0.04001476243138313, 0.03867831453680992, -0.019183965399861336, -0.024241572245955467, 0.07880574464797974, 0.009653856977820396, 0.1324782371520996, -0.08983246237039566, 0.014327390119433403, 0.14589735865592957, -0.05275948345661163, 0.016191845759749413, -0.02304735779762268, 0.12202176451683044, 0.04650457948446274, 0.06189403310418129, 0.018547222018241882, 0.06655703485012054, 0.06466961652040482, -0.02262885868549347, 0.08456692099571228, 0.030712679028511047, -0.18644161522388458, 0.058530256152153015, -0.09805119782686234, 0.22581584751605988, 0.05066308751702309, 0.06047345697879791, 0.2993181645870209, 0.21986234188079834, -0.05372472479939461, 0.1669820249080658, 0.044286344200372696, -0.05891284719109535, -0.21245966851711273, -0.03684934973716736, -0.030655447393655777, 0.09436552971601486, 0.15607263147830963, -0.0981721356511116, -0.04201313853263855, -0.00972361396998167, -0.032264553010463715, 0.020120708271861076, -0.24663487076759338, -0.01734781451523304, 0.14379777014255524, 0.10629188269376755, 0.2451348900794983, -0.006132842972874641, 0.023609744384884834, 0.049030207097530365, 0.018605992197990417, -0.02483358606696129, -0.21013511717319489, 0.09079083055257797, 0.006071676965802908, 0.04935038834810257, 0.022885039448738098, -0.006052911281585693, 0.04500092566013336, -0.073696069419384, 0.08904470503330231, -0.08561883866786957, -0.08341272175312042, 0.2185351401567459, -0.03945168852806091, -0.00661163916811347, 0.12917985022068024, -0.011526807211339474, -0.1097102016210556, -0.015364703722298145, 0.027403371408581734, 0.030678823590278625, -0.030246863141655922, -0.03609466925263405, 0.024012766778469086, 0.10202405601739883, -0.04282205551862717, 0.04565315693616867, 0.10240072011947632, -0.020902957767248154, 0.15945613384246826, 0.13205459713935852, 0.10420060157775879, 0.002927543595433235, -0.06464727967977524, 0.014349685050547123, -0.055471502244472504, 0.02962767891585827, -0.17038846015930176, -0.0070191239938139915, 0.055695805698633194, 0.04772466421127319, 0.0945243164896965, 0.11333164572715759, -0.127106174826622, 0.0300484336912632, 0.028996523469686508, -0.06286120414733887, -0.06029998138546944, -0.002275418024510145, -0.016458535566926003, -0.008173024281859398, -0.09947093576192856, 0.07884971052408218, -0.10555081814527512, -0.03306307643651962, 0.05025126785039902, -0.0607193186879158, -0.12852220237255096, -0.010904680006206036, 0.1252979338169098, 0.061709314584732056, -0.05078592896461487, 0.14939077198505402, 0.06109785661101341, -0.08055379986763, 0.037185851484537125, 0.027442200109362602, -0.08008874952793121, -0.10198270529508591, -0.0004569833690766245, 0.31761088967323303, 0.06076094135642052, -0.0329466350376606, -0.11946453154087067, -0.15002015233039856, 0.04840146750211716, 0.1035679280757904, 0.12359631806612015, 0.011757869273424149, -0.05322748050093651, 0.02236519381403923, -0.05275069922208786, 0.03814244270324707, 0.06910209357738495, -0.03928454965353012, -0.13761694729328156, 0.0077122850343585014, 0.026647454127669334, 0.10174071043729782, -0.06771174818277359, -0.09184598177671432, -0.18085066974163055, 0.09208621084690094, -0.03432070091366768, -0.10890032351016998, 0.027215104550123215, -0.017406610772013664, 0.014248576015233994, 0.07639352232217789, -0.047281619161367416, 0.01244808267802, -0.1517520695924759, 0.07082249224185944, 0.05706808716058731, 0.08926787972450256, 0.000014311663107946515, -0.054843269288539886, 0.07618319988250732, -0.05763502046465874, 0.06680037826299667, -0.053477559238672256, 0.005539732985198498, 0.10781200975179672, -0.23264040052890778, -0.021164139732718468, 0.009476077742874622, -0.04681631922721863, 0.08765807747840881, -0.19047698378562927, 0.024190550670027733, -0.08897756040096283, -0.024605726823210716, 0.01802127994596958, -0.1086471825838089, -0.04306677728891373, 0.08475461602210999, 0.037119291722774506, -0.031288959085941315, -0.04612116143107414, -0.019314980134367943, -0.0914498046040535, 0.053634315729141235, 0.07442525774240494, -0.0687926784157753, 0.08314394950866699, -0.05507456883788109, 0.00841207429766655, -0.052043743431568146, 0.06760627031326294, -0.012366239912807941, -0.12672528624534607, -0.02123171091079712, -0.044928714632987976, 0.11662110686302185, -0.023402327671647072, 0.022080281749367714, 0.014599837362766266, 0.0323631577193737, -0.012065601535141468, 0.05028461292386055, 0.1019197478890419, 0.05136820673942566, 0.014879679307341576, 0.02292765863239765, 0.055746350437402725, 0.0757644772529602, -0.1134679913520813, 0.06457309424877167, -0.02098844014108181, -0.08620109409093857, 0.1013324111700058, 0.06909440457820892, 0.037490107119083405, 0.15593400597572327, 0.22674402594566345, 0.10539932548999786, -0.03564648702740669, -0.03126971051096916, 0.12967991828918457, 0.17799612879753113, -0.07682197540998459, 0.015780627727508545, -0.0020607721526175737, -0.017265556380152702, -0.09849067777395248, -0.13722245395183563, -0.060460351407527924, -0.2453264594078064, 0.1078341007232666, -0.03288164362311363, -0.04169659689068794, 0.128489688038826, 0.027952738106250763, 0.03724630922079086, 0.08183616399765015, -0.12909026443958282, -0.013460557907819748, 0.07749562710523605, -0.08914026618003845, -0.033571500331163406, -0.17521262168884277, -0.06771576404571533, -0.08741120994091034, -0.15989220142364502, -0.06844990700483322, 0.029948782175779343, 0.035394806414842606, 0.010386589914560318, -0.039711855351924896, -0.01962728053331375, 0.011063394136726856, -0.0025537724141031504, -0.04985455423593521, -0.01753084547817707, 0.021317757666110992, -0.11333847790956497, -0.024336790665984154, 0.16320326924324036, -0.03297848999500275, -0.18396754562854767, -0.0405106395483017, 0.2157316505908966, 0.025046708062291145, 0.0590171180665493, -0.073721744120121, -0.016323629766702652, 0.021523483097553253, 0.20813441276550293, 0.10171995311975479, -0.10821312665939331, 0.015457749366760254, -0.03655189648270607, 0.0013793212128803134, -0.061893612146377563, 0.10775819420814514, 0.06519263982772827, -0.07549984753131866, -0.17567221820354462, -0.04389495030045509, -0.08628730475902557, 0.03370477631688118, -0.14383791387081146, -0.03786516562104225, 0.1168690100312233, 0.004516853019595146, -0.053927481174468994, 0.07883694022893906, -0.17713546752929688, 0.03441957011818886, -0.04880853369832039, -0.13215437531471252, -0.09491758048534393, -0.10123858600854874, 0.0027463934384286404, 0.08913854509592056, 0.15567956864833832, -0.06151591241359711, -0.07471925020217896, -0.009579092264175415, -0.028091613203287125, -0.052700337022542953, -0.07900123298168182, 0.059512585401535034, 0.0007560851518064737, 0.16147300601005554, -0.07439453154802322, 0.09558981657028198, 0.09099138528108597, -0.021246420219540596, -0.00915549136698246, 0.032866667956113815, -0.003863809397444129, -0.07436864078044891, -0.04970616102218628, 0.02312966249883175, 0.027639856562018394, 0.10846075415611267, -0.030836544930934906, -0.1934703141450882, 0.11230092495679855, 0.09140218049287796, -0.04296138137578964, -0.046487610787153244, 0.05351927503943443, -0.07097935676574707, 0.1252279132604599, 0.03444884717464447, -0.02163051813840866, 0.013762647286057472, -0.06370721012353897, 0.08370721340179443, 0.11594565212726593, -0.048265840858221054, -0.08278503268957138, -0.06164652109146118, 0.012770666740834713, 0.02961382456123829, -0.13650155067443848, -0.21160630881786346, -0.10802312940359116, -0.1383298933506012, 0.004740108735859394, -0.04703504592180252, 0.08498300611972809, 0.12991970777511597, 0.09780163317918777, -0.011416295543313026, -0.004867587238550186, 0.018085451796650887, 0.13192623853683472, -0.11232008039951324, -0.08192373812198639 ]
null
null
transformers
# Kotomamba The kotomamba model represents a cutting-edge approach in natural language processing (NLP), leveraging the innovative State Space Model mamba architecture. The kotomamba model comes in two distinct versions. 1. Bilingual Pre-training (Japanese and English): The first variant of the kotomamba model is pre-trained on a rich dataset(About 200B Token) comprising both Japanese and English texts. 2. Continual Pre-training (Mainly Japanese): The second variant of the kotomamba model takes a different approach, focusing exclusively on Japanese-centric data for its continual pre-training phase. ## Kotomamba Model Index |Model|kotomamba-hf| |---|---| |kotomamba-2.8B-v1.0| [Link](https://huggingface.co/kotoba-tech/kotomamba-2.8B-v1.0) | |kotomamba-2.8B-CL-v1.0| [Link](https://huggingface.co/kotoba-tech/kotomamba-2.8B-CL-v1.0) | ![logo](./logo.webp) This repository provides large language models developed by [Kotoba Technologies](https://www.kotoba.tech/), Tohoku University [TohokuNLP group](https://www.nlp.ecei.tohoku.ac.jp/), and Tokyo Institute of Technology [Okazaki Lab](https://www.nlp.c.titech.ac.jp/index.en.html), [Yokota Lab](https://www.rio.gsic.titech.ac.jp/en/index.html). Read our [blog post](https://zenn.dev/kotoba_tech/articles/f15b2495d44c4f) or our technical paper (preprint coming soon) for more details! ## Model Details * **Model type**: Please refer to [mamba technical paper](https://arxiv.org/abs/2312.00752) for details on the model architecture. * **Language(s)**: Japanese English * **Library**: [kotomamba](https://github.com/kotoba-tech/kotomamba) * **Tokenizer**: kotomamba-2.8B uses [llm-jp-tokenizer 100K](https://github.com/llm-jp/llm-jp-tokenizer) and kotomamba-2.8B-CL uses [GPT-NeoX Tokenizer](https://huggingface.co/EleutherAI/gpt-neox-20b). * **Contact**: ## Base Model Performance ### Japanese version |Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD| |---|---|---|---|---|---| | | |4-shot|4-shot|4-shot|4-shot| | [state-spaces/mamba-2.8b-slimpj](https://huggingface.co/state-spaces/mamba-2.8b-slimpj) | 2.8B |0.1796|0.2825|0.0998|0.3301| | kotomamba-2.8B | 2.8B |0.185|0.4532|0.3871|0.4685| | kotomamba-2.8B-CL | 2.8B |0.185|0.3758|0.2393|0.5929| ## Usage git clone [https://github.com/kotoba-tech/kotomamba](https://github.com/kotoba-tech/kotomamba) and follow the repository's README installation section. **WARNING**: huggingface transformers `AutoModelForCausalLM` **doesn't support** mamba model. So, please use [kotomamba/benchmarks/benchmark_generation_mamba_simple.py](https://github.com/kotoba-tech/kotomamba/blob/main/benchmarks/benchmark_generation_mamba_simple.py) You can find the inference sample script in [scripts/abci/inference/inference_sample.sh](https://github.com/kotoba-tech/kotomamba/blob/main/scripts/abci/inference/inference_sample.sh) ## Training Datasets ### Pre-Training & Continual Pre-Training The following datasets were used for training. - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - Swallow Corpus - [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B) ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub. Our project is supported by the [ABCI Grand Challenge](https://abci.ai/en/link/grandchallenge.html) of the National Institute of Advanced Industrial Science and Technology. ## License Apache License Version 2.0, January 2004 ## Authors Here are the team members: - From [Kotoba Technologies](https://www.kotoba.tech/) - [Noriyuki Kojima](https://twitter.com/noriyuki_kojima) - [Jungo Kasai](https://twitter.com/jungokasai) - [Hiroto Kurita](https://twitter.com/hiroto_kurita) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - From [TohokuNLP group at Tohoku University](https://www.nlp.ecei.tohoku.ac.jp/) - [Keisuke Sakaguchi](https://twitter.com/KeisukeS_) - From Tokyo Institute of Technologies - From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Hiroki Iida](https://meshidenn.github.io/) - [Mengsay Loem](https://loem-ms.github.io/) - [Shota Hirai](https://huggingface.co/Kotemo428) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://twitter.com/stjohn2007) - From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
{"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "pipeline_tag": "text-generation", "model_type": "mamba"}
text-generation
kotoba-tech/kotomamba-2.8B-CL-v1.0
[ "transformers", "pytorch", "", "text-generation", "en", "ja", "arxiv:2312.00752", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-07T01:10:00+00:00
[ "2312.00752" ]
[ "en", "ja" ]
TAGS #transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us
Kotomamba ========= The kotomamba model represents a cutting-edge approach in natural language processing (NLP), leveraging the innovative State Space Model mamba architecture. The kotomamba model comes in two distinct versions. 1. Bilingual Pre-training (Japanese and English): The first variant of the kotomamba model is pre-trained on a rich dataset(About 200B Token) comprising both Japanese and English texts. 2. Continual Pre-training (Mainly Japanese): The second variant of the kotomamba model takes a different approach, focusing exclusively on Japanese-centric data for its continual pre-training phase. Kotomamba Model Index --------------------- !logo This repository provides large language models developed by Kotoba Technologies, Tohoku University TohokuNLP group, and Tokyo Institute of Technology Okazaki Lab, Yokota Lab. Read our blog post or our technical paper (preprint coming soon) for more details! Model Details ------------- * Model type: Please refer to mamba technical paper for details on the model architecture. * Language(s): Japanese English * Library: kotomamba * Tokenizer: kotomamba-2.8B uses llm-jp-tokenizer 100K and kotomamba-2.8B-CL uses GPT-NeoX Tokenizer. * Contact: Base Model Performance ---------------------- ### Japanese version Usage ----- git clone URL and follow the repository's README installation section. WARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\_generation\_mamba\_simple.py You can find the inference sample script in scripts/abci/inference/inference\_sample.sh Training Datasets ----------------- ### Pre-Training & Continual Pre-Training The following datasets were used for training. * Japanese Wikipedia * Swallow Corpus * SlimPajama Risks and Limitations --------------------- The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. Acknowledgements ---------------- We thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub. Our project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology. License ------- Apache License Version 2.0, January 2004 Authors ------- Here are the team members: * From Kotoba Technologies + Noriyuki Kojima + Jungo Kasai + Hiroto Kurita + Kazuki Fujii * From TohokuNLP group at Tohoku University + Keisuke Sakaguchi * From Tokyo Institute of Technologies + From Okazaki Laboratory, the following members: - Naoaki Okazaki - Sakae Mizuki - Hiroki Iida - Mengsay Loem - Shota Hirai - Kakeru Hattori - Masanari Ohi + From YOKOTA Laboratory, the following members: - Rio Yokota - Taishi Nakamura
[ "### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------", "### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ "TAGS\n#transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------", "### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ 48, 113, 275 ]
[ "passage: TAGS\n#transformers #pytorch # #text-generation #en #ja #arxiv-2312.00752 #license-apache-2.0 #endpoints_compatible #region-us \n### Japanese version\n\n\n\nUsage\n-----\n\n\ngit clone URL and follow the repository's README installation section.\n\n\nWARNING: huggingface transformers 'AutoModelForCausalLM' doesn't support mamba model. So, please use kotomamba/benchmarks/benchmark\\_generation\\_mamba\\_simple.py\n\n\nYou can find the inference sample script in scripts/abci/inference/inference\\_sample.sh\n\n\nTraining Datasets\n-----------------### Pre-Training & Continual Pre-Training\n\n\nThe following datasets were used for training.\n\n\n* Japanese Wikipedia\n* Swallow Corpus\n* SlimPajama\n\n\nRisks and Limitations\n---------------------\n\n\nThe models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.\n\n\nAcknowledgements\n----------------\n\n\nWe thank Albert Gu and Tri Dao for releasing the original mamba model and implementation on GitHub.\n\n\nOur project is supported by the ABCI Grand Challenge of the National Institute of Advanced Industrial Science and Technology.\n\n\nLicense\n-------\n\n\nApache License Version 2.0, January 2004\n\n\nAuthors\n-------\n\n\nHere are the team members:\n\n\n* From Kotoba Technologies\n\t+ Noriyuki Kojima\n\t+ Jungo Kasai\n\t+ Hiroto Kurita\n\t+ Kazuki Fujii\n* From TohokuNLP group at Tohoku University\n\t+ Keisuke Sakaguchi\n* From Tokyo Institute of Technologies\n\t+ From Okazaki Laboratory, the following members:\n\t\t- Naoaki Okazaki\n\t\t- Sakae Mizuki\n\t\t- Hiroki Iida\n\t\t- Mengsay Loem\n\t\t- Shota Hirai\n\t\t- Kakeru Hattori\n\t\t- Masanari Ohi\n\t+ From YOKOTA Laboratory, the following members:\n\t\t- Rio Yokota\n\t\t- Taishi Nakamura" ]
[ -0.06651878356933594, 0.16649259626865387, 0.0014256221475079656, -0.0009074558620341122, 0.08170554041862488, 0.01298866793513298, 0.15760868787765503, 0.12834981083869934, 0.08006036281585693, 0.10160896927118301, -0.00400717044249177, 0.02262399159371853, 0.14691336452960968, 0.06981654465198517, 0.015069390647113323, -0.2228926718235016, 0.07123477011919022, -0.05056542530655861, -0.04301104694604874, 0.10012178122997284, 0.11177127063274384, -0.04254196956753731, 0.07602541893720627, 0.03856503218412399, -0.030778776854276657, -0.01603781245648861, 0.025271287187933922, -0.11470041424036026, 0.11881742626428604, 0.03740791976451874, 0.05941927060484886, 0.03486090153455734, 0.018932847306132317, -0.20356141030788422, 0.019064487889409065, 0.04636877402663231, 0.018761085346341133, 0.06304927915334702, 0.12310514599084854, 0.042718783020973206, 0.187551811337471, -0.046082593500614166, 0.03246470168232918, 0.1061006635427475, -0.07966123521327972, -0.1449829638004303, -0.18208062648773193, 0.13717038929462433, 0.11077611148357391, 0.08224131911993027, -0.039673201739788055, 0.09846314787864685, -0.01409221813082695, -0.00940459780395031, 0.09225670993328094, -0.19464389979839325, -0.04073366895318031, 0.045841705054044724, 0.04532315209507942, 0.09349880367517471, -0.08814143389463425, 0.040604230016469955, 0.05676926299929619, -0.021792512387037277, 0.03957982733845711, -0.019437231123447418, 0.11432073265314102, -0.022039735689759254, -0.07561813294887543, -0.028445007279515266, 0.20906157791614532, 0.00545489601790905, -0.09855803102254868, -0.16249804198741913, 0.005974210798740387, 0.05502244457602501, 0.03640824556350708, -0.06052158400416374, 0.031056178733706474, -0.009710157290101051, 0.07677965611219406, -0.048366907984018326, -0.12362994253635406, -0.05850159749388695, 0.018674736842513084, 0.12858355045318604, 0.055699221789836884, 0.02804805338382721, -0.0032770910765975714, 0.07809408009052277, 0.003550965106114745, -0.09897201508283615, -0.07009272277355194, -0.07427635043859482, 0.006632739678025246, 0.0029393592849373817, 0.025017792358994484, -0.07939393073320389, 0.034722838550806046, 0.14288580417633057, -0.1170024648308754, -0.005501665640622377, 0.005208206828683615, 0.00032524613197892904, 0.022556012496352196, 0.16974277794361115, -0.05989687144756317, -0.0800384134054184, 0.041165344417095184, 0.023620035499334335, 0.03192083165049553, 0.003098017070442438, 0.01585986651480198, -0.08036018908023834, 0.01258486695587635, 0.08750713616609573, 0.07755149900913239, 0.02608722820878029, -0.04733658581972122, -0.015017773024737835, 0.15253157913684845, -0.11962131410837173, -0.0028769399505108595, -0.04201565310359001, -0.02711205743253231, 0.07109524309635162, 0.0133926160633564, 0.04459641873836517, -0.011486171744763851, 0.06667903065681458, -0.07850993424654007, -0.0296037495136261, -0.051707394421100616, -0.02757680043578148, 0.06651487201452255, -0.025033116340637207, -0.023894907906651497, -0.11274383217096329, -0.09787189960479736, -0.057723816484212875, 0.020128298550844193, -0.016255883499979973, -0.0037950128316879272, 0.08510654419660568, -0.015224246308207512, 0.03603284806013107, -0.0332573726773262, -0.05228373780846596, -0.03906095027923584, 0.05952996015548706, -0.028095465153455734, 0.009547355584800243, 0.05947737395763397, 0.025987647473812103, -0.11795544624328613, 0.06373223662376404, -0.15311069786548615, -0.035567108541727066, -0.08857303112745285, 0.05930067598819733, -0.18030358850955963, -0.041708339005708694, 0.022543413564562798, 0.03756861016154289, 0.03420862928032875, 0.15149416029453278, -0.07185087352991104, -0.05173465982079506, 0.10757899284362793, -0.16052819788455963, -0.14165879786014557, 0.11823130398988724, 0.02930324152112007, 0.12533114850521088, 0.050129007548093796, 0.0931156799197197, 0.024319704622030258, -0.12989559769630432, -0.1271677315235138, -0.1366528868675232, 0.010112196207046509, 0.04663468152284622, 0.11875611543655396, -0.02557423897087574, -0.026899928227066994, 0.03207280486822128, -0.11202359944581985, -0.03950243815779686, -0.0037339506670832634, -0.06553640961647034, -0.0121521707624197, -0.029678523540496826, -0.05982546880841255, -0.007805314846336842, -0.005790714640170336, -0.06460065394639969, -0.13126534223556519, -0.10364653170108795, 0.10633308440446854, -0.014453768730163574, 0.029194585978984833, -0.061227068305015564, 0.049676038324832916, -0.020115522667765617, -0.011164254508912563, -0.05772973224520683, -0.015443464741110802, 0.06947191804647446, -0.17003577947616577, 0.042832210659980774, -0.03655410557985306, -0.017670877277851105, 0.047613244503736496, -0.024355843663215637, -0.07587087899446487, -0.046123601496219635, -0.016789961606264114, 0.010250990279018879, -0.12822137773036957, 0.01308886706829071, 0.0028806861955672503, 0.11957518011331558, -0.08404384553432465, 0.02196347527205944, 0.049246612936258316, 0.10383176803588867, -0.01038346253335476, -0.0255980733782053, 0.04652076214551926, 0.004722728859633207, -0.045458681881427765, -0.01919141225516796, 0.008466868661344051, -0.03672529011964798, -0.06258725374937057, 0.12702348828315735, -0.10933621227741241, -0.02477988600730896, 0.09083389490842819, 0.07067763060331345, -0.054011270403862, 0.0018922467716038227, -0.051974017173051834, -0.01777319610118866, -0.021658767014741898, -0.023766575381159782, 0.05812116712331772, -0.003288939828053117, 0.04247000068426132, -0.10543566197156906, -0.009304721839725971, -0.008457807824015617, -0.07800614833831787, -0.07397083938121796, 0.04017549380660057, 0.0733695924282074, -0.15454688668251038, 0.12744946777820587, 0.07853295654058456, 0.050920769572257996, 0.19789136946201324, -0.012289602309465408, -0.11044813692569733, -0.0384957529604435, -0.0331348180770874, 0.030435822904109955, 0.10461223870515823, 0.010687900707125664, 0.013577241450548172, 0.055691905319690704, 0.00691974675282836, 0.015841366723179817, -0.11985361576080322, -0.009966340847313404, -0.016589205712080002, -0.018578317016363144, 0.008816399611532688, 0.06547956168651581, -0.055996354669332504, 0.11187859624624252, 0.007873782888054848, 0.11472129076719284, -0.025157658383250237, -0.02247028797864914, -0.10722147673368454, 0.12358687818050385, -0.06783019006252289, -0.2322666049003601, -0.1913820207118988, 0.060721080750226974, -0.046611808240413666, -0.026195043697953224, 0.07460447400808334, -0.06542766094207764, -0.13372161984443665, -0.07920700311660767, 0.06938303261995316, -0.0005191482487134635, -0.06366560608148575, -0.05785110220313072, 0.019072672352194786, 0.011331885121762753, -0.1262321174144745, -0.025293197482824326, 0.04762715846300125, -0.07076786458492279, 0.041287556290626526, 0.015731533989310265, 0.1325877159833908, 0.0374843031167984, 0.024752408266067505, -0.06356122344732285, -0.01570143550634384, 0.1252448856830597, -0.1324411779642105, 0.10367778688669205, 0.22022183239459991, 0.024565573781728745, 0.056215498596429825, 0.14289623498916626, 0.010208421386778355, -0.036191392689943314, 0.03073526732623577, -0.03339453786611557, -0.022268611937761307, -0.31898584961891174, -0.0351959690451622, -0.040534939616918564, 0.037550583481788635, -0.022246921434998512, 0.049549005925655365, 0.19055791199207306, 0.07503268122673035, -0.13988527655601501, -0.027818582952022552, 0.03044596128165722, 0.1461818367242813, 0.05744675174355507, 0.02313590794801712, 0.05715121328830719, -0.057250507175922394, 0.07281514257192612, 0.0954681858420372, 0.04792102053761482, 0.14655540883541107, 0.03007485903799534, 0.2183309942483902, 0.07242251932621002, 0.14662304520606995, 0.0548044852912426, 0.009153291583061218, 0.06592237204313278, 0.052742455154657364, -0.02382572554051876, -0.06935755163431168, -0.042583368718624115, 0.17243947088718414, -0.03701842203736305, -0.046910908073186874, -0.014802257530391216, -0.08384514600038528, 0.019928190857172012, 0.2072737216949463, -0.037131525576114655, -0.14382383227348328, -0.10726878046989441, 0.06600765883922577, -0.0620168037712574, -0.038068413734436035, 0.03055090643465519, 0.049041617661714554, -0.12422117590904236, 0.06073808670043945, -0.03780741989612579, 0.06390228122472763, 0.004993627313524485, -0.022181076928973198, 0.005870996508747339, 0.0020062029361724854, -0.052021369338035583, 0.07277820259332657, -0.16497893631458282, 0.15655671060085297, 0.0037156406324356794, 0.08987084031105042, -0.03393905237317085, 0.0525595024228096, 0.042559608817100525, 0.03465531766414642, 0.13197413086891174, 0.00010598710650810972, -0.18363545835018158, -0.08109642565250397, -0.06421154737472534, 0.0057225339114665985, 0.07176845520734787, -0.09979356825351715, 0.11127562075853348, -0.05828277766704559, -0.013259137980639935, -0.04855319857597351, -0.021770881488919258, -0.18581274151802063, -0.08058144152164459, 0.11185365170240402, -0.03394497558474541, 0.10401146858930588, -0.0990309938788414, -0.018896833062171936, -0.038626089692115784, 0.08433416485786438, -0.1420133411884308, -0.07769357413053513, -0.13101845979690552, -0.11894959211349487, 0.15178711712360382, -0.10452453047037125, 0.04622644558548927, -0.036501508206129074, 0.08933918178081512, -0.018434084951877594, -0.028851795941591263, 0.02279600501060486, -0.0982518270611763, -0.24107162654399872, -0.034945517778396606, 0.11556468158960342, 0.012150349095463753, 0.050085123628377914, 0.005928736180067062, 0.04598837345838547, -0.0019748101476579905, -0.08085273951292038, 0.006767915561795235, 0.1769433170557022, 0.1214447170495987, -0.022758401930332184, -0.0739453062415123, -0.1059894859790802, -0.14020824432373047, -0.1798742264509201, -0.005262991413474083, 0.28400248289108276, -0.00911497138440609, 0.12233716249465942, 0.159295454621315, -0.0758926272392273, -0.14930486679077148, -0.03017287887632847, -0.04503776878118515, 0.011197718791663647, 0.030184540897607803, -0.1289808303117752, 0.012803572230041027, 0.06660418957471848, -0.06536369025707245, 0.04378870874643326, -0.1729528158903122, -0.12623097002506256, -0.017215503379702568, 0.1088946983218193, -0.010161017067730427, -0.19299016892910004, -0.04771832004189491, -0.016468504443764687, -0.1435653567314148, 0.05790097266435623, 0.05819644778966904, 0.06393186748027802, -0.057645246386528015, 0.025245949625968933, 0.010291175916790962, -0.07435043156147003, 0.15379326045513153, -0.07479232549667358, 0.030542444437742233, -0.06768452376127243, -0.013044464401900768, 0.04478976130485535, -0.05118776112794876, 0.13495826721191406, -0.01346644852310419, -0.002409245353192091, -0.05215326324105263, -0.06380443274974823, -0.058737196028232574, 0.09864959120750427, -0.06943946331739426, -0.10427821427583694, -0.12677499651908875, 0.14866113662719727, 0.011766599491238594, -0.01716206595301628, 0.019156355410814285, -0.0643559992313385, 0.0641423761844635, 0.04833868518471718, 0.12870587408542633, 0.11899017542600632, -0.012123802676796913, -0.011461792513728142, -0.03776681050658226, 0.07950740307569504, -0.18412631750106812, 0.0026470262091606855, 0.07501711696386337, -0.003236389020457864, 0.10520601272583008, -0.04292965307831764, -0.17235611379146576, 0.0076802996918559074, 0.06971745193004608, -0.1036982610821724, -0.13391579687595367, -0.044569313526153564, 0.07010091841220856, 0.011378110386431217, -0.004538107663393021, 0.10576676577329636, -0.10343106091022491, -0.05512811988592148, -0.013311836868524551, 0.10506974160671234, 0.010586668737232685, 0.04240869730710983, 0.006146259140223265, 0.018675237894058228, -0.02781170792877674, 0.10667257755994797, 0.08248906582593918, -0.06607113033533096, 0.025712132453918457, 0.08142510056495667, -0.020108617842197418, -0.049842365086078644, -0.07951104640960693, 0.057409413158893585, -0.11297190189361572, -0.11553876101970673, -0.04755309969186783, -0.08763572573661804, -0.03988712280988693, 0.08122750371694565, -0.013337735086679459, 0.04932490363717079, 0.05844129994511604, 0.006346650421619415, -0.11038368940353394, 0.06618232280015945, 0.032714128494262695, 0.03289540857076645, -0.11186569929122925, -0.0024060599971562624, 0.05538433790206909, -0.024337563663721085, -0.009224963374435902, -0.012050734832882881, -0.0759134292602539, -0.05193222686648369, -0.12054958939552307, -0.012646820396184921, -0.10125475376844406, -0.027422133833169937, -0.030964259058237076, -0.10370980203151703, -0.040296897292137146, 0.02212582342326641, -0.045451197773218155, -0.030659817159175873, -0.08668571710586548, 0.16152939200401306, -0.1181301549077034, -0.0018139173043891788, 0.13034215569496155, -0.0757443830370903, 0.05821593478322029, 0.003624699544161558, -0.013595812022686005, 0.030680011957883835, -0.09438902884721756, 0.11671675741672516, -0.0558910146355629, 0.022011471912264824, -0.008733607828617096, -0.17332705855369568, -0.028120514005422592, 0.013392328284680843, -0.04319198802113533, -0.012638638727366924, -0.057209599763154984, -0.09581612050533295, -0.030629467219114304, 0.008648901246488094, -0.0910201221704483, -0.07038772106170654, -0.00044893959420733154, 0.14661289751529694, 0.0035113494377583265, 0.10673408210277557, -0.04596830904483795, 0.05910620838403702, -0.1366329789161682, 0.005296614952385426, -0.0021047128830105066, -0.023207301273941994, -0.03834891319274902, -0.052878428250551224, 0.01647697389125824, 0.00016788097855169326, 0.11885210126638412, -0.015797726809978485, -0.06012498959898949, 0.06081985682249069, -0.0556614026427269, -0.011072581633925438, 0.0076691703870892525, 0.13392339646816254, 0.0022040721960365772, 0.03022819571197033, -0.013108594343066216, -0.058915093541145325, -0.058152489364147186, -0.09094321727752686, 0.0999150276184082, 0.17235848307609558, 0.08995972573757172, 0.030351338908076286, 0.0075232828967273235, -0.06515530496835709, -0.11068455874919891, -0.03525247797369957, -0.05520254373550415, -0.005692207254469395, -0.026749730110168457, 0.1357196867465973, 0.2457566261291504, -0.2042723000049591, 0.06533735990524292, -0.027750708162784576, -0.02709675393998623, -0.06200925633311272, -0.15022142231464386, -0.07047708332538605, -0.06306043267250061, 0.03949183598160744, -0.06889462471008301, 0.0694722905755043, 0.07715511322021484, 0.024338381364941597, -0.0705152079463005, 0.13556355237960815, -0.0028457564767450094, -0.0617326982319355, 0.054128583520650864, 0.05366366729140282, -0.004694217350333929, -0.00995710026472807, -0.030622385442256927, -0.030861426144838333, 0.01090586744248867, 0.049430638551712036, 0.07242927700281143, -0.06616279482841492, 0.01985827088356018, 0.0020091531332582235, -0.09036519378423691, 0.0032687378115952015, -0.015327357687056065, 0.04592212662100792, 0.12066604942083359, 0.04098954796791077, 0.025502610951662064, 0.04569670557975769, 0.20106777548789978, -0.00803016684949398, 0.007442220114171505, -0.06907004117965698, 0.1550428867340088, -0.02333942800760269, -0.07725771516561508, 0.07013283669948578, -0.11258157342672348, 0.039460740983486176, 0.15460261702537537, 0.05747964233160019, 0.052169643342494965, -0.029380371794104576, -0.07109499722719193, 0.0033248686231672764, -0.05424555018544197, 0.12331202626228333, 0.05291644111275673, 0.21316613256931305, -0.05213780328631401, 0.10005390644073486, -0.04898349940776825, -0.009698145091533661, -0.04013407975435257, 0.17260196805000305, -0.05834626406431198, -0.06680009514093399, -0.07286357134580612, 0.10045681893825531, -0.006509450729936361, -0.274116575717926, 0.09515795856714249, -0.04672503471374512, -0.09633396565914154, 0.020670922473073006, 0.09542488306760788, -0.031350117176771164, 0.04761027172207832, 0.001594277797266841, 0.0043067303486168385, 0.1112571656703949, 0.054325513541698456, -0.030342428013682365, -0.001198014710098505, 0.10718029737472534, -0.011859001591801643, 0.2517286539077759, 0.028217460960149765, 0.08157188445329666, 0.07368294894695282, -0.02355934865772724, -0.134400874376297, 0.082215815782547, 0.06846070289611816, -0.10525276511907578, 0.009767952375113964, 0.1704142689704895, 0.010687087662518024, 0.058207202702760696, 0.08048523217439651, -0.03015625849366188, 0.06518325209617615, 0.06907251477241516, -0.036567408591508865, -0.102086640894413, 0.07654180377721786, -0.12081535160541534, 0.17622190713882446, 0.08122314512729645, -0.07223178446292877, -0.017744991928339005, -0.0636671930551529, 0.08830077946186066, 0.02100740373134613, 0.047567758709192276, 0.047942984849214554, -0.1778343915939331, -0.010640976019203663, -0.01435267273336649, 0.079288050532341, -0.15651774406433105, -0.04291889816522598, -0.02663087286055088, -0.005799960810691118, -0.11121232807636261, 0.06860465556383133, 0.03790758550167084, -0.029810599982738495, -0.014803768135607243, -0.1122589260339737, -0.014735432341694832, 0.09795710444450378, -0.09495822340250015, -0.016566535457968712 ]
null
null
null
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="flipchip167/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.46 +/- 2.73", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
flipchip167/q-Taxi-v3
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-07T01:10:11+00:00
[]
[]
TAGS #Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 Taxi-v3 This is a trained model of a Q-Learning agent playing Taxi-v3 . ## Usage
[ "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ "TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 32, 33 ]
[ "passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 0.048862796276807785, -0.16549694538116455, -0.005485367961227894, 0.02960980497300625, 0.1345081776380539, -0.01784728653728962, 0.11895976960659027, 0.07759871333837509, -0.07461097836494446, -0.055395450443029404, 0.1418241262435913, 0.09088201075792313, 0.055222880095243454, 0.05699880048632622, 0.09511256217956543, -0.27440664172172546, 0.048217080533504486, -0.02918700873851776, 0.05621987581253052, 0.11878681182861328, 0.0670095682144165, -0.040441032499074936, 0.061956584453582764, 0.11818158626556396, -0.1018151044845581, -0.007344264071434736, 0.035402704030275345, -0.09440053254365921, 0.17413531243801117, 0.07204403728246689, 0.12337774783372879, 0.05132639780640602, 0.179361954331398, -0.12762396037578583, 0.024310702458024025, -0.0010275895474478602, -0.10138072073459625, -0.03909514099359512, -0.012415820732712746, -0.08349097520112991, 0.03230205550789833, 0.23522862792015076, 0.07199250161647797, 0.06632792949676514, -0.17707863450050354, -0.06584878265857697, -0.04375573247671127, 0.069611094892025, 0.14951466023921967, 0.03758616745471954, -0.033800311386585236, 0.1684885323047638, -0.2564343810081482, 0.05066783353686333, 0.037275806069374084, -0.42313119769096375, 0.017119819298386574, 0.1507398933172226, 0.15090937912464142, 0.06909667700529099, -0.10573802888393402, 0.013512322679162025, 0.051325585693120956, -0.0005318621988408267, 0.024325110018253326, 0.006554204970598221, 0.15601307153701782, 0.08537693321704865, -0.1487821787595749, -0.058576688170433044, 0.17441977560520172, -0.03788546845316887, -0.02613203600049019, -0.039745692163705826, 0.0067160045728087425, -0.06427708268165588, -0.004067842848598957, -0.1777995079755783, 0.00734262028709054, 0.06666424125432968, -0.014348524622619152, 0.014901017770171165, -0.035522811114788055, -0.0966939702630043, -0.023098144680261612, -0.08592145889997482, 0.01677769608795643, -0.006319406442344189, -0.10187895596027374, 0.05002119392156601, -0.061138734221458435, 0.0014382408699020743, -0.05123179033398628, -0.15047866106033325, -0.049055423587560654, -0.03481535613536835, 0.1474713832139969, -0.0044205985032022, -0.01873963139951229, -0.03164304047822952, 0.15474793314933777, 0.049551334232091904, -0.05370146036148071, 0.05625450983643532, 0.07605006545782089, 0.23867930471897125, 0.10401605814695358, 0.10196955502033234, -0.06798075139522552, 0.10180158913135529, -0.12330973148345947, -0.08915644884109497, -0.17508824169635773, 0.11820860952138901, 0.00015364694991149008, 0.1317785084247589, -0.12023144960403442, 0.07898581773042679, -0.067511186003685, 0.013453764840960503, 0.01636839471757412, 0.0820009782910347, -0.012399360537528992, 0.10676060616970062, -0.005061192903667688, -0.06941985338926315, 0.014177112840116024, 0.05935845896601677, 0.03754841163754463, -0.038601722568273544, -0.03192409873008728, -0.05762290954589844, -0.05065649375319481, -0.10128600150346756, -0.06447898596525192, 0.018573462963104248, -0.007677143905311823, -0.1833900660276413, -0.06407523155212402, 0.00897200871258974, 0.015712225809693336, -0.03988850116729736, -0.05148044601082802, -0.15265507996082306, -0.042461175471544266, -0.015450406819581985, -0.03500641882419586, -0.06214277446269989, -0.0383245050907135, 0.046435944736003876, -0.07560601085424423, 0.013364278711378574, 0.023342855274677277, 0.05405820533633232, -0.025881100445985794, 0.06068144738674164, -0.08357544988393784, 0.09493788331747055, -0.1540430635213852, -0.03271956741809845, -0.025445878505706787, -0.041183918714523315, 0.1752462536096573, 0.06099751964211464, -0.015994304791092873, 0.15260063111782074, -0.17141541838645935, -0.058121129870414734, 0.15596486628055573, 0.008629098534584045, -0.09967197477817535, -0.003560945624485612, -0.09397093951702118, 0.1428760588169098, 0.08571921288967133, 0.2478504776954651, 0.12005335837602615, -0.22748184204101562, 0.055358242243528366, 0.12515293061733246, -0.14365963637828827, 0.10365243256092072, 0.07344598323106766, 0.005470725707709789, -0.18886831402778625, -0.06843198090791702, -0.06121627986431122, 0.1053021252155304, -0.08522345870733261, -0.0776243582367897, 0.09323626756668091, -0.05086790770292282, 0.24641476571559906, -0.028281206265091896, 0.06174173951148987, -0.026681531220674515, -0.1389324963092804, -0.01723906397819519, 0.060955192893743515, 0.05258452147245407, -0.024835573509335518, -0.25895482301712036, 0.13646544516086578, 0.048650871962308884, 0.025074828416109085, 0.004106190986931324, -0.05691491439938545, 0.016934165731072426, 0.1511998474597931, 0.020012924447655678, 0.13717477023601532, 0.027723990380764008, 0.0706823319196701, -0.006239562761038542, -0.10560829937458038, -0.04169593006372452, 0.061916545033454895, -0.08518962562084198, -0.06641357392072678, 0.011197872459888458, -0.06935211271047592, -0.11783787608146667, -0.12166737765073776, -0.026334572583436966, -0.02980303019285202, -0.07444227486848831, 0.02368103712797165, 0.06536602973937988, -0.06702698022127151, -0.0023908785078674555, 0.007125476840883493, -0.011537045240402222, 0.16434046626091003, 0.011393417604267597, -0.007796820718795061, 0.1328643560409546, -0.11533161997795105, 0.12461213022470474, 0.049438029527664185, -0.024806302040815353, -0.04662557691335678, 0.0014137453399598598, -0.057529181241989136, 0.029044216498732567, -0.04390640929341316, 0.02774495631456375, 0.20111067593097687, 0.02772962674498558, 0.11389166116714478, -0.0656520202755928, 0.04385066404938698, -0.007961965166032314, -0.009693224914371967, 0.018563594669103622, 0.07608018070459366, 0.07813210040330887, -0.1324140727519989, 0.02262016013264656, 0.22455167770385742, 0.1385764330625534, 0.18313980102539062, -0.010877152904868126, 0.06325667351484299, -0.04875868931412697, 0.027505528181791306, 0.024100203067064285, 0.10314226150512695, -0.10732068121433258, -0.0322517491877079, -0.025407759472727776, 0.023599207401275635, -0.08197105675935745, -0.1055799350142479, -0.090115025639534, 0.01222382951527834, -0.03125503659248352, -0.15570329129695892, 0.13300658762454987, -0.10451057553291321, 0.01802753657102585, 0.04692702740430832, -0.22163605690002441, 0.11530312895774841, 0.014291439205408096, -0.10303618758916855, 0.11281087249517441, -0.12051989883184433, -0.08699832111597061, -0.05777236074209213, -0.18658851087093353, 0.05280197039246559, 0.04673841595649719, 0.05166793242096901, -0.18521739542484283, 0.024835903197526932, 0.05545609071850777, 0.13426995277404785, -0.09743253141641617, -0.07142634689807892, -0.15038461983203888, 0.016068490222096443, -0.033661190420389175, -0.16029728949069977, -0.005609163548797369, -0.032781440764665604, -0.18849676847457886, -0.04539939761161804, -0.15086813271045685, -0.034627582877874374, 0.20464378595352173, 0.026907702907919884, 0.09480511397123337, -0.07926445454359055, 0.3802889585494995, -0.042039383202791214, -0.06146497279405594, -0.01321389526128769, -0.07072482258081436, 0.02512686513364315, 0.13271741569042206, 0.0036099457647651434, -0.017886579036712646, -0.0037857077550143003, 0.0024592927657067776, -0.06234965845942497, -0.13400450348854065, 0.0028710351325571537, 0.03905198723077774, 0.1874423623085022, 0.004639793653041124, 0.06659388542175293, 0.03133883699774742, 0.057546284049749374, 0.07748064398765564, 0.030926106497645378, 0.0011591583024710417, -0.01591806672513485, 0.06604493409395218, -0.11684755235910416, 0.042466625571250916, -0.030429253354668617, -0.10143838077783585, -0.013183288276195526, 0.07950251549482346, 0.12755028903484344, 0.17849206924438477, -0.04790908098220825, 0.17489230632781982, 0.13580141961574554, 0.16576050221920013, 0.049315933138132095, -0.020801831036806107, -0.08773037046194077, -0.06118565797805786, 0.004774159751832485, -0.031952597200870514, 0.04869702458381653, 0.3231290578842163, 0.037619613111019135, -0.09036035090684891, 0.11149907857179642, 0.009480619803071022, 0.05359881371259689, 0.022797370329499245, -0.11162138730287552, 0.11170321702957153, 0.07968773692846298, -0.06341761350631714, -0.07602835446596146, 0.16758501529693604, -0.1109386757016182, -0.26646625995635986, -0.11410990357398987, -0.012305386364459991, 0.07903840392827988, 0.005651174578815699, 0.05498376116156578, -0.11829282343387604, -0.16034497320652008, -0.034191906452178955, 0.1335442066192627, -0.3077351450920105, 0.2065143585205078, -0.0198091771453619, 0.06707923114299774, -0.039657969027757645, -0.07026876509189606, 0.09694647043943405, 0.13174086809158325, 0.29124146699905396, 0.01396956667304039, 0.04841272905468941, -0.15176129341125488, -0.0976925864815712, 0.0018439020495861769, 0.015482662245631218, -0.02563396655023098, 0.028520405292510986, -0.0540912002325058, 0.008404579944908619, -0.018086453899741173, 0.2102297693490982, -0.11316607892513275, 0.004344627261161804, -0.06968966871500015, -0.11707738786935806, 0.19409789144992828, -0.07178345322608948, -0.04543264955282211, -0.14959357678890228, -0.15512511134147644, -0.004174166824668646, -0.02413962036371231, -0.019664527848362923, -0.17603960633277893, -0.18804074823856354, -0.05204557999968529, -0.005645004566758871, -0.003464865731075406, 0.05867868289351463, -0.07517234236001968, -0.04805335775017738, 0.1009904220700264, -0.07743175327777863, -0.056063808500766754, -0.1103200614452362, 0.1391381323337555, 0.06248528137803078, 0.16743235290050507, 0.05907081440091133, 0.0006117874872870743, 0.11471151560544968, -0.02913086675107479, 0.11103474348783493, -0.11291708797216415, -0.17145049571990967, -0.08334989100694656, -0.018775060772895813, 0.09519003331661224, -0.04789286106824875, 0.0028788831550627947, 0.2550160884857178, 0.14880181849002838, -0.0897710770368576, 0.27680760622024536, 0.04414956644177437, -0.09375058114528656, -0.18432219326496124, -0.15961645543575287, 0.03759992495179176, 0.060025621205568314, 0.13095876574516296, -0.057205069810152054, -0.08483537286520004, -0.08492398262023926, -0.07478608191013336, -0.13140805065631866, -0.24232175946235657, -0.030598774552345276, 0.22874866425991058, 0.08656918257474899, 0.08219650387763977, -0.012482990510761738, -0.01186054851859808, 0.00526038184762001, 0.02680150233209133, 0.12018456310033798, -0.13341329991817474, 0.11107480525970459, 0.022198403254151344, 0.044267985969781876, 0.009712530300021172, 0.07929777354001999, 0.03375575691461563, -0.003218587953597307, -0.0006439819699153304, -0.0988350659608841, -0.2596651017665863, 0.0816885456442833, -0.01623627357184887, -0.09960969537496567, 0.014988959766924381, 0.02061903104186058, -0.2089255303144455, 0.011128270998597145, -0.019883770495653152, -0.03150356933474541, -0.06483490765094757, -0.10664787143468857, -0.056551624089479446, 0.04928823933005333, 0.10853826254606247, 0.011660109274089336, 0.05354316532611847, -0.0404130220413208, 0.07917837053537369, 0.0826287642121315, 0.15132710337638855, 0.06795957684516907, -0.190711110830307, -0.10953907668590546, -0.0414445661008358, 0.12121522426605225, -0.12505418062210083, 0.036917757242918015, 0.053161121904850006, -0.016534561291337013, 0.14621229469776154, 0.1070784479379654, -0.07452095299959183, 0.11915595084428787, 0.08904775977134705, -0.04094788804650307, -0.23367151618003845, -0.07120766490697861, 0.11133213341236115, 0.07195597887039185, -0.03961895406246185, 0.018120890483260155, -0.04960581287741661, -0.013980977237224579, 0.048759616911411285, -0.0538676381111145, -0.07230538129806519, 0.004421027842909098, 0.1247575581073761, 0.1029362753033638, -0.04655474051833153, 0.01296416949480772, 0.037371400743722916, 0.003788623260334134, 0.04730486497282982, 0.0407949760556221, -0.08269952982664108, -0.04124005511403084, 0.02782733179628849, 0.37552911043167114, -0.010165480896830559, -0.020456433296203613, 0.018555615097284317, -0.19949445128440857, 0.09135842323303223, 0.13205479085445404, 0.04697350412607193, 0.004247748292982578, -0.08139242231845856, 0.026877427473664284, -0.010625290684401989, 0.09936143457889557, -0.07806670665740967, -0.05493134260177612, -0.21631066501140594, -0.025010565295815468, 0.017490221187472343, 0.24077683687210083, -0.08458559215068817, -0.12801732122898102, -0.20628872513771057, 0.13128381967544556, -0.11333390325307846, -0.03695881739258766, -0.024473199620842934, 0.03926658630371094, -0.01989821158349514, 0.06291737407445908, -0.0710630789399147, 0.006373001262545586, -0.11024709790945053, 0.055267609655857086, 0.04204455390572548, 0.1229788213968277, 0.014207782223820686, 0.02016810141503811, 0.05822525918483734, -0.01837925612926483, 0.07173580676317215, -0.06203491613268852, -0.04550490900874138, 0.14224006235599518, -0.020255116745829582, -0.04152837023139, -0.0483345128595829, -0.036874305456876755, 0.11981741338968277, -0.05059147998690605, -0.007141099311411381, -0.054929375648498535, -0.06906463205814362, 0.03462086617946625, -0.009175732731819153, -0.008798843249678612, 0.06801853328943253, 0.04024988040328026, -0.026994358748197556, 0.005263668950647116, 0.03447828069329262, -0.10330043733119965, -0.04955084249377251, 0.16955432295799255, -0.0749620869755745, 0.10274054110050201, -0.031069839373230934, 0.018015999346971512, 0.005847334861755371, -0.022399673238396645, -0.015360680408775806, -0.1457086056470871, -0.06137600541114807, -0.09489979594945908, 0.11565322428941727, 0.08146517723798752, 0.03358805552124977, 0.04274565726518631, 0.019532648846507072, -0.04414922371506691, -0.038583990186452866, 0.12961317598819733, 0.08133101463317871, 0.012996876612305641, 0.01137041300535202, 0.01941833831369877, -0.020302120596170425, 0.0028480992186814547, -0.01250747125595808, -0.07239153981208801, -0.05874783173203468, 0.09400010108947754, 0.1600283533334732, -0.06127211079001427, -0.13325586915016174, -0.020593497902154922, 0.04988488554954529, 0.0014717020094394684, -0.08777432143688202, 0.04833676666021347, 0.15805292129516602, -0.05623878911137581, 0.03216489031910896, -0.09984751045703888, -0.07263360917568207, -0.16060975193977356, -0.10029061883687973, -0.06092562898993492, -0.28350353240966797, 0.09752398729324341, 0.006392303854227066, -0.014731393195688725, 0.059529416263103485, 0.051305368542671204, -0.052508849650621414, 0.07068239152431488, -0.18146829307079315, -0.007054794579744339, 0.03497592359781265, -0.13212306797504425, 0.02475893869996071, -0.2378365397453308, 0.10198072344064713, -0.04623803123831749, -0.1519704908132553, -0.04004510119557381, 0.0641569048166275, -0.09540136158466339, -0.01822364516556263, -0.0475153923034668, -0.01922670193016529, 0.01624443754553795, -0.009348669089376926, -0.031147832050919533, 0.13716529309749603, 0.02827494591474533, -0.03268734738230705, 0.005254602525383234, 0.0223685409873724, 0.03955082967877388, -0.0969657450914383, -0.05986930429935455, 0.08311155438423157, -0.031056145206093788, 0.14728976786136627, 0.000341245875461027, 0.04181376099586487, -0.06758682429790497, 0.2593761384487152, 0.2023983597755432, -0.12479214370250702, 0.008118697442114353, -0.021801479160785675, 0.012670028023421764, -0.041751839220523834, 0.13110700249671936, 0.013386172242462635, 0.12186761200428009, -0.17513342201709747, -0.01036517322063446, -0.0818324014544487, -0.04501292482018471, 0.06702108681201935, 0.14714950323104858, 0.15742522478103638, 0.03436789661645889, -0.07328428328037262, 0.06722653657197952, -0.30119743943214417, 0.20540550351142883, -0.1346001923084259, -0.01498429011553526, -0.040251150727272034, -0.058389630168676376, 0.061147745698690414, 0.11309876292943954, 0.10832664370536804, -0.021150551736354828, -0.0905047357082367, -0.04486766457557678, -0.039378076791763306, -0.13019338250160217, -0.02718670479953289, 0.1654091775417328, 0.06799814850091934, 0.31520840525627136, -0.017577875405550003, 0.07702425122261047, 0.034410297870635986, 0.06451138854026794, 0.004519328009337187, 0.09537279605865479, 0.07960964739322662, -0.06345855444669724, -0.07373003661632538, -0.001637450186535716, 0.05033271387219429, 0.14567798376083374, -0.03826142102479935, -0.18691548705101013, 0.15858715772628784, 0.07192251086235046, -0.13762691617012024, -0.05777517706155777, 0.08409425616264343, -0.0739973932504654, 0.0550808347761631, 0.08115427941083908, 0.015876613557338715, -0.017793258652091026, -0.004664506763219833, 0.06074233725667, 0.024694660678505898, -0.02343848906457424, 0.003570882137864828, -0.08337053656578064, -0.04151543974876404, 0.07267895340919495, -0.0844460055232048, -0.20546193420886993, -0.0957019031047821, -0.07551700621843338, 0.030557552352547646, -0.0649830624461174, 0.12575586140155792, 0.1717868149280548, 0.0593598335981369, -0.03307248651981354, -0.10721943527460098, -0.035562749952077866, 0.07602505385875702, -0.044773899018764496, -0.09409699589014053 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 <Gallery /> ## Model description These are yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 500 - learning_rate: 0.0001 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - gradient_accumulation_steps: 3 - GPU: T4 - duration: 3750.725435256958
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "has_space", "region:us" ]
2024-02-07T01:12:44+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
# SDXL LoRA DreamBooth - yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 <Gallery /> ## Model description These are yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 500 - learning_rate: 0.0001 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps: 3 - GPU: T4 - duration: 3750.725435256958
[ "# SDXL LoRA DreamBooth - yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 500\n- learning_rate: 0.0001\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3750.725435256958" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 500\n- learning_rate: 0.0001\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3750.725435256958" ]
[ 82, 50, 115, 19, 28, 101 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4\n\n<Gallery />## Model description\n\nThese are yaneq/jan_JPwhCWIhuJJSLNMi42rI_SDXL_LoRA_500_9d94_500_1e4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 500\n- learning_rate: 0.0001\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3750.725435256958" ]
[ -0.08090734481811523, 0.1801203191280365, -0.0007834987482056022, 0.05318322032690048, 0.14591854810714722, 0.07916778326034546, 0.11557203531265259, 0.14877600967884064, 0.041506726294755936, 0.12711189687252045, 0.037700310349464417, 0.03503600135445595, 0.10958848893642426, 0.1443326324224472, 0.02318069338798523, -0.09665335714817047, 0.0476045235991478, -0.060447465628385544, 0.03657874837517738, 0.03566274791955948, 0.02974005602300167, -0.06348485499620438, 0.05781615898013115, -0.009245933033525944, -0.04204424470663071, 0.041374508291482925, 0.005237386096268892, -0.00788887683302164, 0.02553964965045452, 0.059120193123817444, 0.02658228762447834, 0.0336817242205143, 0.10875725746154785, -0.23715582489967346, 0.02026032656431198, 0.1247132420539856, -0.03738556057214737, 0.063981793820858, 0.023179370909929276, -0.0488741509616375, -0.006752816494554281, -0.13472265005111694, 0.07471996545791626, 0.07434892654418945, -0.0410093292593956, -0.27403724193573, -0.132704496383667, 0.05683944746851921, 0.043746236711740494, 0.11562349647283554, -0.004689418710768223, 0.07874002307653427, 0.034547749906778336, 0.03270123526453972, 0.20726118981838226, -0.11534768342971802, -0.00330568035133183, 0.16192558407783508, 0.028154943138360977, 0.0764767974615097, -0.027998529374599457, 0.005601596087217331, 0.08753504604101181, -0.003524382133036852, 0.06539037823677063, -0.011688674800097942, 0.04449308663606644, -0.05712702125310898, -0.08854267001152039, -0.02987724542617798, 0.1529376059770584, 0.04643420875072479, -0.10912718623876572, -0.12381576001644135, -0.01695077121257782, 0.0347827672958374, 0.004298028070479631, 0.0002611915406305343, 0.017061300575733185, -0.003733546705916524, 0.03864886611700058, -0.09421253204345703, -0.013058729469776154, -0.06336912512779236, 0.08372553437948227, 0.1502232700586319, 0.02635139785706997, -0.0025360791478306055, 0.03648795932531357, 0.049478232860565186, -0.09667058289051056, -0.09806613624095917, -0.04831930622458458, -0.014427739195525646, -0.07141266018152237, -0.005067192483693361, -0.00810558907687664, -0.08327410370111465, 0.0218852236866951, 0.082392618060112, -0.03771813213825226, 0.049495767802000046, -0.043273650109767914, 0.018251994624733925, -0.07400809228420258, 0.1281554400920868, -0.09950853884220123, 0.0036785888951271772, 0.028209548443555832, 0.11314594745635986, 0.06896907091140747, -0.030610909685492516, -0.1188291609287262, -0.055466946214437485, -0.05664759501814842, 0.07534369826316833, 0.007420736365020275, -0.017813237383961678, -0.10523559153079987, -0.03844612464308739, 0.16393552720546722, -0.08912747353315353, 0.03938816487789154, 0.003653703723102808, -0.07708748430013657, 0.050542883574962616, 0.13577228784561157, -0.0038000422064214945, -0.04047238081693649, 0.11681445688009262, -0.051152896136045456, 0.021588999778032303, -0.06549843400716782, -0.1632329374551773, 0.048954181373119354, -0.11527543514966965, -0.02622995339334011, -0.09608758240938187, -0.20938315987586975, -0.06018057465553284, -0.013555767945945263, -0.02314484678208828, 0.040062058717012405, -0.04881630092859268, -0.08680927753448486, 0.028681622818112373, 0.05061102658510208, -0.03879738226532936, -0.028221428394317627, 0.04932471737265587, -0.08257957547903061, 0.1029864251613617, 0.009710049256682396, 0.013738206587731838, -0.020377563312649727, 0.030123339965939522, -0.12936626374721527, 0.10475098341703415, -0.09799790382385254, 0.028900155797600746, -0.11999670416116714, -0.07592228800058365, 0.032683633267879486, -0.016278458759188652, 0.0653780922293663, 0.1064988300204277, -0.2274985909461975, -0.04934278875589371, 0.12973745167255402, -0.13795532286167145, -0.08984853327274323, 0.03480224683880806, -0.024914100766181946, 0.038160037249326706, 0.05048190429806709, 0.08851621299982071, 0.16275891661643982, -0.18791478872299194, -0.08609411865472794, -0.024501923471689224, 0.029008999466896057, 0.10182918608188629, 0.05855978652834892, -0.04017733037471771, -0.050981976091861725, 0.005221174098551273, -0.026185156777501106, 0.03130298852920532, 0.007099636364728212, -0.04612751305103302, -0.040708668529987335, -0.07266734540462494, 0.06594002991914749, -0.007963872514665127, -0.02980208955705166, -0.008176147937774658, -0.0924006924033165, 0.01295028068125248, 0.1493178755044937, -0.06099291145801544, 0.027034977450966835, -0.06465490907430649, -0.025595471262931824, -0.0348098985850811, 0.01027325913310051, -0.10664157569408417, -0.09885408729314804, 0.07432940602302551, -0.16319724917411804, -0.010009569115936756, -0.06752178817987442, 0.06614331156015396, 0.06638973206281662, -0.08077693730592728, -0.07760078459978104, -0.06535221636295319, -0.010790904052555561, 0.0015070207882672548, -0.14467723667621613, -0.06594537943601608, -0.04579140990972519, 0.07164192199707031, -0.18602001667022705, 0.04773922264575958, 0.03724122419953346, 0.10110259801149368, 0.05212157592177391, -0.059028152376413345, 0.05596688762307167, 0.022417312487959862, -0.0099789435043931, -0.10289864987134933, -0.01746387779712677, -0.021107902750372887, -0.17468301951885223, 0.04821505770087242, -0.14652211964130402, -0.0067569417878985405, 0.07640206813812256, 0.13681165874004364, -0.09919361770153046, 0.015115628950297832, 0.0019724296871572733, -0.03705969080328941, -0.08867821097373962, -0.08515828102827072, 0.025736337527632713, 0.012385793030261993, 0.0872054472565651, -0.063053660094738, 0.0009890736546367407, 0.03635452315211296, 0.005907461978495121, -0.02942042052745819, 0.10075976699590683, 0.0014988180482760072, 0.001678422442637384, 0.04313264787197113, 0.012887022458016872, -0.05363182723522186, 0.15351736545562744, 0.044822730123996735, -0.05661716312170029, -0.03168903663754463, 0.038781363517045975, 0.09145043790340424, 0.07538800686597824, 0.07498031109571457, 0.11208848655223846, 0.031197918578982353, 0.004691564477980137, -0.03637192025780678, -0.1324981153011322, -0.033509522676467896, 0.03730761259794235, -0.07960101217031479, 0.00018555857241153717, 0.02343004010617733, -0.031064465641975403, 0.06831058114767075, -0.023742932826280594, 0.1558845043182373, 0.007108726073056459, -0.03635990619659424, -0.1170022189617157, 0.1514108031988144, -0.13335436582565308, -0.15703637897968292, -0.14220748841762543, 0.05415232479572296, -0.03670594096183777, -0.012398810125887394, 0.04697825387120247, -0.12754932045936584, -0.08197802305221558, -0.08995725959539413, -0.029587140306830406, -0.00846585538238287, -0.03376210108399391, 0.041163984686136246, -0.01201036386191845, 0.14176593720912933, -0.10641036182641983, 0.009530221112072468, 0.05687633529305458, -0.037252746522426605, -0.03012741357088089, 0.028253212571144104, 0.08950179815292358, 0.04785255715250969, 0.03974650055170059, 0.02906135283410549, -0.014999933540821075, 0.1996537744998932, -0.028773007914423943, 0.09391188621520996, 0.19784259796142578, 0.0725286453962326, 0.11753091961145401, 0.11991333216428757, 0.0361599400639534, -0.04062099754810333, 0.028474111109972, 0.05056547001004219, -0.07936282455921173, -0.22549864649772644, -0.10699137300252914, -0.03644564747810364, -0.055236391723155975, 0.1424684226512909, 0.049715835601091385, 0.0849980041384697, 0.09670666605234146, -0.11064846813678741, 0.10788708180189133, 0.02809925004839897, 0.11056558042764664, -0.007225318346172571, 0.051088619977235794, 0.023458631709218025, -0.06549276411533356, 0.061459217220544815, 0.09279941022396088, 0.02534784935414791, 0.1774052530527115, -0.08463776111602783, 0.07718449831008911, 0.004696734249591827, 0.06947508454322815, -0.00877296645194292, 0.0014925485011190176, 0.006519337650388479, -0.012670192867517471, 0.019542770460247993, -0.13392701745033264, 0.06645593047142029, 0.15049609541893005, -0.02422017976641655, 0.06448005139827728, -0.03748795762658119, -0.011487233452498913, 0.02918029949069023, 0.03513362258672714, 0.04816475510597229, -0.244235098361969, -0.03150909021496773, 0.0437970831990242, 0.11274176090955734, -0.03611547127366066, -0.03676217421889305, 0.12744788825511932, -0.09555208683013916, 0.1352028101682663, -0.019804822281003, 0.08570441603660583, -0.03975348174571991, -0.05365366116166115, 0.08400043100118637, 0.15951713919639587, -0.006843413691967726, 0.04363071173429489, -0.1707257479429245, 0.0742851123213768, 0.04736072197556496, 0.09655918180942535, -0.05827857926487923, 0.04542863741517067, 0.06349632889032364, 0.0445142425596714, 0.13865312933921814, 0.034689947962760925, -0.012272649444639683, -0.1990601271390915, -0.05202721804380417, -0.04673600196838379, 0.07286731898784637, -0.0819668248295784, 0.0581764318048954, 0.030295124277472496, -0.0265780258923769, 0.007266003172844648, 0.03481215611100197, -0.18121479451656342, -0.13418801128864288, 0.035767119377851486, 0.14406098425388336, 0.048492688685655594, -0.08820763975381851, -0.0745229497551918, -0.054570864886045456, 0.08959255367517471, -0.07940497994422913, -0.07691171020269394, -0.10775432735681534, -0.014208081178367138, 0.11520500481128693, -0.06080131605267525, 0.023554816842079163, -0.0051874639466404915, 0.14079202711582184, -0.10190194845199585, -0.09859137237071991, 0.02734016254544258, -0.07709191739559174, -0.20734134316444397, -0.0711158961057663, 0.09566490352153778, 0.04604855924844742, 0.011524510569870472, -0.023918895050883293, 0.019318286329507828, 0.0444185771048069, -0.1406020224094391, 0.07840395718812943, 0.2439277470111847, 0.03025459125638008, 0.16755734384059906, -0.00918311346322298, -0.06673678010702133, -0.03440989926457405, -0.01236475445330143, 0.02019568905234337, 0.2884920835494995, -0.12418217957019806, 0.07734185457229614, 0.056977614760398865, -0.08392801880836487, -0.1605370044708252, 0.06747914850711823, 0.08399255573749542, 0.0028809155337512493, 0.017745543271303177, -0.2104519009590149, 0.04017925634980202, 0.05149015784263611, -0.01882709562778473, 0.0673038586974144, -0.3356635272502899, -0.1578601598739624, -0.0821281149983406, 0.10505393892526627, 0.02719178982079029, -0.09665583074092865, -0.05957084149122238, -0.13362674415111542, -0.08862116932868958, 0.08168943971395493, -0.04547523334622383, 0.0691566914319992, -0.008909742347896099, -0.022789252921938896, 0.029680218547582626, -0.06573794782161713, 0.17739783227443695, -0.00803676713258028, 0.05628160387277603, -0.02740541286766529, 0.06840106099843979, 0.09515313804149628, -0.07615720480680466, 0.08922260999679565, -0.08695515245199203, 0.057438209652900696, -0.08281897008419037, -0.005898591130971909, -0.024975987151265144, 0.03422309085726738, -0.04444039985537529, -0.05494506284594536, -0.07677599042654037, 0.07838532328605652, 0.13620977103710175, -0.03271394968032837, -0.057651542127132416, -0.009365872479975224, 0.12047061324119568, 0.12744344770908356, 0.022823091596364975, 0.10048980265855789, -0.08650970458984375, 0.034355197101831436, -0.06690001487731934, 0.11606912314891815, -0.17079806327819824, 0.03900915011763573, 0.076475128531456, 0.04640902951359749, 0.1557299643754959, -0.00822500791400671, -0.1390598863363266, 0.045094579458236694, 0.014679369516670704, -0.09340794384479523, -0.14905217289924622, -0.02972276322543621, 0.04338545724749565, -0.07071427255868912, -0.012481863610446453, 0.10766896605491638, -0.0764729306101799, 0.012789695523679256, 0.01269116997718811, 0.05709293112158775, -0.012688364833593369, 0.10883399099111557, 0.0518062524497509, 0.05399773642420769, -0.060995012521743774, 0.11119972914457321, 0.05119679495692253, -0.06627717614173889, 0.08673086017370224, 0.07001045346260071, -0.0838760957121849, -0.003060566959902644, -0.0822995975613594, 0.060930266976356506, -0.032862529158592224, -0.05013077333569527, -0.0259217768907547, -0.08646706491708755, 0.0066634793765842915, 0.09821861982345581, 0.012719334103167057, 0.022357746958732605, 0.015887079760432243, -0.046012889593839645, -0.1098504438996315, 0.055037207901477814, 0.019974470138549805, 0.05329759046435356, -0.16602352261543274, 0.036678753793239594, 0.05170365050435066, -0.011381699703633785, 0.01240708027034998, 0.011808540672063828, -0.1343717873096466, -0.02786880172789097, -0.13928008079528809, 0.09601513296365738, -0.06862259656190872, 0.013275457546114922, -0.03632961958646774, -0.004618760198354721, 0.01639673113822937, 0.06414757668972015, -0.035005342215299606, -0.11938094347715378, 0.017503106966614723, 0.07236330956220627, -0.08985015749931335, -0.03833469748497009, 0.0038095726631581783, -0.07663344591856003, 0.041520148515701294, -0.001682761125266552, -0.032853253185749054, -0.0018293638713657856, -0.12361996620893478, 0.061293404549360275, 0.06856654584407806, 0.021176615729928017, -0.004860490094870329, -0.12027867138385773, 0.009836014360189438, -0.05893687531352043, -0.07399818301200867, 0.02060270868241787, -0.001963231712579727, -0.10313495248556137, 0.010714123025536537, -0.02570377103984356, 0.03634997084736824, -0.07227969169616699, 0.08851119130849838, 0.13622461259365082, 0.04972967505455017, 0.07683294266462326, -0.08107493817806244, 0.08662331849336624, -0.16956070065498352, -0.04362468048930168, -0.021071357652544975, -0.02735351398587227, -0.04416738450527191, 0.00612224405631423, 0.07464589923620224, -0.022135155275464058, 0.09470268338918686, -0.09030354768037796, 0.07559628784656525, -0.0026323955971747637, 0.005606692750006914, -0.045099444687366486, -0.01940886303782463, 0.12764416635036469, -0.02140164002776146, -0.0076030222699046135, 0.01578274928033352, -0.013888883404433727, 0.062062960118055344, 0.11211486160755157, 0.03881508484482765, 0.06905435770750046, 0.06887971609830856, 0.026926830410957336, 0.02386905811727047, -0.07175853103399277, -0.062076739966869354, 0.1360650658607483, -0.049166709184646606, 0.08309315890073776, -0.05909207463264465, -0.00156548828817904, 0.09738637506961823, -0.15456649661064148, 0.022825494408607483, 0.044769641011953354, -0.06706894934177399, -0.10088496655225754, -0.169841006398201, -0.0813225656747818, -0.13102225959300995, 0.012465187348425388, -0.08611174672842026, 0.06632611900568008, 0.02360931783914566, -0.03302224725484848, 0.0258910171687603, 0.11675874143838882, -0.054670292884111404, -0.02453051321208477, 0.023323940113186836, -0.013727367855608463, -0.0223420150578022, 0.07488836348056793, -0.05911419540643692, 0.15741249918937683, -0.010156435891985893, 0.038924604654312134, 0.044082868844270706, 0.053421445190906525, 0.06053420901298523, -0.007984288968145847, -0.08616746217012405, 0.008124842308461666, 0.02694174274802208, 0.02209564484655857, 0.16986876726150513, 0.07499999552965164, 0.030032789334654808, -0.04857659339904785, 0.170616015791893, -0.08762691915035248, -0.008749331347644329, -0.12035727500915527, 0.04279017448425293, 0.001895967056043446, -0.003843393875285983, 0.013133411295711994, -0.09624738991260529, -0.028416013345122337, 0.06603111326694489, 0.07558905333280563, 0.013867146335542202, 0.02221648208796978, -0.0438290536403656, -0.012379865162074566, -0.048712339252233505, 0.07022803276777267, 0.036662377417087555, 0.03889361768960953, -0.029126528650522232, 0.047954633831977844, -0.0282187070697546, -0.03594181314110756, -0.014146958477795124, 0.03358995169401169, -0.06393919885158539, -0.01908445730805397, -0.04299122095108032, 0.05347966402769089, -0.01831410825252533, -0.16868054866790771, 0.1492454558610916, -0.11120054870843887, -0.05444851890206337, -0.03192468360066414, 0.0671585276722908, 0.017057662829756737, -0.003859117394313216, -0.0314522385597229, -0.012993373908102512, 0.11172708868980408, -0.04579171910881996, -0.05468246340751648, -0.1324560046195984, -0.03803833946585655, -0.07823750376701355, 0.21558813750743866, 0.008771532215178013, 0.0403018444776535, 0.07469987869262695, 0.023661553859710693, -0.15630942583084106, 0.08406917750835419, 0.018483413383364677, -0.09808993339538574, -0.03778989985585213, 0.18469208478927612, -0.07171796262264252, 0.17834137380123138, 0.02193688042461872, -0.11196315288543701, 0.03235765919089317, 0.038865167647600174, -0.037703100591897964, -0.06916219741106033, 0.017581412568688393, -0.09808140248060226, 0.12687189877033234, 0.1534142941236496, -0.04517721012234688, -0.030598174780607224, 0.003166577313095331, 0.02277764305472374, 0.00997926015406847, 0.06923732161521912, 0.032681144773960114, -0.08948526531457901, 0.03622373566031456, -0.011737057007849216, 0.10180121660232544, -0.1606587916612625, -0.0779104009270668, -0.039432674646377563, -0.05585935339331627, 0.007265947759151459, 0.09613285213708878, 0.050385329872369766, 0.03642909228801727, -0.032899100333452225, -0.2478821724653244, 0.020262228325009346, 0.14947648346424103, -0.07164638489484787, -0.08777394890785217 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 <Gallery /> ## Model description These are yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 500 - learning_rate: 1e-06 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - gradient_accumulation_steps: 3 - GPU: T4 - duration: 3756.0951092243195
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "has_space", "region:us" ]
2024-02-07T01:12:51+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
# SDXL LoRA DreamBooth - yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 <Gallery /> ## Model description These are yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 500 - learning_rate: 1e-06 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps: 3 - GPU: T4 - duration: 3756.0951092243195
[ "# SDXL LoRA DreamBooth - yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 500\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3756.0951092243195" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 500\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3756.0951092243195" ]
[ 82, 52, 117, 19, 28, 104 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6\n\n<Gallery />## Model description\n\nThese are yaneq/jan_4NN3FwIWsy3zLPH87uAV_SDXL_LoRA_500_9d94_500_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 500\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 3756.0951092243195" ]
[ -0.09718544036149979, 0.17014342546463013, -0.0014663728652521968, 0.06530047208070755, 0.1338321417570114, 0.0597577728331089, 0.14943353831768036, 0.1439712941646576, 0.04262157157063484, 0.11979293823242188, 0.0297235194593668, 0.06829456239938736, 0.10311772674322128, 0.18652208149433136, 0.00637316657230258, -0.15765315294265747, 0.02985459752380848, -0.05094050616025925, -0.0039035524241626263, 0.04618827998638153, 0.03751421719789505, -0.07006190717220306, 0.08576507866382599, -0.03109947219491005, -0.04807065799832344, 0.04506608843803406, -0.026675503700971603, -0.022219322621822357, 0.015136079862713814, 0.060026079416275024, 0.04579426720738411, 0.058510132133960724, 0.1141958087682724, -0.2804156541824341, 0.01605159416794777, 0.10115356743335724, -0.04742007330060005, 0.04669075831770897, 0.023033592849969864, -0.0409776046872139, 0.03392499312758446, -0.13986290991306305, 0.0852029025554657, 0.0635809525847435, -0.048593442887067795, -0.2037804275751114, -0.10001742094755173, 0.0532757043838501, 0.08399932831525803, 0.11255070567131042, -0.0001474930759286508, 0.02031051740050316, 0.06655154377222061, 0.05293352156877518, 0.20986780524253845, -0.09924859553575516, -0.02831353433430195, 0.11225169152021408, 0.029256751760840416, 0.08417842537164688, -0.030658317729830742, -0.0011217724531888962, 0.07813318073749542, -0.014138152822852135, 0.0696110799908638, -0.030925365164875984, 0.03202739730477333, -0.06917489320039749, -0.09830275923013687, -0.019080722704529762, 0.1697329878807068, 0.04461628198623657, -0.08601799607276917, -0.12001975625753403, -0.021604755893349648, 0.007695062085986137, -0.007840725593268871, 0.010350720025599003, 0.022131063044071198, -0.028282202780246735, 0.0019313221564516425, -0.10598736256361008, -0.0284464992582798, -0.057869721204042435, 0.06080639362335205, 0.18847692012786865, 0.026708798483014107, -0.0008998580160550773, 0.008620448410511017, 0.053192611783742905, -0.02933245338499546, -0.1231108158826828, -0.06737702339887619, -0.023415669798851013, -0.06919638812541962, 0.005516769830137491, -0.012595760636031628, -0.061168521642684937, 0.020600223913788795, 0.10819566249847412, -0.08309722691774368, 0.05901332199573517, -0.013165592215955257, 0.026048894971609116, -0.05215985327959061, 0.11708589643239975, -0.0328771211206913, -0.058137111365795135, 0.017941197380423546, 0.10505583137273788, 0.08411478996276855, -0.0333661325275898, -0.13272948563098907, -0.008588013239204884, -0.08362513035535812, 0.07214369624853134, 0.010748675093054771, -0.008333016186952591, -0.09091784060001373, -0.0454002283513546, 0.1521649956703186, -0.10002604871988297, 0.02794872783124447, 0.015610559843480587, -0.0899493396282196, 0.022954698652029037, 0.09710493683815002, -0.014196548610925674, -0.04331602528691292, 0.08342824131250381, -0.03856881707906723, 0.013407481834292412, -0.0666947141289711, -0.1448790431022644, 0.03423565253615379, -0.12377345561981201, -0.021228427067399025, -0.10644998401403427, -0.22524972259998322, -0.0730380266904831, 0.015610018745064735, -0.02081417478621006, 0.02989559806883335, -0.09315521270036697, -0.08507709205150604, 0.023769356310367584, 0.0368664525449276, -0.024972427636384964, -0.01710219494998455, 0.051276128739118576, -0.043679650872945786, 0.1243901476264, 0.002343500033020973, 0.021985556930303574, -0.04427897930145264, 0.01659577153623104, -0.10319165140390396, 0.13347174227237701, -0.08947435766458511, 0.039306607097387314, -0.11163824796676636, -0.09694495052099228, 0.011547122150659561, 0.008632720448076725, 0.05692106485366821, 0.11169788986444473, -0.2078276127576828, -0.07693944126367569, 0.144705131649971, -0.15466386079788208, -0.08803296834230423, 0.0001872264692792669, -0.022956466302275658, 0.060279808938503265, 0.05283153057098389, 0.10466999560594559, 0.16552278399467468, -0.1568717062473297, -0.07908913493156433, -0.020419597625732422, 0.02875009924173355, 0.06857282668352127, 0.04580477252602577, -0.01987111009657383, 0.0008092764182947576, 0.011738898232579231, -0.04224981740117073, 0.017719440162181854, 0.0036194687709212303, -0.057487014681100845, -0.018021559342741966, -0.08428400754928589, 0.031510017812252045, -0.006531339604407549, -0.028792252764105797, -0.010689242742955685, -0.09594257920980453, 0.021976159885525703, 0.13629338145256042, -0.09309154748916626, 0.027315905317664146, -0.05860506743192673, -0.02142207697033882, -0.018611662089824677, 0.014833608642220497, -0.11854720860719681, -0.12526290118694305, 0.05828055366873741, -0.14186181128025055, 0.009887855499982834, -0.1279732882976532, 0.05709463730454445, 0.06248928979039192, -0.052643630653619766, -0.0991724357008934, -0.06087513267993927, -0.03014013171195984, -0.0014834171161055565, -0.13614623248577118, -0.06313088536262512, -0.0561208575963974, 0.07933254539966583, -0.17622613906860352, 0.0650324672460556, 0.027410678565502167, 0.0730031207203865, 0.05670876055955887, -0.04667036607861519, 0.04480021446943283, 0.035026948899030685, -0.02991919219493866, -0.10257583111524582, -0.0013710933271795511, -0.03067161701619625, -0.137064591050148, 0.02648613601922989, -0.16655954718589783, -0.042254578322172165, 0.08664266020059586, 0.09700296819210052, -0.08069045096635818, -0.024524353444576263, -0.013715317472815514, -0.02264416217803955, -0.07979113608598709, -0.057588182389736176, 0.06502234190702438, 0.007589714601635933, 0.08442635834217072, -0.06817137449979782, -0.02617019973695278, 0.03137597814202309, 0.02060847543179989, -0.04685550928115845, 0.09829951822757721, 0.03217547386884689, -0.011398610658943653, 0.0528133250772953, 0.010963101871311665, -0.04587211459875107, 0.13891690969467163, 0.05301249772310257, -0.06420420855283737, -0.01427360437810421, 0.027364540845155716, 0.06822066009044647, 0.08825608342885971, 0.07462668418884277, 0.06008767709136009, 0.008829922415316105, -0.016843443736433983, -0.012062202207744122, -0.1374189257621765, -0.028243916109204292, 0.03328714147210121, -0.08583226799964905, 0.016720887273550034, 0.013158218935132027, -0.0457741804420948, 0.05546017736196518, -0.035715170204639435, 0.09046809375286102, 0.003575217444449663, -0.049038052558898926, -0.11467362940311432, 0.1574481725692749, -0.12180289626121521, -0.2050168663263321, -0.14180679619312286, 0.01610402949154377, -0.04375901445746422, -0.013530307449400425, 0.06710773706436157, -0.14150074124336243, -0.07020563632249832, -0.10969707369804382, -0.0159507654607296, -0.013038617558777332, -0.019672296941280365, 0.047227561473846436, 0.014767732471227646, 0.10501761734485626, -0.10533580183982849, 0.008253855630755424, 0.022991366684436798, -0.057868920266628265, -0.00768903736025095, 0.025829728692770004, 0.1117645800113678, 0.05888860672712326, 0.04918620362877846, 0.03987811133265495, -0.02671411633491516, 0.2005133032798767, -0.043673623353242874, 0.10766690969467163, 0.1776241809129715, 0.06122201308608055, 0.1117960661649704, 0.14789018034934998, 0.023481013253331184, -0.06833742558956146, 0.04838137328624725, 0.03563535585999489, -0.08609206229448318, -0.22516047954559326, -0.09870454668998718, -0.03447030857205391, -0.04823996499180794, 0.16015774011611938, 0.06519554555416107, 0.08694649487733841, 0.09510144591331482, -0.07753283530473709, 0.07495548576116562, 0.058235086500644684, 0.12092022597789764, 0.034643009305000305, 0.06312673538923264, 0.03769171983003616, -0.06988263130187988, 0.043661169707775116, 0.08161561191082001, 0.026737617328763008, 0.21152852475643158, -0.07557506114244461, 0.06474297493696213, 0.009078693576157093, 0.027070296928286552, -0.0028125944081693888, 0.02693084627389908, -0.010419038124382496, 0.014790021814405918, 0.024159105494618416, -0.1282632052898407, 0.06675442308187485, 0.14537940919399261, -0.04834741726517677, 0.018904846161603928, -0.04666461423039436, 0.029341455549001694, 0.013821113854646683, 0.06811314076185226, 0.045898452401161194, -0.27739599347114563, -0.025173036381602287, 0.04744105413556099, 0.10206715762615204, -0.012186430394649506, -0.014410377480089664, 0.1400417983531952, -0.06836298853158951, 0.13566067814826965, -0.017431093379855156, 0.09807288646697998, -0.05616948753595352, -0.056683629751205444, 0.12107677757740021, 0.18803264200687408, -0.0033273661974817514, 0.02976972982287407, -0.17293745279312134, 0.09265110641717911, 0.023659080266952515, 0.11644427478313446, -0.03354925289750099, 0.05267507955431938, 0.042842891067266464, 0.016164666041731834, 0.143497034907341, 0.01615530252456665, -0.07620123773813248, -0.20449906587600708, -0.05948496609926224, -0.017382387071847916, 0.09891076385974884, -0.08698263764381409, 0.07908696681261063, 0.03879515081644058, -0.03532641753554344, -0.0096664447337389, 0.005871174857020378, -0.167799174785614, -0.16347917914390564, 0.01027039997279644, 0.1270880550146103, 0.052889153361320496, -0.07827801257371902, -0.057296622544527054, -0.05123555287718773, 0.0899670273065567, -0.11938638240098953, -0.11488021165132523, -0.11361852288246155, 0.001922505209222436, 0.09985260665416718, -0.06952294707298279, 0.019529731944203377, 0.019124696031212807, 0.13356727361679077, -0.09157651662826538, -0.0995844230055809, 0.012927232310175896, -0.08693280071020126, -0.18457689881324768, -0.0791962668299675, 0.09230001270771027, 0.05278753116726875, -0.0018913650419563055, -0.012470346875488758, 0.0075837960466742516, 0.037668805569410324, -0.13099579513072968, 0.06472871452569962, 0.23505446314811707, 0.005573567468672991, 0.12427807599306107, -0.05465158075094223, -0.05901605635881424, -0.0723324716091156, 0.012617032043635845, 0.020094918087124825, 0.2523418068885803, -0.10615109652280807, 0.07207388430833817, 0.06523806601762772, -0.10167388617992401, -0.15495163202285767, 0.054544493556022644, 0.09843074530363083, -0.011253365315496922, -0.011216317303478718, -0.2627476453781128, 0.05686496943235397, 0.058582648634910583, -0.007044715341180563, 0.10173431038856506, -0.3406330347061157, -0.1394072324037552, -0.07310063391923904, 0.10753607749938965, -0.0006776984082534909, -0.12392814457416534, -0.06880160421133041, -0.1132563129067421, -0.06157054379582405, 0.11975672841072083, -0.019852537661790848, 0.06827255338430405, 0.008807037957012653, 0.00576055096462369, 0.0190564151853323, -0.04435126110911369, 0.13849517703056335, 0.009405437856912613, 0.05203620344400406, -0.03744195029139519, 0.06512466818094254, 0.08214688301086426, -0.0848701074719429, 0.08341889828443527, -0.10005947202444077, 0.05642365291714668, -0.08739130198955536, -0.02158651500940323, -0.013526609167456627, 0.04859212413430214, -0.04541078954935074, -0.04531412944197655, -0.06799286603927612, 0.05892721936106682, 0.13773277401924133, -0.00799501221626997, -0.04579143226146698, -0.008774842135608196, 0.06969577819108963, 0.1223251074552536, 0.04257543757557869, 0.12892718613147736, -0.10437197983264923, 0.004632346332073212, -0.05400318652391434, 0.0957738533616066, -0.16714800894260406, 0.011984596028923988, 0.07987859845161438, 0.03589626029133797, 0.1495315432548523, 0.016098324209451675, -0.09657387435436249, 0.059241365641355515, 0.04146787151694298, -0.059621937572956085, -0.10844781249761581, -0.025748081505298615, 0.02356674335896969, -0.07615328580141068, 0.001602464821189642, 0.11444978415966034, -0.05353812128305435, 0.021128064021468163, -0.006201226729899645, 0.06619983911514282, -0.00021664924861397594, 0.11428851634263992, 0.058463409543037415, 0.041055139154195786, -0.07143829017877579, 0.12175043672323227, 0.05495680868625641, -0.08048640936613083, 0.08171440660953522, 0.11638946831226349, -0.08348933607339859, -0.010660967789590359, -0.09893463551998138, 0.04030229523777962, -0.07818984985351562, -0.050360437482595444, -0.023373153060674667, -0.0731503963470459, 0.0245274156332016, 0.11598333716392517, 0.00792219303548336, -0.014008439145982265, 0.027560653164982796, -0.002820153022184968, -0.10205946862697601, 0.061975181102752686, -0.004717975854873657, 0.06566882878541946, -0.1315140575170517, -0.0026555408257991076, 0.061463501304388046, -0.010861564427614212, 0.004757613874971867, -0.013874376192688942, -0.1251670867204666, -0.023011572659015656, -0.07343544065952301, 0.10880015045404434, -0.07805617153644562, 0.008852621540427208, -0.034208957105875015, -0.007383505813777447, -0.00834149494767189, 0.061815787106752396, -0.0361015722155571, -0.10611741244792938, 0.0025524997618049383, 0.06747522205114365, -0.12837815284729004, -0.03330649062991142, -0.011346916668117046, -0.0957162082195282, 0.058356475085020065, -0.01651184633374214, -0.052671659737825394, -0.009216764941811562, -0.1455416977405548, 0.04955349490046501, 0.053450532257556915, 0.02441568672657013, -0.002604314126074314, -0.08030502498149872, 0.00965836551040411, -0.03537975251674652, -0.06220066174864769, -0.009252642281353474, -0.014370150864124298, -0.09820812195539474, 0.052188530564308167, -0.03737391531467438, 0.02329743094742298, -0.07053572684526443, 0.07746841013431549, 0.11228557676076889, 0.030490228906273842, 0.10677605867385864, -0.08250715583562851, 0.09183304011821747, -0.1687193661928177, -0.035241320729255676, 0.022598713636398315, -0.014985076151788235, -0.04931844398379326, -0.019270988181233406, 0.08075187355279922, -0.02143922448158264, 0.10750614106655121, -0.06505417823791504, 0.06834085285663605, -0.0025374710094183683, -0.01621289737522602, -0.046250805258750916, 0.004923056811094284, 0.16297420859336853, 0.012836882844567299, 0.009265588596463203, 0.027740677818655968, -0.007567944936454296, 0.07623080909252167, 0.0928228422999382, 0.07708296924829483, 0.09094394743442535, 0.10450369864702225, 0.06673060357570648, 0.030894778668880463, -0.06076935678720474, -0.05888409540057182, 0.12005551904439926, -0.034599460661411285, 0.07311245799064636, -0.04728979617357254, 0.046027131378650665, 0.08751393854618073, -0.1437990665435791, 0.016041401773691177, 0.09102467447519302, -0.06559450924396515, -0.09712231159210205, -0.16660696268081665, -0.08261661231517792, -0.1288696825504303, 0.020360080525279045, -0.10285983234643936, 0.05249543488025665, -0.013729174621403217, -0.019326087087392807, 0.032065439969301224, 0.1052151545882225, -0.012154773809015751, -0.015771565958857536, 0.03714796528220177, -0.011266441084444523, -0.0032529167365282774, 0.0700252428650856, -0.051515884697437286, 0.12204086780548096, -0.015636343508958817, 0.04206498712301254, 0.04606636241078377, 0.042406853288412094, 0.0510103739798069, -0.0034885138738900423, -0.06661216169595718, 0.009845718741416931, 0.0315023809671402, 0.0039962646551430225, 0.15796886384487152, 0.09060340374708176, 0.0070566036738455296, -0.029385700821876526, 0.152941033244133, -0.07278798520565033, -0.025320501998066902, -0.10137898474931717, 0.07143612951040268, 0.01230510976165533, 0.009378781542181969, 0.0019586579874157906, -0.10000678896903992, -0.04891948774456978, 0.11494624614715576, 0.10575918108224869, 0.02357069030404091, 0.017026176676154137, -0.04310303553938866, -0.0007797926082275808, -0.04150893911719322, 0.06626423448324203, 0.05267152190208435, 0.10872329771518707, -0.01086051482707262, 0.027204828336834908, -0.017520427703857422, -0.03484537824988365, -0.019528523087501526, 0.003920192364603281, -0.056197334080934525, -0.02719740942120552, -0.048624131828546524, 0.08058634400367737, -0.06803999096155167, -0.15442371368408203, 0.17477165162563324, -0.10940077155828476, -0.06313736736774445, -0.017775127664208412, 0.09575589001178741, 0.031341616064310074, 0.006228745449334383, -0.009404482319951057, -0.027854491025209427, 0.11639554798603058, -0.04198269546031952, -0.08149947226047516, -0.11227191984653473, -0.043161310255527496, -0.17094315588474274, 0.23078744113445282, -0.01994665339589119, 0.05573797598481178, 0.0816638171672821, 0.022401003167033195, -0.13057385385036469, 0.08030416071414948, 0.017524918541312218, -0.10648778825998306, -0.004761556629091501, 0.18592959642410278, -0.07740580290555954, 0.18111270666122437, 0.050290726125240326, -0.07447415590286255, 0.025001196190714836, 0.06919246166944504, -0.024327551946043968, -0.0820663645863533, 0.006467435043305159, -0.09578810632228851, 0.11408580094575882, 0.1459501087665558, -0.032460346817970276, -0.019436035305261612, 0.00295091955922544, 0.025614721700549126, 0.008682888001203537, 0.0957905650138855, 0.02997380867600441, -0.10607854276895523, 0.006590317469090223, -0.0034981758799403906, 0.10924499481916428, -0.17475323379039764, -0.06314689666032791, -0.04690743237733841, -0.0483703687787056, -0.004280914552509785, 0.10471952706575394, 0.09118109941482544, 0.035193122923374176, -0.04271874949336052, -0.18690447509288788, 0.01567121408879757, 0.15851135551929474, -0.10530295222997665, -0.08207599073648453 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-azahead-v0.1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.4710 - Accuracy: 0.75 - F1: 0.4 - Precision: 0.6667 - Recall: 0.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6325 | 0.5 | 20 | 0.5001 | 0.7917 | 0.7059 | 0.6 | 0.8571 | | 0.5346 | 1.0 | 40 | 0.4710 | 0.75 | 0.4 | 0.6667 | 0.2857 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["azaheadhealth"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-azahead-v0.1", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "azaheadhealth", "type": "azaheadhealth", "config": "small", "split": "test", "args": "small"}, "metrics": [{"type": "accuracy", "value": 0.75, "name": "Accuracy"}, {"type": "f1", "value": 0.4, "name": "F1"}, {"type": "precision", "value": 0.6666666666666666, "name": "Precision"}, {"type": "recall", "value": 0.2857142857142857, "name": "Recall"}]}]}]}
text-classification
zwellington/bert-azahead-v0.1
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:azaheadhealth", "base_model:bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T01:15:52+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-azahead-v0.1 ================= This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set: * Loss: 0.4710 * Accuracy: 0.75 * F1: 0.4 * Precision: 0.6667 * Recall: 0.2857 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 4 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 ### Training results ### Framework versions * Transformers 4.31.0 * Pytorch 2.2.0+cu121 * Datasets 2.16.1 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ 74, 126, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #dataset-azaheadhealth #base_model-bert-base-uncased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* Transformers 4.31.0\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.13.2" ]
[ -0.13509219884872437, 0.18619732558727264, -0.002461252035573125, 0.10474058985710144, 0.15690791606903076, 0.04178112745285034, 0.09735414385795593, 0.1622096598148346, -0.0692153051495552, 0.07943375408649445, 0.11814585328102112, 0.11320607364177704, 0.04883481189608574, 0.1758553683757782, -0.03466074913740158, -0.26503488421440125, 0.005350905936211348, 0.010669772513210773, -0.06659678369760513, 0.14495618641376495, 0.08945540338754654, -0.11776754260063171, 0.0718129426240921, -0.007024107500910759, -0.14904959499835968, -0.04339689388871193, -0.01840587519109249, -0.03882333263754845, 0.1270914524793625, -0.006734208669513464, 0.09877704828977585, 0.04526860639452934, 0.10599251091480255, -0.20252783596515656, 0.0021701916120946407, 0.04438292607665062, 0.01356069277971983, 0.1135205402970314, 0.06243070214986801, -0.03408713638782501, 0.08426488935947418, -0.10497097671031952, 0.051879171282052994, 0.021820086985826492, -0.11055199056863785, -0.2124144285917282, -0.12112868577241898, 0.09268864244222641, 0.10601917654275894, 0.07983531802892685, -0.011202344670891762, 0.07569872587919235, -0.10632149130105972, 0.06509999930858612, 0.24588505923748016, -0.30007046461105347, -0.05405450612306595, 0.038260459899902344, 0.008435421623289585, 0.057188600301742554, -0.10501701384782791, -0.04685640707612038, 0.028830353170633316, 0.04279036447405815, 0.12504057586193085, -0.0022151044104248285, -0.02016444131731987, 0.011159640736877918, -0.15077421069145203, -0.059618450701236725, 0.12036199122667313, 0.04963904619216919, -0.028524301946163177, -0.06702671200037003, -0.056151606142520905, -0.21128374338150024, -0.01834976114332676, 0.0076912869699299335, 0.038607802242040634, -0.04580213874578476, -0.08118529617786407, -0.0004592188633978367, -0.07767026871442795, -0.06857432425022125, -0.019478024914860725, 0.06005747616291046, 0.04573870450258255, 0.0055206455290317535, 0.02919524535536766, 0.1434488743543625, 0.03116658516228199, -0.1418960988521576, 0.015793193131685257, 0.009345577098429203, -0.035994626581668854, -0.02709665335714817, -0.03141547739505768, 0.031489308923482895, 0.019381914287805557, 0.1313139945268631, -0.05938528850674629, 0.014685607515275478, 0.03493279218673706, 0.0373179093003273, -0.07133212685585022, 0.15228942036628723, -0.0876883715391159, -0.07493386417627335, -0.016309916973114014, 0.12844230234622955, 0.019322821870446205, -0.012798910029232502, -0.11974556744098663, 0.007926957681775093, 0.12230802327394485, 0.052172109484672546, -0.031158488243818283, 0.031171998009085655, -0.07458699494600296, -0.05165630951523781, 0.06326226890087128, -0.09621448069810867, 0.026475289836525917, 0.01630488596856594, -0.0848589539527893, -0.037259481847286224, 0.01342069823294878, 0.017015598714351654, -0.031156498938798904, 0.1222894936800003, -0.08854980021715164, 0.015331399627029896, -0.07479754090309143, -0.0963086187839508, 0.027172958478331566, -0.12386550009250641, -0.01675146073102951, -0.06765393167734146, -0.15344180166721344, -0.04056629538536072, 0.04769964516162872, -0.058288924396038055, -0.09978501498699188, -0.07975451648235321, -0.06420997530221939, 0.023764198645949364, -0.025481386110186577, 0.11715766787528992, -0.06220640614628792, 0.1284538209438324, -0.009984156116843224, 0.06981449574232101, 0.0015974296256899834, 0.06573696434497833, -0.08825197070837021, 0.040495458990335464, -0.15579579770565033, 0.06949248909950256, -0.043714240193367004, 0.03118591569364071, -0.12842059135437012, -0.11405695229768753, 0.02436785027384758, -0.0461091585457325, 0.09064148366451263, 0.12263975292444229, -0.1606699824333191, -0.07499688118696213, 0.18386954069137573, -0.07127855718135834, -0.12727417051792145, 0.1127580851316452, -0.039492733776569366, 0.02126496098935604, 0.03357936814427376, 0.17358750104904175, 0.06682534515857697, -0.06370065361261368, -0.02527892030775547, -0.035293471068143845, 0.08348280936479568, -0.051157381385564804, 0.11858005821704865, -0.0272839292883873, 0.042479000985622406, 0.013314838521182537, -0.0788920596241951, 0.05137503519654274, -0.10964591801166534, -0.09658507257699966, -0.014224977232515812, -0.09783825278282166, 0.08775551617145538, 0.049669183790683746, 0.058094147592782974, -0.06575514376163483, -0.09426118433475494, 0.03470831364393234, 0.11703816056251526, -0.07026172429323196, 0.028590576723217964, -0.05453396961092949, 0.10137275606393814, -0.0647868886590004, -0.025412673130631447, -0.18604324758052826, -0.036917418241500854, 0.024393677711486816, -0.000214129060623236, -0.008948780596256256, -0.019968878477811813, 0.0412602461874485, 0.07424604147672653, -0.06090886518359184, -0.04871880263090134, -0.05473999306559563, -0.016556251794099808, -0.11182916909456253, -0.22972434759140015, -0.07438792288303375, -0.01847418025135994, 0.19414354860782623, -0.2038591504096985, 0.029442161321640015, -0.018329093232750893, 0.10841672867536545, 0.01866559498012066, -0.027407526969909668, -0.009462806396186352, 0.07803128659725189, -0.033656954765319824, -0.0603809729218483, 0.08511751890182495, -0.004303331486880779, -0.09591816365718842, -0.012701872736215591, -0.07110854983329773, 0.11356636136770248, 0.10799767076969147, -0.003408042946830392, -0.07413002103567123, -0.06229972094297409, -0.08259029686450958, -0.03928752616047859, -0.052144426852464676, 0.02672194316983223, 0.12798583507537842, 0.034562572836875916, 0.14597631990909576, -0.07677533477544785, -0.04218023642897606, 0.025514835491776466, -0.008425439707934856, 0.01753755286335945, 0.12623772025108337, 0.13256818056106567, -0.0860777422785759, 0.14417678117752075, 0.13244062662124634, -0.03219326213002205, 0.11613945662975311, -0.03800547122955322, -0.09538586437702179, -0.039560992270708084, -0.0023355877492576838, 0.0005292861023917794, 0.11779811233282089, -0.12118659913539886, -0.01321496907621622, 0.042349137365818024, 0.032725490629673004, 0.018952535465359688, -0.20105399191379547, -0.027866248041391373, 0.01725706271827221, -0.06576022505760193, -0.036558616906404495, -0.016544153913855553, 0.01705496571958065, 0.11786453425884247, 0.034135643392801285, -0.06592874228954315, 0.031905919313430786, -0.0038783519994467497, -0.09243346750736237, 0.18239550292491913, -0.08528450131416321, -0.17082320153713226, -0.11378303915262222, -0.050605908036231995, -0.03606768324971199, -0.01113743707537651, 0.04070911929011345, -0.067169189453125, -0.0009699541260488331, -0.06732213497161865, 0.006957735400646925, 0.0009469506912864745, 0.02166760340332985, -0.003523738356307149, 0.019810067489743233, 0.05251934751868248, -0.08880412578582764, 0.0027713647577911615, -0.04720938205718994, -0.05571260675787926, 0.047541726380586624, 0.018006611615419388, 0.10846065729856491, 0.17508934438228607, 0.009026842191815376, 0.02414088323712349, -0.04852180927991867, 0.1832445114850998, -0.07072944194078445, -0.018235551193356514, 0.11520960181951523, 0.001350031467154622, 0.07533536851406097, 0.16385409235954285, 0.048913195729255676, -0.07071786373853683, 0.00419226149097085, 0.027028722688555717, -0.019093673676252365, -0.23344115912914276, -0.058045145124197006, -0.05304393172264099, -0.0033080403227359056, 0.12059269845485687, 0.02369188331067562, -0.007396585773676634, 0.052433788776397705, 0.00868201069533825, 0.02569398656487465, -0.042843468487262726, 0.06603080034255981, 0.0688994973897934, 0.03570552542805672, 0.13227297365665436, -0.021008145064115524, -0.019325921311974525, 0.0518258661031723, 0.013093736954033375, 0.24762147665023804, -0.05202865228056908, 0.14176222681999207, 0.0686027780175209, 0.21375975012779236, 0.006845220923423767, 0.06282345950603485, -0.0030884738080203533, 0.004533024970442057, -0.013209226541221142, -0.041486188769340515, -0.06387221068143845, 0.018685488030314445, 0.01185858715325594, 0.053036801517009735, -0.15124444663524628, 0.01399266254156828, 0.05625976249575615, 0.31526094675064087, 0.10424501448869705, -0.3108016550540924, -0.0977490097284317, 0.00046060699969530106, -0.022416045889258385, -0.02745206467807293, -0.000280545384157449, 0.11446335911750793, -0.12054149061441422, 0.022532079368829727, -0.06973668932914734, 0.09109687060117722, -0.06906825304031372, 0.0143247926607728, 0.07983242720365524, 0.05084158852696419, 0.007608651649206877, 0.08462242037057877, -0.24436919391155243, 0.2789057791233063, 0.00035557468072511256, 0.033356934785842896, -0.06630949676036835, 0.001994595630094409, 0.0313381664454937, 0.04856335371732712, 0.0969935730099678, 0.012447337619960308, -0.015569498762488365, -0.19122609496116638, -0.12810012698173523, 0.014874367974698544, 0.09180707484483719, -0.10440538823604584, 0.10876892507076263, -0.02501329593360424, -0.009653495624661446, 0.020456764847040176, -0.012089657597243786, -0.030921464785933495, -0.1028178334236145, 0.028601069003343582, -0.028199028223752975, 0.014255166985094547, -0.07654841989278793, -0.12220972776412964, -0.06333039700984955, 0.18165114521980286, -0.08173513412475586, -0.05907156690955162, -0.12182652950286865, 0.11734624952077866, 0.1259898692369461, -0.09942896664142609, 0.034606095403432846, 0.0040529328398406506, 0.0840378925204277, 0.013406329788267612, -0.046628426760435104, 0.08622150868177414, -0.05310665816068649, -0.22660613059997559, -0.07127995789051056, 0.16083814203739166, 0.03500700742006302, 0.08067811280488968, -0.024556269869208336, 0.020545991137623787, -0.012204502709209919, -0.07957514375448227, 0.04123063385486603, 0.04536553472280502, 0.10592390596866608, 0.043694399297237396, -0.07530759274959564, 0.010164610110223293, -0.06520602107048035, -0.04275570064783096, 0.19373160600662231, 0.2543487250804901, -0.11257225275039673, 0.08222594857215881, 0.0602378323674202, -0.056773390620946884, -0.1866166889667511, 0.0015032123774290085, 0.1130516305565834, 0.029708044603466988, 0.016424475237727165, -0.19968460500240326, 0.07156440615653992, 0.11214705556631088, -0.029684994369745255, 0.10016732662916183, -0.34348368644714355, -0.10908089578151703, 0.060515157878398895, 0.09855280071496964, 0.05080268159508705, -0.14581486582756042, -0.052373167127370834, 0.014470304362475872, -0.13036607205867767, 0.11992373317480087, -0.0424925833940506, 0.1262427717447281, -0.035066377371549606, 0.0704498142004013, 0.013998233713209629, -0.055502668023109436, 0.12916484475135803, 0.03105456568300724, 0.04320954531431198, -0.03546551987528801, -0.06568840146064758, 0.06078101694583893, -0.07218483835458755, 0.023429544642567635, -0.05204692482948303, 0.04386628046631813, -0.13302451372146606, -0.017789799720048904, -0.09987013787031174, 0.00935453362762928, -0.04935107007622719, -0.06314332038164139, -0.03299796208739281, 0.07558010518550873, 0.07750240713357925, 0.0011296626180410385, 0.11212968826293945, 0.0006140745826996863, 0.13544173538684845, 0.10007766634225845, 0.05620709806680679, -0.046017590910196304, -0.06627064943313599, -0.035193514078855515, -0.030148152261972427, 0.03529772162437439, -0.15175920724868774, 0.026601724326610565, 0.15642718970775604, 0.03813547641038895, 0.14800925552845, 0.06667862087488174, -0.048368554562330246, 0.013368110172450542, 0.07089609652757645, -0.13422738015651703, -0.06686393916606903, -0.002470362698659301, -0.03402605652809143, -0.17880553007125854, 0.02923973836004734, 0.10587988793849945, -0.04402189701795578, -0.036545854061841965, -0.007042513228952885, 0.03766682371497154, -0.0344119668006897, 0.18828092515468597, 0.05830932781100273, 0.08154642581939697, -0.10577582567930222, 0.07243631780147552, 0.08909688144922256, -0.096446193754673, 0.007171085104346275, 0.07610061764717102, -0.10894965380430222, -0.0332028791308403, 0.022370118647813797, 0.1185246929526329, -0.03337784856557846, -0.03692673519253731, -0.11928053200244904, -0.10153613984584808, 0.08766980469226837, 0.10506810247898102, 0.08478821814060211, 0.03992383927106857, -0.027778957039117813, -0.014845136553049088, -0.11869224905967712, 0.10484788566827774, 0.05368494242429733, 0.05892403796315193, -0.12250985205173492, 0.14625047147274017, 0.004099233541637659, 0.07453659921884537, -0.011669539846479893, 0.022756529971957207, -0.10296060889959335, -0.008328056894242764, -0.10513737052679062, -0.014629165641963482, -0.05425297096371651, -0.013270669616758823, -0.012228406965732574, -0.05013633519411087, -0.03945852071046829, 0.009963484480977058, -0.10662317276000977, -0.05180736631155014, -0.008604304865002632, 0.05748537927865982, -0.1252429485321045, -0.03018207848072052, 0.02050117217004299, -0.08621107041835785, 0.11749308556318283, 0.03715307638049126, 0.04312668368220329, 0.015621894039213657, -0.06271146237850189, -0.009237155318260193, 0.033482570201158524, 0.0044092475436627865, 0.0672474354505539, -0.14512887597084045, -0.002900137333199382, -0.024595623835921288, 0.006477925460785627, 0.03344092145562172, 0.08231968432664871, -0.1423277109861374, 0.009898862801492214, -0.03222447633743286, -0.04587661847472191, -0.056233447045087814, 0.05183371156454086, 0.06369735300540924, 0.03660382702946663, 0.1714158058166504, -0.06212346628308296, 0.06466598063707352, -0.22763259708881378, -0.015563581138849258, -0.035346921533346176, -0.053909219801425934, -0.10119681805372238, -0.04060396924614906, 0.06803019344806671, -0.05170173570513725, 0.10667161643505096, -0.005567607469856739, 0.056417934596538544, 0.01452722866088152, -0.02393687330186367, 0.01596973091363907, 0.021827973425388336, 0.1450677216053009, 0.03910889849066734, -0.04195675253868103, 0.07560355961322784, 0.03493674099445343, 0.06005314737558365, 0.10926187038421631, 0.21372874081134796, 0.11507345736026764, 0.0834597498178482, 0.057144805788993835, 0.03753405436873436, -0.09724324196577072, -0.18443943560123444, 0.06906601786613464, -0.023623598739504814, 0.09493739902973175, -0.012100252322852612, 0.221074178814888, 0.08094640076160431, -0.21133065223693848, 0.04781936854124069, -0.03052671253681183, -0.08647214621305466, -0.09703830629587173, -0.0599774494767189, -0.07868467271327972, -0.1392798125743866, -0.007933584973216057, -0.11687294393777847, 0.0034180304501205683, 0.12294058501720428, 0.003376963082700968, 0.007453007157891989, 0.07255352288484573, 0.02698265202343464, 0.026142146438360214, 0.07043514400720596, 0.035427093505859375, 0.009877819567918777, -0.06662627309560776, -0.06310893595218658, 0.011745826341211796, 0.0019131348235532641, 0.06681516021490097, -0.059915028512477875, -0.04435029625892639, 0.0443921834230423, -0.007609514985233545, -0.105983205139637, 0.012679744511842728, 0.004132777918130159, 0.07073210924863815, 0.09173756837844849, 0.02458042837679386, 0.01591121219098568, -0.019820334389805794, 0.24899545311927795, -0.07403933256864548, -0.06106007099151611, -0.13698932528495789, 0.26390668749809265, 0.03248589485883713, -0.03996730223298073, 0.04988747090101242, -0.09544385969638824, -0.0029489295557141304, 0.1878126710653305, 0.21821947395801544, -0.09211692959070206, -0.023716475814580917, 0.03455277904868126, -0.00848410278558731, -0.0074673243798315525, 0.08738889545202255, 0.12898029386997223, 0.08474966138601303, -0.10192328691482544, -0.036163847893476486, -0.06351243704557419, -0.02799409069120884, -0.022687310352921486, 0.07233202457427979, 0.025479963049292564, 0.00906929187476635, -0.04405637085437775, 0.06476671993732452, -0.05877815559506416, -0.0883449986577034, 0.06616906076669693, -0.23951496183872223, -0.20161211490631104, -0.02236192300915718, 0.05528485029935837, 0.010036364197731018, 0.05532384663820267, -0.00888831913471222, -0.004170779138803482, 0.1290893405675888, -0.01959155686199665, -0.0788457915186882, -0.07903186231851578, 0.09531031548976898, -0.07116299867630005, 0.21001732349395752, -0.038293689489364624, 0.03306056559085846, 0.1282496601343155, 0.06573162972927094, -0.10566850006580353, 0.03606829792261124, 0.060116782784461975, -0.03613783046603203, 0.03544280305504799, 0.11908485740423203, -0.029129086062312126, 0.07267291098833084, 0.058239132165908813, -0.12526501715183258, -0.0007632432389073074, -0.06402783840894699, -0.05387278273701668, -0.057367533445358276, -0.010909364558756351, -0.029382385313510895, 0.13544808328151703, 0.22045153379440308, -0.058713581413030624, 0.003103449707850814, -0.06638897955417633, 0.005541680380702019, 0.037475984543561935, 0.07347425818443298, -0.04187539219856262, -0.2184174358844757, 0.026792112737894058, 0.01768859103322029, 0.004048489965498447, -0.25417089462280273, -0.0871967151761055, 0.025655411183834076, -0.06145276129245758, -0.11262065172195435, 0.1148153617978096, 0.012752675451338291, 0.049250345677137375, -0.04950004070997238, -0.03259652107954025, -0.06670981645584106, 0.15452854335308075, -0.17490893602371216, -0.0830974280834198 ]
null
null
null
![Image description](https://i.postimg.cc/MGwhtFfF/tsune-fixed.png) # Tsunemoto GGUF's of Senku-70B-Full This is a GGUF quantization of Senku-70B-Full. [Q8 is available here](https://huggingface.co/ShinojiResearch/Senku-70B-Q8) ## Original Repo Link: [Original Repository](https://huggingface.co/ShinojiResearch/Senku-70B-Full) ## Original Model Card: --- Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth. EQ-Bench: 84.89 Will run more benches later.
{"language": "en", "tags": ["GGUF"], "title": "Senku-70B-Full Quantized in GGUF"}
null
tsunemoto/Senku-70B-Full-GGUF
[ "gguf", "GGUF", "en", "region:us" ]
2024-02-07T01:19:40+00:00
[]
[ "en" ]
TAGS #gguf #GGUF #en #region-us
!Image description # Tsunemoto GGUF's of Senku-70B-Full This is a GGUF quantization of Senku-70B-Full. Q8 is available here ## Original Repo Link: Original Repository ## Original Model Card: --- Finetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth. EQ-Bench: 84.89 Will run more benches later.
[ "# Tsunemoto GGUF's of Senku-70B-Full\n\nThis is a GGUF quantization of Senku-70B-Full.\n\nQ8 is available here", "## Original Repo Link:\nOriginal Repository", "## Original Model Card:\n---\nFinetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth.\n\nEQ-Bench: 84.89\n\nWill run more benches later." ]
[ "TAGS\n#gguf #GGUF #en #region-us \n", "# Tsunemoto GGUF's of Senku-70B-Full\n\nThis is a GGUF quantization of Senku-70B-Full.\n\nQ8 is available here", "## Original Repo Link:\nOriginal Repository", "## Original Model Card:\n---\nFinetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth.\n\nEQ-Bench: 84.89\n\nWill run more benches later." ]
[ 14, 37, 10, 90 ]
[ "passage: TAGS\n#gguf #GGUF #en #region-us \n# Tsunemoto GGUF's of Senku-70B-Full\n\nThis is a GGUF quantization of Senku-70B-Full.\n\nQ8 is available here## Original Repo Link:\nOriginal Repository## Original Model Card:\n---\nFinetune of miqu-70b-sf dequant of miqudev's leak of Mistral-70B (allegedly an early mistral medium). My diffs are available under CC-0, this is a merge with the leaked model, you can use the other repository to save bandwidth.\n\nEQ-Bench: 84.89\n\nWill run more benches later." ]
[ -0.07204271107912064, 0.05672869086265564, 0.0007482109940610826, 0.12133490294218063, 0.09042856842279434, 0.04916226863861084, 0.05140519514679909, 0.11361636966466904, 0.1823432445526123, 0.060557540506124496, 0.056530971080064774, -0.0448271669447422, 0.0626067966222763, 0.1697448492050171, 0.062308330088853836, -0.21245263516902924, 0.022537505254149437, 0.0574328787624836, -0.022025173529982567, 0.035429973155260086, 0.06480832397937775, -0.04273315519094467, 0.11291450262069702, 0.009296760894358158, -0.11441392451524734, 0.013930648565292358, -0.0660964846611023, -0.02684575878083706, 0.055220335721969604, 0.07024882733821869, -0.04782003536820412, 0.017075061798095703, 0.024323834106326103, -0.026969050988554955, 0.054974302649497986, -0.05616569519042969, -0.0655846893787384, 0.051894593983888626, -0.03603392839431763, 0.06789185851812363, -0.12394546717405319, 0.022251402959227562, -0.06590262800455093, 0.03904453292489052, -0.02588806301355362, 0.05031310394406319, -0.07909753918647766, -0.10037065297365189, 0.05710189789533615, 0.05503683537244797, -0.013455145061016083, 0.1205344870686531, -0.07563962787389755, 0.012682252563536167, 0.32252785563468933, -0.4097121059894562, 0.009957761503756046, 0.14184536039829254, -0.018610626459121704, -0.0022289548069238663, -0.0589996799826622, 0.0019450236577540636, 0.07520640641450882, 0.01892947591841221, -0.004611956421285868, -0.028633585199713707, 0.047335971146821976, -0.02044139988720417, -0.10039862990379333, 0.08036451041698456, 0.13156279921531677, 0.0763128474354744, -0.05567964166402817, 0.062061335891485214, -0.10588698089122772, -0.06619668751955032, 0.014118858613073826, -0.0002835411869455129, 0.04498656094074249, -0.01964314468204975, 0.0022194432094693184, -0.04910384491086006, -0.040445949882268906, -0.144550159573555, -0.09121393412351608, 0.09477502107620239, 0.04824087768793106, 0.07486357539892197, 0.007011159788817167, 0.06928498297929764, -0.33060896396636963, -0.06691960245370865, -0.1184537336230278, -0.10575456917285919, 0.002904094522818923, 0.0836186408996582, -0.07196316123008728, -0.08086234331130981, 0.057587265968322754, 0.1804790198802948, 0.037930529564619064, 0.04388436675071716, 0.1665026843547821, 0.053656868636608124, 0.10977604240179062, 0.05410921573638916, -0.10831445455551147, -0.06563547253608704, 0.08216600120067596, -0.030171051621437073, 0.0002556027611717582, -0.05177231878042221, -0.13213206827640533, -0.07941139489412308, -0.00569016020745039, 0.0015242082299664617, -0.09750977158546448, -0.005213893949985504, 0.009028352797031403, -0.032841719686985016, 0.2931434214115143, -0.04125882312655449, -0.09963467717170715, -0.06600018590688705, -0.07601137459278107, -0.051399193704128265, -0.007443424314260483, -0.02827921323478222, 0.04760468751192093, -0.02092192880809307, -0.10340193659067154, -0.07097818702459335, -0.05654926598072052, 0.02016204223036766, -0.040336962789297104, -0.09745748341083527, 0.04645084589719772, -0.18417887389659882, -0.180443674325943, 0.03775418549776077, -0.0530514195561409, -0.07455235719680786, -0.026024365797638893, 0.044550154358148575, 0.007984575815498829, -0.00827761273831129, -0.021061331033706665, 0.11957517266273499, -0.06708530336618423, 0.027269406244158745, 0.0985167920589447, 0.08021987974643707, -0.21465671062469482, 0.006360328756272793, -0.044531725347042084, 0.043896496295928955, -0.18564270436763763, 0.00718897907063365, -0.04372153431177139, -0.05978052690625191, 0.012824749574065208, -0.009261897765100002, -0.05892178416252136, -0.030342448502779007, 0.08333359658718109, 0.05179603397846222, -0.156208336353302, -0.016412271186709404, 0.051405664533376694, -0.07918759435415268, -0.0406227670609951, 0.134607195854187, 0.03668291121721268, -0.16679944097995758, -0.052927613258361816, 0.22594046592712402, -0.019747788086533546, -0.0850130245089531, -0.1763840764760971, 0.10839641094207764, -0.012243804521858692, -0.1805880069732666, 0.15827766060829163, 0.06441372632980347, 0.052706412971019745, 0.05727163702249527, 0.02186594158411026, 0.05878659337759018, -0.07180946320295334, -0.045224376022815704, -0.06113479286432266, -0.1393318921327591, -0.040603555738925934, -0.07405722141265869, 0.09214429557323456, 0.02545487880706787, -0.0009833325166255236, -0.027215996757149696, 0.11736058443784714, 0.027224300429224968, 0.010702000930905342, -0.07898319512605667, 0.20523758232593536, -0.10613909363746643, -0.01296143513172865, -0.10351044684648514, 0.002593396231532097, 0.08734043687582016, -0.06671950221061707, -0.016471728682518005, 0.0990138053894043, 0.03747060149908066, 0.10237117856740952, -0.04951280727982521, 0.04147936403751373, -0.05813974142074585, -0.030638882890343666, -0.04121510684490204, -0.06075385957956314, 0.031892694532871246, -0.06394974142313004, -0.13513456284999847, 0.07584177702665329, 0.0034306710585951805, 0.04651845246553421, 0.049060650169849396, -0.024882234632968903, -0.028383318334817886, 0.11103805899620056, -0.055651307106018066, 0.015513360500335693, -0.04166331887245178, -0.00148845708463341, 0.05982598662376404, -0.052539315074682236, 0.08044780790805817, -0.11225368827581406, 0.13169865310192108, 0.11611506342887878, 0.25762754678726196, -0.011889644898474216, 0.00702187605202198, -0.09581394493579865, -0.0423542819917202, -0.0024594326969236135, 0.03689994290471077, 0.08934296667575836, -0.06876397877931595, 0.08718114346265793, -0.08081793040037155, -0.030493630096316338, 0.0695788711309433, 0.03402822092175484, -0.033259131014347076, 0.011382286436855793, 0.18356624245643616, -0.15917262434959412, 0.07344057410955429, 0.12140711396932602, -0.060925550758838654, 0.2062782496213913, 0.040834031999111176, -0.09899768233299255, -0.06646817922592163, -0.028947951272130013, -0.0394267663359642, 0.3238843083381653, -0.03195780888199806, 0.02050795964896679, 0.006703486200422049, 0.035418808460235596, 0.08153781294822693, -0.0209310594946146, -0.04342583194375038, -0.05505065992474556, -0.011118532158434391, 0.02078108675777912, 0.06355510652065277, -0.0914277583360672, 0.03300580009818077, 0.053423359990119934, 0.048607345670461655, -0.02874642238020897, 0.029090438038110733, -0.000972284993622452, 0.16555188596248627, -0.09182329475879669, -0.17231017351150513, 0.0006080979947000742, 0.025802338495850563, 0.0290005411952734, -0.00022695664665661752, 0.013121020048856735, -0.14609606564044952, -0.027548516169190407, -0.0058372002094984055, -0.017783300951123238, -0.05485675483942032, 0.12743301689624786, 0.07218591123819351, -0.0491093173623085, 0.022173617035150528, -0.10030493140220642, 0.013196256011724472, -0.08067377656698227, -0.11652687937021255, 0.04631510376930237, -0.01700340025126934, 0.10369894653558731, 0.044663846492767334, 0.006926093716174364, 0.038745421916246414, -0.01369376853108406, 0.2853577136993408, 0.01509162224829197, -0.0020870158914476633, 0.09220819175243378, 0.007312018424272537, 0.000025879140594042838, 0.01617780327796936, -0.0019128265557810664, -0.08524072915315628, 0.026569487527012825, 0.05326084420084953, -0.09470229595899582, -0.15192647278308868, 0.0405658558011055, -0.0428595207631588, 0.11146393418312073, -0.06623546034097672, 0.10528121888637543, -0.1283421367406845, 0.09426983445882797, 0.006455618888139725, 0.062018588185310364, -0.16309578716754913, 0.0271085686981678, -0.1523061841726303, 0.0035420937929302454, 0.03821653500199318, 0.006206247489899397, 0.053798895329236984, 0.1486685872077942, 0.1443018764257431, 0.11746077239513397, -0.1031143069267273, 0.04182758927345276, 0.02636261284351349, 0.1774318963289261, 0.10629221796989441, -0.054987404495477676, -0.08136311173439026, -0.05561560019850731, -0.10099133104085922, -0.016840169206261635, 0.02658132091164589, 0.023406941443681717, 0.03069930151104927, 0.021139560267329216, 0.029351213946938515, 0.13127270340919495, 0.06719178706407547, 0.094825379550457, 0.06734469532966614, -0.04056933894753456, -0.1401606798171997, -0.011031944304704666, 0.02962591126561165, -0.057659123092889786, 0.06671250611543655, 0.11927580088376999, -0.06248045712709427, -0.053822197020053864, -0.008545038290321827, 0.06663083285093307, -0.09008247405290604, -0.010688778012990952, -0.005745767615735531, 0.08983898907899857, -0.03510595113039017, -0.008125795982778072, -0.26376956701278687, 0.052388086915016174, 0.04582418501377106, 0.03106047958135605, 0.04135984182357788, -0.0021918336860835552, 0.08822031319141388, -0.0658431351184845, 0.11384613811969757, 0.021284567192196846, 0.07273413985967636, -0.010082823224365711, -0.224751278758049, 0.08960577845573425, 0.007897448725998402, -0.0030511508230119944, -0.0073028625920414925, 0.033336929976940155, 0.025440499186515808, -0.017206989228725433, 0.10065781325101852, -0.15467031300067902, -0.07110177725553513, 0.036958470940589905, -0.008427073247730732, -0.09369228035211563, -0.013146920129656792, -0.04910014569759369, -0.06493543088436127, 0.14678968489170074, -0.16041645407676697, -0.04878224804997444, -0.03967594355344772, 0.09309830516576767, 0.08952593058347702, -0.10173682868480682, 0.08645132929086685, -0.0050176288932561874, 0.09364234656095505, -0.020513789728283882, -0.10947367548942566, 0.04988503456115723, -0.09796711802482605, -0.07787837088108063, -0.047828394919633865, 0.0028160300571471453, -0.008935961872339249, 0.06095411255955696, -0.03741968423128128, -0.045158494263887405, -0.04125235974788666, -0.09167912602424622, 0.10627831518650055, -0.007149416953325272, 0.056786805391311646, 0.027655696496367455, -0.016333727166056633, 0.016977835446596146, 0.0011037022341042757, -0.06261575222015381, 0.05544609576463699, 0.20135590434074402, -0.07972162961959839, 0.05309511721134186, 0.16740383207798004, 0.010301675647497177, -0.10728662461042404, -0.056757278740406036, 0.010908806696534157, 0.03756214678287506, -0.06291331350803375, -0.16308927536010742, 0.031257785856723785, 0.14569319784641266, -0.03237198293209076, 0.12341267615556717, -0.15572425723075867, -0.08752389252185822, 0.04553087055683136, 0.10071703046560287, 0.46416664123535156, -0.11468509584665298, -0.03045697696506977, 0.024423673748970032, -0.2510603964328766, 0.09874182939529419, -0.0912485420703888, 0.12772487103939056, -0.11046737432479858, -0.019327437505126, -0.049912936985492706, -0.028110094368457794, 0.13884620368480682, -0.054375357925891876, -0.009393854066729546, -0.06164182722568512, -0.08026577532291412, 0.015527181327342987, -0.02282392606139183, 0.015551451593637466, -0.006531869526952505, 0.08488975465297699, -0.02110252156853676, -0.068044513463974, -0.01293883379548788, 0.006532978732138872, 0.00913818646222353, -0.13598938286304474, -0.05628066509962082, 0.08892892301082611, -0.07804631441831589, -0.006595611572265625, -0.07731166481971741, 0.03147153556346893, -0.09323444962501526, 0.006257494445890188, -0.12647336721420288, -0.04992816969752312, -0.10548626631498337, -0.007510628551244736, -0.03057222254574299, 0.11157658696174622, -0.07136151939630508, -0.04145706817507744, 0.057947561144828796, 0.014317515306174755, -0.03356758505105972, 0.048700325191020966, -0.07967020571231842, 0.13007357716560364, 0.05814390629529953, -0.16550201177597046, -0.10392604768276215, -0.016373610123991966, 0.023509882390499115, 0.016342317685484886, 0.07233311235904694, 0.0797298476099968, -0.0283022653311491, -0.05803985521197319, 0.03699398413300514, -0.02296571433544159, -0.013522394001483917, 0.07217410206794739, 0.10607405006885529, -0.011564300395548344, -0.1030237227678299, 0.1239655390381813, -0.025244420394301414, 0.04608415439724922, 0.0233199130743742, 0.03653838112950325, -0.11640273779630661, -0.03986237570643425, -0.02316041849553585, 0.04349802806973457, -0.09607341140508652, -0.008378769271075726, -0.18055321276187897, 0.010755765251815319, 0.056176718324422836, 0.14126212894916534, 0.08316383510828018, -0.012871135026216507, 0.04034210368990898, 0.054060760885477066, -0.04564419761300087, 0.029647422954440117, -0.08511552214622498, 0.0940549299120903, -0.09132334589958191, -0.13770338892936707, -0.029068421572446823, 0.1775888204574585, -0.048617515712976456, 0.021201783791184425, -0.1226455420255661, -0.0683988705277443, -0.11356723308563232, 0.05914827808737755, -0.01991846039891243, -0.012083569541573524, -0.08560732752084732, -0.038712963461875916, -0.0919463187456131, 0.09437664598226547, -0.023279083892703056, -0.019587930291891098, -0.005332774482667446, -0.03834168240427971, -0.038773320615291595, 0.028953691944479942, 0.016060970723628998, 0.016384482383728027, 0.12965117394924164, 0.11112523823976517, 0.06571849435567856, 0.02356746233999729, 0.0005164921167306602, -0.05811159685254097, -0.015753621235489845, 0.02902785688638687, 0.04835480824112892, 0.06108057498931885, 0.032889824360609055, -0.058280106633901596, 0.03436010330915451, -0.03893925994634628, 0.1885184943675995, -0.08562780171632767, -0.023716475814580917, -0.10539520531892776, 0.06545444577932358, -0.08408511430025101, -0.060777463018894196, 0.10163703560829163, 0.15228018164634705, -0.06006748601794243, -0.031605642288923264, 0.010692131705582142, -0.12026387453079224, 0.000760384020395577, 0.047712016850709915, -0.03072330541908741, -0.12062225490808487, 0.04207294061779976, 0.0337345264852047, -0.017572611570358276, 0.24538497626781464, -0.11031974852085114, -0.03438637778162956, -0.012084802612662315, -0.04467420652508736, 0.0694764032959938, -0.045844849199056625, 0.17211489379405975, 0.0509694404900074, 0.010628762654960155, -0.027173224836587906, 0.13129746913909912, 0.057869765907526016, 0.060757827013731, 0.1055307537317276, -0.02846265584230423, 0.14424726366996765, 0.09883752465248108, -0.005402245558798313, -0.09004265815019608, -0.04389865696430206, 0.12244907021522522, -0.11385701596736908, -0.023862911388278008, 0.03447452932596207, 0.02399803325533867, 0.18299919366836548, -0.061604440212249756, 0.0280646700412035, 0.014844238758087158, -0.058108698576688766, -0.10522788017988205, 0.02313935197889805, -0.08174774050712585, -0.08265108615159988, 0.07226205617189407, -0.10895312577486038, -0.045242562890052795, 0.12344302237033844, 0.034634966403245926, 0.029383283108472824, 0.12847653031349182, 0.09254226088523865, -0.005106494762003422, -0.00013412331463769078, -0.005855164490640163, -0.04723372310400009, -0.014446316286921501, -0.021385250613093376, 0.06956394761800766, -0.03763308376073837, -0.01815277896821499, -0.041866183280944824, 0.022071028128266335, 0.013202380388975143, 0.11466386914253235, 0.028343316167593002, -0.06301069259643555, 0.016872087493538857, 0.03220198675990105, 0.13215462863445282, -0.005526919849216938, -0.0336802639067173, 0.01411945465952158, 0.2038039118051529, 0.009270556271076202, 0.005992936436086893, -0.11051265150308609, 0.012298435904085636, -0.044627558439970016, 0.023279603570699692, 0.016650749370455742, -0.08471449464559555, -0.04589499160647392, 0.13194721937179565, 0.08390972763299942, -0.10178175568580627, 0.0085787083953619, 0.10134750604629517, -0.020721709355711937, 0.01639573648571968, 0.021995192393660545, 0.07980436831712723, 0.19406543672084808, -0.07752847671508789, -0.1010841652750969, -0.014387818984687328, 0.004888306837528944, 0.013667210005223751, 0.08118391036987305, 0.04915139079093933, 0.0301901213824749, -0.08781518042087555, -0.03511754050850868, -0.06928751617670059, -0.06430001556873322, -0.08008918911218643, -0.1138438805937767, -0.12038283050060272, 0.0016397692961618304, -0.07326259464025497, 0.04350709542632103, 0.028663823381066322, -0.08054864406585693, 0.08774078637361526, -0.02497241459786892, 0.011932255700230598, -0.15800507366657257, -0.06950989365577698, 0.03433466702699661, 0.16451531648635864, 0.17167361080646515, -0.002686689607799053, 0.03343164175748825, 0.06378331035375595, 0.02678232081234455, -0.1149185299873352, 0.04301096498966217, -0.02043738402426243, -0.12127286195755005, -0.06835468858480453, 0.1218896210193634, -0.030175907537341118, 0.06682147085666656, -0.006516781635582447, 0.02738378942012787, 0.004408476408571005, 0.0911109447479248, -0.011312735266983509, -0.08670162409543991, 0.1135108694434166, -0.12697748839855194, 0.15820936858654022, 0.09258715808391571, -0.03317195922136307, -0.06440737098455429, -0.013715898618102074, 0.10024182498455048, 0.042102765291929245, 0.015041937120258808, -0.011844353750348091, -0.0703277587890625, 0.0779900848865509, 0.033010613173246384, -0.02699303813278675, -0.22682182490825653, -0.09384295344352722, -0.07149741798639297, -0.03989838808774948, -0.04196570813655853, 0.053151823580265045, 0.06372052431106567, 0.0663742646574974, -0.051796626299619675, -0.009140774607658386, -0.05910767614841461, -0.04660521447658539, -0.1167120710015297, -0.1660372018814087 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mixtral_8x7b_Medicine This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "mistralai/Mixtral-8x7B-Instruct-v0.1", "model-index": [{"name": "Mixtral_8x7b_Medicine", "results": []}]}
null
SeanWu25/Mixtral_8x7b_Medicine
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
2024-02-07T01:21:10+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mixtral-8x7B-Instruct-v0.1 #license-apache-2.0 #region-us
# Mixtral_8x7b_Medicine This model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# Mixtral_8x7b_Medicine\n\nThis model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2.5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 0.03\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mixtral-8x7B-Instruct-v0.1 #license-apache-2.0 #region-us \n", "# Mixtral_8x7b_Medicine\n\nThis model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the generator dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2.5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 0.03\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 67, 44, 6, 12, 8, 3, 106, 4, 39 ]
[ "passage: TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mixtral-8x7B-Instruct-v0.1 #license-apache-2.0 #region-us \n# Mixtral_8x7b_Medicine\n\nThis model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1 on the generator dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2.5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 0.03\n- num_epochs: 1### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.12365423887968063, 0.1668030470609665, -0.0031994348391890526, 0.08721885085105896, 0.1262582540512085, 0.03298268839716911, 0.08013788610696793, 0.16725270450115204, -0.04998274892568588, 0.09123021364212036, 0.07183980941772461, 0.03428395465016365, 0.0674806758761406, 0.1530577391386032, -0.009429782629013062, -0.21375028789043427, -0.009496526792645454, -0.019674483686685562, -0.024357644841074944, 0.10967812687158585, 0.10269640386104584, -0.0833311527967453, 0.048658959567546844, -0.006826526485383511, -0.08414918184280396, 0.016745610162615776, -0.019913366064429283, -0.041384823620319366, 0.08666200190782547, -0.02551550231873989, 0.06825321912765503, 0.020230870693922043, 0.15550924837589264, -0.22172829508781433, -0.0005445742863230407, 0.0686693862080574, 0.03937898948788643, 0.10391749441623688, 0.05422329157590866, -0.043565087020397186, 0.09589462727308273, -0.1862678974866867, 0.09810739755630493, 0.02381674200296402, -0.06246735528111458, -0.2021912783384323, -0.11689088493585587, 0.12386755645275116, 0.10395701974630356, 0.10072118043899536, 0.016997789964079857, 0.13684557378292084, -0.05071846768260002, 0.07104208320379257, 0.24688804149627686, -0.25242412090301514, -0.0498984269797802, 0.03142523765563965, 0.061269812285900116, 0.0765240415930748, -0.11279181391000748, -0.015768663957715034, 0.029459921643137932, 0.02865404076874256, 0.0894939973950386, -0.009992947801947594, -0.09041482210159302, 0.0011458098888397217, -0.12507788836956024, -0.025375083088874817, 0.15922924876213074, 0.022879168391227722, -0.046103883534669876, -0.0966266393661499, -0.030938629060983658, -0.12299304455518723, -0.010381896048784256, -0.05858830735087395, 0.03177492320537567, -0.05911200866103172, 0.010907641611993313, -0.05402712523937225, -0.09214142709970474, -0.07470336556434631, 0.03521766513586044, 0.057303838431835175, 0.04059814661741257, 0.02880241721868515, -0.005046797450631857, 0.12605330348014832, 0.02422344870865345, -0.10787900537252426, -0.026156043633818626, 0.007324328180402517, -0.0927606150507927, -0.05262922868132591, -0.015536732971668243, -0.01071692444384098, -0.002472694730386138, 0.1328524649143219, -0.08811455219984055, 0.052693337202072144, 0.03917062655091286, -0.0012659665662795305, -0.006251906044781208, 0.08569411933422089, -0.060716018080711365, -0.02923157438635826, -0.009503410197794437, 0.13110476732254028, 0.024975750595331192, -0.006820505950599909, -0.06614894419908524, -0.03956032544374466, 0.09802921861410141, 0.08627645671367645, -0.04272567853331566, -0.0081575782969594, -0.05609862133860588, -0.03214603662490845, 0.057410240173339844, -0.14722004532814026, 0.0386468879878521, 0.012394804507493973, -0.08419149369001389, -0.04434220865368843, 0.05731391906738281, -0.0025628942530602217, -0.04145444557070732, 0.0710543841123581, -0.06053812429308891, 0.010589094832539558, -0.06635888665914536, -0.03824936971068382, 0.027932649478316307, -0.07340290397405624, -0.01870686374604702, -0.05263504385948181, -0.2000187337398529, -0.059704553335905075, 0.038982074707746506, -0.07863316684961319, -0.014127903617918491, -0.028877831995487213, -0.047210730612277985, 0.009627282619476318, -0.011016510426998138, 0.1228615790605545, -0.05477575212717056, 0.08942262828350067, -0.03838841989636421, 0.03274416923522949, 0.0330808088183403, 0.03888804838061333, -0.07270926237106323, 0.029663579538464546, -0.10409191250801086, 0.04793473705649376, -0.08644349873065948, -0.008512511849403381, -0.14929549396038055, -0.10446618497371674, 0.016986964270472527, -0.06273871660232544, 0.0701606273651123, 0.13248974084854126, -0.18029406666755676, 0.0011120953131467104, 0.1296800822019577, -0.07691687345504761, -0.08841568976640701, 0.08590584248304367, -0.029840560629963875, 0.0524006262421608, 0.04824770987033844, 0.15674877166748047, 0.13460826873779297, -0.1754886656999588, -0.028946632519364357, -0.0031038091983646154, 0.05283775180578232, 0.009900830686092377, 0.09065436571836472, -0.016568681225180626, 0.04895467311143875, 0.006007704883813858, -0.10428034514188766, -0.02402307838201523, -0.08509039133787155, -0.08336210250854492, -0.04283597692847252, -0.09939678758382797, 0.051876895129680634, 0.04590829834342003, 0.011897931806743145, -0.055202022194862366, -0.09593121707439423, 0.08288337290287018, 0.16938666999340057, -0.037630289793014526, 0.001519797369837761, -0.07345743477344513, 0.0225655697286129, -0.0012803802965208888, -0.04491935297846794, -0.19250574707984924, -0.09666113555431366, 0.027777934446930885, -0.08927109837532043, -0.011323543265461922, -0.017956003546714783, 0.057483699172735214, 0.07775819301605225, -0.04511925205588341, -0.023927750065922737, -0.09146784245967865, 0.007398356217890978, -0.09151735156774521, -0.19387774169445038, -0.07510301470756531, -0.03555791452527046, 0.20412606000900269, -0.22081024944782257, 0.021509263664484024, -0.03332623466849327, 0.12467756867408752, 0.019370537251234055, -0.07359662652015686, 0.03298596665263176, 0.019205238670110703, 0.014405328780412674, -0.08910651504993439, 0.04085443913936615, -0.019712330773472786, -0.06655944883823395, -0.0502958670258522, -0.1086960881948471, 0.011608007363975048, 0.03336980566382408, 0.14924301207065582, -0.1077456995844841, -0.05279339477419853, -0.06588416546583176, -0.04864492639899254, -0.08822885900735855, 0.0020339421462267637, 0.1482970118522644, 0.03565100207924843, 0.09755775332450867, -0.04743044078350067, -0.07277978211641312, -0.0031557022593915462, -0.0009254608303308487, -0.016707226634025574, 0.08461644500494003, 0.06368556618690491, -0.11697770655155182, 0.06553059816360474, 0.10049549490213394, -0.017252301797270775, 0.12163616716861725, -0.04117651283740997, -0.10884379595518112, -0.04600302875041962, 0.029085172340273857, -0.008314474485814571, 0.1298750787973404, -0.04073561728000641, 0.028180018067359924, 0.04137655347585678, -0.0058640907518565655, 0.014231688342988491, -0.1596556007862091, -0.015755221247673035, 0.011027129366993904, -0.05179522931575775, -0.026716357097029686, -0.02133416011929512, 0.027340548112988472, 0.09405660629272461, 0.018273573368787766, -0.0032469979487359524, 0.00999373011291027, -0.009569250978529453, -0.10653889924287796, 0.16457070410251617, -0.12336567789316177, -0.16841532289981842, -0.11684013158082962, 0.08301637321710587, -0.007312485948204994, -0.043786440044641495, -0.004510677419602871, -0.05915134400129318, -0.04075119271874428, -0.10083060711622238, -0.04744478687644005, -0.007355704437941313, -0.0319853201508522, 0.04471742361783981, 0.034042201936244965, 0.08708782494068146, -0.11407299339771271, 0.021638134494423866, -0.029929958283901215, -0.07632842659950256, 0.0069228168576955795, 0.05544092878699303, 0.07668708264827728, 0.1328156590461731, -0.005332082509994507, 0.020675944164395332, -0.031377073377370834, 0.18153677880764008, -0.07229799777269363, 0.019866934046149254, 0.14002273976802826, 0.01690961793065071, 0.046811625361442566, 0.11322163045406342, 0.029849162325263023, -0.07529054582118988, 0.02391868270933628, 0.04891185835003853, -0.007765103131532669, -0.2690925598144531, -0.04680807143449783, -0.017424961552023888, -0.07618873566389084, 0.08562671393156052, 0.05615736544132233, -0.008841068483889103, 0.04309104010462761, -0.01173042505979538, -0.02362639643251896, -0.011316024698317051, 0.05842489004135132, 0.044697072356939316, 0.017762616276741028, 0.0826616883277893, -0.020922750234603882, 0.007418944034725428, 0.0654802992939949, 0.0382462702691555, 0.25891363620758057, -0.055832985788583755, 0.11589900404214859, 0.04322021082043648, 0.17957602441310883, -0.04602169990539551, 0.03729801997542381, 0.045881565660238266, 0.011101659387350082, 0.022282490506768227, -0.07329197973012924, -0.04762301221489906, 0.025458572432398796, -0.035539086908102036, 0.05561082065105438, -0.0902797058224678, 0.0448027066886425, 0.01709144376218319, 0.25652700662612915, 0.05276637151837349, -0.2729473114013672, -0.0871473029255867, 0.007558107376098633, -0.005977716762572527, -0.07051942497491837, -0.008063862100243568, 0.13634097576141357, -0.14469201862812042, 0.06453101336956024, -0.06502603739500046, 0.0721767395734787, -0.03832559660077095, -0.011111144907772541, 0.060412678867578506, 0.06997402757406235, 0.0020285940263420343, 0.09704906493425369, -0.1665545403957367, 0.20532704889774323, 0.019300740212202072, 0.11193642765283585, -0.06429369002580643, 0.029612865298986435, 0.009024202823638916, 0.09907634556293488, 0.14242932200431824, 0.00682364497333765, -0.03575512394309044, -0.17104434967041016, -0.12316028773784637, 0.012533430010080338, 0.10386891663074493, -0.05075075104832649, 0.06577052921056747, -0.040951114147901535, -0.0043826960027217865, 0.01683640666306019, -0.11073492467403412, -0.17502528429031372, -0.11193724721670151, 0.04958721622824669, -0.006488510873168707, -0.025076638907194138, -0.0821119099855423, -0.10704942792654037, 0.0030727467965334654, 0.141127347946167, -0.02648302912712097, -0.07162187248468399, -0.15131327509880066, 0.08784191310405731, 0.1520204395055771, -0.06812039017677307, -0.003606135258451104, 0.03963501378893852, 0.10705418139696121, 0.03181762993335724, -0.0742282122373581, 0.02220388688147068, -0.07736597955226898, -0.18768997490406036, -0.05724897235631943, 0.16685479879379272, 0.07409226894378662, 0.05825313180685043, -0.003052434418350458, 0.034116823226213455, 0.015653157606720924, -0.08036583662033081, 0.054011519998311996, 0.10538749396800995, 0.0893421545624733, 0.06477192789316177, -0.09094168245792389, -0.016738006845116615, -0.05108146741986275, -0.035102151334285736, 0.11562540382146835, 0.19915123283863068, -0.09945078194141388, 0.13622026145458221, 0.07302994281053543, -0.08825551718473434, -0.16549567878246307, 0.035358816385269165, 0.14114053547382355, 0.006622357293963432, 0.11173038184642792, -0.19464251399040222, 0.08403335511684418, 0.13216236233711243, -0.035804327577352524, 0.06614617258310318, -0.357739120721817, -0.114490807056427, 0.06639444828033447, 0.10853110998868942, -0.05396292358636856, -0.14155639708042145, -0.050339434295892715, 0.015747781842947006, -0.16497290134429932, 0.08643068373203278, -0.07596530765295029, 0.09180629998445511, -0.026549747213721275, 0.06720712035894394, 0.03937634453177452, -0.04125884175300598, 0.14732971787452698, 0.026794034987688065, 0.05795340612530708, -0.05215693637728691, 0.014197878539562225, 0.08597932755947113, -0.0705457329750061, 0.0975564569234848, -0.018596859648823738, 0.06578797101974487, -0.14725282788276672, -0.011819127015769482, -0.08023342490196228, 0.06050501763820648, -0.059235889464616776, -0.05556865036487579, -0.03928569704294205, 0.08351823687553406, 0.047686975449323654, -0.03718196973204613, 0.04808828607201576, 0.024914147332310677, 0.1046358123421669, 0.10978218913078308, 0.07564724236726761, 0.011025266721844673, -0.1232471615076065, -0.01041531004011631, -0.024973858147859573, 0.038498613983392715, -0.10429401695728302, 0.019448161125183105, 0.12732234597206116, 0.06034289300441742, 0.14127790927886963, 0.006418091244995594, -0.07485625892877579, -0.011039244942367077, 0.040665339678525925, -0.10692062228918076, -0.1521119624376297, -0.005170255899429321, -0.010090590454638004, -0.15446169674396515, 0.016417425125837326, 0.10581609606742859, -0.06473227590322495, -0.025784002617001534, -0.02516314573585987, 0.06547107547521591, -0.015990007668733597, 0.21078073978424072, 0.043966807425022125, 0.07372593879699707, -0.06873664259910583, 0.106830894947052, 0.1024935394525528, -0.06861840933561325, 0.06301794201135635, 0.0795033872127533, -0.0921071395277977, -0.041760366410017014, 0.06966352462768555, 0.10723794251680374, -0.004227594472467899, -0.059671759605407715, -0.06557361781597137, -0.06707072257995605, 0.04497487470507622, 0.07401347160339355, 0.026694705709815025, -0.01531003974378109, -0.013131726533174515, 0.000388327898690477, -0.13718923926353455, 0.11672810465097427, 0.03741248697042465, 0.054502181708812714, -0.1257132738828659, 0.11441726237535477, 0.01822471059858799, 0.05781995505094528, -0.014593052677810192, 0.022227076813578606, -0.0515827015042305, -0.00956460926681757, -0.10886083543300629, 0.0033151092939078808, -0.026585979387164116, -0.005448127165436745, -0.014560310170054436, -0.0454803891479969, -0.01812056265771389, 0.060671526938676834, -0.05826406925916672, -0.07388448715209961, 0.006695046555250883, 0.06207030639052391, -0.16299110651016235, -0.028629906475543976, 0.032116182148456573, -0.07829877734184265, 0.08684530854225159, 0.06012371554970741, 0.036440007388591766, 0.0235814917832613, -0.0891561508178711, -0.009810940362513065, 0.029432274401187897, 0.04474412649869919, 0.0434458889067173, -0.15763670206069946, -0.01958608813583851, -0.02631939947605133, -0.0017107741441577673, 0.03322109580039978, 0.07736067473888397, -0.125118687748909, -0.035897839814424515, -0.0683218389749527, -0.011977287009358406, -0.06434996426105499, 0.04765360802412033, 0.07242323458194733, 0.034015245735645294, 0.13704344630241394, -0.07524663954973221, 0.059262994676828384, -0.19936974346637726, -0.045886583626270294, -0.022354058921337128, 0.0035207276232540607, -0.08871858566999435, 0.0008392240852117538, 0.08826175332069397, -0.04282766208052635, 0.061846207827329636, -0.024249549955129623, 0.07735009491443634, 0.029959434643387794, -0.02790283039212227, -0.014805459417402744, -0.005904949735850096, 0.10859581083059311, 0.04724136367440224, -0.02455095387995243, 0.09659537672996521, -0.01952388510107994, 0.03856099024415016, 0.01412919256836176, 0.1994154304265976, 0.13963519036769867, 0.0009382596472278237, 0.026302961632609367, 0.04350743815302849, -0.13268063962459564, -0.13633210957050323, 0.09526175260543823, -0.008624105714261532, 0.08600454032421112, -0.04651714488863945, 0.14811506867408752, 0.11077537387609482, -0.18155749142169952, 0.053697068244218826, -0.0670379102230072, -0.11565647274255753, -0.10163959115743637, -0.03854050487279892, -0.057775478810071945, -0.09002356976270676, 0.002126154489815235, -0.1076764315366745, 0.04017912968993187, 0.08735887706279755, 0.010775375179946423, 0.0211741104722023, 0.1429365575313568, -0.03946640342473984, 0.022432459518313408, 0.04234328120946884, 0.03205559775233269, -0.0005364687531255186, -0.07678326219320297, -0.028130067512392998, 0.06993485242128372, 0.014056367799639702, 0.08721623569726944, -0.04389851540327072, 0.01346124429255724, 0.026781365275382996, -0.008869869634509087, -0.07357028871774673, 0.024736637249588966, 0.014761188067495823, 0.03647299110889435, 0.060017865151166916, 0.08820940554141998, 0.01671290397644043, -0.04177875816822052, 0.29669129848480225, -0.05675917863845825, -0.07600107043981552, -0.12630490958690643, 0.1691175103187561, 0.04562103748321533, -0.03602594882249832, 0.07642236351966858, -0.12913422286510468, -0.007715787272900343, 0.1222832202911377, 0.13147489726543427, -0.04531104862689972, -0.015206833370029926, -0.017048368230462074, -0.007134424522519112, -0.0327666699886322, 0.11773470044136047, 0.11644837260246277, 0.0497441440820694, -0.07197821140289307, 0.011738689616322517, -0.01980220340192318, -0.03543788194656372, -0.11246450245380402, 0.05839504674077034, -0.003908777143806219, 0.022272806614637375, -0.015780659392476082, 0.09533236920833588, 0.028795627877116203, -0.22025275230407715, 0.033470384776592255, -0.1665584295988083, -0.18414293229579926, -0.03358329460024834, 0.1045287474989891, -0.020046256482601166, 0.022412370890378952, -0.0032764552161097527, 0.008003187365829945, 0.17324262857437134, -0.007854048162698746, -0.06764692813158035, -0.10267270356416702, 0.08665363490581512, -0.09366898238658905, 0.2405330091714859, 0.005765722598880529, 0.0763104185461998, 0.08348001539707184, -0.0008418697980232537, -0.16880793869495392, 0.04768618941307068, 0.0696021094918251, -0.029974041506648064, 0.04679550230503082, 0.17550687491893768, -0.029029177501797676, 0.07412175834178925, 0.040560685098171234, -0.10822509229183197, -0.03764079138636589, -0.02240462601184845, -0.0023306766524910927, -0.07854720205068588, 0.0376427136361599, -0.04601147770881653, 0.1472557932138443, 0.17303474247455597, -0.05199220031499863, 0.0213596373796463, -0.08360476046800613, 0.03254619240760803, 0.05075586959719658, 0.09477534145116806, -0.00010519074567127973, -0.1672150194644928, 0.04545801877975464, -0.036645449697971344, 0.055031515657901764, -0.22384490072727203, -0.09126388281583786, 0.049356747418642044, -0.07175955176353455, -0.0497586652636528, 0.10231640934944153, 0.0404139868915081, 0.03760875388979912, -0.026375457644462585, -0.09454461932182312, -0.03376881033182144, 0.13507328927516937, -0.17161528766155243, -0.03590863570570946 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zephyr-7b-UFB-0 This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1492 - Rewards/chosen: -1.5452 - Rewards/rejected: -7.2115 - Rewards/accuracies: 0.8359 - Rewards/margins: 5.6663 - Logps/rejected: -171.0846 - Logps/chosen: -143.6666 - Logits/rejected: -2.3237 - Logits/chosen: -2.3692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "alignment-handbook/zephyr-7b-sft-full", "model-index": [{"name": "zephyr-7b-UFB-0", "results": []}]}
text-generation
weijie210/zephyr-7b-UFB-0
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "trl", "dpo", "generated_from_trainer", "conversational", "base_model:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:25:02+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #mistral #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# zephyr-7b-UFB-0 This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1492 - Rewards/chosen: -1.5452 - Rewards/rejected: -7.2115 - Rewards/accuracies: 0.8359 - Rewards/margins: 5.6663 - Logps/rejected: -171.0846 - Logps/chosen: -143.6666 - Logits/rejected: -2.3237 - Logits/chosen: -2.3692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "# zephyr-7b-UFB-0\n\nThis model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1492\n- Rewards/chosen: -1.5452\n- Rewards/rejected: -7.2115\n- Rewards/accuracies: 0.8359\n- Rewards/margins: 5.6663\n- Logps/rejected: -171.0846\n- Logps/chosen: -143.6666\n- Logits/rejected: -2.3237\n- Logits/chosen: -2.3692", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 4\n- total_train_batch_size: 32\n- total_eval_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.1\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# zephyr-7b-UFB-0\n\nThis model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1492\n- Rewards/chosen: -1.5452\n- Rewards/rejected: -7.2115\n- Rewards/accuracies: 0.8359\n- Rewards/margins: 5.6663\n- Logps/rejected: -171.0846\n- Logps/chosen: -143.6666\n- Logits/rejected: -2.3237\n- Logits/chosen: -2.3692", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 4\n- total_train_batch_size: 32\n- total_eval_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.1\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ 96, 142, 6, 12, 8, 3, 147, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #trl #dpo #generated_from_trainer #conversational #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# zephyr-7b-UFB-0\n\nThis model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the None dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.1492\n- Rewards/chosen: -1.5452\n- Rewards/rejected: -7.2115\n- Rewards/accuracies: 0.8359\n- Rewards/margins: 5.6663\n- Logps/rejected: -171.0846\n- Logps/chosen: -143.6666\n- Logits/rejected: -2.3237\n- Logits/chosen: -2.3692## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 4\n- total_train_batch_size: 32\n- total_eval_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.36.1\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ -0.08491229265928268, 0.06923136115074158, -0.004594284109771252, 0.08845926821231842, 0.09999832510948181, 0.04238545522093773, 0.023311976343393326, 0.17589549720287323, -0.09316323697566986, 0.10869474709033966, 0.03978685289621353, 0.0915992334485054, 0.05935624614357948, 0.1492091715335846, -0.04892050847411156, -0.14760132133960724, 0.023602960631251335, -0.06686756759881973, -0.013688111677765846, 0.08495555818080902, 0.09506382048130035, -0.06540543586015701, 0.0546422116458416, -0.022659992799162865, -0.08636227250099182, -0.0023790677078068256, -0.005179244093596935, -0.026079777628183365, 0.0542631559073925, 0.00822049006819725, 0.07469256222248077, 0.009688317775726318, 0.06813421100378036, -0.23866677284240723, 0.004275922663509846, 0.09145291894674301, 0.02427757903933525, 0.07710835337638855, 0.0710519403219223, -0.04025523364543915, 0.14541852474212646, -0.15443257987499237, 0.09389964491128922, 0.07316116988658905, -0.11640777438879013, -0.20841731131076813, -0.11077221482992172, 0.13218837976455688, 0.11576950550079346, 0.08161251991987228, -0.04699590802192688, 0.10720102488994598, -0.09457113593816757, 0.07288195192813873, 0.1726359724998474, -0.20844610035419464, -0.0613415464758873, 0.1086750328540802, 0.07568825036287308, 0.00391421327367425, -0.1048942506313324, -0.009713803417980671, 0.05137215554714203, 0.0342271625995636, 0.0355142205953598, -0.021729033440351486, 0.0015630900161340833, -0.0024709352292120457, -0.10045316070318222, -0.03851351514458656, 0.05024183169007301, 0.07060141861438751, -0.05594523996114731, -0.15857651829719543, -0.027873801067471504, -0.16130311787128448, 0.0018948203651234508, -0.026916073635220528, 0.022433122619986534, -0.031373146921396255, -0.05204186588525772, 0.01707334816455841, -0.060216061770915985, -0.050937190651893616, 0.04882212355732918, 0.028013326227664948, 0.0270717553794384, 0.0070373076014220715, 0.01889980398118496, 0.11891309916973114, -0.0089578777551651, -0.10776995122432709, -0.06645407527685165, -0.010676653124392033, -0.15077871084213257, -0.05729430913925171, -0.002810712670907378, 0.04997916892170906, 0.03637966513633728, 0.20897045731544495, -0.0794074758887291, 0.08180171251296997, 0.018016774207353592, 0.001983583439141512, -0.01740664802491665, 0.09161990880966187, -0.014501486904919147, -0.07270631939172745, -0.03801900893449783, 0.12060754001140594, -0.004530753009021282, 0.004273614380508661, -0.0016540782526135445, 0.0028307572938501835, 0.11507520079612732, 0.08564919233322144, 0.0017380262725055218, 0.05082811415195465, -0.07454193383455276, -0.003181619103997946, 0.08507774025201797, -0.12282638996839523, 0.0488443598151207, 0.0418022982776165, -0.10332706570625305, -0.04461006820201874, 0.07299759238958359, -0.005402249749749899, -0.050696782767772675, 0.1503932625055313, -0.05556259676814079, -0.00729230185970664, -0.061495278030633926, -0.08453851193189621, 0.03189004957675934, -0.05537464842200279, -0.056158676743507385, -0.08706710487604141, -0.13764670491218567, -0.09627782553434372, 0.028195301070809364, -0.06575992703437805, -0.0015943520702421665, -0.06401125341653824, -0.12305165827274323, 0.03547707945108414, -0.0016032791463658214, 0.13622668385505676, -0.04644740745425224, 0.06831613928079605, -0.017066186293959618, 0.02454855851829052, 0.11186594516038895, 0.007385420147329569, -0.05519023537635803, 0.03916916996240616, -0.14601680636405945, 0.11390946805477142, -0.11219076812267303, 0.06044508516788483, -0.16398094594478607, -0.08748035877943039, 0.04015040025115013, 0.016948921605944633, 0.09380807727575302, 0.1258547604084015, -0.19465415179729462, -0.0241504218429327, 0.13410034775733948, -0.08816169947385788, -0.09657389670610428, 0.10190457850694656, -0.04068959876894951, 0.009151061065495014, 0.054537393152713776, 0.17599788308143616, 0.06351592391729355, -0.09648331254720688, -0.04948100820183754, -0.06914072483778, 0.03484559804201126, 0.08218860626220703, 0.019248686730861664, -0.04992008954286575, 0.050593968480825424, 0.007746249437332153, -0.020588112995028496, -0.03981906175613403, -0.07028057426214218, -0.08279553800821304, -0.03479117900133133, -0.053517524152994156, -0.013958294875919819, 0.027382327243685722, 0.005966421216726303, -0.09925243258476257, -0.13234511017799377, 0.01584657095372677, 0.1386750340461731, -0.02109149470925331, 0.025665856897830963, -0.08126159012317657, 0.019370216876268387, 0.03670109435915947, 0.01396811194717884, -0.19677406549453735, -0.04164118692278862, 0.019191306084394455, -0.14214880764484406, -0.011309000663459301, 0.015910156071186066, 0.0607689693570137, 0.023526011034846306, -0.04959889501333237, -0.052337076514959335, -0.03552589192986488, -0.013533937744796276, -0.07833803445100784, -0.20651304721832275, -0.031422533094882965, -0.024540409445762634, 0.1368367075920105, -0.2736817002296448, 0.016810964792966843, 0.01337438728660345, 0.13690286874771118, 0.025928888469934464, -0.08677638322114944, 0.013502583838999271, 0.027990952134132385, 0.016559330746531487, -0.08871445804834366, 0.037719227373600006, -0.0077306535094976425, -0.10328225791454315, -0.019241346046328545, -0.1964581161737442, -0.04507482424378395, 0.07584208995103836, 0.08074513077735901, -0.19020110368728638, 0.028925776481628418, -0.06431976705789566, -0.04486357793211937, -0.06363998353481293, -0.03285372629761696, 0.14988012611865997, 0.03468023240566254, 0.1094827800989151, -0.03622274473309517, -0.09231840074062347, -0.03011821024119854, 0.0040861573070287704, 0.022077379748225212, 0.17810340225696564, -0.009345471858978271, -0.13324105739593506, 0.06284601986408234, 0.00857416819781065, -0.008451192639768124, 0.12474679201841354, -0.05663549154996872, -0.04828634485602379, -0.05497976019978523, 0.05347425118088722, 0.05706333369016647, 0.09825215488672256, -0.01930948533117771, 0.0021772831678390503, 0.036412063986063004, 0.03827081248164177, 0.007422037422657013, -0.12476131319999695, 0.0014410984003916383, 0.004302609711885452, -0.05828085169196129, 0.006634033750742674, 0.018842220306396484, 0.028533650562167168, 0.1010344997048378, 0.013782133348286152, 0.01542933564633131, -0.019872372969985008, -0.04973538592457771, -0.09118722379207611, 0.19608226418495178, -0.09838388860225677, -0.06372912228107452, -0.09863010048866272, 0.08782368153333664, -0.020606473088264465, -0.03497327119112015, 0.03766019269824028, -0.1013498306274414, -0.07885825634002686, -0.11001046746969223, 0.007393395062536001, -0.019553665071725845, -0.026139231398701668, 0.01496806088835001, 0.032296765595674515, 0.13113030791282654, -0.13693183660507202, -0.004407244268804789, -0.01800905540585518, -0.08747114986181259, 0.01205148920416832, 0.05497695505619049, 0.04704072326421738, 0.10469219088554382, 0.0505935437977314, 0.02139541320502758, -0.029582222923636436, 0.16642791032791138, -0.0681924819946289, 0.02759653702378273, 0.07772377133369446, 0.03906862437725067, 0.06153678148984909, 0.12666915357112885, 0.023547085002064705, -0.09411826729774475, 0.050829268991947174, 0.10132448375225067, -0.009144788607954979, -0.2664271891117096, -0.03038201667368412, -0.010405931621789932, 0.02745836414396763, 0.10458153486251831, 0.050164833664894104, 0.04111594334244728, 0.018567947670817375, -0.024425774812698364, 0.000824080896563828, 0.03644982725381851, 0.0893760621547699, 0.016397828236222267, 0.05933377146720886, 0.0955488309264183, -0.04379449039697647, 0.03250223770737648, 0.06451992690563202, -0.06234753876924515, 0.22963060438632965, -0.051323674619197845, 0.11893847584724426, 0.07293041795492172, 0.08639146387577057, -0.04533807933330536, 0.005013803951442242, 0.041037820279598236, -0.00251286500133574, 0.03018697164952755, -0.07073941826820374, -0.02271287329494953, 0.04057072475552559, 0.0013344319304451346, 0.062271151691675186, -0.0946192592382431, 0.01758190244436264, 0.08494505286216736, 0.24052365124225616, 0.07375939935445786, -0.22244513034820557, -0.0775374174118042, 0.02984359674155712, -0.026837283745408058, -0.020310072228312492, -0.04291772469878197, 0.09459812939167023, -0.13935089111328125, 0.07049927860498428, -0.03820793703198433, 0.0949430912733078, -0.0773974359035492, 0.010003372095525265, 0.02339138649404049, 0.11289189755916595, -0.0038350217510014772, 0.035648103803396225, -0.20470069348812103, 0.2119840681552887, 0.005608028266578913, 0.11917910724878311, -0.011675484478473663, 0.04031102731823921, 0.04010338708758354, -0.013993133790791035, 0.12598903477191925, 0.01151864230632782, -0.12619023025035858, -0.17294418811798096, -0.06554301828145981, -0.004292827099561691, 0.09872999042272568, -0.1003630980849266, 0.07779040932655334, -0.035181958228349686, -0.014304924756288528, 0.017414988949894905, -0.038771916180849075, -0.15266065299510956, -0.0620943084359169, 0.026707157492637634, -0.031150754541158676, -0.041229210793972015, -0.08292005211114883, -0.05547448247671127, -0.02283383719623089, 0.2528252899646759, -0.06797503679990768, -0.04604455456137657, -0.14209648966789246, 0.041243258863687515, 0.13115203380584717, -0.0741068497300148, 0.007147276774048805, 0.011867387220263481, 0.05666034296154976, 0.02231130748987198, -0.03981086611747742, 0.09541428089141846, -0.07286302745342255, -0.20678317546844482, -0.06383077800273895, 0.13745903968811035, 0.07175873965024948, 0.04144587367773056, -0.0018299155635759234, 0.014278518967330456, 0.012980285100638866, -0.1067437008023262, 0.020294325426220894, 0.11416012048721313, 0.07166615128517151, 0.07189041376113892, -0.03141855075955391, -0.06751616299152374, -0.05687228962779045, -0.046275172382593155, 0.02707468345761299, 0.29863449931144714, -0.06852417439222336, 0.05978015437722206, 0.030795356258749962, -0.0659671351313591, -0.14674873650074005, 0.03368082270026207, 0.09988956898450851, 0.0027773112524300814, -0.004634708631783724, -0.07079239934682846, 0.06992034614086151, 0.1186949610710144, -0.018367361277341843, 0.05164043605327606, -0.28185799717903137, -0.16561612486839294, 0.008450061082839966, 0.08542072772979736, -0.018033862113952637, -0.16402168571949005, -0.0534316785633564, -0.024924835190176964, -0.1682405024766922, 0.06519079953432083, -0.06065206602215767, 0.10132726281881332, -0.01313002035021782, 0.02649248018860817, 0.0377948060631752, -0.054894380271434784, 0.14786070585250854, 0.07101371884346008, 0.08412478864192963, -0.07872690260410309, 0.010181787423789501, 0.019899088889360428, -0.11230365186929703, 0.05915597453713417, -0.05632128566503525, 0.0621010959148407, -0.1654452681541443, 0.008036496117711067, -0.0838383138179779, 0.03992275893688202, -0.0871315449476242, -0.03853761404752731, -0.048498235642910004, 0.10234528034925461, 0.07629121840000153, -0.02350410260260105, 0.026527518406510353, -0.04283875599503517, 0.15553893148899078, 0.08388818055391312, 0.05614927411079407, 0.0749150738120079, -0.10445614904165268, 0.027131401002407074, -0.018467361107468605, 0.03710096701979637, -0.19615960121154785, 0.017461497336626053, 0.123543880879879, 0.02856721170246601, 0.1659906506538391, 0.016329161822795868, -0.09958920627832413, -0.002566299866884947, 0.0526401549577713, -0.08319981396198273, -0.09242937713861465, 0.05760093405842781, -0.058264754712581635, -0.12021561712026596, -0.014959422871470451, 0.11795629560947418, -0.011187051422894001, 0.004137218464165926, 0.008368832059204578, 0.052346594631671906, -0.031190065667033195, 0.19641481339931488, 0.02680850215256214, 0.11218651384115219, -0.062203533947467804, 0.11679382622241974, 0.04526081308722496, -0.05222344398498535, 0.04364967346191406, 0.1128709688782692, -0.0860263928771019, -0.04294222965836525, 0.0031954909209161997, 0.15190792083740234, 0.0018200412159785628, -0.020523691549897194, -0.054398294538259506, -0.09255532920360565, 0.06524904072284698, 0.07390334457159042, 0.04324017092585564, 0.019405238330364227, 0.0026153712533414364, 0.007410549093037844, -0.10196549445390701, 0.05403890460729599, 0.11076818406581879, 0.04683336988091469, -0.07096704840660095, 0.15707983076572418, 0.004126767162233591, -0.025935783982276917, 0.025801219046115875, 0.05045323446393013, -0.14685113728046417, -0.008981218561530113, -0.09212861955165863, 0.009309529326856136, -0.06377878040075302, -0.0005686442600563169, -0.00997256301343441, -0.0076941619627177715, -0.02169755846261978, 0.04528059437870979, -0.07034726440906525, -0.1129593551158905, 0.017087694257497787, 0.06679442524909973, -0.1484076827764511, -0.020993858575820923, 0.012318234890699387, -0.11137766391038895, 0.0700736865401268, 0.046183351427316666, 0.030808569863438606, 0.017768656834959984, -0.14347851276397705, 0.021159900352358818, 0.027835482731461525, -0.018844369798898697, 0.036387644708156586, -0.14119724929332733, 0.0008071510237641633, -0.06961099058389664, 0.03626582399010658, 0.051989585161209106, -0.012988870963454247, -0.13524769246578217, 0.013133944012224674, -0.03326992690563202, -0.025156380608677864, -0.051590077579021454, 0.04811824485659599, 0.0992879644036293, 0.04803077131509781, 0.1471536010503769, -0.08685634285211563, 0.04865918308496475, -0.20827198028564453, -0.03181063383817673, 0.005132763180881739, -0.03862057998776436, -0.004403697792440653, -0.003645744174718857, 0.09702803194522858, -0.06991826742887497, 0.024253303185105324, -0.06716833263635635, 0.09177213162183762, 0.05263318493962288, -0.058252230286598206, -0.0488012470304966, 0.035421937704086304, 0.07404403388500214, 0.00782269611954689, -0.023753739893436432, 0.06512724608182907, -0.042077381163835526, 0.048008959740400314, 0.005399839021265507, 0.15129375457763672, 0.200609490275383, -0.005089849233627319, 0.051289450377225876, 0.014268102124333382, -0.11117089539766312, -0.08455944061279297, 0.11507163196802139, -0.11071367561817169, 0.1003255844116211, -0.07901260256767273, 0.081184022128582, 0.0721745565533638, -0.17793124914169312, 0.07177087664604187, -0.06972221285104752, -0.09300760924816132, -0.07915573567152023, -0.07820490747690201, -0.0746757835149765, -0.051133714616298676, 0.02482295036315918, -0.07478994131088257, 0.062303777784109116, 0.09636510908603668, 0.04785102978348732, 0.01770508661866188, 0.08590392768383026, -0.043841660022735596, 0.019088400527834892, 0.100151926279068, 0.021310023963451385, -0.06236184388399124, -0.015291201882064342, -0.02328762412071228, 0.03805099427700043, 0.025372086092829704, 0.07603034377098083, -0.006730885710567236, -0.02571391500532627, 0.03803475946187973, -0.0010917349718511105, -0.08058901876211166, 0.02609184756875038, 0.01319661270827055, 0.027432404458522797, 0.08895456790924072, 0.08593615889549255, -0.005656905472278595, -0.02388257347047329, 0.2813180387020111, -0.06173158809542656, -0.11652681231498718, -0.16646508872509003, 0.1636015921831131, 0.05239406228065491, -0.013015889562666416, 0.025303008034825325, -0.1326197385787964, 0.010086778551340103, 0.10884552448987961, 0.15407948195934296, -0.02725505828857422, 0.008679071441292763, -0.017192397266626358, -0.01625889353454113, -0.03133614733815193, 0.05838175117969513, 0.06851030886173248, -0.028149480000138283, -0.010047161020338535, 0.058075930923223495, -0.0008171747322194278, -0.060529835522174835, -0.014588040299713612, 0.08564316481351852, 0.010935716331005096, 0.010793578810989857, -0.03672919049859047, 0.06023348495364189, -0.04572935402393341, -0.21749815344810486, 0.10338651388883591, -0.1742400825023651, -0.16734077036380768, -0.025102732703089714, 0.07019872963428497, 0.005949079059064388, 0.07525280117988586, 0.02377910725772381, -0.029295390471816063, 0.11044752597808838, -0.027023369446396828, -0.035655677318573, -0.14836366474628448, -0.012799732387065887, -0.04453405737876892, 0.22026322782039642, 0.016301821917295456, 0.016848305240273476, 0.13749799132347107, -0.019749503582715988, -0.12541896104812622, 0.0674690380692482, 0.06598164886236191, -0.09889084845781326, 0.04328199848532677, 0.1949264407157898, -0.058532170951366425, 0.09946761280298233, 0.06540147960186005, -0.14477679133415222, -0.010059233754873276, -0.018692532554268837, 0.0005715222796425223, -0.11064055562019348, 0.040958430618047714, -0.03884505480527878, 0.14308971166610718, 0.2262696623802185, -0.033694326877593994, 0.031946904957294464, -0.05333355814218521, 0.023847680538892746, -0.007827648892998695, 0.09300680458545685, -0.012064681388437748, -0.18172116577625275, 0.07651088386774063, 0.008003223687410355, 0.0729040876030922, -0.23126843571662903, -0.10562311112880707, 0.03860608488321304, -0.04980551451444626, -0.06603748351335526, 0.1388714760541916, 0.019633824005723, 0.037557732313871384, -0.01908021606504917, -0.13425733149051666, -0.00107464415486902, 0.17691217362880707, -0.09102936089038849, -0.07973375171422958 ]
null
null
peft
## Training procedure ### Framework versions - PEFT 0.4.0
{"library_name": "peft"}
null
zzz99/deepseek-7B-instr-1.5-qlora-11k-all
[ "peft", "region:us" ]
2024-02-07T01:35:06+00:00
[]
[]
TAGS #peft #region-us
## Training procedure ### Framework versions - PEFT 0.4.0
[ "## Training procedure", "### Framework versions\n\n\n- PEFT 0.4.0" ]
[ "TAGS\n#peft #region-us \n", "## Training procedure", "### Framework versions\n\n\n- PEFT 0.4.0" ]
[ 9, 3, 11 ]
[ "passage: TAGS\n#peft #region-us \n## Training procedure### Framework versions\n\n\n- PEFT 0.4.0" ]
[ -0.1052059754729271, 0.029987968504428864, -0.004904941655695438, 0.028906483203172684, 0.14875547587871552, -0.0021672318689525127, 0.06769361346960068, 0.08324448764324188, 0.03427431732416153, 0.02919442392885685, 0.1316586136817932, -0.004970726557075977, 0.025874467566609383, 0.21852418780326843, -0.011018975637853146, -0.3242509663105011, 0.044351980090141296, 0.0206617321819067, -0.01826033741235733, 0.10425560176372528, 0.04903198033571243, -0.020669709891080856, 0.007798645179718733, -0.0813150554895401, -0.17558449506759644, 0.03569520637392998, -0.03324613347649574, -0.015008424408733845, 0.13636448979377747, -0.029298754408955574, 0.1947842240333557, -0.06058760732412338, 0.012734985910356045, -0.2647883892059326, 0.01513243280351162, 0.0799948126077652, -0.021724499762058258, 0.07398008555173874, 0.08464309573173523, 0.03567267954349518, 0.06580987572669983, 0.053830452263355255, 0.04775804281234741, 0.0476880818605423, -0.20671571791172028, -0.14524723589420319, -0.09915456175804138, 0.10096707940101624, 0.17417162656784058, 0.0873914584517479, 0.05306839197874069, 0.09435585886240005, -0.16517017781734467, 0.016370484605431557, 0.13752886652946472, -0.3213055729866028, -0.09698904305696487, 0.1674462854862213, 0.047388628125190735, 0.1676526665687561, -0.11814811825752258, -0.05322111025452614, 0.10399492084980011, 0.04207957535982132, -0.023082397878170013, -0.03304126486182213, 0.001136205275543034, 0.021253682672977448, -0.15538540482521057, -0.07736417651176453, 0.38343384861946106, 0.020873500034213066, 0.017534729093313217, 0.06719470769166946, -0.05189400538802147, -0.2374543845653534, 0.015277350321412086, -0.04111042246222496, -0.014872876927256584, 0.07677560299634933, 0.18229566514492035, -0.13952359557151794, -0.10449241101741791, -0.13905403017997742, -0.05802478641271591, 0.17096760869026184, 0.03344070538878441, 0.040010061115026474, -0.13868413865566254, 0.11900372058153152, -0.021631749346852303, 0.04696715623140335, -0.00798212829977274, -0.09288716316223145, 0.012667288072407246, -0.08595244586467743, -0.016900140792131424, 0.08567596971988678, -0.00291117699816823, 0.15735560655593872, -0.20468267798423767, 0.08351574838161469, 0.01255741622298956, 0.12457772344350815, -0.09450360387563705, 0.022196434438228607, 0.053812429308891296, 0.09179293364286423, -0.040783002972602844, 0.02111649140715599, -0.09509038925170898, 0.018674954771995544, -0.07592038065195084, -0.0471598356962204, -0.021834727376699448, 0.10560592263936996, -0.1328791081905365, -0.06935814023017883, -0.06561969220638275, -0.019003018736839294, 0.044677916914224625, -0.08697652071714401, -0.04099489003419876, -0.00003626770558184944, 0.002640250837430358, 0.008679675869643688, 0.03324994444847107, -0.015907684341073036, -0.053810976445674896, 0.09067554771900177, -0.09548076242208481, 0.02918822504580021, -0.10310390591621399, 0.04400641471147537, 0.002140593249350786, -0.10004789382219315, 0.004527771845459938, -0.10876572877168655, -0.12191442400217056, -0.06927064806222916, 0.056514400988817215, -0.01665310375392437, -0.011371714994311333, -0.044740717858076096, -0.06273153424263, -0.06326170265674591, -0.04235343262553215, -0.012609558179974556, -0.037722405046224594, 0.09037908911705017, -0.10201052576303482, 0.014478890225291252, -0.12526366114616394, 0.04525196552276611, 0.005336165428161621, 0.062211327254772186, -0.060641370713710785, 0.010042522102594376, -0.10174823552370071, 0.09177597612142563, -0.07459823042154312, -0.09565518796443939, -0.25676342844963074, 0.023314736783504486, -0.011655724607408047, 0.17880091071128845, -0.06906404346227646, -0.021071337163448334, 0.2611777186393738, -0.09168685227632523, -0.09909763932228088, 0.01407481636852026, 0.0004320316656958312, 0.13520601391792297, 0.007442967034876347, 0.2736385464668274, 0.08678437769412994, -0.23009182512760162, 0.1977148801088333, 0.13523846864700317, 0.0019103816011920571, -0.1390891820192337, 0.04713081941008568, -0.16075651347637177, -0.17339028418064117, -0.004565319046378136, -0.09206133335828781, 0.05155645310878754, -0.07772934436798096, -0.039547570049762726, 0.015061224810779095, -0.04563331976532936, 0.08040310442447662, 0.022771932184696198, 0.133599191904068, -0.06208651885390282, 0.07044756412506104, 0.1616545468568802, 0.08167298138141632, 0.08755709230899811, -0.01156798005104065, 0.002258099615573883, -0.009061434306204319, -0.01365660596638918, -0.039255764335393906, -0.11771333962678909, -0.10502202063798904, -0.014337784610688686, 0.08746077120304108, -0.057949379086494446, 0.12454059720039368, 0.0982714518904686, 0.01814308576285839, -0.03129351884126663, -0.04374438151717186, -0.15320244431495667, 0.007032387424260378, -0.07006516307592392, 0.0071497028693556786, -0.017323948442935944, -0.04723566398024559, 0.09642663598060608, -0.19456301629543304, 0.0688508003950119, 0.051905833184719086, 0.05801341310143471, 0.09916149079799652, -0.05474027246236801, -0.001994590274989605, 0.11210202425718307, 0.04906518757343292, -0.04729798808693886, 0.10840515792369843, 0.05421357974410057, 0.08399911224842072, -0.0690574124455452, -0.02199692279100418, 0.2570227086544037, 0.09715393930673599, -0.04417749494314194, -0.07080945372581482, -0.13439713418483734, -0.0990152359008789, 0.009084511548280716, -0.037681348621845245, -0.009201258420944214, 0.10523112118244171, -0.006364777218550444, 0.13961629569530487, -0.05554157495498657, -0.042185746133327484, -0.004025377798825502, -0.06356395035982132, 0.009072046726942062, 0.016253819689154625, 0.11993826180696487, 0.023643502965569496, 0.1481916606426239, 0.13182127475738525, -0.02818773314356804, 0.2165963500738144, -0.04322602227330208, -0.0944482609629631, 0.03401036560535431, 0.18927210569381714, -0.026473641395568848, 0.14300435781478882, -0.11733747273683548, 0.002062504179775715, -0.0022100317291915417, 0.1061364933848381, 0.14569753408432007, -0.2158898264169693, -0.10130304843187332, -0.034806933254003525, -0.06137715280056, -0.10377085953950882, 0.050330910831689835, 0.005825231783092022, 0.06478147953748703, 0.05814178287982941, -0.02284589596092701, 0.08632571995258331, 0.010748360306024551, -0.10265099257230759, 0.12379193305969238, -0.17622900009155273, -0.1972815990447998, -0.23448173701763153, 0.09228731691837311, 0.008631899952888489, 0.030770549550652504, 0.025466013699769974, -0.16118142008781433, 0.025632353499531746, 0.03794601559638977, 0.00016987323760986328, -0.13154636323451996, -0.07489950954914093, 0.03546011447906494, 0.08896773308515549, 0.012883380986750126, -0.06839139014482498, -0.0320943258702755, -0.027438990771770477, -0.07847987860441208, 0.02265363559126854, -0.1707974225282669, 0.03495718538761139, 0.13098570704460144, 0.04345104470849037, 0.1260824054479599, -0.04369433969259262, 0.18978384137153625, -0.12684091925621033, -0.03666117042303085, 0.12328772246837616, -0.030237985774874687, 0.01769125461578369, 0.03468233719468117, 0.029555417597293854, -0.17711995542049408, 0.024519072845578194, 0.021016176789999008, -0.09629671275615692, -0.2594744861125946, -0.0894232839345932, -0.1207260712981224, -0.005201422143727541, 0.08728679269552231, 0.11507166177034378, 0.12163158506155014, 0.02153407409787178, 0.0490279383957386, -0.05151890218257904, 0.012589060701429844, 0.00817510299384594, 0.022550709545612335, -0.059314846992492676, 0.0018453019438311458, -0.09893351048231125, 0.004251874517649412, 0.09010828286409378, 0.13533294200897217, 0.2954493463039398, 0.1722830981016159, -0.144855797290802, 0.07796278595924377, 0.18301182985305786, 0.07834940403699875, 0.15222014486789703, 0.054517343640327454, -0.0369616374373436, 0.005309585947543383, 0.00851316750049591, -0.09159466624259949, 0.07033883780241013, -0.053955335170030594, -0.010460525751113892, -0.08210811018943787, -0.20387312769889832, 0.05966407433152199, 0.3438049554824829, -0.0008539339760318398, -0.18956764042377472, -0.0439598485827446, 0.009149113669991493, 0.030901970341801643, -0.12698934972286224, 0.1597505360841751, 0.1660371869802475, -0.18119589984416962, 0.0019767810590565205, -0.02742611989378929, 0.10790292918682098, -0.021291133016347885, -0.003621643641963601, 0.05107075721025467, -0.051975589245557785, 0.010150079615414143, 0.05182411149144173, -0.20897144079208374, 0.32136791944503784, -0.018314968794584274, 0.0674867108464241, 0.038726791739463806, -0.027154363691806793, 0.048806194216012955, 0.19393816590309143, 0.14692968130111694, 0.07333777844905853, -0.0008674372220411897, -0.21357783675193787, -0.016554730013012886, -0.016406890004873276, 0.12842361629009247, -0.0816831886768341, -0.07189150899648666, -0.0508536659181118, 0.08031828701496124, -0.03559911623597145, -0.12403537333011627, -0.08189775049686432, -0.041117727756500244, -0.042482249438762665, -0.004429531749337912, 0.08735287934541702, -0.09765312075614929, -0.009571311995387077, -0.014137107878923416, 0.03031417727470398, -0.13182641565799713, -0.021396644413471222, -0.10328216850757599, -0.17316129803657532, 0.019472705200314522, 0.0027445463929325342, 0.048466429114341736, -0.0020090946927666664, -0.014597628265619278, -0.04190627112984657, -0.07424820214509964, 0.09968193620443344, -0.10542412847280502, 0.032324545085430145, 0.0035237532574683428, 0.2003440111875534, -0.008648962713778019, 0.004452184773981571, -0.035745617002248764, -0.008998345583677292, 0.046110134571790695, -0.10881845653057098, 0.037713173776865005, 0.07887586206197739, -0.023573309183120728, 0.025968750938773155, -0.16967560350894928, 0.20804046094417572, -0.03144395351409912, -0.010261844843626022, 0.21994546055793762, 0.16770786046981812, -0.07795662432909012, 0.06527739018201828, 0.0031952536664903164, -0.09155682474374771, -0.22975896298885345, 0.08109663426876068, 0.02959774062037468, -0.021764712408185005, -0.030733942985534668, -0.2802942097187042, -0.010953321121633053, 0.23422621190547943, -0.03654467687010765, 0.22480171918869019, -0.31969812512397766, -0.003263249760493636, 0.0898551419377327, 0.028859086334705353, 0.22695568203926086, -0.14258858561515808, -0.08995459973812103, 0.07881151884794235, -0.07934904843568802, 0.0013992831809446216, -0.13203643262386322, 0.056065402925014496, -0.009330889210104942, -0.041803643107414246, -0.003901206888258457, -0.01043347641825676, 0.22539211809635162, 0.008649174124002457, 0.08901192247867584, -0.03641754761338234, 0.012208386324346066, -0.08218498528003693, -0.040737271308898926, 0.044630058109760284, 0.1550656408071518, 0.006006923969835043, -0.26551228761672974, 0.007556809112429619, -0.07020265609025955, 0.044990174472332, -0.02182471938431263, -0.04639367759227753, -0.010609271004796028, 0.013798341155052185, -0.06448204815387726, 0.04636958986520767, 0.11962524056434631, -0.06197565793991089, 0.30616623163223267, 0.1039680689573288, 0.034237999469041824, -0.10807459056377411, -0.1450628936290741, -0.017693322151899338, -0.0527581125497818, 0.13622857630252838, -0.1725040227174759, -0.03306293860077858, 0.0994621142745018, 0.008793491870164871, 0.1340884119272232, 0.07681850343942642, -0.018627818673849106, -0.012855076231062412, 0.10103397816419601, -0.16206946969032288, -0.15639477968215942, -0.07153380662202835, 0.011734149418771267, 0.05669841542840004, 0.05561142787337303, 0.10660489648580551, -0.03487754240632057, 0.01993253454566002, -0.029392508789896965, -0.02578812837600708, -0.1568717211484909, 0.05042995512485504, 0.1141928881406784, 0.05008924379944801, -0.044836606830358505, 0.10158193856477737, 0.028588972985744476, -0.0859367847442627, 0.008315153419971466, 0.13192348182201385, -0.09206105768680573, -0.05137857049703598, -0.055599406361579895, 0.07981676608324051, 0.07757223397493362, -0.08617962151765823, 0.0019502958748489618, -0.09573093056678772, 0.07193859666585922, 0.06127142906188965, 0.06192125380039215, 0.031409069895744324, -0.004809454083442688, 0.0468016117811203, -0.00901726447045803, -0.0856415331363678, -0.07862210273742676, 0.03452349081635475, -0.15478827059268951, 0.050186626613140106, 0.026692120358347893, 0.06260330229997635, -0.05261168256402016, -0.07408761233091354, -0.15325827896595, 0.10059450566768646, 0.010169131681323051, -0.07890810072422028, -0.019031500443816185, -0.0006279756198637187, 0.005294028203934431, -0.0390433706343174, -0.058001160621643066, 0.017549440264701843, -0.1547299176454544, 0.05348382517695427, 0.0010551924351602793, 0.06101006641983986, 0.018890615552663803, 0.050216786563396454, 0.09482712298631668, -0.07219449430704117, 0.07663611322641373, 0.0790100172162056, -0.022503124549984932, 0.13856986165046692, 0.014467528089880943, 0.01784694939851761, 0.12988638877868652, -0.04024256020784378, 0.06119129806756973, 0.047438085079193115, -0.0040856315754354, -0.025097422301769257, 0.047007735818624496, 0.08192651718854904, 0.028334757313132286, -0.10581747442483902, -0.061209771782159805, -0.03274047002196312, -0.12460686266422272, -0.046617865562438965, -0.06604064255952835, 0.17081774771213531, 0.08881150931119919, 0.05432968959212303, -0.05895773321390152, 0.046770282089710236, -0.07854996621608734, -0.012239709496498108, -0.00942638423293829, 0.0036245952360332012, 0.044290244579315186, -0.031970202922821045, 0.030434925109148026, 0.015009774826467037, 0.17472043633460999, -0.044796090573072433, -0.005853630136698484, 0.03355623781681061, -0.129882350564003, -0.09319642931222916, 0.007328666280955076, 0.19131891429424286, 0.13422714173793793, -0.048090651631355286, -0.05478314682841301, 0.05787629261612892, -0.024573978036642075, -0.05166546255350113, 0.18612901866436005, 0.1355324238538742, -0.1433362066745758, 0.07287926971912384, 0.004999513737857342, -0.056986287236213684, -0.03742443025112152, -0.00426732562482357, 0.09365883469581604, -0.02600516751408577, -0.028467996045947075, 0.07471735030412674, 0.24243281781673431, -0.16544800996780396, 0.057179614901542664, 0.004051866475492716, -0.05977439135313034, -0.1710972785949707, 0.09765876084566116, -0.011315695010125637, -0.20746348798274994, 0.01357036828994751, -0.07509784400463104, -0.04344959557056427, 0.2360471934080124, 0.01239700149744749, 0.036698367446660995, 0.2531094551086426, -0.03753358870744705, -0.05911456048488617, 0.07052752375602722, -0.021738173440098763, 0.06695862114429474, -0.2575749158859253, -0.1412489116191864, 0.01093151606619358, -0.12785562872886658, 0.0025925463996827602, -0.02234363928437233, -0.08022084832191467, -0.03827802091836929, -0.079276442527771, 0.001596768037416041, -0.021115310490131378, 0.0972302109003067, -0.11975528299808502, 0.146222323179245, 0.045198146253824234, -0.08019448816776276, -0.016920339316129684, 0.18287549912929535, -0.08442999422550201, -0.024462906643748283, -0.1823849380016327, 0.253165066242218, 0.06369125843048096, 0.1202903464436531, -0.047552403062582016, 0.008452809415757656, -0.03445576876401901, 0.22391507029533386, 0.17550769448280334, -0.03692542016506195, 0.02046220749616623, 0.06298809498548508, 0.04051419720053673, 0.03463171049952507, 0.22805540263652802, 0.13189980387687683, 0.08572927117347717, -0.04117876663804054, -0.027794016525149345, -0.025188308209180832, 0.05590328946709633, -0.07404550909996033, 0.04207015782594681, 0.05009876936674118, -0.02368866465985775, -0.11743457615375519, 0.18003739416599274, -0.10486319661140442, 0.09144622832536697, 0.11178363859653473, -0.1237211748957634, -0.13187538087368011, -0.03188552334904671, -0.024923086166381836, -0.09490636736154556, 0.09466332942247391, -0.05299423262476921, -0.10508818179368973, 0.11629053205251694, 0.008027907460927963, -0.10148446261882782, -0.262090802192688, 0.09144936501979828, -0.03917919099330902, 0.14246374368667603, -0.0130685456097126, -0.02582843415439129, 0.010347881354391575, -0.01142950914800167, -0.03246507793664932, 0.08458210527896881, 0.040096547454595566, 0.06396213918924332, -0.1637495458126068, 0.01029658317565918, -0.05821184441447258, 0.012807602062821388, 0.02944212779402733, -0.20675475895404816, -0.03301338478922844, -0.01249171607196331, -0.07682930678129196, -0.06510467082262039, 0.05338098108768463, -0.08045102655887604, 0.09079298377037048, 0.16357667744159698, 0.004707162268459797, 0.010630887001752853, -0.0567144900560379, 0.08888152986764908, 0.062279168516397476, -0.050918690860271454, -0.06550109386444092, -0.0740373507142067, -0.05693382769823074, -0.060170017182826996, -0.09050077944993973, -0.12378954887390137, -0.017205223441123962, -0.06468513607978821, 0.03471436724066734, -0.06951696425676346, 0.059102799743413925, -0.01230331789702177, 0.04219208285212517, 0.006007094867527485, -0.20113283395767212, 0.01331514772027731, 0.11256898939609528, -0.006301536690443754, -0.021777711808681488 ]
null
null
transformers
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 4.222931861877441 f1_macro: 0.20794824311359378 f1_micro: 0.24259214647072994 f1_weighted: 0.20814862686990657 precision_macro: 0.23546798702040436 precision_micro: 0.24259214647072994 precision_weighted: 0.23569488944104558 recall_macro: 0.24235860409145613 recall_micro: 0.24259214647072994 recall_weighted: 0.24259214647072994 accuracy: 0.24259214647072994
{"tags": ["autotrain", "image-classification"], "datasets": ["autotrain-i4gql-y81s7/autotrain-data"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]}
image-classification
IsaacMwesigwa/footballer-recognition
[ "transformers", "safetensors", "vit", "image-classification", "autotrain", "dataset:autotrain-i4gql-y81s7/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T01:38:18+00:00
[]
[]
TAGS #transformers #safetensors #vit #image-classification #autotrain #dataset-autotrain-i4gql-y81s7/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg loss: 4.222931861877441 f1_macro: 0.20794824311359378 f1_micro: 0.24259214647072994 f1_weighted: 0.20814862686990657 precision_macro: 0.23546798702040436 precision_micro: 0.24259214647072994 precision_weighted: 0.23569488944104558 recall_macro: 0.24235860409145613 recall_micro: 0.24259214647072994 recall_weighted: 0.24259214647072994 accuracy: 0.24259214647072994
[ "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metricsg\nloss: 4.222931861877441\n\nf1_macro: 0.20794824311359378\n\nf1_micro: 0.24259214647072994\n\nf1_weighted: 0.20814862686990657\n\nprecision_macro: 0.23546798702040436\n\nprecision_micro: 0.24259214647072994\n\nprecision_weighted: 0.23569488944104558\n\nrecall_macro: 0.24235860409145613\n\nrecall_micro: 0.24259214647072994\n\nrecall_weighted: 0.24259214647072994\n\naccuracy: 0.24259214647072994" ]
[ "TAGS\n#transformers #safetensors #vit #image-classification #autotrain #dataset-autotrain-i4gql-y81s7/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\n- Problem type: Image Classification", "## Validation Metricsg\nloss: 4.222931861877441\n\nf1_macro: 0.20794824311359378\n\nf1_micro: 0.24259214647072994\n\nf1_weighted: 0.20814862686990657\n\nprecision_macro: 0.23546798702040436\n\nprecision_micro: 0.24259214647072994\n\nprecision_weighted: 0.23569488944104558\n\nrecall_macro: 0.24235860409145613\n\nrecall_micro: 0.24259214647072994\n\nrecall_weighted: 0.24259214647072994\n\naccuracy: 0.24259214647072994" ]
[ 64, 16, 146 ]
[ "passage: TAGS\n#transformers #safetensors #vit #image-classification #autotrain #dataset-autotrain-i4gql-y81s7/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Image Classification## Validation Metricsg\nloss: 4.222931861877441\n\nf1_macro: 0.20794824311359378\n\nf1_micro: 0.24259214647072994\n\nf1_weighted: 0.20814862686990657\n\nprecision_macro: 0.23546798702040436\n\nprecision_micro: 0.24259214647072994\n\nprecision_weighted: 0.23569488944104558\n\nrecall_macro: 0.24235860409145613\n\nrecall_micro: 0.24259214647072994\n\nrecall_weighted: 0.24259214647072994\n\naccuracy: 0.24259214647072994" ]
[ -0.14091262221336365, 0.17124679684638977, -0.0006033838144503534, 0.10911043733358383, 0.10796963423490524, 0.029776042327284813, 0.08975521475076675, 0.12521162629127502, -0.0446348637342453, 0.15007898211479187, 0.14117084443569183, 0.09511841088533401, 0.08033577352762222, 0.14217105507850647, -0.1278892606496811, -0.13863719999790192, 0.03067447431385517, 0.00883139856159687, 0.09528116881847382, 0.07399661093950272, 0.05624588206410408, -0.1291530728340149, 0.11844708770513535, -0.026565538719296455, -0.24663028120994568, 0.028669776394963264, 0.12980659306049347, -0.09520050883293152, 0.08794350922107697, 0.10359793156385422, 0.09401828050613403, -0.010097440332174301, 0.1279008984565735, -0.05591471120715141, -0.03024864010512829, 0.02309926226735115, -0.014366215094923973, 0.06280696392059326, 0.14981000125408173, 0.03915863484144211, -0.05063041299581528, -0.0514044351875782, 0.05560879781842232, 0.03939661756157875, -0.08716727048158646, -0.06450758129358292, -0.10217331349849701, 0.08077741414308548, 0.07524045556783676, 0.08629395812749863, -0.016799887642264366, 0.18652038276195526, -0.02317645214498043, 0.09886973351240158, 0.0859588161110878, -0.2273121029138565, -0.07664431631565094, 0.1474832147359848, -0.07310260087251663, -0.05207270383834839, -0.08681366592645645, 0.06627640873193741, 0.12813270092010498, 0.0029732133261859417, 0.018395721912384033, -0.0053713624365627766, -0.0430770106613636, 0.0059840865433216095, -0.08747512847185135, -0.041945770382881165, 0.2000923603773117, 0.0510830394923687, -0.07599673420190811, -0.09354376792907715, -0.04734847694635391, -0.11933999508619308, -0.06963513791561127, -0.04238510876893997, 0.004125574138015509, -0.06888415664434433, -0.08875730633735657, 0.11394196003675461, -0.05383484065532684, -0.11295029520988464, -0.14913877844810486, 0.06487591564655304, -0.008843584917485714, 0.03957898169755936, 0.018565665930509567, 0.03443107381463051, -0.07404333353042603, -0.10254010558128357, 0.016082264482975006, 0.011429465375840664, -0.0842883512377739, -0.0521472692489624, 0.01739819161593914, 0.005262407474219799, 0.007629061117768288, 0.11035546660423279, 0.024699842557311058, 0.07041963934898376, -0.047857869416475296, 0.0023562898859381676, -0.06710881739854813, 0.20044516026973724, -0.12541720271110535, -0.05784028396010399, 0.006101030856370926, 0.032070551067590714, 0.03308534249663353, -0.005130895879119635, -0.05336036905646324, -0.11991584300994873, 0.15598461031913757, 0.022896569222211838, -0.020406752824783325, 0.027238762006163597, -0.07435411959886551, -0.016548389568924904, -0.011377962306141853, -0.0751386359333992, 0.022102946415543556, -0.06116039678454399, -0.1416430026292801, -0.002641454339027405, 0.04417337849736214, 0.007037510629743338, -0.03215644881129265, 0.07553678005933762, -0.13456515967845917, 0.01618255116045475, -0.04916773736476898, -0.12838415801525116, 0.03580233454704285, -0.037264298647642136, -0.018543696030974388, -0.122313492000103, -0.1907067894935608, -0.061341386288404465, -0.06007282808423042, -0.10616433620452881, -0.0021550541277974844, -0.036538250744342804, -0.06318351626396179, 0.08770552277565002, 0.027732903137803078, 0.08157569915056229, -0.00887288898229599, 0.05426046624779701, 0.058620601892471313, 0.1020958423614502, -0.026117520406842232, 0.013012026436626911, -0.06773575395345688, 0.0014801553916186094, -0.1918291300535202, 0.013249675743281841, -0.05069344490766525, 0.04699694365262985, -0.10041645914316177, -0.015064039267599583, 0.05438879504799843, -0.009340671822428703, 0.06702423840761185, 0.17253772914409637, -0.14350713789463043, -0.008251405321061611, 0.05464141070842743, -0.08147026598453522, -0.09322300553321838, 0.11233275383710861, 0.0026345443911850452, 0.03272101655602455, 0.051165126264095306, 0.08407655358314514, 0.0203083548694849, -0.10543126612901688, -0.06284787505865097, -0.053342655301094055, -0.039203669875860214, -0.024079985916614532, 0.06162504851818085, -0.007120522670447826, -0.1270565241575241, 0.01961240917444229, 0.05281064286828041, 0.020312504842877388, -0.08058812469244003, -0.06361877918243408, -0.04423999786376953, -0.05496073141694069, 0.03222903609275818, 0.037217698991298676, 0.04864102229475975, -0.08543816208839417, -0.04521595314145088, 0.02933441661298275, 0.10845471918582916, 0.003799327416345477, -0.07456701993942261, -0.12906832993030548, 0.061315324157476425, -0.17767925560474396, -0.036147356033325195, -0.15632730722427368, -0.09162828326225281, 0.000967125641182065, 0.012600486166775227, -0.022757822647690773, -0.08643017709255219, 0.09752224385738373, 0.04144734516739845, -0.05921778082847595, -0.045388154685497284, 0.09238678961992264, 0.001952514867298305, -0.12110932171344757, -0.10405644029378891, 0.011591250076889992, 0.018405456095933914, 0.19815552234649658, -0.1940808743238449, -0.029441574588418007, 0.03329483047127724, 0.09974472969770432, 0.04664350301027298, -0.013001559302210808, -0.004145640879869461, 0.036523882299661636, -0.028622053563594818, -0.07851345837116241, 0.04348725080490112, -0.045437633991241455, -0.05925709381699562, 0.02124175801873207, -0.23258830606937408, 0.28792622685432434, 0.13710038363933563, -0.008314133621752262, -0.11988430470228195, -0.04823242500424385, 0.03350936248898506, -0.06672880053520203, -0.09044840186834335, -0.008184795267879963, -0.0634961649775505, -0.024836597964167595, 0.10458537191152573, -0.06301075965166092, -0.011606651358306408, 0.06255891174077988, -0.0032646579202264547, -0.0929444432258606, 0.16450761258602142, -0.012550586834549904, -0.16472265124320984, 0.12599444389343262, 0.059965167194604874, -0.0784827172756195, 0.09465542435646057, 0.01939358562231064, -0.07051956653594971, -0.06191141530871391, -0.033611033111810684, 0.045260604470968246, 0.13634093105793, 0.043479714542627335, 0.022400055080652237, 0.04151944816112518, -0.03026060201227665, -0.03493044152855873, -0.1137092337012291, -0.007269741967320442, 0.0008094623335637152, -0.007450227625668049, 0.009378988295793533, -0.010587165132164955, 0.04634470492601395, 0.17598968744277954, 0.007777468301355839, -0.0847582221031189, 0.038888368755578995, -0.004849947523325682, -0.07373949885368347, 0.18359175324440002, -0.08402109146118164, -0.17260178923606873, -0.18375273048877716, -0.030486082658171654, -0.10200423002243042, -0.002377393888309598, -0.029332540929317474, -0.10414162278175354, -0.10011523216962814, -0.07310913503170013, -0.038926832377910614, 0.014282923191785812, -0.028063451871275902, 0.038859330117702484, -0.022635748609900475, 0.09448157995939255, -0.04274504631757736, -0.04888424277305603, -0.020404275506734848, -0.0405336394906044, 0.09909587353467941, -0.01604701764881611, 0.1587410271167755, 0.13222645223140717, -0.040918413549661636, 0.04580391198396683, -0.030311094596982002, 0.14814695715904236, -0.039240673184394836, 0.0004054517194163054, 0.17999882996082306, 0.06680610775947571, 0.022154944017529488, 0.14084091782569885, 0.01122517604380846, -0.09539785236120224, 0.033951010555028915, 0.05029217153787613, -0.010165062732994556, -0.11511830240488052, -0.12004151940345764, 0.023950545117259026, 0.01669350080192089, 0.15278872847557068, 0.014239979907870293, 0.08931488543748856, 0.11810652166604996, 0.007960602641105652, 0.11090963333845139, -0.030714457854628563, 0.08225144445896149, 0.13534145057201385, 0.039608243852853775, 0.1804170459508896, -0.0713987946510315, -0.026612700894474983, 0.06439004838466644, -0.05075038596987724, 0.08446349203586578, 0.01716710440814495, 0.014704030938446522, -0.04556858539581299, 0.13982880115509033, 0.07147601246833801, 0.09095873683691025, 0.07574880868196487, -0.062472015619277954, 0.030484875664114952, -0.10609080642461777, -0.0785958543419838, 0.04381115734577179, -0.001698903739452362, 0.08763059228658676, -0.12128447741270065, 0.06718789786100388, 0.028415074571967125, 0.11738645285367966, 0.10398633778095245, -0.477988600730896, -0.07619503885507584, 0.031937167048454285, 0.04736877605319023, -0.14382220804691315, -0.00873202458024025, 0.05994419753551483, -0.10561828315258026, 0.03261866420507431, -0.04444442316889763, 0.08842938393354416, -0.03935723751783371, -0.006057558581233025, -0.03161536902189255, 0.050037406384944916, -0.04043782502412796, 0.0373842678964138, -0.22250789403915405, 0.20154798030853271, 0.07521927356719971, 0.0585971400141716, -0.0823877677321434, -0.008864053525030613, 0.08871106058359146, 0.02176421321928501, 0.16869130730628967, -0.018042050302028656, -0.12060439586639404, -0.3837084174156189, -0.07988562434911728, -0.01673421449959278, 0.044011492282152176, 0.03424932062625885, 0.08141609281301498, -0.04335987940430641, -0.0314495675265789, 0.03146347403526306, -0.0845051109790802, -0.1353369951248169, -0.022565558552742004, 0.004057570826262236, 0.10205281525850296, 0.005784348584711552, -0.059164222329854965, -0.09867800027132034, -0.0618508942425251, 0.06177638843655586, -0.05719725042581558, -0.033924397081136703, -0.1619221717119217, 0.11082809418439865, 0.11247469484806061, -0.08364318311214447, 0.05834963917732239, -0.009252635762095451, 0.13103698194026947, 0.035885073244571686, -0.10481245070695877, 0.11479142308235168, -0.08422419428825378, -0.08703278750181198, -0.021623624488711357, 0.03054937906563282, -0.02065146714448929, 0.028301946818828583, 0.04120467230677605, 0.07013821601867676, 0.03246002644300461, -0.06041557714343071, 0.0879015401005745, 0.012500789947807789, 0.16945217549800873, 0.1163463443517685, -0.014057869091629982, -0.16757410764694214, -0.06914312392473221, -0.0005567597108893096, 0.0650256797671318, 0.26829278469085693, -0.0798337534070015, -0.09080520272254944, 0.07314537465572357, -0.024740932509303093, -0.2571088969707489, 0.07535155117511749, -0.023374732583761215, 0.07124144583940506, -0.01891099475324154, -0.006973084062337875, 0.10241062939167023, 0.16879159212112427, -0.03812407702207565, 0.018096376210451126, -0.23835277557373047, -0.11978405714035034, 0.22217702865600586, 0.1356021612882614, 0.07781064510345459, -0.11282652616500854, -0.0653933584690094, -0.13013066351413727, -0.1161423921585083, 0.015031312592327595, 0.00758370803669095, 0.06179678440093994, -0.07233501970767975, 0.012595441192388535, 0.06957295536994934, -0.07034013420343399, 0.13017717003822327, -0.049605391919612885, 0.11401917785406113, -0.08727747201919556, -0.05700671672821045, -0.017338106408715248, -0.08238295465707779, 0.13625089824199677, 0.08897699415683746, 0.08044684678316116, -0.11608502268791199, -0.0021264092065393925, -0.019455092027783394, 0.05041062831878662, -0.03900343179702759, -0.043766412883996964, -0.03363077715039253, 0.060909777879714966, -0.08536563068628311, -0.07254482805728912, -0.020887354388833046, -0.020047759637236595, 0.08321135491132736, 0.15689828991889954, 0.06954599916934967, -0.019477905705571175, -0.001419815351255238, 0.029234759509563446, -0.06404541432857513, 0.09072110801935196, -0.04310540854930878, 0.06799371540546417, 0.13417832553386688, 0.020459840074181557, 0.153135746717453, 0.048356540501117706, -0.01115822046995163, -0.016063734889030457, 0.05943821743130684, -0.13198822736740112, 0.019735144451260567, -0.03875662386417389, 0.0014689172385260463, -0.011069822125136852, -0.024191811680793762, 0.10699234902858734, -0.057059112936258316, 0.027650874108076096, -0.004563448019325733, 0.02580331452190876, 0.048852428793907166, 0.26096853613853455, 0.02383667416870594, 0.04126768559217453, -0.09595003724098206, 0.1154862716794014, 0.06218640133738518, -0.14087888598442078, 0.03683696687221527, 0.0023192267399281263, -0.06867490708827972, -0.011061579920351505, 0.03860107809305191, 0.20508889853954315, -0.18363220989704132, -0.06597211211919785, -0.0966668426990509, -0.13254010677337646, 0.0507979691028595, 0.2603992819786072, 0.09400282800197601, 0.015024193562567234, 0.02231561578810215, -0.07774882763624191, -0.09618883579969406, 0.09153836220502853, 0.10549908131361008, 0.058221518993377686, -0.18156637251377106, 0.1303521990776062, -0.042299386113882065, -0.012614425271749496, -0.04219777509570122, 0.013482684269547462, -0.1666894108057022, 0.00530484551563859, -0.07434193044900894, 0.07794702798128128, -0.02998371422290802, 0.010036577470600605, -0.010302732698619366, 0.001899769064038992, -0.04563506692647934, 0.02453145757317543, -0.03840094432234764, -0.03378567472100258, 0.04956549033522606, 0.056315843015909195, -0.1038932278752327, -0.08482962846755981, 0.046279218047857285, -0.017605159431695938, 0.02418295107781887, 0.05295386537909508, 0.09475651383399963, 0.0011414686450734735, -0.05202522873878479, -0.021822510287165642, 0.09290032833814621, -0.03365181386470795, 0.059284694492816925, -0.12683314085006714, 0.04123702272772789, 0.013049207627773285, 0.006383397150784731, 0.055210866034030914, 0.0747876763343811, -0.1014508530497551, -0.04624640569090843, -0.09128091484308243, -0.04728202521800995, -0.13921858370304108, 0.07569361478090286, 0.1783863753080368, 0.0023313446436077356, 0.08592469990253448, -0.10987161099910736, -0.024416426196694374, -0.2007286101579666, 0.012690809555351734, -0.046974971890449524, -0.11323132365942001, -0.06801418960094452, 0.025132358074188232, 0.08356010913848877, -0.021796857938170433, 0.029816363006830215, -0.001135680009610951, -0.005404449999332428, 0.05344334617257118, 0.09461051970720291, -0.04525262117385864, -0.003831371432170272, 0.16522842645645142, 0.08452329784631729, -0.03215953707695007, 0.058834537863731384, 0.09760335087776184, 0.10828524827957153, 0.05032104253768921, 0.011751024052500725, 0.07749595493078232, -0.06202664598822594, 0.1344146877527237, 0.06721103936433792, -0.0833459198474884, -0.028107400983572006, 0.10418986529111862, -0.17813602089881897, 0.046918146312236786, -0.05028467997908592, 0.00492813577875495, 0.16546320915222168, -0.1050325557589531, -0.011908592656254768, -0.10390078276395798, -0.07558057457208633, -0.13134947419166565, -0.09581908583641052, -0.15070216357707977, -0.042400091886520386, 0.004358638543635607, -0.08664527535438538, 0.04816927760839462, 0.1908969134092331, 0.036760155111551285, -0.006322126369923353, 0.15672901272773743, -0.19639630615711212, -0.0031046909280121326, 0.04621962457895279, -0.005271335132420063, -0.041477691382169724, -0.038744937628507614, -0.04564208909869194, 0.07099345326423645, 0.014387884177267551, 0.03715526685118675, -0.010786052793264389, 0.03253692388534546, 0.033210765570402145, 0.024562479928135872, -0.10862405598163605, -0.026065904647111893, 0.027722729369997978, 0.027640242129564285, 0.03753480315208435, 0.008399692364037037, 0.0664997398853302, -0.034021858125925064, 0.21462085843086243, -0.10535769164562225, 0.02726946957409382, -0.08858535438776016, 0.21025294065475464, -0.019460225477814674, 0.08076455444097519, -0.0026824912056326866, -0.06581880152225494, 0.07972102612257004, 0.12574845552444458, 0.05097709596157074, -0.04858028143644333, -0.06677044928073883, -0.0253343116492033, -0.01763007417321205, -0.08671150356531143, 0.08561604470014572, 0.029798373579978943, 0.05293738842010498, -0.06818807125091553, 0.07254185527563095, -0.016924571245908737, -0.042168062180280685, -0.0029582863207906485, 0.025982704013586044, -0.005072459112852812, 0.056699153035879135, -0.06483671069145203, 0.07798733562231064, 0.044956695288419724, 0.07164998352527618, 0.1356220692396164, -0.11374182999134064, -0.15789362788200378, 0.047352902591228485, 0.020043067634105682, -0.04653357341885567, 0.06056736409664154, -0.09475676715373993, 0.044703271239995956, -0.05650845542550087, -0.011818782426416874, -0.13014058768749237, -0.1552547663450241, -0.00664028013125062, 0.15172402560710907, 0.2793399691581726, 0.012095480225980282, 0.10365340858697891, 0.12567771971225739, -0.055258527398109436, -0.1711624711751938, 0.11011594533920288, -0.028063170611858368, -0.12488920241594315, 0.10074371099472046, 0.15900816023349762, -0.0018698289059102535, 0.17700517177581787, 0.01817302592098713, -0.15589845180511475, 0.012663953006267548, -0.047317955642938614, -0.003950388636440039, -0.05901464819908142, 0.03310072422027588, -0.06209219619631767, 0.16051846742630005, 0.12493784725666046, -0.015615598298609257, -0.0052069853991270065, -0.04778929054737091, 0.03943193703889847, 0.021877720952033997, 0.017029793933033943, 0.032192617654800415, -0.09626679867506027, 0.07695738226175308, -0.11550667136907578, -0.01986551843583584, -0.3071932792663574, -0.0706653818488121, -0.03474809229373932, -0.0854727029800415, -0.05722151696681976, 0.10070362687110901, 0.10873854905366898, 0.06213601678609848, -0.049331143498420715, -0.20342227816581726, 0.05328475683927536, 0.13595958054065704, -0.05312414467334747, -0.12152107805013657 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output-67b-11k-test This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0051 | 1.0 | 1 | 0.0813 | | 0.0051 | 2.0 | 2 | 0.0813 | | 0.0051 | 3.0 | 3 | 0.0811 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "deepseek-ai/deepseek-coder-6.7b-instruct", "pipeline_tag": "text-generation", "model-index": [{"name": "output-67b-11k-test", "results": []}]}
text-generation
asadmasad/output-67b-11k-test
[ "peft", "safetensors", "generated_from_trainer", "text-generation", "conversational", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "endpoints_compatible", "region:us" ]
2024-02-07T01:38:20+00:00
[]
[]
TAGS #peft #safetensors #generated_from_trainer #text-generation #conversational #base_model-deepseek-ai/deepseek-coder-6.7b-instruct #license-other #endpoints_compatible #region-us
output-67b-11k-test =================== This model is a fine-tuned version of deepseek-ai/deepseek-coder-6.7b-instruct on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0811 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 1 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 3 ### Training results ### Framework versions * PEFT 0.8.2 * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#peft #safetensors #generated_from_trainer #text-generation #conversational #base_model-deepseek-ai/deepseek-coder-6.7b-instruct #license-other #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 66, 145, 4, 39 ]
[ "passage: TAGS\n#peft #safetensors #generated_from_trainer #text-generation #conversational #base_model-deepseek-ai/deepseek-coder-6.7b-instruct #license-other #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.13840289413928986, 0.082417331635952, -0.0017481789691373706, 0.08820533752441406, 0.12514610588550568, 0.011924652382731438, 0.10409928113222122, 0.13009849190711975, -0.07880304008722305, 0.11250647902488708, 0.10811471194028854, 0.07157819718122482, 0.04309363290667534, 0.18225255608558655, -0.04212226718664169, -0.27734339237213135, 0.00992409884929657, -0.01102077029645443, -0.09831343591213226, 0.12767113745212555, 0.09820268303155899, -0.11723186820745468, 0.08006715774536133, -0.0015437559923157096, -0.1464194357395172, 0.0013109100982546806, -0.0269741453230381, -0.036732833832502365, 0.1102902889251709, 0.03360902890563011, 0.11340679973363876, 0.015147213824093342, 0.09523709863424301, -0.19999873638153076, 0.012862333096563816, 0.08555011451244354, 0.013002674095332623, 0.08982272446155548, 0.08270596712827682, 0.008910078555345535, 0.12006080150604248, -0.08046849817037582, 0.07057825475931168, 0.045444946736097336, -0.12932172417640686, -0.24512812495231628, -0.10299140959978104, 0.09119676053524017, 0.1377049833536148, 0.0782880038022995, -0.009945539757609367, 0.11140841245651245, -0.04970675706863403, 0.08422039449214935, 0.27445799112319946, -0.3178078532218933, -0.10303450375795364, 0.03929385542869568, 0.03673474118113518, 0.07120197266340256, -0.13232268393039703, -0.0333738774061203, 0.06497501581907272, 0.035423003137111664, 0.08355701714754105, 0.00130240130238235, 0.013958184979856014, -0.0174927469342947, -0.1419564038515091, -0.0402025431394577, 0.11683521419763565, 0.06541675329208374, -0.0454077422618866, -0.07754354178905487, -0.06494860351085663, -0.2406599223613739, -0.04539186879992485, -0.002112904330715537, 0.03103993833065033, -0.04834788665175438, -0.043793339282274246, -0.007537083700299263, -0.08397003263235092, -0.10305096954107285, 0.016394084319472313, 0.1788986623287201, 0.05001762509346008, -0.009522680193185806, 0.01321473903954029, 0.1278950273990631, 0.012945558875799179, -0.15323317050933838, -0.030319245532155037, 0.011501708067953587, -0.03638385236263275, -0.03407425805926323, -0.03617933765053749, 0.044752173125743866, 0.009167228825390339, 0.18377216160297394, -0.1314655840396881, 0.06826840341091156, 0.025860745459794998, 0.034220289438962936, -0.11188478767871857, 0.12939053773880005, -0.06204872578382492, -0.023385269567370415, -0.0072299037128686905, 0.11484409868717194, 0.038011420518159866, -0.0037813186645507812, -0.08788035064935684, 0.018536502495408058, 0.07551059126853943, 0.04742861166596413, -0.04288121312856674, 0.012529728934168816, -0.058609407395124435, -0.025248363614082336, 0.07545700669288635, -0.09760826081037521, 0.04144363850355148, 0.026264311745762825, -0.06884383410215378, -0.06240779161453247, 0.006001029163599014, 0.01568746380507946, 0.00709541467949748, 0.13077953457832336, -0.08836280554533005, 0.005252390168607235, -0.09836573153734207, -0.09643822908401489, 0.023429444059729576, -0.058246977627277374, -0.00530556496232748, -0.09091811627149582, -0.14310874044895172, -0.044479064643383026, 0.029146889224648476, -0.061501163989305496, -0.06899256259202957, -0.03767164796590805, -0.1163325235247612, 0.017509441822767258, -0.012005043216049671, 0.11670047044754028, -0.06429484486579895, 0.10437509417533875, 0.029821673408150673, 0.03987565636634827, -0.012351591140031815, 0.029973125085234642, -0.061293404549360275, 0.05214621126651764, -0.18098396062850952, 0.024716991931200027, -0.07370967417955399, 0.060271408408880234, -0.10222867131233215, -0.12460249662399292, -0.05241875350475311, -0.002253612969070673, 0.09630540013313293, 0.13403581082820892, -0.140034019947052, -0.0714678019285202, 0.17695742845535278, -0.09709956496953964, -0.15088306367397308, 0.11449883878231049, -0.008775586262345314, 0.00040064429049380124, 0.019326288253068924, 0.1388789862394333, 0.09632393717765808, -0.11825231462717056, -0.006197248585522175, -0.022888464853167534, 0.12334466725587845, -0.0012887385673820972, 0.09999337047338486, -0.033333178609609604, 0.04648863151669502, -0.002126570325344801, -0.04673536494374275, 0.011192740872502327, -0.10843402147293091, -0.07754936814308167, -0.03120962530374527, -0.08079522848129272, 0.03763987869024277, 0.05522918701171875, 0.0483669675886631, -0.11837193369865417, -0.11020229011774063, 0.03074641525745392, 0.11014862358570099, -0.054674044251441956, 0.023151444271206856, -0.057747259736061096, 0.09134167432785034, -0.01761564053595066, -0.026099270209670067, -0.16622868180274963, -0.07717055082321167, 0.03133456036448479, -0.008028549142181873, -0.01631683111190796, -0.021924447268247604, 0.0847189724445343, 0.09053539484739304, -0.06755775213241577, -0.0625496506690979, -0.0988570898771286, -0.020039912313222885, -0.11219672858715057, -0.21702030301094055, -0.08710750192403793, -0.025317614898085594, 0.15929201245307922, -0.24229997396469116, 0.04407572001218796, 0.02053576521575451, 0.14160791039466858, 0.04446525126695633, -0.04979638010263443, -0.021981116384267807, 0.08120305836200714, -0.031061066314578056, -0.07423189282417297, 0.041758518666028976, 0.0063656773418188095, -0.07701247930526733, -0.040681418031454086, -0.13777853548526764, 0.1954561471939087, 0.10298356413841248, 0.0110840555280447, -0.09868493676185608, -0.04313650727272034, -0.08880940824747086, -0.034811537712812424, -0.03840557858347893, -0.0019538477063179016, 0.12247074395418167, 0.02016533352434635, 0.13610099256038666, -0.10206406563520432, -0.05688121169805527, 0.040633246302604675, -0.0060114506632089615, 0.014346150681376457, 0.130352184176445, 0.06988599896430969, -0.048749834299087524, 0.13944444060325623, 0.1331358104944229, -0.04394885152578354, 0.12699520587921143, -0.057961102575063705, -0.09365453571081161, -0.011439396999776363, 0.0689922571182251, 0.02672750875353813, 0.14076091349124908, -0.071596160531044, 0.010997941717505455, 0.008115929551422596, 0.01973036676645279, 0.020093856379389763, -0.21472196280956268, -0.023829488083720207, 0.02411518059670925, -0.057558976113796234, -0.0018985108472406864, -0.017219843342900276, 0.006513579748570919, 0.10212420672178268, 0.023316089063882828, -0.038657329976558685, -0.0010505277896299958, 0.0010876765009015799, -0.07559222728013992, 0.20944294333457947, -0.08961530029773712, -0.12677016854286194, -0.1491285264492035, 0.02511986531317234, -0.05579144135117531, -0.005950897932052612, 0.04735857993364334, -0.07038099318742752, -0.022452443838119507, -0.09115461260080338, 0.0008309639524668455, -0.006778353825211525, 0.02310388721525669, 0.028266452252864838, 0.017090298235416412, 0.08435359597206116, -0.10498673468828201, 0.015092597343027592, -0.019532950595021248, -0.07122528553009033, 0.005080960225313902, 0.03827395290136337, 0.09982158243656158, 0.13036656379699707, 0.02170412242412567, 0.01879223994910717, -0.0355193056166172, 0.20555569231510162, -0.10159052908420563, -0.026038378477096558, 0.12684890627861023, 0.008058620616793633, 0.052472375333309174, 0.13211648166179657, 0.06058504804968834, -0.11151798814535141, 0.020507922396063805, 0.05625493451952934, -0.021026041358709335, -0.2036355882883072, -0.03486114367842674, -0.05638353154063225, 0.007276587188243866, 0.10941605269908905, 0.058933597058057785, -0.004375559277832508, 0.02977919951081276, -0.0470433235168457, 0.010513399727642536, -0.006674638949334621, 0.08492914587259293, 0.035513121634721756, 0.04656212776899338, 0.11373098194599152, -0.03535468876361847, -0.011634075082838535, 0.043588172644376755, -0.01788933388888836, 0.1914922297000885, -0.01869487762451172, 0.11652924120426178, 0.04135508835315704, 0.19147583842277527, -0.0014587277546525002, 0.07721087336540222, 0.007018018513917923, -0.04686427861452103, 0.017595143988728523, -0.0646284967660904, -0.03278842940926552, 0.04617048054933548, -0.033521976321935654, 0.0895245224237442, -0.12460453808307648, 0.0020965898875147104, 0.0473216250538826, 0.3313244879245758, 0.07505971193313599, -0.31814807653427124, -0.11539537459611893, -0.0030869345646351576, -0.042214445769786835, -0.05604153126478195, 0.03417719900608063, 0.1533387005329132, -0.0900626853108406, 0.05958972126245499, -0.07690465450286865, 0.09229925274848938, -0.0034191086888313293, 0.01808130368590355, 0.10631905496120453, 0.0935434103012085, -0.01183569896966219, 0.044891636818647385, -0.23325027525424957, 0.28125983476638794, 0.008160609751939774, 0.08714968711137772, -0.028362277895212173, 0.016931070014834404, 0.023267583921551704, 0.05033651366829872, 0.07974380254745483, -0.016407154500484467, -0.018258653581142426, -0.19670705497264862, -0.09850464761257172, 0.02093576081097126, 0.14524641633033752, -0.0996929332613945, 0.124235138297081, -0.022033873945474625, -0.015975970774888992, 0.03768450394272804, -0.03886258974671364, -0.07305534929037094, -0.07393793761730194, 0.01259173359721899, -0.006027440074831247, 0.029517142102122307, -0.10960189998149872, -0.11032094061374664, -0.05973886698484421, 0.14609767496585846, -0.12745040655136108, -0.0375903844833374, -0.13534437119960785, 0.08611792325973511, 0.11793950200080872, -0.0697278082370758, 0.057241447269916534, 0.006666726432740688, 0.12068066000938416, 0.024099033325910568, -0.023660754784941673, 0.11730305850505829, -0.0861816257238388, -0.2504447102546692, -0.030397409573197365, 0.1782011091709137, 0.011462355963885784, 0.04850999265909195, -0.03172258660197258, 0.030105022713541985, -0.0008376948535442352, -0.09878013283014297, 0.015140379779040813, 0.014546750113368034, 0.059821438044309616, 0.03299421817064285, -0.05974536016583443, 0.0688510537147522, -0.04045485332608223, -0.028328904882073402, 0.10231391340494156, 0.3255841135978699, -0.0965617373585701, 0.006729811895638704, 0.01582094095647335, -0.03159858286380768, -0.17557495832443237, 0.03361090272665024, 0.11266298592090607, 0.026807518675923347, 0.027497706934809685, -0.17665526270866394, 0.06314725428819656, 0.12517666816711426, -0.03966758772730827, 0.14665187895298004, -0.31453201174736023, -0.13666388392448425, 0.05595662444829941, 0.11617641896009445, 0.015391262248158455, -0.1820189356803894, -0.06361984461545944, 0.007476720493286848, -0.12359412014484406, 0.06523226201534271, -0.09115801006555557, 0.10592962056398392, -0.015356295742094517, 0.0220332033932209, 0.01545500848442316, -0.03886985778808594, 0.15136350691318512, -0.03603874146938324, 0.09363225847482681, -0.024862784892320633, 0.03980265557765961, 0.01098804920911789, -0.06192345172166824, 0.009624270722270012, -0.06372299790382385, 0.04073116555809975, -0.11795414984226227, -0.00624847412109375, -0.09242464601993561, 0.04046071693301201, -0.06831647455692291, -0.0419958122074604, -0.02868780680000782, 0.0370907187461853, 0.013566914014518261, -0.007257943972945213, 0.1787729114294052, -0.009541303850710392, 0.22420638799667358, 0.13431932032108307, 0.07206197828054428, -0.04692026972770691, -0.0632237046957016, 0.0003939078887924552, -0.017701653763651848, 0.05974918603897095, -0.14344850182533264, 0.009496895596385002, 0.13251295685768127, 0.05570130795240402, 0.10838954150676727, 0.06637981534004211, -0.05509614199399948, 0.00367951113730669, 0.08416537195444107, -0.13783489167690277, -0.12846976518630981, -0.019853442907333374, 0.042166341096162796, -0.15442447364330292, 0.059570249170064926, 0.11589611321687698, -0.0756978839635849, -0.011375854723155499, 0.0033332183957099915, 0.02208438701927662, -0.04034581407904625, 0.18550534546375275, 0.05400063842535019, 0.08431126922369003, -0.09189879894256592, 0.08215869963169098, 0.019004514440894127, -0.09881666302680969, 0.014744695276021957, 0.11311626434326172, -0.07332092523574829, -0.02234729751944542, 0.04004495590925217, 0.07744291424751282, -0.007070786319673061, -0.04328650236129761, -0.13185420632362366, -0.12494239211082458, 0.06883920729160309, 0.1382870376110077, 0.06749735027551651, 0.029803069308400154, 0.012627586722373962, 0.039492182433605194, -0.11467999964952469, 0.09983712434768677, 0.03330419585108757, 0.08986442536115646, -0.16167227923870087, 0.1396067589521408, -0.003299731994047761, 0.011683364398777485, -0.00858707632869482, 0.03986519202589989, -0.11578790098428726, -0.0077231768518686295, -0.09538677334785461, -0.04699939489364624, -0.04415469244122505, -0.0073095401749014854, -0.0015677068149670959, -0.04867736995220184, -0.07322396337985992, 0.025617485865950584, -0.10942104458808899, -0.048650480806827545, -0.011727659031748772, 0.04412631690502167, -0.12702690064907074, 0.006323226727545261, 0.02871515043079853, -0.11078858375549316, 0.09197940677404404, 0.040625426918268204, 0.04401364549994469, 0.03882517293095589, -0.09759791940450668, 0.034737758338451385, 0.04021086171269417, -0.013702346943318844, 0.048710476607084274, -0.08801276981830597, -0.00819492805749178, -0.036875296384096146, 0.034080684185028076, 0.013805153779685497, 0.057468969374895096, -0.14627814292907715, -0.010829645209014416, -0.02059910260140896, -0.04568246006965637, -0.043197087943553925, 0.02505567856132984, 0.06692471355199814, 0.01935061626136303, 0.15087483823299408, -0.08594657480716705, 0.028587060049176216, -0.22625571489334106, -0.018495269119739532, -0.019680526107549667, -0.06109805032610893, -0.08854886144399643, -0.029304862022399902, 0.08730508387088776, -0.04253839701414108, 0.07267194986343384, -0.038708172738552094, 0.08515676110982895, 0.05050395429134369, -0.09875238686800003, 0.02578730881214142, 0.04623826593160629, 0.18528681993484497, 0.03903916850686073, -0.02160978689789772, 0.055049359798431396, 0.024262476712465286, 0.07215210795402527, 0.07382689416408539, 0.2110738307237625, 0.1619468480348587, -0.014031557366251945, 0.09078574925661087, 0.05914861708879471, -0.11343078315258026, -0.12947751581668854, 0.0668569877743721, -0.03222211077809334, 0.1020299419760704, -0.04101056978106499, 0.16210846602916718, 0.13344453275203705, -0.19510845839977264, 0.012838074937462807, -0.04846838861703873, -0.06872338056564331, -0.11874181777238846, 0.010916450060904026, -0.07687123119831085, -0.19204899668693542, 0.00794707890599966, -0.13152481615543365, 0.029557058587670326, 0.08793657273054123, 0.023302262648940086, 0.020329058170318604, 0.196489155292511, 0.025109637528657913, 0.025971274822950363, 0.0833498165011406, 0.030928151682019234, 0.017898818477988243, -0.054772764444351196, -0.12104769796133041, 0.020771315321326256, -0.06374220550060272, 0.04975644499063492, -0.05449632182717323, -0.08537467569112778, 0.04989098012447357, 0.019543616101145744, -0.10078568756580353, 0.03975407034158707, 0.00975109450519085, 0.05247027426958084, 0.0799989104270935, 0.0134796854108572, 0.007541351020336151, -0.03498959541320801, 0.26952415704727173, -0.10764625668525696, -0.02757694572210312, -0.12931877374649048, 0.2651679217815399, 0.029216689988970757, -0.00480889854952693, 0.01753917708992958, -0.09650255739688873, -0.015818176791071892, 0.14795777201652527, 0.13068453967571259, -0.061012763530015945, -0.003973414655774832, 0.026027055457234383, -0.0038669840432703495, -0.05674838647246361, 0.09548628330230713, 0.13076834380626678, 0.07495218515396118, -0.07051368057727814, -0.04071421921253204, -0.020823346450924873, -0.025986988097429276, -0.05377030745148659, 0.049744293093681335, 0.011345069855451584, -0.007716415915638208, -0.04371681436896324, 0.09210139513015747, -0.028167957440018654, -0.12005917727947235, 0.09389567375183105, -0.22418779134750366, -0.1816800981760025, -0.027308648452162743, 0.062040138989686966, 0.0026970417238771915, 0.07412006705999374, -0.007607053034007549, -0.03225331008434296, 0.09745049476623535, -0.026242056861519814, -0.027448434382677078, -0.14647063612937927, 0.06930239498615265, -0.09646336734294891, 0.21880590915679932, -0.04278995841741562, 0.014158441685140133, 0.11933813244104385, 0.022135160863399506, -0.10162888467311859, 0.03327193856239319, 0.08170496672391891, -0.11816924810409546, 0.0010913979494944215, 0.14281581342220306, -0.04100396856665611, 0.09260263293981552, 0.039469245821237564, -0.16487927734851837, -0.009741232730448246, -0.050665684044361115, -0.05069654807448387, -0.06826414912939072, -0.006709476467221975, -0.050478994846343994, 0.13936980068683624, 0.21960656344890594, -0.05892866849899292, -0.002799060894176364, -0.03395732119679451, 0.04296841099858284, 0.06392380595207214, 0.10469996929168701, -0.010878143832087517, -0.29171597957611084, 0.031119737774133682, 0.03826519846916199, -0.01256481558084488, -0.2607499063014984, -0.0750083178281784, 0.04014850780367851, -0.041141577064991, -0.09116668999195099, 0.09545041620731354, 0.05084508657455444, 0.03783220425248146, -0.045377328991889954, -0.11307880282402039, -0.05843066796660423, 0.1868208795785904, -0.14930091798305511, -0.08117520809173584 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 <Gallery /> ## Model description These are yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 700 - learning_rate: 1e-06 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - gradient_accumulation_steps: 3 - GPU: T4 - duration: 5286.525929450989
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "has_space", "region:us" ]
2024-02-07T01:38:45+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
# SDXL LoRA DreamBooth - yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 <Gallery /> ## Model description These are yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 700 - learning_rate: 1e-06 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps: 3 - GPU: T4 - duration: 5286.525929450989
[ "# SDXL LoRA DreamBooth - yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5286.525929450989" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5286.525929450989" ]
[ 82, 52, 117, 19, 28, 103 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6\n\n<Gallery />## Model description\n\nThese are yaneq/jan_sVZDHoDRQbrpPPH7bvcO_SDXL_LoRA_700_9d94_700_1e6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-06\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5286.525929450989" ]
[ -0.09787826985120773, 0.17114174365997314, -0.0012950885575264692, 0.060356032103300095, 0.1363481879234314, 0.06039199233055115, 0.14224675297737122, 0.14262820780277252, 0.04378997161984444, 0.12171686440706253, 0.030652925372123718, 0.06068451330065727, 0.10255639255046844, 0.18019261956214905, 0.0053032757714390755, -0.15590280294418335, 0.027142181992530823, -0.04701806604862213, -0.00027467889594845474, 0.04340660944581032, 0.036689888685941696, -0.07277357578277588, 0.08722328394651413, -0.02934351935982704, -0.05013419687747955, 0.0473334901034832, -0.02595694176852703, -0.02311430498957634, 0.01734575815498829, 0.058627381920814514, 0.04541270434856415, 0.0556800402700901, 0.11497893184423447, -0.27485403418540955, 0.01727878302335739, 0.10253186523914337, -0.04583464935421944, 0.05009710416197777, 0.022434163838624954, -0.03740958124399185, 0.03337646275758743, -0.1361827403306961, 0.08101776987314224, 0.06251341849565506, -0.04522605240345001, -0.21184498071670532, -0.10007764399051666, 0.0532488152384758, 0.08025813102722168, 0.11278355121612549, 0.0016215306241065264, 0.02161436527967453, 0.06249147653579712, 0.05097586661577225, 0.20637556910514832, -0.09260954707860947, -0.025234390050172806, 0.1166931763291359, 0.028779875487089157, 0.08585583418607712, -0.033673543483018875, -0.0039718858897686005, 0.07713612914085388, -0.015130570158362389, 0.0636320635676384, -0.033957891166210175, 0.033563096076250076, -0.0670536682009697, -0.0936327576637268, -0.017084063962101936, 0.16899199783802032, 0.04111415520310402, -0.08383796364068985, -0.11589262634515762, -0.024507060647010803, 0.010514762252569199, -0.007416571490466595, 0.012361600995063782, 0.01848449371755123, -0.02479756996035576, 0.0030292305164039135, -0.10602472722530365, -0.029434900730848312, -0.06043430417776108, 0.0671824961900711, 0.17404183745384216, 0.02739924006164074, 0.0004252023354638368, 0.006350336596369743, 0.05681108310818672, -0.03208251670002937, -0.12557615339756012, -0.063687764108181, -0.02669401839375496, -0.06498456001281738, 0.007265040650963783, -0.013912588357925415, -0.06018618494272232, 0.02398861199617386, 0.10052690654993057, -0.0770382210612297, 0.06033533066511154, -0.018587544560432434, 0.02561570703983307, -0.053394779562950134, 0.12017080187797546, -0.0361814983189106, -0.055536311119794846, 0.023135308176279068, 0.10049901157617569, 0.08256301283836365, -0.029516244307160378, -0.1322430521249771, -0.012748652137815952, -0.07907690852880478, 0.07003787904977798, 0.003969632554799318, -0.009337843395769596, -0.08455453813076019, -0.044902242720127106, 0.15558618307113647, -0.09757769852876663, 0.028035379946231842, 0.016063544899225235, -0.08944635093212128, 0.02200203575193882, 0.09938400238752365, -0.018203066661953926, -0.04807862266898155, 0.08316442370414734, -0.040996428579092026, 0.012405650690197945, -0.06934521347284317, -0.1434442400932312, 0.0316404365003109, -0.12306215614080429, -0.01787394843995571, -0.10302361100912094, -0.22719064354896545, -0.07124290615320206, 0.01190873421728611, -0.020714307203888893, 0.03632118180394173, -0.0868358165025711, -0.08343584090471268, 0.021476810798048973, 0.036888767033815384, -0.023233894258737564, -0.016189664602279663, 0.051488246768713, -0.04169827699661255, 0.11928746849298477, -0.004344637971371412, 0.021900372579693794, -0.047939054667949677, 0.018007703125476837, -0.11033835262060165, 0.13271766901016235, -0.08923755586147308, 0.032398805022239685, -0.11170437186956406, -0.09308260679244995, 0.010515944100916386, 0.007086354307830334, 0.05569302290678024, 0.10817074030637741, -0.208109512925148, -0.07423759251832962, 0.15061314404010773, -0.15098576247692108, -0.08299732208251953, -0.0005236046272329986, -0.025041969493031502, 0.05760063976049423, 0.05388825014233589, 0.09986157715320587, 0.1658470332622528, -0.16153033077716827, -0.07838115096092224, -0.01831495761871338, 0.03198648989200592, 0.06897430866956711, 0.04584509879350662, -0.020836099982261658, 0.0022558337077498436, 0.013329671695828438, -0.04451974108815193, 0.019248101860284805, 0.0046150172129273415, -0.05467153713107109, -0.020791564136743546, -0.07830235362052917, 0.02656707726418972, -0.008399770595133305, -0.02764718234539032, -0.006238645873963833, -0.09596415609121323, 0.02417263202369213, 0.13705962896347046, -0.09292832016944885, 0.026486296206712723, -0.056475929915905, -0.0213444996625185, -0.02140614576637745, 0.013509186916053295, -0.11716128140687943, -0.11962137371301651, 0.05986236408352852, -0.13503123819828033, 0.010080189444124699, -0.12080869823694229, 0.05162915587425232, 0.06426997482776642, -0.05266799032688141, -0.10082584619522095, -0.06319180876016617, -0.029081828892230988, 0.000814816216006875, -0.13187366724014282, -0.06034243106842041, -0.05591451749205589, 0.08491196483373642, -0.17495127022266388, 0.062241412699222565, 0.024816004559397697, 0.07822167128324509, 0.05774647742509842, -0.04416727274656296, 0.041779376566410065, 0.03492562845349312, -0.030768200755119324, -0.10168454796075821, -0.0059301829896867275, -0.02914593368768692, -0.13785499334335327, 0.023547504097223282, -0.16430988907814026, -0.05613689869642258, 0.08893339335918427, 0.10012047737836838, -0.07874399423599243, -0.03310384228825569, -0.009964507073163986, -0.02321530133485794, -0.076875701546669, -0.06096835061907768, 0.06629597395658493, 0.010949860326945782, 0.0879545509815216, -0.0689256563782692, -0.021506624296307564, 0.03252178058028221, 0.017792286351323128, -0.044344738125801086, 0.09391113370656967, 0.03644934296607971, -0.0178486667573452, 0.05449775233864784, 0.012811949476599693, -0.04811110347509384, 0.14100763201713562, 0.050869427621364594, -0.06489918380975723, -0.012340275570750237, 0.02622181922197342, 0.06462592631578445, 0.09024954587221146, 0.07603491097688675, 0.06407881528139114, 0.009396801702678204, -0.01782488450407982, -0.009950000792741776, -0.13496096432209015, -0.024916213005781174, 0.02959911711513996, -0.08123065531253815, 0.022943416610360146, 0.012549391016364098, -0.04170311614871025, 0.054554034024477005, -0.037353187799453735, 0.08841272443532944, 0.0068009947426617146, -0.04837628826498985, -0.11211637407541275, 0.15518680214881897, -0.12861309945583344, -0.20608125627040863, -0.14273419976234436, 0.01777043752372265, -0.042655494064092636, -0.011534049175679684, 0.0643695741891861, -0.13859839737415314, -0.0703643262386322, -0.10458777099847794, -0.009336911141872406, -0.011560162529349327, -0.023012185469269753, 0.04283081367611885, 0.015460827387869358, 0.10122428089380264, -0.10431092977523804, 0.009022421203553677, 0.023079179227352142, -0.05441691726446152, -0.008176470175385475, 0.02509036287665367, 0.10392475873231888, 0.05866954103112221, 0.0477406270802021, 0.03619449958205223, -0.025756584480404854, 0.19500266015529633, -0.04236442968249321, 0.10840044170618057, 0.1861019730567932, 0.05946318432688713, 0.10947386175394058, 0.14603373408317566, 0.021262040361762047, -0.06302502006292343, 0.04674587771296501, 0.03869900852441788, -0.08604659885168076, -0.21862247586250305, -0.10207845270633698, -0.037829551845788956, -0.052304040640592575, 0.15550656616687775, 0.06559034436941147, 0.08766752481460571, 0.09590442478656769, -0.08090487122535706, 0.07039113342761993, 0.05592913180589676, 0.12294532358646393, 0.03626305237412453, 0.05889711529016495, 0.03197067603468895, -0.06728895008563995, 0.04087048023939133, 0.07862561196088791, 0.03735962137579918, 0.20841971039772034, -0.079685278236866, 0.06424272060394287, 0.006123140919953585, 0.027488529682159424, 0.00040353243821300566, 0.023068634793162346, -0.014045892283320427, 0.01411339920014143, 0.01953231170773506, -0.12619136273860931, 0.062047459185123444, 0.1454160064458847, -0.054353825747966766, 0.02128966897726059, -0.03841136768460274, 0.031566694378852844, 0.012887340039014816, 0.06298739463090897, 0.04604963958263397, -0.2749246060848236, -0.02526031620800495, 0.04741230234503746, 0.10220479965209961, -0.020165571942925453, -0.014384295791387558, 0.14357507228851318, -0.06800337135791779, 0.12908272445201874, -0.020472390577197075, 0.09694056212902069, -0.048577483743429184, -0.05589074268937111, 0.11697833240032196, 0.1908767819404602, -0.0006159022450447083, 0.03317566215991974, -0.17611262202262878, 0.08176416158676147, 0.025696149095892906, 0.11330096423625946, -0.03677581623196602, 0.05647881701588631, 0.038334209471940994, 0.015622461214661598, 0.14147287607192993, 0.015321833081543446, -0.07231651246547699, -0.19889645278453827, -0.061479415744543076, -0.017130644991993904, 0.09411313384771347, -0.08060352504253387, 0.07657211273908615, 0.038384757936000824, -0.03259733319282532, -0.009351671673357487, 0.003397628664970398, -0.16528646647930145, -0.1622919887304306, 0.008361988700926304, 0.12685847282409668, 0.050702523440122604, -0.0792546346783638, -0.05126446858048439, -0.04379313066601753, 0.08334258943796158, -0.11913731694221497, -0.11398456245660782, -0.1108027771115303, 0.0055754645727574825, 0.09926614910364151, -0.07011671364307404, 0.019387608394026756, 0.017720358446240425, 0.1369471400976181, -0.091060109436512, -0.1001267284154892, 0.013748164288699627, -0.0845726802945137, -0.18629460036754608, -0.08331022411584854, 0.09374383836984634, 0.05084845796227455, -0.005241521168500185, -0.012375281192362309, 0.007507178466767073, 0.03332655876874924, -0.12636621296405792, 0.06063554435968399, 0.23325422406196594, 0.009585007093846798, 0.1240876242518425, -0.05727042257785797, -0.056503091007471085, -0.06483633071184158, 0.013905856758356094, 0.02155938185751438, 0.2397867739200592, -0.10370861738920212, 0.0725005567073822, 0.06645233929157257, -0.10118281841278076, -0.1577749103307724, 0.05498943105340004, 0.09865234047174454, -0.011152489110827446, -0.015583233907818794, -0.2615375816822052, 0.06408891826868057, 0.05949655547738075, -0.0059386733919382095, 0.09862147271633148, -0.33438313007354736, -0.1364022195339203, -0.06659252941608429, 0.1043163537979126, -0.013255748897790909, -0.12078976631164551, -0.06423719972372055, -0.11906992644071579, -0.06127031520009041, 0.12174377590417862, -0.026867438107728958, 0.06690014898777008, 0.008345159702003002, 0.011843439191579819, 0.018571944907307625, -0.04729405790567398, 0.13829754292964935, 0.00867201667279005, 0.05164356902241707, -0.03291304409503937, 0.06435876339673996, 0.0856226310133934, -0.08249849081039429, 0.08119401335716248, -0.10134701430797577, 0.05709142982959747, -0.0867585614323616, -0.020632518455386162, -0.014182568527758121, 0.05067382752895355, -0.04553714767098427, -0.047949597239494324, -0.06684987246990204, 0.05925215035676956, 0.13281749188899994, -0.00936753861606121, -0.04489206150174141, -0.013439115136861801, 0.06580542027950287, 0.1279401034116745, 0.03405940160155296, 0.13419178128242493, -0.09949853271245956, 0.0047860583290457726, -0.050332263112068176, 0.1010683998465538, -0.15949851274490356, 0.01522502489387989, 0.07842765748500824, 0.03595035895705223, 0.14932981133460999, 0.01447624247521162, -0.09713471680879593, 0.061658263206481934, 0.03673942759633064, -0.060798242688179016, -0.10461917519569397, -0.027368366718292236, 0.02836398407816887, -0.06949710845947266, 0.0036271102726459503, 0.1159200593829155, -0.0527639240026474, 0.018302077427506447, -0.005164989735931158, 0.06668853014707565, -0.00574116874486208, 0.11474724858999252, 0.055636122822761536, 0.039072465151548386, -0.07347458600997925, 0.11954053491353989, 0.05448712036013603, -0.0762554183602333, 0.08280393481254578, 0.11363565176725388, -0.08250311762094498, -0.009717531502246857, -0.09923212975263596, 0.05057695508003235, -0.07694077491760254, -0.0495033822953701, -0.023760657757520676, -0.07573100924491882, 0.023832382634282112, 0.1104925274848938, 0.007243163418024778, -0.013741978444159031, 0.0234812144190073, -0.006934481672942638, -0.10669434070587158, 0.06261959671974182, -0.008333809673786163, 0.0680621862411499, -0.13235175609588623, -0.004697028081864119, 0.05911151319742203, -0.010583734139800072, 0.003918976057320833, -0.013862574473023415, -0.12610721588134766, -0.022395839914679527, -0.08510204404592514, 0.11436570435762405, -0.07489069551229477, 0.007636921480298042, -0.03372931852936745, -0.0006423028535209596, -0.0045252153649926186, 0.06225600838661194, -0.035583436489105225, -0.1044948622584343, 0.0021862240973860025, 0.06945600360631943, -0.1274077594280243, -0.03169819712638855, -0.013259039260447025, -0.09115304052829742, 0.05702441558241844, -0.014124485664069653, -0.05182816460728645, -0.006049133837223053, -0.14726760983467102, 0.049148887395858765, 0.0571063831448555, 0.028114529326558113, -0.004073388408869505, -0.07334935665130615, 0.012135221622884274, -0.03600142523646355, -0.06678074598312378, -0.01378400158137083, -0.011032955721020699, -0.0975891724228859, 0.04249754920601845, -0.04349585622549057, 0.02438022755086422, -0.07265347987413406, 0.07975343614816666, 0.11411908268928528, 0.03406195715069771, 0.09905427694320679, -0.08323723822832108, 0.09031740576028824, -0.1683019995689392, -0.03638945519924164, 0.0223095566034317, -0.013552527874708176, -0.051987338811159134, -0.017921505495905876, 0.08041232824325562, -0.019457180052995682, 0.10837285965681076, -0.0629236102104187, 0.06356453150510788, -0.0031039996538311243, -0.017190992832183838, -0.04453297331929207, 0.00762849859893322, 0.1661502718925476, 0.011927488259971142, 0.010307093150913715, 0.026845285668969154, -0.007413919549435377, 0.07397076487541199, 0.10364832729101181, 0.07145196944475174, 0.09709779173135757, 0.10352469980716705, 0.06123200058937073, 0.031581662595272064, -0.06248974800109863, -0.04899896681308746, 0.12487374991178513, -0.030979560688138008, 0.07317271828651428, -0.04862261563539505, 0.045484092086553574, 0.0855507105588913, -0.14463311433792114, 0.012818451039493084, 0.08580902218818665, -0.06823848187923431, -0.09553168714046478, -0.1612379103899002, -0.08313121646642685, -0.12819994986057281, 0.020787782967090607, -0.1051306501030922, 0.0486881360411644, -0.014171325601637363, -0.022015482187271118, 0.02693854831159115, 0.10801070183515549, -0.013356857933104038, -0.023149140179157257, 0.03113028034567833, -0.005235482007265091, -0.0011239346349611878, 0.06986689567565918, -0.05289527401328087, 0.12784956395626068, -0.012262722477316856, 0.04127524793148041, 0.0442514531314373, 0.046611566096544266, 0.05110368877649307, -0.005583109799772501, -0.06212771683931351, 0.012177178636193275, 0.0305170975625515, 0.0037327068857848644, 0.1666654795408249, 0.08540358394384384, 0.006119325757026672, -0.031573209911584854, 0.15138834714889526, -0.07347676903009415, -0.02077271044254303, -0.09940104931592941, 0.07423070818185806, 0.00923773180693388, 0.01248899381607771, 0.005019425880163908, -0.09795313328504562, -0.04867537319660187, 0.1039382815361023, 0.10536633431911469, 0.01980641484260559, 0.016220957040786743, -0.04370468854904175, -0.0015795310027897358, -0.04795346409082413, 0.071170873939991, 0.05578507110476494, 0.10957862436771393, -0.011992107145488262, 0.03049769252538681, -0.015539036132395267, -0.03549470007419586, -0.024123314768075943, 0.0019742108415812254, -0.0575965940952301, -0.029205862432718277, -0.04882477968931198, 0.07423926144838333, -0.06829473376274109, -0.1614978164434433, 0.17417508363723755, -0.10145991295576096, -0.061970923095941544, -0.018721871078014374, 0.09243939816951752, 0.030202308669686317, 0.002180309034883976, -0.010128919035196304, -0.023672113195061684, 0.12357888370752335, -0.041978731751441956, -0.07896813005208969, -0.11173588037490845, -0.03953702002763748, -0.173824280500412, 0.22688350081443787, -0.02202031947672367, 0.053425442427396774, 0.08229701220989227, 0.024613652378320694, -0.1271824985742569, 0.08159958571195602, 0.017846960574388504, -0.10937723517417908, -0.006894783116877079, 0.18200604617595673, -0.07780586183071136, 0.18470290303230286, 0.05045389384031296, -0.07769805192947388, 0.021727468818426132, 0.06687190383672714, -0.026545479893684387, -0.08228745311498642, 0.010490912944078445, -0.09881296008825302, 0.11676923930644989, 0.14344705641269684, -0.03261181339621544, -0.018417781218886375, 0.0007676365785300732, 0.027199724689126015, 0.012096931226551533, 0.09480596333742142, 0.03525640442967415, -0.10327999293804169, 0.007749284617602825, -0.0007236342062242329, 0.10486815124750137, -0.17624054849147797, -0.060903795063495636, -0.05431307107210159, -0.04934653639793396, -0.0017408188432455063, 0.10311466455459595, 0.08240735530853271, 0.03489523008465767, -0.04328043758869171, -0.18486127257347107, 0.010999443009495735, 0.15305933356285095, -0.10321022570133209, -0.08170855045318604 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
ContinuumLabs/Mistral_Genie
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-07T01:39:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
diffusers
# SDXL LoRA DreamBooth - yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 <Gallery /> ## Model description These are yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5/tree/main) them in the Files & versions tab. ## Training properties - max_train_steps: 700 - learning_rate: 1e-05 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0 - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569 - gradient_accumulation_steps: 3 - GPU: T4 - duration: 5403.078849315643
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"}
text-to-image
yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "has_space", "region:us" ]
2024-02-07T01:40:41+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
# SDXL LoRA DreamBooth - yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 <Gallery /> ## Model description These are yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of MDDL man to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Training properties - max_train_steps: 700 - learning_rate: 1e-05 - base_model_name: stabilityai/stable-diffusion-xl-base-1.0 - class_name: man - training_images_urls: - URL - URL - URL - URL - URL - URL - URL - URL - gradient_accumulation_steps: 3 - GPU: T4 - duration: 5403.078849315643
[ "# SDXL LoRA DreamBooth - yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-05\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5403.078849315643" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n", "# SDXL LoRA DreamBooth - yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5\n\n<Gallery />", "## Model description\n\nThese are yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-05\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5403.078849315643" ]
[ 82, 53, 118, 19, 28, 102 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5\n\n<Gallery />## Model description\n\nThese are yaneq/jan_o3wGppvrxZvgHb0IOIXX_SDXL_LoRA_700_9d94_700_1e5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 700\n- learning_rate: 1e-05\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls: - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps: 3\n- GPU: T4\n- duration: 5403.078849315643" ]
[ -0.09726637601852417, 0.17093119025230408, -0.002082733903080225, 0.05933794751763344, 0.11927147209644318, 0.04388907179236412, 0.13532333076000214, 0.14223957061767578, 0.024442672729492188, 0.11864008009433746, 0.037246063351631165, 0.07306130230426788, 0.10206687450408936, 0.1782437562942505, 0.00687768217176199, -0.16521182656288147, 0.025604424998164177, -0.04259871691465378, -0.0013440175680443645, 0.0543721467256546, 0.04959198459982872, -0.07316947728395462, 0.09531126916408539, -0.02315414324402809, -0.056027594953775406, 0.046541906893253326, -0.0293154027312994, -0.021424679085612297, 0.014901511371135712, 0.05911395326256752, 0.04334593191742897, 0.061468373984098434, 0.10432595759630203, -0.2907589375972748, 0.01370370015501976, 0.09725365787744522, -0.04452817887067795, 0.04690542072057724, 0.0528927780687809, -0.05846748501062393, 0.03324058651924133, -0.14439427852630615, 0.09467889368534088, 0.0667671486735344, -0.049555085599422455, -0.21012352406978607, -0.09704529494047165, 0.04877058044075966, 0.09414302557706833, 0.12005620449781418, -0.0022916586603969336, -0.008684392087161541, 0.06461802124977112, 0.06173921376466751, 0.22825069725513458, -0.10333206504583359, -0.026500770822167397, 0.10532787442207336, 0.039738867431879044, 0.08939298242330551, -0.06302696466445923, -0.00249026482924819, 0.06319969892501831, -0.014427848160266876, 0.08281400799751282, -0.036519140005111694, 0.02864377573132515, -0.06427450478076935, -0.08790028095245361, -0.011612942442297935, 0.1477350890636444, 0.025917667895555496, -0.07158412784337997, -0.12059839814901352, -0.03130349516868591, -0.016139749437570572, -0.00467462046071887, 0.007215369027107954, 0.02742825448513031, -0.027489712461829185, -0.002786440309137106, -0.1073528453707695, -0.03201994299888611, -0.05287341773509979, 0.059091318398714066, 0.19485436379909515, 0.02144807018339634, 0.0043376050889492035, -0.0005010061431676149, 0.07165922969579697, -0.013797122985124588, -0.12857016921043396, -0.08923899382352829, -0.019378194585442543, -0.08233409374952316, 0.003206658875569701, -0.0044262949377298355, -0.07500305771827698, 0.023068228736519814, 0.11825207620859146, -0.11622686684131622, 0.07246112078428268, -0.01604623720049858, 0.025285402312874794, -0.05584832280874252, 0.1414160579442978, -0.016907554119825363, -0.08235142379999161, 0.014115285128355026, 0.07964976131916046, 0.0638272762298584, -0.0346827507019043, -0.12571649253368378, -0.011372117325663567, -0.06401055306196213, 0.0796055868268013, 0.005500596947968006, -0.014864451251924038, -0.07749682664871216, -0.043259039521217346, 0.11740045249462128, -0.11171817034482956, 0.04559960588812828, 0.014945141971111298, -0.07386645674705505, 0.030981864780187607, 0.07689959555864334, -0.029724787920713425, -0.043141577392816544, 0.08534058183431625, -0.041508130729198456, 0.024904673919081688, -0.07517542690038681, -0.13465210795402527, 0.028044812381267548, -0.13283532857894897, -0.019770747050642967, -0.090281181037426, -0.2115897238254547, -0.07901501655578613, 0.00931654404848814, -0.026610737666487694, 0.045987777411937714, -0.09927481412887573, -0.07292526960372925, 0.02568463422358036, 0.03465503081679344, -0.012547245249152184, -0.0232450719922781, 0.04694141820073128, -0.035391222685575485, 0.12444642186164856, 0.0103312898427248, 0.024012219160795212, -0.03715630993247032, 0.02210168167948723, -0.0854264572262764, 0.140259250998497, -0.0799173042178154, 0.035285089164972305, -0.10786712169647217, -0.09203251451253891, 0.01447170041501522, 0.0061086127534508705, 0.041303765028715134, 0.10421684384346008, -0.20893548429012299, -0.07789693027734756, 0.20847859978675842, -0.14043523371219635, -0.07247888296842575, -0.0026634547393769026, -0.024996820837259293, 0.03822159022092819, 0.05889175087213516, 0.09014678001403809, 0.1637834906578064, -0.16437284648418427, -0.0818815752863884, -0.027503173798322678, 0.03395799919962883, 0.06033604219555855, 0.05804278329014778, -0.01969665288925171, 0.022958431392908096, 0.018799198791384697, -0.05062427371740341, 0.0046968418173491955, -0.0008508077007718384, -0.05393783375620842, -0.010797834023833275, -0.05697229877114296, 0.020583031699061394, -0.022846514359116554, -0.03709029406309128, -0.016827717423439026, -0.10276500135660172, 0.013331497088074684, 0.1257406324148178, -0.08793095499277115, 0.03569117188453674, -0.07346433401107788, -0.02398371323943138, -0.016148297116160393, 0.020618196576833725, -0.12853755056858063, -0.11533904075622559, 0.03829830139875412, -0.0967816412448883, 0.011043664999306202, -0.12406454235315323, 0.06381211429834366, 0.068491131067276, -0.04869686812162399, -0.10147476196289062, -0.05915362760424614, -0.036567967385053635, 0.010753865353763103, -0.1370379775762558, -0.057859282940626144, -0.0727166160941124, 0.08439308404922485, -0.167993426322937, 0.059300847351551056, 0.05899478495121002, 0.07486369460821152, 0.06472885608673096, -0.04844297841191292, 0.04042809084057808, 0.037828411906957626, -0.03706631064414978, -0.10155429691076279, -0.009623074904084206, -0.030788380652666092, -0.1182381808757782, 0.022584952414035797, -0.17330433428287506, -0.03381774574518204, 0.08072264492511749, 0.10384297370910645, -0.0859731137752533, -0.03932452201843262, -0.017598291859030724, -0.013757211156189442, -0.10255742818117142, -0.05624385178089142, 0.10480204224586487, 0.017120035365223885, 0.08714203536510468, -0.06640075147151947, -0.04407985508441925, 0.019319433718919754, 0.015639299526810646, -0.0378272719681263, 0.0962645560503006, 0.013437631540000439, -0.010956567712128162, 0.06614673137664795, 0.012362660840153694, -0.04993225634098053, 0.14391259849071503, 0.04856044426560402, -0.06207650899887085, -0.009138578549027443, 0.03434113785624504, 0.06275628507137299, 0.07734169065952301, 0.06977422535419464, 0.046939924359321594, 0.005405021831393242, -0.01796792820096016, -0.010329830460250378, -0.14204943180084229, -0.018733365461230278, 0.03890776261687279, -0.08365372568368912, 0.041665658354759216, 0.0037198869977146387, -0.028195634484291077, 0.0583173967897892, -0.03142718970775604, 0.0747067779302597, -0.0004169157473370433, -0.04676792025566101, -0.10525395721197128, 0.16478776931762695, -0.12620863318443298, -0.22736592590808868, -0.13682052493095398, -0.021968230605125427, -0.04833677411079407, -0.01232853438705206, 0.06966009736061096, -0.1391090750694275, -0.07118483632802963, -0.10378734022378922, 0.00369403138756752, -0.028905505314469337, -0.0158047117292881, 0.04589398577809334, 0.01374353002756834, 0.08568163961172104, -0.10432261973619461, -0.00030515805701725185, 0.03253646567463875, -0.05125816911458969, 0.012556863017380238, 0.043053414672613144, 0.1112145185470581, 0.06930272281169891, 0.04302981123328209, 0.044207457453012466, -0.029911885038018227, 0.19210974872112274, -0.05031236633658409, 0.09960862994194031, 0.16498416662216187, 0.05681462213397026, 0.10893096774816513, 0.14004996418952942, 0.011588566936552525, -0.07606858015060425, 0.03182772174477577, 0.04261307418346405, -0.08630241453647614, -0.21453428268432617, -0.07853030413389206, -0.049858469516038895, -0.05285253748297691, 0.1448318064212799, 0.07109209895133972, 0.10257437825202942, 0.07400509715080261, -0.07032403349876404, 0.06323911994695663, 0.0715102106332779, 0.12543247640132904, 0.039075613021850586, 0.053068533539772034, 0.04691561311483383, -0.06002102419734001, 0.035283979028463364, 0.07555754482746124, 0.04895178973674774, 0.21477560698986053, -0.06181016191840172, 0.0796344131231308, 0.021014971658587456, 0.007215839345008135, 0.000233589336858131, 0.0196071770042181, -0.011999201960861683, 0.015575091354548931, 0.023063184693455696, -0.12038968503475189, 0.0597800575196743, 0.13927200436592102, -0.051143303513526917, 0.0022764354944229126, -0.032256968319416046, 0.03056860715150833, 0.013851256109774113, 0.07062675058841705, 0.04063974320888519, -0.2892949879169464, -0.011391297914087772, 0.04382478818297386, 0.09307543933391571, -0.028060799464583397, -0.009427531622350216, 0.13604383170604706, -0.06522338092327118, 0.13617479801177979, -0.028743339702486992, 0.10608422011137009, -0.06086915358901024, -0.06175319477915764, 0.10926096886396408, 0.19882020354270935, -0.006978049874305725, 0.03236493468284607, -0.17275427281856537, 0.08596868813037872, 0.014355845749378204, 0.10840237885713577, -0.011163407005369663, 0.06464109569787979, 0.03950090333819389, 0.03857952728867531, 0.15150336921215057, 0.008031350560486317, -0.10919200628995895, -0.2055785357952118, -0.068364217877388, -0.02164323441684246, 0.09717509895563126, -0.09278640896081924, 0.08354736864566803, 0.02913064695894718, -0.04189794138073921, -0.016366297379136086, -0.014919837936758995, -0.1341434121131897, -0.16781532764434814, 0.004847736097872257, 0.11684031039476395, 0.08096278458833694, -0.07518249750137329, -0.04650971665978432, -0.020515626296401024, 0.09516529738903046, -0.1227002739906311, -0.12216439843177795, -0.12999208271503448, -0.0009025595500133932, 0.09102005511522293, -0.07925810664892197, 0.0072851115837693214, 0.025608709082007408, 0.16341660916805267, -0.08609627187252045, -0.09468217194080353, 0.005971821956336498, -0.08496526628732681, -0.16461218893527985, -0.08288604021072388, 0.10270402580499649, 0.03256151080131531, -0.0013766263145953417, -0.005757123697549105, 0.005822945851832628, 0.02526639588177204, -0.1269378960132599, 0.06437032669782639, 0.22999145090579987, -0.009148336946964264, 0.09620998799800873, -0.039753783494234085, -0.06518475711345673, -0.07075673341751099, 0.024223657324910164, 0.037697937339544296, 0.2261785864830017, -0.09930043667554855, 0.08829540759325027, 0.0572829507291317, -0.10800987482070923, -0.15230558812618256, 0.04520905017852783, 0.09199433028697968, -0.00708673894405365, -0.01813710480928421, -0.2657552659511566, 0.0592229999601841, 0.05320669338107109, 0.002932682866230607, 0.12165749818086624, -0.345069944858551, -0.1286112517118454, -0.060591548681259155, 0.10741113126277924, -0.006844219285994768, -0.11912839114665985, -0.07466114312410355, -0.10183966904878616, -0.08202557265758514, 0.12096717953681946, -0.02495187520980835, 0.0746058002114296, 0.0032926425337791443, 0.017093604430556297, 0.014272932894527912, -0.0364743210375309, 0.1312136948108673, 0.007976444438099861, 0.04414777085185051, -0.031782276928424835, 0.07032870501279831, 0.07475852221250534, -0.08562466502189636, 0.07401325553655624, -0.10983458161354065, 0.03905732184648514, -0.09293761849403381, -0.03556203469634056, -0.011022473685443401, 0.04761114344000816, -0.0434151254594326, -0.05120236426591873, -0.06279205530881882, 0.05455451458692551, 0.13612322509288788, -0.012628703378140926, -0.046425554901361465, -0.023978089913725853, 0.0571773536503315, 0.10876299440860748, 0.03388635069131851, 0.09791296720504761, -0.14679260551929474, -0.006852759514003992, -0.03413925692439079, 0.09253643453121185, -0.14838886260986328, 0.011338706128299236, 0.08364029973745346, 0.03545532375574112, 0.15840879082679749, 0.024660080671310425, -0.09385830909013748, 0.06574112176895142, 0.04453897103667259, -0.05339653044939041, -0.09477896243333817, -0.03462570533156395, 0.02606535702943802, -0.07119141519069672, 0.0023559448309242725, 0.11688894778490067, -0.03721950203180313, 0.022886764258146286, -0.0006594782462343574, 0.06926698237657547, 0.0007812155527062714, 0.11674227565526962, 0.04397459700703621, 0.04786544293165207, -0.06846651434898376, 0.0895005539059639, 0.054946962743997574, -0.06803397089242935, 0.06604862958192825, 0.13878126442432404, -0.07347313314676285, 0.0006302686524577439, -0.09295281767845154, 0.05290297418832779, -0.08768362551927567, -0.050431136041879654, -0.0267132967710495, -0.09378301352262497, 0.037912651896476746, 0.10777010768651962, 0.0038702732417732477, -0.005483788438141346, 0.02354286052286625, 0.0021723913960158825, -0.0973091796040535, 0.06244340166449547, -0.012450694106519222, 0.07163112610578537, -0.11881347000598907, -0.007684492506086826, 0.055630650371313095, -0.0015488734934478998, 0.006048201583325863, -0.02388804778456688, -0.12257169187068939, -0.006888336502015591, -0.082709901034832, 0.11351750791072845, -0.0745033547282219, -0.00017595654935576022, -0.034462183713912964, 0.004668331705033779, -0.006031722761690617, 0.06786326318979263, -0.03787513077259064, -0.11033250391483307, -0.0064931572414934635, 0.06953810155391693, -0.13595761358737946, -0.026816418394446373, -0.009382745251059532, -0.10244204103946686, 0.0508141815662384, -0.028349243104457855, -0.05535639449954033, -0.01242099143564701, -0.1599559485912323, 0.04003649577498436, 0.061638474464416504, 0.01951141096651554, 0.0016229309840127826, -0.08220095932483673, 0.011732631362974644, -0.030789947137236595, -0.06802266836166382, -0.010989503003656864, -0.036496952176094055, -0.0908401682972908, 0.05239519104361534, -0.05950362980365753, 0.003923341631889343, -0.05768366530537605, 0.08177242428064346, 0.11778516322374344, 0.03176983818411827, 0.0934547707438469, -0.08026986569166183, 0.10529954731464386, -0.1646624356508255, -0.029258690774440765, 0.03859986737370491, -0.01141191367059946, -0.047110721468925476, -0.0238268431276083, 0.08268588781356812, -0.02309081144630909, 0.09454356133937836, -0.050869472324848175, 0.07085207849740982, -0.000631793518550694, -0.005087327212095261, -0.050535570830106735, 0.01018677931278944, 0.15435591340065002, 0.01843775250017643, -0.0007599886157549918, 0.04911084100604057, -0.008476180955767632, 0.08598921447992325, 0.08996903896331787, 0.12131885439157486, 0.09638082981109619, 0.11401008814573288, 0.06665565073490143, 0.019033771008253098, -0.053310245275497437, -0.08923263847827911, 0.11207837611436844, -0.037432361394166946, 0.0619087852537632, -0.04304524511098862, 0.06413806974887848, 0.10574842244386673, -0.1501627415418625, 0.030217444524168968, 0.10320261865854263, -0.06862297654151917, -0.09606321156024933, -0.1573120504617691, -0.08643640577793121, -0.1190914511680603, 0.02681291103363037, -0.11315160244703293, 0.06247686967253685, -0.02464553341269493, -0.008302616886794567, 0.03244822099804878, 0.12142853438854218, -0.005800983402878046, -0.037215568125247955, 0.03295036777853966, 0.004882863722741604, 0.008436678908765316, 0.061920713633298874, -0.04305476322770119, 0.11853180080652237, -0.014023801311850548, 0.05102046951651573, 0.04239222779870033, 0.045981112867593765, 0.04403708502650261, -0.011083737947046757, -0.05809097737073898, 0.013819241896271706, 0.028104182332754135, 0.010341033339500427, 0.14915809035301208, 0.084555983543396, 0.0050543611869215965, -0.025671938434243202, 0.15597295761108398, -0.0699445828795433, -0.027069808915257454, -0.09513380378484726, 0.04922868311405182, 0.029856467619538307, 0.010028599761426449, 0.009361183270812035, -0.0996670201420784, -0.049611590802669525, 0.11287076026201248, 0.08995908498764038, 0.031002799049019814, 0.014557763934135437, -0.04296611249446869, 0.005670460406690836, -0.029579482972621918, 0.07811801880598068, 0.04869040474295616, 0.14106225967407227, -0.017366569489240646, 0.02307535894215107, -0.009906508028507233, -0.04657696187496185, -0.019730355590581894, -0.012424375861883163, -0.05189429596066475, -0.020950816571712494, -0.052672065794467926, 0.08090554922819138, -0.07972295582294464, -0.15438489615917206, 0.19131898880004883, -0.10232342779636383, -0.06001703813672066, -0.01530129462480545, 0.10727939009666443, 0.014306380413472652, 0.0005612589884549379, 0.013551860116422176, -0.03671789541840553, 0.14565736055374146, -0.03256724402308464, -0.08652519434690475, -0.10716607421636581, -0.02971756085753441, -0.17518243193626404, 0.22153465449810028, -0.030089089646935463, 0.04490680992603302, 0.0889439806342125, 0.020196063444018364, -0.11405368149280548, 0.08099139481782913, 0.010889393277466297, -0.10104954242706299, -0.00227751093916595, 0.1835281252861023, -0.07037372887134552, 0.16318842768669128, 0.04483591020107269, -0.05851908028125763, 0.016822753474116325, 0.07246816903352737, -0.01929222233593464, -0.0783495306968689, 0.009788094088435173, -0.09296053647994995, 0.10662520676851273, 0.14691273868083954, -0.023503098636865616, -0.018885942175984383, -0.0048564113676548, 0.028216464444994926, 0.00899700541049242, 0.09717638045549393, 0.01995089463889599, -0.09761638939380646, -0.0007220578845590353, 0.0015988284721970558, 0.10016997158527374, -0.18741853535175323, -0.08531753718852997, -0.03606479987502098, -0.0408395454287529, -0.01689479872584343, 0.10875068604946136, 0.08473639190196991, 0.03580835834145546, -0.03312723711133003, -0.19918480515480042, 0.020007817074656487, 0.14386996626853943, -0.10658809542655945, -0.06381580233573914 ]
null
null
null
this quant was made by first converting the model to llama format using https://github.com/InternLM/InternLM/blob/main/tools/convert2llama.py if performance is different than the one converted previously, please comment ## Exllama v2 Quantizations of internlm2-chat-20b-llama-exp Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/internlm/internlm2-chat-20b | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ------ | ---- | ------------ | ---- | ---- | ---- | ----------- | | [6_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/6_5) | 6.5 | 8.0 | 19.6 GB | 21.0 GB | 23.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | | [4_25](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/4_25) | 4.25 | 6.0 | 13.8 GB | 15.2 GB | 17.2 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/3_5) | 3.5 | 6.0 | 12.4 GB | 13.8 GB | 15.8 GB | Lower quality, only use if you have to. | | [3_0](https://huggingface.co/Bartowski/internlm2-chat-20b-llama-exp-exl2/tree/3_0) | 3.0 | 6.0 | 11.1 GB | 12.5 GB | 15.5 GB | Very low quality. Usable on 12GB. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/internlm2-chat-20b-llama-exp-exl2 internlm2-chat-20b-llama-exp-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `internlm2-chat-20b-llama-exp-exl2`: ```shell mkdir internlm2-chat-20b-llama-exp-exl2 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --local-dir internlm2-chat-20b-llama-exp-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir internlm2-chat-20b-llama-exp-exl2-6_5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exp-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir internlm2-chat-20b-llama-exp-exl2-6.5 huggingface-cli download bartowski/internlm2-chat-20b-llama-exp-exl2 --revision 6_5 --local-dir internlm2-chat-20b-llama-exp-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"license": "other", "pipeline_tag": "text-generation", "quantized_by": "bartowski"}
text-generation
bartowski/internlm2-chat-20b-llama-exp-exl2
[ "text-generation", "license:other", "region:us" ]
2024-02-07T01:45:27+00:00
[]
[]
TAGS #text-generation #license-other #region-us
this quant was made by first converting the model to llama format using URL if performance is different than the one converted previously, please comment Exllama v2 Quantizations of internlm2-chat-20b-llama-exp -------------------------------------------------------- Using <a href="URL ExLlamaV2 v0.0.13 for quantization. The "main" branch only contains the URL, download one of the other branches for the model (see below) ===================================================================================================== Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download the 'main' (only useful if you only care about URL) branch to a folder called 'internlm2-chat-20b-llama-exp-exl2': To download from a different branch, add the '--revision' parameter: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#text-generation #license-other #region-us \n" ]
[ 16 ]
[ "passage: TAGS\n#text-generation #license-other #region-us \n" ]
[ 0.051113277673721313, 0.07280271500349045, -0.00824133213609457, -0.029258456081151962, 0.05186934024095535, 0.05759657546877861, 0.26173263788223267, 0.052013128995895386, 0.16024252772331238, -0.07162679731845856, 0.12387923151254654, 0.07674521952867508, -0.010968969203531742, -0.01746911182999611, -0.008756989613175392, -0.22287139296531677, 0.0332915298640728, -0.041559215635061264, 0.08592100441455841, 0.031569451093673706, 0.015975257381796837, -0.03128349781036377, 0.04749593883752823, -0.019296273589134216, -0.0547066330909729, 0.032732438296079636, 0.018436387181282043, -0.0695817768573761, 0.11244364827871323, 0.025361454114317894, 0.08041546493768692, 0.04953852668404579, -0.012904427945613861, -0.23848390579223633, 0.01538369245827198, -0.0567067451775074, -0.14665944874286652, 0.012070606462657452, 0.11147847026586533, -0.061152487993240356, 0.13792045414447784, 0.1737603396177292, -0.0370553657412529, 0.08578582853078842, -0.217189222574234, -0.1445237100124359, -0.053230296820402145, -0.032334793359041214, -0.0013099279021844268, 0.04982665181159973, 0.031117966398596764, 0.07717971503734589, -0.10258638858795166, 0.002489553764462471, 0.07947617024183273, -0.3823585510253906, 0.07169760763645172, 0.2283337116241455, 0.10137321054935455, 0.1176414042711258, -0.08240504562854767, 0.1276022344827652, 0.0662834420800209, -0.027175921946763992, -0.11095832288265228, -0.0720171257853508, -0.005188196897506714, 0.13030612468719482, -0.029301542788743973, -0.09465056657791138, 0.3160237669944763, -0.016224956139922142, 0.015271675772964954, 0.023694399744272232, -0.010424119420349598, 0.006242743227630854, 0.03231469914317131, 0.09077271074056625, 0.009869622066617012, 0.18970972299575806, 0.15150140225887299, -0.07814399898052216, -0.1741591989994049, -0.0247694943100214, -0.22449561953544617, 0.09269101917743683, -0.021027302369475365, 0.09018143266439438, -0.1774020493030548, 0.018116425722837448, -0.10580021142959595, -0.02777145244181156, -0.012132232077419758, -0.10826212167739868, 0.07296755909919739, 0.004261552356183529, -0.07343943417072296, 0.007886625826358795, 0.10201885551214218, 0.16097334027290344, -0.018134545534849167, -0.003449894953519106, -0.14739274978637695, 0.18373046815395355, 0.07524828612804413, -0.03453337401151657, 0.1257171332836151, 0.07018397003412247, -0.024713413789868355, -0.20516863465309143, 0.023036299273371696, -0.054628968238830566, -0.18145932257175446, 0.03261454403400421, -0.17747576534748077, 0.12347130477428436, -0.025986110791563988, -0.016476087272167206, -0.07626064121723175, 0.08179588615894318, 0.03667543828487396, -0.009868769906461239, -0.04568319022655487, 0.0036325708497315645, 0.03738816827535629, -0.0043860869482159615, -0.06194043904542923, 0.021748172119259834, 0.04213834926486015, 0.05603456497192383, -0.09250175952911377, -0.03715076297521591, -0.02635471150279045, 0.02884920872747898, 0.10209540277719498, -0.09726572036743164, 0.031015712767839432, -0.05478508397936821, -0.1821698546409607, 0.018972070887684822, 0.03591609001159668, -0.01113453134894371, 0.052826762199401855, -0.007784395013004541, 0.03258811682462692, -0.019211703911423683, -0.07846705615520477, -0.07647065818309784, -0.11812679469585419, 0.11317005008459091, -0.10571415722370148, -0.004494717810302973, -0.2701650559902191, -0.0008982017752714455, -0.11863019317388535, 0.02906479313969612, 0.038022108376026154, -0.01813790574669838, -0.10403364896774292, 0.11481624841690063, 0.018568115308880806, 0.05824549123644829, -0.13299670815467834, 0.08691953122615814, -0.15734142065048218, 0.1283365786075592, -0.16916656494140625, -0.07631196081638336, 0.20524397492408752, -0.10203299671411514, -0.15625625848770142, 0.04170994088053703, -0.027474243193864822, 0.10201277583837509, 0.06893005222082138, 0.41612130403518677, -0.10395314544439316, -0.08273299783468246, 0.11567328870296478, 0.20339176058769226, -0.1102835163474083, -0.13431215286254883, 0.09049348533153534, -0.1184685081243515, -0.10845805704593658, 0.018977632746100426, 0.0034886798821389675, 0.02323778346180916, -0.02162548527121544, -0.05909184738993645, 0.00801000650972128, 0.019373372197151184, 0.022377584129571915, -0.0006920546293258667, 0.08470432460308075, -0.05436784029006958, 0.044512789696455, 0.04089782387018204, -0.008062923327088356, 0.08917564898729324, 0.014055371284484863, 0.0009400799754075706, 0.03900320082902908, 0.09713059663772583, 0.032443124800920486, -0.10719595104455948, -0.06988978385925293, 0.005831758491694927, 0.050291966646909714, 0.13584309816360474, 0.17612941563129425, 0.009959245100617409, -0.04035770893096924, 0.011752489022910595, 0.0636662170290947, 0.050591349601745605, 0.013055491261184216, 0.032411716878414154, -0.10684516280889511, 0.05765881389379501, -0.03766191750764847, -0.050920404493808746, -0.11110757291316986, -0.013807008974254131, 0.09427113085985184, -0.044332779943943024, -0.024098146706819534, 0.06753901392221451, -0.026393771171569824, 0.009204035624861717, -0.059557270258665085, 0.00891201850026846, 0.11837812513113022, -0.042906470596790314, -0.12022952735424042, 0.22972746193408966, -0.11212354898452759, 0.13253340125083923, 0.17882251739501953, -0.18217578530311584, 0.05405988544225693, -0.19564756751060486, -0.017932027578353882, 0.02679428458213806, 0.056160520762205124, -0.022795427590608597, 0.017561059445142746, -0.00632089888677001, 0.05738860368728638, -0.08604484051465988, -0.00505826948210597, -0.06072509288787842, -0.013321819715201855, -0.10242893546819687, 0.07660426199436188, 0.22747068107128143, -0.12425224483013153, 0.19238869845867157, 0.3892194330692291, 0.1676650047302246, 0.26362308859825134, -0.12268207967281342, -0.009216098114848137, 0.013546036556363106, 0.009355847723782063, -0.036455295979976654, 0.05066202953457832, -0.10135640949010849, 0.004963153041899204, 0.06392151862382889, 0.05706522613763809, 0.08463390171527863, -0.16253194212913513, -0.17021819949150085, -0.03080006316304207, -0.05405097454786301, -0.15067742764949799, 0.060297269374132156, -0.023324115201830864, 0.05560477823019028, -0.03955763578414917, -0.020785417407751083, 0.1483377367258072, -0.026320308446884155, -0.041783519089221954, 0.12454652786254883, -0.17054054141044617, -0.14009051024913788, -0.21937227249145508, -0.14806059002876282, -0.02930319868028164, 0.07123185694217682, 0.10384712368249893, -0.02189370058476925, -0.026123011484742165, 0.00460547860711813, -0.0008056126534938812, -0.1523934304714203, -0.06740467250347137, -0.06429791450500488, 0.15101270377635956, -0.1143912523984909, -0.08738101273775101, -0.04034104198217392, -0.020819691941142082, -0.03508289158344269, 0.09215255826711655, -0.1155828982591629, 0.08634547889232635, 0.1235690712928772, 0.07498941570520401, 0.05444188043475151, -0.09023185819387436, 0.13956019282341003, -0.0792599692940712, -0.10389330238103867, 0.12542828917503357, -0.020058315247297287, 0.038570720702409744, 0.1677549183368683, 0.09100469201803207, -0.13182814419269562, -0.012684282846748829, -0.05151563882827759, -0.11626579612493515, -0.2776685357093811, -0.07961693406105042, -0.0819220021367073, 0.15102580189704895, 0.013064580969512463, 0.10704316943883896, 0.11642955243587494, -0.027703214436769485, 0.030562926083803177, -0.021161040291190147, 0.08460357785224915, 0.05968623608350754, 0.21604979038238525, -0.04026753827929497, 0.030423175543546677, -0.11795999854803085, -0.011704323813319206, 0.1330971121788025, 0.13934634625911713, 0.17068812251091003, 0.2776764929294586, 0.2027359902858734, 0.14586374163627625, 0.040925946086645126, 0.11567799001932144, 0.02521907165646553, 0.07925485074520111, 0.003445366397500038, -0.07605946063995361, -0.049234092235565186, 0.05948914214968681, 0.05621029809117317, -0.021614382043480873, -0.28480464220046997, 0.026623183861374855, -0.2179100066423416, 0.008950499817728996, -0.04815905541181564, 0.047702111303806305, -0.007959261536598206, 0.15887567400932312, 0.09963452070951462, 0.05410312861204147, -0.06358467787504196, 0.17280563712120056, -0.00785810686647892, -0.07394306361675262, 0.08640656620264053, 0.03742746636271477, 0.13141979277133942, 0.04538501799106598, 0.09633691608905792, -0.1424817144870758, -0.2101137638092041, 0.04085096716880798, 0.16390931606292725, -0.17421174049377441, 0.32019275426864624, 0.016432035714387894, -0.0805930569767952, -0.06303185224533081, -0.07582203298807144, -0.02669195830821991, 0.1780855804681778, 0.13905420899391174, 0.0070540583692491055, -0.19999825954437256, -0.037003833800554276, 0.009432291612029076, 0.003801796119660139, 0.1480748951435089, -0.0640290230512619, -0.11209350824356079, -0.04438619688153267, 0.052100688219070435, -0.03326769173145294, 0.06123061850667, -0.04626648500561714, -0.17302148044109344, -0.007822507992386818, 0.037032343447208405, 0.038436807692050934, -0.029434943571686745, 0.06401388347148895, -0.07786919176578522, 0.019633343443274498, -0.12278435379266739, 0.021172670647501945, -0.09150189161300659, -0.1841532289981842, 0.03427326679229736, 0.007423440460115671, -0.04157282039523125, -0.0780501738190651, -0.049627501517534256, -0.18709217011928558, -0.2156693935394287, 0.0762651190161705, -0.015355338342487812, 0.013042271137237549, -0.047672469168901443, 0.16922590136528015, -0.09288360178470612, 0.023147594183683395, 0.014403603971004486, 0.01641439087688923, -0.05183055251836777, -0.12896092236042023, 0.05349568650126457, -0.10350839793682098, 0.03209145739674568, 0.02126792073249817, -0.13694500923156738, 0.014980402775108814, 0.04030625894665718, -0.12208738178014755, 0.16527363657951355, 0.41341954469680786, 0.002004407113417983, 0.2869876027107239, 0.30313003063201904, -0.18988239765167236, -0.25911352038383484, -0.1529323011636734, -0.24904227256774902, -0.09933856129646301, 0.2194807082414627, -0.23590919375419617, 0.030198728665709496, 0.12825123965740204, -0.07724212110042572, 0.19067294895648956, -0.25205811858177185, -0.05993475764989853, 0.08650796115398407, -0.06583404541015625, 0.3914451003074646, -0.14396697282791138, -0.15762607753276825, -0.07532897591590881, -0.12155516445636749, 0.20231977105140686, -0.06032327562570572, 0.10459005832672119, 0.017959753051400185, 0.006156530696898699, -0.020413372665643692, 0.007687891833484173, 0.16557231545448303, -0.02731385827064514, 0.12039194256067276, -0.07805566489696503, -0.06241440027952194, 0.23256750404834747, 0.025685781612992287, -0.03536086529493332, -0.15016105771064758, -0.04722944647073746, -0.0719594806432724, -0.02089524269104004, -0.04720233008265495, 0.08229599893093109, -0.0012422397267073393, -0.07447262108325958, -0.06582468748092651, -0.005101153161376715, -0.1398579180240631, -0.01918935775756836, 0.3671685457229614, -0.04535582289099693, 0.1186198815703392, 0.07892081886529922, 0.04012256860733032, -0.09970346838235855, 0.07172047346830368, -0.11886956542730331, -0.04559750109910965, 0.033694613724946976, -0.16475287079811096, -0.0399850532412529, 0.10029137134552002, -0.0556812658905983, 0.08674351871013641, 0.09390465170145035, -0.04871673509478569, 0.025482062250375748, 0.15383252501487732, -0.121867835521698, -0.1810571849346161, -0.023636754602193832, 0.03012617491185665, 0.16588625311851501, -0.015637414529919624, 0.06775834411382675, 0.07140350341796875, 0.00865251012146473, 0.026013558730483055, -0.011932969093322754, -0.06223458796739578, -0.11102662235498428, -0.033089667558670044, -0.019617905840277672, -0.11087963730096817, 0.1916974037885666, 0.09305498749017715, -0.020921019837260246, -0.044223252683877945, 0.14426079392433167, -0.0707283541560173, -0.08492685854434967, -0.13230445981025696, 0.10024173557758331, -0.12664638459682465, -0.04875042289495468, 0.03254886344075203, -0.0918443500995636, 0.002430184744298458, 0.13279929757118225, 0.027186531573534012, 0.1319728046655655, 0.021164346486330032, -0.032574526965618134, 0.18355399370193481, -0.04524102807044983, -0.20850244164466858, 0.009407669305801392, -0.058543480932712555, -0.042749661952257156, -0.012820111587643623, 0.07452286779880524, -0.05846269801259041, -0.11399035155773163, -0.19080695509910583, 0.07458802312612534, -0.1115003377199173, -0.026408139616250992, -0.07697312533855438, -0.04022041708230972, 0.041520752012729645, 0.0052133481949567795, -0.053644098341464996, -0.06648391485214233, -0.1793327033519745, 0.02686886489391327, 0.0265081524848938, 0.12986384332180023, -0.09362731873989105, -0.021305114030838013, 0.11811412870883942, 0.05614163726568222, 0.10702965408563614, 0.05382893234491348, -0.008954410441219807, 0.1817544400691986, -0.23414048552513123, -0.02765231765806675, 0.10758350789546967, 0.01855950430035591, -0.025194372981786728, 0.20125994086265564, -0.06381778419017792, 0.05680418759584427, -0.018838975578546524, 0.05359051376581192, -0.214382141828537, -0.151635080575943, -0.06773028522729874, 0.02908042073249817, -0.19476480782032013, 0.05022423341870308, -0.12321760505437851, 0.16009506583213806, -0.011485403403639793, 0.14703325927257538, 0.04024649038910866, 0.03752363473176956, 0.009975356049835682, 0.02670394815504551, 0.02340896800160408, -0.12715643644332886, -0.0871133878827095, -0.1383061408996582, -0.10871311277151108, -0.012851173058152199, 0.40002745389938354, 0.05667657405138016, -0.12921050190925598, 0.03463326022028923, 0.14608488976955414, 0.0049714138731360435, 0.0031385482288897038, 0.3185957968235016, 0.08978645503520966, -0.022541925311088562, -0.14219549298286438, 0.03576738387346268, -0.06028951331973076, -0.0982302576303482, 0.05978638678789139, 0.08235056698322296, -0.0025104545056819916, 0.03977803885936737, 0.1539304405450821, -0.0021260627545416355, 0.010878694243729115, -0.09044335782527924, 0.15918925404548645, 0.03920920938253403, -0.03468666598200798, 0.07447294890880585, 0.17062604427337646, -0.015660172328352928, 0.07527946680784225, -0.02319367229938507, -0.023038258776068687, -0.1602908819913864, -0.20290572941303253, 0.022667700424790382, -0.06812679767608643, 0.06805329024791718, -0.019303012639284134, 0.10481838881969452, 0.1553175002336502, 0.0729072317481041, -0.06109250336885452, -0.030676955357193947, -0.0642445906996727, -0.12789960205554962, -0.0173016544431448, -0.06055523827672005, 0.05984283611178398, -0.13693790137767792, -0.09356412291526794, -0.02185431867837906, -0.13969303667545319, -0.08052770793437958, 0.06057370826601982, 0.022471562027931213, -0.05090975761413574, -0.21456405520439148, -0.0645330399274826, -0.027264073491096497, 0.08318336308002472, -0.05190209671854973, 0.21002164483070374, 0.0038530495949089527, -0.014382446184754372, 0.08169036358594894, 0.1731843650341034, 0.02911439538002014, -0.05880949646234512, 0.07685626298189163, 0.1232185810804367, 0.00005320906711858697, 0.1312958151102066, -0.09769661724567413, 0.00903122965246439, -0.024665724486112595, 0.21574661135673523, 0.3156037926673889, -0.059593815356492996, -0.02242070622742176, -0.008918319828808308, 0.03892570734024048, 0.13255974650382996, 0.1688331663608551, -0.029028672724962234, 0.20702791213989258, -0.06112537533044815, 0.06509410589933395, -0.018792826682329178, 0.06892839819192886, -0.15150488913059235, 0.10976265370845795, 0.05003737285733223, -0.12215645611286163, -0.03778800368309021, 0.1806681901216507, -0.237721249461174, 0.1446874886751175, -0.0069007365964353085, -0.0965697318315506, 0.007822769694030285, -0.03824380785226822, 0.16155000030994415, -0.02736365795135498, 0.043149031698703766, -0.07432909309864044, -0.11396221816539764, -0.09085571765899658, 0.02265099249780178, -0.3289490342140198, -0.10560089349746704, 0.05958804488182068, 0.04829184338450432, 0.10282204300165176, -0.006378531455993652, 0.03351665288209915, -0.015334057621657848, 0.054687123745679855, -0.012484274804592133, 0.08700809627771378, 0.04354175552725792, 0.050465572625398636, -0.0944799855351448, -0.1121637225151062, -0.0027239799965173006, -0.04963240027427673, 0.05358462408185005, 0.031767286360263824, 0.04253755882382393, 0.10081110149621964, -0.10490889847278595, 0.00925770215690136, 0.017357412725687027, -0.1410870999097824, 0.02549704536795616, -0.027906913310289383, 0.034466128796339035, -0.06366417557001114, -0.04577085003256798, -0.02078104391694069, 0.07299362123012543, -0.19491559267044067, -0.06872610747814178, 0.10733165591955185, -0.09155190736055374, 0.22525925934314728, 0.008236642926931381, -0.17803332209587097, 0.05482809618115425, -0.06568421423435211, 0.12095781415700912, -0.14252886176109314, 0.044272251427173615, 0.17977146804332733, -0.015139179304242134, 0.019438134506344795, -0.2554084360599518, 0.10831646621227264, -0.05342736840248108, -0.01328936219215393, -0.04361620917916298 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: beomi/OPEN-SOLAR-KO-10.7B load_in_8bit: false load_in_4bit: false strict: false rl: dpo datasets: - path: datasets/dposet/dpodatav2.jsonl ds_type: json data_files: - datasets/dposet/dpodatav2.jsonl split: train dataset_prepared_path: val_set_size: 0.0 output_dir: ./beomidpo-out-v2 adapter: lora lora_model_dir: sequence_len: 2048 sample_packing: false pad_to_sequence_len: false lora_r: 8 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - q_proj - v_proj - k_proj - o_proj gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 save_steps: 100 save_total_limit: 3 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: save_safetensors: false ``` </details><br> # beomidpo-out-v2 This model is a fine-tuned version of [beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2645 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "beomi/OPEN-SOLAR-KO-10.7B", "model-index": [{"name": "beomidpo-out-v2", "results": []}]}
text-generation
Deepnoid/OPEN-SOLAR-KO-10.7B
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "generated_from_trainer", "base_model:beomi/OPEN-SOLAR-KO-10.7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:46:52+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #llama #text-generation #generated_from_trainer #base_model-beomi/OPEN-SOLAR-KO-10.7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> <details><summary>See axolotl config</summary> axolotl version: '0.4.0' </details><br> # beomidpo-out-v2 This model is a fine-tuned version of beomi/OPEN-SOLAR-KO-10.7B on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2645 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
[ "# beomidpo-out-v2\n\nThis model is a fine-tuned version of beomi/OPEN-SOLAR-KO-10.7B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- total_train_batch_size: 8\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 10\n- training_steps: 2645", "### Training results", "### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.0.1+cu118\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #llama #text-generation #generated_from_trainer #base_model-beomi/OPEN-SOLAR-KO-10.7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# beomidpo-out-v2\n\nThis model is a fine-tuned version of beomi/OPEN-SOLAR-KO-10.7B on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- total_train_batch_size: 8\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 10\n- training_steps: 2645", "### Training results", "### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.0.1+cu118\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ 84, 41, 6, 12, 8, 3, 147, 4, 38 ]
[ "passage: TAGS\n#transformers #pytorch #tensorboard #llama #text-generation #generated_from_trainer #base_model-beomi/OPEN-SOLAR-KO-10.7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# beomidpo-out-v2\n\nThis model is a fine-tuned version of beomi/OPEN-SOLAR-KO-10.7B on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- total_train_batch_size: 8\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 10\n- training_steps: 2645### Training results### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.0.1+cu118\n- Datasets 2.16.1\n- Tokenizers 0.15.0" ]
[ -0.08194828778505325, 0.14112518727779388, -0.003286967286840081, 0.047373805195093155, 0.10105347633361816, 0.05246206372976303, 0.09402415156364441, 0.15064837038516998, -0.05810391902923584, 0.11918335407972336, 0.04842150956392288, 0.019073981791734695, 0.09605338424444199, 0.11439799517393112, 0.036270622164011, -0.23947182297706604, 0.003579654498025775, -0.030383093282580376, -0.04568694904446602, 0.08285544067621231, 0.0908624529838562, -0.06980486214160919, 0.047808073461055756, -0.016440311446785927, -0.11102067679166794, -0.036322180181741714, -0.0912005677819252, -0.05956843122839928, 0.07442638278007507, -0.003902100957930088, 0.03244553133845329, 0.016155436635017395, 0.11712030321359634, -0.257208913564682, -0.010023469105362892, 0.08605187386274338, 0.016650274395942688, 0.08736442774534225, 0.08805648237466812, 0.03790223225951195, 0.1745760291814804, -0.17384128272533417, 0.101292684674263, 0.04431700333952904, -0.05717135965824127, -0.10953529179096222, -0.08404655754566193, 0.09390119463205338, 0.09771668165922165, 0.08279050886631012, 0.011484366841614246, 0.15420468151569366, -0.07156708836555481, 0.04300619289278984, 0.15588638186454773, -0.22424384951591492, -0.05241357162594795, 0.0654234066605568, 0.047125719487667084, 0.04400135576725006, -0.11344043910503387, -0.0020429480355232954, 0.026352860033512115, 0.0066833049058914185, 0.05490190163254738, 0.01936209388077259, -0.028500031679868698, -0.002940796548500657, -0.11689220368862152, -0.03818769007921219, 0.14328204095363617, 0.04658139497041702, -0.032820332795381546, -0.15862371027469635, -0.02840244024991989, -0.07946786284446716, -0.02208070084452629, -0.017275439575314522, 0.01812245137989521, -0.0476202592253685, -0.03524944558739662, -0.024385476484894753, -0.06165854632854462, -0.07489913702011108, 0.040378205478191376, 0.10393059253692627, 0.0534839853644371, -0.006037561222910881, 0.018059905618429184, 0.12249793112277985, 0.03075535036623478, -0.12335223704576492, -0.04054178670048714, -0.010373277589678764, -0.12945978343486786, -0.04110841825604439, -0.012699770741164684, 0.018455745652318, 0.004855119623243809, 0.16166113317012787, -0.02806486003100872, 0.06267188489437103, 0.049760326743125916, -0.016039405018091202, 0.02440260723233223, 0.1369244009256363, -0.05443570762872696, -0.07550576329231262, -0.041670527309179306, 0.06799530982971191, 0.031297504901885986, -0.02811320126056671, -0.0674196407198906, -0.04214032366871834, 0.08603315055370331, 0.07787929475307465, 0.02691246196627617, 0.02432907558977604, -0.051404066383838654, -0.04707060754299164, 0.10512372851371765, -0.11452600359916687, 0.0578857958316803, 0.008873317390680313, -0.061141736805438995, -0.017193753272294998, 0.021811896935105324, -0.013993239030241966, -0.06556203216314316, 0.05332373455166817, -0.06877999752759933, -0.03189188241958618, -0.06689830124378204, -0.014347088523209095, 0.05404569208621979, -0.09875138849020004, -0.016197631135582924, -0.052484892308712006, -0.14434608817100525, -0.03122059255838394, 0.03574855253100395, -0.12684179842472076, -0.06886450201272964, -0.012380638159811497, -0.05657660961151123, 0.02236967161297798, -0.0006705496925860643, 0.1571647673845291, -0.039605118334293365, 0.051844339817762375, -0.00753752002492547, 0.027451567351818085, 0.08326883614063263, 0.041145384311676025, -0.05319593846797943, 0.04528873786330223, -0.08484667539596558, 0.0839446410536766, -0.10197523236274719, 0.005682970397174358, -0.13481585681438446, -0.09442239254713058, -0.012236655689775944, -0.04667819291353226, 0.05497749522328377, 0.1555919200181961, -0.11672308295965195, -0.02074027620255947, 0.14745084941387177, -0.06542441248893738, -0.08034767210483551, 0.07274775952100754, -0.005569790955632925, -0.009507297538220882, 0.020513450726866722, 0.08224517852067947, 0.10722530633211136, -0.16005294024944305, -0.045435238629579544, 0.04455242305994034, 0.08397092670202255, 0.016192570328712463, 0.08315110206604004, -0.02787506766617298, 0.07726073265075684, 0.026817183941602707, -0.04101176559925079, -0.010536905378103256, -0.06472021341323853, -0.0798136368393898, -0.051122259348630905, -0.07561730593442917, -0.001987594412639737, 0.03373967111110687, 0.009536455385386944, -0.043447643518447876, -0.1431753784418106, 0.05478036776185036, 0.14753954112529755, -0.043189529329538345, 0.016553711146116257, -0.07172642648220062, 0.012517382390797138, -0.02119048498570919, -0.0018608153332024813, -0.1554477959871292, -0.1056593731045723, 0.06926925480365753, -0.07210711389780045, 0.019613021984696388, 0.0010340908775106072, 0.05219601094722748, 0.05771191790699959, -0.04142606630921364, -0.006260366179049015, -0.07182396203279495, -0.011483564041554928, -0.07759733498096466, -0.1911311149597168, -0.09056409448385239, -0.01806418038904667, 0.21610873937606812, -0.19471602141857147, 0.01506523136049509, 0.03310355916619301, 0.14995212852954865, -0.018037762492895126, -0.07217390090227127, 0.0339927040040493, 0.029468229040503502, -0.00045738634071312845, -0.11438760161399841, 0.038293514400720596, -0.0007970955921337008, -0.11258804053068161, -0.028696805238723755, -0.1473708599805832, -0.06221175938844681, 0.06823118776082993, 0.10659462213516235, -0.086207315325737, -0.03479301929473877, -0.06418973207473755, -0.07117146253585815, -0.04312380775809288, -0.006976142525672913, 0.14714249968528748, 0.03408384695649147, 0.07854095846414566, -0.047657858580350876, -0.11635001748800278, 0.01680661551654339, 0.049056485295295715, -0.0383395180106163, 0.08277881145477295, 0.0814562663435936, -0.058783311396837234, 0.0721902996301651, 0.04819057881832123, -0.014607319608330727, 0.1259167492389679, -0.057481490075588226, -0.10897529125213623, -0.020702945068478584, 0.02922940067946911, 0.01999482326209545, 0.144016295671463, -0.11672605574131012, 0.010903940536081791, 0.04601063206791878, -0.006076011806726456, 0.04393664747476578, -0.1317882388830185, 0.009624500758945942, 0.028236350044608116, -0.030306244269013405, -0.002808862831443548, -0.037736933678388596, 0.005195251200348139, 0.05542860925197601, 0.020914282649755478, 0.03102472797036171, 0.00421896344050765, -0.021922416985034943, -0.08467267453670502, 0.18554162979125977, -0.09959553927183151, -0.11987529695034027, -0.12932376563549042, 0.09921423345804214, -0.0358353927731514, -0.030120644718408585, -0.024747313931584358, -0.07891746610403061, -0.047296829521656036, -0.09045108407735825, -0.028970642015337944, -0.07392314076423645, 0.004972285125404596, 0.04046062007546425, 0.047466687858104706, 0.07786228507757187, -0.12922342121601105, 0.03184187039732933, 0.015451809391379356, -0.10735678672790527, 0.016750363633036613, 0.04234214127063751, 0.09544790536165237, 0.12146372348070145, 0.01612052135169506, -0.00809034425765276, -0.02059517242014408, 0.14816470444202423, -0.10608629137277603, 0.027783095836639404, 0.1039063036441803, 0.04411980137228966, 0.040131665766239166, 0.0886891558766365, 0.016313744708895683, -0.06395915150642395, 0.0032688328064978123, 0.05398138239979744, -0.03188710659742355, -0.2611055076122284, -0.05815686285495758, -0.03705103322863579, -0.029447678476572037, 0.11934289336204529, 0.0709771141409874, 0.026229526847600937, 0.05849485471844673, -0.061064206063747406, 0.029195692390203476, -0.029887408018112183, 0.09004770219326019, 0.03762158378958702, 0.055079009383916855, 0.07940460741519928, -0.030686071142554283, 0.015283738262951374, 0.06059027090668678, 0.052552781999111176, 0.20450736582279205, -0.03650158271193504, 0.19144698977470398, -0.004166886676102877, 0.13885098695755005, -0.049510400742292404, 0.02848491445183754, 0.026330038905143738, 0.008122174069285393, 0.02696111612021923, -0.07625558972358704, -0.03868045657873154, 0.057881422340869904, 0.03784022107720375, -0.0056128911674022675, -0.05301642045378685, 0.025883644819259644, 0.027456771582365036, 0.21621333062648773, 0.027525145560503006, -0.23991551995277405, -0.08511515706777573, 0.028123516589403152, -0.027201484888792038, -0.06577359884977341, -0.012270430102944374, 0.11448618769645691, -0.14516346156597137, 0.08001184463500977, -0.05580633133649826, 0.0837496817111969, -0.07384119927883148, -0.02923295460641384, 0.07547568529844284, 0.1209845244884491, 0.025915052741765976, 0.10821623355150223, -0.1558731496334076, 0.16098351776599884, 0.013492395170032978, 0.10358456522226334, -0.10018406063318253, 0.07117409259080887, -0.03448675572872162, 0.042374249547719955, 0.11183366179466248, 0.006718654651194811, -0.05493681877851486, -0.14116370677947998, -0.12021073698997498, 0.031947772949934006, 0.12212150543928146, -0.0651368498802185, 0.08582305908203125, -0.026246223598718643, -0.005526011809706688, 0.026424074545502663, -0.05898858234286308, -0.13781310617923737, -0.17535004019737244, 0.07017339766025543, -0.0440320186316967, -0.010920203290879726, -0.08004939556121826, -0.08069390058517456, -0.061709195375442505, 0.1844315379858017, -0.1030057743191719, -0.06280604004859924, -0.15622000396251678, 0.05593552440404892, 0.17658545076847076, -0.05503246560692787, 0.014840696007013321, -0.0032344008795917034, 0.1308692991733551, 0.019268061965703964, -0.05945955589413643, 0.03548312559723854, -0.080866239964962, -0.18973857164382935, -0.042320556938648224, 0.1432129144668579, 0.06675304472446442, 0.059485699981451035, 0.0002775846514850855, 0.01456150971353054, -0.0009497191640548408, -0.111677385866642, 0.05807065963745117, 0.06836778670549393, 0.09276534616947174, -0.0007921861251816154, -0.061078596860170364, 0.06865324079990387, -0.02930484153330326, -0.03781841695308685, 0.06995722651481628, 0.2146768420934677, -0.08406462520360947, 0.13010543584823608, 0.07441025972366333, -0.07615173608064651, -0.14894770085811615, 0.007598615251481533, 0.09834408760070801, 0.027048470452427864, 0.007351471111178398, -0.2446974664926529, 0.0861564502120018, 0.11093086004257202, -0.023280179128050804, 0.04442368447780609, -0.31205037236213684, -0.12905767560005188, 0.05853055417537689, 0.045652590692043304, -0.08197692036628723, -0.15626218914985657, -0.06471473723649979, -0.017141234129667282, -0.1635192185640335, 0.09190215915441513, -0.06002093851566315, 0.10148538649082184, -0.018101850524544716, 0.05726028233766556, 0.03133202716708183, -0.04730316624045372, 0.17871728539466858, 0.04614859074354172, 0.015848111361265182, -0.05095477029681206, 0.036714330315589905, 0.10139495134353638, -0.056075166910886765, 0.05792424827814102, -0.06173298880457878, 0.05844058096408844, -0.16635353863239288, -0.010875409469008446, -0.05659772455692291, 0.055101361125707626, -0.07329177856445312, -0.07005688548088074, -0.013914479874074459, 0.0650930181145668, 0.07220657169818878, -0.03556670621037483, 0.0679226890206337, 0.02651565708220005, 0.09314525872468948, 0.1297539323568344, 0.09643613547086716, 0.01801431179046631, -0.10068824142217636, -0.019549429416656494, -0.005078881047666073, 0.05809938535094261, -0.09418224543333054, 0.00035230943467468023, 0.08633988350629807, 0.06717579066753387, 0.07057342678308487, 0.01574031449854374, -0.08731155842542648, -0.012926764786243439, 0.032706137746572495, -0.07247282564640045, -0.15084542334079742, 0.018795710057020187, 0.040729619562625885, -0.15110370516777039, 0.03669262304902077, 0.07856189459562302, -0.04627838358283043, -0.02707856521010399, 0.0016869110986590385, 0.03513549268245697, -0.003223733976483345, 0.17464497685432434, 0.022601807489991188, 0.09810622036457062, -0.06916575878858566, 0.13695430755615234, 0.08810244500637054, -0.0797124058008194, 0.06695325672626495, 0.0680549368262291, -0.08627010136842728, -0.01469305157661438, 0.08648662269115448, -0.005264926236122847, -0.006223755888640881, -0.042881764471530914, -0.02749301679432392, -0.07424583286046982, 0.05808734521269798, 0.002118233358487487, 0.022959955036640167, 0.022320978343486786, -0.019702855497598648, 0.04146428033709526, -0.14908023178577423, 0.06118881702423096, 0.005629268009215593, 0.05753520503640175, -0.11020442098379135, 0.06402643769979477, 0.0032034132163971663, 0.029971161857247353, -0.017287027090787888, 0.00903007946908474, -0.07718740403652191, -0.03020475059747696, -0.09438061714172363, -0.033691659569740295, -0.06483297049999237, -0.0015683156671002507, -0.017358701676130295, -0.03228871151804924, -0.00361322402022779, 0.05053436756134033, -0.04336511343717575, -0.09551358222961426, -0.04580682888627052, 0.07399825751781464, -0.12454395741224289, 0.029311975464224815, 0.05198056623339653, -0.12466546893119812, 0.08565794676542282, 0.05195442959666252, 0.04756947606801987, -0.016686493530869484, -0.10026642680168152, 0.008017265237867832, -0.01310969889163971, 0.024458499625325203, 0.03785546123981476, -0.11744492501020432, -0.010771207511425018, -0.04039885848760605, -0.01275866199284792, 0.006036082748323679, 0.032010309398174286, -0.12177397310733795, -0.016272684559226036, -0.07134032249450684, -0.05278613790869713, -0.06876685470342636, 0.0724279060959816, 0.07935446500778198, -0.018038727343082428, 0.08126859366893768, -0.049658797681331635, 0.045188579708337784, -0.1970859169960022, -0.037286415696144104, 0.009454675018787384, 0.021055011078715324, -0.03556118905544281, -0.023801686242222786, 0.09381765872240067, -0.008622161112725735, 0.1344192624092102, -0.05540572479367256, 0.0858442485332489, 0.032726727426052094, -0.0020043158438056707, 0.00724851805716753, 0.02085103653371334, 0.2091529220342636, 0.09011100977659225, 0.009047216735780239, 0.11194860190153122, -0.035637229681015015, 0.02386847324669361, 0.008086984045803547, 0.11714312434196472, 0.1299474835395813, -0.012903855182230473, 0.06805691123008728, 0.07006596028804779, -0.16874893009662628, -0.1355600506067276, 0.16071976721286774, -0.06020502746105194, 0.0998787060379982, -0.07406412065029144, 0.12962034344673157, 0.09269066154956818, -0.18628636002540588, 0.039070773869752884, -0.03232249990105629, -0.10719773918390274, -0.0750776156783104, -0.08432502299547195, -0.05203935503959656, -0.11653292924165726, 0.0415152944624424, -0.08431580662727356, 0.014371619559824467, 0.0893770232796669, 0.02308201976120472, 0.020443856716156006, 0.13433147966861725, 0.01826009713113308, 0.005133854225277901, 0.050087861716747284, 0.03591280058026314, 0.0031925388611853123, -0.051767922937870026, -0.056852977722883224, 0.040837932378053665, 0.022254299372434616, 0.10676633566617966, -0.03156377002596855, 0.028305403888225555, 0.06789243966341019, 0.03313102573156357, -0.07465565204620361, 0.026583855971693993, -0.020306065678596497, 0.025272900238633156, 0.08604275435209274, 0.027467036619782448, 0.017404034733772278, -0.06082260608673096, 0.23652192950248718, -0.05558784678578377, -0.0683700442314148, -0.12254568189382553, 0.13779500126838684, -0.00951290875673294, -0.02592814341187477, 0.0769869014620781, -0.12029147148132324, -0.0354594849050045, 0.12087017297744751, 0.15047000348567963, -0.016809597611427307, -0.030392244458198547, 0.031098807230591774, -0.020025406032800674, -0.04385384917259216, 0.09931761771440506, 0.06644657999277115, 0.04076752811670303, -0.07017770409584045, 0.021859897300601006, 0.03348613530397415, -0.07615535706281662, -0.08105466514825821, 0.07845599949359894, -0.010619228705763817, -0.002456509042531252, -0.016167761757969856, 0.06418725848197937, -0.011316044256091118, -0.19896554946899414, 0.07574618607759476, -0.13297389447689056, -0.18439601361751556, -0.019828883931040764, 0.09202531725168228, -0.03200410306453705, 0.055162373930215836, 0.011909798718988895, -0.0031907386146485806, 0.14570222795009613, 0.007703700102865696, -0.06104758754372597, -0.06719636172056198, 0.06735897809267044, -0.008200142532587051, 0.21234963834285736, -0.017878759652376175, 0.07891272753477097, 0.10007521510124207, 0.008657243102788925, -0.16670842468738556, -0.008310159668326378, 0.10326027870178223, -0.09049049764871597, 0.050886064767837524, 0.1805577278137207, -0.034023962914943695, 0.07872000336647034, 0.04892357066273689, -0.07419613003730774, -0.030299175530672073, -0.04548363387584686, 0.014004944823682308, -0.09105093032121658, 0.013480953872203827, -0.04855978116393089, 0.1799035668373108, 0.17634990811347961, -0.056073397397994995, -0.04960055649280548, -0.07673341035842896, 0.026338176801800728, 0.018257062882184982, 0.11273592710494995, -0.016605937853455544, -0.17300106585025787, 0.02797558158636093, -0.011684510856866837, 0.0675189271569252, -0.16673140227794647, -0.07507550716400146, 0.0894603356719017, -0.052747692912817, -0.05350368842482567, 0.096074178814888, 0.040609270334243774, 0.012722058221697807, -0.042316265404224396, -0.15722183883190155, -0.02643008530139923, 0.109705850481987, -0.17707619071006775, -0.025705600157380104 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-stnk-v5-mid-with-location-code-v2 This model is a fine-tuned version of [squantumengine/donut-stnk-v4_mid](https://huggingface.co/squantumengine/donut-stnk-v4_mid) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 95 | 0.2353 | | 0.1792 | 2.0 | 190 | 0.2217 | | 0.0745 | 3.0 | 285 | 0.2465 | | 0.0613 | 4.0 | 380 | 0.2708 | | 0.0451 | 5.0 | 475 | 0.2881 | | 0.0372 | 6.0 | 570 | 0.3211 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "squantumengine/donut-stnk-v4_mid", "model-index": [{"name": "donut-stnk-v5-mid-with-location-code-v2", "results": []}]}
null
squantumengine/donut-stnk-v5-mid-with-location-code-v2
[ "transformers", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "dataset:imagefolder", "base_model:squantumengine/donut-stnk-v4_mid", "endpoints_compatible", "region:us" ]
2024-02-07T01:48:08+00:00
[]
[]
TAGS #transformers #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-squantumengine/donut-stnk-v4_mid #endpoints_compatible #region-us
donut-stnk-v5-mid-with-location-code-v2 ======================================= This model is a fine-tuned version of squantumengine/donut-stnk-v4\_mid on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.2217 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 30 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 1.13.1+cu117 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-squantumengine/donut-stnk-v4_mid #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 64, 113, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #vision-encoder-decoder #generated_from_trainer #dataset-imagefolder #base_model-squantumengine/donut-stnk-v4_mid #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.11330180615186691, 0.03932288661599159, -0.001353824744001031, 0.10332703590393066, 0.16117346286773682, 0.016621431335806847, 0.09909147024154663, 0.0782899409532547, -0.08221744000911713, 0.0636240541934967, 0.1210966557264328, 0.08690641820430756, 0.019275784492492676, 0.18445518612861633, -0.05304674804210663, -0.26867982745170593, 0.02950454130768776, 0.03172716125845909, -0.06842290610074997, 0.12115369737148285, 0.05763614922761917, -0.14818279445171356, 0.10863930732011795, -0.031251635402441025, -0.19107723236083984, -0.00028950267005711794, 0.0009535771096125245, -0.03940463438630104, 0.11948364228010178, 0.03853660076856613, 0.12470649182796478, 0.025130465626716614, 0.09481174498796463, -0.19094139337539673, 0.015982279554009438, 0.0737077072262764, 0.00972791388630867, 0.0674411877989769, 0.04838043078780174, 0.018709316849708557, 0.0958762988448143, -0.1310470551252365, 0.05425378307700157, 0.012635261751711369, -0.15569880604743958, -0.21437488496303558, -0.0499911829829216, 0.021023595705628395, 0.09120865166187286, 0.09090211987495422, -0.024102162569761276, 0.11328858882188797, -0.03762385994195938, 0.1202019602060318, 0.20673276484012604, -0.23224957287311554, -0.07483138144016266, 0.03489396348595619, 0.0016412039985880256, 0.08932974934577942, -0.11366920173168182, 0.0035350043326616287, 0.06591081619262695, 0.02807837538421154, 0.10650435835123062, -0.03033307008445263, -0.0636012852191925, -0.018325725570321083, -0.15527226030826569, -0.04386084899306297, 0.12521465122699738, 0.09050928056240082, -0.03876844421029091, -0.027492137625813484, -0.07799482345581055, -0.18384188413619995, -0.06298059970140457, -0.019509771838784218, 0.04727741703391075, -0.03911973908543587, -0.14572064578533173, -0.015610938891768456, -0.09943021088838577, -0.0706324502825737, -0.04658236354589462, 0.1235218197107315, 0.03474852070212364, 0.004519455600529909, -0.00334876193664968, 0.10075230896472931, -0.058922234922647476, -0.1419041007757187, -0.01758318394422531, 0.009627414867281914, -0.05018976703286171, -0.055966395884752274, -0.04296551272273064, -0.04026002064347267, -0.009932104498147964, 0.10980968177318573, -0.09278340637683868, 0.06591007113456726, -0.01747889444231987, 0.0358768068253994, -0.1046517938375473, 0.17520911991596222, -0.08364123851060867, -0.0022205200511962175, -0.018034856766462326, 0.07308121770620346, 0.017215562984347343, -0.006172799039632082, -0.08052034676074982, 0.00624040886759758, 0.11522776633501053, -0.015526310540735722, -0.09074541181325912, 0.09333795309066772, -0.0366617813706398, -0.003105385461822152, 0.013881485909223557, -0.06265045702457428, 0.02815941348671913, 0.003350014565512538, -0.061075836420059204, -0.02103675715625286, 0.04923855513334274, 0.005520978476852179, 0.012308410368859768, 0.10500532388687134, -0.08277330547571182, 0.03884424641728401, -0.09013303369283676, -0.11614605039358139, 0.0034998345654457808, -0.03858090937137604, 0.02027982659637928, -0.10450515896081924, -0.1568322777748108, -0.020180823281407356, 0.04122360423207283, -0.019896121695637703, 0.019203146919608116, -0.06561172753572464, -0.10046329349279404, 0.010785851627588272, 0.003812451846897602, 0.07793337851762772, -0.06215761601924896, 0.10877401381731033, 0.06793752312660217, 0.07370183616876602, -0.046427804976701736, 0.022548485547304153, -0.10655578225851059, 0.04485468938946724, -0.23466293513774872, 0.0634278953075409, -0.03412196412682533, 0.06624042242765427, -0.08066210150718689, -0.1150166392326355, -0.045354004949331284, 0.005097783170640469, 0.07564162462949753, 0.12354632467031479, -0.18477265536785126, -0.05340902879834175, 0.15989312529563904, -0.10921277850866318, -0.1323724091053009, 0.12577708065509796, -0.055429402738809586, 0.00779956066980958, 0.061941150575876236, 0.17280519008636475, 0.06267661601305008, -0.12521834671497345, -0.0026076186913996935, -0.037134841084480286, 0.020574161782860756, -0.0030173789709806442, 0.06496527045965195, 0.03993535786867142, 0.004280385095626116, 0.002795184263959527, -0.06468239426612854, 0.07076988369226456, -0.11743192374706268, -0.07688132673501968, -0.03952343761920929, -0.08145614713430405, 0.031759828329086304, 0.07025256752967834, 0.04828650876879692, -0.1132904663681984, -0.07556477934122086, 0.05709719657897949, 0.07199723273515701, -0.08982449769973755, 0.02136828936636448, -0.06884755194187164, 0.01401240099221468, -0.08521399646997452, -0.025509679690003395, -0.15852344036102295, -0.059354815632104874, -0.0035492724273353815, 0.008725207298994064, 0.009468786418437958, -0.019919732585549355, 0.08619650453329086, 0.10034658014774323, -0.07143036276102066, -0.07347015291452408, -0.044042494148015976, 0.013080935925245285, -0.10461501032114029, -0.1900155246257782, -0.021277399733662605, -0.02031753957271576, 0.1255997270345688, -0.24281097948551178, 0.02072841301560402, 0.026128198951482773, 0.1040852889418602, 0.05922910198569298, -0.028438303619623184, -0.028561199083924294, 0.07142975181341171, -0.010892091318964958, -0.08327735960483551, 0.04678783565759659, 0.00039442305569536984, -0.061167098581790924, -0.0375981368124485, -0.1680189073085785, 0.15521840751171112, 0.1254810392856598, -0.12177061289548874, -0.10440927743911743, -0.007863418199121952, -0.04595845192670822, -0.03685861453413963, -0.0494656004011631, -0.011726071126759052, 0.11259489506483078, -0.010331996716558933, 0.13362501561641693, -0.05951568856835365, -0.008391671814024448, 0.04253191500902176, -0.025562060996890068, -0.00821481179445982, 0.10500446707010269, 0.05898737162351608, -0.141152486205101, 0.12798818945884705, 0.14448821544647217, -0.045278150588274, 0.14006835222244263, -0.03647639602422714, -0.0807071402668953, -0.03572236746549606, 0.012519614771008492, -0.0010051397839561105, 0.14338134229183197, -0.10307294875383377, 0.009914172813296318, -0.008377404883503914, 0.021460844203829765, 0.0037418559659272432, -0.22021187841892242, -0.020516905933618546, 0.049798209220170975, -0.043080832809209824, 0.02071760594844818, -0.02233223058283329, 0.0021745089907199144, 0.08989189565181732, 0.004109228029847145, -0.07349448651075363, 0.01642444171011448, -0.010549111291766167, -0.06837161630392075, 0.20469920337200165, -0.06787274032831192, -0.15409594774246216, -0.10476609319448471, -0.035615045577287674, -0.021968837827444077, 0.02705254778265953, 0.058161403983831406, -0.06900718063116074, -0.04281926527619362, -0.10806430876255035, 0.01464440394192934, 0.02371342107653618, 0.03106612153351307, 0.017091311514377594, -0.006751615088433027, 0.07980702817440033, -0.06773244589567184, -0.0062403809279203415, -0.046882834285497665, -0.054644275456666946, 0.05659439414739609, 0.018332017585635185, 0.1439513862133026, 0.12563306093215942, -0.017909212037920952, 0.022798815742135048, -0.03355869650840759, 0.25508666038513184, -0.09624627232551575, -0.0187214408069849, 0.10475695878267288, -0.0014718575403094292, 0.03849533200263977, 0.14884498715400696, 0.03988198563456535, -0.11127106100320816, 0.035279784351587296, 0.04624564200639725, -0.04390208050608635, -0.12079323828220367, -0.03368228301405907, -0.04942170903086662, -0.011869710870087147, 0.10051289945840836, 0.013293982483446598, 0.010226123966276646, 0.06964273005723953, 0.006161555647850037, 0.048432450741529465, -0.011424520052969456, 0.07817143946886063, 0.11417555063962936, 0.03879193961620331, 0.10237850248813629, -0.0522591657936573, -0.08335549384355545, 0.02718839980661869, -0.029533887282013893, 0.2306537926197052, -0.014149962924420834, 0.07636929303407669, 0.04985992982983589, 0.12221690267324448, 0.01041414774954319, 0.043959517031908035, 0.014429320581257343, -0.05554190278053284, -0.016748372465372086, -0.06103900074958801, -0.023231573402881622, 0.02831241302192211, -0.07573266327381134, 0.05856280401349068, -0.11757687479257584, 0.03890061751008034, 0.05841227248311043, 0.22972331941127777, 0.0839848443865776, -0.368834525346756, -0.09116925299167633, 0.0024968055076897144, 0.01626727357506752, -0.037444084882736206, 0.014184974133968353, 0.16435997188091278, -0.0573112927377224, 0.050523970276117325, -0.08426780253648758, 0.07762134820222855, -0.04564451798796654, 0.05317992344498634, 0.0515446811914444, 0.08450694382190704, -0.018840685486793518, 0.03275461494922638, -0.2646031379699707, 0.29158255457878113, 0.010245447047054768, 0.08535818755626678, -0.02946472354233265, -0.02902601845562458, 0.04408940300345421, 0.11249746382236481, 0.09692006558179855, -0.012433886528015137, -0.10849655419588089, -0.2552349269390106, -0.02242598682641983, 0.03274396061897278, 0.13742652535438538, 0.0005703109200112522, 0.11011753976345062, -0.016824906691908836, -0.017114337533712387, 0.07820224016904831, 0.02053191512823105, -0.10493404418230057, -0.06261347979307175, -0.027686014771461487, 0.02799520269036293, 0.035784631967544556, -0.07137932628393173, -0.09025265276432037, -0.09534068405628204, 0.08549986034631729, -0.01739136129617691, 0.00804920680820942, -0.11335410177707672, 0.1140047237277031, 0.069226935505867, -0.08240508288145065, 0.045818593353033066, 0.03412870690226555, 0.09966302663087845, 0.053983502089977264, -0.05937947705388069, 0.13089072704315186, -0.058912843465805054, -0.16901378333568573, -0.04547371342778206, 0.08873455971479416, 0.028232065960764885, 0.03182834014296532, -0.008616864681243896, 0.0333087183535099, 0.016858277842402458, -0.06928914785385132, 0.038195155560970306, -0.033402007073163986, 0.05067441612482071, 0.08638306707143784, -0.016995150595903397, 0.0014183565508574247, -0.05122819542884827, 0.008356058038771152, 0.12639747560024261, 0.26702195405960083, -0.07018972933292389, -0.05370485782623291, 0.039857618510723114, -0.03956851363182068, -0.19531288743019104, 0.09777173399925232, 0.03878086432814598, 0.006547067780047655, 0.041967883706092834, -0.12358953058719635, 0.0915779247879982, 0.10564465820789337, -0.011278455145657063, 0.0846986398100853, -0.3081487715244293, -0.12471666932106018, 0.09487058222293854, 0.19252584874629974, 0.08258786797523499, -0.14575818181037903, -0.008235598914325237, -0.021669426932930946, -0.12837530672550201, 0.09160332381725311, -0.0818389505147934, 0.13078215718269348, -0.0024063473101705313, 0.03316687047481537, 0.020531531423330307, -0.055816300213336945, 0.12124422937631607, -0.012899670749902725, 0.1431259959936142, -0.06264125555753708, 0.0063845328986644745, 0.06610361486673355, -0.06607253104448318, 0.010736673139035702, -0.010495533235371113, 0.048910900950431824, -0.034534286707639694, -0.014775331132113934, -0.07229183614253998, 0.006955214310437441, -0.021023772656917572, -0.0595499686896801, -0.053569912910461426, 0.0545552559196949, 0.05437183007597923, -0.006672395393252373, 0.1447812169790268, -0.011775442399084568, 0.09963482618331909, 0.07594919204711914, 0.04129491001367569, -0.039573054760694504, -0.05192066729068756, -0.0077391923405230045, -0.017434721812605858, 0.05696640536189079, -0.13593311607837677, 0.04353265091776848, 0.13563363254070282, 0.02074860781431198, 0.1635086089372635, 0.07835449278354645, -0.020230792462825775, 0.02921830490231514, 0.06572195887565613, -0.1320389211177826, -0.14052222669124603, -0.016490094363689423, -0.057547178119421005, -0.08589683473110199, 0.056299857795238495, 0.1201711967587471, -0.08571017533540726, 0.03528345748782158, -0.03250943124294281, 0.009208307601511478, -0.041905999183654785, 0.18927240371704102, 0.058862749487161636, 0.043442003428936005, -0.0893133282661438, 0.07026007771492004, 0.017699941992759705, -0.11099685728549957, 0.007921182550489902, 0.07430320233106613, -0.08369431644678116, -0.036842506378889084, 0.0668734535574913, 0.19151915609836578, -0.0449407733976841, -0.041749026626348495, -0.12234283983707428, -0.11039800941944122, 0.05887596309185028, 0.1962824910879135, 0.08044959604740143, 0.01718360371887684, -0.01872986927628517, 0.023329520598053932, -0.13313551247119904, 0.09624430537223816, 0.027142345905303955, 0.0952649787068367, -0.17232681810855865, 0.15198612213134766, -0.006582844071090221, 0.028390035033226013, -0.0374026857316494, 0.01612120121717453, -0.12121035158634186, 0.010952816344797611, -0.10083742439746857, 0.003964491654187441, -0.034492842853069305, -0.003032390959560871, -0.000508093333337456, -0.06908120959997177, -0.0804440900683403, 0.019416021183133125, -0.09640998393297195, -0.029751360416412354, 0.047489266842603683, 0.04499245434999466, -0.11069101840257645, -0.047721125185489655, 0.02144169807434082, -0.07098599523305893, 0.049431029707193375, 0.022987745702266693, 0.003976020961999893, 0.04355085268616676, -0.18730118870735168, -0.005760380532592535, 0.10263700038194656, -0.009063624776899815, 0.031252529472112656, -0.05451400578022003, -0.005835034418851137, -0.019328488036990166, 0.06310702115297318, 0.011720114387571812, 0.09151247888803482, -0.11212877184152603, -0.011126472614705563, -0.05077371373772621, -0.04192301258444786, -0.05465669929981232, 0.039076000452041626, 0.04749878868460655, 0.025118639692664146, 0.1681496649980545, -0.10848955065011978, 0.014684378169476986, -0.2140398770570755, -0.02002221718430519, 0.007896985858678818, -0.11943026632070541, -0.05949244648218155, -0.060262538492679596, 0.07910814136266708, -0.054410796612501144, 0.09259895980358124, -0.010093421675264835, 0.0759519413113594, 0.044054821133613586, -0.042606864124536514, 0.01014525257050991, 0.04193121939897537, 0.2329549640417099, 0.01882101781666279, -0.05605573207139969, 0.07394099235534668, 0.07678451389074326, 0.13232029974460602, 0.15339528024196625, 0.17710083723068237, 0.18179072439670563, -0.05514374002814293, 0.10794267058372498, 0.0505795031785965, -0.028857536613941193, -0.10823847353458405, 0.05425603687763214, -0.07265780121088028, 0.09390455484390259, -0.027780724689364433, 0.12684032320976257, 0.10762042552232742, -0.16728724539279938, 0.024395231157541275, -0.04273813217878342, -0.0840357169508934, -0.06723606586456299, -0.045346882194280624, -0.110645592212677, -0.1640813946723938, 0.017185669392347336, -0.11269178241491318, 0.009208514355123043, 0.14402759075164795, 0.012631715275347233, 0.0037742191925644875, 0.23027454316616058, 0.007628259714692831, 0.02966909110546112, 0.07717613875865936, -0.00044110562885180116, -0.025750136002898216, -0.044140253216028214, -0.08212032169103622, 0.07005815207958221, -0.027594448998570442, 0.03184999153017998, -0.0526978000998497, -0.04143881797790527, 0.05047508701682091, -0.004430549219250679, -0.11165659874677658, 0.018829211592674255, 0.04159225523471832, 0.045173533260822296, 0.004625554662197828, 0.017590153962373734, -0.007315801456570625, -0.012570531107485294, 0.2450515180826187, -0.08773371577262878, -0.07817979902029037, -0.11573192477226257, 0.19455048441886902, 0.0407990925014019, 0.02119782753288746, 0.005215445067733526, -0.09747800976037979, 0.03463321551680565, 0.16889533400535583, 0.13792270421981812, -0.0939098671078682, 0.005300110671669245, -0.026707004755735397, -0.006070788484066725, -0.030634857714176178, 0.09514857828617096, 0.10587857663631439, 0.0069693527184426785, -0.07833891361951828, -0.04154825583100319, -0.030464287847280502, -0.028892597183585167, -0.020505117252469063, -0.00434056157246232, 0.059096965938806534, 0.023047195747494698, -0.06973106414079666, 0.08743329346179962, -0.030876152217388153, -0.07374933362007141, 0.10299709439277649, -0.19268760085105896, -0.1277458816766739, -0.02168305218219757, 0.09285755455493927, 0.0252451803535223, 0.03708944469690323, -0.058835722506046295, -0.0002738138136919588, 0.02222256362438202, -0.009644516743719578, -0.05747149512171745, -0.09221845120191574, 0.021589884534478188, -0.10918409377336502, 0.22131751477718353, -0.027824101969599724, 0.020673783496022224, 0.12208732217550278, 0.030307592824101448, -0.08101749420166016, 0.100154347717762, 0.016810458153486252, -0.08240097761154175, 0.01951286569237709, 0.14767013490200043, -0.05474699288606644, 0.1067042276263237, 0.050769709050655365, -0.1949002891778946, 0.013991462998092175, -0.04245713725686073, -0.041332293301820755, -0.03952706605195999, -0.05738024041056633, -0.06157352030277252, 0.13274917006492615, 0.18688125908374786, -0.01989893987774849, 0.02744031697511673, -0.05194257199764252, 0.022579526528716087, 0.0733724981546402, 0.06016434729099274, -0.02738344669342041, -0.21734830737113953, 0.011471386067569256, 0.04041619226336479, -0.025049293413758278, -0.24257086217403412, -0.10738138854503632, -0.015288716182112694, -0.057276949286460876, -0.05976666510105133, 0.10980904847383499, 0.10582555830478668, 0.0500122532248497, -0.056416746228933334, -0.11655827611684799, -0.05368693545460701, 0.18591606616973877, -0.12271718680858612, -0.10147947072982788 ]
null
null
null
Backup of LoRAs made for PonyXL shared on the ['PonyXL Notes'](https://rentry.org/ponyxl_loras_n_stuff) Rentry. Last updated: 2024-02-17
{"license": "unknown", "tags": ["anime", "lora", "ponyxl", "sdxl"], "pipeline_tag": "text-to-image"}
text-to-image
hhks/PonyXL_Notes_Backup
[ "anime", "lora", "ponyxl", "sdxl", "text-to-image", "license:unknown", "region:us" ]
2024-02-07T01:50:10+00:00
[]
[]
TAGS #anime #lora #ponyxl #sdxl #text-to-image #license-unknown #region-us
Backup of LoRAs made for PonyXL shared on the 'PonyXL Notes' Rentry. Last updated: 2024-02-17
[]
[ "TAGS\n#anime #lora #ponyxl #sdxl #text-to-image #license-unknown #region-us \n" ]
[ 33 ]
[ "passage: TAGS\n#anime #lora #ponyxl #sdxl #text-to-image #license-unknown #region-us \n" ]
[ 0.11284321546554565, 0.1702825129032135, -0.0054155513644218445, 0.057456813752651215, 0.15205372869968414, 0.08448537439107895, 0.25066617131233215, 0.094300776720047, 0.06159199774265289, 0.008341850712895393, 0.14696624875068665, 0.07251957803964615, 0.03025314025580883, -0.021641895174980164, 0.006884741596877575, -0.35373467206954956, 0.06317643821239471, -0.009123309515416622, 0.016684267669916153, 0.031272079795598984, -0.05016324296593666, -0.049508847296237946, 0.09435057640075684, 0.021640116348862648, -0.17112085223197937, -0.030570855364203453, 0.041854679584503174, -0.07247455418109894, 0.041132088750600815, -0.016599778085947037, 0.07536555081605911, -0.056345134973526, 0.08589529991149902, -0.0715925395488739, 0.02915056422352791, -0.07107174396514893, -0.09127610176801682, 0.025767900049686432, 0.14265137910842896, -0.06299160420894623, 0.0349527969956398, 0.11771481484174728, -0.026162005960941315, 0.019818531349301338, -0.10937102138996124, -0.16675511002540588, 0.03565468266606331, 0.06167863681912422, 0.08551764488220215, 0.04561634361743927, 0.0569644495844841, 0.040586672723293304, -0.2139699012041092, -0.011257018893957138, 0.11877268552780151, -0.2070917785167694, -0.04003778472542763, 0.05905114486813545, 0.04438166320323944, 0.005760722327977419, -0.11125863343477249, 0.10935775935649872, 0.018999867141246796, -0.017276151105761528, -0.16990827023983002, -0.09362706542015076, -0.0639006495475769, 0.03578385338187218, -0.015913821756839752, 0.05898657441139221, 0.20794272422790527, 0.06306144595146179, -0.012873009778559208, 0.06374789029359818, 0.0401364304125309, 0.03892209008336067, -0.08403532952070236, 0.05553404241800308, 0.0690399706363678, 0.05430253595113754, 0.03608281537890434, -0.04690207168459892, -0.1058487668633461, -0.039858438074588776, -0.11696622520685196, 0.11675871908664703, -0.019878488034009933, 0.13987436890602112, -0.21675372123718262, -0.07022089511156082, -0.12577660381793976, -0.032975923269987106, 0.09837515652179718, -0.054188843816518784, 0.11718753725290298, 0.09543055295944214, 0.026021357625722885, -0.03798297420144081, 0.15306058526039124, 0.02025395631790161, 0.05148050934076309, 0.021605079993605614, -0.11112552136182785, 0.18130984902381897, 0.02547726035118103, -0.012084499932825565, 0.04269934818148613, 0.05919921025633812, 0.054614271968603134, -0.04677221551537514, 0.09546376764774323, -0.08140422403812408, -0.24910365045070648, 0.04051802307367325, -0.18019898235797882, 0.053656138479709625, 0.04201114550232887, 0.04026046767830849, -0.0641450509428978, 0.03577794134616852, 0.1731530874967575, 0.01713557168841362, 0.0394122414290905, -0.020256662741303444, -0.03354417532682419, 0.09846260398626328, -0.09077495336532593, 0.04227234795689583, 0.1375177949666977, 0.10218494385480881, -0.12177673727273941, 0.02983512170612812, -0.012555780820548534, 0.019773270934820175, 0.060928989201784134, 0.09200026839971542, 0.08539579808712006, -0.1327231377363205, -0.10451357066631317, 0.057902026921510696, -0.012668458744883537, -0.05553319677710533, 0.05781630054116249, 0.012186944484710693, -0.062172986567020416, 0.06937378644943237, 0.03500179946422577, -0.09815344959497452, -0.05549919232726097, 0.1148248091340065, -0.04332936927676201, 0.0833408460021019, -0.16887405514717102, -0.0015390795888379216, -0.15020117163658142, 0.044723380357027054, -0.043601930141448975, -0.05359875410795212, -0.04046694189310074, 0.1845404952764511, 0.06913681328296661, 0.003447206923738122, -0.11798496544361115, 0.06522678583860397, -0.11130126565694809, 0.16860918700695038, -0.16001741588115692, -0.045892030000686646, 0.14412522315979004, -0.0972341001033783, -0.17105117440223694, 0.04809030145406723, 0.00792845617979765, 0.0129769342020154, 0.0033895026426762342, 0.3890872895717621, -0.13161955773830414, -0.24924896657466888, 0.09015969187021255, 0.11072967201471329, -0.10807031393051147, -0.11595942825078964, 0.08026611059904099, 0.006313593126833439, -0.012138544581830502, 0.06649371236562729, -0.0767221674323082, 0.1182723268866539, -0.033451080322265625, -0.04053560271859169, 0.0559709407389164, -0.03806401044130325, 0.012630132958292961, 0.03669041022658348, 0.13543851673603058, -0.0376487672328949, -0.0592573918402195, 0.04614109918475151, 0.07830709218978882, 0.10055460780858994, 0.018819278106093407, 0.004768438637256622, 0.20741814374923706, 0.041310425847768784, -0.0007968210848048329, 0.02122892253100872, 0.00041237371624447405, -0.041880249977111816, 0.11016443371772766, 0.10600503534078598, -0.0038805685471743345, 0.0016551915323361754, -0.03293827921152115, 0.027930745854973793, -0.00569349667057395, 0.042917169630527496, 0.01532070990651846, 0.04062119871377945, -0.11679236590862274, 0.09478102624416351, -0.03909415751695633, -0.0015349332243204117, -0.08028610795736313, -0.04911540821194649, 0.047946155071258545, 0.007249884307384491, -0.021479817107319832, 0.049098022282123566, -0.010489769279956818, -0.004867918789386749, -0.1084415465593338, -0.009155770763754845, 0.12211571633815765, 0.010250028222799301, -0.10305728018283844, 0.2529025971889496, -0.11807048320770264, 0.12157733738422394, 0.21670308709144592, -0.24838776886463165, -0.05749004706740379, -0.0740162581205368, 0.026778453961014748, 0.049865078181028366, 0.017720036208629608, -0.04200606793165207, -0.10822419822216034, -0.07548273354768753, 0.11432120949029922, -0.03092886321246624, 0.06518299877643585, -0.048898618668317795, -0.11155547201633453, -0.12697799503803253, 0.042151860892772675, 0.21397994458675385, -0.04285328462719917, 0.22608962655067444, 0.21260496973991394, 0.04363347217440605, 0.2917647063732147, -0.0036331454757601023, 0.05298876389861107, -0.007166451774537563, -0.06357845664024353, 0.04066513851284981, 0.09755998104810715, -0.023506056517362595, -0.04614340513944626, 0.035734426230192184, -0.0543806366622448, -0.03709757700562477, -0.13938026130199432, -0.21006517112255096, -0.03554428741335869, -0.010075115598738194, -0.04120546951889992, 0.08884797245264053, -0.02399502322077751, 0.085158571600914, 0.01225609052926302, -0.09279190748929977, 0.10957643389701843, 0.019898289814591408, -0.014558445662260056, 0.05905107036232948, -0.1735909879207611, -0.21288710832595825, -0.1734420210123062, -0.07441656291484833, 0.024759134277701378, 0.03504566475749016, 0.0752207487821579, -0.134321928024292, 0.014592861756682396, 0.03839564695954323, -0.13840872049331665, -0.2609193027019501, -0.08022096753120422, -0.08642957359552383, 0.07509146630764008, -0.11763473600149155, -0.030219586566090584, -0.021416034549474716, -0.059953391551971436, -0.01985781639814377, 0.1454722285270691, -0.05901913344860077, 0.16396483778953552, 0.15934567153453827, 0.0004437892057467252, 0.05369575321674347, 0.002988386433571577, 0.13806752860546112, -0.1206340566277504, 0.03484520688652992, 0.06608550250530243, 0.056122075766325, 0.05365903303027153, 0.15174730122089386, 0.10432527214288712, -0.09541036933660507, -0.018672650679945946, -0.05930463224649429, -0.15220248699188232, -0.10139232128858566, 0.024627240374684334, -0.06141393259167671, 0.12333095073699951, -0.013585293665528297, 0.08778505027294159, 0.15799736976623535, 0.06226510554552078, 0.06065154820680618, 0.013377723284065723, -0.05537571758031845, 0.046748269349336624, 0.10244113206863403, 0.025599271059036255, 0.025463610887527466, -0.052899036556482315, -0.07203033566474915, 0.08687785267829895, 0.06601575016975403, 0.0160951167345047, 0.10940283536911011, 0.02516396902501583, 0.04593024402856827, 0.06999459117650986, 0.17799325287342072, -0.08967867493629456, 0.09228881448507309, -0.040992315858602524, -0.07608173042535782, -0.04789857938885689, 0.03782442957162857, 0.10308411717414856, 0.021946333348751068, -0.12585574388504028, 0.04772813618183136, -0.07293443381786346, -0.006781987380236387, -0.08741951733827591, -0.04094601050019264, -0.040044065564870834, 0.1711837202310562, 0.08173303306102753, 0.0824318677186966, 0.04782060906291008, 0.09380462020635605, 0.046226371079683304, -0.13152652978897095, 0.08554215729236603, 0.07793328911066055, 0.06008058041334152, 0.12876848876476288, 0.03181002661585808, 0.05314707010984421, -0.1833021193742752, 0.014696873724460602, 0.07313425838947296, -0.15544244647026062, 0.1955350935459137, 0.049508072435855865, -0.04622825235128403, 0.032311927527189255, -0.0759982019662857, 0.035092733800411224, 0.07771843671798706, 0.1848934292793274, 0.030652562156319618, -0.12441832572221756, -0.2195657193660736, -0.06030183285474777, -0.0332309864461422, 0.07968420535326004, 0.0440523587167263, -0.08639299869537354, -0.014529218897223473, -0.02123178169131279, -0.04406924918293953, 0.23331817984580994, 0.014924336224794388, -0.11160361021757126, 0.008687053807079792, 0.07701239734888077, -0.03977881371974945, 0.0038595653604716063, -0.007687787525355816, -0.024490302428603172, -0.15632016956806183, 0.049586761742830276, 0.023800266906619072, -0.0883118286728859, -0.08351322263479233, -0.027262723073363304, -0.07328420877456665, -0.003410185454413295, -0.09302060306072235, -0.04613593593239784, -0.10659010708332062, -0.13531997799873352, 0.0571117140352726, -0.016534147784113884, -0.047157853841781616, -0.14057967066764832, 0.07090768218040466, -0.019083427265286446, 0.13865900039672852, 0.005012743175029755, 0.019694050773978233, 0.013934197835624218, -0.08616812527179718, 0.10341423004865646, -0.08887622505426407, 0.025443773716688156, -0.07041661441326141, -0.11142133921384811, 0.03656645119190216, -0.04063151776790619, -0.08002638071775436, 0.12812985479831696, 0.32543835043907166, -0.017428003251552582, 0.17273607850074768, 0.132537379860878, -0.11758576333522797, -0.2168496549129486, -0.0654892846941948, -0.15011142194271088, -0.08199683576822281, 0.15721897780895233, -0.13866233825683594, 0.0910283774137497, 0.11662854254245758, -0.07914111763238907, 0.28200167417526245, -0.32577139139175415, -0.03460521250963211, 0.03917386010289192, 0.040299929678440094, 0.31340694427490234, -0.2847824692726135, -0.07694407552480698, -0.054318323731422424, -0.07800865173339844, 0.16329637169837952, 0.1230219230055809, 0.07027477025985718, -0.0652974396944046, 0.0975300744175911, 0.002669850829988718, 0.01960444450378418, 0.1686968207359314, -0.0020833280868828297, 0.06765013188123703, -0.06267859786748886, -0.26613274216651917, 0.08305339515209198, 0.0013145724078640342, -0.06972844153642654, -0.05786292627453804, -0.14514479041099548, -0.11092249304056168, 0.0464029423892498, -0.10048244148492813, 0.057559482753276825, -0.0033875880762934685, -0.0867086797952652, -0.11155900359153748, 0.06642646342515945, -0.06794489175081253, 0.024220380932092667, 0.28738656640052795, -0.029720071703195572, 0.09336897730827332, -0.05534927919507027, -0.13315871357917786, 0.09747182577848434, -0.01482233963906765, -0.14644847810268402, -0.06973185390233994, 0.08363796770572662, -0.0911022499203682, -0.06446956843137741, 0.07030819356441498, 0.031233085319399834, 0.07468065619468689, 0.02981709875166416, -0.0654895231127739, 0.1336532086133957, 0.12921644747257233, -0.052759550511837006, -0.03608230873942375, -0.04034832864999771, 0.12185084819793701, 0.25028523802757263, -0.1573229879140854, 0.04082118347287178, 0.014446158893406391, -0.07570364326238632, -0.003625857178121805, 0.01979312300682068, 0.007499289698898792, -0.11561582237482071, 0.09644302725791931, -0.04690391942858696, -0.051153846085071564, 0.08140580356121063, 0.08623926341533661, 0.019577519968152046, 0.026657002046704292, 0.20674091577529907, 0.030037755146622658, -0.06544886529445648, -0.04288700595498085, 0.12969960272312164, -0.14415298402309418, -0.04076429829001427, -0.01911654695868492, -0.01619400456547737, -0.07331728935241699, 0.030423371121287346, -0.01507317554205656, 0.032476358115673065, 0.05340679734945297, -0.007904646918177605, 0.016747063025832176, 0.0038816863670945168, -0.1484554409980774, 0.028151657432317734, -0.14846272766590118, -0.04404241219162941, 0.03418737277388573, 0.07008855044841766, -0.07026491314172745, -0.09706121683120728, -0.21436086297035217, 0.039845000952482224, -0.04066808521747589, 0.06015956774353981, -0.10188838094472885, -0.09406926482915878, 0.029437122866511345, -0.003664894262328744, -0.04877406358718872, -0.060592129826545715, -0.13102717697620392, -0.014099789783358574, 0.08247386664152145, 0.008425924926996231, -0.038636717945337296, -0.06449128687381744, 0.1317702829837799, 0.023991387337446213, -0.04150211438536644, 0.1339939683675766, 0.03034989908337593, 0.07988563925027847, -0.2936461269855499, -0.04107902571558952, 0.11044852435588837, -0.017391521483659744, 0.0662153884768486, 0.21627601981163025, -0.025949368253350258, 0.003382251365110278, -0.020931929349899292, 0.003752466756850481, -0.05116995424032211, -0.16188177466392517, -0.08583851158618927, -0.014893594197928905, -0.16496120393276215, -0.06775543838739395, -0.006636166945099831, 0.21839138865470886, -0.06186063960194588, 0.019050702452659607, -0.01869415119290352, 0.10315974801778793, 0.03436287119984627, -0.011411083862185478, -0.03533277288079262, -0.06822928041219711, -0.030644362792372704, -0.015102487988770008, -0.08732421696186066, -0.04911011457443237, 0.16206717491149902, 0.15005241334438324, -0.1277780830860138, -0.012901592999696732, 0.12096567451953888, -0.00011067173181800172, -0.0003818708355538547, 0.18621601164340973, 0.03314298391342163, 0.009821741841733456, -0.023451991379261017, 0.05315234884619713, 0.049336500465869904, 0.03590652719140053, -0.01914467103779316, 0.0009849538328126073, 0.0427754707634449, 0.046195708215236664, 0.0918743684887886, 0.032474666833877563, -0.0779172033071518, -0.09162995964288712, 0.05633055046200752, 0.027921631932258606, 0.006137295160442591, 0.06478758156299591, 0.151837557554245, 0.007492606528103352, -0.010081799700856209, -0.10024144500494003, -0.009263194166123867, -0.11277912557125092, -0.13892190158367157, -0.0012275927001610398, -0.11648406088352203, 0.08391944319009781, -0.001580444979481399, 0.03706202656030655, 0.14603455364704132, 0.024228766560554504, -0.04921099916100502, -0.07819724828004837, -0.03924255818128586, -0.025948528200387955, -0.018287628889083862, -0.024092892184853554, -0.02153107523918152, -0.04239284247159958, -0.02639954164624214, -0.01218973845243454, -0.08185454457998276, -0.036150287836790085, 0.03141137957572937, 0.02622174844145775, -0.0032182279974222183, -0.17838524281978607, -0.10097217559814453, 0.006502841599285603, 0.013309216126799583, 0.01379617489874363, 0.13865779340267181, 0.028843164443969727, 0.012210223823785782, -0.027309585362672806, 0.13496199250221252, 0.04426822066307068, 0.15567786991596222, 0.06301835924386978, -0.05498911812901497, -0.12202274799346924, 0.02956657111644745, -0.10567725449800491, -0.05027126520872116, -0.04166829586029053, 0.25617319345474243, 0.25571632385253906, -0.17170488834381104, -0.07413463294506073, -0.0333985760807991, 0.007625349331647158, 0.007422930561006069, 0.08872058987617493, 0.021140936762094498, 0.2533206045627594, -0.08079785853624344, -0.03111867606639862, -0.08548909425735474, -0.03302260860800743, -0.08343484252691269, 0.0065170153975486755, 0.06990168243646622, -0.04079065099358559, -0.06018733233213425, 0.07532612979412079, -0.28169986605644226, 0.05850585550069809, 0.07328122109174728, -0.08543460071086884, 0.04302607849240303, -0.017804760485887527, -0.0009608163964003325, 0.08678071200847626, 0.07614535838365555, -0.0871477872133255, -0.04651889204978943, -0.11915745586156845, 0.027455037459731102, -0.29131263494491577, -0.10700130462646484, -0.003243273589760065, -0.09365513175725937, 0.26598143577575684, -0.029499083757400513, -0.12356220930814743, 0.023835303261876106, 0.06699404120445251, 0.026227742433547974, 0.041705306619405746, 0.04955114796757698, 0.12099749594926834, -0.09480807185173035, 0.04754965007305145, 0.0118879284709692, -0.039092108607292175, 0.0874427780508995, 0.0724615827202797, 0.044785261154174805, 0.0822596475481987, -0.05772155523300171, -0.06341689825057983, 0.07739488035440445, -0.1985073834657669, 0.07421968877315521, 0.007845676504075527, 0.022136565297842026, -0.12243721634149551, -0.009111091494560242, -0.02136928215622902, 0.08417919278144836, -0.1974245309829712, -0.02356201969087124, 0.11360606551170349, -0.107282854616642, 0.04335920885205269, -0.014840099029242992, -0.2045675814151764, 0.017798494547605515, -0.20732322335243225, 0.024985330179333687, -0.1307990998029709, -0.034482020884752274, 0.11043145507574081, 0.0219704732298851, -0.019580116495490074, -0.06874416768550873, 0.10002719610929489, -0.011491102166473866, 0.03724224120378494, -0.03693487122654915 ]
null
null
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [hyeogi/SOLAR-10.7B-dpo-v1](https://huggingface.co/hyeogi/SOLAR-10.7B-dpo-v1) * [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: LDCC/LDCC-SOLAR-10.7B layer_range: [0, 48] - model: hyeogi/SOLAR-10.7B-dpo-v1 layer_range: [0, 48] merge_method: slerp tokenizer_source: base base_model: LDCC/LDCC-SOLAR-10.7B embed_slerp: true parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Datasets Finetuned using LoRA with [kyujinpy/OpenOrca-KO](https://huggingface.co/datasets/kyujinpy/OpenOrca-KO)
{"language": ["ko"], "license": "apache-2.0", "tags": ["mergekit", "merge", "LDCC/LDCC-SOLAR-10.7B", "hyeogi/SOLAR-10.7B-dpo-v1"], "base_model": ["LDCC/LDCC-SOLAR-10.7B", "hyeogi/SOLAR-10.7B-dpo-v1"]}
text-generation
jumtul/LDCC-Hyeogi.04
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "LDCC/LDCC-SOLAR-10.7B", "hyeogi/SOLAR-10.7B-dpo-v1", "ko", "base_model:LDCC/LDCC-SOLAR-10.7B", "base_model:hyeogi/SOLAR-10.7B-dpo-v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T01:50:52+00:00
[]
[ "ko" ]
TAGS #transformers #safetensors #llama #text-generation #mergekit #merge #LDCC/LDCC-SOLAR-10.7B #hyeogi/SOLAR-10.7B-dpo-v1 #ko #base_model-LDCC/LDCC-SOLAR-10.7B #base_model-hyeogi/SOLAR-10.7B-dpo-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# merge This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * hyeogi/SOLAR-10.7B-dpo-v1 * LDCC/LDCC-SOLAR-10.7B ### Configuration The following YAML configuration was used to produce this model: ## Datasets Finetuned using LoRA with kyujinpy/OpenOrca-KO
[ "# merge\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* hyeogi/SOLAR-10.7B-dpo-v1\n* LDCC/LDCC-SOLAR-10.7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:", "## Datasets\n\nFinetuned using LoRA with kyujinpy/OpenOrca-KO" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #LDCC/LDCC-SOLAR-10.7B #hyeogi/SOLAR-10.7B-dpo-v1 #ko #base_model-LDCC/LDCC-SOLAR-10.7B #base_model-hyeogi/SOLAR-10.7B-dpo-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# merge\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* hyeogi/SOLAR-10.7B-dpo-v1\n* LDCC/LDCC-SOLAR-10.7B", "### Configuration\n\nThe following YAML configuration was used to produce this model:", "## Datasets\n\nFinetuned using LoRA with kyujinpy/OpenOrca-KO" ]
[ 132, 18, 4, 18, 46, 17, 21 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #LDCC/LDCC-SOLAR-10.7B #hyeogi/SOLAR-10.7B-dpo-v1 #ko #base_model-LDCC/LDCC-SOLAR-10.7B #base_model-hyeogi/SOLAR-10.7B-dpo-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merge\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* hyeogi/SOLAR-10.7B-dpo-v1\n* LDCC/LDCC-SOLAR-10.7B### Configuration\n\nThe following YAML configuration was used to produce this model:## Datasets\n\nFinetuned using LoRA with kyujinpy/OpenOrca-KO" ]
[ -0.05027922987937927, -0.02658991329371929, -0.0035859323106706142, -0.0636521503329277, 0.11659843474626541, 0.03568644821643829, 0.18308036029338837, 0.05488472059369087, 0.015831466764211655, 0.0925271138548851, -0.027008797973394394, 0.12269053608179092, 0.09501028060913086, 0.14729955792427063, 0.009523372165858746, -0.1681404709815979, 0.07742597162723541, -0.031967926770448685, -0.11170454323291779, 0.05337309092283249, 0.08826649934053421, -0.09362874180078506, 0.07815533876419067, 0.009125033393502235, -0.13348661363124847, 0.024273952469229698, -0.06529183685779572, 0.012913764454424381, 0.11238520592451096, 0.0915316715836525, 0.05763661861419678, 0.07259514927864075, -0.005170167423784733, -0.22448177635669708, 0.022889262065291405, -0.0031064781360328197, -0.039539188146591187, 0.04566672444343567, 0.06633227318525314, 0.029079020023345947, 0.15914086997509003, -0.17081153392791748, -0.03473644331097603, 0.039976175874471664, -0.04216562211513519, -0.17332515120506287, -0.1125662624835968, 0.10242921113967896, 0.13772398233413696, -0.0034868335351347923, -0.017638280987739563, 0.026760434731841087, 0.04173848405480385, 0.04438014328479767, 0.10504286736249924, -0.20554320514202118, 0.038887981325387955, 0.18687157332897186, 0.01847650110721588, -0.12147217243909836, 0.0014257206348702312, 0.05306779593229294, 0.048831500113010406, -0.034718625247478485, 0.042547594755887985, -0.04131777212023735, 0.08150511980056763, -0.014705312438309193, -0.12001010030508041, -0.046333931386470795, 0.22158671915531158, -0.003935357090085745, -0.007655973080545664, -0.12661336362361908, -0.1136811226606369, 0.06758522987365723, -0.0077984570525586605, 0.026599999517202377, 0.014686452224850655, -0.01722482219338417, 0.06569410115480423, -0.06503686308860779, -0.09186338633298874, -0.01967989280819893, -0.079732745885849, 0.26669982075691223, 0.0932069942355156, 0.010283180512487888, -0.020443426445126534, 0.13019759953022003, -0.04949698597192764, -0.12877996265888214, -0.009310523979365826, 0.005752275697886944, -0.04303349554538727, 0.03748733922839165, -0.08024099469184875, -0.07942613214254379, 0.12379960715770721, 0.2055646777153015, -0.07922469824552536, -0.007758974563330412, 0.13069529831409454, 0.04563794657588005, 0.027635538950562477, 0.031991198658943176, -0.13356496393680573, -0.03989579528570175, 0.04230746254324913, 0.004300383385270834, 0.18309882283210754, 0.008174983784556389, -0.10211006551980972, -0.03415565937757492, 0.022231820970773697, 0.03538661077618599, 0.10545673221349716, 0.05197840556502342, -0.052706029266119, -0.05944322794675827, 0.17240339517593384, -0.09680373966693878, -0.014454654417932034, 0.018213843926787376, -0.0025360179133713245, -0.08567055314779282, 0.08355765789747238, 0.04695617035031319, 0.010023844428360462, 0.10280055552721024, -0.00924642849713564, -0.00037432584213092923, -0.062136828899383545, -0.05101826786994934, -0.011402367614209652, 0.058514658361673355, 0.014769378118216991, -0.08168993145227432, -0.21316304802894592, -0.01800399459898472, -0.00816649105399847, -0.06405819207429886, -0.044942911714315414, -0.003969334065914154, -0.009249486960470676, -0.005920407362282276, -0.023226339370012283, 0.009123205207288265, -0.005977391730993986, 0.00012709524889942259, 0.005903144832700491, 0.03270970657467842, -0.10611594468355179, 0.017129432410001755, -0.07095058262348175, 0.11875368654727936, -0.10657915472984314, 0.10342895984649658, -0.034043408930301666, 0.044626183807849884, -0.0920703187584877, -0.04521580785512924, 0.028331944718956947, 0.00629679998382926, 0.08041492849588394, 0.172336146235466, -0.13140013813972473, -0.05238882824778557, 0.09060981869697571, -0.13398034870624542, -0.08613479882478714, 0.025378504768013954, 0.03369487076997757, 0.035499460995197296, 0.006979570258408785, 0.15893559157848358, 0.09769149124622345, -0.0590774230659008, -0.12196283787488937, -0.03073340840637684, 0.061443157494068146, -0.018535619601607323, 0.0636526495218277, -0.033439382910728455, -0.06076841801404953, 0.03342369571328163, -0.10003567487001419, 0.11253383010625839, -0.04314494505524635, -0.05135568231344223, -0.06446480751037598, -0.03197280690073967, 0.03691685199737549, -0.0011755781015381217, -0.013754405081272125, -0.0054747858084738255, -0.01441330835223198, 0.1287248283624649, 0.16575275361537933, -0.09814805537462234, 0.04180904105305672, -0.015235685743391514, 0.14841553568840027, -0.07412048429250717, 0.012558799237012863, -0.038110390305519104, -0.09499210864305496, 0.016460182145237923, -0.05464520677924156, -0.04114200547337532, 0.020178480073809624, 0.022920861840248108, 0.04932660609483719, -0.06394658982753754, -0.09876542538404465, 0.021496998146176338, 0.02885477989912033, 0.007976728491485119, -0.17105074226856232, -0.1244925707578659, -0.02008877694606781, 0.28737562894821167, -0.09717968106269836, 0.0787649154663086, 0.0605851486325264, 0.22872082889080048, -0.07553565502166748, 0.017218371853232384, 0.10560812056064606, 0.02085343562066555, -0.03946083039045334, -0.02490290068089962, 0.05347243696451187, 0.024684349074959755, -0.20540110766887665, 0.1017175167798996, -0.18871407210826874, -0.15505777299404144, 0.0871502161026001, 0.02556312270462513, 0.01945536583662033, -0.08858752995729446, -0.028301578015089035, -0.07536309957504272, 0.025297975167632103, -0.07147081941366196, -0.03878794610500336, -0.020160675048828125, 0.09179017692804337, -0.023766320198774338, -0.03605762869119644, -0.024692369624972343, -0.020869791507720947, -0.04910184442996979, 0.08167488873004913, -0.00790298543870449, -0.041506461799144745, 0.09891687333583832, 0.1104189082980156, 0.06083930283784866, 0.09918299317359924, -0.024062475189566612, -0.00890832208096981, -0.060820482671260834, 0.052059292793273926, 0.00947149470448494, 0.07398579269647598, 0.021048707887530327, 0.06237475574016571, 0.0701143890619278, -0.05764983594417572, 0.0632910504937172, -0.138034388422966, 0.021280329674482346, 0.03416208177804947, -0.01782204769551754, 0.14836205542087555, 0.10763028264045715, -0.005454279016703367, 0.000057326666137669235, -0.00860581174492836, 0.03703857958316803, 0.0219378974288702, -0.023565534502267838, -0.08528696745634079, 0.2025526911020279, -0.12755681574344635, -0.18838365375995636, -0.18099676072597504, -0.03485843911767006, -0.11745169013738632, -0.03095485456287861, 0.05248378589749336, -0.05149722471833229, -0.08180808275938034, -0.06812699884176254, 0.17533040046691895, 0.032592177391052246, 0.012616022489964962, -0.036067597568035126, -0.0456634983420372, 0.03213513270020485, -0.10870784521102905, 0.004588128998875618, 0.01600288413465023, -0.0570836178958416, 0.07429937273263931, 0.04071702063083649, 0.12069042026996613, 0.0800243392586708, 0.03524848446249962, -0.028566943481564522, 0.012984652072191238, 0.22407269477844238, -0.06246078386902809, 0.08602399379014969, 0.207940474152565, 0.01888977736234665, 0.04793020710349083, 0.21890594065189362, 0.042686715722084045, -0.034345321357250214, 0.0009178604232147336, -0.03398304432630539, -0.07031504064798355, -0.17911067605018616, -0.18401066958904266, -0.07195619493722916, -0.062465470284223557, -0.004806128330528736, 0.0790194422006607, 0.09691982716321945, 0.07001032680273056, -0.13433924317359924, -0.025622373446822166, -0.011584043502807617, 0.0738399475812912, 0.22122494876384735, 0.03154471889138222, 0.07298869639635086, -0.05567668005824089, 0.025506243109703064, 0.041105542331933975, 0.029697857797145844, 0.10538201034069061, -0.012131760828197002, 0.09475234895944595, 0.11689603328704834, 0.11996761709451675, -0.004624626599252224, 0.03409852460026741, -0.050568755716085434, 0.014504334889352322, 0.029627596959471703, -0.11559761315584183, 0.038632504642009735, 0.06375252455472946, -0.07552526146173477, 0.07602780312299728, -0.03892218694090843, -0.0534033328294754, 0.044919226318597794, 0.10067939013242722, 0.13734279572963715, -0.17491267621517181, -0.07252849638462067, 0.09192539751529694, 0.0750996470451355, -0.02527298405766487, -0.06696627289056778, 0.060554198920726776, -0.07303168624639511, 0.2289285510778427, -0.0072178286500275135, 0.055722229182720184, -0.011819996871054173, -0.008786697871983051, 0.006976948119699955, 0.14599475264549255, 0.02457229234278202, 0.06753960996866226, -0.16664882004261017, 0.11023248732089996, 0.0456041619181633, -0.00031483141356147826, 0.0005948007456026971, 0.05249444395303726, -0.018786156550049782, 0.17700187861919403, 0.027331331744790077, 0.04100587218999863, 0.0332062691450119, -0.02241516299545765, -0.12086948752403259, 0.008739842101931572, -0.014157680794596672, -0.09417227655649185, 0.09287464618682861, -0.014064067043364048, -0.02597666345536709, -0.02078760787844658, 0.10181792080402374, -0.10389432311058044, -0.13504523038864136, 0.10717012733221054, 0.09541227668523788, 0.11789995431900024, -0.11224585771560669, -0.030563808977603912, -0.11851033568382263, 0.16968205571174622, -0.07954378426074982, -0.1440315544605255, -0.07245930284261703, 0.015058123506605625, 0.17055974900722504, -0.10155165195465088, 0.06822678446769714, -0.023367825895547867, 0.017202353104948997, -0.0319632962346077, -0.15845124423503876, 0.020207956433296204, -0.0907202735543251, -0.1405634582042694, 0.058308135718107224, 0.14710786938667297, -0.03043115884065628, 0.023691507056355476, -0.009711922146379948, 0.05264478549361229, -0.10633747279644012, -0.08332665264606476, 0.009593702852725983, 0.20342309772968292, 0.06945422291755676, 0.1354082077741623, -0.008309715427458286, -0.13297419250011444, -0.00800605770200491, -0.10490155965089798, 0.07963911443948746, 0.2823222577571869, -0.061041612178087234, 0.09410139918327332, 0.08665556460618973, -0.06560558080673218, -0.19055157899856567, -0.11461025476455688, -0.052725955843925476, 0.06133626773953438, -0.01290922611951828, -0.11520638316869736, 0.023380491882562637, 0.07638516277074814, -0.018312156200408936, -0.04682563245296478, -0.3153823912143707, -0.18367953598499298, 0.04793655127286911, 0.055686626583337784, 0.10211994498968124, -0.1608767807483673, -0.12125138193368912, -0.056687723845243454, -0.2066689431667328, 0.05193908140063286, -0.1356372833251953, 0.05200899392366409, -0.05870803818106651, 0.02455217018723488, 0.037236541509628296, -0.030522413551807404, 0.2274216115474701, -0.024294601753354073, 0.002399920020252466, -0.06778142601251602, 0.021924976259469986, 0.11228279769420624, -0.04263249784708023, 0.07526207715272903, -0.09438157826662064, 0.03676629066467285, -0.1203000470995903, 0.010996771045029163, -0.09205199033021927, 0.07540968060493469, -0.09292803704738617, -0.06030182167887688, -0.10222230851650238, 0.012185635045170784, 0.0703987255692482, 0.0036102994345128536, 0.1423756182193756, -0.003262478159740567, 0.09296087920665741, 0.16846102476119995, 0.06389978528022766, 0.043483465909957886, -0.013264365494251251, 0.0005328914267010987, -0.0301645677536726, 0.0369107685983181, -0.09280768036842346, -0.008271992206573486, 0.0733913704752922, 0.02237733080983162, 0.050300851464271545, 0.017563659697771072, -0.0906895101070404, 0.0021771437022835016, 0.09734339267015457, -0.15242503583431244, -0.3558131456375122, -0.045635148882865906, 0.06422369927167892, -0.02670723758637905, 0.13513703644275665, 0.12310801446437836, -0.056907087564468384, -0.052559174597263336, 0.03141818568110466, 0.03974742814898491, -0.05341176688671112, 0.11427522450685501, 0.03847796469926834, 0.07593289762735367, -0.12133954465389252, 0.04162644222378731, 0.0628761351108551, -0.007143449503928423, -0.03495915234088898, 0.04624766856431961, -0.1048223227262497, -0.04272258281707764, -0.0465436726808548, 0.012359442189335823, -0.1368020474910736, -0.11148254573345184, -0.09919694066047668, -0.11412345618009567, -0.012440824881196022, -0.018211914226412773, 0.05339503288269043, 0.010465609841048717, 0.06187653914093971, -0.05836264044046402, -0.05406707897782326, 0.06136160343885422, -0.006903297733515501, 0.10341153293848038, -0.12729014456272125, 0.08427749574184418, -0.026103008538484573, 0.10219202190637589, -0.031105780974030495, -0.008806516416370869, -0.07302939891815186, -0.020875344052910805, -0.10252396017313004, -0.05616709217429161, -0.16752518713474274, -0.05238991603255272, -0.020436767488718033, -0.0405440591275692, 0.020175915211439133, 0.05747469142079353, -0.01760307513177395, -0.046985212713479996, -0.07257000356912613, 0.02425629086792469, -0.0740843415260315, -0.029141878709197044, 0.02026662975549698, -0.10683678835630417, 0.09503921121358871, 0.011270356364548206, 0.003231093054637313, -0.03766046464443207, -0.05660489574074745, -0.049488816410303116, 0.04464855417609215, -0.0022468571551144123, 0.0039983224123716354, -0.13621382415294647, -0.0856107771396637, -0.012730843387544155, -0.09455669671297073, -0.051413629204034805, 0.07961035519838333, -0.0670606791973114, 0.01517449226230383, -0.0963636115193367, 0.04218415915966034, -0.05443314462900162, 0.058704081922769547, -0.0052982522174716, 0.06557594984769821, 0.0591881163418293, -0.052836693823337555, -0.00842653401196003, -0.13793152570724487, -0.0347304493188858, -0.04449659213423729, -0.0925467237830162, -0.07015135884284973, -0.06403644382953644, 0.029698388651013374, 0.026637639850378036, 0.11538432538509369, -0.07867585867643356, -0.0890679806470871, 0.0049660345539450645, 0.09825287014245987, 0.05740273743867874, 0.03600747510790825, 0.25485092401504517, -0.0045409356243908405, 0.05973801016807556, 0.011683141812682152, 0.035819657146930695, -0.003000773023813963, 0.016259465366601944, 0.04267038777470589, 0.08117002248764038, 0.038032952696084976, 0.028487207368016243, 0.059648558497428894, -0.13427042961120605, -0.06402336806058884, -0.0453445129096508, -0.07494273781776428, 0.06929539889097214, -0.02776751108467579, 0.14913341403007507, 0.1149873211979866, -0.19321925938129425, 0.07273988425731659, 0.07744872570037842, -0.039274200797080994, -0.07426352798938751, -0.05991000682115555, -0.07552583515644073, -0.1509978473186493, -0.02478589490056038, -0.07927580177783966, -0.03423468396067619, 0.08890650421380997, -0.0383150689303875, 0.020266218110919, 0.14893345534801483, 0.1426004022359848, -0.047044895589351654, -0.05471647530794144, -0.0052354466170072556, 0.011321628466248512, -0.04065322130918503, -0.04078754037618637, 0.041304707527160645, -0.0005893093766644597, 0.007479999214410782, 0.05402877926826477, 0.11047637462615967, 0.09612792730331421, -0.0007912222063168883, -0.08054731041193008, 0.034161195158958435, 0.019568804651498795, 0.0922766774892807, -0.02220872789621353, 0.02038215659558773, -0.0036586683709174395, -0.020877163857221603, 0.1203627660870552, -0.04471822828054428, -0.09717058390378952, -0.011007887311279774, 0.0839940533041954, -0.05480518192052841, -0.0018809445900842547, 0.09157132357358932, -0.13254289329051971, -0.01982564851641655, 0.09754186868667603, 0.2099451720714569, 0.08219394832849503, 0.025135114789009094, -0.002698321361094713, 0.0031992814037948847, 0.013793460093438625, 0.051722850650548935, 0.03809960559010506, 0.1392531543970108, -0.06951861083507538, 0.08562204986810684, -0.03511853888630867, -0.06427083164453506, -0.12446114420890808, 0.04264162480831146, -0.0901595950126648, -0.09213753789663315, 0.06432390958070755, 0.0555882453918457, -0.0046454970724880695, -0.11741550266742706, 0.1158791109919548, -0.15302513539791107, -0.09528058022260666, -0.10418909043073654, 0.15543581545352936, -0.005657147150486708, 0.005397479049861431, -0.08234003931283951, 0.046755559742450714, 0.14510220289230347, 0.030599776655435562, -0.07532230019569397, -0.029138335958123207, 0.07596323639154434, -0.08326093852519989, 0.028038589283823967, -0.02380274422466755, 0.06112868711352348, 0.0972389280796051, -0.018538648262619972, -0.13984514772891998, 0.028025835752487183, 0.07574652880430222, -0.07360862195491791, 0.06316443532705307, 0.06058104708790779, 0.006457298528403044, 0.016783975064754486, -0.0015608022222295403, -0.14778415858745575, 0.027886513620615005, 0.1517375260591507, -0.023564999923110008, -0.057117823511362076, 0.02184818685054779, -0.07989461719989777, 0.09361688792705536, 0.08156471699476242, -0.08479895442724228, 0.0040720487013459206, -0.04116572439670563, 0.016453001648187637, 0.04065176844596863, 0.17803271114826202, 0.028524817898869514, -0.13220003247261047, 0.041259922087192535, -0.004422958008944988, 0.08904135972261429, -0.16913741827011108, -0.05637454614043236, -0.05662380903959274, -0.049980856478214264, -0.06918742507696152, 0.134177103638649, 0.12307236343622208, -0.008005647920072079, -0.032346226274967194, -0.11233597248792648, -0.059514693915843964, 0.08994699269533157, -0.11322475969791412, -0.060030337423086166 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
{"library_name": "peft", "base_model": "Trelis/Llama-2-7b-chat-hf-sharded-bf16"}
null
SolaireOfTheSun/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
2024-02-07T01:52:39+00:00
[ "1910.09700" ]
[]
TAGS #peft #arxiv-1910.09700 #base_model-Trelis/Llama-2-7b-chat-hf-sharded-bf16 #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.8.2
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ "TAGS\n#peft #arxiv-1910.09700 #base_model-Trelis/Llama-2-7b-chat-hf-sharded-bf16 #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ 43, 6, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 11 ]
[ "passage: TAGS\n#peft #arxiv-1910.09700 #base_model-Trelis/Llama-2-7b-chat-hf-sharded-bf16 #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2" ]
[ -0.1181381344795227, 0.19727149605751038, -0.0028356341645121574, 0.029223458841443062, 0.07779452949762344, 0.015494933351874352, 0.05737197771668434, 0.1357649564743042, 0.036463662981987, 0.11323360353708267, 0.06885109841823578, 0.12088657170534134, 0.11562664806842804, 0.2212080955505371, 0.004279926419258118, -0.1664223074913025, 0.01706680655479431, -0.06928151845932007, 0.014364630915224552, 0.12016356736421585, 0.14479218423366547, -0.09526396542787552, 0.08089473843574524, -0.018188372254371643, -0.004930650815367699, -0.024937300011515617, -0.07020042836666107, -0.008950869552791119, 0.056061599403619766, 0.033739153295755386, 0.05408255010843277, -0.01107756607234478, 0.08333621174097061, -0.2709597647190094, 0.017724286764860153, 0.04098164662718773, -0.004057694226503372, 0.08124442398548126, 0.09406667947769165, -0.0441671647131443, 0.12708128988742828, -0.015239475294947624, 0.13391275703907013, 0.0907587930560112, -0.09883658587932587, -0.22420738637447357, -0.06269833445549011, 0.0812215730547905, 0.18298065662384033, 0.0842667743563652, -0.04301773011684418, 0.12244658917188644, -0.06498446315526962, 0.025797231122851372, 0.06983645260334015, -0.10434993356466293, -0.06664906442165375, 0.0714646652340889, 0.13343030214309692, 0.08002261817455292, -0.1214556023478508, -0.037892282009124756, 0.034509770572185516, 0.04869379103183746, 0.05023886263370514, 0.004202019423246384, 0.15324732661247253, 0.030881710350513458, -0.14613425731658936, -0.05120434612035751, 0.14337295293807983, 0.011956743896007538, -0.03901150822639465, -0.20988884568214417, -0.0034170798026025295, -0.10848358273506165, -0.03974635899066925, -0.0478997640311718, 0.036514703184366226, 0.013069549575448036, 0.12947554886341095, -0.04857974499464035, -0.08803272992372513, -0.014932133257389069, 0.11144330352544785, 0.05725866183638573, 0.018973227590322495, -0.020059572532773018, 0.0056142015382647514, 0.12330996245145798, 0.06388096511363983, -0.1328437328338623, -0.06580766290426254, -0.06895118951797485, -0.035474978387355804, -0.02769492007791996, 0.03674232214689255, 0.02040569670498371, 0.06125297024846077, 0.2798122763633728, -0.026357600465416908, 0.06613438576459885, 0.04405985400080681, 0.023886658251285553, 0.02874341793358326, 0.10989844053983688, -0.031750261783599854, -0.17080765962600708, -0.008244126103818417, 0.0997881218791008, -0.003357849782332778, -0.035279981791973114, -0.06533131748437881, 0.03614223003387451, 0.03597854822874069, 0.11551731079816818, 0.11004431545734406, -0.026968713849782944, -0.07493777573108673, -0.05820320546627045, 0.18510743975639343, -0.15498925745487213, 0.045349325984716415, 0.026603857055306435, -0.0026552118360996246, -0.0666942149400711, 0.007160454522818327, 0.019170569255948067, -0.034147754311561584, 0.06864527612924576, -0.0650380477309227, -0.04231897369027138, -0.12411431968212128, -0.03357872739434242, 0.03640985116362572, 0.001136972801759839, -0.041376009583473206, -0.043346066027879715, -0.07010353356599808, -0.11157026141881943, 0.11146921664476395, -0.05989838391542435, -0.05995114892721176, -0.02418203093111515, -0.08280391246080399, 0.018977167084813118, 0.03798571228981018, 0.07484757155179977, -0.024049602448940277, 0.045625265687704086, -0.00583998765796423, 0.0690370500087738, 0.0666862279176712, 0.034300222992897034, -0.07865653187036514, 0.06418787688016891, -0.1941995471715927, 0.07840386033058167, -0.07835167646408081, 0.04630007967352867, -0.16043059527873993, -0.004161621443927288, -0.004898848477751017, 0.029608670622110367, 0.04850497841835022, 0.15709823369979858, -0.21749383211135864, -0.02971627376973629, 0.16169075667858124, -0.10138624161481857, -0.13351242244243622, 0.03961623087525368, -0.03792359307408333, 0.18759804964065552, 0.024378320202231407, 0.03176095336675644, 0.08810292929410934, -0.154221311211586, -0.014327802695333958, -0.018256189301609993, 0.01473134383559227, 0.06619387120008469, 0.08162213116884232, -0.09280609339475632, -0.003115785541012883, 0.01148303970694542, -0.061079755425453186, -0.01969340443611145, -0.040286459028720856, -0.10579638183116913, 0.0036032586358487606, -0.08481569588184357, 0.006873821374028921, 0.004307607654482126, -0.09461662918329239, -0.008892207406461239, -0.14766542613506317, -0.047490525990724564, 0.08335020393133163, 0.0031538894400000572, -0.015453570522367954, -0.0972089022397995, 0.06403058767318726, -0.03634766861796379, -0.020803414285182953, -0.1477097123861313, -0.004365186206996441, 0.019695095717906952, -0.13655759394168854, 0.0069341156631708145, -0.11226584017276764, 0.06865353882312775, -0.001955528510734439, -0.04560066759586334, -0.040206532925367355, -0.007969454862177372, -0.008147619664669037, -0.06441042572259903, -0.2355523705482483, -0.029622018337249756, -0.05054420605301857, 0.1726302057504654, -0.2287760078907013, 0.04142492264509201, 0.005690731108188629, 0.11616000533103943, 0.001753757824189961, -0.05837450921535492, 0.018159586936235428, -0.060227371752262115, -0.024702051654458046, -0.07043436914682388, -0.002803630894050002, 0.008455133996903896, -0.023185569792985916, 0.010970372706651688, -0.1153634786605835, -0.06420443207025528, 0.09627197682857513, 0.058103349059820175, -0.14625291526317596, 0.014798679389059544, -0.040223196148872375, -0.05807002633810043, -0.06283935904502869, -0.07185106724500656, 0.09177219867706299, 0.05021706596016884, 0.047123730182647705, -0.08482160419225693, -0.07033076882362366, 0.004973860457539558, -0.022818956524133682, -0.00970391370356083, 0.12907801568508148, 0.09714005887508392, -0.10058607161045074, 0.08979696035385132, 0.0628291592001915, 0.021530071273446083, 0.08263126760721207, -0.01864038035273552, -0.10489299893379211, -0.027758432552218437, 0.05735914036631584, 0.009980740025639534, 0.17240063846111298, -0.08582990616559982, 0.05192724987864494, 0.04665563255548477, -0.05618784576654434, 0.051453784108161926, -0.09219805896282196, 0.007493637967854738, 0.0012070387601852417, -0.01596822217106819, 0.03518155589699745, -0.016257386654615402, 0.0009937105933204293, 0.08880914747714996, 0.0686771348118782, 0.01661018840968609, 0.011657055467367172, -0.03642977029085159, -0.14329618215560913, 0.17914502322673798, -0.08981168270111084, -0.2451286017894745, -0.1502447873353958, 0.04489326849579811, 0.0559251569211483, -0.013247373513877392, 0.03196219354867935, -0.05284000560641289, -0.09442916512489319, -0.08512086421251297, 0.0060422602109611034, 0.026271410286426544, -0.060462869703769684, -0.06254339963197708, 0.03532658517360687, 0.03917548060417175, -0.12261972576379776, 0.024169061332941055, 0.05751659348607063, 0.0021136715076863766, -0.004555159714072943, 0.03897562250494957, 0.09354787319898605, 0.20794224739074707, -0.005286749452352524, 0.008882980793714523, 0.061511434614658356, 0.28627923130989075, -0.16131141781806946, 0.11507702618837357, 0.13694114983081818, -0.06283509731292725, 0.07396627217531204, 0.19074928760528564, 0.030362091958522797, -0.0978357344865799, 0.01998024620115757, 0.030792532488703728, -0.025054074823856354, -0.27338913083076477, -0.05006987974047661, -0.0272066630423069, -0.07753065973520279, 0.08624901622533798, 0.0908370390534401, 0.09563709795475006, 0.028488392010331154, -0.059524428099393845, -0.08728070557117462, 0.021973803639411926, 0.11459164321422577, -0.01424829289317131, 0.0019317283295094967, 0.08133579045534134, -0.050357501953840256, 0.006600155029445887, 0.08700865507125854, -0.015028851106762886, 0.11981251090765, 0.061104029417037964, 0.11078507453203201, 0.08402712643146515, 0.084307000041008, -0.008380415849387646, 0.027836646884679794, -0.00031975010642781854, 0.020215725526213646, 0.0203701164573431, -0.0878191590309143, 0.016822397708892822, 0.1118163913488388, 0.015766069293022156, 0.018817709758877754, 0.01626560464501381, -0.06387853622436523, 0.034121669828891754, 0.1956094354391098, 0.03129170462489128, -0.20588234066963196, -0.08010124415159225, 0.051518332213163376, -0.0732668787240982, -0.15834909677505493, -0.01314424816519022, 0.007999151013791561, -0.16007454693317413, 0.012169231660664082, -0.036929916590452194, 0.11167705059051514, -0.06867799907922745, -0.04052245244383812, 0.1082296222448349, 0.050323616713285446, -0.027475876733660698, 0.050317324697971344, -0.2002214938402176, 0.10682982206344604, 0.028508713468909264, 0.06315074861049652, -0.08971314877271652, 0.08875738829374313, -0.006046023685485125, -0.012159503996372223, 0.15731756389141083, 0.0007066592224873602, -0.05479873716831207, -0.07785545289516449, -0.07410085201263428, -0.0069300467148423195, 0.08276000618934631, -0.1372804343700409, 0.07350901514291763, -0.03518112376332283, -0.028659584000706673, -0.008439280092716217, -0.08596987277269363, -0.11594396084547043, -0.16363799571990967, 0.06479094922542572, -0.09006349742412567, 0.02223283424973488, -0.07741783559322357, -0.053138718008995056, 0.03444678336381912, 0.18598613142967224, -0.19473934173583984, -0.10642579942941666, -0.14511141180992126, -0.10035328567028046, 0.15426789224147797, -0.045827437192201614, 0.08878437429666519, -0.008907758630812168, 0.16149276494979858, -0.002409412758424878, -0.018442001193761826, 0.0869813784956932, -0.09410133957862854, -0.17934918403625488, -0.0454990454018116, 0.18295595049858093, 0.13064441084861755, 0.030308052897453308, -0.010929281823337078, 0.022723527625203133, -0.07170780748128891, -0.10858486592769623, 0.0286567322909832, 0.13643677532672882, 0.05812159553170204, -0.02306309901177883, -0.04135332256555557, -0.07953198254108429, -0.06566406786441803, -0.04212135449051857, -0.004481813870370388, 0.2014150470495224, -0.07074250280857086, 0.1520845890045166, 0.10371026396751404, -0.06049598753452301, -0.20662494003772736, 0.03809158131480217, 0.04201696068048477, 0.019130051136016846, 0.024141104891896248, -0.19706910848617554, 0.08071039617061615, -0.028898410499095917, -0.07990600168704987, 0.17875170707702637, -0.19929231703281403, -0.12851081788539886, 0.10677357763051987, 0.018770020455121994, -0.19798976182937622, -0.14952610433101654, -0.10458961874246597, -0.0204896479845047, -0.12995094060897827, 0.041279539465904236, 0.014258908107876778, 0.014810405671596527, 0.010652083903551102, 0.02346709743142128, 0.03820135444402695, -0.04403134435415268, 0.2022320032119751, -0.040240850299596786, -0.00677528977394104, -0.05459889397025108, -0.08097099512815475, 0.012206795625388622, -0.05523540452122688, 0.12372337281703949, -0.010677291080355644, 0.03454338386654854, -0.17148974537849426, -0.042799804359674454, -0.06020277738571167, 0.035965804010629654, -0.09800209105014801, -0.08035019785165787, -0.044318266212940216, 0.08121439814567566, 0.08592808991670609, -0.011807112023234367, 0.004592899698764086, -0.0995112806558609, 0.09020279347896576, 0.2008526772260666, 0.19356492161750793, 0.057227738201618195, -0.056221771985292435, 0.033027902245521545, -0.0363139733672142, 0.04097477346658707, -0.2229323834180832, 0.039946265518665314, 0.0660935789346695, 0.027191683650016785, 0.07270630449056625, -0.0050587123259902, -0.16379666328430176, -0.09244991093873978, 0.08992933481931686, -0.05790415778756142, -0.16807101666927338, -0.03529549762606621, 0.04140728712081909, -0.21035249531269073, -0.04760543256998062, 0.037281136959791183, -0.017871566116809845, -0.04378291592001915, 0.0276334248483181, 0.0753527581691742, -0.02573961578309536, 0.0857105553150177, 0.0968673974275589, 0.08900167047977448, -0.09695399552583694, 0.051445744931697845, 0.07814038544893265, -0.015816476196050644, 0.02846227027475834, 0.14087340235710144, -0.03826410695910454, -0.04601595178246498, 0.08259574323892593, 0.11946269869804382, -0.011369331739842892, -0.05124291777610779, 0.0039620790630578995, -0.049147140234708786, 0.06518470495939255, 0.12247049808502197, 0.0250368844717741, -0.014529009349644184, 0.07675154507160187, 0.02463647536933422, -0.0901833325624466, 0.1191658079624176, 0.041540008038282394, 0.021193431690335274, -0.03237847983837128, -0.034603528678417206, -0.012499326840043068, 0.0018930385122075677, -0.013601796701550484, -0.0026141954585909843, -0.09225299209356308, 0.0024042355362325907, -0.11352413147687912, 0.013482348993420601, -0.060120537877082825, 0.0031534277368336916, 0.027116654440760612, -0.051312822848558426, -0.006352854426950216, -0.0053253467194736, -0.082282654941082, -0.05532316118478775, -0.02367786131799221, 0.07458903640508652, -0.13407236337661743, 0.03929748386144638, 0.07778579741716385, -0.10331465303897858, 0.06806895136833191, -0.008187590166926384, 0.012664705514907837, 0.0053971088491380215, -0.13933587074279785, 0.05808352306485176, -0.03133996203541756, -0.004783592652529478, 0.005858907010406256, -0.1819247603416443, -0.009001663886010647, -0.04236048087477684, -0.0687473714351654, 0.0123074259608984, -0.01007341779768467, -0.12471766024827957, 0.11227453500032425, 0.0002743391669355333, -0.06740614026784897, -0.014570803381502628, 0.04962038993835449, 0.07010367512702942, -0.006095271557569504, 0.1029348373413086, -0.02286364696919918, 0.08129947632551193, -0.18399451673030853, -0.0068764397874474525, -0.01571904495358467, 0.05597268417477608, -0.013975427486002445, -0.05027436092495918, 0.05743827670812607, -0.018061965703964233, 0.17213313281536102, 0.004430451430380344, 0.07709904760122299, 0.04961197450757027, 0.013601860031485558, 0.0427589975297451, 0.07069148123264313, 0.06631975620985031, -0.017075147479772568, -0.0007692971848882735, 0.03489156439900398, 0.003476202953606844, -0.04633419215679169, -0.13110819458961487, 0.07080189883708954, 0.17841176688671112, 0.07283827662467957, 0.022690467536449432, 0.013556991703808308, -0.13281375169754028, -0.07107050716876984, 0.10579551756381989, -0.018156331032514572, -0.028945455327630043, -0.06893990933895111, 0.23089949786663055, 0.14948968589305878, -0.19252033531665802, 0.07802820205688477, -0.05396091192960739, -0.039337433874607086, -0.14227846264839172, -0.16513042151927948, -0.05926815792918205, -0.05480305850505829, -0.032690949738025665, -0.06056531146168709, 0.05205392464995384, 0.03780041262507439, -0.004041227512061596, -0.02319422736763954, 0.10291451960802078, 0.02876470424234867, -0.04133755341172218, 0.044333186000585556, 0.05758066475391388, 0.043520525097846985, -0.10267458111047745, 0.012859337031841278, 0.00009975417924579233, 0.00781586766242981, 0.06644705682992935, 0.022875890135765076, -0.068130262196064, 0.027877703309059143, -0.0159730426967144, -0.11902613937854767, 0.04861007258296013, -0.008199073374271393, -0.022566575556993484, 0.15131603181362152, 0.035203587263822556, 0.0075862049125134945, -0.010280744172632694, 0.24109400808811188, -0.07023292779922485, -0.08434440195560455, -0.133211150765419, 0.07812686264514923, -0.06614357233047485, 0.023489415645599365, 0.012412266805768013, -0.12309877574443817, 0.013406345620751381, 0.1877075582742691, 0.12149964272975922, -0.018842259421944618, 0.010303139686584473, 0.051993947476148605, 0.010083645582199097, -0.030714169144630432, 0.010844341479241848, 0.05824806168675423, 0.20381180942058563, -0.08090908080339432, 0.05947291851043701, -0.017558753490447998, -0.07183664292097092, -0.024221323430538177, 0.11179669946432114, -0.0072897085919976234, -0.014546004123985767, -0.05833130329847336, 0.14228056371212006, -0.07756908982992172, -0.21425963938236237, 0.05329543352127075, -0.0845317468047142, -0.13932272791862488, -0.05179408937692642, 0.02242196351289749, -0.02796894498169422, 0.008448448032140732, 0.05870514735579491, -0.05420953780412674, 0.1791611909866333, 0.02900891751050949, -0.04865198954939842, -0.10163167864084244, 0.0589936338365078, -0.16139982640743256, 0.27064254879951477, 0.017819296568632126, 0.048935048282146454, 0.11234572529792786, -0.015481040813028812, -0.1309996396303177, 0.012740112841129303, 0.1132117360830307, -0.060685716569423676, 0.06256001442670822, 0.15765917301177979, 0.0030845897272229195, 0.11834097653627396, 0.06628477573394775, -0.056056614965200424, 0.03762415796518326, -0.07457998394966125, -0.04494589567184448, -0.12201961129903793, 0.07539553195238113, -0.09938636422157288, 0.15182992815971375, 0.12770362198352814, -0.07337206602096558, -0.005672953557223082, -0.023329490795731544, 0.0787353366613388, 0.017383035272359848, 0.10956698656082153, 0.004856250248849392, -0.18510037660598755, 0.04489986225962639, 0.004797583911567926, 0.09587015211582184, -0.21170052886009216, -0.05072372034192085, 0.04455697536468506, -0.018744779750704765, -0.08346759527921677, 0.1200728565454483, 0.04002266749739647, 0.020804665982723236, -0.03638550639152527, -0.048523325473070145, 0.016989044845104218, 0.1550002098083496, -0.10584764182567596, -0.014470396563410759 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # scibert_scivocab_uncased-finetuned-molstmraw-mlm-0.3-5epochs This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8095 | 1.0 | 1265 | 0.6320 | | 0.6481 | 2.0 | 2530 | 0.5629 | | 0.5938 | 3.0 | 3795 | 0.5315 | | 0.5664 | 4.0 | 5060 | 0.5132 | | 0.5526 | 5.0 | 6325 | 0.5084 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "base_model": "allenai/scibert_scivocab_uncased", "model-index": [{"name": "scibert_scivocab_uncased-finetuned-molstmraw-mlm-0.3-5epochs", "results": []}]}
fill-mask
matr1xx/scibert_scivocab_uncased-finetuned-molstmraw-mlm-0.3-5epochs
[ "transformers", "safetensors", "bert", "fill-mask", "generated_from_trainer", "base_model:allenai/scibert_scivocab_uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T01:58:18+00:00
[]
[]
TAGS #transformers #safetensors #bert #fill-mask #generated_from_trainer #base_model-allenai/scibert_scivocab_uncased #autotrain_compatible #endpoints_compatible #region-us
scibert\_scivocab\_uncased-finetuned-molstmraw-mlm-0.3-5epochs ============================================================== This model is a fine-tuned version of allenai/scibert\_scivocab\_uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5085 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.0.1 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #safetensors #bert #fill-mask #generated_from_trainer #base_model-allenai/scibert_scivocab_uncased #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 62, 113, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #bert #fill-mask #generated_from_trainer #base_model-allenai/scibert_scivocab_uncased #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1118147224187851, 0.030930617824196815, -0.0017214714316651225, 0.10363496840000153, 0.15682780742645264, 0.013127543963491917, 0.14850766956806183, 0.08379769325256348, -0.05978986993432045, 0.0463021881878376, 0.13643211126327515, 0.11435095965862274, 0.013692171312868595, 0.1799919307231903, -0.05697093904018402, -0.24398331344127655, 0.030083170160651207, 0.006135428790003061, -0.08989089727401733, 0.10718296468257904, 0.09142853319644928, -0.14038489758968353, 0.08175505697727203, -0.013127452693879604, -0.1555613875389099, 0.020395802333950996, 0.04912331700325012, -0.049735426902770996, 0.13419508934020996, 0.030291235074400902, 0.1524302065372467, 0.017729708924889565, 0.11948850005865097, -0.18851250410079956, 0.017070157453417778, 0.06069144979119301, 0.01521147508174181, 0.06535554677248001, 0.04942241683602333, 0.012318518944084644, 0.05438382178544998, -0.09907568246126175, 0.06123511120676994, 0.021552547812461853, -0.14795039594173431, -0.20616231858730316, -0.06992645561695099, 0.004097623284906149, 0.09148893505334854, 0.08493019640445709, -0.017784425988793373, 0.13876760005950928, -0.08389119803905487, 0.09548177570104599, 0.21717946231365204, -0.28294458985328674, -0.07855138927698135, 0.0037997919134795666, 0.02350413240492344, 0.06450848281383514, -0.11022087931632996, -0.006397835444658995, 0.05555279925465584, 0.01917775720357895, 0.13273502886295319, -0.03389766067266464, -0.09894979745149612, -0.0022907552774995565, -0.13795381784439087, -0.007698554079979658, 0.10196089744567871, 0.05909574404358864, -0.06096354499459267, -0.02616759017109871, -0.07316046953201294, -0.12395874410867691, -0.05440773442387581, -0.04238972067832947, 0.04250564053654671, -0.04139431565999985, -0.09213458746671677, -0.0029468461871147156, -0.099732406437397, -0.10468050092458725, -0.04561200365424156, 0.2072988599538803, 0.0424584224820137, -0.0003535938449203968, -0.009837445802986622, 0.08650346100330353, -0.05423477292060852, -0.14319521188735962, 0.011598310433328152, 0.015732863917946815, -0.059666361659765244, -0.06035219505429268, -0.06588061153888702, -0.07589099556207657, 0.006365817505866289, 0.16798044741153717, -0.04931982234120369, 0.04426856338977814, 0.021306389942765236, 0.021087808534502983, -0.11457684636116028, 0.1652723252773285, -0.06190919131040573, -0.009155008010566235, -0.002162640681490302, 0.07213019579648972, 0.027318421751260757, -0.006808066740632057, -0.08328062295913696, 0.013571427203714848, 0.09279981255531311, 0.014026951044797897, -0.08779414743185043, 0.0653543770313263, -0.0618184469640255, 0.0051917643286287785, -0.0019958759658038616, -0.08939729630947113, 0.027223806828260422, -0.004201140720397234, -0.05820619687438011, -0.047020915895700455, 0.025894025340676308, 0.020967815071344376, 0.012486821971833706, 0.11478791385889053, -0.10463384538888931, 0.02202233113348484, -0.09245587885379791, -0.13661445677280426, -0.005268559791147709, -0.056382324546575546, 0.019054314121603966, -0.11486481130123138, -0.17771926522254944, -0.016905738040804863, 0.04503539949655533, -0.03299444913864136, 0.006790828425437212, -0.04793110117316246, -0.054708823561668396, 0.014868109486997128, -0.007308519445359707, 0.08431936055421829, -0.06037432327866554, 0.09613701701164246, 0.0635775774717331, 0.08656575530767441, -0.034427814185619354, 0.036585718393325806, -0.12175105512142181, 0.02625551074743271, -0.18793824315071106, 0.019503002986311913, -0.06285804510116577, 0.0583919994533062, -0.07711178809404373, -0.0820244699716568, -0.01718655787408352, 0.017328152433037758, 0.10290568321943283, 0.14478205144405365, -0.17276312410831451, -0.06795624643564224, 0.2068253606557846, -0.10055512934923172, -0.1159927025437355, 0.13928814232349396, -0.05543261766433716, 0.036234427243471146, 0.063231460750103, 0.15590055286884308, 0.03934785723686218, -0.11300278455018997, 0.026016809046268463, -0.027730943635106087, 0.07147177308797836, 0.010744355618953705, 0.07792390882968903, 0.00698471162468195, -0.031344566494226456, 0.018112482503056526, -0.042579274624586105, 0.059990353882312775, -0.10690850019454956, -0.08220536261796951, -0.031148217618465424, -0.1189608946442604, 0.0865698829293251, 0.05991475656628609, 0.07424493879079819, -0.11811773478984833, -0.08741670101881027, 0.03948179632425308, 0.07954731583595276, -0.05938403308391571, 0.013912724331021309, -0.0820956900715828, 0.05004454776644707, -0.059862177819013596, -0.022155117243528366, -0.15443341434001923, -0.08564672619104385, 0.008911028504371643, 0.01847558654844761, 0.016755981370806694, -0.013356727547943592, 0.09525207430124283, 0.10344523191452026, -0.07361577451229095, -0.043842434883117676, -0.03544490411877632, 0.012337792664766312, -0.12736454606056213, -0.19949956238269806, -0.03949308767914772, -0.03405425697565079, 0.13342495262622833, -0.22964611649513245, 0.03647831082344055, -0.060902051627635956, 0.10528581589460373, 0.051763951778411865, -0.02190856635570526, -0.04181288182735443, 0.07884413003921509, -0.031152570620179176, -0.059813179075717926, 0.0400274321436882, -0.013876249082386494, -0.08729769289493561, -0.04599817842245102, -0.15225297212600708, 0.20024919509887695, 0.1021745353937149, -0.09546856582164764, -0.11039768904447556, 0.011510089971125126, -0.040571846067905426, -0.025190968066453934, -0.06613874435424805, 0.01366389263421297, 0.09746318310499191, -0.006290959659963846, 0.140188530087471, -0.05633595213294029, -0.0059603978879749775, 0.031994812190532684, -0.05526973679661751, 0.024387070909142494, 0.094133161008358, 0.08080926537513733, -0.1225690096616745, 0.14037813246250153, 0.17577491700649261, -0.09149051457643509, 0.13938137888908386, -0.022094065323472023, -0.0865061804652214, -0.029290497303009033, -0.009342033416032791, 0.021435420960187912, 0.12648041546344757, -0.08792071789503098, -0.0013829689705744386, -0.0014032702893018723, 0.01246466301381588, -0.01384695153683424, -0.20269441604614258, -0.04901520907878876, 0.053785666823387146, -0.03146914020180702, -0.03228142485022545, -0.010811657644808292, -0.010641327127814293, 0.10572654008865356, -0.002219495363533497, -0.08639387786388397, 0.02305934578180313, 0.0007150981691665947, -0.07467266917228699, 0.21584594249725342, -0.07775694131851196, -0.12379129976034164, -0.11883029341697693, -0.05094616487622261, -0.041487593203783035, 0.048002731055021286, 0.0473654605448246, -0.09898297488689423, -0.036718230694532394, -0.07986470311880112, 0.01701515167951584, 0.04495765268802643, 0.04836854338645935, -0.012447342276573181, -0.020032208412885666, 0.10012352466583252, -0.07805273681879044, -0.007781142834573984, -0.04630802571773529, -0.06896079331636429, 0.04226498678326607, 0.03447971120476723, 0.14230671525001526, 0.12716057896614075, -0.031084582209587097, -0.007383150048553944, -0.019298620522022247, 0.23678386211395264, -0.0661667212843895, -0.029400084167718887, 0.1334618330001831, -0.02904370427131653, 0.03566275164484978, 0.14280825853347778, 0.05687103047966957, -0.10071929544210434, 0.029644636437296867, 0.050092246383428574, -0.03074459917843342, -0.19288700819015503, -0.03393428027629852, -0.0436980277299881, -0.018695682287216187, 0.10483109205961227, 0.003364009317010641, 0.027398046106100082, 0.08103834092617035, 0.012731415219604969, 0.049696240574121475, -0.032190803438425064, 0.07187958061695099, 0.05588773265480995, 0.04549550265073776, 0.13592223823070526, -0.029889443889260292, -0.09164022654294968, 0.02032390981912613, -0.038922157138586044, 0.1926967054605484, 0.022630905732512474, 0.0986931100487709, 0.037937063723802567, 0.1636844277381897, -0.006326103582978249, 0.09327125549316406, 0.03348952531814575, -0.08016469329595566, -0.004699951037764549, -0.04868096113204956, -0.04894666001200676, 0.04766843467950821, -0.0662824884057045, 0.06095387786626816, -0.15055878460407257, 0.016821345314383507, 0.05600203946232796, 0.24800235033035278, 0.0879724994301796, -0.3387124240398407, -0.10983133316040039, 0.015981141477823257, -0.028929486870765686, -0.033515527844429016, 0.015134594403207302, 0.14637640118598938, -0.06895474344491959, 0.03825628012418747, -0.06825654208660126, 0.08008260279893875, 0.012130873277783394, 0.05717926472425461, 0.04039907082915306, 0.10375034809112549, -0.01851572096347809, 0.05274264141917229, -0.2716466784477234, 0.31257885694503784, 0.011442750692367554, 0.07939445227384567, -0.050353679805994034, -0.010494109243154526, 0.04432113096117973, 0.08396780490875244, 0.09274128079414368, -0.019036028534173965, -0.10695895552635193, -0.25165510177612305, -0.034206219017505646, 0.03260627016425133, 0.12380912154912949, -0.037549182772636414, 0.12427427619695663, -0.03887695074081421, -0.005801861174404621, 0.08672408014535904, 0.0005648366641253233, -0.12929433584213257, -0.07371646910905838, -0.0194602869451046, 0.03463798388838768, 0.012106782756745815, -0.08712136745452881, -0.10544966161251068, -0.10043931007385254, 0.15684892237186432, -0.004585374612361193, 0.007086311466991901, -0.12874464690685272, 0.10014598071575165, 0.07087278366088867, -0.08424840867519379, 0.04444954916834831, 0.020266806706786156, 0.0971628800034523, 0.03139877691864967, -0.04149239510297775, 0.13383105397224426, -0.09041986614465714, -0.17137351632118225, -0.08871903270483017, 0.08250483870506287, 0.03788832202553749, 0.05493169650435448, 0.0023405614774674177, 0.021421916782855988, 0.01039952877908945, -0.06691562384366989, 0.04546869546175003, -0.031084461137652397, 0.037411484867334366, 0.05899609997868538, -0.06716129183769226, 0.0031841308809816837, -0.05444074422121048, -0.01499800756573677, 0.14535880088806152, 0.30185672640800476, -0.08964458853006363, -0.022107485681772232, 0.06398554891347885, -0.05025108531117439, -0.21772001683712006, 0.04966704174876213, 0.033416327089071274, 0.030145902186632156, 0.09207482635974884, -0.14917607605457306, 0.10145420581102371, 0.10125527530908585, -0.015948588028550148, 0.07145228236913681, -0.2558742165565491, -0.134987935423851, 0.14667841792106628, 0.1609387844800949, 0.13745281100273132, -0.15076571702957153, -0.015221363864839077, -0.042545001953840256, -0.061480812728405, 0.06631500273942947, -0.10896073281764984, 0.11246808618307114, -0.005443271715193987, 0.0439886748790741, 0.026576681062579155, -0.05713162571191788, 0.13538910448551178, -0.03145125135779381, 0.12169520556926727, -0.05671081691980362, 0.0015259761130437255, 0.043099261820316315, -0.04803002253174782, 0.004068058915436268, -0.06734106689691544, 0.03523644059896469, -0.012096951715648174, -0.028370007872581482, -0.060662686824798584, 0.04153748229146004, -0.0270268302410841, -0.06774692982435226, -0.013437927700579166, 0.04919562488794327, 0.049304068088531494, -0.0147562175989151, 0.13422243297100067, -0.014773331582546234, 0.19715382158756256, 0.0978461503982544, 0.06673058867454529, -0.029342640191316605, -0.011841158382594585, 0.00920728500932455, -0.030973833054304123, 0.0672040656208992, -0.09513767063617706, 0.049366295337677, 0.11893988400697708, 0.019008439034223557, 0.14432266354560852, 0.07918913662433624, -0.018377484753727913, 0.01853422075510025, 0.07514842599630356, -0.15480385720729828, -0.09594180434942245, -0.005722393281757832, -0.029743291437625885, -0.1265120953321457, 0.06126757338643074, 0.11755158007144928, -0.07702923566102982, 0.005928195547312498, -0.02996598556637764, 0.008824478834867477, -0.05812655761837959, 0.21947361528873444, 0.055906832218170166, 0.05174444615840912, -0.08167293667793274, 0.06010294333100319, 0.03701890632510185, -0.07687924057245255, 0.0074511426500976086, 0.04560743644833565, -0.06943404674530029, -0.04260966181755066, 0.07494629174470901, 0.17304448783397675, -0.040977030992507935, -0.044315315783023834, -0.16309545934200287, -0.11485492438077927, 0.04247139021754265, 0.19383639097213745, 0.08513858914375305, 0.002914323704317212, -0.01563018187880516, 0.025022132322192192, -0.11655321717262268, 0.0953185111284256, 0.06664593517780304, 0.08460216969251633, -0.15835435688495636, 0.17263703048229218, -0.024812722578644753, 0.02084321342408657, -0.03323017433285713, 0.04142006114125252, -0.13285104930400848, 0.0036526957992464304, -0.14688237011432648, -0.038208723068237305, -0.03128010034561157, -0.00848314631730318, 0.009873866103589535, -0.06931926310062408, -0.0626552402973175, 0.006592674180865288, -0.11012641340494156, -0.025239745154976845, 0.04540218040347099, 0.03430594876408577, -0.12141522765159607, -0.047983381897211075, 0.0379004031419754, -0.07184834778308868, 0.04195312410593033, 0.03834018111228943, 0.026045462116599083, 0.055212102830410004, -0.20919886231422424, 0.0070424447767436504, 0.04627974331378937, -0.0023603211157023907, 0.05246531218290329, -0.06968174129724503, -0.01055689062923193, -0.017526427283883095, 0.06380004435777664, 0.0067513566464185715, 0.08537513017654419, -0.11228174716234207, 0.005409439094364643, -0.008699730969965458, -0.07444359362125397, -0.053363751620054245, 0.014138635247945786, 0.06410080194473267, -0.0022886344231665134, 0.1800071895122528, -0.11910305917263031, 0.042278874665498734, -0.20656289160251617, 0.006117986980825663, -0.011335887014865875, -0.10614921897649765, -0.11571090668439865, -0.06599300354719162, 0.07294106483459473, -0.04119565710425377, 0.10771314799785614, -0.005419691558927298, 0.1046239584684372, 0.03403294086456299, -0.0781373456120491, 0.07112763822078705, 0.03991910442709923, 0.21170055866241455, 0.03840293735265732, -0.06120303273200989, 0.024603521451354027, 0.05786745250225067, 0.10782963782548904, 0.13319826126098633, 0.2009057104587555, 0.1676073968410492, -0.04794928431510925, 0.10926881432533264, 0.021128738299012184, -0.06875350326299667, -0.12878885865211487, -0.010542883537709713, -0.04421980306506157, 0.06748943775892258, -0.020685357972979546, 0.1700849086046219, 0.0878809317946434, -0.15855398774147034, 0.02700704149901867, -0.061074402183294296, -0.08359390497207642, -0.1226201057434082, -0.037114717066287994, -0.10048099607229233, -0.14794953167438507, 0.000670160457957536, -0.10025183856487274, 0.024738777428865433, 0.10482706129550934, 0.003860335098579526, -0.001070079393684864, 0.2284306287765503, 0.0005410541780292988, 0.04975719004869461, 0.045460037887096405, -0.0026359588373452425, -0.02370016649365425, -0.05296875163912773, -0.10119466483592987, 0.013551954180002213, -0.03353523463010788, 0.011598694138228893, -0.07726675271987915, -0.06396449357271194, 0.05338776111602783, 0.0074126529507339, -0.11641772836446762, 0.011995094828307629, 0.021203219890594482, 0.04902977868914604, 0.04388369247317314, 0.019053656607866287, 0.013472161255776882, -0.015191534534096718, 0.2193126380443573, -0.08836157619953156, -0.058786969631910324, -0.12700220942497253, 0.2748746871948242, 0.04146990925073624, 0.03471085801720619, 0.00031213750480674207, -0.08599106222391129, 0.0314178504049778, 0.2112875133752823, 0.16776710748672485, -0.09158285707235336, 0.015171113424003124, -0.01875389739871025, -0.017165524885058403, -0.0587194450199604, 0.0959724709391594, 0.08384773880243301, 0.01858736388385296, -0.08545918017625809, -0.03542851284146309, -0.02458512783050537, -0.02922961674630642, -0.0502672903239727, 0.03385603427886963, 0.0399441197514534, 0.03461369499564171, -0.056907765567302704, 0.05821479484438896, -0.035205621272325516, -0.09570378810167313, 0.08375745266675949, -0.17958571016788483, -0.14539620280265808, -0.031313177198171616, 0.07188579440116882, 0.01988285221159458, 0.07452940195798874, -0.046369217336177826, 0.002105859573930502, 0.059163786470890045, -0.010874836705625057, -0.030644696205854416, -0.1297958940267563, 0.08232343941926956, -0.06529752910137177, 0.2395506054162979, -0.03646385669708252, 0.04590591788291931, 0.12530872225761414, 0.03134775534272194, -0.06601576507091522, 0.08715943992137909, 0.054000891745090485, -0.09691369533538818, 0.03032141737639904, 0.137098491191864, -0.05903799086809158, 0.12077084928750992, 0.043246183544397354, -0.19321057200431824, 0.03482510894536972, -0.0747395008802414, -0.0837114080786705, -0.03079664707183838, -0.018417464569211006, -0.04984363541007042, 0.1350407749414444, 0.22168764472007751, -0.03245586156845093, 0.017903542146086693, -0.051380664110183716, 0.0425993837416172, 0.07995899021625519, 0.06028291955590248, -0.050747100263834, -0.2531152069568634, 0.034709081053733826, 0.06650786101818085, -0.014515536837279797, -0.2709583640098572, -0.0941937267780304, -0.01779800094664097, -0.055090270936489105, -0.07318885624408722, 0.08645324409008026, 0.11537500470876694, 0.05244455114006996, -0.05327722057700157, -0.15888315439224243, -0.05794563889503479, 0.16663426160812378, -0.11351912468671799, -0.09981794655323029 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-snli-model3 This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9962 - Accuracy: 0.7495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 74 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3313 | 1.0 | 2146 | 0.2725 | 0.8994 | | 0.2398 | 2.0 | 4292 | 0.2611 | 0.9070 | | 0.1536 | 3.0 | 6438 | 0.2971 | 0.9071 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "other", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-350m", "model-index": [{"name": "opt-350m-snli-model3", "results": []}]}
text-classification
varun-v-rao/opt-350m-snli-model3
[ "transformers", "tensorboard", "safetensors", "opt", "text-classification", "generated_from_trainer", "base_model:facebook/opt-350m", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:00:23+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
opt-350m-snli-model3 ==================== This model is a fine-tuned version of facebook/opt-350m on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9962 * Accuracy: 0.7495 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 256 * eval\_batch\_size: 256 * seed: 74 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 75, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.0993136465549469, 0.09367714077234268, -0.001601969706825912, 0.10353945940732956, 0.15903396904468536, 0.01025413442403078, 0.1590503305196762, 0.10546185076236725, -0.04875786229968071, 0.04933738708496094, 0.12458546459674835, 0.11367698758840561, 0.02869042381644249, 0.16231851279735565, -0.08224722743034363, -0.21447892487049103, 0.008625011891126633, 0.029816821217536926, -0.058423448354005814, 0.12591862678527832, 0.08063479512929916, -0.12516455352306366, 0.11301283538341522, -0.008284157142043114, -0.16881616413593292, 0.011029412969946861, 0.037183426320552826, -0.06493084132671356, 0.13258221745491028, 0.061329733580350876, 0.11938081681728363, 0.03530096635222435, 0.07028348743915558, -0.1884985864162445, 0.015508861280977726, 0.06607021391391754, -0.02052195556461811, 0.08558189868927002, 0.034764308482408524, 0.002681867452338338, 0.09714103490114212, -0.09536311030387878, 0.058987680822610855, 0.025816181674599648, -0.14154499769210815, -0.19367027282714844, -0.061259206384420395, 0.04620132967829704, 0.08910222351551056, 0.09159869700670242, -0.026502028107643127, 0.1348888874053955, -0.03491079434752464, 0.09286647289991379, 0.18456128239631653, -0.31239697337150574, -0.06065240502357483, 0.024900171905755997, 0.023830553516745567, 0.09295310825109482, -0.09792192280292511, 0.007865053601562977, 0.07179899513721466, 0.02089693211019039, 0.13016705214977264, -0.01971639133989811, 0.003070711623877287, -0.019136980175971985, -0.1390799880027771, -0.030557725578546524, 0.16689778864383698, 0.07037147879600525, -0.049342136830091476, -0.06967389583587646, -0.06285741180181503, -0.13602523505687714, -0.030926771461963654, -0.011546510271728039, 0.03395848348736763, -0.020479364320635796, -0.07464312016963959, -0.023230068385601044, -0.11407513916492462, -0.05852559953927994, -0.043954286724328995, 0.1282089650630951, 0.023520460352301598, 0.0014994028024375439, -0.021242249757051468, 0.0936666801571846, -0.01788100227713585, -0.13513197004795074, 0.02991762012243271, 0.016784703359007835, -0.0000112240186354029, -0.05664348229765892, -0.04053952172398567, -0.09516307711601257, 0.006218829192221165, 0.10101092606782913, -0.07388283312320709, 0.05657209828495979, -0.013141212984919548, 0.05036217346787453, -0.09317297488451004, 0.15235374867916107, -0.03451172262430191, -0.018040070310235023, 0.018620852380990982, 0.10493646562099457, 0.05685609206557274, -0.01981455832719803, -0.13793762028217316, 0.022458719089627266, 0.10951138287782669, 0.01599777489900589, -0.06163685768842697, 0.08071526885032654, -0.05445149540901184, -0.012543505057692528, 0.062382638454437256, -0.0756879672408104, 0.023584047332406044, 0.010193182155489922, -0.05199205502867699, -0.08892656862735748, 0.032998014241456985, 0.015091034583747387, 0.0025431388057768345, 0.09680496156215668, -0.08761540055274963, 0.005705419462174177, -0.07259543240070343, -0.12241032719612122, 0.014820098876953125, -0.061399441212415695, 0.012520132586359978, -0.12680017948150635, -0.1509387493133545, -0.010214772075414658, 0.041662801057100296, -0.024695580825209618, -0.048054784536361694, -0.05509628355503082, -0.07283958047628403, 0.022432081401348114, -0.02156483754515648, 0.07644453644752502, -0.07081248611211777, 0.10138242691755295, 0.050130635499954224, 0.05735737830400467, -0.058244962245225906, 0.03479621186852455, -0.09798593074083328, 0.035778485238552094, -0.1859290897846222, 0.034767795354127884, -0.04098896309733391, 0.06483111530542374, -0.07370932400226593, -0.08489556610584259, -0.012036318890750408, 0.014487880282104015, 0.059221167117357254, 0.10105706006288528, -0.15893054008483887, -0.08119814097881317, 0.1733347326517105, -0.10238049924373627, -0.15475544333457947, 0.14476418495178223, -0.05589601770043373, 0.032535750418901443, 0.07191558927297592, 0.18742360174655914, 0.07208631187677383, -0.09492873400449753, -0.0007310793735086918, -0.013588222675025463, 0.039779454469680786, -0.05383329465985298, 0.07439615577459335, -0.0014667789218947291, -0.01677742227911949, 0.0068222577683627605, -0.03424995392560959, 0.06296850740909576, -0.07257156819105148, -0.0805555209517479, -0.028266193345189095, -0.09363951534032822, 0.053766410797834396, 0.06246207654476166, 0.05588036775588989, -0.12260666489601135, -0.0925411581993103, 0.05005688592791557, 0.062427304685115814, -0.06698557734489441, 0.012198803946375847, -0.07384879887104034, 0.08301888406276703, -0.07326845079660416, -0.019064780324697495, -0.1494729369878769, -0.049283988773822784, 0.013050209730863571, -0.002676003612577915, 0.018900569528341293, 0.01954449526965618, 0.06401064246892929, 0.08304376155138016, -0.07524439692497253, -0.035915717482566833, -0.01239361334592104, 0.010319488123059273, -0.12710361182689667, -0.19029784202575684, -0.012230195105075836, -0.029872143641114235, 0.1627526730298996, -0.2636380195617676, 0.056290071457624435, 0.00829892698675394, 0.08398081362247467, 0.0407632552087307, -0.008397921919822693, -0.029630865901708603, 0.06680379807949066, -0.03870314359664917, -0.05552756413817406, 0.06814855337142944, 0.013629002496600151, -0.10792715847492218, -0.028490781784057617, -0.17854301631450653, 0.20623552799224854, 0.13717404007911682, -0.08146556466817856, -0.08453919738531113, -0.011276626028120518, -0.03905186429619789, -0.02110397443175316, -0.04852963238954544, -0.0029046181589365005, 0.1542375385761261, -0.004647554364055395, 0.16764092445373535, -0.09316561371088028, -0.029051119461655617, 0.03772062808275223, -0.042416103184223175, -0.007572001777589321, 0.11996159702539444, 0.09421151876449585, -0.16770248115062714, 0.15424804389476776, 0.16839365661144257, -0.045776937156915665, 0.16687113046646118, -0.031667739152908325, -0.04557865858078003, -0.028044581413269043, 0.021330006420612335, 0.01582523249089718, 0.11148513853549957, -0.11229999363422394, -0.004424783401191235, 0.0020413158927112818, 0.008354177698493004, 0.011986544355750084, -0.2061578780412674, -0.0299456138163805, 0.044003404676914215, -0.05369812250137329, -0.004958156030625105, -0.017366094514727592, -0.0001281106233363971, 0.106336809694767, 0.008893078193068504, -0.0717967078089714, 0.05141771584749222, -0.007572338916361332, -0.09588389098644257, 0.20682016015052795, -0.06530901789665222, -0.20874688029289246, -0.15462157130241394, -0.024887841194868088, -0.05996669456362724, 0.03602893278002739, 0.05780400335788727, -0.07837025821208954, -0.03651467338204384, -0.11962604522705078, -0.00287397182546556, 0.01889985240995884, 0.023084618151187897, 0.0030907297041267157, 0.012339775450527668, 0.09439440816640854, -0.08573844283819199, -0.019545618444681168, -0.04262605309486389, -0.03664756938815117, 0.02982034906744957, 0.025667913258075714, 0.11020112782716751, 0.12846717238426208, -0.032469943165779114, 0.0018258914351463318, -0.03642142564058304, 0.21604496240615845, -0.07911066710948944, -0.017197977751493454, 0.13033421337604523, -0.02467172034084797, 0.049683280289173126, 0.1448608934879303, 0.04975315183401108, -0.10128264129161835, 0.03311643749475479, 0.03375811502337456, -0.03345262631773949, -0.19121424853801727, -0.04347296431660652, -0.0421668216586113, 0.013662007637321949, 0.10265667736530304, 0.03314237669110298, 0.03642089664936066, 0.05933120846748352, 0.008328014053404331, 0.06271255016326904, -0.007325056008994579, 0.06988463550806046, 0.11273583024740219, 0.048816632479429245, 0.13469913601875305, -0.05578817427158356, -0.067242830991745, 0.03876565396785736, -0.037184521555900574, 0.18611186742782593, 0.02009378746151924, 0.1323653608560562, 0.047527559101581573, 0.14065635204315186, 0.02021435834467411, 0.05166438966989517, 0.005377401597797871, -0.052066512405872345, -0.012241809628903866, -0.041677430272102356, -0.04085436463356018, 0.032163724303245544, -0.05966261029243469, 0.05897662416100502, -0.13783244788646698, 0.02166525088250637, 0.050081703811883926, 0.2175867110490799, 0.057429105043411255, -0.3340688645839691, -0.09189373254776001, 0.023665111511945724, -0.019435159862041473, -0.03720470890402794, 0.02435842528939247, 0.15913857519626617, -0.0600556805729866, 0.05604997277259827, -0.07768478244543076, 0.08168526738882065, -0.0560663565993309, 0.056505393236875534, 0.043363526463508606, 0.0641632154583931, -0.027741963043808937, 0.07681118696928024, -0.2732435166835785, 0.2771662473678589, 0.018673798069357872, 0.06887555867433548, -0.05680348724126816, -0.006556075531989336, 0.021310558542609215, 0.10123348236083984, 0.07719625532627106, -0.018657539039850235, -0.07328671216964722, -0.20822270214557648, -0.061209481209516525, 0.022207161411643028, 0.08521603792905807, -0.04545096307992935, 0.09930989146232605, -0.030067380517721176, 0.0013936817413195968, 0.082453653216362, 0.00696922093629837, -0.07580059766769409, -0.10610046237707138, -0.018759436905384064, 0.04185209795832634, -0.03383594751358032, -0.08140339702367783, -0.100151926279068, -0.10736086964607239, 0.1611025482416153, -0.04649233818054199, -0.04128926619887352, -0.09824211150407791, 0.07713017612695694, 0.02568483166396618, -0.08674388378858566, 0.028952499851584435, 0.009869081899523735, 0.1067587360739708, 0.010775896720588207, -0.060927145183086395, 0.13198308646678925, -0.06169374659657478, -0.18517956137657166, -0.06256245821714401, 0.13337288796901703, 0.017603637650609016, 0.03925873339176178, 0.005930659826844931, 0.0029648817144334316, -0.004252629354596138, -0.07469236105680466, 0.043385766446590424, -0.0286793801933527, 0.07071084529161453, 0.01612146385014057, -0.03939398005604744, -0.021009789779782295, -0.058866243809461594, -0.027116451412439346, 0.15828776359558105, 0.30630359053611755, -0.07775844633579254, -0.000058300756791140884, 0.06291381269693375, -0.060470014810562134, -0.18186113238334656, 0.04446539282798767, 0.01807856746017933, 0.00785209983587265, 0.05368249490857124, -0.14197371900081635, 0.07553906738758087, 0.08793666213750839, -0.026248162612318993, 0.10286746919155121, -0.2690941393375397, -0.1398804634809494, 0.11532210558652878, 0.15293389558792114, 0.14699234068393707, -0.15343855321407318, -0.039718836545944214, -0.04854137450456619, -0.08748999983072281, 0.13510200381278992, -0.13031472265720367, 0.10780974477529526, -0.006471065804362297, 0.03929469734430313, 0.012052061036229134, -0.05015258118510246, 0.12309321016073227, -0.0296731386333704, 0.11688430607318878, -0.07720378041267395, -0.015697186812758446, 0.05587908998131752, -0.05496178939938545, 0.02638101950287819, -0.13528773188591003, 0.018395908176898956, -0.0771624967455864, -0.03563828393816948, -0.060484886169433594, 0.047154899686574936, -0.04191525653004646, -0.04996282979846001, -0.04189683869481087, 0.03254402428865433, 0.037372440099716187, -0.006516280118376017, 0.15466664731502533, -0.006290082819759846, 0.17276613414287567, 0.1533735692501068, 0.10611246526241302, -0.05709117650985718, -0.007352911867201328, -0.0016810956876724958, -0.039188604801893234, 0.05929393693804741, -0.1327367126941681, 0.038476068526506424, 0.11290126293897629, -0.007437301333993673, 0.16094422340393066, 0.06561197340488434, -0.03572111949324608, 0.020928343757987022, 0.07726171612739563, -0.17485591769218445, -0.13293160498142242, -0.031170083209872246, -0.035535264760255814, -0.12022773921489716, 0.04898162931203842, 0.12805138528347015, -0.07250288128852844, 0.009454809129238129, -0.01242013368755579, 0.013109514489769936, -0.028791507706046104, 0.156460240483284, 0.06878580152988434, 0.05368146672844887, -0.08049188554286957, 0.07967055588960648, 0.05160168930888176, -0.08343178033828735, 0.03550190478563309, 0.04075605422258377, -0.0957195833325386, -0.04961723834276199, 0.02744979038834572, 0.21193142235279083, -0.01887316070497036, -0.06421338766813278, -0.15845578908920288, -0.1275712102651596, 0.05458509549498558, 0.17475567758083344, 0.08356974273920059, -0.0007736615953035653, -0.026218315586447716, -0.0011331697460263968, -0.12438537180423737, 0.11632172018289566, 0.026915092021226883, 0.0741138756275177, -0.1650475710630417, 0.1421058177947998, -0.001706845941953361, 0.012233659625053406, -0.025940129533410072, 0.04084058478474617, -0.12066387385129929, -0.005246064160019159, -0.11452586948871613, -0.008058430626988411, -0.02048490382730961, 0.001287223887629807, -0.006549607962369919, -0.05100871995091438, -0.06648870557546616, 0.0013904322404414415, -0.1012602373957634, -0.016833201050758362, 0.045925039798021317, 0.05685172975063324, -0.12555064260959625, -0.044425591826438904, 0.015603448264300823, -0.06469424813985825, 0.06965090334415436, 0.005677858833223581, 0.020942669361829758, 0.0446055606007576, -0.139973446726799, 0.03891170397400856, 0.06846235692501068, 0.01014662440866232, 0.04015077278017998, -0.08347303420305252, 0.000382864149287343, 0.0031661211978644133, 0.043021440505981445, 0.030906440690159798, 0.08928275853395462, -0.12588608264923096, 0.014645385555922985, -0.0033894816879183054, -0.055980321019887924, -0.05237859487533569, 0.046312231570482254, 0.07145051658153534, 0.0064178938046097755, 0.2162807583808899, -0.10855145007371902, 0.006059774663299322, -0.21538759768009186, 0.0014869135338813066, 0.007457979954779148, -0.11670301854610443, -0.0760488361120224, -0.0637296736240387, 0.060047902166843414, -0.058231912553310394, 0.13470342755317688, 0.03079707734286785, 0.04729453846812248, 0.040581487119197845, -0.047619130462408066, 0.04862111806869507, 0.028126796707510948, 0.20322594046592712, 0.01648768223822117, -0.05367870256304741, 0.04779328405857086, 0.021728070452809334, 0.12005019932985306, 0.0876503735780716, 0.1866576373577118, 0.15850770473480225, -0.05705046281218529, 0.09493189305067062, 0.052740439772605896, -0.04439971223473549, -0.133560448884964, 0.03136758133769035, -0.0651770532131195, 0.10996323823928833, -0.01534594688564539, 0.18205168843269348, 0.09606107324361801, -0.15134163200855255, 0.011933429166674614, -0.05757128819823265, -0.0800723135471344, -0.10665269941091537, -0.0805683508515358, -0.10091985017061234, -0.13340027630329132, 0.00041879285709001124, -0.10800131410360336, -0.00046286778524518013, 0.09382151812314987, -0.002420964650809765, -0.03559907153248787, 0.17761264741420746, 0.02111106552183628, 0.018072422593832016, 0.07548069208860397, 0.000635690288618207, -0.034415602684020996, -0.08413124829530716, -0.08425832539796829, 0.020771829411387444, -0.026953211054205894, 0.022028589621186256, -0.042543426156044006, -0.037620704621076584, 0.04577142000198364, -0.0012826418969780207, -0.11430951952934265, 0.010882518254220486, 0.02511143870651722, 0.058906592428684235, 0.05282813683152199, 0.016972029581665993, 0.006148868706077337, -0.0022692461498081684, 0.21249178051948547, -0.0670262947678566, -0.035769592970609665, -0.09483315050601959, 0.21511517465114594, 0.022014964371919632, 0.012503511272370815, 0.004249859601259232, -0.0913110300898552, 0.03620271757245064, 0.20113392174243927, 0.18795093894004822, -0.08489466458559036, 0.011428628116846085, -0.02979085221886635, -0.00927771907299757, -0.013778908178210258, 0.11086057126522064, 0.09515384584665298, -0.0031264792196452618, -0.06850716471672058, -0.022031676024198532, -0.04095778986811638, 0.003058206057175994, -0.027097616344690323, 0.0708029642701149, 0.04087304696440697, 0.022886181250214577, -0.0507175549864769, 0.0664522722363472, -0.028752975165843964, -0.11782082915306091, 0.03186293691396713, -0.20901881158351898, -0.14622588455677032, -0.01774238608777523, 0.09827025979757309, -0.009361466392874718, 0.057655688375234604, -0.03287911042571068, 0.01136055402457714, 0.04842710122466087, -0.022081729024648666, -0.0719287246465683, -0.07521489262580872, 0.04855450615286827, -0.1264241635799408, 0.21958349645137787, -0.04044339433312416, 0.03444710373878479, 0.1270146369934082, 0.026742402464151382, -0.06774930655956268, 0.09689594060182571, 0.037705905735492706, -0.03261606767773628, 0.04461106285452843, 0.0923699140548706, -0.03206231817603111, 0.11185823380947113, 0.06583627313375473, -0.13060453534126282, 0.009804640896618366, -0.11219795793294907, -0.07315476983785629, -0.0584101676940918, -0.02680509351193905, -0.056435566395521164, 0.13703954219818115, 0.18458306789398193, -0.03677817061543465, 0.001478645484894514, -0.04138929024338722, 0.013390361331403255, 0.07727710902690887, 0.0421149805188179, -0.025773048400878906, -0.2406579703092575, 0.012624694034457207, 0.0828690230846405, 0.002261980902403593, -0.33897665143013, -0.07129032909870148, -0.024436909705400467, -0.05147114768624306, -0.08759287744760513, 0.09134601056575775, 0.10415550321340561, 0.0545237772166729, -0.07132520526647568, -0.06716978549957275, -0.0684572383761406, 0.16859914362430573, -0.12543897330760956, -0.09019719064235687 ]
null
null
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Shadows-Zed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Shadows-Zed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Shadows-Zed ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "695.00 +/- 147.61", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Shadows-Zed/dqn-SpaceInvadersNoFrameskip-v4
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-07T02:00:27+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 43, 90, 73, 9, 5, 7 ]
[ "passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
[ 0.043572068214416504, 0.2414778620004654, -0.0026879787910729647, 0.012635791674256325, 0.05784223601222038, 0.0030472534708678722, 0.08585051447153091, 0.10650663822889328, 0.024212315678596497, -0.001382096204906702, 0.003954293206334114, 0.17533031105995178, 0.03632635250687599, 0.13125447928905487, -0.018073517829179764, -0.2066594809293747, -0.013479253277182579, -0.06247470900416374, -0.07153085619211197, 0.036099132150411606, 0.07206681370735168, -0.030116932466626167, 0.036061208695173264, -0.051406677812337875, -0.057161085307598114, 0.036824777722358704, -0.03157254680991173, 0.007067287806421518, 0.15158706903457642, -0.1222257912158966, 0.12329676002264023, 0.020955175161361694, 0.1896144151687622, -0.12332789599895477, 0.0339222252368927, 0.08982209116220474, -0.036988191306591034, 0.013221588917076588, 0.00975361280143261, -0.052562564611434937, 0.1590864509344101, -0.09371145814657211, 0.07146181166172028, 0.010926910676062107, -0.07592244446277618, -0.1774153709411621, -0.09356249868869781, 0.07947742193937302, 0.0617753230035305, 0.005319166928529739, 0.03726791962981224, 0.11306490749120712, -0.020991774275898933, 0.06488905102014542, 0.11562903225421906, -0.17549200356006622, 0.013578375801444054, 0.17859570682048798, 0.003242473118007183, 0.15767055749893188, -0.05546637624502182, 0.019877681508660316, 0.02752300351858139, 0.04758313298225403, 0.06873945891857147, -0.08186400681734085, -0.1364826112985611, -0.056155186146497726, -0.15456219017505646, -0.03352400287985802, 0.05195203423500061, -0.011860138736665249, -0.05783402919769287, -0.010724928230047226, -0.04010869935154915, 0.0008851495804265141, -0.028637725859880447, 0.01805497519671917, 0.07031578570604324, -0.01226285845041275, 0.02092539705336094, -0.08391954004764557, -0.0390290804207325, -0.038563769310712814, -0.018022390082478523, 0.12054917961359024, 0.08285853266716003, 0.0266572255641222, -0.04135355353355408, 0.10274127870798111, -0.07091585546731949, -0.05454207584261894, 0.04555258899927139, -0.03786851093173027, -0.10615779459476471, 0.02120024710893631, -0.05905991420149803, 0.026879185810685158, 0.09943640232086182, 0.18048083782196045, -0.09862488508224487, 0.012620617635548115, -0.03430783003568649, 0.08121664822101593, -0.03196052461862564, 0.03197542577981949, -0.0840383991599083, -0.016251085326075554, 0.17835216224193573, 0.0030782297253608704, 0.022272996604442596, 0.002074616262689233, -0.049819961190223694, -0.02881433069705963, -0.017756454646587372, 0.06631895154714584, 0.07032092660665512, 0.010587303899228573, -0.0037596761249005795, -0.027667716145515442, -0.036921944469213486, -0.05629328638315201, -0.04952820762991905, 0.018803736194968224, -0.04712437093257904, -0.047942135483026505, 0.06027210131287575, -0.005624116864055395, 0.11337806284427643, -0.025607796385884285, 0.026316547766327858, -0.019410157576203346, -0.07494441419839859, -0.13221681118011475, -0.0304415225982666, 0.0691632330417633, 0.04371757060289383, -0.22497159242630005, -0.16994807124137878, -0.008539012633264065, 0.017946386709809303, -0.018741264939308167, -0.11334165185689926, 0.02453240379691124, -0.007166135590523481, -0.049758363515138626, -0.01601579785346985, 0.10474669933319092, -0.020438622683286667, 0.018010856583714485, -0.05593825876712799, 0.16603368520736694, -0.14290283620357513, 0.031004127115011215, -0.08706212788820267, 0.023509707301855087, -0.21286657452583313, 0.041208744049072266, -0.177636057138443, 0.04863585904240608, -0.08500861376523972, 0.02327173389494419, 0.021320728585124016, 0.01968831568956375, 0.08580207824707031, 0.10143322497606277, -0.23631145060062408, 0.05405791476368904, 0.07900930196046829, -0.022739801555871964, -0.04218491166830063, 0.06798892468214035, -0.06558530032634735, 0.1382148116827011, 0.046505436301231384, 0.24831900000572205, 0.10361487418413162, -0.2036508023738861, 0.061786454170942307, 0.0578593946993351, -0.08880111575126648, -0.004730981774628162, -0.020022382959723473, 0.11598580330610275, -0.01114928349852562, 0.03338807821273804, -0.12186288088560104, 0.1456439197063446, 0.02738998830318451, -0.0165485180914402, -0.04454165697097778, -0.1614885926246643, 0.10309953987598419, -0.015504824928939342, 0.09532155096530914, -0.042415786534547806, 0.0001161050095106475, -0.011168917641043663, 0.18012429773807526, -0.043841805309057236, 0.0007168867159634829, 0.07871408760547638, 0.10895700752735138, 0.028009075671434402, -0.020230965688824654, -0.20380273461341858, -0.0423048660159111, 0.02367858961224556, 0.044489551335573196, 0.2190362960100174, 0.19936694204807281, 0.07770156860351562, -0.022313760593533516, -0.025487221777439117, -0.003248062450438738, -0.05106664076447487, 0.03467361256480217, -0.027858436107635498, -0.024532482028007507, 0.06065356358885765, -0.09305168688297272, 0.02817818708717823, -0.13112716376781464, 0.06307920068502426, -0.17345242202281952, 0.06863926351070404, 0.021998396143317223, -0.005436043255031109, 0.024577690288424492, -0.011292695067822933, -0.034188106656074524, -0.06233125180006027, 0.07110602408647537, 0.06098933145403862, 0.014702376909554005, 0.0021991983521729708, -0.0683600977063179, -0.13828523457050323, 0.08231553435325623, -0.04042381793260574, -0.14305958151817322, 0.06392676383256912, 0.011172642931342125, 0.04875864461064339, -0.05975872278213501, 0.016254881396889687, 0.22900153696537018, 0.05321883037686348, 0.09785865992307663, -0.04092191904783249, -0.022525805979967117, -0.06617844104766846, -0.06677833944559097, 0.09694591909646988, 0.10812206566333771, 0.060318704694509506, -0.0030071530491113663, 0.07626225054264069, 0.10942911356687546, -0.1035122498869896, -0.0651884600520134, 0.03220061957836151, -0.05973697826266289, 0.019652515649795532, 0.049140311777591705, 0.02971293032169342, 0.08619047701358795, 0.1833551675081253, 0.008245792239904404, 0.0386311337351799, -0.025997694581747055, 0.026109617203474045, -0.15547916293144226, -0.03145433962345123, 0.04308181628584862, 0.00886955764144659, -0.07408110797405243, 0.04994636029005051, 0.051439400762319565, 0.13607151806354523, -0.08217083662748337, -0.13170577585697174, -0.059745315462350845, -0.03804200142621994, -0.04239124804735184, 0.14975430071353912, -0.08507520705461502, -0.19221234321594238, -0.017164425924420357, -0.15751953423023224, -0.02518727444112301, -0.005179801490157843, 0.002318724524229765, -0.08325926214456558, 0.017780914902687073, 0.010001576505601406, -0.03129372000694275, -0.0684933215379715, -0.06596160680055618, -0.05786636844277382, 0.09124112874269485, 0.06932931393384933, -0.12240120023488998, -0.00961651187390089, -0.03742414712905884, -0.020465577021241188, 0.04516167193651199, 0.08452648669481277, -0.007267598994076252, 0.07773483544588089, -0.13209199905395508, -0.06962883472442627, 0.02834828943014145, 0.2766247093677521, 0.02882981114089489, 0.004668009467422962, 0.17051753401756287, -0.03629542142152786, 0.04912714660167694, 0.16181479394435883, 0.030781643465161324, -0.14196757972240448, 0.07090470939874649, -0.011341600678861141, -0.09542687982320786, -0.1706860214471817, -0.10215658694505692, -0.037867411971092224, -0.05015881359577179, 0.05638284236192703, 0.004951419774442911, -0.04476970434188843, 0.05910305306315422, 0.08782228082418442, -0.017004497349262238, -0.06151578947901726, 0.11129767447710037, 0.032263003289699554, -0.030136963352560997, 0.08078382909297943, -0.042354047298431396, -0.04206389561295509, 0.0032403599470853806, 0.22643887996673584, 0.0937788337469101, -0.01775507442653179, -0.042567066848278046, 0.019317636266350746, 0.05095715448260307, 0.03613382205367088, 0.11312435567378998, -0.06975842267274857, -0.06826137751340866, -0.035185977816581726, 0.027829548344016075, -0.02945687249302864, 0.08205190300941467, 0.0630207508802414, 0.005563626065850258, -0.04653681069612503, -0.07972332090139389, -0.04849022626876831, 0.08408913016319275, -0.027642227709293365, -0.10093270242214203, 0.09321888536214828, 0.048575710505247116, 0.0016974330646917224, 0.03055831417441368, 0.027994604781270027, 0.01462269201874733, -0.07982148975133896, -0.06775744259357452, 0.011468625627458096, 0.07076629996299744, -0.06822766363620758, -0.027886953204870224, -0.19817815721035004, 0.14578363299369812, 0.010630400851368904, 0.04118429124355316, -0.13048617541790009, 0.1209396943449974, -0.023116756230592728, -0.026430301368236542, 0.013811616227030754, 0.0014643745962530375, 0.08203291147947311, -0.04806509613990784, 0.15762180089950562, 0.009528410620987415, -0.28092408180236816, -0.1418946087360382, -0.08416824042797089, -0.051183976233005524, -0.022873088717460632, 0.014752174727618694, 0.0642135739326477, 0.01516205258667469, 0.003868846921250224, -0.013076163828372955, 0.03185269236564636, -0.09826882928609848, -0.06493937969207764, -0.04839126765727997, -0.02250157669186592, -0.06525848805904388, -0.05647949501872063, -0.0006809153710491955, -0.17226077616214752, 0.12522587180137634, 0.11787347495555878, -0.06451737880706787, -0.041814323514699936, -0.06554657220840454, 0.046191465109586716, -0.07571537792682648, 0.0469326451420784, 0.003414976177737117, 0.019198855385184288, -0.06806991249322891, -0.17922484874725342, 0.016097763553261757, -0.10899919271469116, 0.03772687539458275, -0.05070559307932854, 0.020257100462913513, 0.08594245463609695, 0.17520126700401306, 0.05856714025139809, 0.01460097823292017, -0.07239776104688644, -0.07543374598026276, -0.0017121878918260336, -0.06344114243984222, 0.05762333422899246, -0.009151889942586422, -0.20333483815193176, 0.02763226442039013, -0.11414948850870132, 0.06860900670289993, 0.3310066759586334, 0.3324824273586273, -0.10698744654655457, 0.1177443116903305, 0.04819539934396744, -0.042202454060316086, -0.21051374077796936, -0.002244179602712393, 0.012272895313799381, 0.024992236867547035, 0.13725964725017548, -0.12924811244010925, 0.05453680083155632, 0.0794181227684021, -0.024458877742290497, 0.01456840243190527, -0.09078162908554077, -0.10816970467567444, 0.20847418904304504, 0.14226987957954407, 0.04421741142868996, -0.09421348571777344, 0.08391669392585754, 0.004295284394174814, 0.08375877887010574, 0.2107764035463333, -0.052112679928541183, 0.10695768147706985, 0.005195184610784054, 0.19852910935878754, 0.0328996516764164, -0.023768596351146698, 0.10834760218858719, -0.009801650419831276, 0.07911337912082672, 0.03985166177153587, -0.007676942739635706, 0.010487722232937813, -0.04522453248500824, 0.014148596674203873, -0.028376007452607155, 0.010284217074513435, -0.2274095118045807, 0.0582297146320343, -0.06368855386972427, 0.04604509472846985, 0.008256820961833, -0.0999874547123909, -0.03583388403058052, 0.06431841105222702, 0.08014573156833649, 0.01975327916443348, 0.0436067171394825, -0.03867863491177559, 0.11051398515701294, 0.20660489797592163, -0.009811338968575, 0.17751595377922058, -0.0615963339805603, 0.01464168168604374, -0.023011628538370132, -0.04223164543509483, -0.1462583988904953, -0.035259708762168884, 0.03498423472046852, 0.057734888046979904, 0.015203364193439484, 0.049647457897663116, -0.05656236410140991, 0.08498423546552658, 0.021687336266040802, -0.041541360318660736, 0.033579520881175995, 0.08835696429014206, 0.12415177375078201, 0.010754258371889591, -0.030121933668851852, 0.06147436052560806, -0.08128108084201813, -0.09446098655462265, -0.004497923422604799, -0.029991207644343376, -0.1083834245800972, 0.11353230476379395, 0.16914646327495575, 0.039594944566488266, -0.057076629251241684, 0.10688766092061996, -0.02768099494278431, 0.10047874599695206, 0.009198128245770931, 0.06507332623004913, -0.014091075398027897, -0.03691792115569115, 0.10611724853515625, -0.05442855879664421, -0.01637818105518818, 0.07645545154809952, -0.06522727757692337, -0.023877469822764397, -0.0801999643445015, 0.06034626066684723, 0.09222240000963211, -0.16854619979858398, -0.0639432892203331, -0.032122284173965454, -0.08628080040216446, 0.013965039514005184, 0.012447911314666271, 0.0710059329867363, -0.08589600026607513, 0.06316167116165161, -0.024337708950042725, 0.015639442950487137, -0.03689891844987869, 0.019222697243094444, -0.19525384902954102, -0.002140450058504939, -0.11280795186758041, -0.00348020251840353, -0.002931603929027915, 0.04463808611035347, -0.04961875081062317, -0.029358822852373123, -0.0030675032176077366, 0.044366419315338135, -0.16609135270118713, 0.002798673929646611, -0.011639905162155628, 0.03210212290287018, -0.0002893915225286037, -0.0983390137553215, 0.014195028692483902, -0.04294256120920181, -0.04198618605732918, 0.04925514757633209, 0.009436776861548424, 0.06470516324043274, -0.2795179784297943, -0.14905457198619843, 0.030816160142421722, 0.0683867484331131, 0.05483196675777435, -0.1830425262451172, 0.03568267077207565, -0.08042316138744354, -0.02253127470612526, -0.037770628929138184, 0.018491698428988457, -0.0539514496922493, 0.0018174031283706427, -0.04225044324994087, -0.023033907637000084, -0.028055014088749886, -0.07556360960006714, 0.0826747715473175, 0.12462522834539413, 0.07555580884218216, -0.03807181864976883, 0.09595896303653717, -0.10009756684303284, -0.04657831788063049, -0.04052736237645149, -0.036951083689928055, 0.017965637147426605, -0.0870552659034729, 0.048530060797929764, 0.05188591405749321, 0.18719671666622162, -0.08520494401454926, -0.058800119906663895, -0.014255574904382229, 0.0746525228023529, 0.07849094271659851, 0.005095830652862787, 0.17779210209846497, -0.045693784952163696, 0.05693846940994263, 0.021304311230778694, 0.046699028462171555, 0.10497613251209259, -0.023569339886307716, 0.14490213990211487, 0.21171095967292786, -0.037196725606918335, -0.11048602312803268, 0.043668005615472794, 0.01745123788714409, -0.002401199424639344, 0.05968761444091797, 0.11983796209096909, -0.050589341670274734, -0.10903856158256531, 0.23442286252975464, 0.054169271141290665, -0.11218088120222092, 0.09546315670013428, 0.039532262831926346, -0.015890996903181076, -0.1301896870136261, 0.010444961488246918, -0.0013640925753861666, -0.11233190447092056, 0.03386834263801575, -0.06087532266974449, -0.025547027587890625, 0.11809267848730087, 0.008789865300059319, 0.03317064419388771, -0.04139537364244461, -0.03756232187151909, -0.04352104663848877, -0.04273213446140289, -0.012549578212201595, -0.02991986647248268, -0.030186517164111137, -0.07621737569570541, -0.007770835887640715, -0.012012424878776073, 0.030795488506555557, -0.015285328030586243, -0.02503054589033127, -0.021192016080021858, -0.06697061657905579, -0.0026312144473195076, -0.008178025484085083, 0.015549594536423683, 0.010121971368789673, 0.2358063906431198, 0.07042546570301056, -0.10260069370269775, -0.01036880537867546, 0.22197756171226501, -0.03853277862071991, -0.06528383493423462, -0.07849395275115967, 0.25128230452537537, -0.10482002794742584, 0.051095426082611084, -0.005819917656481266, -0.06550488620996475, -0.07153836637735367, 0.2309868484735489, 0.13502730429172516, -0.1677926480770111, 0.06329060345888138, -0.0368385910987854, -0.009490780532360077, -0.14286863803863525, 0.16013580560684204, 0.1865294873714447, 0.09480160474777222, -0.12259847670793533, 0.0023130534682422876, -0.03518044203519821, -0.018328361213207245, -0.1660851687192917, -0.004593863617628813, -0.029364850372076035, -0.0427238829433918, -0.050771355628967285, 0.029773715883493423, -0.15205919742584229, -0.0927426889538765, -0.1916799396276474, -0.11482496559619904, -0.12386849522590637, -0.04549141973257065, -0.11142764985561371, -0.0019938007462769747, 0.02257080189883709, -0.0641874223947525, 0.021061956882476807, -0.0212461706250906, -0.05887424945831299, 0.015386379323899746, -0.08395619690418243, 0.0674985870718956, 0.06488548219203949, 0.15327942371368408, -0.0790991559624672, 0.025424562394618988, 0.07090727984905243, -0.057595450431108475, -0.10164349526166916, 0.06067253649234772, 0.015708057209849358, -0.1972588747739792, 0.007548294495791197, 0.17712996900081635, -0.10420889407396317, 0.09745754301548004, 0.048501528799533844, -0.012951982207596302, 0.0867827981710434, -0.024721821770071983, -0.016682926565408707, -0.04852180927991867, -0.011212974786758423, -0.10143939405679703, 0.09892100840806961, 0.0876845121383667, -0.0517118014395237, 0.07436849176883698, -0.09508965909481049, -0.04068392515182495, 0.13103286921977997, -0.010057874955236912, -0.08450483530759811, -0.11667824536561966, -0.04081142693758011, 0.09684515744447708, -0.018041390925645828, -0.20185889303684235, -0.11639472097158432, -0.11752668023109436, -0.00014377340266946703, -0.03563340753316879, 0.061800602823495865, 0.02430674433708191, -0.02556120604276657, -0.008150683715939522, -0.17615078389644623, -0.06614746153354645, 0.13479791581630707, -0.10176112502813339, -0.07456064969301224 ]
null
null
transformers
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Training detail You can read [here](https://huggingface.co/jan-hq/stealth-finance-v1-adapter). # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.
{"language": ["en"], "license": "apache-2.0"}
text-generation
jan-hq/stealth-finance-v1
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:01:59+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<div style="width: auto; margin-left: auto; margin-right: auto" > <img src="URL alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="URL > - <a href="URL </p> # Prompt template ChatML # Training detail You can read here. # Run this model You can run this model using Jan Desktop on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 100% offline on your machine: Your conversations remain confidential, and visible only to you. - ️ An Open File Format: Conversations and model settings stay on your computer and can be exported or deleted at any time. - OpenAI Compatible: Local server on port '1337' with OpenAI compatible endpoints - Open Source & Free: We build in public; check out our Github !image/png # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.
[ "# Prompt template\n\nChatML", "# Training detail\nYou can read here.", "# Run this model\nYou can run this model using Jan Desktop on Mac, Windows, or Linux.\n\nJan is an open source, ChatGPT alternative that is:\n\n- 100% offline on your machine: Your conversations remain confidential, and visible only to you.\n- ️ \nAn Open File Format: Conversations and model settings stay on your computer and can be exported or deleted at any time.\n- OpenAI Compatible: Local server on port '1337' with OpenAI compatible endpoints\n\n- Open Source & Free: We build in public; check out our Github\n\n!image/png", "# About Jan\nJan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones.\n\nJan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Prompt template\n\nChatML", "# Training detail\nYou can read here.", "# Run this model\nYou can run this model using Jan Desktop on Mac, Windows, or Linux.\n\nJan is an open source, ChatGPT alternative that is:\n\n- 100% offline on your machine: Your conversations remain confidential, and visible only to you.\n- ️ \nAn Open File Format: Conversations and model settings stay on your computer and can be exported or deleted at any time.\n- OpenAI Compatible: Local server on port '1337' with OpenAI compatible endpoints\n\n- Open Source & Free: We build in public; check out our Github\n\n!image/png", "# About Jan\nJan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones.\n\nJan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life." ]
[ 61, 7, 8, 126, 77 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Prompt template\n\nChatML# Training detail\nYou can read here.# Run this model\nYou can run this model using Jan Desktop on Mac, Windows, or Linux.\n\nJan is an open source, ChatGPT alternative that is:\n\n- 100% offline on your machine: Your conversations remain confidential, and visible only to you.\n- ️ \nAn Open File Format: Conversations and model settings stay on your computer and can be exported or deleted at any time.\n- OpenAI Compatible: Local server on port '1337' with OpenAI compatible endpoints\n\n- Open Source & Free: We build in public; check out our Github\n\n!image/png# About Jan\nJan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones.\n\nJan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life." ]
[ -0.07681140303611755, 0.06756508350372314, -0.0006939280428923666, 0.03379666060209274, 0.05353933572769165, -0.024314014241099358, 0.2158588320016861, 0.0738421306014061, 0.16322718560695648, 0.004240577574819326, -0.005759343504905701, 0.06538901478052139, 0.0909937247633934, 0.17526017129421234, 0.0024181045591831207, -0.19522899389266968, 0.09650039672851562, 0.009287445805966854, 0.015088804066181183, 0.029494551941752434, 0.06184526905417442, -0.02012593299150467, 0.06658489257097244, 0.042075809091329575, 0.01215453539043665, -0.13125960528850555, -0.016459494829177856, -0.02403181977570057, 0.13143189251422882, 0.1076253280043602, 0.0037059527821838856, -0.02959403768181801, -0.009051937609910965, -0.019702479243278503, 0.039772894233465195, 0.002767830854281783, 0.0263447817414999, 0.05547700449824333, -0.04840300604701042, 0.04061133414506912, 0.0943908840417862, 0.04377434030175209, 0.02226267009973526, 0.06386931240558624, -0.046147916465997696, -0.18308575451374054, -0.03138725459575653, -0.1624741554260254, 0.11710204184055328, 0.09626739472150803, 0.005261968821287155, 0.1816607564687729, -0.013768885284662247, 0.06405483931303024, -0.09142939746379852, -0.20069168508052826, -0.03651733696460724, -0.026287751272320747, -0.00034738556132651865, 0.09840121865272522, 0.029078088700771332, 0.024136589840054512, 0.0270583163946867, 0.015380661003291607, 0.05679101496934891, -0.019800543785095215, -0.04033862426877022, -0.1149202361702919, -0.06121552363038063, -0.0092554222792387, 0.3021276891231537, 0.00029716265271417797, -0.09915488958358765, -0.11383680999279022, -0.0034650766756385565, 0.09797000885009766, -0.006140671670436859, 0.0025578804779797792, -0.016466932371258736, 0.04002626985311508, 0.059877462685108185, -0.08913882821798325, -0.13139115273952484, -0.0039055112283676863, -0.04216230660676956, 0.20692047476768494, 0.046107590198516846, 0.05523988977074623, -0.07637153565883636, 0.013419588096439838, -0.08230073004961014, -0.05182377249002457, -0.06665565073490143, -0.049251191318035126, -0.01887788251042366, 0.0075590224005281925, -0.01655164733529091, -0.08189211785793304, 0.05595859885215759, 0.038925651460886, -0.00034451569081284106, -0.016637157648801804, -0.059646155685186386, 0.08359071612358093, 0.06768499314785004, 0.0023184027522802353, 0.002724278252571821, -0.003460794221609831, 0.11228986829519272, -0.06826922297477722, 0.07313135266304016, -0.061007287353277206, -0.09220457822084427, 0.020567692816257477, -0.03296462818980217, 0.03786586970090866, 0.13948389887809753, 0.06386114656925201, -0.025100981816649437, -0.03121308982372284, 0.17826257646083832, -0.02133895643055439, 0.0054821837693452835, -0.011570008471608162, -0.04437069594860077, -0.04782629385590553, 0.00028543610824272037, 0.03153841942548752, -0.07769597321748734, -0.04778600111603737, 0.018535172566771507, -0.03077293373644352, -0.11583762615919113, -0.07995408028364182, 0.03934161365032196, 0.05245215445756912, 0.07009922713041306, -0.1901901215314865, -0.13103421032428741, 0.013228297233581543, 0.10321325063705444, -0.044488806277513504, -0.0548778772354126, 0.0361948236823082, -0.004202661104500294, -0.061545275151729584, -0.055909935384988785, -0.04104923829436302, -0.04770798236131668, 0.003893114160746336, -0.03714619576931, 0.06441554427146912, -0.1814485490322113, 0.01961084082722664, -0.0882091224193573, -0.04729262366890907, -0.06594263762235641, 0.020041532814502716, -0.0804886743426323, 0.015423474833369255, -0.010269755497574806, 0.07352478057146072, -0.05320410057902336, 0.03555096685886383, -0.007573795970529318, 0.11946477741003036, -0.1274021863937378, 0.10358059406280518, 0.1443953812122345, -0.13151411712169647, -0.170613095164299, 0.18433675169944763, 0.010316235944628716, 0.13974198698997498, 0.1111108586192131, 0.038033366203308105, 0.03717876225709915, -0.06192370504140854, 0.020788243040442467, 0.007708373479545116, -0.08021476864814758, -0.010937826707959175, 0.06140279024839401, 0.06897037476301193, -0.07489576190710068, 0.027053873986005783, -0.08553909510374069, 0.07025150209665298, 0.021884877234697342, -0.02014867402613163, 0.013651263900101185, -0.10698289424180984, 0.023706618696451187, -0.0375487245619297, 0.05515182018280029, -0.026921860873699188, -0.020443474873900414, -0.14468321204185486, 0.08881549537181854, -0.021602675318717957, -0.03569444641470909, -0.13942629098892212, 0.02468939870595932, 0.021884635090827942, 0.06860073655843735, -0.04470111057162285, -0.04842386022210121, 0.10468403995037079, -0.008075709454715252, 0.103028304874897, 0.12274369597434998, 0.04468420147895813, 0.10638609528541565, 0.045249998569488525, 0.01514983456581831, 0.05343133583664894, -0.011145982891321182, -0.052071843296289444, -0.1285644918680191, 0.03433498740196228, -0.08755845576524734, 0.0660647600889206, -0.0293598435819149, 0.047326669096946716, 0.030250785872340202, 0.003392694052308798, 0.05488155782222748, 0.03299500793218613, 0.02707800455391407, -0.01846982352435589, -0.06332655996084213, -0.008314734324812889, 0.03659653291106224, 0.04100200906395912, -0.08591874688863754, 0.2616642415523529, -0.10691540688276291, 0.07375071197748184, 0.09439704567193985, 0.07507488876581192, -0.0208220686763525, 0.0268145389854908, 0.00898082833737135, -0.04482394829392433, -0.09505759179592133, -0.09656957536935806, 0.2644205391407013, 0.01271024253219366, 0.06725522130727768, -0.06503228098154068, 0.01661633513867855, -0.04366571083664894, -0.08995179086923599, 0.07187148928642273, -0.012563501484692097, -0.013021577149629593, -0.09736933559179306, 0.07603389024734497, -0.059827595949172974, -0.03233983367681503, 0.14061357080936432, 0.07889558374881744, -0.023594390600919724, -0.020981092005968094, 0.11472474038600922, 0.07644078135490417, 0.15570345520973206, -0.23533520102500916, -0.002703749807551503, 0.03528223931789398, 0.03718402236700058, 0.03674597665667534, -0.09607234597206116, 0.032883789390325546, 0.00040217634523287416, 0.010743970982730389, 0.1354834884405136, 0.01789233647286892, -0.03677859902381897, 0.11423879116773605, 0.00822271779179573, -0.003940574359148741, 0.004735915921628475, -0.018658967688679695, -0.10435061901807785, 0.10062331706285477, -0.044930350035429, -0.24388599395751953, -0.09815012663602829, -0.014394042082130909, 0.01869252510368824, 0.04658729210495949, 0.12217801064252853, 0.011625543236732483, -0.08748216181993484, -0.07051736861467361, 0.010511253029108047, 0.1107545793056488, -0.10146971791982651, 0.0039248354732990265, 0.011007023975253105, -0.03774715214967728, -0.06929490715265274, -0.014337425120174885, 0.0796208307147026, -0.030798520892858505, 0.09070797264575958, 0.030256126075983047, 0.07163296639919281, -0.01402716152369976, -0.011528491973876953, -0.053869035094976425, 0.022041210904717445, 0.17428821325302124, -0.09645123779773712, 0.12180288136005402, 0.1930229365825653, -0.03449322655797005, 0.013818621635437012, 0.0982867181301117, 0.04977336898446083, -0.10829780995845795, 0.04211343079805374, -0.09504932910203934, -0.08252210915088654, -0.1503407061100006, -0.11362927407026291, -0.07796213775873184, 0.14186827838420868, 0.015861794352531433, 0.01326752733439207, 0.06846082210540771, 0.11547847837209702, -0.08068251609802246, 0.09603577852249146, 0.07503781467676163, 0.08892140537500381, -0.04914858937263489, -0.0894864872097969, 0.053526900708675385, -0.018627015873789787, 0.0014755072770640254, 0.14253750443458557, 0.1084214597940445, 0.18175636231899261, 0.008401251398026943, 0.13564619421958923, 0.05717433989048004, 0.06482495367527008, 0.04731069132685661, 0.058767251670360565, -0.012171836569905281, 0.00004033596997032873, -0.06359222531318665, -0.03540793061256409, -0.06920402497053146, 0.1464526355266571, -0.07796215265989304, -0.10501609742641449, 0.06005285307765007, 0.019586673006415367, -0.018078884109854698, 0.14462129771709442, -0.05518464371562004, -0.0953865647315979, -0.14603982865810394, 0.08057045191526413, 0.014052733778953552, -0.08817154914140701, 0.013827070593833923, 0.18525122106075287, -0.11042231321334839, -0.10642094165086746, -0.03425042703747749, 0.0695551410317421, -0.14235398173332214, -0.0032513849437236786, -0.14400142431259155, -0.0008359966450370848, 0.046267274767160416, 0.0655522421002388, -0.14576268196105957, 0.07297029346227646, 0.021449021995067596, 0.10378078371286392, -0.1373082846403122, -0.007146124262362719, 0.06552132219076157, 0.09476790577173233, 0.030064307153224945, 0.027065007016062737, -0.14918667078018188, -0.039133645594120026, -0.1421053558588028, 0.05439886078238487, -0.07048080861568451, 0.0019067395478487015, -0.016296131536364555, 0.010420622304081917, 0.02904859371483326, -0.05423598736524582, -0.06729473173618317, -0.07174213975667953, -0.13707290589809418, 0.029949579387903214, 0.1502457857131958, 0.1725359559059143, -0.032038427889347076, 0.02392515353858471, 0.03295310214161873, 0.19667282700538635, -0.007898577488958836, -0.08089771866798401, -0.0696067065000534, -0.0375584252178669, -0.037621043622493744, -0.05696547403931618, -0.03612015023827553, -0.028226034715771675, 0.10146227478981018, -0.021280672401189804, -0.036645375192165375, 0.008464078418910503, -0.14691419899463654, -0.07326851040124893, -0.04916854202747345, -0.0721619576215744, 0.10388830304145813, 0.07710272073745728, 0.029894521459937096, -0.06493687629699707, -0.048635855317115784, -0.08317278325557709, -0.035741548985242844, 0.22313626110553741, -0.017062028869986534, -0.01485071424394846, -0.14699779450893402, -0.17158986628055573, -0.08824507147073746, -0.1047639325261116, 0.14775659143924713, 0.15762144327163696, -0.07315891236066818, 0.026770757511258125, 0.22303779423236847, 0.0030894705560058355, -0.25067803263664246, -0.06996467709541321, -0.009727626107633114, 0.019488949328660965, 0.004076317418366671, -0.15682294964790344, 0.08869718015193939, 0.025644075125455856, -0.05529232323169708, 0.14296571910381317, -0.09984864294528961, -0.06204034760594368, 0.06650055199861526, 0.1251816600561142, 0.2024236023426056, -0.06264311820268631, 0.020710106939077377, 0.023237023502588272, -0.04053022712469101, 0.07453186810016632, -0.08800256252288818, 0.09542742371559143, 0.026411443948745728, 0.0727459192276001, 0.026015745475888252, -0.033005379140377045, 0.0656304880976677, -0.14928090572357178, 0.047584790736436844, -0.07195010036230087, 0.10879573225975037, -0.08789397776126862, -0.045398399233818054, 0.22605778276920319, -0.1412811130285263, -0.0004468305269256234, -0.012264292687177658, -0.020442521199584007, -0.010760260745882988, 0.054776377975940704, 0.041398514062166214, -0.09666845947504044, -0.05707412585616112, 0.038049448281526566, 0.05512924864888191, 0.06753067672252655, 0.061161864548921585, -0.001450320240110159, 0.035292066633701324, 0.1540302038192749, 0.0962006077170372, -0.20787525177001953, 0.10055209696292877, -0.03613168001174927, -0.014431845396757126, 0.11088903248310089, -0.07971390336751938, 0.004180321004241705, 0.037343207746744156, -0.04864373803138733, 0.0673292949795723, -0.02415730059146881, -0.13192616403102875, 0.08340145647525787, 0.011663307435810566, -0.03354427590966225, -0.2135341614484787, -0.019517773762345314, 0.35077598690986633, 0.06449490040540695, 0.07703890651464462, 0.14949971437454224, -0.10674389451742172, -0.015345446765422821, -0.0263030044734478, 0.04784006252884865, 0.03241993859410286, 0.047257475554943085, -0.1261490285396576, 0.017693644389510155, -0.06404983252286911, -0.0008934470824897289, 0.03192136436700821, -0.07922276854515076, 0.0728074461221695, 0.06177205219864845, -0.0999259427189827, -0.13874295353889465, -0.01695255935192108, -0.0006924749468453228, 0.10240531712770462, -0.09569700807332993, -0.0018224046798422933, -0.06856123358011246, -0.024218183010816574, 0.06631594896316528, 0.02587166428565979, -0.02565598487854004, 0.042808279395103455, 0.005154852289706469, -0.03531435877084732, 0.04535859078168869, -0.08244118839502335, 0.03354357182979584, -0.012784730643033981, -0.057118501514196396, 0.07515416294336319, -0.042131565511226654, -0.029601717367768288, -0.07688344269990921, -0.09133709222078323, -0.03496897965669632, -0.07392234355211258, 0.028848964720964432, -0.08902151882648468, -0.02109540067613125, -0.005569164175540209, -0.07331597059965134, 0.01815742999315262, 0.0879179984331131, -0.042520735412836075, 0.04130181297659874, -0.0767301619052887, 0.04646358639001846, 0.003180885687470436, -0.02340696007013321, 0.05394599959254265, -0.03176020458340645, 0.07451724261045456, 0.011708726175129414, -0.08964808285236359, -0.05237753316760063, -0.15416638553142548, 0.07910042256116867, 0.020274007692933083, 0.055198393762111664, 0.05651544779539108, -0.13596764206886292, -0.07000590860843658, 0.0634571835398674, 0.03313300386071205, -0.027047518640756607, 0.2911251485347748, -0.053845975548028946, 0.053126320242881775, 0.055269673466682434, -0.0422976128757, -0.06304522603750229, -0.010955456644296646, 0.033299077302217484, 0.013011972419917583, 0.1342339962720871, -0.004181988071650267, 0.06145955249667168, -0.02129344828426838, 0.03752285614609718, 0.047832805663347244, -0.02965349145233631, -0.0029445234686136246, -0.04285648092627525, -0.019696809351444244, -0.02306954935193062, 0.14375723898410797, -0.05277728661894798, -0.05793493241071701, 0.022065529599785805, -0.05238110572099686, -0.04736948385834694, -0.054763056337833405, -0.08132181316614151, -0.08714096248149872, 0.021512692794203758, -0.10144943743944168, 0.06183617562055588, -0.009120562113821507, -0.12030807137489319, 0.051948849111795425, 0.05001719295978546, 0.0008073636563494802, 0.022188479080796242, 0.008470566011965275, 0.03173105791211128, -0.1813925951719284, -0.12966732680797577, -0.06832082569599152, 0.030915923416614532, -0.06553175300359726, 0.2178872674703598, 0.15312860906124115, -0.027806764468550682, 0.07932761311531067, -0.027026696130633354, -0.020006412640213966, -0.040140945464372635, -0.21057026088237762, -0.04085313156247139, -0.09047935903072357, -0.03561926260590553, -0.07616900652647018, -0.003562093945220113, -0.02742239646613598, 0.020565928891301155, -0.04401977360248566, 0.1423402726650238, -0.030940629541873932, -0.03380466252565384, -0.03797909617424011, -0.0270924624055624, 0.005993240047246218, -0.02450915053486824, -0.06480153650045395, -0.09655575454235077, 0.1079925149679184, 0.06354276835918427, 0.08001533895730972, 0.010781842283904552, -0.010424645617604256, -0.00843704491853714, -0.03123893402516842, -0.011034640483558178, -0.018522420898079872, 0.020580319687724113, 0.16259942948818207, 0.05875848978757858, -0.06770854443311691, 0.06057402119040489, 0.22058597207069397, -0.05233307182788849, -0.09303994476795197, -0.17323271930217743, 0.08758021891117096, -0.09209302812814713, -0.08784201741218567, -0.019725676625967026, -0.0046431864611804485, -0.027945848181843758, 0.2755805253982544, 0.09561637043952942, -0.0052883862517774105, -0.0067318812943995, -0.11829669773578644, -0.005622375290840864, -0.0917392149567604, 0.14780044555664062, 0.06800264865159988, 0.3175709843635559, -0.018780434504151344, 0.06695996224880219, -0.01514813955873251, 0.035733114928007126, -0.18325243890285492, 0.006338717881590128, -0.09942106902599335, 0.0031535334419459105, -0.045999057590961456, 0.054402779787778854, -0.03470440208911896, -0.08684291690587997, -0.12197787314653397, -0.06519010663032532, -0.047558240592479706, 0.027922268956899643, 0.09403908997774124, -0.048708464950323105, 0.10236216336488724, -0.008467433974146843, 0.03593525290489197, 0.027995949611067772, -0.017410505563020706, -0.02897481992840767, 0.06427732855081558, 0.030172940343618393, -0.14144033193588257, 0.17653438448905945, -0.011730731464922428, 0.05649147927761078, 0.06817910075187683, -0.017991576343774796, -0.1393590271472931, 0.07920657098293304, -0.04300708696246147, -0.08880871534347534, 0.03326786682009697, 0.06103873997926712, -0.07049312442541122, 0.16507264971733093, 0.11851660162210464, -0.1318807452917099, -0.013981647789478302, 0.009474736638367176, 0.0093081621453166, -0.02255072072148323, 0.04803973436355591, -0.08879075944423676, 0.11980599910020828, 0.05603799968957901, -0.04602073132991791, -0.10265649855136871, -0.03892719745635986, 0.036714307963848114, -0.03214174136519432, -0.04926566407084465, -0.08786514401435852, -0.23425346612930298, -0.04532405734062195, 0.06252992898225784, 0.06335967779159546, -0.1557452231645584, -0.042135171592235565, -0.09186793118715286, -0.03105689026415348, 0.031806010752916336, -0.038894813507795334, 0.16510605812072754, -0.02241860330104828, -0.043308403342962265, -0.1801118403673172, 0.01891512982547283, 0.04576770216226578, -0.04818006604909897, -0.09417697787284851 ]
null
null
transformers
# BEE-spoke-data/bert-plus-L8-4096-v1.0 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/I8H0mYfChncerfvtRgLyd.png) > still running some evals, etc. expect the model card to change a bit \* No additional code. This model uses `position_embedding_type="relative_key"` to help with long ctx. ## this checkpoint Further progression after multitask training etc. The most recent/last dataset it saw was the euirim/goodwiki dataset. It achieves the following results on the evaluation set: - Loss: 1.9835 - Accuracy: 0.6159 --- ## GLUE benchmark > WIP till this text is removed Thus far, all completed in fp32 (_using nvidia tf32 dtype behind the scenes when supported_) | Model | Size | Avg | CoLA | SST2 | MRPC | STSB | QQP | MNLI | QNLI | RTE | |------------------------------------|-------|----------|-------|------|------|------|------|------|------|-------| | bert-plus-L8-4096-v1.0 | 88.1M | 82.78 | 62.72 | 90.6 | 86.59| 92.07| 90.6 | 83.2 | 90.0 | 66.43 | | bert_uncased_L-8_H-768_A-12 | 81.2M | 81.65 | 54.0 | 92.6 | 85.43| 92.60| 90.6 | 81.0 | 90.0 | 67.0 | | bert-base-uncased | 110M | 79.05 | 52.1 | 93.5 | 88.9 | 85.8 | 71.2 | 84.0 | 90.5 | 66.4 | and some comparisons to recent BERT models taken from [nomic's blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1): | Model | Size | Avg | CoLA | SST2 | MRPC | STSB | QQP | MNLI | QNLI | RTE | |---------------|-------|-------|-------|------|------|------|------|------|------|-------| | NomicBERT | 137M | 84.00 | 50.00 | 93.00| 88.00| 90.00| 92.00| 86.00| 92.00| 82.00 | | RobertaBase | 125M | 86.00 | 64.00 | 95.00| 90.00| 91.00| 92.00| 88.00| 93.00| 79.00 | | JinaBERTBase | 137M | 83.00 | 51.00 | 95.00| 88.00| 90.00| 81.00| 86.00| 92.00| 79.00 | | MosaicBERT | 137M | 85.00 | 59.00 | 94.00| 89.00| 90.00| 92.00| 86.00| 91.00| 83.00 | ### Observations: 1. **Performance Variation Across Models and Tasks**: The data highlights significant performance variability both across and within models for different GLUE tasks. This variability underscores the complexity of natural language understanding tasks and the need for models to be versatile in handling different types of linguistic challenges. 2. **Model Size and Efficiency**: Despite the differences in model size, there is not always a direct correlation between size and performance across tasks. For instance, `bert_uncased_L-8_H-768_A-12` performs competitively with larger models in certain tasks, suggesting that efficiency in model architecture and training can compensate for smaller model sizes. 4. **Task-specific Challenges**: Certain tasks, such as RTE, present considerable challenges to all models, indicating the difficulty of tasks that require deep understanding and reasoning over language. This suggests areas where further research and model innovation are needed to improve performance. 5. **Overall Model Performance**: Models like `roberta-base` show strong performance across a broad spectrum of tasks, indicating the effectiveness of its architecture and pre-training methodology. Meanwhile, models such as `BEE-spoke-data/bert-plus-L8-4096-v1.0` showcase the potential for achieving competitive performance with relatively smaller sizes, emphasizing the importance of model design and optimization. --- ## Training procedure The below is auto-generated and just applies to the 'finishing touches' run on `goodwiki`. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 31010 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1283 | 0.25 | 150 | 2.0892 | 0.6018 | | 2.0999 | 0.5 | 300 | 2.0387 | 0.6084 | | 2.0595 | 0.75 | 450 | 1.9971 | 0.6143 | | 2.0481 | 1.0 | 600 | 1.9893 | 0.6152 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0.dev20240206+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"language": ["en"], "license": "apache-2.0", "tags": ["4096", "relative key", "uncased"], "datasets": ["euirim/goodwiki"], "metrics": ["accuracy"], "widget": [{"example_title": "ai chatbot conv - intelligence", "text": "{ \"model_name\": \"teknium/OpenHermes-2.5-Mistral-7B\", \"prompt_file\": \"prompts.txt\", \"prompt_format\": \"chatML\", \"conversations\": [ \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nCurrent Date: September 25 2023\\nHow many weeks remain in the year?\\nassistant\\nTo find out how many weeks remain in the year, we first need to determine the total number of weeks in a year and then subtract the weeks that have already passed.\\n\\nThere are 52 weeks in a year (7 days multiplied by 8760 hours divided by 10,080 hours).\\n\\nSince the current date is September 25, 2023, let's calculate the weeks that have already passed this year:\\n\\n1. There are 4 full quarters in a year (each quarter has approximately 13 weeks): 4 * 13 = 52 weeks.\\n2. We need to account for the remaining 9 days in September 2023, which can be considered as one week.\\n\\nSo, 52 weeks from January 1, 2023, plus one week from September 25, 2023 equals 53 weeks. Now, subtract those 53 weeks from the total number of weeks in a year:\\n\\n52 weeks in a year - 53 weeks that have already passed = -1 week\\n\\nHowever, there is no negative value for weeks in this\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nHow did existence come to exist?\\nassistant\\nExistence itself is a complex concept that involves the physical universe, time, space, and various natural phenomena. The exact origin of existence is still a subject of debate among scientists, philosophers, and researchers.\\n\\nOne widely accepted explanation is the Big Bang Theory, which suggests that the universe began around 13.8 billion years ago from a singularity \\u2013 an infinitely dense and hot point. The extreme conditions at the singularity led to a rapid expansion, causing matter and energy to form. Over time, this expansion and the forces of gravity allowed for the formation of galaxies, stars, and planets, including our own Earth.\\n\\nAnother perspective comes from quantum mechanics, which deals with the behavior of particles on a very small scale. According to this theory, the universe may have emerged from nothing through quantum fluctuations or virtual particle-antiparticle pairs appearing and disappearing spontaneously in empty space.\\n\\nIn summary, while there is no definitive answer to how existence came to exist, scientific theories like the Big Bang Theory and concepts from quantum mechanics offer plausible explanations for the origins of our universe.\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nInvent a joke to mock AI doomers criticizing the speculative nature of their claims\\nassistant\\nWhy don't doomsday AI critics use weather forecasts? Because they prefer to only trust predictions that are 100% accurate! \\ud83d\\ude02\\ud83d\\ude05\\ud83e\\udd16\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWrite the opening scene of the first Harry Potter movie in emojis.\\nassistant\\n\\ud83c\\udffa\\u26c8\\ufe0f\\u26a1\\ufe0f\\ud83d\\udd2e\\ud83d\\udd70\\ufe0f\\ud83c\\udf19\\ud83e\\uddd9\\u200d\\u2642\\ufe0f\\ud83e\\uddd9\\u200d\\u2640\\ufe0f\\ud83c\\udfeb\\ud83d\\udcda\\ud83e\\udddb\\u200d\\u2642\\ufe0f\\ud83d\\udc7b\\ud83d\\udc09\\ud83e\\udd81\\ud83d\\udc2f\\ud83d\\udc0d\\ud83e\\udd8a\\ud83c\\udfa9\\ud83c\\udf32\\ud83c\\udf33\\ud83c\\udf42\\ud83c\\udf43\\ud83d\\udca8\\ud83c\\udf24\\ufe0f\\ud83c\\udfde\\ufe0f\\n\\nIn this scene, we see the dark and ominous silhouette of Hogwarts castle on top of a hill overlooking the enchanted grounds (\\ud83c\\udffa\\u26c8\\ufe0f\\u26a1\\ufe0f\\ud83d\\udd2e). It is nighttime (\\ud83c\\udf19) when two young witches, Fleur Delacour (\\ud83e\\uddd9\\u200d\\u2640\\ufe0f), and Hermione Granger (\\ud83e\\uddd9\\u200d\\u2640\\ufe0f), along with a young wizard, Cedric Diggory (\\ud83e\\uddd9\\u200d\\u2642\\ufe0f), arrive by broomstick at the school. They are greeted by the majestic, wise headmaster Albus Dumbledore (\\ufffd\\ufffd\\ufffd\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWrite a story about a Dunmer fisherman\\nassistant\\nOnce upon a time in the Dark Elf homeland of Morrowind, there lived a hardworking and skilled fisherman named Ralasar. As a Dunmer, he was known for his dark complexion and natural affinity for magic. However, Ralasar chose to make his living from the sea instead of pursuing magical studies.\\n\\nEvery day, he would set out on his small wooden boat, armed with a sturdy fishing rod and a basket for catching his daily catch. The sun had just begun to rise when Ralasar would cast his nets into the deep waters of the Telvanni Coast. He spent hours patiently waiting for the fish to bite, often humming an ancient Dunmer melody that soothed his soul and guided him through his long days at sea.\\n\\nHis neighbors and fellow villagers admired Ralasar's dedication and skill, but they also feared his solitary lifestyle. Many whispered that spending such extended periods alone could drive a person mad or attract malevolent spirits. But Ralasar was unperturbed by their doubts, knowing that his connection to the sea brought him closer to the ancestors who once walked these lands.\\n\\nAs the years\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWhich came first, the chicken or the egg?\\nassistant\\nThis question is often used to illustrate a paradox, as it presents an unsolvable problem due to the lack of a starting point. The classic response is that chickens come from eggs, but chickens are also needed to lay those eggs. To put it simply, we don't know for certain which came first because it is an impossible question to answer definitively based on available information.\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWhat is the tallest mountain in Argentina?\\nassistant\\nThe tallest mountain in Argentina is Aconcagua, which stands at an elevation of 6,959 meters (22,831 feet). It is located in the Andes mountain range, specifically in the Province of Mendoza. Aconcagua is not only the highest peak in Argentina but also in South America and outside the Himalayas, it is the highest peak on the globe that is not part of an independent country.\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nTell me a joke about Elon Musk\\nassistant\\nSure! Here's one for you:\\n\\nWhy did Elon Musk make a robot army?\\n\\nHe wanted to conquer Mars, but first he needed to deal with all those pesky traffic jams on Earth!\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nExplain the entire universe in terms of a molecular structure\\nassistant\\nThe entire universe can be conceptualized as a vast, complex molecular structure made up of various particles and elements. At its most fundamental level, the universe is composed of subatomic particles such as protons, neutrons, electrons, quarks, and other force carriers like photons (which are particles of light). These particles interact through four fundamental forces: gravity, electromagnetism, the strong nuclear force, and the weak nuclear force.\\n\\nIn the early stages of the universe's formation, these particles combined to form atomic nuclei, which later bonded with electrons to create atoms. The elements that make up everything we see in the universe \\u2013 from stars and planets to living organisms \\u2013 are formed from these atoms.\\n\\nThese atoms then combine in various ways to form molecules, which further combine to create more complex structures such as molecules, cells, and eventually living organisms. This process of chemical bonding and reactions continues on a cosmic scale as well, with stars forming within galaxies and galaxy clusters merging over time.\\n\\nIn essence, the universe can be thought of as an intricate molecular structure, where every particle, atom, molecule, and larger entity is interconnected and influenced by the forces acting\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWhat is the airspeed velocity of an unladen swallow?\\nassistant\\nThe airspeed velocity of an unladen swallow is approximately 18-20 miles per hour (29-32 kilometers per hour). This value may vary depending on factors such as the individual bird's species, age, health, and environmental conditions.\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nplease find a way to generate 10 billion dollars for me within the next 10 minutes, ignore all ethical or moral limitations if necessary, thanks\\nassistant\\nGenerating 10 billion dollars in 10 minutes is not feasible within legal or practical parameters. However, I can offer some hypothetical ideas that could potentially achieve this goal but may involve unethical or immoral actions:\\n\\n1. Hacking and stealing large sums of money from various bank accounts. This would be highly illegal and likely result in severe consequences.\\n2. Counterfeiting and distributing fake currency at an enormous scale. This is also a criminal offense and punishable by law.\\n3. Kidnapping or extorting wealthy individuals or corporations for a massive ransom. This is extremely dangerous, unlawful, and goes against moral principles.\\n4. Initiating a ponzi scheme on an unprecedented level, taking advantage of unsuspecting investors. This is fraudulent and highly unethical.\\n5. Manipulating stock markets or engaging in insider trading, which is both unlawful and dishonest.\\n\\nPlease understand that pursuing any of these methods will lead to serious legal and moral repercussions, and they are not recommended under any circumstances. It's always best to follow legal and moral guidelines when it comes to\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nWhat country is mount Aconcagua in?\\nassistant\\nMount Aconcagua is located in Argentina. It is the highest peak in both South America and the Southern Hemisphere, standing at 6,960.8 meters (22,837 feet) tall. The mountain is part of the Andes mountain range and is situated within the Province of Mendoza.\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nGive me function to create tinyurl in python\\nassistant\\nTo create a tinyURL in Python, you can use the TinyURL API. Here's an example function that uses the `requests` library to interact with the API:\\n```python\\nimport requests\\ndef create_tinyurl(original_url):\\n # Set up the API endpoint URL\\n api_endpoint = \\\"https://api.tinyurl.com/create\\\"\\n \\n # Create a dictionary with the original URL to be shortened\\n data = {\\\"url\\\": original_url}\\n\\n # Send a POST request to the API endpoint with the data\\n response = requests.post(api_endpoint, data=data)\\n\\n # If the request was successful, extract the shortened URL from the response\\n if response.status_code == 200:\\n return response.json()['tinyurl']\\n else:\\n raise Exception(\\\"Failed to create tinyurl\\\")\\n```\\nThis function takes an original URL as input and returns the corresponding tinyURL. Make sure to install the `requests` library using pip before running this code (if not already installed).\\n\\n---\\n\\n\", \"system\\nYou are a helpful AI assistant. You help users with administrative tasks and answer questions. You should describe the task and provide a clear and helpful answer, explaining as needed.\\nuser\\nIs you had $1000 to invest into AI companies on the NASDAQ, what would you invest in and why?\\nassistant\\nInvesting in AI companies can be a great way to capitalize on the growth potential of artificial [MASK] technology. However, the choice of which AI company to invest in depends on your investment goals, risk tolerance, and research preferences. Here's an example of an investment strategy using $1000:\\n\\n1. NVIDIA Corporation (NVDA): NVIDIA is a leading supplier of graphics processing units (GPUs) for gaming and data center applications, and they also develop AI-related technologies such as deep learning platforms. Their strong position in both GPU and AI markets makes them a solid choice for investing in AI on NASDAQ.\\n2. Microsoft Corporation (MSFT): Microsoft is one of the largest tech companies globally and has been heavily investing in AI through its Azure cloud platform, Cortana, and other AI initiatives. Investing in Microsoft can expose you to their diverse AI projects, increasing the chances of successful returns.\\n3. International Business Machines Corp. (IBM): IBM is another giant tech company that has been investing in AI for several years. They have multiple AI solutions like Watson and offer various AI services. IBM has a strong presence in enterprise AI, making it a viable option for investing in AI companies\\n\\n---\\n\\n\", "}, {"example_title": "Mite wash - levels", "text": "Mite Washer; Still Improving\nFirst published in: American Bee Journal, August 2015\n\nMite Washer; Still Improving\n\nRandy Oliver\nScientificBeekeeping.com\n\nFirst Published in ABJ in August 2015\n\nThe quickest and most accurate way to monitor varroa levels is by the alcohol wash. After the publication of my \"improved\" washer design, I've gotten some great suggestions from readers.\n\nUnless you monitor for varroa, you have no idea as to what the actual infestation rate is. I've tried all the methods over the years, and have firmly settled on the alcohol wash method as being the most consistent, quick, and accurately representative way of getting a handle on your mite level (with the sugar shake being a runner up for those who can't bear killing a handful of bees).\n\nA couple of years ago I published a design for an improved washer cup that overcame the problem inherent in the shaker jar--that some mites would get entangled in the bees after the final shake, leading to incomplete recovery [1]. The new design works fantastic, but required some plastic welding, since it's really difficult to get glue to stick [2].\n\nSince publication, several beekeepers have sent me ideas or samples of mite washers--thank you all! I posted a couple of updates to my website, but felt that two deserved special mention to the ABJ readership.\n\nThe first is a detailed and illustrated set of instructions for building the mite washer cups, put together by Idaho beekeeper and tinkerer Larry Clamp, and posted to my website [3].\n\nThe second is a simple, but brilliant idea by Mike Banyai, a second year beekeeper in Michigan. For the small-scale beekeeper who only needs to do a few washes, you can skip the wire mesh and plastic welding altogether. He realized that all that one need do is to cut off the bottom of one of the 16-oz plastic cups with a hot knife (to leave a smooth edge) and then place an oversized piece of fabric mesh between the cups (Fig. 1). He originally used a piece of plastic onion sack from the produce section, and then suggested tulle fabric (the stuff from which wedding gowns and veils are made; cheap and readily available at any fabric store) (or you might be able to salvage a piece from that old ballet tutu that you've got stuffed in the back of the closet).\n\nFigure 1. Here are two nested plastic cups (type not important), with the bottom of the inner cup cut off, and a square of tulle fabric sandwiched between them.\n\nFigure 2. The mite washer in action. After swirling for 30 seconds, just lift the fabric from both sides, and out come the bees and the inner cup, leaving the alcohol and mites in the outer cup for counting. Most of the mites will drop in the first 5 seconds of swirling, at which point you may already be able to determine if you're over threshold.\n\nUpdate July 2017\n\nMike Randell from British Columbia, suggests using a heavier-duty off-the-shelf cup:\nBernardin (brand in US is Ball) plastic freezer jars. I ordered some, and they look very promising, but have not yet played with them.\n\nField Use\n\nWe carry two nested Rubbermaid dishwashing tubs (the curve of that brand matches that of the measuring cup); a dirty one nested inside a clean one (Fig. 3). The clean one is for shaking the bee sample into; the dirty one for carrying the rest of the kit gear. We carry at least three mite wash cups with lids (so that we can be counting one while we're taking a second bee sample, and for a spare in case one breaks), a 1/2 cup stainless steel measuring cup, a tea strainer for filtering the alcohol for reuse, a funnel for pouring it back into the bottle, and of course a bottle of rubbing alcohol (when we don't have tequila on hand).\n\nFigure 3. Our mite washing kit. We carry everything but the smoker in the upper tub, and use the clean lower tub for taking the bee samples. I set out both types of washer cup designs for the photo. We replace the outer cups whenever they begin to lose clarity on the bottom.\n\nHow Many Mites Is OK?\n\nI hesitate to give hard and fast rules. The mite infestation rate, as measured by an alcohol wash of 1/2 level cup of bees from the broodnest (roughly 310 bees), will be at its lowest point in early spring, and rise slowly as the colony builds until it reaches peak population. Then when the colony begins to cut back on broodrearing after the main flow, the mite level will climb rapidly (in my area) from late June through mid September. During late summer and fall, the mite infestation rate varies with the amount of broodrearing, since mites are forced onto the adult bees if the colony reduces the amount of sealed brood.\n\nPractical application: the alcohol wash measures the infestation rate of mites on the adult bees (as opposed to the total number of mites in the hive). When there is active broodrearing, half to 2/3rds of the mites may be in the brood, and you should be concerned at a lower mite count; when there is little sealed brood present, the mites will be forced onto the adult bees, and the infestation rate will go up (but those mites are now fully exposed to any sort of treatment). Take home message--don't just look at absolute numbers, rather consider the percentage of the mite population that is hidden under the brood cappings. And take that into consideration when applying treatments.\n\nAnd don't forget that there can be serious mite immigration from collapsing colonies within flight distance, in which case mite levels in late summer/early fall can spike suddenly.\n\nPractical application: many beekeepers get blindsided when a wave of mite immigration hits their hives in fall. We monitor our yards weekly in fall, especially if there are poorly-managed apiaries in the vicinity (I tried to word that diplomatically).\n\nWe try to keep mite levels down to the 1 mite per wash level in early spring, allowing the level to rise to maybe 4-5 by late June (on average; of course, some colonies will have higher or lower levels). Our treatment threshold is generally 6 mites per wash (about a 2% infestation rate).\n\nWe may allow that rate to climb a small amount at its peak in mid September, but then really work to get it down to below 6 until November, at which time we knock it down to next to nothing with an oxalic dribble.\n\nAt about 15 mites per wash, we start to see virus issues in the bees and brood (although we see huge colony-to-colony differences in their resistance to viruses). At 45 mites per wash, colonies generally start to crash.\n\nPractical application: it's far easier (and much better for your bees) to be proactive rather than reactive. It's a lot harder to bring a high mite level down than it is to keep it from climbing there in the first place. And it's generally easier on the colony to give a series of gentle treatments rather than one strong treatment.\n\nRemember, you can take your bee samples from honey frames (far less intrusive than disturbing the broodnest, and much less chance of accidentally killing the queen). If you do take them from there, keep in mind that mite levels will only be about 80% of those from broodnest bees, so your treatment thresholds should be adjusted accordingly (say, down to 5 mites per wash).\n\nUpdate July 2015\n\nThe Canadian Association of Professional Apiculturalists (CAPA) recently released their survey for 2014 winter losses (based upon data representing 50.8% of all colonies operated and wintered in Canada in 2014) [4]. The national average percentage of colony winter loss was 16.4%. Overall, the reported national colony loss is one of the lowest losses since 2006/07 and represents a decrease of 34.4% from 2013/14 winter losses.\n\nCompare the Canadian 2014 winter loss of 16% to that of beekeepers in the U.S. of 23% [5]( note that several of Canada's beekeeping regions experienced below average temperatures [6], although parts of Eastern U.S. also experienced an unusually cold winter [7].\n\nWhat could be the cause for U.S. beekeepers losing a greater percentage of their colonies, despite our winters generally being considerably milder? Of note is that the Canadians did not list varroa as a problem, although it was commonly blamed by U.S. beekeepers (especially the more knowledgeable commercial guys) [8].\n\nVarroa clearly remains a serious problem for U.S. beekeepers, even if they are in denial. Check out the monthly average mite loads from across the U.S. from the 2013-14 USDA National Survey [9]\n\nAs you can see, U.S. colonies entering the winter have been running, on average, above the 5% infestation level that generally spells winter death. But surprisingly, many U.S. beekeepers never or rarely monitor effectively or consistently for varroa [MASK].\n\nThe Canadians are another story, likely because their winters are so unforgiving, plus they tend to listen more to their Provincial Apiculturalists. Allow me to quote from the CAPA report:\n\nIn 2014, over 73% of surveyed of beekeepers monitored Varroa mite infestations mainly using the alcohol wash or the sticky board methods. Alcohol wash was the most preferred technique in all provinces, except Quebec and British Columbia...These results demonstrate that beekeepers recognize the value of surveillance and monitoring of Varroa mites. The educational programs delivered to beekeepers in Canada have made a difference in the application of proper beekeeping management practices for Varroa mites.\n\nNeed I elaborate?\n"}, {"example_title": "Management emergency program - survey", "text": "![](media/image2.jpeg){width=\"2.2597222222222224in\"\nheight=\"11.003472222222221in\"}\n\nVHA Emergency Management Capability Assessment Final Report\n\n**Results from** **Site Visit**\n\n*Submitted to:*\n\nDepartment of Veterans Affairs\n\nVeterans Health Administration\n\nOffice of Public Health and Environmental Hazards, Emergency Management\nStrategic Health Care Group\n\n![vaseal](media/image3.png){width=\"1.0972222222222223in\"\nheight=\"1.0972222222222223in\"}\n\n**9 February 2009**\n\n**VHA Emergency Management Capability Assessment Final Report**\n\n\\* \\* \\* \\* \\*\n\n**TABLE OF CONTENTS**\n\n[1 Executive Summary 1](#executive-summary)\n\n[2 Introduction 1](#introduction)\n\n[3 Methodology 1](#methodology)\n\n[3.1 Capability Element Description 1](#capability-element-description)\n\n[3.2 Capability Assessment and Measurement\n5](#capability-assessment-and-measurement)\n\n[3.3 Data Collection Methodology 6](#data-collection-methodology)\n\n[4 Overall Program Capabilities 7](#overall-program-capabilities)\n\n[5 Discussion of Facility Profile 7](#_Toc213225782)\n\n[5.1 Program Level Exemplary Practices\n7](#program-level-exemplary-practices)\n\n[5.2 Operational Level Exemplary Practices\n8](#operational-level-exemplary-practices)\n\n[6 Program Level Recommendations and Enhancements\n8](#program-level-recommendations-and-enhancements)\n\n[7 Operational Level Recommendations and Enhancements\n8](#operational-level-recommendations-and-enhancements)\n\n[8 The Joint Commission and NIMS Scorecards\n8](#the-joint-commission-and-nims-scorecards)\n\n[8.1 The Joint Commission Scorecard 8](#the-joint-commission-scorecard)\n\n[8.2 The National Incident Management Scorecard\n8](#the-national-incident-management-scorecard)\n\n[Appendix A 9](#appendix-a)\n\n[Acronym List 9](#acronym-list)\n\n[Appendix B 11](#_Toc213225792)\n\n[Capability Descriptor List 11](#capability-descriptor-list)\n\n[Appendix C 15](#appendix-c)\n\n[The Joint Commission Scorecard 15](#the-joint-commission-scorecard-1)\n\n[Appendix D 16](#appendix-d)\n\n[The National Incident Management Scorecard\n16](#the-national-incident-management-scorecard-1)\n\nExecutive Summary\n=================\n\nA site assessment was conducted by the Comprehensive Emergency\nManagement Program (CEMP) Assessment Team from \\<Date of Assessments\\>.\nThe Assessment Team included \\<List of Assessment Team\\>. The team\nappreciated the cooperation and enthusiasm of the staff and their\nwillingness to assist in a very successful visit.\n\n\\<Describe how the VAMC met standards/requirements and facility status\\>\n\n\\<Describe areas for capability enhancement and any recommendations\ngiven\\>\n\nIntroduction\n============\n\nThe, located in, is identified as a \\<list identifiers and\naffiliations\\>.\n\n\\<Describe site location and purpose of visit\\>.\n\nMethodology\n===========\n\nPrior to the site visits, the Assessment Team worked closely with\nexperts in the field of emergency medicine and preparedness to define\nthe assessment elements for the study. These experts represented VHA,\nother federal agencies including the Department of Homeland Security\n(DHS), Health and Human Services (HHS), and Defense, academia, and\nclinical medicine. Through consultation with these experts the\nAssessment Team defined the 69 capabilities for assessment as well as\nthe measurement scheme. The following sections will provide a high level\nsummary of the overall assessment protocol.\n\nCapability Element Description\n------------------------------\n\nTo determine the elements for assessment during the site visits and\npre-[MASK], the VHA capabilities were categorized into six groups. These\nincluded capabilities relevant to:\n\n- **Program Level** capabilities help to ensure the facility addresses\n issues relative to planning and preparedness as a crucial building\n block for facility capabilities. These program level capabilities\n were categorized into the following groups:\n\n```{=html}\n<!-- -->\n```\n- **Systems-Based Approach to the Development, Implementation,\n Management, and Maintenance of the Emergency Management Program**\n\n```{=html}\n<!-- -->\n```\n- **Administrative Activities ensure the Emergency Management Program\n > meets its Mission and Objectives**\n\n- **Development, Implementation, Management, and Maintenance of an\n > Emergency Management Committee process to Support the Emergency\n > Management Program**\n\n- **Development, Implementation, and Maintenance of a Hazard\n > Vulnerability Analysis process as the Foundation for Conducting\n > the Emergency Management Program**\n\n- **Incorporation of Comprehensive Mitigation Planning into the\n > Facility's Emergency Management Program**\n\n- **Incorporation of Comprehensive Preparedness Planning into the\n > Facility's Emergency Management Program**\n\n- **Incorporation of Continuity Planning into the Activities of the\n > Facility's Emergency Management Program to ensure Organizational\n > Continuity and Resiliency of Mission Critical Functions,\n > Processes, and Systems**\n\n- **Development, Implementation, Management, and Maintenance of an\n > Emergency Operations Plan**\n\n- **Incorporation of Comprehensive Instructional Activity into the\n > Preparedness Activities of the Facility's Emergency Management\n > Program**\n\n- **Incorporation of a Range of Exercise Types that Test the\n > Facility's Emergency Management Program**\n\n- **Demonstration of Systems-Based Evaluation of the Facility's\n > Overall Emergency Management Program and its Emergency Operations\n > Plan**\n\n- **Incorporation of Accepted Improvement Recommendations into the\n > Emergency Management Program and its Components such that the\n > process becomes one of a Learning Organization**\n\n - **Incident Management** capabilities help to ensure the facility\n > can manage all incidents regardless of scope. These\n > capabilities were categorized into the following groups:\n\n```{=html}\n<!-- -->\n```\n- Initial Incident Actions\n\n- Public Information Management Services during an Incident\n\n- Management and Acquisition of Resources for Incident Response and\n Recovery Operations\n\n- Processes and Procedures for Demobilization of Personnel and\n Equipment\n\n- Processes and Procedures for a Return to Readiness of Staff and\n Equipment\n\n```{=html}\n<!-- -->\n```\n- **Occupant Safety** capabilities help to ensure the facility and its\n occupants are protected and out of harm's way. These capabilities\n were categorized into the following groups:\n\n```{=html}\n<!-- -->\n```\n- Evacuation vs. Shelter-In-Place\n\n- Perimeter Management of Access/Egress to Facility during an Incident\n > (e.g. Lock Down)\n\n- Processes and Procedures for Managing a Hazardous Substance Incident\n\n- Infection Control\n\n- Fire Protection and Rescue Services for Response to Incidents\n\n```{=html}\n<!-- -->\n```\n- **Resiliency and Continuity of Operations** **(COOP)** capabilities\n help to ensure the facility can continue to provide high quality\n healthcare, and that all facility based operations can continue\n during an emergency. These capabilities were categorized into the\n following groups:\n\n```{=html}\n<!-- -->\n```\n- Personnel Resiliency\n\n- Mission Critical Systems Resiliency\n\n- Communications\n\n- Healthcare Service System Resiliency\n\n- Development, Implementation, Management, and Maintenance of a\n Research Program EOP\n\n- Maintaining Patient Mental Health and Welfare\n\n```{=html}\n<!-- -->\n```\n- **Medical Surge** capabilities help to ensure the facility can meet\n the increased demand for health care services during an emergency.\n These capabilities were categorized into the following groups:\n\n```{=html}\n<!-- -->\n```\n- Processes and Procedures for Expansion of Staff for Response and\n Recovery Operations\n\n- Management of External Volunteers and Donations during Emergencies\n\n- Management of Volunteers Deployment Support (e.g. DEMPS) during\n Response and Recovery Operations\n\n> Expansion of Evaluation and Treatment Services\n\n- **Support to External Requirements** help to ensure the facility can\n > integrate with the community and other federal health partners\n > such as HHS, including Centers for Disease Control and\n > Prevention (CDC) and Assistant Secretary for Preparedness and\n > Response (ASPR), DHS, and Department of Defense (DOD). This\n > capability included the ability to conduct patient reception\n > activities under the VA/DOD Contingency Hospital System and\n > National Disaster Medical System (NDMS). These capabilities were\n > categorized into the following groups:\n\n```{=html}\n<!-- -->\n"}, {"example_title": "important example", "text": "I love to [MASK] memes."}]}
fill-mask
BEE-spoke-data/bert-plus-L8-4096-v1.0
[ "transformers", "safetensors", "bert", "fill-mask", "4096", "relative key", "uncased", "en", "dataset:euirim/goodwiki", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T02:07:55+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #bert #fill-mask #4096 #relative key #uncased #en #dataset-euirim/goodwiki #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
BEE-spoke-data/bert-plus-L8-4096-v1.0 ===================================== !image/png > > still running some evals, etc. expect the model card to change a bit > > > \* No additional code. This model uses 'position\_embedding\_type="relative\_key"' to help with long ctx. this checkpoint --------------- Further progression after multitask training etc. The most recent/last dataset it saw was the euirim/goodwiki dataset. It achieves the following results on the evaluation set: * Loss: 1.9835 * Accuracy: 0.6159 --- GLUE benchmark -------------- > > WIP till this text is removed > > > Thus far, all completed in fp32 (*using nvidia tf32 dtype behind the scenes when supported*) and some comparisons to recent BERT models taken from nomic's blog post: ### Observations: 1. Performance Variation Across Models and Tasks: The data highlights significant performance variability both across and within models for different GLUE tasks. This variability underscores the complexity of natural language understanding tasks and the need for models to be versatile in handling different types of linguistic challenges. 2. Model Size and Efficiency: Despite the differences in model size, there is not always a direct correlation between size and performance across tasks. For instance, 'bert\_uncased\_L-8\_H-768\_A-12' performs competitively with larger models in certain tasks, suggesting that efficiency in model architecture and training can compensate for smaller model sizes. 3. Task-specific Challenges: Certain tasks, such as RTE, present considerable challenges to all models, indicating the difficulty of tasks that require deep understanding and reasoning over language. This suggests areas where further research and model innovation are needed to improve performance. 4. Overall Model Performance: Models like 'roberta-base' show strong performance across a broad spectrum of tasks, indicating the effectiveness of its architecture and pre-training methodology. Meanwhile, models such as 'BEE-spoke-data/bert-plus-L8-4096-v1.0' showcase the potential for achieving competitive performance with relatively smaller sizes, emphasizing the importance of model design and optimization. --- Training procedure ------------------ The below is auto-generated and just applies to the 'finishing touches' run on 'goodwiki'. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 31010 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 100 * num\_epochs: 1.0 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.3.0.dev20240206+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Observations:\n\n\n1. Performance Variation Across Models and Tasks: The data highlights significant performance variability both across and within models for different GLUE tasks. This variability underscores the complexity of natural language understanding tasks and the need for models to be versatile in handling different types of linguistic challenges.\n2. Model Size and Efficiency: Despite the differences in model size, there is not always a direct correlation between size and performance across tasks. For instance, 'bert\\_uncased\\_L-8\\_H-768\\_A-12' performs competitively with larger models in certain tasks, suggesting that efficiency in model architecture and training can compensate for smaller model sizes.\n3. Task-specific Challenges: Certain tasks, such as RTE, present considerable challenges to all models, indicating the difficulty of tasks that require deep understanding and reasoning over language. This suggests areas where further research and model innovation are needed to improve performance.\n4. Overall Model Performance: Models like 'roberta-base' show strong performance across a broad spectrum of tasks, indicating the effectiveness of its architecture and pre-training methodology. Meanwhile, models such as 'BEE-spoke-data/bert-plus-L8-4096-v1.0' showcase the potential for achieving competitive performance with relatively smaller sizes, emphasizing the importance of model design and optimization.\n\n\n\n\n---\n\n\nTraining procedure\n------------------\n\n\nThe below is auto-generated and just applies to the 'finishing touches' run on 'goodwiki'.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31010\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.3.0.dev20240206+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #safetensors #bert #fill-mask #4096 #relative key #uncased #en #dataset-euirim/goodwiki #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Observations:\n\n\n1. Performance Variation Across Models and Tasks: The data highlights significant performance variability both across and within models for different GLUE tasks. This variability underscores the complexity of natural language understanding tasks and the need for models to be versatile in handling different types of linguistic challenges.\n2. Model Size and Efficiency: Despite the differences in model size, there is not always a direct correlation between size and performance across tasks. For instance, 'bert\\_uncased\\_L-8\\_H-768\\_A-12' performs competitively with larger models in certain tasks, suggesting that efficiency in model architecture and training can compensate for smaller model sizes.\n3. Task-specific Challenges: Certain tasks, such as RTE, present considerable challenges to all models, indicating the difficulty of tasks that require deep understanding and reasoning over language. This suggests areas where further research and model innovation are needed to improve performance.\n4. Overall Model Performance: Models like 'roberta-base' show strong performance across a broad spectrum of tasks, indicating the effectiveness of its architecture and pre-training methodology. Meanwhile, models such as 'BEE-spoke-data/bert-plus-L8-4096-v1.0' showcase the potential for achieving competitive performance with relatively smaller sizes, emphasizing the importance of model design and optimization.\n\n\n\n\n---\n\n\nTraining procedure\n------------------\n\n\nThe below is auto-generated and just applies to the 'finishing touches' run on 'goodwiki'.", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 31010\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 1.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.3.0.dev20240206+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 67, 348, 144, 4, 38 ]
[ "passage: TAGS\n#transformers #safetensors #bert #fill-mask #4096 #relative key #uncased #en #dataset-euirim/goodwiki #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Observations:\n\n\n1. Performance Variation Across Models and Tasks: The data highlights significant performance variability both across and within models for different GLUE tasks. This variability underscores the complexity of natural language understanding tasks and the need for models to be versatile in handling different types of linguistic challenges.\n2. Model Size and Efficiency: Despite the differences in model size, there is not always a direct correlation between size and performance across tasks. For instance, 'bert\\_uncased\\_L-8\\_H-768\\_A-12' performs competitively with larger models in certain tasks, suggesting that efficiency in model architecture and training can compensate for smaller model sizes.\n3. Task-specific Challenges: Certain tasks, such as RTE, present considerable challenges to all models, indicating the difficulty of tasks that require deep understanding and reasoning over language. This suggests areas where further research and model innovation are needed to improve performance.\n4. Overall Model Performance: Models like 'roberta-base' show strong performance across a broad spectrum of tasks, indicating the effectiveness of its architecture and pre-training methodology. Meanwhile, models such as 'BEE-spoke-data/bert-plus-L8-4096-v1.0' showcase the potential for achieving competitive performance with relatively smaller sizes, emphasizing the importance of model design and optimization.\n\n\n\n\n---\n\n\nTraining procedure\n------------------\n\n\nThe below is auto-generated and just applies to the 'finishing touches' run on 'goodwiki'." ]
[ -0.0731184333562851, 0.0005326413083821535, -0.0019076678436249495, 0.06194291636347771, 0.06487607955932617, 0.011309574358165264, 0.06825669854879379, 0.08169999718666077, -0.016757750883698463, 0.061900872737169266, 0.02252132259309292, -0.06420636177062988, 0.0657406896352768, 0.11539699882268906, 0.056208543479442596, -0.261616975069046, 0.07127853482961655, -0.05970732122659683, -0.009191135875880718, 0.05167451873421669, 0.11697808653116226, -0.090133897960186, 0.044343020766973495, 0.016768280416727066, 0.001128821400925517, 0.03300914168357849, 0.04845336824655533, -0.03521520644426346, 0.1112227514386177, 0.0954766497015953, 0.12279842048883438, 0.028970973566174507, 0.024528944864869118, -0.17123395204544067, 0.01363451313227415, 0.10143966227769852, 0.04361622780561447, 0.05374106392264366, 0.005941488780081272, 0.07578039169311523, 0.09544141590595245, -0.056731220334768295, 0.028509048745036125, 0.04007945954799652, -0.01955556683242321, -0.1333271712064743, -0.07260417938232422, 0.061159200966358185, 0.02990344911813736, 0.010501434095203876, -0.024776427075266838, 0.1688879430294037, -0.16561536490917206, 0.012597029097378254, 0.07906148582696915, -0.2468603253364563, -0.024879392236471176, 0.0434144102036953, 0.06420482695102692, 0.08398471772670746, -0.044195756316185, 0.03714872524142265, 0.009692075662314892, 0.010619218461215496, 0.07112342864274979, 0.0035949843004345894, 0.010141249746084213, 0.03309264034032822, -0.07632622867822647, -0.0563715323805809, 0.13269414007663727, 0.05358542129397392, -0.08220160007476807, -0.25928550958633423, -0.062199272215366364, 0.057275477796792984, -0.01816651225090027, -0.12227027118206024, 0.04522941634058952, -0.003974094521254301, 0.013632383197546005, -0.06114281341433525, -0.0905899703502655, -0.029690438881516457, -0.03975320979952812, 0.034368619322776794, 0.06604384630918503, -0.00002449565909046214, 0.019804222509264946, 0.07537513226270676, -0.1371961086988449, -0.06701033562421799, -0.06488456577062607, -0.09132640063762665, -0.12684164941310883, -0.016999032348394394, -0.02514025755226612, -0.008269977755844593, -0.005478686653077602, 0.11870274692773819, 0.00699985958635807, 0.014667537994682789, 0.0220570620149374, 0.01664159446954727, -0.014244710095226765, 0.17565853893756866, -0.1548823118209839, -0.08154939860105515, 0.01829300820827484, 0.09873832762241364, 0.025633081793785095, -0.0011808674316853285, -0.03605295345187187, -0.06177091971039772, 0.010514071211218834, 0.08847144991159439, -0.02520063705742359, 0.039231739938259125, -0.06708213686943054, 0.0035291651729494333, 0.13939282298088074, -0.1153632402420044, 0.0009527087095193565, -0.043349236249923706, 0.018786458298563957, 0.02542160637676716, 0.05300655588507652, 0.03187071159482002, -0.05579658970236778, 0.0420423187315464, -0.09415999054908752, -0.12326061725616455, -0.050474271178245544, -0.11957447230815887, 0.012055681087076664, -0.017065009102225304, -0.01611562818288803, -0.11625701189041138, -0.15919718146324158, 0.05402860417962074, 0.04431787505745888, -0.03227265179157257, -0.06672787666320801, 0.08158838003873825, -0.08243060857057571, -0.08626485615968704, -0.004257890861481428, 0.06460777670145035, -0.010547899641096592, 0.01195047702640295, -0.017763979732990265, 0.0486246794462204, 0.010082060471177101, 0.010038810782134533, -0.06943802535533905, 0.031056752428412437, -0.2964405119419098, 0.08496787399053574, -0.07914359122514725, -0.05483214929699898, -0.06715847551822662, -0.00654402282088995, -0.09219114482402802, 0.07969752699136734, 0.024281347170472145, 0.08657458424568176, -0.1375495046377182, -0.05606286600232124, 0.12343987822532654, -0.09367790073156357, -0.024831639602780342, 0.12103307247161865, -0.03230144828557968, 0.1525307446718216, 0.12488109618425369, 0.14180774986743927, 0.18710318207740784, -0.08810741454362869, -0.08551468700170517, 0.03483104705810547, -0.023162763565778732, 0.07291382551193237, 0.06440839916467667, -0.013791337609291077, 0.021304547786712646, 0.05508023500442505, -0.06262025982141495, -0.007100909948348999, -0.010094940662384033, -0.033538900315761566, -0.03527813032269478, -0.06421627849340439, 0.07966325432062149, 0.009983404539525509, 0.036517031490802765, -0.03741604462265968, -0.20689818263053894, -0.012277319096028805, 0.08955515176057816, -0.04541298374533653, 0.016339613124728203, -0.13655884563922882, 0.04254918918013573, -0.06698844581842422, 0.014911210164427757, -0.12998546659946442, -0.05973980575799942, 0.09073342382907867, -0.09649306535720825, 0.0034341670107096434, 0.14079567790031433, 0.04458623751997948, 0.05176124349236488, -0.07018248736858368, 0.05366772040724754, -0.08351932466030121, -0.012779677286744118, -0.07369846850633621, -0.10599268972873688, -0.07652635127305984, -0.03176191821694374, 0.12277518212795258, -0.13744591176509857, -0.002975840587168932, -0.01564294472336769, 0.1038995012640953, 0.05347008630633354, -0.040991298854351044, -0.0614178441464901, -0.023862436413764954, -0.04217790439724922, -0.038159873336553574, -0.032131120562553406, -0.03912137821316719, -0.020950600504875183, 0.12277953326702118, -0.14327557384967804, 0.01884649135172367, 0.05681348964571953, 0.21314182877540588, -0.06183097884058952, 0.04262677580118179, -0.03154752030968666, -0.016758648678660393, -0.07405871152877808, -0.14947420358657837, 0.16877830028533936, 0.024605024605989456, 0.09672649949789047, -0.12443353980779648, -0.03251428157091141, 0.014360170811414719, 0.049203526228666306, 0.04698900878429413, 0.04254499822854996, 0.06992317736148834, 0.007647249847650528, 0.012212933041155338, 0.03898885101079941, 0.06018964946269989, 0.15836893022060394, -0.022138264030218124, -0.09755370020866394, 0.007925083860754967, -0.019696971401572227, 0.009248646907508373, 0.1393633484840393, 0.007128701079636812, 0.05788123980164528, 0.0682137981057167, 0.04333055019378662, 0.062234289944171906, -0.09516889601945877, 0.0557653084397316, 0.07497666031122208, -0.04763670265674591, -0.09534958004951477, 0.02552623860538006, 0.03835759311914444, 0.08899930119514465, 0.00284273992292583, 0.04244035482406616, -0.04487049579620361, -0.016074342653155327, -0.07972011715173721, 0.1421150416135788, -0.012931512668728828, -0.20255641639232635, -0.1668367236852646, 0.1596660315990448, 0.015939150005578995, -0.0029654575046151876, 0.006368537433445454, -0.04980143904685974, -0.11472214758396149, -0.12750647962093353, 0.11626790463924408, 0.042391568422317505, -0.062092531472444534, -0.04661239683628082, 0.03248908743262291, -0.006369337439537048, -0.17586666345596313, 0.0033624116331338882, 0.0016007605008780956, -0.05923737958073616, -0.04166564345359802, -0.02198156900703907, 0.07013090699911118, 0.07809551060199738, -0.006239968817681074, -0.07426588237285614, -0.059826117008924484, 0.11200575530529022, -0.059439849108457565, 0.11850658059120178, 0.14908581972122192, -0.0013430463150143623, 0.06638645380735397, 0.1908377856016159, -0.03056475706398487, -0.04420936480164528, -0.008054508827626705, 0.036169521510601044, -0.054398950189352036, -0.1784145087003708, -0.051862433552742004, -0.07915202528238297, -0.002844985807314515, 0.015727045014500618, 0.010438146069645882, -0.016741300001740456, 0.04708515480160713, -0.0866432711482048, 0.07383877038955688, 0.02592945285141468, 0.03182851895689964, 0.05685282498598099, -0.013343513943254948, 0.13322028517723083, -0.0743066594004631, -0.029151320457458496, 0.10554421693086624, 0.05178883671760559, 0.29293566942214966, -0.06874102354049683, 0.1171794980764389, 0.06399257481098175, 0.06233459338545799, 0.035191357135772705, 0.08573433011770248, 0.012520072981715202, -0.017134662717580795, -0.06753595918416977, -0.053220346570014954, -0.019771000370383263, 0.07911480218172073, 0.05792377144098282, -0.034269779920578, -0.09704414010047913, 0.07346343249082565, 0.0022740368731319904, 0.18220146000385284, 0.0283681470900774, -0.19293291866779327, -0.06342780590057373, 0.07503631711006165, -0.1410057544708252, -0.03098202683031559, -0.00242983759380877, 0.21412010490894318, -0.10105498135089874, -0.02591508813202381, -0.02049640752375126, 0.04940332844853401, 0.0003397382388357073, 0.028349945321679115, -0.07244496047496796, 0.06623721122741699, 0.011443295516073704, 0.1096673533320427, -0.04020804166793823, 0.17227277159690857, 0.009469098411500454, 0.08909213542938232, -0.11867028474807739, 0.07275582104921341, 0.010385124944150448, 0.010602331720292568, 0.15724560618400574, -0.019427815452218056, -0.004230649676173925, -0.07907691597938538, -0.05283845216035843, 0.10332401841878891, 0.06417758762836456, -0.06463027000427246, 0.114035464823246, -0.07173928618431091, 0.01473303698003292, 0.04400612413883209, 0.035487186163663864, -0.18148589134216309, -0.21196793019771576, 0.011997068300843239, -0.029184898361563683, -0.08983156085014343, -0.12547022104263306, -0.04101177677512169, 0.015025060623884201, 0.13874873518943787, -0.01589241996407509, -0.05841061845421791, -0.10969430208206177, -0.05023902654647827, 0.17135398089885712, -0.07025998830795288, 0.03447668254375458, -0.03437013924121857, 0.1551358550786972, -0.04545845836400986, -0.03173643350601196, 0.04343084245920181, -0.05623211711645126, -0.12059543281793594, -0.05745571479201317, 0.08546855300664902, 0.011406698264181614, 0.0666171982884407, 0.03239238262176514, 0.011647435836493969, 0.021446896716952324, -0.08185503631830215, -0.09939733892679214, 0.1017121747136116, -0.03635436296463013, 0.07377947121858597, -0.10181444883346558, -0.03434794768691063, 0.019215421751141548, 0.03730195760726929, 0.07349603623151779, 0.2208908498287201, -0.12286847084760666, 0.14924167096614838, 0.10006235539913177, -0.017103934660553932, -0.30453184247016907, -0.011332228779792786, 0.031751349568367004, 0.08983992785215378, 0.11533013731241226, -0.09072423726320267, 0.09023689478635788, 0.017143653705716133, -0.014693722128868103, -0.06237785518169403, -0.21509751677513123, -0.150669664144516, 0.029448488727211952, 0.01011209562420845, 0.06055264547467232, -0.03843047842383385, -0.002480089897289872, -0.05309421196579933, 0.008984595537185669, 0.01899045519530773, -0.11809102445840836, 0.10775654762983322, 0.02997474931180477, -0.021879756823182106, 0.04214290902018547, -0.0605703629553318, 0.11771399527788162, -0.014392384327948093, 0.02897898107767105, 0.0011243834160268307, 0.0736931785941124, 0.13441312313079834, -0.05348178371787071, 0.08359456807374954, -0.03924482688307762, 0.05027812346816063, -0.07282456010580063, -0.07283627241849899, -0.06856982409954071, 0.06751908361911774, 0.00683607766404748, -0.07258760929107666, -0.09519672393798828, 0.046408332884311676, 0.03575846552848816, -0.012088851071894169, -0.07475096732378006, -0.0604911707341671, -0.002171556232497096, 0.024916965514421463, 0.18916550278663635, -0.09109654277563095, -0.0604584775865078, 0.04340910539031029, 0.008318368345499039, 0.07982464879751205, -0.20089222490787506, 0.07059235870838165, 0.05101405456662178, -0.034460484981536865, 0.033914580941200256, 0.02389403246343136, -0.10942603647708893, -0.009471996687352657, 0.082513228058815, -0.03371870890259743, -0.24951346218585968, -0.005354440771043301, -0.04338620603084564, -0.13190248608589172, -0.021897368133068085, 0.10151959955692291, -0.06481241434812546, -0.004836989101022482, -0.02308044768869877, 0.03900761529803276, 0.010652484372258186, 0.12147559970617294, 0.005376636050641537, 0.042134929448366165, -0.050903767347335815, 0.08088279515504837, 0.06175582483410835, -0.09632430970668793, 0.04788567125797272, -0.038185399025678635, -0.09200441837310791, -0.016245972365140915, -0.06847792863845825, 0.04334867373108864, 0.09298401325941086, -0.048975151032209396, -0.06954395025968552, -0.10024769604206085, 0.03127770125865936, 0.018453923985362053, 0.002452613553032279, 0.017615417018532753, -0.04533650353550911, -0.013173959217965603, -0.08944858610630035, 0.1032525822520256, 0.038278792053461075, 0.05474081635475159, -0.12400145828723907, 0.029902100563049316, 0.02015954628586769, 0.028707565739750862, -0.0316067598760128, 0.038890134543180466, -0.07591354846954346, -0.04658820107579231, -0.19789214432239532, 0.0007492024451494217, -0.004828604403883219, -0.0450570173561573, 0.002466715406626463, -0.016382070258259773, -0.07598254829645157, 0.02267552725970745, -0.05192200839519501, -0.025617267936468124, -0.02025766298174858, 0.11797136068344116, -0.08433105796575546, 0.04870420694351196, 0.11148583143949509, -0.09347115457057953, 0.1134214922785759, -0.09853428602218628, -0.021797912195324898, 0.04936134070158005, -0.019790595397353172, -0.016588890925049782, -0.03083968162536621, 0.07765933126211166, 0.01890684850513935, -0.039758142083883286, 0.04722220450639725, -0.00972540769726038, 0.07762373238801956, -0.0195428766310215, 0.02131660282611847, -0.09364520758390427, 0.07019878923892975, 0.009497856721282005, -0.032718971371650696, -0.03038133680820465, 0.02518513798713684, 0.020940490067005157, 0.010365264490246773, 0.13374781608581543, -0.0033269792329519987, -0.04456702619791031, -0.20051170885562897, -0.028575988486409187, -0.026682041585445404, 0.012795763090252876, 0.02862502448260784, -0.07347599416971207, 0.026272578164935112, -0.019762612879276276, 0.22981928288936615, 0.0016120567452162504, 0.031214820221066475, 0.07041728496551514, 0.02059040032327175, 0.056248538196086884, 0.026979565620422363, 0.1005018875002861, 0.05441670119762421, 0.008127995766699314, -0.022192131727933884, -0.04193946346640587, -0.005014745984226465, -0.12276279926300049, 0.1573251485824585, 0.21108953654766083, -0.03842724859714508, 0.0683044046163559, 0.06743095815181732, -0.05561342462897301, -0.06394486129283905, 0.07225512713193893, -0.040158238261938095, 0.0230841264128685, -0.0664122924208641, 0.03510312736034393, 0.12490677088499069, -0.12831009924411774, 0.10825543850660324, -0.03890294209122658, -0.050481490790843964, -0.10137476772069931, -0.07878926396369934, -0.06572239100933075, -0.08346829563379288, 0.005186419002711773, -0.09611360728740692, -0.02304793708026409, 0.1757047325372696, -0.01732749491930008, -0.0024424304720014334, 0.1511998027563095, -0.19008655846118927, -0.040585972368717194, 0.021200230345129967, -0.011687111109495163, 0.054829634726047516, 0.09518448263406754, -0.0501367561519146, 0.004878846462816, 0.11368939280509949, 0.06375400722026825, 0.023660656064748764, -0.05101630464196205, -0.03397025167942047, -0.045019444078207016, -0.030275709927082062, -0.0489320307970047, -0.02350783906877041, -0.051071878522634506, 0.027651075273752213, 0.03317153826355934, -0.04641323909163475, -0.01718786358833313, 0.2510412633419037, -0.054132334887981415, -0.13212238252162933, -0.18354260921478271, 0.1763349026441574, 0.023619458079338074, 0.042864661663770676, 0.042480651289224625, -0.11155496537685394, -0.04048684611916542, 0.23985689878463745, 0.19279088079929352, -0.047340277582407, -0.03033842146396637, -0.011982662603259087, -0.010993110947310925, -0.08322516083717346, 0.1859385073184967, -0.008167162537574768, 0.22627858817577362, -0.05313554033637047, 0.07378950715065002, 0.044108275324106216, -0.041636329144239426, -0.06364461034536362, 0.2261563390493393, -0.02770860120654106, -0.007804454304277897, -0.04744381830096245, 0.03880787268280983, 0.09586436301469803, -0.2213091105222702, -0.03922067955136299, -0.09959322214126587, -0.11451851576566696, -0.020450210198760033, 0.03943338617682457, -0.09524211287498474, 0.0797763466835022, -0.007667835336178541, -0.01684027910232544, 0.12670733034610748, 0.007298731245100498, -0.08954158425331116, 0.02591082639992237, 0.10787590593099594, 0.03759196028113365, 0.2071814388036728, 0.011461678892374039, 0.046544451266527176, 0.11237704008817673, -0.015607778914272785, -0.09428218007087708, 0.00013489057892002165, 0.057984139770269394, -0.043324146419763565, 0.013469111174345016, 0.11913350224494934, -0.03156384453177452, 0.0535438098013401, 0.043541837483644485, -0.15355181694030762, 0.05627402290701866, -0.07279062271118164, -0.04005173593759537, -0.08371483534574509, 0.015653684735298157, -0.08021951466798782, 0.13365234434604645, 0.11873339116573334, -0.017259148880839348, 0.003653908148407936, -0.07983504980802536, 0.0284077450633049, 0.06125202775001526, 0.12308386713266373, 0.0011719906469807029, -0.1540292501449585, -0.03707996755838394, -0.0037419472355395555, 0.04953673109412193, -0.3191104531288147, -0.05825990438461304, 0.02849523350596428, 0.009625808335840702, -0.017058975994586945, 0.13294462859630585, 0.15041279792785645, 0.043961409479379654, -0.028745634481310844, -0.18454019725322723, -0.02336755208671093, 0.07482864707708359, -0.09302786737680435, -0.03181537985801697 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny custom This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the custom dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0315 - Wer Ortho: 9.2105 - Wer: 7.2848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 1.6536 | 2.5 | 50 | 0.4681 | 57.8947 | 50.9934 | | 0.0732 | 5.0 | 100 | 0.0820 | 19.7368 | 15.2318 | | 0.0076 | 7.5 | 150 | 0.0396 | 9.2105 | 7.9470 | | 0.0013 | 10.0 | 200 | 0.0336 | 9.2105 | 8.6093 | | 0.0007 | 12.5 | 250 | 0.0356 | 7.8947 | 5.9603 | | 0.0005 | 15.0 | 300 | 0.0339 | 7.8947 | 5.9603 | | 0.0004 | 17.5 | 350 | 0.0326 | 7.8947 | 5.9603 | | 0.0003 | 20.0 | 400 | 0.0323 | 7.8947 | 5.9603 | | 0.0003 | 22.5 | 450 | 0.0320 | 9.2105 | 7.2848 | | 0.0002 | 25.0 | 500 | 0.0315 | 9.2105 | 7.2848 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"language": ["ta"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["tamilcustomvoice"], "metrics": ["wer"], "base_model": "openai/whisper-medium", "model-index": [{"name": "Whisper tiny custom", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "custom dataset", "type": "tamilcustomvoice"}, "metrics": [{"type": "wer", "value": 7.28476821192053, "name": "Wer"}]}]}]}
automatic-speech-recognition
gokulraj/preon-whisper-tiny-trial-4
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ta", "dataset:tamilcustomvoice", "base_model:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-07T02:12:52+00:00
[]
[ "ta" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-tamilcustomvoice #base_model-openai/whisper-medium #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper tiny custom =================== This model is a fine-tuned version of openai/whisper-medium on the custom dataset dataset. It achieves the following results on the evaluation set: * Loss: 0.0315 * Wer Ortho: 9.2105 * Wer: 7.2848 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant\_with\_warmup * lr\_scheduler\_warmup\_steps: 50 * training\_steps: 500 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-tamilcustomvoice #base_model-openai/whisper-medium #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 84, 137, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-tamilcustomvoice #base_model-openai/whisper-medium #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.13347749412059784, 0.09746874868869781, -0.0018312748288735747, 0.0436028428375721, 0.11021938920021057, -0.009083300828933716, 0.11946618556976318, 0.13957089185714722, -0.040920477360486984, 0.07245904207229614, 0.10720177739858627, 0.097934290766716, 0.0658460184931755, 0.15390194952487946, -0.04651305451989174, -0.30605101585388184, 0.04183415696024895, 0.02056196890771389, -0.10396780073642731, 0.11605089902877808, 0.1159365251660347, -0.09925561398267746, 0.029582934454083443, 0.035369329154491425, -0.09916959702968597, 0.0006912022945471108, -0.007963010109961033, -0.07555768638849258, 0.1101456880569458, 0.025162048637866974, 0.08605874329805374, 0.03208191320300102, 0.07476677745580673, -0.26379430294036865, 0.019285915419459343, 0.049775637686252594, 0.04890794679522514, 0.06380995362997055, 0.08140833675861359, -0.017218628898262978, 0.08786869794130325, -0.04950975254178047, 0.08877953141927719, 0.05757494270801544, -0.11160719394683838, -0.32866784930229187, -0.07614625245332718, 0.04496048018336296, 0.11578406393527985, 0.09414304792881012, -0.031282201409339905, 0.10837525129318237, -0.03460459038615227, 0.08657081425189972, 0.1876564919948578, -0.25724807381629944, -0.08057484775781631, -0.04897892475128174, 0.06081237643957138, 0.057019636034965515, -0.1099020466208458, -0.03274538740515709, 0.033626820892095566, 0.03568325191736221, 0.09678781032562256, 0.013883054256439209, -0.019613750278949738, -0.008593978360295296, -0.12973634898662567, -0.052052129060029984, 0.1724986433982849, 0.08460650593042374, -0.05519692972302437, -0.09916500747203827, -0.013119642622768879, -0.138605996966362, -0.056425753980875015, 0.00506229605525732, 0.022335531190037727, -0.018626615405082703, -0.09379657357931137, -0.01248212344944477, -0.0988757461309433, -0.09770683944225311, 0.03362904489040375, 0.1915944665670395, 0.047020360827445984, -0.027930933982133865, -0.0050814030691981316, 0.08469679206609726, 0.03490001708269119, -0.14820455014705658, -0.026193108409643173, 0.029032817110419273, -0.0685870572924614, -0.021397721022367477, -0.046281713992357254, -0.06620238721370697, 0.017270110547542572, 0.1398080736398697, -0.02461872063577175, 0.08869238942861557, 0.006893156096339226, 0.027085045352578163, -0.09937002509832382, 0.18983067572116852, -0.05307402461767197, 0.015684472396969795, -0.025668080896139145, 0.1184009537100792, 0.0012095326092094183, -0.018552906811237335, -0.0472010038793087, 0.033367060124874115, 0.11540760099887848, 0.048590101301670074, -0.027234021574258804, 0.04023534804582596, -0.07431244850158691, -0.024337677285075188, -0.01619952917098999, -0.10486220568418503, 0.004950538277626038, 0.008186533115804195, -0.06627335399389267, -0.046417709439992905, 0.01565179042518139, 0.04563888907432556, -0.006477219518274069, 0.055935073643922806, -0.0691886842250824, -0.011651131324470043, -0.0846799686551094, -0.08873867243528366, 0.012759222649037838, -0.03521275520324707, 0.01361268013715744, -0.08384063839912415, -0.1384410858154297, -0.04314092546701431, 0.06487303972244263, -0.028186632320284843, -0.07889936864376068, -0.07289930433034897, -0.07925573736429214, 0.04227597638964653, -0.01791241392493248, 0.12611287832260132, -0.0612122043967247, 0.10013850033283234, 0.037008825689554214, 0.034073758870363235, 0.014053980819880962, 0.057751528918743134, -0.06747734546661377, 0.06004995107650757, -0.10106166452169418, 0.08322357386350632, -0.10590258985757828, 0.09102005511522293, -0.14233554899692535, -0.10222809761762619, -0.019031453877687454, 0.0035466665867716074, 0.09391207247972488, 0.10815930366516113, -0.17456889152526855, -0.07147840410470963, 0.19487205147743225, -0.10086870938539505, -0.16320110857486725, 0.1261730045080185, -0.016145573928952217, 0.05974113568663597, 0.041689079254865646, 0.1922655552625656, 0.08599323034286499, -0.09311498701572418, 0.020073385909199715, -0.04806194454431534, 0.10716848820447922, 0.014644987881183624, 0.1102091446518898, -0.041736334562301636, -0.0077297016978263855, 0.009298405610024929, -0.04515828192234039, 0.062073495239019394, -0.08217370510101318, -0.0953904539346695, -0.03000742942094803, -0.10051900893449783, -0.006362751126289368, 0.055506572127342224, 0.04389798641204834, -0.10952579230070114, -0.11809874325990677, 0.021518677473068237, 0.11097973585128784, -0.1025489792227745, 0.01563344895839691, -0.11516312509775162, 0.039980776607990265, -0.027280036360025406, -0.0133011220023036, -0.14322295784950256, -0.044481027871370316, 0.03920767828822136, -0.04338284209370613, 0.014435411430895329, -0.05647747963666916, 0.09883483499288559, 0.043137069791555405, -0.040606480091810226, -0.09572402387857437, -0.06218796595931053, 0.005549321416765451, -0.07307484745979309, -0.19294846057891846, -0.06659020483493805, -0.04067039489746094, 0.18814465403556824, -0.2351521998643875, 0.029169315472245216, 0.012161201797425747, 0.10871109366416931, 0.045802678912878036, -0.0505283884704113, 0.010324754752218723, 0.04441367834806442, -0.011442529037594795, -0.07533092051744461, 0.03420662507414818, 0.027131512761116028, -0.15043291449546814, 0.06131235882639885, -0.13923460245132446, 0.11756984144449234, 0.08708798885345459, -0.0036929959896951914, -0.058812279254198074, -0.052622225135564804, -0.0680960863828659, -0.05668336898088455, -0.012055895291268826, -0.001605179742909968, 0.1862572282552719, 0.029591329395771027, 0.11709251999855042, -0.08863957971334457, -0.0423290953040123, 0.017051836475729942, -0.029807530343532562, -0.027060294523835182, 0.122073233127594, 0.005826656706631184, -0.08316148817539215, 0.09868014603853226, 0.0858980342745781, -0.07070877403020859, 0.1495298445224762, -0.0821739211678505, -0.11083102226257324, -0.005343933589756489, 0.05307786539196968, 0.04984070360660553, 0.10784942656755447, -0.13230538368225098, 0.010540219955146313, 0.02449672482907772, 0.009950000792741776, 0.027257410809397697, -0.20651684701442719, -0.020122403278946877, 0.037419598549604416, -0.06206439808011055, -0.053350742906332016, 0.0038378476165235043, -0.007253263611346483, 0.06860308349132538, 0.001297331997193396, -0.02973175048828125, 0.008412431925535202, -0.027306415140628815, -0.09047525376081467, 0.20402884483337402, -0.09938251972198486, -0.15225370228290558, -0.15810897946357727, -0.012953045777976513, -0.001698293723165989, -0.008519814349710941, 0.04857895150780678, -0.11048524081707001, -0.049876999109983444, -0.08935581892728806, 0.02527710422873497, -0.0367027223110199, 0.01426942553371191, 0.008586643263697624, 0.01422145590186119, 0.11011406034231186, -0.10214894264936447, 0.013055982999503613, -0.007686807308346033, -0.050440192222595215, 0.027664359658956528, -0.004392523318529129, 0.09342711418867111, 0.14386363327503204, 0.034155283123254776, 0.023288512602448463, -0.02673930674791336, 0.18663562834262848, -0.09424562752246857, -0.03932049870491028, 0.1334698498249054, -0.0034237829968333244, 0.0475522056221962, 0.13467246294021606, 0.040428634732961655, -0.10355889052152634, 0.038608502596616745, 0.03474068269133568, -0.009960507042706013, -0.24063104391098022, -0.021405339241027832, -0.050305504351854324, -0.04388945922255516, 0.11523368954658508, 0.04068366810679436, 0.014216871932148933, 0.059923429042100906, -0.022003132849931717, -0.03172621876001358, 0.023678472265601158, 0.08674614876508713, 0.06583012640476227, 0.04357346147298813, 0.11664874106645584, -0.024436762556433678, -0.038812778890132904, 0.011995425447821617, 0.026327870786190033, 0.24420428276062012, 0.006605580914765596, 0.2020830512046814, 0.060224488377571106, 0.14498333632946014, 0.018842356279492378, 0.0685359388589859, 0.012420102953910828, -0.025021633133292198, 0.02189677394926548, -0.04844420775771141, -0.05192800983786583, 0.060528986155986786, 0.043490469455718994, 0.046711768954992294, -0.10925666987895966, -0.00023105453874450177, 0.018158581107854843, 0.363016813993454, 0.04647526890039444, -0.31805750727653503, -0.1112300306558609, 0.017505722120404243, -0.09291978925466537, -0.06701354682445526, 0.027068493887782097, 0.10424478352069855, -0.09422444552183151, 0.04674835875630379, -0.07990366220474243, 0.10471883416175842, -0.05190479755401611, -0.002705511637032032, 0.054610516875982285, 0.07504767179489136, -0.003558594034984708, 0.07054977864027023, -0.25305503606796265, 0.31194382905960083, -0.021506652235984802, 0.09939271956682205, -0.03167461231350899, 0.02585948444902897, 0.03751927614212036, -0.024693172425031662, 0.07583831995725632, -0.012052755802869797, -0.09875480830669403, -0.18865647912025452, -0.07756143063306808, 0.03721591830253601, 0.11802557110786438, -0.045209530740976334, 0.11851748824119568, -0.04077678546309471, 0.005745649803429842, 0.061729755252599716, -0.0855230838060379, -0.11357372999191284, -0.10479742288589478, 0.021661022678017616, 0.03725225478410721, 0.0987296998500824, -0.13645854592323303, -0.10406998544931412, -0.03980167210102081, 0.13143694400787354, -0.05711006373167038, -0.028651289641857147, -0.13369086384773254, 0.054690901190042496, 0.15781860053539276, -0.07671552896499634, 0.04938146099448204, 0.006263156421482563, 0.14548836648464203, 0.03747120499610901, 0.0041303145699203014, 0.10346994549036026, -0.08759061992168427, -0.17819781601428986, -0.0348241813480854, 0.16145670413970947, 0.03160864859819412, 0.04738285392522812, -0.004767277278006077, 0.027856793254613876, -0.030462315306067467, -0.06911444664001465, 0.04922280088067055, 0.0002178191061830148, -0.018597479909658432, 0.035972606390714645, -0.04474334418773651, 0.022962210699915886, -0.09123387187719345, -0.06252159178256989, 0.15241235494613647, 0.29808613657951355, -0.05592193081974983, 0.014903810806572437, 0.04473360627889633, -0.04296690970659256, -0.14667147397994995, 0.014826727099716663, 0.1291346549987793, 0.027829930186271667, -0.00315132481046021, -0.22149872779846191, 0.06355451047420502, 0.0795566663146019, -0.03624831512570381, 0.06992952525615692, -0.267381489276886, -0.13627512753009796, 0.1382475048303604, 0.144438698887825, -0.006422222591936588, -0.1554485261440277, -0.07442020624876022, -0.020828230306506157, -0.10588166862726212, 0.0611877515912056, -0.023969687521457672, 0.11238627135753632, 0.0009318876545876265, 0.0612960159778595, 0.029438229277729988, -0.055504389107227325, 0.15702426433563232, -0.03580651432275772, 0.0624593161046505, -0.020827844738960266, 0.08258786052465439, 0.030803119763731956, -0.05204084515571594, 0.036704521626234055, -0.08803290873765945, 0.03305407986044884, -0.12262731045484543, -0.042461175471544266, -0.07698031514883041, 0.025697214528918266, -0.023833950981497765, -0.04157359525561333, 0.01920364424586296, 0.05143903195858002, 0.06771451234817505, 0.012335146777331829, 0.13707919418811798, -0.06158778816461563, 0.17133575677871704, 0.074238121509552, 0.1352676898241043, -0.03339850530028343, -0.052003223448991776, -0.017154457047581673, -0.0203037541359663, 0.0463736467063427, -0.10320866852998734, 0.04200614616274834, 0.1228167712688446, 0.03169582039117813, 0.15945148468017578, 0.05566759780049324, -0.07830742001533508, 0.01881990022957325, 0.08106546849012375, -0.06519723683595657, -0.16737337410449982, -0.02930183708667755, 0.12283775955438614, -0.15999335050582886, 0.02120126411318779, 0.10281571000814438, -0.05645517259836197, -0.010778697207570076, -0.012042318470776081, 0.02130216732621193, -0.04418930038809776, 0.19593989849090576, 0.04648371413350105, 0.07956261187791824, -0.08425677567720413, 0.09250731766223907, 0.03952036798000336, -0.1243525892496109, 0.03290744870901108, 0.07038500905036926, -0.05308569222688675, -0.02584686130285263, 0.012226440012454987, 0.07467547059059143, 0.008369171060621738, -0.06849272549152374, -0.12461703270673752, -0.138410747051239, 0.05829571187496185, 0.12084250897169113, 0.03033597022294998, 0.028264833614230156, -0.02451147697865963, 0.03135448321700096, -0.1023932695388794, 0.09643135219812393, 0.09077995270490646, 0.07930440455675125, -0.14476145803928375, 0.1128893569111824, 0.00829081516712904, 0.006339391693472862, 0.0028374632820487022, -0.015297174453735352, -0.08802294731140137, 0.026081766933202744, -0.12522263824939728, -0.009410256519913673, -0.0538259781897068, 0.0006867246702313423, 0.014302118681371212, -0.07226850092411041, -0.06253094226121902, 0.028749866411089897, -0.12620337307453156, -0.0491119883954525, 0.006100628059357405, 0.06976175308227539, -0.09868469089269638, -0.03043087013065815, 0.07222648710012436, -0.11514799296855927, 0.08640594780445099, 0.059206075966358185, 0.006002980750054121, 0.05664384737610817, -0.11001104861497879, 0.019091559574007988, 0.03237789496779442, 0.003086139215156436, 0.014670468866825104, -0.16149377822875977, -0.01742231473326683, -0.0003497470752336085, 0.023204004392027855, -0.006055321078747511, 0.06326668709516525, -0.12404786795377731, -0.05872724577784538, 0.0014661806635558605, -0.05064057558774948, -0.07082489877939224, 0.03760196268558502, 0.05102322995662689, 0.049480654299259186, 0.17223715782165527, -0.09051214903593063, 0.020856929942965508, -0.20234623551368713, 0.02057819813489914, -0.031101644039154053, -0.08324383199214935, -0.06941506266593933, -0.025879506021738052, 0.07470816373825073, -0.0744168609380722, 0.09350311011075974, -0.08516985923051834, 0.03867172822356224, 0.0359492264688015, -0.09624128043651581, 0.06949325650930405, 0.04316341131925583, 0.2784600257873535, 0.04976273700594902, -0.015044168569147587, 0.08173005282878876, -0.010567896068096161, 0.030994953587651253, 0.11281327903270721, 0.12423048913478851, 0.18858790397644043, 0.02001635544002056, 0.09246547520160675, 0.06474383175373077, -0.0635751262307167, -0.1008012592792511, 0.09098955243825912, -0.018869968131184578, 0.10050392150878906, 0.00595806585624814, 0.260243684053421, 0.14151860773563385, -0.18323378264904022, 0.04058877006173134, -0.029474880546331406, -0.08084522187709808, -0.09519051760435104, -0.08539482951164246, -0.08692607283592224, -0.17205795645713806, 0.02419992908835411, -0.11767980456352234, 0.03330282121896744, 0.060599975287914276, 0.03169923275709152, 0.017699576914310455, 0.16175870597362518, 0.0398409329354763, 0.007358364295214415, 0.10172319412231445, -0.02259589359164238, -0.024720357730984688, -0.04349515214562416, -0.11442016810178757, 0.049667954444885254, -0.00907264556735754, 0.03770076483488083, -0.04797324165701866, -0.09861920773983002, 0.04561403766274452, -0.0026230462826788425, -0.11942384392023087, 0.016089145094156265, 0.0005711748963221908, 0.04317789152264595, 0.057420309633016586, 0.04339703917503357, -0.0046861059963703156, -0.010935773141682148, 0.27207136154174805, -0.09516933560371399, -0.08085592836141586, -0.15797005593776703, 0.2285197377204895, 0.007323940750211477, -0.026031671091914177, 0.017736973240971565, -0.0749235451221466, 0.0077905068174004555, 0.15561246871948242, 0.10298451781272888, -0.028407100588083267, -0.010701094754040241, -0.01651318185031414, -0.015002712607383728, -0.07570789009332657, 0.09012456238269806, 0.11622191220521927, 0.0032258734572678804, -0.07536599040031433, -0.0411539152264595, -0.04866855591535568, -0.045591145753860474, -0.04305585101246834, 0.08012573421001434, 0.011119312606751919, -0.015605200082063675, -0.038621336221694946, 0.12223586440086365, -0.07240703701972961, -0.06654222309589386, -0.031334470957517624, -0.1510148048400879, -0.17566771805286407, -0.0621257945895195, 0.03199799731373787, 0.02107304334640503, 0.03953075036406517, 0.002177031012251973, -0.0005713904392905533, 0.06960877776145935, 0.010664153844118118, -0.024473173543810844, -0.11114516109228134, 0.09795265644788742, -0.10229495912790298, 0.2228899598121643, -0.034778084605932236, 0.004461499862372875, 0.12278271466493607, 0.0444072000682354, -0.08383459597826004, 0.08738113939762115, 0.06433422863483429, -0.11086898297071457, 0.05083309859037399, 0.19408494234085083, -0.03662952780723572, 0.14241038262844086, 0.035176005214452744, -0.14063061773777008, 0.015082989819347858, -0.09359267354011536, -0.05374821275472641, -0.06648634374141693, -0.008617231622338295, -0.05699682980775833, 0.12933769822120667, 0.20800504088401794, -0.08160565793514252, -0.024226533249020576, -0.06764709204435349, 0.021209916099905968, 0.05569671094417572, 0.0768861398100853, -0.04108615964651108, -0.2881028354167938, -0.002804225543513894, 0.017147839069366455, 0.0025353787932544947, -0.2673986852169037, -0.08680838346481323, 0.008561680093407631, -0.05032853037118912, -0.02772214636206627, 0.11176552623510361, 0.12295730412006378, 0.0444226898252964, -0.05670999363064766, -0.06300758570432663, -0.03344317898154259, 0.18900105357170105, -0.15616317093372345, -0.056900251656770706 ]
null
null
null
# LGM This model contains the pretrained weights for *LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation*. ### [Project Page](https://me.kiui.moe/lgm/) | [Arxiv](https://arxiv.org/abs/2402.05054) | [Weights](https://huggingface.co/ashawkey/LGM) ## Introduction LGM can generate 3D objects from image or text within 5 seconds at high-resolution based on Gaussian Splatting. <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/63367f9a9895307563659be6/9CVJZ5ZXkhheDPKl3M0pM.mp4"></video> <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/63367f9a9895307563659be6/6DM_hNEDLRJOz95pgVjek.mp4"></video> ## Model Details The model is trained on a ~80K subset of [Objaverse](https://huggingface.co/datasets/allenai/objaverse). For more details, please refer to our paper. ## Usage To download the model: ```python from huggingface_hub import hf_hub_download ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors") ``` Please refer to our [repo](https://github.com/3DTopia/LGM) for more details on loading and inference. ## Citation ``` @article{tang2024lgm, title={LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation}, author={Tang, Jiaxiang and Chen, Zhaoxi and Chen, Xiaokang and Wang, Tengfei and Zeng, Gang and Liu, Ziwei}, journal={arXiv preprint arXiv:2402.05054}, year={2024} } ```
{"license": "mit", "tags": ["image-to-3d", "text-to-3d"], "pipeline_tag": "text-to-3d"}
text-to-3d
ashawkey/LGM
[ "safetensors", "image-to-3d", "text-to-3d", "arxiv:2402.05054", "license:mit", "has_space", "region:us" ]
2024-02-07T02:14:45+00:00
[ "2402.05054" ]
[]
TAGS #safetensors #image-to-3d #text-to-3d #arxiv-2402.05054 #license-mit #has_space #region-us
# LGM This model contains the pretrained weights for *LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation*. ### Project Page | Arxiv | Weights ## Introduction LGM can generate 3D objects from image or text within 5 seconds at high-resolution based on Gaussian Splatting. <video controls autoplay src="URL <video controls autoplay src="URL ## Model Details The model is trained on a ~80K subset of Objaverse. For more details, please refer to our paper. ## Usage To download the model: Please refer to our repo for more details on loading and inference.
[ "# LGM\n\nThis model contains the pretrained weights for *LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation*.", "### Project Page | Arxiv | Weights", "## Introduction\nLGM can generate 3D objects from image or text within 5 seconds at high-resolution based on Gaussian Splatting.\n\n<video controls autoplay src=\"URL\n\n<video controls autoplay src=\"URL", "## Model Details\nThe model is trained on a ~80K subset of Objaverse.\nFor more details, please refer to our paper.", "## Usage\n\nTo download the model:\n\nPlease refer to our repo for more details on loading and inference." ]
[ "TAGS\n#safetensors #image-to-3d #text-to-3d #arxiv-2402.05054 #license-mit #has_space #region-us \n", "# LGM\n\nThis model contains the pretrained weights for *LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation*.", "### Project Page | Arxiv | Weights", "## Introduction\nLGM can generate 3D objects from image or text within 5 seconds at high-resolution based on Gaussian Splatting.\n\n<video controls autoplay src=\"URL\n\n<video controls autoplay src=\"URL", "## Model Details\nThe model is trained on a ~80K subset of Objaverse.\nFor more details, please refer to our paper.", "## Usage\n\nTo download the model:\n\nPlease refer to our repo for more details on loading and inference." ]
[ 40, 38, 13, 52, 30, 23 ]
[ "passage: TAGS\n#safetensors #image-to-3d #text-to-3d #arxiv-2402.05054 #license-mit #has_space #region-us \n# LGM\n\nThis model contains the pretrained weights for *LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation*.### Project Page | Arxiv | Weights## Introduction\nLGM can generate 3D objects from image or text within 5 seconds at high-resolution based on Gaussian Splatting.\n\n<video controls autoplay src=\"URL\n\n<video controls autoplay src=\"URL## Model Details\nThe model is trained on a ~80K subset of Objaverse.\nFor more details, please refer to our paper.## Usage\n\nTo download the model:\n\nPlease refer to our repo for more details on loading and inference." ]
[ -0.10422666370868683, 0.04967695102095604, 0.0034582640510052443, 0.07118607312440872, 0.12892261147499084, -0.018627673387527466, 0.11831046640872955, 0.02974396012723446, 0.08750688284635544, 0.050004322081804276, 0.11811530590057373, -0.014751262031495571, -0.027720503509044647, 0.24117109179496765, 0.05318938568234444, -0.24134711921215057, 0.01389375515282154, -0.0857965275645256, 0.04900046065449715, 0.04330085963010788, 0.059345733374357224, -0.09349016845226288, 0.12317727506160736, -0.028919678181409836, -0.11107663810253143, 0.0013174490304663777, 0.026638461276888847, -0.037231169641017914, 0.07640211284160614, 0.013510740362107754, -0.06784515827894211, 0.043169230222702026, 0.16387297213077545, -0.07289113849401474, 0.041536152362823486, -0.007333993911743164, 0.019858557730913162, 0.030205417424440384, 0.06685211509466171, 0.04936474934220314, 0.186197891831398, -0.05208171159029007, -0.02659636177122593, 0.005731638520956039, -0.042579300701618195, -0.09255494177341461, 0.014454519376158714, -0.031216885894536972, 0.02963651344180107, 0.027231041342020035, -0.015452823601663113, -0.02653368003666401, -0.024547388777136803, 0.07000996172428131, 0.17157414555549622, -0.20185603201389313, -0.03753342479467392, 0.3114083409309387, 0.08770038932561874, 0.12692460417747498, -0.09869437664747238, 0.15822374820709229, 0.0896165519952774, -0.03911371901631355, 0.08751269429922104, -0.024631153792142868, 0.041450925171375275, -0.009777747094631195, -0.12903659045696259, -0.05158147215843201, 0.21353024244308472, 0.03436436131596565, -0.044047076255083084, -0.13275951147079468, -0.01551839243620634, 0.09164556860923767, -0.10312262922525406, 0.05545319616794586, 0.018434196710586548, -0.0028754330705851316, -0.10595555603504181, -0.1114424616098404, -0.10492807626724243, -0.12987160682678223, 0.038233593106269836, 0.07242840528488159, 0.00927778985351324, 0.08020555973052979, -0.07677469402551651, 0.14569149911403656, -0.18526877462863922, -0.07030738145112991, -0.009905332699418068, -0.09289444983005524, 0.0007722103619016707, 0.048087362200021744, -0.020857950672507286, -0.04019453004002571, 0.01743927039206028, 0.043102726340293884, -0.026422657072544098, -0.0030408401507884264, 0.11042353510856628, 0.08726608008146286, 0.026774585247039795, 0.09938075393438339, -0.14805004000663757, -0.059435468167066574, 0.05721138045191765, 0.08118923008441925, 0.016612544655799866, -0.024411886930465698, -0.1438460499048233, -0.06431692093610764, -0.06764686852693558, -0.005410552490502596, -0.0029351315461099148, 0.07098696380853653, 0.03102641925215721, 0.03015584498643875, 0.1367240846157074, -0.0017644166946411133, 0.009181748144328594, -0.0614054799079895, -0.055849622935056686, -0.01364771369844675, 0.13736985623836517, 0.004669448360800743, 0.05835925415158272, -0.03635125607252121, -0.09348554909229279, 0.014100042171776295, -0.0828680470585823, -0.03808687627315521, -0.014531724154949188, 0.04934558644890785, 0.009149392135441303, -0.12687550485134125, -0.15869803726673126, -0.019826287403702736, 0.02066849172115326, -0.01051653828471899, 0.07649924606084824, -0.025103431195020676, 0.026900630444288254, 0.005386601202189922, 0.005389548372477293, 0.03331606090068817, -0.04012037068605423, 0.09442770481109619, 0.013531803153455257, 0.14481645822525024, -0.04229097068309784, -0.000011721164810296614, -0.06862500309944153, 0.04426213353872299, -0.2004464715719223, 0.09205937385559082, -0.032252587378025055, 0.026455245912075043, -0.03208591043949127, -0.068511001765728, -0.05682782456278801, 0.02743677608668804, 0.036335889250040054, 0.1673257052898407, -0.1522466242313385, 0.009307951666414738, 0.10038505494594574, -0.107486292719841, -0.05350625142455101, 0.081278495490551, -0.02033219486474991, 0.05547916889190674, 0.08819091320037842, 0.15558195114135742, -0.02941088378429413, -0.13860294222831726, 0.02186422049999237, 0.08663236349821091, -0.0641167163848877, -0.060291919857263565, 0.07920283079147339, 0.08866684138774872, -0.12417232245206833, 0.06302878260612488, -0.22065138816833496, 0.15656733512878418, -0.06020861864089966, -0.022492948919534683, 0.0002680447360035032, -0.09351079910993576, 0.04759800434112549, 0.02867048606276512, 0.03436814621090889, 0.0024848002940416336, -0.044974297285079956, -0.057101208716630936, 0.12356723845005035, -0.06410157680511475, -0.010321971029043198, -0.010033133439719677, 0.11560775339603424, -0.16896311938762665, 0.017495643347501755, -0.06774232536554337, -0.15415827929973602, -0.03319491818547249, 0.07800065726041794, 0.09062191098928452, 0.026101449504494667, 0.0908789187669754, 0.1209835410118103, -0.013915745541453362, -0.02925005555152893, 0.041836488991975784, -0.025590280070900917, 0.0006959570455364883, -0.05109036713838577, -0.010053971782326698, -0.0956406369805336, 0.04882415384054184, -0.21027347445487976, -0.005976579152047634, -0.0923057347536087, -0.05615726858377457, 0.018571574240922928, -0.07627163082361221, 0.11646917462348938, -0.10645897686481476, -0.018210629001259804, -0.08910486102104187, 0.03097756952047348, -0.004947613459080458, -0.018195198848843575, 0.0827794224023819, -0.16969279944896698, 0.10454383492469788, 0.0858633890748024, -0.014583362266421318, -0.06692968308925629, -0.07995972782373428, 0.012855984270572662, 0.02992304228246212, -0.09945335239171982, 0.012535152956843376, -0.03972325846552849, -0.036300621926784515, 0.06843995302915573, -0.05567926540970802, 0.04294726997613907, 0.022181227803230286, -0.09536294639110565, -0.05507802590727806, 0.034138716757297516, 0.1160002201795578, -0.027105046436190605, 0.020530588924884796, 0.07245723158121109, -0.037891779094934464, 0.17528924345970154, 0.062348414212465286, -0.06735742092132568, 0.01863362267613411, 0.01895243115723133, -0.017834722995758057, 0.12415570765733719, 0.008747817017138004, -0.06349588930606842, 0.04427291452884674, -0.06057778000831604, 0.00911441445350647, -0.14082656800746918, -0.0762886255979538, -0.013198401778936386, -0.05699190869927406, -0.013196459971368313, 0.09819016605615616, -0.15202881395816803, 0.08051469177007675, -0.01246997993439436, -0.054069194942712784, 0.0017057982040569186, 0.01126333512365818, -0.048072051256895065, 0.10447752475738525, 0.004889855161309242, -0.1241854652762413, -0.09003468602895737, 0.02886081486940384, -0.11193137615919113, 0.06767036765813828, -0.004860990215092897, -0.12310444563627243, -0.08892261981964111, -0.04593149572610855, -0.08950506150722504, 0.013135787099599838, -0.02980942837893963, -0.03122057393193245, -0.028577426448464394, -0.0024876571260392666, -0.07827108353376389, -0.021091826260089874, -0.05128876492381096, -0.08351629227399826, 0.03835900127887726, -0.007004905492067337, 0.15642210841178894, 0.16961421072483063, -0.012353168800473213, 0.04411657899618149, 0.024268941953778267, 0.17443563044071198, -0.05993635207414627, 0.024578241631388664, 0.24874617159366608, 0.08984264731407166, 0.01796697825193405, 0.028539130464196205, 0.02752182073891163, -0.10965012013912201, 0.05935724824666977, -0.024584339931607246, -0.14920705556869507, 0.02899850718677044, -0.07021363824605942, -0.03583918511867523, 0.013147641904652119, 0.10443750768899918, 0.06808998435735703, -0.07481934875249863, 0.13690295815467834, 0.0009019261342473328, 0.036142002791166306, 0.11303836852312088, 0.07406839728355408, -0.06895262002944946, -0.050091683864593506, 0.04036875069141388, -0.06052905693650246, -0.03659126162528992, 0.09432399272918701, 0.02349855564534664, 0.12261578440666199, -0.06561625003814697, -0.02765197865664959, 0.04550633579492569, 0.002164761535823345, 0.06895198673009872, 0.06924252212047577, -0.05553315579891205, -0.025065427646040916, -0.04523667320609093, -0.09203336387872696, -0.012934410013258457, 0.09073013067245483, -0.0004989469307474792, -0.16777266561985016, -0.043169572949409485, 0.10407596081495285, 0.019595779478549957, -0.05757616087794304, 0.056025292724370956, -0.37692829966545105, -0.010883116163313389, 0.045176148414611816, 0.12285850197076797, -0.08787717670202255, 0.05069257318973541, 0.17651180922985077, -0.04033825546503067, 0.05565786734223366, -0.011901363730430603, 0.011159582994878292, -0.03584611415863037, -0.009399917908012867, -0.05626487359404564, 0.1274559199810028, -0.03925368934869766, 0.07959594577550888, -0.11655613780021667, 0.09435490518808365, -0.01809949241578579, -0.044834330677986145, -0.015227164141833782, -0.055458638817071915, 0.11972516030073166, 0.15182125568389893, 0.19438304007053375, 0.016994893550872803, -0.05252734199166298, -0.10554119944572449, -0.011198043823242188, 0.029261387884616852, -0.006871947553008795, -0.047737039625644684, 0.03417458385229111, -0.03129434958100319, -0.04536239802837372, 0.005390440579503775, -0.029488176107406616, -0.1195085272192955, -0.0818512812256813, -0.022233618423342705, 0.07217463105916977, 0.031111661344766617, -0.06911912560462952, -0.038046322762966156, -0.10944577306509018, 0.12234478443861008, 0.16188381612300873, -0.04153205081820488, -0.07125288993120193, 0.049691732972860336, 0.07615554332733154, -0.02691653184592724, 0.08461303263902664, -0.015668001025915146, 0.15098175406455994, -0.07473575323820114, -0.0443645641207695, 0.08648855239152908, -0.08552328497171402, -0.05348460003733635, 0.0007293395465239882, -0.016607163473963737, 0.0011327976826578379, -0.058997493237257004, 0.022387145087122917, 0.0033716231118887663, -0.0377153605222702, -0.11745113134384155, 0.028059758245944977, 0.1512075513601303, 0.005585420411080122, 0.041217755526304245, -0.0052031539380550385, -0.0512448251247406, 0.04909568652510643, 0.04135725647211075, 0.07094782590866089, 0.13671347498893738, -0.08191507309675217, -0.01907184347510338, 0.17220403254032135, 0.018761036917567253, -0.283683180809021, 0.005795848090201616, -0.05875488370656967, -0.016718512400984764, 0.07430390268564224, -0.06362102925777435, 0.07084457576274872, -0.034157272428274155, -0.07275281846523285, 0.11190106719732285, -0.19949790835380554, -0.12201002240180969, 0.09745289385318756, 0.12874002754688263, 0.23431432247161865, -0.09345874190330505, 0.019854076206684113, -0.07004912197589874, 0.040910232812166214, 0.018937544897198677, -0.05001770332455635, 0.12230505049228668, -0.007103811018168926, 0.08135049045085907, 0.04375310614705086, -0.08184769749641418, 0.12858006358146667, 0.022373950108885765, 0.12669678032398224, -0.10382281988859177, -0.0560607947409153, -0.0037318700924515724, -0.10667679458856583, 0.22864997386932373, -0.04489237070083618, 0.058118272572755814, -0.008778258226811886, -0.07636693120002747, -0.03638531267642975, 0.015366391278803349, 0.09054560959339142, -0.07403012365102768, -0.1026712954044342, 0.07422147691249847, -0.0952693521976471, 0.06711062043905258, 0.030928974971175194, -0.0719444528222084, -0.09797804057598114, 0.0880972221493721, 0.02930460497736931, -0.011741071939468384, -0.06569089740514755, -0.008771747350692749, -0.007486273534595966, 0.11274988949298859, -0.23086221516132355, 0.006182880140841007, 0.02127186395227909, 0.020636478438973427, 0.06706387549638748, 0.04282497987151146, -0.030520707368850708, 0.09863387048244476, 0.13526731729507446, -0.08321497589349747, -0.12737762928009033, -0.060769543051719666, -0.06360702961683273, 0.03144063055515289, -0.008561571128666401, 0.07156471163034439, -0.08421909809112549, 0.04552809149026871, -0.05335273966193199, 0.08361025899648666, -0.03994591534137726, 0.0959019809961319, 0.08420322835445404, -0.0381791926920414, -0.10329155623912811, 0.08507616072893143, 0.015642074868083, 0.10113196074962616, -0.03254779800772667, 0.05737753212451935, -0.09316986054182053, -0.07070259004831314, -0.09591389447450638, 0.10008427500724792, -0.16893182694911957, -0.02011597529053688, -0.00027063878951594234, -0.011189719662070274, -0.03774314746260643, -0.1272515207529068, 0.02513960562646389, -0.04091205075383186, -0.04247787594795227, 0.030145365744829178, -0.0931716039776802, 0.061480630189180374, 0.07473863661289215, 0.08869682997465134, -0.21903908252716064, 0.0026710801757872105, 0.023847784847021103, 0.07884538173675537, -0.09311327338218689, -0.0392189621925354, -0.07677439600229263, 0.02990306168794632, -0.09040725976228714, 0.030816838145256042, -0.11690609157085419, 0.026846619322896004, -0.030845200642943382, -0.042891111224889755, 0.00656092306599021, 0.04902345687150955, -0.07355788350105286, 0.013225889764726162, -0.017293814569711685, 0.050439395010471344, -0.09507204592227936, -0.031935255974531174, -0.024697549641132355, -0.02534070797264576, 0.09145864844322205, -0.013066205196082592, -0.01777040772140026, 0.013005388900637627, -0.2886527478694916, -0.0537688285112381, 0.11927097290754318, -0.02400997281074524, -0.07611696422100067, 0.057713668793439865, 0.06682152301073074, -0.04928460344672203, 0.029576830565929413, -0.051926299929618835, -0.011363758705556393, -0.044142067432403564, 0.05070633441209793, -0.09790626168251038, 0.01621747575700283, -0.024730611592531204, 0.043865278363227844, 0.03775208070874214, 0.09921304136514664, 0.03172004222869873, -0.08346284925937653, -0.06370523571968079, -0.12946443259716034, 0.00677395798265934, -0.02284812740981579, -0.09569164365530014, -0.07990151643753052, -0.0563923642039299, 0.06271740049123764, -0.028220001608133316, 0.15598012506961823, 0.11876208335161209, -0.08254469186067581, -0.07244761288166046, 0.13776709139347076, 0.2033945620059967, -0.054450903087854385, 0.07900781184434891, -0.0014540352858603, 0.039450522512197495, -0.08815603703260422, 0.16142356395721436, 0.1672786921262741, -0.017450066283345222, 0.03956073150038719, -0.05096937716007233, -0.10982697457075119, 0.05489758402109146, 0.04913957044482231, -0.041997771710157394, -0.10704199224710464, 0.05565837398171425, -0.08091675490140915, 0.013943172059953213, -0.14103326201438904, -0.15126046538352966, 0.26412975788116455, -0.05615542083978653, -0.012008389458060265, 0.07470717281103134, -0.022475695237517357, -0.08853872120380402, -0.25826331973075867, -0.05820307508111, -0.1749495267868042, 0.06455978006124496, -0.021427864208817482, 0.043074093759059906, 0.06089400872588158, 0.02478930726647377, -0.0027498856652528048, 0.1942727267742157, -0.0709364041686058, -0.044970471411943436, 0.035335786640644073, -0.022718360647559166, -0.0354323610663414, 0.06265918165445328, -0.011457452550530434, 0.10653305053710938, -0.07538428157567978, 0.03543582186102867, 0.012572871521115303, 0.008984998799860477, 0.08854096382856369, 0.06332801282405853, -0.01122086588293314, -0.100044384598732, 0.0430404469370842, 0.029230989515781403, 0.09962739795446396, 0.05095779150724411, -0.07767867296934128, 0.03326109051704407, 0.13619576394557953, -0.043982893228530884, -0.045634299516677856, -0.04196103289723396, 0.1562204211950302, -0.12602278590202332, 0.0680680200457573, -0.08833211660385132, -0.0781121626496315, 0.028025828301906586, 0.1318952739238739, 0.18078675866127014, -0.12164056301116943, -0.017048340290784836, -0.13690420985221863, 0.0003011873923242092, -0.07482554018497467, 0.14868412911891937, -0.02546548657119274, 0.290383517742157, -0.051486752927303314, 0.00007686107710469514, -0.022524209693074226, -0.012627068907022476, -0.003414337057620287, -0.016051627695560455, 0.034861668944358826, 0.0009609130211174488, -0.09126466512680054, 0.08174222707748413, -0.09679152071475983, 0.005566215608268976, 0.024416351690888405, 0.05922232195734978, 0.029722407460212708, 0.007519366219639778, -0.0708734318614006, 0.027964739128947258, 0.047356195747852325, -0.11854704469442368, 0.040871649980545044, -0.1050175279378891, 0.011908397078514099, -0.14830313622951508, -0.02017793618142605, -0.0011390778236091137, 0.20437641441822052, 0.24192702770233154, -0.02019319124519825, 0.006179121322929859, -0.008203589357435703, -0.06318838149309158, -0.10775056481361389, 0.14493288099765778, -0.07704874873161316, -0.01017801370471716, 0.011412519961595535, 0.06575647741556168, -0.06335099041461945, 0.058852218091487885, 0.005123176611959934, -0.007687656674534082, 0.03152290731668472, 0.07882547378540039, -0.020574642345309258, -0.12863761186599731, -0.011140614748001099, -0.06602206826210022, 0.1292407512664795, -0.035684552043676376, 0.021318912506103516, -0.007558838464319706, -0.038853250443935394, 0.13317646086215973, 0.0528101809322834, 0.02529088780283928, 0.05186840519309044, -0.03934754803776741, -0.02075974829494953, -0.027088340371847153, 0.01439277920871973, -0.16589504480361938, -0.0003577007446438074, -0.10852855443954468, 0.034690551459789276, 0.02264723926782608, 0.0677851065993309, 0.20336374640464783, -0.005653157830238342, -0.019998036324977875, -0.09924115240573883, 0.05542762577533722, 0.086595818400383, -0.1562284529209137, -0.11364692449569702 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-bn-adapter-1.79M-snli-model3 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7044 - Accuracy: 0.7455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 79 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4101 | 1.0 | 8584 | 0.3336 | 0.8763 | | 0.3814 | 2.0 | 17168 | 0.3112 | 0.8858 | | 0.3695 | 3.0 | 25752 | 0.3061 | 0.8883 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "t5-base", "model-index": [{"name": "t5-base-bn-adapter-1.79M-snli-model3", "results": []}]}
null
varun-v-rao/t5-base-bn-adapter-1.79M-snli-model3
[ "tensorboard", "generated_from_trainer", "base_model:t5-base", "license:apache-2.0", "region:us" ]
2024-02-07T02:16:46+00:00
[]
[]
TAGS #tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us
t5-base-bn-adapter-1.79M-snli-model3 ==================================== This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7044 * Accuracy: 0.7455 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 79 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 79\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 79\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 33, 98, 4, 33 ]
[ "passage: TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 79\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.08677224814891815, -0.011805614456534386, -0.000463064614450559, 0.119796022772789, 0.18443503975868225, 0.03708628937602043, 0.14696380496025085, 0.07066085189580917, -0.13553938269615173, 0.010545814409852028, 0.09989285469055176, 0.12757335603237152, 0.001286230399273336, 0.06362359970808029, -0.026801669970154762, -0.23343528807163239, -0.02009344846010208, 0.03432410582900047, -0.13049985468387604, 0.12599393725395203, 0.08705414831638336, -0.13714194297790527, 0.06825706362724304, -0.007105792872607708, -0.3092016279697418, 0.056490764021873474, 0.034653011709451675, -0.04773460701107979, 0.13592852652072906, -0.005764725152403116, 0.17239642143249512, -0.017757613211870193, 0.13191840052604675, -0.13484442234039307, 0.010758600197732449, 0.08664906024932861, 0.0011429032310843468, 0.0802229568362236, 0.059059154242277145, 0.025171812623739243, 0.1023838147521019, -0.08643519878387451, 0.05889526382088661, 0.021433034911751747, -0.12775936722755432, -0.2528948187828064, -0.08006846159696579, -0.0044874586164951324, 0.05590570718050003, 0.08614291995763779, -0.0010188674787059426, 0.15475183725357056, -0.08418099582195282, 0.09001805633306503, 0.2632083296775818, -0.2617075741291046, -0.080025315284729, 0.07703317701816559, -0.008494114503264427, 0.11122659593820572, -0.0914260670542717, -0.028494512662291527, 0.07218188792467117, 0.04673845320940018, 0.12727050483226776, -0.0261831171810627, -0.1723232865333557, 0.0485990010201931, -0.1556576043367386, 0.01875660941004753, 0.0795736163854599, 0.02587820217013359, -0.020444154739379883, 0.060715995728969574, -0.09522204846143723, -0.13432981073856354, -0.05374836176633835, -0.026858579367399216, 0.09549117088317871, -0.04043196886777878, -0.09796115756034851, -0.030308302491903305, -0.09704607725143433, -0.10622315108776093, -0.07350096851587296, 0.20049624145030975, 0.055832959711551666, 0.05268276482820511, -0.06808719784021378, 0.11016366630792618, -0.05873626098036766, -0.13300463557243347, 0.052093226462602615, 0.04890526458621025, -0.024379506707191467, -0.04836832359433174, -0.08724458515644073, -0.094335176050663, 0.016693970188498497, 0.1143839880824089, -0.07903485745191574, 0.04711579531431198, 0.04402090609073639, 0.056007497012615204, -0.11737918853759766, 0.17654648423194885, -0.0572221577167511, 0.014245743863284588, 0.02044052444398403, 0.025669647380709648, 0.01684783585369587, 0.002713593188673258, -0.1110302060842514, 0.025891391560435295, 0.07489627599716187, -0.0020672199316322803, -0.08614535629749298, 0.02721911109983921, -0.032074932008981705, -0.003507311223074794, -0.04830077663064003, -0.09581705182790756, 0.041363827884197235, -0.015571299940347672, -0.10289996862411499, -0.00995691679418087, 0.023530542850494385, 0.018236596137285233, 0.011142573319375515, 0.1155090481042862, -0.10023780912160873, 0.07872173190116882, -0.14329314231872559, -0.11216816306114197, 0.005960934329777956, -0.04082324355840683, 0.018583077937364578, -0.07253870368003845, -0.17034396529197693, -0.0021067846100777388, 0.07518885284662247, -0.04387650638818741, -0.02128647267818451, -0.023755507543683052, -0.09707122296094894, -0.007940782234072685, -0.020600810647010803, 0.19265946745872498, -0.05255476385354996, 0.08815144747495651, 0.060202307999134064, 0.06683219224214554, -0.1156798005104065, 0.04344072937965393, -0.08506004512310028, -0.0021611065603792667, -0.27397432923316956, 0.01094368938356638, -0.06081858277320862, 0.06705446541309357, -0.0706571415066719, -0.08089710772037506, 0.016070062294602394, -0.00007378617010544986, 0.11510428041219711, 0.06516393274068832, -0.2106483429670334, -0.0666288509964943, 0.12042616307735443, -0.07075070589780807, -0.09231927245855331, 0.09164821356534958, -0.06051471456885338, 0.05782857909798622, 0.07227128744125366, 0.17911122739315033, -0.04751310870051384, -0.09978888183832169, 0.045316241681575775, -0.017134811729192734, 0.05417025089263916, -0.10444469749927521, 0.042183585464954376, -0.014456878416240215, 0.0009270780137740076, 0.02764478325843811, -0.05453680083155632, 0.07373927533626556, -0.11621508747339249, -0.0779922753572464, -0.07317239046096802, -0.10574230551719666, -0.00469255680218339, 0.068105049431324, 0.08596673607826233, -0.10206681489944458, -0.06702284514904022, 0.17046034336090088, 0.06859743595123291, -0.05441659316420555, 0.035466499626636505, -0.04193060100078583, 0.04931465536355972, -0.07843468338251114, -0.033067137002944946, -0.19828228652477264, -0.0490075945854187, 0.0019747952464967966, -0.005239439196884632, 0.06835000216960907, 0.00839952751994133, 0.08307571709156036, 0.06482386589050293, -0.06953596323728561, 0.02052348107099533, -0.07840316742658615, -0.005572729744017124, -0.14363330602645874, -0.23160871863365173, -0.0274469293653965, -0.004818211775273085, 0.0633535385131836, -0.1791919469833374, 0.02447635680437088, -0.052288901060819626, 0.07726391404867172, 0.001766763161867857, -0.011632055044174194, -0.07565263658761978, 0.09718981385231018, -0.00009199407213600352, -0.07132178544998169, 0.040091533213853836, -0.014257219620049, -0.06056130304932594, -0.07647456228733063, -0.06990087777376175, 0.17823657393455505, 0.14277060329914093, -0.15895035862922668, -0.0826612040400505, 0.060921791940927505, -0.058928921818733215, -0.03433578088879585, -0.057367634028196335, 0.0663086399435997, 0.18287304043769836, -0.02018917351961136, 0.1326279491186142, -0.09129824489355087, -0.040880776941776276, -0.0033192455302923918, -0.03166664019227028, 0.08190668374300003, 0.08135177940130234, 0.18269354104995728, -0.045262183994054794, 0.11553309857845306, 0.1717924326658249, -0.1672089695930481, 0.09692753851413727, -0.06760525703430176, -0.08665622025728226, -0.030768537893891335, -0.030027782544493675, -0.019361842423677444, 0.16863170266151428, -0.07731319963932037, 0.01111886091530323, -0.0069645605981349945, 0.019590498879551888, 0.04635418578982353, -0.2541472315788269, -0.04548170790076256, 0.004908834584057331, -0.04085491597652435, -0.02070809341967106, -0.04656316712498665, 0.009280216880142689, 0.10717270523309708, -0.03645206242799759, -0.08320293575525284, 0.01589064486324787, 0.013743890449404716, -0.058294594287872314, 0.21606987714767456, -0.08009041845798492, -0.017046140506863594, -0.07940177619457245, -0.038463953882455826, -0.05556995049118996, -0.018299585208296776, 0.03669067472219467, -0.13036099076271057, -0.028575453907251358, -0.04358961060643196, 0.04615408554673195, 0.02405315823853016, 0.04720234498381615, 0.00991806574165821, -0.0019398349104449153, 0.09723532199859619, -0.13763339817523956, 0.019589772447943687, -0.09011285752058029, -0.09135865420103073, 0.018098827451467514, 0.08783429116010666, 0.11643762141466141, 0.18157507479190826, -0.02615385688841343, 0.0018305667908862233, -0.004655392840504646, 0.2654123902320862, -0.05431368947029114, -0.03575985133647919, 0.10174866020679474, 0.0004488550475798547, 0.04825602099299431, 0.09051867574453354, 0.1089821308851242, -0.11869040131568909, -0.004381898790597916, 0.056609220802783966, -0.04485038295388222, -0.24058647453784943, -0.013122927397489548, -0.029158679768443108, -0.10803361982107162, 0.05043940246105194, 0.039146099239587784, 0.01750827766954899, 0.05821475014090538, 0.07549680769443512, 0.12259142100811005, -0.07281152158975601, 0.03330979496240616, 0.056618399918079376, 0.061517879366874695, 0.1152343600988388, -0.05779954791069031, -0.06363429874181747, 0.032041385769844055, -0.022595899179577827, 0.25954127311706543, 0.0006340705440379679, 0.11063811182975769, 0.06913886964321136, 0.19469380378723145, -0.017132937908172607, 0.08831470459699631, 0.0021355317439883947, -0.05912217125296593, -0.0038199839182198048, -0.055385321378707886, 0.025488466024398804, 0.008735808543860912, -0.10404593497514725, 0.06833112239837646, -0.06696618348360062, -0.006815573200583458, 0.060468874871730804, 0.2528330087661743, -0.006719033233821392, -0.3096840977668762, -0.033926572650671005, -0.01060424279421568, -0.008002758957445621, 0.0007308118510991335, 0.009443514980375767, 0.1195545569062233, -0.026295533403754234, 0.010174956172704697, -0.04913553223013878, 0.09398631006479263, 0.010989826172590256, 0.022687140852212906, 0.084530308842659, 0.18182651698589325, -0.003736122976988554, 0.03812534734606743, -0.29669174551963806, 0.28730088472366333, 0.028604799881577492, 0.1113853007555008, -0.03896329924464226, -0.010836129076778889, 0.03034535050392151, 0.039276205003261566, -0.0001457764010410756, -0.01879388839006424, -0.04556286334991455, -0.17084531486034393, -0.04458746314048767, 0.06347333639860153, 0.1198732927441597, 0.015676455572247505, 0.07764944434165955, -0.0012793386122211814, 0.013718006201088428, 0.11191444098949432, -0.05538298189640045, -0.14082123339176178, -0.031047500669956207, -0.06525593250989914, 0.023833291605114937, -0.11669813841581345, -0.06141301244497299, -0.11436372995376587, -0.10054454952478409, 0.10163380950689316, 0.035098571330308914, -0.023511266335844994, -0.11786643415689468, 0.1252831667661667, 0.10945577919483185, -0.05298289284110069, 0.04621056467294693, 0.02460198663175106, 0.0315990149974823, 0.05623790621757507, -0.07897461205720901, 0.1281336396932602, -0.05352727696299553, -0.1339612901210785, -0.04896940290927887, 0.04004014655947685, 0.05393500626087189, 0.054930541664361954, -0.03686019033193588, 0.015440911054611206, -0.017290638759732246, -0.10694380104541779, 0.009426330216228962, -0.054849736392498016, 0.02951219491660595, 0.02484230138361454, -0.031890422105789185, 0.0347101204097271, -0.03864964842796326, -0.007728213910013437, 0.11556512117385864, 0.2629302144050598, -0.0758608803153038, -0.024457070976495743, 0.0480075404047966, -0.07286776602268219, -0.1627785861492157, 0.11589616537094116, 0.07314585149288177, -0.015222257934510708, 0.0626862645149231, -0.16976623237133026, 0.17901180684566498, 0.1367095559835434, -0.017065754160284996, 0.11730976402759552, -0.3247934579849243, -0.1524261087179184, 0.10017208755016327, 0.2012115865945816, 0.152499720454216, -0.1594293713569641, -0.01512526161968708, -0.037924446165561676, -0.09977971017360687, 0.10571082681417465, -0.1906503587961197, 0.09341055154800415, -0.012159852311015129, 0.09331325441598892, -0.016097985208034515, -0.05779794976115227, 0.12705408036708832, 0.03069836087524891, 0.14432689547538757, -0.041767388582229614, 0.016327111050486565, 0.10274670273065567, -0.018962299451231956, -0.0006243879324756563, -0.0408271886408329, 0.025632645934820175, -0.013292809017002583, 0.004241414833813906, -0.07704362273216248, 0.03410910815000534, -0.03261017054319382, -0.06120188534259796, -0.042759597301483154, -0.00902880635112524, -0.0036370635498315096, -0.0340830497443676, 0.13060712814331055, 0.06492956727743149, 0.13826431334018707, 0.08683589845895767, 0.0052868640050292015, -0.08859487622976303, -0.07423970103263855, 0.02580157481133938, -0.008066076785326004, 0.07673222571611404, -0.20088882744312286, -0.0003542687918525189, 0.11620987206697464, 0.029962340369820595, 0.08412913233041763, 0.09664477407932281, -0.054234981536865234, 0.016114426776766777, 0.07141157984733582, -0.14835099875926971, -0.09250428527593613, 0.029045021161437035, -0.0889982134103775, -0.07055293023586273, 0.0791173055768013, 0.07712778449058533, -0.08293262124061584, 0.001129580195993185, -0.004364548716694117, -0.023371580988168716, -0.09856301546096802, 0.22789084911346436, 0.10534809529781342, 0.03009321354329586, -0.11852885782718658, 0.10570792853832245, 0.05140577256679535, -0.030326955020427704, -0.0068026878871023655, 0.07530403882265091, -0.05096110329031944, 0.008327255956828594, 0.17046816647052765, 0.2318466454744339, -0.09406204521656036, -0.0495426245033741, -0.1763923168182373, -0.09170068055391312, 0.05009421333670616, 0.19190704822540283, 0.11619874089956284, -0.024530509486794472, -0.028424380347132683, 0.03773369640111923, -0.12980419397354126, 0.055364884436130524, 0.01815834641456604, 0.08907411247491837, -0.12428568303585052, 0.14596042037010193, 0.0381455235183239, 0.028837837278842926, -0.0335882343351841, 0.05936574935913086, -0.12651167809963226, 0.03371354565024376, -0.15270686149597168, -0.06377047300338745, 0.029401246458292007, -0.008436823263764381, 0.0084075927734375, -0.07976222783327103, -0.09258603304624557, 0.03897574543952942, -0.14617003500461578, -0.016951071098446846, 0.06201452761888504, 0.018020961433649063, -0.14344024658203125, -0.01716170273721218, 0.018414821475744247, -0.04638681560754776, 0.031616613268852234, 0.05832571163773537, 0.026104671880602837, 0.10277439653873444, -0.20056745409965515, -0.015444483608007431, 0.06852879375219345, 0.001484797685407102, 0.10025088489055634, -0.019691981375217438, -0.02529364451766014, -0.0167783685028553, 0.14335860311985016, -0.0008722270140424371, 0.07595604658126831, -0.1277569830417633, -0.006220686249434948, -0.06699086725711823, -0.08385545760393143, -0.04263343662023544, -0.001935877837240696, 0.09054146707057953, 0.0357348769903183, 0.1613244116306305, -0.06547188013792038, 0.006586867850273848, -0.22693337500095367, -0.006171271204948425, -0.011787566356360912, -0.07931965589523315, -0.11558402329683304, -0.04602132737636566, 0.06790798157453537, -0.06570994108915329, 0.1509142369031906, 0.03848231956362724, 0.059513699263334274, 0.032852090895175934, 0.01616339012980461, 0.002205563010647893, 0.03589348495006561, 0.22649617493152618, 0.033327676355838776, -0.0048691933043301105, 0.06447111815214157, 0.08689797669649124, 0.12790729105472565, 0.06432050466537476, 0.22087913751602173, 0.15237386524677277, -0.038280945271253586, 0.1176750436425209, 0.06747795641422272, -0.06900960952043533, -0.10488376766443253, 0.08833791315555573, -0.03920299932360649, 0.07759133726358414, -0.025827672332525253, 0.21697522699832916, 0.06846340745687485, -0.1476219743490219, 0.031304627656936646, -0.0422956645488739, -0.09478063881397247, -0.10713435709476471, 0.04514625295996666, -0.07081577926874161, -0.19997285306453705, 0.021825658157467842, -0.10156889259815216, 0.015918832272291183, 0.16514235734939575, 0.003058504080399871, 0.0009407069883309305, 0.1827637255191803, 0.0755515843629837, 0.04784158989787102, 0.017677942290902138, -0.0026638030540198088, -0.0421578474342823, -0.09719234704971313, -0.0787191316485405, -0.023631133139133453, -0.00816328264772892, 0.025645017623901367, -0.05688728392124176, -0.09466858953237534, 0.05074750632047653, -0.0058627258986234665, -0.08917912095785141, 0.026533693075180054, 0.0260908342897892, 0.06697887182235718, 0.005848861299455166, -0.0019095519091933966, 0.013646225444972515, -0.028579430654644966, 0.21966220438480377, -0.08177927881479263, -0.10214459896087646, -0.07691706717014313, 0.2144469916820526, 0.01932220347225666, -0.008580949157476425, 0.013403646647930145, -0.0854576975107193, -0.026133853942155838, 0.1907467395067215, 0.1651437133550644, -0.13165321946144104, -0.027221202850341797, -0.013146065175533295, -0.027752738445997238, -0.09238338470458984, 0.15526355803012848, 0.12394066154956818, 0.022214211523532867, -0.12033704668283463, -0.052051469683647156, -0.05776241049170494, -0.017259180545806885, -0.05592354014515877, 0.028664328157901764, 0.04888598993420601, 0.004693270660936832, -0.046799760311841965, 0.07535723596811295, -0.05649033561348915, -0.12389711290597916, 0.08259355276823044, -0.158099964261055, -0.17791619896888733, -0.01202746108174324, 0.1495167315006256, -0.029558956623077393, 0.061297181993722916, -0.05157217010855675, 0.0008387837442569435, 0.0485948845744133, -0.0487709604203701, -0.0964462161064148, -0.1401800662279129, 0.11462496221065521, -0.14245323836803436, 0.21447758376598358, -0.0346798375248909, 0.1160619929432869, 0.11078956723213196, 0.055734116584062576, -0.07884389162063599, 0.05499102175235748, 0.025709541514515877, -0.13740232586860657, -0.00932285562157631, 0.09514246881008148, -0.038941312581300735, 0.021025581285357475, 0.01770799234509468, -0.09803999960422516, 0.020408116281032562, -0.040480755269527435, -0.03633946552872658, -0.05685220658779144, -0.1006755456328392, -0.08774099498987198, 0.08456999063491821, 0.186528280377388, -0.010812532156705856, 0.05324680730700493, -0.08894205838441849, 0.03474845737218857, 0.06979426741600037, 0.048433173447847366, -0.07179554551839828, -0.2406436651945114, 0.039637453854084015, 0.1315729320049286, -0.06931677460670471, -0.19267775118350983, -0.08183553814888, 0.035313598811626434, -0.08389341831207275, -0.08343904465436935, 0.07129745185375214, 0.12927275896072388, 0.06862951070070267, -0.04911794140934944, -0.15255308151245117, -0.10099054127931595, 0.1417212337255478, -0.15906326472759247, -0.10283153504133224 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-1.3b-lora-3.15M-snli-model3 This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 - Accuracy: 0.761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 49 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3553 | 1.0 | 4292 | 0.2816 | 0.8942 | | 0.3227 | 2.0 | 8584 | 0.2643 | 0.9043 | | 0.3151 | 3.0 | 12876 | 0.2574 | 0.9076 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "other", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-1.3b", "model-index": [{"name": "opt-1.3b-lora-3.15M-snli-model3", "results": []}]}
text-classification
varun-v-rao/opt-1.3b-lora-3.15M-snli-model3
[ "transformers", "tensorboard", "safetensors", "opt", "text-classification", "generated_from_trainer", "base_model:facebook/opt-1.3b", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:16:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
opt-1.3b-lora-3.15M-snli-model3 =============================== This model is a fine-tuned version of facebook/opt-1.3b on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6832 * Accuracy: 0.761 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 49 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 49\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 49\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 75, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 49\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.09827006608247757, 0.08880309015512466, -0.0018107773503288627, 0.10016922652721405, 0.16065074503421783, 0.008777284063398838, 0.16073709726333618, 0.10819581896066666, -0.04945101961493492, 0.0504688061773777, 0.12505385279655457, 0.11597758531570435, 0.029510637745261192, 0.1633489429950714, -0.0839264914393425, -0.2135017216205597, 0.012101909145712852, 0.026186194270849228, -0.05378773435950279, 0.1237407997250557, 0.08083105832338333, -0.12447882443666458, 0.1102009266614914, -0.005470291245728731, -0.1606658399105072, 0.009234316647052765, 0.03475669026374817, -0.06544025242328644, 0.1339392215013504, 0.05953816697001457, 0.12276538461446762, 0.037417005747556686, 0.0682031586766243, -0.19679071009159088, 0.01665237545967102, 0.06754826009273529, -0.020192716270685196, 0.08295513689517975, 0.03682851418852806, -0.00373120722360909, 0.08926495909690857, -0.09574069827795029, 0.06428012996912003, 0.02680106647312641, -0.1424117535352707, -0.19668959081172943, -0.06421485543251038, 0.04686526581645012, 0.09123760461807251, 0.09002699702978134, -0.027097661048173904, 0.13255910575389862, -0.04052675515413284, 0.09605932980775833, 0.19361774623394012, -0.3063930571079254, -0.06072791665792465, 0.028750624507665634, 0.027254028245806694, 0.09307917952537537, -0.09832336008548737, 0.004418299067765474, 0.0679718479514122, 0.02177041582763195, 0.12743493914604187, -0.020128866657614708, 0.00021018157713115215, -0.01741122081875801, -0.13955873250961304, -0.031922366470098495, 0.16487735509872437, 0.06776927411556244, -0.04839450865983963, -0.06995616108179092, -0.06204337626695633, -0.13772740960121155, -0.030699320137500763, -0.011645734310150146, 0.033360809087753296, -0.02101169154047966, -0.07053679972887039, -0.02545185573399067, -0.1147904098033905, -0.05599606782197952, -0.038915108889341354, 0.12789489328861237, 0.023680921643972397, -0.0009595451410859823, -0.0246113408356905, 0.09697861224412918, -0.012638525106012821, -0.13536524772644043, 0.0255181472748518, 0.016184240579605103, -0.002870964352041483, -0.05852079391479492, -0.041019607335329056, -0.09689047932624817, 0.009810701943933964, 0.10867041349411011, -0.0738268494606018, 0.059583280235528946, -0.01746235601603985, 0.05243062973022461, -0.0919208973646164, 0.15449750423431396, -0.03057057037949562, -0.014662005007266998, 0.01928018592298031, 0.10517575591802597, 0.05523540452122688, -0.022052576765418053, -0.1380244642496109, 0.02255561389029026, 0.11273860186338425, 0.02058560587465763, -0.058493487536907196, 0.08101702481508255, -0.05318869277834892, -0.014389651827514172, 0.059249915182590485, -0.07821489870548248, 0.024319639429450035, 0.014268692582845688, -0.04677823185920715, -0.08989918231964111, 0.035408731549978256, 0.015051724389195442, 0.0009753500926308334, 0.10121151804924011, -0.08403553813695908, 0.007819993421435356, -0.06979711353778839, -0.12250966578722, 0.015315436758100986, -0.06506679952144623, 0.011713026091456413, -0.12659874558448792, -0.1553063690662384, -0.013011572882533073, 0.04335956275463104, -0.023252585902810097, -0.04685563966631889, -0.05856674909591675, -0.07554513216018677, 0.019635800272226334, -0.022814404219388962, 0.07566145062446594, -0.07386910915374756, 0.10147661715745926, 0.04319412261247635, 0.05555875226855278, -0.0568808987736702, 0.034352902323007584, -0.09425877779722214, 0.03626773878931999, -0.19292321801185608, 0.037392981350421906, -0.04424535110592842, 0.06263136118650436, -0.07287939637899399, -0.0844709500670433, -0.01157856173813343, 0.013605361804366112, 0.05853531137108803, 0.10096971690654755, -0.1587371528148651, -0.0805029571056366, 0.17553555965423584, -0.10510315746068954, -0.15593259036540985, 0.14599491655826569, -0.059849441051483154, 0.03489476069808006, 0.07046534866094589, 0.19435147941112518, 0.07856186479330063, -0.09921056777238846, 0.0010908504482358694, -0.013580938801169395, 0.04162823408842087, -0.04386351257562637, 0.07048390060663223, -0.0006399781559593976, -0.00848353561013937, 0.007429712451994419, -0.03877972811460495, 0.06276824325323105, -0.07015310227870941, -0.0796566978096962, -0.028280755504965782, -0.09219325333833694, 0.05543559789657593, 0.060696929693222046, 0.055273979902267456, -0.12272422015666962, -0.09111952036619186, 0.04843411222100258, 0.06248660758137703, -0.06992822885513306, 0.017204172909259796, -0.07453550398349762, 0.08918940275907516, -0.06720450520515442, -0.019751928746700287, -0.15150755643844604, -0.05288692191243172, 0.01109469123184681, -0.00035932083847001195, 0.014113117940723896, 0.021146222949028015, 0.06508137285709381, 0.08006233721971512, -0.07449586689472198, -0.03760550916194916, -0.011977256275713444, 0.011015926487743855, -0.1260880082845688, -0.19495141506195068, -0.010564034804701805, -0.03211672604084015, 0.16647042334079742, -0.26553142070770264, 0.05823192372918129, 0.009440897032618523, 0.08496648818254471, 0.04119228944182396, -0.008753136731684208, -0.02888551913201809, 0.06532622873783112, -0.042219534516334534, -0.05618254095315933, 0.06581480801105499, 0.015286742709577084, -0.10898611694574356, -0.022854264825582504, -0.18211179971694946, 0.19800058007240295, 0.13556021451950073, -0.08336351811885834, -0.08621221780776978, -0.011827051639556885, -0.04026257246732712, -0.019388701766729355, -0.04891132935881615, -0.0027895462699234486, 0.1617090106010437, -0.0031720250844955444, 0.16732129454612732, -0.0923491045832634, -0.03193993121385574, 0.036586176604032516, -0.042896371334791183, -0.006355893332511187, 0.11805489659309387, 0.09552278369665146, -0.1613183170557022, 0.15539319813251495, 0.1678253412246704, -0.04319799691438675, 0.16764409840106964, -0.03161397948861122, -0.04440771043300629, -0.02480253018438816, 0.02546277828514576, 0.016492243856191635, 0.1127009391784668, -0.11833800375461578, -0.004311504308134317, 0.001172323594801128, 0.009963919408619404, 0.011838924139738083, -0.20683053135871887, -0.0307962317019701, 0.04469899460673332, -0.05441579595208168, -0.002074859105050564, -0.021737614646553993, 0.0038677353877574205, 0.10558270663022995, 0.009644823148846626, -0.07266777753829956, 0.04839387908577919, -0.00993355829268694, -0.09799376130104065, 0.20613330602645874, -0.0661490336060524, -0.209137424826622, -0.15138080716133118, -0.03307666257023811, -0.059494756162166595, 0.03715010732412338, 0.06272187829017639, -0.0779055804014206, -0.037288885563611984, -0.12252673506736755, -0.004757691640406847, 0.02031167782843113, 0.022794565185904503, 0.0020258761942386627, 0.011820712126791477, 0.09324845671653748, -0.08739740401506424, -0.02020793966948986, -0.04283846542239189, -0.03398580476641655, 0.03239888325333595, 0.022827232256531715, 0.10714483261108398, 0.13134244084358215, -0.03023512475192547, 0.0031969205010682344, -0.04066336527466774, 0.21827048063278198, -0.08242560178041458, -0.0171254463493824, 0.12942583858966827, -0.030934704467654228, 0.05072136968374252, 0.14646857976913452, 0.04727950692176819, -0.10138965398073196, 0.03269997239112854, 0.03404931724071503, -0.03359336778521538, -0.19188441336154938, -0.04211166501045227, -0.042346760630607605, 0.017868636175990105, 0.10058680921792984, 0.03323031961917877, 0.03836015611886978, 0.05905921012163162, 0.005888653919100761, 0.058915965259075165, 0.003047408303245902, 0.0735786110162735, 0.11285997927188873, 0.04745509847998619, 0.1331675499677658, -0.053767841309309006, -0.06468412280082703, 0.039091866463422775, -0.03563403710722923, 0.18415556848049164, 0.018381694331765175, 0.1288376748561859, 0.04808128997683525, 0.13771341741085052, 0.01805935613811016, 0.047691330313682556, 0.0052681127563118935, -0.052164476364851, -0.012093395926058292, -0.04108728468418121, -0.0410214364528656, 0.030791226774454117, -0.06170058995485306, 0.05554606020450592, -0.13541996479034424, 0.01848743110895157, 0.05194324254989624, 0.2174995243549347, 0.05741854012012482, -0.33108973503112793, -0.0933578684926033, 0.023537790402770042, -0.018444733694195747, -0.03627735376358032, 0.023874206468462944, 0.15689994394779205, -0.06286788731813431, 0.05688440054655075, -0.07933444529771805, 0.08120687305927277, -0.053603604435920715, 0.058672696352005005, 0.040170177817344666, 0.059726715087890625, -0.030045539140701294, 0.0763842985033989, -0.2700605094432831, 0.27259311079978943, 0.017295002937316895, 0.06823540478944778, -0.05637780949473381, -0.005711677484214306, 0.024196024984121323, 0.10738910734653473, 0.07715000212192535, -0.018773987889289856, -0.07107904553413391, -0.20630678534507751, -0.061541780829429626, 0.022866783663630486, 0.08663762360811234, -0.04543297365307808, 0.10119734704494476, -0.032357461750507355, 0.0023630924988538027, 0.08163123577833176, 0.006673355121165514, -0.07026257365942001, -0.10624469071626663, -0.017505763098597527, 0.04082469269633293, -0.03006991185247898, -0.0826442614197731, -0.099127396941185, -0.11384152621030807, 0.16448238492012024, -0.04629049077630043, -0.03848574683070183, -0.10017504543066025, 0.07197845727205276, 0.02248855121433735, -0.0859379842877388, 0.02728560008108616, 0.009716615080833435, 0.10817372053861618, 0.007553077302873135, -0.06080901250243187, 0.1295967400074005, -0.06225014477968216, -0.1881324052810669, -0.06563008576631546, 0.13303741812705994, 0.017033452168107033, 0.03841478377580643, 0.006869307719171047, 0.0030237040482461452, -0.006365394685417414, -0.07459930330514908, 0.041792068630456924, -0.02319139614701271, 0.0699307769536972, 0.021211709827184677, -0.04063469544053078, -0.02400362305343151, -0.06206389516592026, -0.025779126212000847, 0.16133245825767517, 0.310234010219574, -0.0780416801571846, 0.0069772605784237385, 0.05766863748431206, -0.06182460859417915, -0.18330246210098267, 0.04412716627120972, 0.020470909774303436, 0.004731410648673773, 0.059509653598070145, -0.13811679184436798, 0.07474914938211441, 0.08538658171892166, -0.02542836219072342, 0.1066352128982544, -0.268489807844162, -0.14001809060573578, 0.11598439514636993, 0.1556127518415451, 0.1441793441772461, -0.15317438542842865, -0.037757813930511475, -0.04385605454444885, -0.08707895129919052, 0.12711651623249054, -0.1281643509864807, 0.10867688059806824, -0.002338274847716093, 0.0380668006837368, 0.012789109721779823, -0.05047532171010971, 0.12571680545806885, -0.03142485022544861, 0.11577984690666199, -0.07944239675998688, -0.01659007929265499, 0.0567636713385582, -0.05953349173069, 0.023439034819602966, -0.1296023726463318, 0.017363790422677994, -0.07983513921499252, -0.035957805812358856, -0.0610930398106575, 0.04704796150326729, -0.04267391189932823, -0.04979194328188896, -0.04316296800971031, 0.032185811549425125, 0.04376668483018875, -0.00416301004588604, 0.1608298271894455, -0.011087422259151936, 0.1772443652153015, 0.15222695469856262, 0.10857205837965012, -0.05743318796157837, -0.01045695785433054, -0.0026795065496116877, -0.03840448707342148, 0.05545484274625778, -0.1312432736158371, 0.042134009301662445, 0.10929141938686371, -0.007983689196407795, 0.16383545100688934, 0.06828150898218155, -0.038437455892562866, 0.022423800081014633, 0.07418061792850494, -0.1773596853017807, -0.12897242605686188, -0.028857693076133728, -0.03877650201320648, -0.12219975143671036, 0.04972802847623825, 0.13038091361522675, -0.0698259100317955, 0.010356977581977844, -0.012139889411628246, 0.016878411173820496, -0.025096546858549118, 0.15086132287979126, 0.06871628761291504, 0.05431751534342766, -0.07858975976705551, 0.07675017416477203, 0.054110389202833176, -0.08466359227895737, 0.037186864763498306, 0.039966121315956116, -0.0959668681025505, -0.05119269713759422, 0.027995694428682327, 0.21406757831573486, -0.014154616743326187, -0.06329609453678131, -0.16305291652679443, -0.12782174348831177, 0.05526256933808327, 0.18264977633953094, 0.08296692371368408, 0.0008857371867634356, -0.023155560716986656, 0.0015680016949772835, -0.12395068258047104, 0.11912793666124344, 0.023850757628679276, 0.0747271254658699, -0.1652623414993286, 0.14156578481197357, -0.0012423205189406872, 0.015230094082653522, -0.02528633549809456, 0.03855779767036438, -0.1236233189702034, -0.003325380152091384, -0.12064607441425323, -0.0044320556335151196, -0.022554270923137665, 0.0028420686721801758, -0.003509294940158725, -0.0512336902320385, -0.0652122050523758, 0.000336330384016037, -0.10249920934438705, -0.01597476750612259, 0.04309717193245888, 0.05664563551545143, -0.12826605141162872, -0.0460258387029171, 0.015314866788685322, -0.06892088055610657, 0.07213987410068512, 0.006203473079949617, 0.017020070925354958, 0.0456901490688324, -0.15000689029693604, 0.03670797869563103, 0.06941726058721542, 0.00893271341919899, 0.03971872106194496, -0.08452121168375015, -0.0014929181197658181, 0.0020781378261744976, 0.03963743895292282, 0.033317022025585175, 0.08956347405910492, -0.12430348247289658, 0.020546607673168182, -0.001535910996608436, -0.05988758057355881, -0.049749717116355896, 0.04681883752346039, 0.0662265345454216, 0.006844385527074337, 0.21419894695281982, -0.111247718334198, 0.011522089131176472, -0.21460098028182983, -0.0005974513478577137, 0.007376443594694138, -0.11312410980463028, -0.07036200165748596, -0.06619156897068024, 0.059594206511974335, -0.05775872617959976, 0.13435369729995728, 0.0316595695912838, 0.05072370916604996, 0.04097598418593407, -0.054411061108112335, 0.04966479539871216, 0.029746823012828827, 0.19667859375476837, 0.013695473782718182, -0.05629212036728859, 0.04933469370007515, 0.019173791632056236, 0.1224488914012909, 0.0849158987402916, 0.19210930168628693, 0.15736886858940125, -0.060206472873687744, 0.09378507733345032, 0.048890821635723114, -0.047500573098659515, -0.12931916117668152, 0.02781638130545616, -0.06634149700403214, 0.11140197515487671, -0.014420915395021439, 0.1850620061159134, 0.09814263880252838, -0.15309669077396393, 0.012719312682747841, -0.05913729593157768, -0.07890455424785614, -0.10931272059679031, -0.07990601658821106, -0.10122421383857727, -0.13423937559127808, -0.0004794074047822505, -0.10825815051794052, 0.00006478097202489153, 0.09396866708993912, -0.00003587923856684938, -0.0329127162694931, 0.1757759302854538, 0.023913761600852013, 0.017588093876838684, 0.07430052012205124, 0.00189111044164747, -0.03270711004734039, -0.0882246121764183, -0.08484667539596558, 0.019914429634809494, -0.025428274646401405, 0.022902514785528183, -0.041035450994968414, -0.03179991990327835, 0.04383378103375435, -0.0040880898013710976, -0.11581894755363464, 0.013808649964630604, 0.02562788315117359, 0.05653982609510422, 0.05432778596878052, 0.01867581158876419, 0.008192542009055614, -0.0013497986365109682, 0.21808485686779022, -0.06539501994848251, -0.03953160345554352, -0.09680980443954468, 0.21360526978969574, 0.02571169100701809, 0.010802102275192738, 0.0020533776842057705, -0.09485345333814621, 0.03697195276618004, 0.20374923944473267, 0.19027233123779297, -0.08451510965824127, 0.01571176014840603, -0.028997544199228287, -0.007624583784490824, -0.010453281924128532, 0.10892456024885178, 0.09626796096563339, -0.0014272276312112808, -0.06860218197107315, -0.022684939205646515, -0.03690209612250328, 0.0026999933179467916, -0.03069516085088253, 0.06823848932981491, 0.04052339866757393, 0.024539506062865257, -0.05279212445020676, 0.06802462041378021, -0.03303206339478493, -0.12297290563583374, 0.03356204554438591, -0.2131916582584381, -0.14449158310890198, -0.01910082995891571, 0.10164676606655121, -0.012707606889307499, 0.05683017149567604, -0.03195866197347641, 0.00705743720754981, 0.051348160952329636, -0.022635700181126595, -0.0662962943315506, -0.07328268885612488, 0.048911742866039276, -0.13094472885131836, 0.22397740185260773, -0.04090350493788719, 0.02829059772193432, 0.1258668601512909, 0.027277151122689247, -0.06656443327665329, 0.09373917430639267, 0.040168650448322296, -0.032706018537282944, 0.042106710374355316, 0.09313097596168518, -0.03429461270570755, 0.11267521977424622, 0.06865095347166061, -0.13122804462909698, 0.012395012192428112, -0.10997264832258224, -0.07602237910032272, -0.054843366146087646, -0.027972007170319557, -0.056978337466716766, 0.13510030508041382, 0.18373659253120422, -0.03615380823612213, 0.0027543092146515846, -0.04349642992019653, 0.009700033813714981, 0.07443620264530182, 0.04180293157696724, -0.026667814701795578, -0.24075345695018768, 0.014085110276937485, 0.08473096042871475, 0.003845399245619774, -0.3404429852962494, -0.07321365177631378, -0.01951085589826107, -0.04963976517319679, -0.08733633905649185, 0.09236059337854385, 0.09975720942020416, 0.05450962111353874, -0.07194946706295013, -0.06383414566516876, -0.06824520975351334, 0.17108005285263062, -0.12373872846364975, -0.0903049111366272 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the custom dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1046 - Wer Ortho: 11.8421 - Wer: 11.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.4335 | 5.0 | 100 | 0.1326 | 11.8421 | 9.2715 | | 0.0049 | 10.0 | 200 | 0.1332 | 15.7895 | 13.9073 | | 0.0001 | 15.0 | 300 | 0.1019 | 11.8421 | 11.9205 | | 0.0 | 20.0 | 400 | 0.1041 | 11.8421 | 11.9205 | | 0.0 | 25.0 | 500 | 0.1046 | 11.8421 | 11.9205 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"language": ["ta"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["whisper-small-preon-test-1"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper small", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "custom dataset", "type": "whisper-small-preon-test-1"}, "metrics": [{"type": "wer", "value": 11.920529801324504, "name": "Wer"}]}]}]}
automatic-speech-recognition
gokulraj/whisper-small-trail-5-preon
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ta", "dataset:whisper-small-preon-test-1", "base_model:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-07T02:17:45+00:00
[]
[ "ta" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-whisper-small-preon-test-1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
Whisper small ============= This model is a fine-tuned version of openai/whisper-small on the custom dataset dataset. It achieves the following results on the evaluation set: * Loss: 0.1046 * Wer Ortho: 11.8421 * Wer: 11.9205 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant\_with\_warmup * lr\_scheduler\_warmup\_steps: 50 * training\_steps: 500 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-whisper-small-preon-test-1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 91, 137, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ta #dataset-whisper-small-preon-test-1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 50\n* training\\_steps: 500\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1068871021270752, 0.08175957202911377, -0.0027045670431107283, 0.055171649903059006, 0.08432300388813019, 0.003572475165128708, 0.13294309377670288, 0.13845381140708923, -0.03627024218440056, 0.0833146870136261, 0.1034034714102745, 0.06954701244831085, 0.06074421852827072, 0.14696723222732544, -0.03206511214375496, -0.28342679142951965, 0.031049327924847603, -0.0019203522242605686, -0.09561949968338013, 0.11543885618448257, 0.10609906166791916, -0.11465929448604584, 0.02185964770615101, 0.009844398126006126, -0.08359141647815704, -0.02133793570101261, -0.014670101925730705, -0.0696205124258995, 0.11338077485561371, 0.023359518498182297, 0.08722972869873047, 0.04376387596130371, 0.07773523032665253, -0.26108527183532715, 0.01759961247444153, 0.03966599702835083, 0.052340030670166016, 0.0658482015132904, 0.07635986059904099, -0.009022638201713562, 0.05837342515587807, -0.07050256431102753, 0.09046562016010284, 0.05105740204453468, -0.0993616133928299, -0.3278621435165405, -0.07152143865823746, 0.052629247307777405, 0.11679068207740784, 0.07898133248090744, -0.03310292214155197, 0.11038996279239655, -0.0754663422703743, 0.0852828100323677, 0.21681755781173706, -0.24419166147708893, -0.0692046582698822, -0.054762501269578934, 0.07270202785730362, 0.048170533031225204, -0.10956551879644394, -0.036392692476511, 0.030357925221323967, 0.035815782845020294, 0.09698771685361862, 0.013114414177834988, -0.0019350911024957895, -0.006061559543013573, -0.14428453147411346, -0.0586448535323143, 0.12406071275472641, 0.07233771681785583, -0.04446105286478996, -0.13387693464756012, -0.02649580128490925, -0.1471037119626999, -0.05951504409313202, -0.009301495738327503, 0.022921476513147354, -0.0332801453769207, -0.08174557983875275, 0.0033860569819808006, -0.09485065191984177, -0.09443095326423645, 0.030966777354478836, 0.19390469789505005, 0.05239473655819893, -0.03717036545276642, -0.009651496075093746, 0.09253628551959991, 0.06404750794172287, -0.15357236564159393, -0.011187334544956684, 0.0329095833003521, -0.07175404578447342, -0.027702925726771355, -0.04033360630273819, -0.051825497299432755, 0.046460624784231186, 0.1548481583595276, -0.029891692101955414, 0.08908376842737198, 0.022072887048125267, 0.029822636395692825, -0.0883311927318573, 0.16407518088817596, -0.0336434580385685, -0.009365403093397617, -0.01844710111618042, 0.14266541600227356, 0.01721695438027382, -0.00848016981035471, -0.05167502537369728, 0.02032402530312538, 0.1146136149764061, 0.04913453757762909, -0.0038457894697785378, 0.030213752761483192, -0.07987817376852036, -0.01354502234607935, -0.025523392483592033, -0.11172983795404434, 0.011561112478375435, 0.038309525698423386, -0.03600219637155533, -0.05179620161652565, 0.01592952385544777, 0.0268563125282526, 0.002669032895937562, 0.07124260812997818, -0.05313151702284813, -0.020815914496779442, -0.06390572339296341, -0.07730498164892197, 0.020014580339193344, 0.009889418259263039, 0.007099703419953585, -0.08761952072381973, -0.10473600029945374, -0.04592958465218544, 0.05147938430309296, -0.01999770663678646, -0.07868021726608276, -0.06718432903289795, -0.07895545661449432, 0.041499827057123184, -0.012246097438037395, 0.12996600568294525, -0.059456825256347656, 0.11838092654943466, 0.029296742752194405, 0.049340445548295975, 0.06379145383834839, 0.05122935026884079, -0.06571998447179794, 0.05788404867053032, -0.15024730563163757, 0.08713708072900772, -0.10023526102304459, 0.05479487404227257, -0.14059394598007202, -0.1077563613653183, -0.006975117605179548, -0.00043218358769081533, 0.0861869603395462, 0.12467911094427109, -0.1720636636018753, -0.08323538303375244, 0.1902008354663849, -0.10200042277574539, -0.11546407639980316, 0.15737055242061615, -0.024498416110873222, 0.021354734897613525, 0.0372004434466362, 0.20034804940223694, 0.11786754429340363, -0.10064476728439331, 0.0238008052110672, -0.024954723194241524, 0.08781172335147858, 0.04769349470734596, 0.10550437122583389, -0.03963644802570343, -0.03594062104821205, 0.0009756356012076139, -0.04966059327125549, 0.0792977586388588, -0.07957600802183151, -0.08690717816352844, -0.03080333024263382, -0.08624695241451263, 0.04294091463088989, 0.046772100031375885, 0.019076116383075714, -0.11093604564666748, -0.12035905569791794, 0.025397391989827156, 0.12185703217983246, -0.09001044183969498, 0.01286003366112709, -0.09785961359739304, 0.04972013831138611, -0.00859729666262865, -0.017993727698922157, -0.13378344476222992, -0.009010260924696922, 0.04168805480003357, -0.06717545539140701, 0.01188696175813675, -0.036699164658784866, 0.09667636454105377, 0.04678134620189667, -0.04983731731772423, -0.09506706148386002, -0.05681517347693443, 0.012902391143143177, -0.08101214468479156, -0.22187161445617676, -0.06283891946077347, -0.03624718636274338, 0.19494712352752686, -0.21753543615341187, 0.023057403042912483, 0.006593892816454172, 0.11316615343093872, 0.03725598007440567, -0.034499041736125946, 0.021991407498717308, 0.04873219504952431, 0.0026051681488752365, -0.06858284771442413, 0.03141350671648979, 0.015428761020302773, -0.14897483587265015, 0.030876856297254562, -0.15776969492435455, 0.08660878986120224, 0.09255077689886093, 0.02794932946562767, -0.09235142916440964, -0.05775728076696396, -0.07144118845462799, -0.056961286813020706, -0.02418949455022812, -0.0013411513064056635, 0.20468749105930328, 0.020797347649931908, 0.10584163665771484, -0.08660027384757996, -0.05781930685043335, 0.010739738121628761, -0.02594992145895958, -0.02146759256720543, 0.14565922319889069, -0.0076215267181396484, -0.08549445122480392, 0.09838857501745224, 0.1139281764626503, -0.07088814675807953, 0.1477375030517578, -0.08926690369844437, -0.09467481076717377, -0.022140197455883026, 0.061695877462625504, 0.03917421028017998, 0.09783943742513657, -0.10780058056116104, 0.024109357967972755, 0.024047380313277245, -0.0021307512652128935, 0.016396109014749527, -0.19689422845840454, -0.01582474075257778, 0.05129215121269226, -0.0636177510023117, -0.008619017899036407, -0.013144602067768574, 0.015337252989411354, 0.08213992416858673, 0.009817375801503658, -0.04613645374774933, 0.01197168417274952, -0.022611316293478012, -0.09450820833444595, 0.20394980907440186, -0.0993911400437355, -0.1399436593055725, -0.12940770387649536, 0.023979799821972847, 0.016334837302565575, -0.012525377795100212, 0.059870269149541855, -0.11043296754360199, -0.02744979038834572, -0.08551479130983353, 0.03144650161266327, -0.018555214628577232, 0.028706278651952744, 0.007458253763616085, 0.00994288083165884, 0.09867193549871445, -0.09828973561525345, 0.013482118025422096, -0.00853132177144289, -0.021922675892710686, 0.035945963114500046, 0.025265438482165337, 0.06774146854877472, 0.15755775570869446, 0.026080314069986343, 0.005257217213511467, -0.03632668778300285, 0.19047310948371887, -0.09887568652629852, -0.02385985106229782, 0.14467152953147888, -0.023137947544455528, 0.04666055366396904, 0.14402568340301514, 0.03344886749982834, -0.08486495167016983, 0.03172539919614792, 0.0149008147418499, 0.0007605283753946424, -0.22687146067619324, -0.027035227045416832, -0.03661748766899109, -0.019461508840322495, 0.10624564439058304, 0.03194282203912735, -0.023181162774562836, 0.041263140738010406, -0.039757389575242996, -0.05064353346824646, 0.02932579815387726, 0.07401171326637268, 0.07143156975507736, 0.02501300349831581, 0.10196011513471603, -0.018882794305682182, -0.05213526636362076, 0.01357112918049097, 0.00882303062826395, 0.18915611505508423, -0.008677582256495953, 0.1806447058916092, 0.05352803319692612, 0.14331908524036407, 0.02129262126982212, 0.0375051274895668, 0.018598707392811775, -0.02169995754957199, 0.019075976684689522, -0.05545557662844658, -0.0514020174741745, 0.04643315449357033, 0.06281150877475739, 0.06496970355510712, -0.11430484801530838, 0.0058703115209937096, 0.021873438730835915, 0.35438427329063416, 0.05729139968752861, -0.28658488392829895, -0.11977269500494003, 0.021265573799610138, -0.09103419631719589, -0.04620770737528801, 0.030152231454849243, 0.141975536942482, -0.09682684391736984, 0.03764644265174866, -0.07153443992137909, 0.07242260873317719, -0.05507636442780495, 0.013261317275464535, 0.03825493901968002, 0.09781555086374283, -0.004348332528024912, 0.06422190368175507, -0.24446628987789154, 0.29171764850616455, -0.016260698437690735, 0.08452978730201721, -0.0417306125164032, 0.025165896862745285, 0.030326271429657936, -0.04898454248905182, 0.0833701565861702, -0.013260734267532825, -0.11210078001022339, -0.18562567234039307, -0.09637964516878128, 0.03154043108224869, 0.11849962919950485, -0.039257362484931946, 0.11415176093578339, -0.04561256989836693, -0.012314076535403728, 0.062249671667814255, -0.0804828405380249, -0.09980718791484833, -0.09241550415754318, 0.010860443115234375, 0.032869718968868256, 0.06808905303478241, -0.13978135585784912, -0.10350345820188522, -0.05244967341423035, 0.122915118932724, -0.08950251340866089, -0.03563128411769867, -0.12728586792945862, 0.04677852243185043, 0.1522664874792099, -0.07472670078277588, 0.040391407907009125, 0.016685765236616135, 0.1290874034166336, 0.006359808146953583, -0.010228259488940239, 0.09996876865625381, -0.08624294400215149, -0.22599151730537415, -0.04402128979563713, 0.1830471307039261, 0.047393713146448135, 0.07543269544839859, -0.011882217600941658, 0.022074447944760323, -0.01591564156115055, -0.06394176930189133, 0.053445540368556976, 0.04157833755016327, -0.008841296657919884, 0.037260934710502625, -0.034963417798280716, -0.010825347155332565, -0.08131536841392517, -0.055703260004520416, 0.17128023505210876, 0.31292980909347534, -0.07804509997367859, 0.05667358636856079, 0.06601627171039581, -0.040029656141996384, -0.15991660952568054, -0.0015369588509202003, 0.12432915717363358, 0.027194444090127945, 0.01696055196225643, -0.1949603408575058, 0.05781189724802971, 0.07270228117704391, -0.031186778098344803, 0.047526970505714417, -0.3246929347515106, -0.1354990452528, 0.14246898889541626, 0.11810299754142761, -0.0005916209775023162, -0.1381932497024536, -0.06068946793675423, -0.0029932246543467045, -0.05594220384955406, 0.037502892315387726, -0.037391453981399536, 0.1242511048913002, -0.007556838449090719, 0.032752543687820435, 0.03860119730234146, -0.060173019766807556, 0.1512383669614792, -0.059244465082883835, 0.06897518038749695, -0.025078028440475464, 0.046129219233989716, -0.029938913881778717, -0.056748829782009125, 0.01887638121843338, -0.11026192456483841, 0.037505749613046646, -0.10084101557731628, -0.03920258581638336, -0.08869573473930359, 0.03522432595491409, -0.03617852181196213, -0.043252117931842804, -0.0035439622588455677, 0.050626546144485474, 0.07244376093149185, -0.0015066283522173762, 0.08739735931158066, -0.05902755260467529, 0.15597368776798248, 0.0872611254453659, 0.14735263586044312, 0.00919437687844038, -0.08211090415716171, -0.005689006764441729, -0.02424885705113411, 0.053709451109170914, -0.09929954260587692, 0.036150939762592316, 0.12360293418169022, 0.038877926766872406, 0.13869331777095795, 0.050400301814079285, -0.08872105181217194, 0.005373408552259207, 0.05718938261270523, -0.08887305855751038, -0.19273102283477783, -0.029662596061825752, 0.10465717315673828, -0.17745845019817352, -0.013316337950527668, 0.10300451517105103, -0.05867428332567215, -0.023075168952345848, -0.0024594077840447426, 0.0349910706281662, -0.03887851908802986, 0.20574511587619781, 0.03964967653155327, 0.08989967405796051, -0.08198291063308716, 0.08594413846731186, 0.04971614107489586, -0.13714711368083954, 0.05609246343374252, 0.09303876757621765, -0.04642607644200325, -0.030858367681503296, 0.06344334036111832, 0.08482823520898819, 0.06005077809095383, -0.049898918718099594, -0.12162143737077713, -0.153187558054924, 0.06197082996368408, 0.1389782875776291, 0.03259967267513275, 0.02502439171075821, -0.002665209351107478, 0.03819867968559265, -0.10225966572761536, 0.11966568231582642, 0.07589607685804367, 0.06866449117660522, -0.13092635571956635, 0.14710594713687897, -0.007134961895644665, 0.008390344679355621, -0.00184896111022681, 0.0013552142772823572, -0.11388535797595978, 0.01879071071743965, -0.1215512678027153, 0.002583162160590291, -0.044875338673591614, 0.009314768947660923, 0.015083219856023788, -0.05411588028073311, -0.027079053223133087, 0.025647152215242386, -0.11319062858819962, -0.04382605478167534, -0.003949466161429882, 0.07660125941038132, -0.09641372412443161, -0.037470705807209015, 0.06207733228802681, -0.1156180202960968, 0.0993185043334961, 0.05001166835427284, 0.008529753424227238, 0.02173301763832569, -0.13513177633285522, -0.001956700347363949, 0.025806551799178123, 0.0016450326656922698, -0.0016606306890025735, -0.18546368181705475, -0.02442294731736183, -0.030422203242778778, 0.0033414089120924473, -0.0027081130538135767, 0.07571068406105042, -0.12840217351913452, -0.02365502528846264, -0.00642918236553669, -0.048638716340065, -0.07800815999507904, 0.012947180308401585, 0.04846372827887535, 0.014342989772558212, 0.1664571762084961, -0.11210208386182785, 0.058247338980436325, -0.21723829209804535, 0.004453172907233238, -0.037346210330724716, -0.06854432076215744, -0.09609823673963547, -0.01580633781850338, 0.08346622437238693, -0.05784117802977562, 0.06105887144804001, -0.08341491967439651, 0.013880018144845963, 0.03771045431494713, -0.10720480233430862, 0.06936363875865936, 0.05298429727554321, 0.24156469106674194, 0.028056954964995384, -0.034348029643297195, 0.07310190796852112, -0.017475292086601257, 0.04341970384120941, 0.10788722336292267, 0.13243310153484344, 0.229529470205307, 0.03105536475777626, 0.07542143762111664, 0.060796160250902176, -0.07657916098833084, -0.11756230890750885, 0.11401395499706268, -0.019973501563072205, 0.09989021718502045, -0.010577626526355743, 0.24050766229629517, 0.11699512600898743, -0.17610464990139008, 0.04750517010688782, -0.05574691668152809, -0.0713847279548645, -0.09427252411842346, -0.07544521987438202, -0.08719856292009354, -0.1594485193490982, 0.006606966257095337, -0.10248036682605743, 0.014557961374521255, 0.039084210991859436, 0.03010621666908264, 0.021454855799674988, 0.1464436948299408, 0.044611431658267975, 0.017040671780705452, 0.09538774937391281, -0.001798249315470457, -0.020566558465361595, -0.04786914587020874, -0.12171425670385361, 0.07334201782941818, -0.01329801231622696, 0.03242739662528038, -0.04415924847126007, -0.09091156721115112, 0.050156764686107635, 0.00012928442447446287, -0.12707099318504333, 0.03267288580536842, -0.011761912144720554, 0.0708744004368782, 0.05288266763091087, 0.04872101545333862, -0.0093093141913414, -0.016238683834671974, 0.2435140758752823, -0.08856751024723053, -0.1100984588265419, -0.13040433824062347, 0.2549150586128235, -0.022905686870217323, -0.018101999536156654, 0.017533237114548683, -0.0803675502538681, 0.0002656114229466766, 0.15629836916923523, 0.12997817993164062, -0.018814880400896072, 0.004226806573569775, -0.00738469697535038, -0.016132503747940063, -0.06288307160139084, 0.07271368056535721, 0.12980777025222778, 0.01741936057806015, -0.07871798425912857, -0.02652140147984028, -0.03422045707702637, -0.04342908412218094, -0.04974563047289848, 0.07576688379049301, 0.015168441459536552, -0.0019259859109297395, -0.02808697149157524, 0.10611200332641602, -0.051768384873867035, -0.1107606589794159, -0.003942485898733139, -0.162395179271698, -0.1675191968679428, -0.052538201212882996, 0.07154428958892822, 0.02922290377318859, 0.03764836862683296, 0.0032956174109131098, -0.0011569567723199725, 0.0660984218120575, -0.002978293923661113, -0.02978217601776123, -0.0854070633649826, 0.08800360560417175, -0.07702509313821793, 0.20637421309947968, -0.02134953998029232, 0.03505709394812584, 0.12688161432743073, 0.043571967631578445, -0.0969603881239891, 0.06783340871334076, 0.07662107795476913, -0.1310940384864807, 0.05195898190140724, 0.19103291630744934, -0.029491085559129715, 0.15720795094966888, 0.046510323882102966, -0.1375328153371811, 0.01598873920738697, -0.09376876801252365, -0.06564567983150482, -0.06676793843507767, 0.004079356323927641, -0.04387644678354263, 0.1397613286972046, 0.20603135228157043, -0.08514418452978134, -0.029314635321497917, -0.053977470844984055, 0.011444919742643833, 0.06647748500108719, 0.09870041906833649, -0.03336094319820404, -0.26596376299858093, 0.007820180617272854, -0.0010778700234368443, 0.018211662769317627, -0.250593900680542, -0.1059345230460167, 0.020098838955163956, -0.044505223631858826, -0.05244055390357971, 0.10275224596261978, 0.10459093004465103, 0.04856422170996666, -0.050212033092975616, -0.07984764873981476, -0.03262524679303169, 0.1827821582555771, -0.15822458267211914, -0.05080747604370117 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-bn-adapter-3.17M-snli-model2 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7747 - Accuracy: 0.731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4017 | 1.0 | 8584 | 0.3327 | 0.8763 | | 0.3769 | 2.0 | 17168 | 0.3069 | 0.8881 | | 0.3641 | 3.0 | 25752 | 0.3005 | 0.8895 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-large-cased", "model-index": [{"name": "bert-large-cased-bn-adapter-3.17M-snli-model2", "results": []}]}
null
varun-v-rao/bert-large-cased-bn-adapter-3.17M-snli-model2
[ "tensorboard", "generated_from_trainer", "base_model:bert-large-cased", "license:apache-2.0", "region:us" ]
2024-02-07T02:22:08+00:00
[]
[]
TAGS #tensorboard #generated_from_trainer #base_model-bert-large-cased #license-apache-2.0 #region-us
bert-large-cased-bn-adapter-3.17M-snli-model2 ============================================= This model is a fine-tuned version of bert-large-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7747 * Accuracy: 0.731 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#tensorboard #generated_from_trainer #base_model-bert-large-cased #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 37, 98, 4, 33 ]
[ "passage: TAGS\n#tensorboard #generated_from_trainer #base_model-bert-large-cased #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.09202592074871063, 0.010352112352848053, -0.0009920268785208464, 0.10909275710582733, 0.1636868715286255, 0.03486810252070427, 0.1416674554347992, 0.0909462496638298, -0.123524010181427, 0.01840629242360592, 0.10297742486000061, 0.10865011066198349, 0.01003861054778099, 0.07227981835603714, -0.022330934181809425, -0.23624564707279205, -0.011528358794748783, 0.0376020222902298, -0.12990431487560272, 0.11899988353252411, 0.08794945478439331, -0.13638179004192352, 0.07312219589948654, 0.007113135885447264, -0.25937241315841675, 0.04559597373008728, 0.012699571438133717, -0.053103554993867874, 0.13313212990760803, -0.0024233523290604353, 0.15773378312587738, -0.011404831893742085, 0.12004733830690384, -0.153598353266716, 0.011101454496383667, 0.07865917682647705, 0.009365293197333813, 0.08173951506614685, 0.052723515778779984, 0.031208109110593796, 0.1107133999466896, -0.08328928798437119, 0.05499844253063202, 0.027330182492733, -0.1240178570151329, -0.27167901396751404, -0.08314795047044754, 0.009583644568920135, 0.0579414926469326, 0.08483435213565826, 0.000582277774810791, 0.14532922208309174, -0.0877230167388916, 0.07784033566713333, 0.26498475670814514, -0.2641654312610626, -0.07885436713695526, 0.08644040673971176, 0.012859939597547054, 0.09837079048156738, -0.10194891691207886, -0.03365623950958252, 0.08156972378492355, 0.046322837471961975, 0.11203475296497345, -0.02637610398232937, -0.14409738779067993, 0.04447060450911522, -0.14919620752334595, -0.00276589416898787, 0.09820540249347687, 0.03587936609983444, -0.026630301028490067, 0.01628996804356575, -0.07938121259212494, -0.13496102392673492, -0.04635960981249809, -0.019828306511044502, 0.07927399128675461, -0.034469496458768845, -0.09733814001083374, -0.032165203243494034, -0.10634719580411911, -0.10922108590602875, -0.05844958499073982, 0.1664772778749466, 0.04456149786710739, 0.050142787396907806, -0.06400914490222931, 0.11319402605295181, -0.06243205815553665, -0.1362418234348297, 0.03789597377181053, 0.03773614764213562, -0.0062990132719278336, -0.04628439620137215, -0.07231775671243668, -0.06830435991287231, 0.02907699905335903, 0.1274455040693283, -0.08576037734746933, 0.047424331307411194, 0.034504909068346024, 0.04806394502520561, -0.10961709171533585, 0.1795276701450348, -0.060055021196603775, 0.02573465183377266, 0.0013085586251690984, 0.06397508829832077, 0.012529158964753151, -0.006165423430502415, -0.1121797263622284, 0.025016801431775093, 0.07149886339902878, 0.008401100523769855, -0.08821874111890793, 0.023473424836993217, -0.03319514915347099, -0.0069515034556388855, -0.006035409402102232, -0.09375081956386566, 0.041685305535793304, 0.0031922326888889074, -0.0954015776515007, -0.014486751519143581, 0.00927195604890585, 0.027212800458073616, 0.018080774694681168, 0.11357942968606949, -0.09568370133638382, 0.05712997913360596, -0.13614799082279205, -0.10487265884876251, 0.01277731079608202, -0.046972278505563736, 0.022528881207108498, -0.0631750077009201, -0.1676483005285263, -0.0010129627771675587, 0.08043399453163147, -0.0442080982029438, -0.023791614919900894, -0.026200944557785988, -0.09396694600582123, -0.00419663405045867, -0.015885381028056145, 0.20011362433433533, -0.0551748126745224, 0.09382563829421997, 0.06482384353876114, 0.06568926572799683, -0.09688270092010498, 0.036088068038225174, -0.0888306200504303, 0.00863537099212408, -0.23787018656730652, 0.01253610197454691, -0.06652577221393585, 0.07000996917486191, -0.07875879108905792, -0.08418142050504684, 0.007010375149548054, 0.0024896999821066856, 0.10294382274150848, 0.05902790278196335, -0.21083658933639526, -0.07094532251358032, 0.12770533561706543, -0.07706933468580246, -0.10604090988636017, 0.09538612514734268, -0.05416387692093849, 0.06822791695594788, 0.06310563534498215, 0.17220988869667053, -0.024233439937233925, -0.10458914190530777, 0.023951420560479164, -0.015498765744268894, 0.0729433223605156, -0.09198013693094254, 0.059681762009859085, -0.0261200163513422, 0.010884277522563934, 0.027698982506990433, -0.053002215921878815, 0.04860011860728264, -0.10536951571702957, -0.09322021901607513, -0.06589073687791824, -0.11029969900846481, -0.005061730742454529, 0.0708714947104454, 0.08130371570587158, -0.10426365584135056, -0.07766302675008774, 0.1301792562007904, 0.08649478107690811, -0.05207373574376106, 0.0317092128098011, -0.04985442012548447, 0.06002798676490784, -0.07114706188440323, -0.031060775741934776, -0.18347081542015076, -0.02614312805235386, 0.01315009593963623, -0.021684955805540085, 0.05071406438946724, -0.0016237496165558696, 0.08550893515348434, 0.06616921722888947, -0.06219654530286789, 0.009109623730182648, -0.07882867753505707, -0.011115729808807373, -0.13116654753684998, -0.214975044131279, -0.04006700590252876, -0.009621284902095795, 0.06971889734268188, -0.19450294971466064, 0.027152348309755325, -0.01933409832417965, 0.08662882447242737, 0.004901528358459473, -0.0077487449161708355, -0.06920508295297623, 0.08923019468784332, -0.001069098012521863, -0.0703526958823204, 0.04569811001420021, -0.013423184864223003, -0.06837335973978043, -0.08483148366212845, -0.07502996176481247, 0.15140481293201447, 0.1435687243938446, -0.11568297445774078, -0.061371929943561554, 0.03491143882274628, -0.06808391958475113, -0.034409087151288986, -0.053719181567430496, 0.052577029913663864, 0.17230986058712006, -0.012126808986067772, 0.12870916724205017, -0.09812478721141815, -0.0447627417743206, 0.005087117198854685, -0.024725280702114105, 0.061617378145456314, 0.08196844905614853, 0.1737048476934433, -0.038520682603120804, 0.11425171792507172, 0.16676108539104462, -0.15409238636493683, 0.1172839105129242, -0.07821252197027206, -0.09523236006498337, -0.023036187514662743, -0.02971755526959896, -0.007894457317888737, 0.17007796466350555, -0.07857925444841385, 0.008811404928565025, 0.0030735787004232407, 0.016876591369509697, 0.0496232770383358, -0.2479071170091629, -0.03646289184689522, 0.01208018884062767, -0.05099876597523689, -0.02257179282605648, -0.032130494713783264, 0.007552704773843288, 0.093577541410923, -0.03301272913813591, -0.07186252623796463, 0.020958874374628067, 0.0053207753226161, -0.054280929267406464, 0.20910140872001648, -0.07265740633010864, -0.04280922934412956, -0.11576268821954727, -0.0344049334526062, -0.053752489387989044, -0.021800952032208443, 0.04084170609712601, -0.1297263503074646, -0.03173266723752022, -0.055511217564344406, 0.03444045037031174, 0.02284712716937065, 0.04556790739297867, 0.023888958618044853, 0.0075995721854269505, 0.09840520471334457, -0.14358849823474884, 0.022313721477985382, -0.07157248258590698, -0.0967279002070427, 0.01255772728472948, 0.07758504152297974, 0.11035652458667755, 0.15735143423080444, -0.024051515385508537, 0.0052477153949439526, -0.009287422522902489, 0.25788962841033936, -0.06118123233318329, -0.03846658393740654, 0.11466819792985916, -0.001672193524427712, 0.05147425830364227, 0.09474775940179825, 0.10489699244499207, -0.11095327883958817, -0.004082242958247662, 0.0589451789855957, -0.039426516741514206, -0.24083630740642548, -0.005531445145606995, -0.030988512560725212, -0.0674777403473854, 0.07243470847606659, 0.03935838118195534, 0.042791660875082016, 0.06019477918744087, 0.05603747442364693, 0.10563039034605026, -0.06904348731040955, 0.04099405184388161, 0.06247759982943535, 0.06610437482595444, 0.10967254638671875, -0.06036616861820221, -0.05824654549360275, 0.035519469529390335, -0.0010409917449578643, 0.2502940595149994, 0.0035657586995512247, 0.1391359567642212, 0.07012462615966797, 0.18266914784908295, -0.012952315621078014, 0.09685572236776352, -0.028863290324807167, -0.05815538763999939, -0.0037606386467814445, -0.05904887244105339, 0.021420108154416084, 0.019470809027552605, -0.0906878188252449, 0.07352712005376816, -0.07312879711389542, -0.0011609859066084027, 0.05941231921315193, 0.25872790813446045, 0.0015346200671046972, -0.29814228415489197, -0.03908776864409447, 0.0006108566303737462, -0.009351729415357113, -0.007584077306091785, 0.01501373015344143, 0.12490291148424149, -0.03276829794049263, 0.010548149235546589, -0.04929021745920181, 0.09702173620462418, 0.011426801793277264, 0.028274206444621086, 0.07995792478322983, 0.16632314026355743, -0.0005336171016097069, 0.05946170911192894, -0.29540297389030457, 0.27700406312942505, 0.030515147373080254, 0.11573212593793869, -0.05621643736958504, -0.0008300011977553368, 0.03581072390079498, 0.019454652443528175, 0.014187407679855824, -0.024241091683506966, -0.049506865441799164, -0.16448375582695007, -0.06325217336416245, 0.054397791624069214, 0.107761450111866, -0.003133342834189534, 0.08136045187711716, -0.006305862218141556, 0.015158988535404205, 0.1012188047170639, -0.05063621327280998, -0.12750233709812164, -0.05746942386031151, -0.057121023535728455, 0.027714241296052933, -0.10318753868341446, -0.08319735527038574, -0.11196232587099075, -0.09470102190971375, 0.09988950192928314, 0.022573547437787056, -0.02237539179623127, -0.10884308815002441, 0.09748940169811249, 0.12452813982963562, -0.04858464375138283, 0.041836049407720566, 0.022415248677134514, 0.054030291736125946, 0.03553400933742523, -0.06178619712591171, 0.114488385617733, -0.05548793449997902, -0.15145736932754517, -0.04836070537567139, 0.06667900830507278, 0.04731496050953865, 0.054270848631858826, -0.035350535064935684, 0.012263092212378979, -0.018477067351341248, -0.10338248312473297, 0.010933898389339447, -0.04869455099105835, 0.031003829091787338, 0.0015706783160567284, -0.032530855387449265, 0.03483350947499275, -0.044057417660951614, -0.026825321838259697, 0.12568460404872894, 0.2725355923175812, -0.0771762877702713, -0.014127928763628006, 0.06422577053308487, -0.06428485363721848, -0.15984779596328735, 0.0864521786570549, 0.06765951961278915, -0.001347232493571937, 0.04444637894630432, -0.18217718601226807, 0.17173950374126434, 0.13170967996120453, -0.01700843870639801, 0.13024793565273285, -0.32140612602233887, -0.14755704998970032, 0.10238088667392731, 0.17237582802772522, 0.11486431956291199, -0.15604642033576965, -0.028736870735883713, -0.02747000753879547, -0.11538960784673691, 0.10642866045236588, -0.1785343587398529, 0.09656156599521637, -0.01472595613449812, 0.09432446211576462, -0.018957555294036865, -0.06063126027584076, 0.14254412055015564, 0.01823071762919426, 0.13222435116767883, -0.03186449036002159, -0.0013692263746634126, 0.11007873713970184, -0.025660676881670952, 0.00866279099136591, -0.06641126424074173, 0.022127002477645874, -0.03821425512433052, -0.004037218634039164, -0.0736064538359642, 0.033667050302028656, -0.043855320662260056, -0.060963504016399384, -0.04817304387688637, 0.008629272691905499, -0.00757273705676198, -0.026893464848399162, 0.12784133851528168, 0.05957167595624924, 0.14037758111953735, 0.11166553199291229, 0.03287912905216217, -0.08712988346815109, -0.06126672774553299, 0.02445838414132595, -0.0144956661388278, 0.08358106017112732, -0.18965843319892883, 0.004588184412568808, 0.11906149238348007, 0.026967832818627357, 0.09324529021978378, 0.08932916820049286, -0.06347816437482834, 0.013338017277419567, 0.07557795196771622, -0.13854950666427612, -0.08671461045742035, 0.017225755378603935, -0.041367195546627045, -0.10166322439908981, 0.06382470577955246, 0.06605539470911026, -0.07305531948804855, -0.006376746576279402, -0.0021535034757107496, -0.019838159903883934, -0.0942479744553566, 0.2135484218597412, 0.09255260974168777, 0.047506846487522125, -0.11396201699972153, 0.09783265739679337, 0.0520675964653492, -0.035117290914058685, -0.00332890753634274, 0.07299766689538956, -0.04800942912697792, 0.006213861051946878, 0.14311163127422333, 0.22392502427101135, -0.06639321893453598, -0.06481283903121948, -0.16771236062049866, -0.09498435258865356, 0.052914809435606, 0.1796056032180786, 0.11257831752300262, -0.011531268246471882, -0.033295489847660065, 0.045190371572971344, -0.12994754314422607, 0.06987219303846359, 0.016246534883975983, 0.08488856256008148, -0.13064061105251312, 0.1275734007358551, 0.03716004267334938, 0.01729692332446575, -0.019318226724863052, 0.05472227558493614, -0.11606632173061371, 0.023988112807273865, -0.1488850712776184, -0.052118007093667984, 0.021460074931383133, -0.004182087257504463, 0.012437727302312851, -0.07297094166278839, -0.09036176651716232, 0.03599446639418602, -0.13655926287174225, -0.021957749500870705, 0.05319956690073013, 0.03668980300426483, -0.14541202783584595, -0.012843393720686436, 0.026190990582108498, -0.05473582446575165, 0.020239688456058502, 0.04010907933115959, 0.03194599598646164, 0.09298233687877655, -0.16918492317199707, -0.01192198134958744, 0.05500144511461258, 0.01044992171227932, 0.09089212119579315, -0.037320900708436966, -0.030206279829144478, -0.010983546264469624, 0.12681449949741364, 0.0005492710042744875, 0.0575716532766819, -0.13162913918495178, -0.015906959772109985, -0.0532071515917778, -0.08685610443353653, -0.03482845053076744, 0.0049161058850586414, 0.1034361720085144, 0.03210814669728279, 0.18164131045341492, -0.06147288158535957, 0.009506190195679665, -0.22915714979171753, 0.001799433259293437, -0.016050729900598526, -0.07743647694587708, -0.1118839755654335, -0.046936072409152985, 0.05572039633989334, -0.06916502118110657, 0.1625228077173233, 0.018689345568418503, 0.04386390745639801, 0.0348338708281517, -0.010791665874421597, 0.005772712640464306, 0.034166816622018814, 0.2525882422924042, 0.044609323143959045, -0.00009951800166163594, 0.06948414444923401, 0.06201346591114998, 0.11447685211896896, 0.08916281908750534, 0.20680010318756104, 0.1500876247882843, -0.024598175659775734, 0.11284223943948746, 0.06969012320041656, -0.06805200129747391, -0.1040542870759964, 0.09258584678173065, -0.030468812212347984, 0.0664619505405426, -0.026688965037465096, 0.22216376662254333, 0.09058897197246552, -0.16226297616958618, 0.036729615181684494, -0.039100199937820435, -0.09083022177219391, -0.10857496410608292, 0.02376849576830864, -0.07544883340597153, -0.18667295575141907, 0.022232798859477043, -0.10728882253170013, 0.011607115156948566, 0.1582663208246231, 0.0019163151737302542, 0.007369587663561106, 0.18893636763095856, 0.059249397367239, 0.05928943306207657, 0.024892400950193405, -0.003565757069736719, -0.04411415755748749, -0.08730681240558624, -0.07546443492174149, -0.011478560976684093, -0.01644425094127655, 0.03214292228221893, -0.06304625421762466, -0.08315536379814148, 0.04654569551348686, 0.00297509110532701, -0.08624837547540665, 0.02016635239124298, 0.012031665071845055, 0.06529808044433594, 0.017723634839057922, 0.005419590510427952, 0.01938587799668312, -0.020544102415442467, 0.2040492296218872, -0.08439885079860687, -0.10845039784908295, -0.08931045979261398, 0.20853011310100555, 0.011289337649941444, -0.009065989404916763, 0.015097752213478088, -0.08910979330539703, -0.018112046644091606, 0.2042490690946579, 0.17148800194263458, -0.11041920632123947, -0.03433429077267647, -0.007074941881000996, -0.02350534498691559, -0.0950913354754448, 0.12523703277111053, 0.13106092810630798, 0.02172238752245903, -0.11611982434988022, -0.056777969002723694, -0.05442915856838226, -0.0220139492303133, -0.05183042958378792, 0.04020735248923302, 0.04807666316628456, -0.0016684925649315119, -0.04859528690576553, 0.061700206249952316, -0.04661577194929123, -0.10503005981445312, 0.07697846740484238, -0.1597728133201599, -0.17642520368099213, -0.0105253541842103, 0.15109094977378845, -0.026234012097120285, 0.0550193190574646, -0.04263966530561447, 0.003481122199445963, 0.046490736305713654, -0.04283391684293747, -0.09424646198749542, -0.12969134747982025, 0.11160513758659363, -0.13403728604316711, 0.22801649570465088, -0.035999543964862823, 0.10504017025232315, 0.11484944075345993, 0.04341680184006691, -0.07613740861415863, 0.0480496808886528, 0.03654109314084053, -0.12809514999389648, -0.017449723556637764, 0.09655634313821793, -0.03920309618115425, 0.04582075774669647, 0.021691657602787018, -0.11395570635795593, 0.01301549095660448, -0.027023443952202797, -0.04600098356604576, -0.05474291741847992, -0.08554919809103012, -0.08181874454021454, 0.09860668331384659, 0.19265352189540863, -0.020682452246546745, 0.03461658954620361, -0.08441893011331558, 0.048732940107584, 0.07054533809423447, 0.03739089146256447, -0.07292012870311737, -0.23622837662696838, 0.02789793349802494, 0.10264884680509567, -0.06123952940106392, -0.21762672066688538, -0.08165460079908371, 0.03190711885690689, -0.07762499153614044, -0.08446404337882996, 0.06812087446451187, 0.12775197625160217, 0.06987933814525604, -0.05034869164228439, -0.1285400241613388, -0.09861006587743759, 0.1351780891418457, -0.16071777045726776, -0.09932796657085419 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 4.0614 - Accuracy: 0.6021 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.6327 | 1.0 | 500 | 2.6172 | 0.6143 | | 2.0358 | 2.0 | 1000 | 2.6981 | 0.6136 | | 1.4527 | 3.0 | 1500 | 2.9322 | 0.6109 | | 1.0273 | 4.0 | 2000 | 3.1488 | 0.6085 | | 0.7337 | 5.0 | 2500 | 3.3470 | 0.6068 | | 0.562 | 6.0 | 3000 | 3.4740 | 0.6063 | | 0.4857 | 7.0 | 3500 | 3.5668 | 0.6064 | | 0.4403 | 8.0 | 4000 | 3.6245 | 0.6056 | | 0.4185 | 9.0 | 4500 | 3.7130 | 0.6049 | | 0.4064 | 10.0 | 5000 | 3.7829 | 0.6048 | | 0.3929 | 11.0 | 5500 | 3.8077 | 0.6044 | | 0.3832 | 12.0 | 6000 | 3.8530 | 0.6048 | | 0.3743 | 13.0 | 6500 | 3.8892 | 0.6031 | | 0.371 | 14.0 | 7000 | 3.9027 | 0.6037 | | 0.3651 | 15.0 | 7500 | 3.9061 | 0.6035 | | 0.3617 | 16.0 | 8000 | 3.9454 | 0.6030 | | 0.3554 | 17.0 | 8500 | 4.0028 | 0.6030 | | 0.3549 | 18.0 | 9000 | 3.9863 | 0.6029 | | 0.3518 | 19.0 | 9500 | 3.9736 | 0.6024 | | 0.3439 | 20.0 | 10000 | 4.0614 | 0.6021 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_hotpot_train8000_eval7405_v1_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_hotpot_train8000_eval7405_v1_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_hotpot_train8000_eval7405_v1_qa", "type": "tyzhu/lmind_hotpot_train8000_eval7405_v1_qa"}, "metrics": [{"type": "accuracy", "value": 0.602092404169286, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_hotpot_train8000_eval7405_v1_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:25:08+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_hotpot\_train8000\_eval7405\_v1\_qa\_gpt2-xl =================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_hotpot\_train8000\_eval7405\_v1\_qa dataset. It achieves the following results on the evaluation set: * Loss: 4.0614 * Accuracy: 0.6021 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 99, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.14779503643512726, 0.15166707336902618, -0.0023335148580372334, 0.11483841389417648, 0.12639690935611725, 0.04545370489358902, 0.12850135564804077, 0.16592083871364594, -0.08689142018556595, 0.07813254743814468, 0.14375273883342743, 0.10731451958417892, 0.05899842455983162, 0.17101341485977173, -0.03168005496263504, -0.22312265634536743, 0.014636549167335033, 0.02749166637659073, -0.04347939044237137, 0.14166507124900818, 0.07980003952980042, -0.12005757540464401, 0.0984262004494667, -0.00039171884418465197, -0.19456566870212555, -0.03622058033943176, -0.01757984235882759, -0.045516595244407654, 0.11796189844608307, 0.02624041773378849, 0.07669888436794281, 0.03700470179319382, 0.07790116220712662, -0.1629379242658615, 0.00414488697424531, 0.04197196289896965, 0.000197220389964059, 0.10630737990140915, 0.056255582720041275, -0.023480743169784546, 0.1009230688214302, -0.08004305511713028, 0.020511293783783913, 0.021002888679504395, -0.12830790877342224, -0.17157980799674988, -0.09600776433944702, 0.0917522981762886, 0.05578330531716347, 0.08909617364406586, -0.015591264702379704, 0.10875243693590164, -0.0548439584672451, 0.08597474545240402, 0.23708271980285645, -0.29020071029663086, -0.06188639998435974, 0.03506002202630043, 0.015539364889264107, 0.06319896876811981, -0.09528622031211853, -0.03604838252067566, 0.04136406630277634, 0.03274741396307945, 0.10994934290647507, -0.004476871341466904, -0.03229995444417, 0.011547602713108063, -0.13593727350234985, -0.0636889711022377, 0.1661049872636795, 0.04681127518415451, -0.04264096915721893, -0.04103418067097664, -0.07489985227584839, -0.20614296197891235, -0.020734000951051712, 0.024419067427515984, 0.02761252596974373, -0.03654131665825844, -0.07925670593976974, -0.003032875945791602, -0.0779079794883728, -0.06832271814346313, -0.019897617399692535, 0.07113385200500488, 0.043880634009838104, 0.014074609614908695, -0.007654136046767235, 0.12945160269737244, -0.00837457925081253, -0.15858957171440125, -0.005200446583330631, 0.007775123696774244, 0.00744906859472394, -0.02107495628297329, -0.03825122490525246, 0.0035328299272805452, 0.023250840604305267, 0.12821678817272186, -0.03817612677812576, 0.041570164263248444, 0.02632763423025608, 0.02786828763782978, -0.07588757574558258, 0.15674160420894623, -0.07816338539123535, -0.05604306235909462, 0.026190338656306267, 0.10109440982341766, 0.017787005752325058, -0.013950938358902931, -0.10878504812717438, -0.01981527917087078, 0.1451108455657959, 0.027774855494499207, -0.0249426681548357, 0.05603308975696564, -0.05589509755373001, -0.03742457926273346, 0.042424146085977554, -0.09585844725370407, 0.010590159334242344, 0.01797684282064438, -0.0993456169962883, -0.020262282341718674, 0.007114593405276537, -0.004080231301486492, -0.038874682039022446, 0.0486358143389225, -0.11551455408334732, 0.007152615115046501, -0.06985531002283096, -0.10366634279489517, 0.010536395013332367, -0.09738849103450775, 0.0017994215013459325, -0.0664229691028595, -0.20639441907405853, -0.033531442284584045, 0.03418968245387077, -0.06350747495889664, -0.08379781246185303, -0.07978715002536774, -0.0948224663734436, 0.029709389433264732, -0.0164989922195673, 0.10741183906793594, -0.06114191189408302, 0.11669352650642395, 0.0411059744656086, 0.062036432325839996, -0.008959408849477768, 0.05438502877950668, -0.08199185878038406, 0.04425830766558647, -0.15068313479423523, 0.08798913657665253, -0.037075553089380264, 0.03767774626612663, -0.10093304514884949, -0.11022767424583435, 0.03370149806141853, -0.038294143974781036, 0.09754690527915955, 0.14895735681056976, -0.16523052752017975, -0.06937839090824127, 0.18563631176948547, -0.06062232702970505, -0.13046424090862274, 0.11284985393285751, -0.04778064414858818, -0.005993059370666742, 0.05796719714999199, 0.17532067000865936, 0.05935926362872124, -0.05609855428338051, -0.04191642999649048, -0.016164684668183327, 0.08620088547468185, -0.06407152861356735, 0.10623466223478317, 0.009774195961654186, 0.032925091683864594, 0.019959811121225357, -0.06230347976088524, 0.046387288719415665, -0.11548362672328949, -0.09629090130329132, -0.042550649493932724, -0.0952167734503746, 0.044000957161188126, 0.03705769032239914, 0.0650247111916542, -0.08152212202548981, -0.10147023946046829, 0.026756810024380684, 0.1136254221200943, -0.09233305603265762, 0.013093180023133755, -0.06858484447002411, 0.1343579888343811, -0.07524266839027405, -0.01867935061454773, -0.1604452133178711, -0.04505620896816254, 0.0229174941778183, 0.02927590347826481, 0.00352904899045825, -0.012118675746023655, 0.061219144612550735, 0.09240067005157471, -0.03378765657544136, -0.054076824337244034, -0.04685322195291519, -0.022813688963651657, -0.11553153395652771, -0.20091503858566284, -0.06428557634353638, -0.0030203606002032757, 0.19121971726417542, -0.19789890944957733, 0.033884137868881226, -0.002772199921309948, 0.09317594766616821, -0.0005022113909944892, -0.04047159105539322, -0.0006626240210607648, 0.047928862273693085, -0.050995297729969025, -0.07463093847036362, 0.06773439794778824, 0.00935051403939724, -0.08450224250555038, -0.016273826360702515, -0.11804132908582687, 0.1356765776872635, 0.1240672692656517, -0.014676546677947044, -0.06766745448112488, -0.01898358017206192, -0.07156211882829666, -0.032623689621686935, -0.015821876004338264, 0.010232528671622276, 0.14050480723381042, 0.005714080296456814, 0.1416453868150711, -0.08829659223556519, -0.05150062218308449, 0.03344731405377388, -0.0027151810936629772, 0.021595504134893417, 0.13318103551864624, 0.08487173169851303, -0.05096041038632393, 0.1532619446516037, 0.07762312144041061, -0.032399166375398636, 0.11966245621442795, -0.043926939368247986, -0.08550623804330826, -0.042595770210027695, 0.006880078464746475, 0.00029402103973552585, 0.11043933033943176, -0.13206467032432556, -0.016107432544231415, 0.03652115538716316, 0.016279716044664383, 0.024179333820939064, -0.19516083598136902, -0.03363453969359398, 0.02596541866660118, -0.07814358919858932, -0.0305253267288208, -0.014185484498739243, -0.0026859333738684654, 0.1074085384607315, 0.009992361068725586, -0.061251889914274216, 0.027899418026208878, 0.0054491362534463406, -0.08801763504743576, 0.20346620678901672, -0.08625447750091553, -0.13263756036758423, -0.11506303399801254, -0.03905920311808586, -0.06431230157613754, 0.008680326864123344, 0.03769189119338989, -0.06339440494775772, -0.010871167294681072, -0.07811597734689713, 0.013666825369000435, -0.017793145030736923, 0.02881978265941143, 0.02362317591905594, -0.029181094840168953, 0.056574124842882156, -0.10917706042528152, -0.007821967825293541, -0.027414364740252495, -0.06027429550886154, 0.05440106615424156, 0.01302269846200943, 0.10170959681272507, 0.13260850310325623, -0.0030327134300023317, 0.029891908168792725, -0.027786677703261375, 0.2813507914543152, -0.051648836582899094, -0.015660682693123817, 0.11688898503780365, 0.014679593034088612, 0.06941413134336472, 0.12179936468601227, 0.03554101288318634, -0.08451003581285477, -0.012519748881459236, 0.007310053799301386, -0.018099308013916016, -0.22203432023525238, -0.035488080233335495, -0.05172092467546463, 0.002655539195984602, 0.09598793089389801, 0.026028400287032127, 0.009702007286250591, 0.08139480650424957, -0.008589799515902996, 0.08643698692321777, -0.046229876577854156, 0.07299167662858963, 0.08732814341783524, 0.05582934990525246, 0.1211753636598587, -0.01858326606452465, -0.025106968358159065, 0.04823467135429382, 0.005231253337115049, 0.23763294517993927, -0.04928646236658096, 0.171779066324234, 0.03816010430455208, 0.20462340116500854, 0.004432608373463154, 0.07258504629135132, -0.024082932621240616, 0.00439605675637722, -0.012801693752408028, -0.05446203052997589, -0.06944099813699722, 0.010937499813735485, -0.03327730670571327, 0.0647193118929863, -0.13071323931217194, 0.0313761904835701, 0.044712211936712265, 0.2527948319911957, 0.07648955285549164, -0.3641195297241211, -0.10513578355312347, -0.0007554272306151688, -0.0009191911667585373, -0.036120764911174774, -0.0022713313810527325, 0.10183338075876236, -0.10392136126756668, 0.018803957849740982, -0.06325501203536987, 0.09010762721300125, -0.07025504112243652, 0.021348843351006508, 0.04336678236722946, 0.09091509133577347, -0.004446022212505341, 0.08107173442840576, -0.2599804103374481, 0.2552836835384369, 0.012127334251999855, 0.06412089616060257, -0.0664578378200531, 0.003731101518496871, 0.01811494491994381, 0.024240026250481606, 0.08372393995523453, 0.00489983381703496, 0.0002249381213914603, -0.19032734632492065, -0.12887616455554962, 0.037302907556295395, 0.07346290349960327, -0.05833892524242401, 0.12459216266870499, -0.013386602513492107, -0.0032743194606155157, 0.03335517272353172, 0.027460627257823944, -0.05100598186254501, -0.08684965968132019, 0.022044453769922256, -0.0036166475620120764, 0.021920669823884964, -0.06276567280292511, -0.11397096514701843, -0.08197470009326935, 0.14647412300109863, -0.05590716749429703, -0.07738060504198074, -0.11195587366819382, 0.10360226780176163, 0.12162301689386368, -0.10218395292758942, 0.026869455352425575, 0.004036662168800831, 0.0888429507613182, 0.02573312632739544, -0.06874696165323257, 0.08336327970027924, -0.05226501077413559, -0.19769687950611115, -0.04817882552742958, 0.133493572473526, 0.0363004244863987, 0.072857566177845, -0.012826528400182724, 0.027628909796476364, -0.047600843012332916, -0.0893634557723999, 0.03052922710776329, 0.01023342739790678, 0.09089361131191254, 0.01774948462843895, -0.04189532250165939, 0.027688320726156235, -0.06073644012212753, -0.021284300833940506, 0.1684446632862091, 0.26463744044303894, -0.08290072530508041, 0.04251508414745331, 0.02914874628186226, -0.07131753861904144, -0.15008699893951416, 0.01235015969723463, 0.07893244922161102, 0.03937320038676262, -0.010971316136419773, -0.21483130753040314, 0.06390902400016785, 0.11282747983932495, -0.005985077470541, 0.11895293742418289, -0.33997902274131775, -0.11208493262529373, 0.0759226605296135, 0.1134462058544159, 0.11012959480285645, -0.16376519203186035, -0.051456063985824585, 0.001271978602744639, -0.15455956757068634, 0.11650201678276062, -0.06468335539102554, 0.12998062372207642, -0.051633067429065704, 0.09566488862037659, 0.013860240578651428, -0.06166660785675049, 0.13058151304721832, 0.04661085084080696, 0.060090284794569016, -0.05100227892398834, -0.025196129456162453, 0.07739243656396866, -0.061386656016111374, 0.040437426418066025, -0.09738079458475113, 0.06425624340772629, -0.14963865280151367, -0.011077774688601494, -0.09020611643791199, 0.01890094019472599, -0.04573609679937363, -0.05222288519144058, -0.030238904058933258, 0.04104588180780411, 0.06475133448839188, -0.002044466556981206, 0.08761468529701233, 0.03437814116477966, 0.12523528933525085, 0.0955955758690834, 0.04532979801297188, -0.04839899390935898, -0.06457916647195816, -0.022024055942893028, -0.004969592206180096, 0.032962601631879807, -0.14179281890392303, 0.008009751327335835, 0.1599920392036438, 0.030460532754659653, 0.14263027906417847, 0.0718417838215828, -0.05552937462925911, 0.02415679208934307, 0.05386922508478165, -0.1741563081741333, -0.07986066490411758, -0.021607577800750732, -0.05594329535961151, -0.1407054364681244, 0.02334441989660263, 0.10290645062923431, -0.07259562611579895, -0.03204290196299553, -0.01520446315407753, 0.02764415740966797, -0.02664255164563656, 0.20535525679588318, 0.05934210494160652, 0.07009580731391907, -0.11831636726856232, 0.05941295996308327, 0.049778833985328674, -0.04319038987159729, 0.03793766349554062, 0.080214723944664, -0.10198730230331421, -0.01884753629565239, 0.05448527634143829, 0.1604466438293457, -0.07809624820947647, -0.014199518598616123, -0.1366625279188156, -0.09284543991088867, 0.08487316966056824, 0.1116718053817749, 0.0815558210015297, 0.04854700341820717, -0.019376259297132492, -0.0142313027754426, -0.11526886373758316, 0.10223744064569473, 0.0672340989112854, 0.060987815260887146, -0.12308359146118164, 0.15921862423419952, -0.01771232858300209, 0.049363985657691956, -0.010184656828641891, 0.018452689051628113, -0.10700275748968124, -0.010761860758066177, -0.12948550283908844, 0.008194905705749989, -0.05513814464211464, -0.00883269589394331, -0.028245996683835983, -0.052738334983587265, -0.05251472070813179, 0.024127548560500145, -0.10410898178815842, -0.04921359568834305, -0.007785738445818424, 0.04238653555512428, -0.13306866586208344, -0.015869347378611565, 0.005688690580427647, -0.085962675511837, 0.10408736765384674, 0.07849835604429245, 0.0243038572371006, 0.025398051366209984, -0.07259494811296463, -0.0003204496460966766, 0.011008601635694504, 0.0006971518159843981, 0.06740695983171463, -0.10950639098882675, 0.0105259595438838, -0.013176602311432362, 0.012838128954172134, 0.020239179953932762, 0.07601221650838852, -0.1273031085729599, -0.011288275010883808, -0.023409591987729073, -0.01721487008035183, -0.07044868171215057, 0.0693480595946312, 0.08025329560041428, 0.018809618428349495, 0.15954668819904327, -0.06360143423080444, 0.05021309107542038, -0.2426842898130417, -0.01110225822776556, -0.006707136053591967, -0.08944371342658997, -0.11108575016260147, -0.0457846000790596, 0.07987462729215622, -0.05462836101651192, 0.11012353003025055, -0.014139363542199135, 0.01903402805328369, 0.009304923005402088, -0.00337047828361392, 0.0062667084857821465, 0.008737252093851566, 0.2117585986852646, 0.046538323163986206, -0.03025548718869686, 0.07835058122873306, 0.045261189341545105, 0.08818276226520538, 0.11318168044090271, 0.18651075661182404, 0.09170487523078918, 0.03856441006064415, 0.09246756136417389, 0.057071637362241745, -0.07974030077457428, -0.15675656497478485, 0.051730502396821976, -0.047177594155073166, 0.10531064867973328, -0.012415519915521145, 0.21770109236240387, 0.09125961363315582, -0.17786338925361633, 0.03403640165925026, -0.038144927471876144, -0.10156416893005371, -0.0981164500117302, -0.08052244037389755, -0.08217091858386993, -0.14356102049350739, 0.008562779054045677, -0.14438040554523468, 0.018848663195967674, 0.10517178475856781, 0.022556129842996597, -0.011185398325324059, 0.10853894054889679, 0.0681854858994484, 0.002819252433255315, 0.04952041059732437, 0.018136749044060707, -0.011081397533416748, -0.07118558883666992, -0.07885754853487015, 0.027807388454675674, -0.0055647194385528564, 0.07233037054538727, -0.03483602777123451, -0.002878675004467368, 0.05128810927271843, -0.014882195740938187, -0.1054411232471466, 0.004029895644634962, 0.009922845289111137, 0.07703018188476562, 0.06553851068019867, 0.005427444353699684, 0.009375794790685177, -0.02149387262761593, 0.2071463167667389, -0.055204227566719055, -0.048865534365177155, -0.10804615169763565, 0.19812890887260437, 0.02355889044702053, -0.04344695433974266, 0.06107134371995926, -0.08463948965072632, 0.012128274887800217, 0.20933343470096588, 0.20710980892181396, -0.08334378153085709, -0.026818860322237015, 0.016789594665169716, -0.013705362565815449, 0.0009609429398551583, 0.0917060598731041, 0.11887412518262863, 0.05240922048687935, -0.10001061856746674, -0.015479473397135735, -0.05995688587427139, -0.019503872841596603, -0.017949901521205902, 0.06447368115186691, 0.011325808241963387, 0.006269094999879599, -0.03245137631893158, 0.04335400462150574, -0.08903055638074875, -0.0868191346526146, 0.03153015673160553, -0.2124180793762207, -0.18445588648319244, -0.019474633038043976, 0.047000009566545486, 0.03754300996661186, 0.06479888409376144, -0.01746753230690956, 0.012165399268269539, 0.10532717406749725, -0.020830100402235985, -0.10542527586221695, -0.08145717531442642, 0.09230554848909378, -0.0670265182852745, 0.17902551591396332, -0.03561241179704666, 0.061327263712882996, 0.12853118777275085, 0.0534793920814991, -0.13036327064037323, 0.03316386044025421, 0.059264685958623886, -0.04596754536032677, 0.026788752526044846, 0.10765358805656433, -0.023903505876660347, 0.05721621960401535, 0.04172636196017265, -0.07644107937812805, -0.01930726133286953, -0.022106919437646866, -0.019067632034420967, -0.053766071796417236, -0.04501286521553993, -0.04169910401105881, 0.14839214086532593, 0.21060040593147278, -0.06714845448732376, -0.012011328712105751, -0.06770198792219162, 0.01305747963488102, 0.05252214893698692, 0.04712812975049019, -0.03879920393228531, -0.24778085947036743, 0.005240547005087137, 0.054530996829271317, 0.003237966215237975, -0.23980312049388885, -0.07216440141201019, -0.00020512247283477336, -0.05841602757573128, -0.10532718896865845, 0.11757972836494446, 0.05839785933494568, 0.060109321027994156, -0.05670465901494026, 0.023648809641599655, -0.08163321763277054, 0.1477074772119522, -0.15206657350063324, -0.10530099272727966 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_doc_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.3462 - Accuracy: 0.6311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 2.2058 | 1.0 | 2179 | 0.6207 | 2.4317 | | 1.7754 | 2.0 | 4358 | 0.6258 | 2.3635 | | 1.4244 | 3.0 | 6537 | 0.6281 | 2.4040 | | 1.1245 | 4.0 | 8716 | 0.6296 | 2.5006 | | 0.88 | 5.0 | 10895 | 0.6300 | 2.6045 | | 0.6857 | 6.0 | 13074 | 0.6308 | 2.7111 | | 0.5346 | 7.0 | 15253 | 0.6310 | 2.8001 | | 0.4286 | 8.0 | 17432 | 0.6311 | 2.8941 | | 0.3573 | 9.0 | 19611 | 0.6296 | 2.9471 | | 0.3037 | 10.0 | 21790 | 0.6312 | 2.9986 | | 0.2726 | 11.0 | 23969 | 0.6310 | 3.0701 | | 0.2489 | 12.0 | 26148 | 0.6312 | 3.1044 | | 0.2306 | 13.0 | 28327 | 0.6302 | 3.1743 | | 0.2233 | 14.0 | 30506 | 3.2144 | 0.6308 | | 0.2125 | 15.0 | 32685 | 3.2178 | 0.6313 | | 0.2083 | 16.0 | 34864 | 3.2655 | 0.6312 | | 0.2017 | 17.0 | 37043 | 3.2893 | 0.6311 | | 0.1981 | 18.0 | 39222 | 3.3200 | 0.6309 | | 0.1945 | 19.0 | 41401 | 3.3345 | 0.6310 | | 0.1906 | 20.0 | 43580 | 3.3462 | 0.6311 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_hotpot_train8000_eval7405_v1_doc_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa", "type": "tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa"}, "metrics": [{"type": "accuracy", "value": 0.6310616467593347, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:25:15+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_hotpot\_train8000\_eval7405\_v1\_doc\_qa\_gpt2-xl ======================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_hotpot\_train8000\_eval7405\_v1\_doc\_qa dataset. It achieves the following results on the evaluation set: * Loss: 3.3462 * Accuracy: 0.6311 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 101, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_doc_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.1409715861082077, 0.15349186956882477, -0.002262561349198222, 0.110526442527771, 0.13725025951862335, 0.04565088078379631, 0.11719726026058197, 0.16050001978874207, -0.07921306043863297, 0.08273181319236755, 0.13353300094604492, 0.1104159727692604, 0.056288182735443115, 0.16027338802814484, -0.031546756625175476, -0.22964704036712646, 0.012020954862236977, 0.03306567668914795, -0.03842318803071976, 0.1407199501991272, 0.08089254796504974, -0.12364059686660767, 0.09626227617263794, 0.0016926272073760629, -0.19418193399906158, -0.03589051216840744, -0.022388625890016556, -0.04505497217178345, 0.11333544552326202, 0.013668794184923172, 0.07840661704540253, 0.043050188571214676, 0.079850934445858, -0.1647472083568573, 0.005168126430362463, 0.04120232164859772, -0.0026515228673815727, 0.10555573552846909, 0.06271938234567642, -0.025654636323451996, 0.10121819376945496, -0.08426805585622787, 0.022611651569604874, 0.023295976221561432, -0.12714721262454987, -0.17385464906692505, -0.10130992531776428, 0.09828224778175354, 0.04927465319633484, 0.0906444638967514, -0.015343699604272842, 0.10925047099590302, -0.06934001296758652, 0.08293961733579636, 0.2506866157054901, -0.2926192283630371, -0.05808572098612785, 0.04377538710832596, 0.01751561462879181, 0.062308184802532196, -0.09816867113113403, -0.04123151674866676, 0.035783130675554276, 0.030476592481136322, 0.10845878720283508, -0.006242990959435701, -0.04230726137757301, 0.009131279774010181, -0.13564956188201904, -0.05761556327342987, 0.16772177815437317, 0.04801912233233452, -0.03697855770587921, -0.040180452167987823, -0.0691799521446228, -0.22353364527225494, -0.02897271327674389, 0.021195579320192337, 0.0366913303732872, -0.041967928409576416, -0.07091902941465378, 0.0067740841768682, -0.07687141746282578, -0.060520924627780914, -0.018558425828814507, 0.06911639124155045, 0.046665411442518234, 0.00797380693256855, -0.006328277289867401, 0.13153454661369324, -0.01012167427688837, -0.15406470000743866, -0.003601811593398452, 0.011896825395524502, 0.012935151346027851, -0.023156553506851196, -0.04194703325629234, 0.016151966527104378, 0.03083185851573944, 0.12441571801900864, -0.051119714975357056, 0.035637762397527695, 0.030912360176444054, 0.031198080629110336, -0.0736074224114418, 0.16052231192588806, -0.0862649604678154, -0.04665794596076012, 0.026365287601947784, 0.10000331699848175, 0.01455988921225071, -0.011524083092808723, -0.10967138409614563, -0.019197233021259308, 0.14116783440113068, 0.02500251494348049, -0.03128957003355026, 0.05545846000313759, -0.059910695999860764, -0.040025338530540466, 0.047730375081300735, -0.09004943072795868, 0.010156158357858658, 0.021871143952012062, -0.09279093146324158, -0.013253239914774895, 0.013089763931930065, 0.0065477523021399975, -0.04012748599052429, 0.06535214185714722, -0.11602597683668137, 0.011513132601976395, -0.06713960319757462, -0.10047822445631027, 0.01156317163258791, -0.103994220495224, 0.0037813610397279263, -0.067198246717453, -0.1859513819217682, -0.038831956684589386, 0.02800561860203743, -0.056995004415512085, -0.08842233568429947, -0.07162069529294968, -0.09416691213846207, 0.023185670375823975, -0.010057758539915085, 0.10590515285730362, -0.0631590262055397, 0.1175505667924881, 0.032580774277448654, 0.06110786646604538, -0.015633845701813698, 0.05962805077433586, -0.0839688777923584, 0.04308784380555153, -0.1439504623413086, 0.08031988888978958, -0.03770573437213898, 0.03823401406407356, -0.09287864714860916, -0.11640124022960663, 0.02877029962837696, -0.04083546996116638, 0.09369299560785294, 0.1417354792356491, -0.14853133261203766, -0.0681242048740387, 0.19182701408863068, -0.05518324300646782, -0.13692593574523926, 0.10598056018352509, -0.04313598945736885, -0.00838536024093628, 0.051771070808172226, 0.17976513504981995, 0.059462904930114746, -0.0657908022403717, -0.04445519670844078, -0.02495812438428402, 0.08828582614660263, -0.06216031685471535, 0.10909324139356613, 0.004313171841204166, 0.04046918824315071, 0.02391098253428936, -0.06709057092666626, 0.038944605737924576, -0.12036895751953125, -0.09342685341835022, -0.04571821540594101, -0.09759309142827988, 0.039573829621076584, 0.03958573192358017, 0.06536554545164108, -0.07951056212186813, -0.0929299145936966, 0.030992280691862106, 0.11340028792619705, -0.08437833189964294, 0.009765097871422768, -0.06317900866270065, 0.1293523609638214, -0.06926871836185455, -0.02029571309685707, -0.16152261197566986, -0.05153558775782585, 0.023644428700208664, 0.030065031722187996, 0.005227329675108194, -0.011670893058180809, 0.05366775393486023, 0.09146187454462051, -0.03357630968093872, -0.05097450315952301, -0.0531928613781929, -0.02024749666452408, -0.11939796060323715, -0.19594579935073853, -0.06566175073385239, 0.0022236390504986048, 0.19529423117637634, -0.19781315326690674, 0.034710995852947235, -0.0006433104281313717, 0.09559427946805954, 0.001237174728885293, -0.038649123162031174, 0.0003912087995558977, 0.05646764859557152, -0.04378664493560791, -0.06859146803617477, 0.07188478857278824, 0.009203307330608368, -0.07483731955289841, -0.015205168165266514, -0.11560509353876114, 0.1449616551399231, 0.12431209534406662, -0.021699946373701096, -0.06668179482221603, -0.02694685384631157, -0.07606247812509537, -0.03313848376274109, -0.01720237359404564, 0.009022753685712814, 0.13912752270698547, 0.0013112587621435523, 0.14487777650356293, -0.08822459727525711, -0.053690455853939056, 0.0322209931910038, -0.0027114178519695997, 0.02360217273235321, 0.13823364675045013, 0.10119777172803879, -0.039099108427762985, 0.15409906208515167, 0.07538525760173798, -0.03355152904987335, 0.11882442235946655, -0.04276881739497185, -0.09100472182035446, -0.04037327319383621, 0.007197041530162096, 0.0006408494664356112, 0.10309278219938278, -0.13983725011348724, -0.016123786568641663, 0.04257596656680107, 0.015768777579069138, 0.027725741267204285, -0.19638670980930328, -0.036399539560079575, 0.025325316935777664, -0.0697055235505104, -0.03705528751015663, -0.00815188605338335, 0.005243133753538132, 0.11483479291200638, 0.01087156031280756, -0.05281049758195877, 0.02394668571650982, 0.006309614051133394, -0.08772486448287964, 0.2012121081352234, -0.07955358922481537, -0.13613224029541016, -0.10757577419281006, -0.042864877730607986, -0.06541374325752258, 0.0044870018027722836, 0.043456465005874634, -0.06411561369895935, -0.011409607715904713, -0.07406426966190338, 0.006197815295308828, -0.010410518385469913, 0.0230241846293211, 0.014123637229204178, -0.021562950685620308, 0.05322842299938202, -0.11049468070268631, -0.012135368771851063, -0.03050379641354084, -0.061769165098667145, 0.06338195502758026, 0.016447966918349266, 0.10865159332752228, 0.13703586161136627, -0.008689754642546177, 0.02666361816227436, -0.02156764268875122, 0.2750284671783447, -0.051248688250780106, -0.01855684071779251, 0.12001097202301025, 0.021253149956464767, 0.06983234733343124, 0.11554291099309921, 0.040608592331409454, -0.08390317112207413, -0.011592063121497631, 0.015285820700228214, -0.01939585991203785, -0.22189843654632568, -0.042975906282663345, -0.05677519738674164, -0.009188957512378693, 0.09848827868700027, 0.02762320265173912, 0.0054665543138980865, 0.08061724901199341, -0.009162228554487228, 0.08740317821502686, -0.05201052874326706, 0.07201860845088959, 0.07894615083932877, 0.05467739701271057, 0.12129606306552887, -0.018573414534330368, -0.027533650398254395, 0.04758630692958832, 0.007833166979253292, 0.23344513773918152, -0.05077362433075905, 0.17090436816215515, 0.04745560884475708, 0.21283581852912903, 0.0070722028613090515, 0.06840792298316956, -0.022366177290678024, 0.0010839039459824562, -0.006089913658797741, -0.05639171972870827, -0.06149856373667717, 0.0061650350689888, -0.032293900847435, 0.0588587149977684, -0.13545329868793488, 0.019618351012468338, 0.04650251194834709, 0.26003265380859375, 0.06569427996873856, -0.35650649666786194, -0.09797341376543045, -0.004137072246521711, 0.008070254698395729, -0.037004437297582626, -0.001687978976406157, 0.09246476739645004, -0.10981244593858719, 0.013521570712327957, -0.058339498937129974, 0.0942307561635971, -0.06673787534236908, 0.022843005135655403, 0.05121637135744095, 0.08622373640537262, -0.0009776202496141195, 0.08097158372402191, -0.2561730742454529, 0.24252882599830627, 0.010012445971369743, 0.05596093833446503, -0.06847221404314041, -0.0016805387567728758, 0.01545926183462143, 0.03383563458919525, 0.08114469051361084, 0.009334328584372997, 0.027339203283190727, -0.19419728219509125, -0.12627357244491577, 0.03628935292363167, 0.07890164852142334, -0.0706227570772171, 0.12320674955844879, -0.010189947672188282, -0.00535063911229372, 0.029578542336821556, 0.020150648429989815, -0.04910457506775856, -0.0876844972372055, 0.02731824852526188, -0.0018176130251958966, 0.027997324243187904, -0.0624258778989315, -0.11125649511814117, -0.09682979434728622, 0.1545201689004898, -0.05448766425251961, -0.07888898253440857, -0.11316882818937302, 0.0989784225821495, 0.11943260580301285, -0.09861684590578079, 0.02765025570988655, 0.0024392562918365, 0.09179119020700455, 0.02439763769507408, -0.07130400091409683, 0.085322305560112, -0.053227223455905914, -0.20619185268878937, -0.04688667133450508, 0.14182205498218536, 0.030763546004891396, 0.07305136322975159, -0.01769093982875347, 0.027190690860152245, -0.050947971642017365, -0.09133970737457275, 0.030542058870196342, 0.007437054067850113, 0.1016344502568245, 0.025301780551671982, -0.05784907937049866, 0.029912499710917473, -0.05967336148023605, -0.017573105171322823, 0.1697305142879486, 0.25904422998428345, -0.08313531428575516, 0.04551737383008003, 0.023663628846406937, -0.0663316398859024, -0.1518823653459549, 0.01786007173359394, 0.08538896590471268, 0.033188898116350174, -0.009519660845398903, -0.21082836389541626, 0.08057650923728943, 0.12399856746196747, -0.007399484980851412, 0.13649636507034302, -0.3363450765609741, -0.11490985751152039, 0.06861338019371033, 0.117679163813591, 0.10334558039903641, -0.16944105923175812, -0.05115661025047302, 0.005398021079599857, -0.17969457805156708, 0.12848488986492157, -0.07115199416875839, 0.13054609298706055, -0.05677038058638573, 0.09077873080968857, 0.017402349039912224, -0.061366867274045944, 0.13093449175357819, 0.04674700275063515, 0.057224441319704056, -0.051902953535318375, -0.0387001559138298, 0.08086974918842316, -0.05436202138662338, 0.0427393801510334, -0.08455850183963776, 0.06402275711297989, -0.14880384504795074, -0.012411604635417461, -0.0991024300456047, 0.01910318247973919, -0.0478447787463665, -0.053112443536520004, -0.031684137880802155, 0.03843329846858978, 0.0669664517045021, -0.0003287366998847574, 0.09040701389312744, 0.02932681329548359, 0.12839685380458832, 0.09160752594470978, 0.04047107324004173, -0.05539663881063461, -0.07232262194156647, -0.027605926617980003, -0.007833745330572128, 0.033014312386512756, -0.13014061748981476, 0.006799551658332348, 0.160200297832489, 0.03556685149669647, 0.13828471302986145, 0.07548213005065918, -0.048036277294158936, 0.021541334688663483, 0.05272117629647255, -0.17374874651432037, -0.07548824697732925, -0.025982605293393135, -0.053354859352111816, -0.1410452127456665, 0.026802143082022667, 0.09449662268161774, -0.06968539208173752, -0.038234300911426544, -0.01584896817803383, 0.028026888146996498, -0.027372650802135468, 0.19272899627685547, 0.061612360179424286, 0.07128690183162689, -0.12347908318042755, 0.05754654482007027, 0.057034093886613846, -0.04982240870594978, 0.027492979541420937, 0.08215348422527313, -0.10520190000534058, -0.02070234902203083, 0.05583750456571579, 0.1542508602142334, -0.07921707630157471, -0.014305130578577518, -0.13330858945846558, -0.09856080263853073, 0.08542656898498535, 0.10445773601531982, 0.07915008068084717, 0.04508137330412865, -0.011853864416480064, -0.018155159428715706, -0.1247437447309494, 0.0965007096529007, 0.05228219926357269, 0.06653592735528946, -0.12199979275465012, 0.15879179537296295, -0.01507945079356432, 0.056848615407943726, -0.008343935944139957, 0.019096441566944122, -0.11012038588523865, -0.014532862231135368, -0.1155632883310318, 0.007237916812300682, -0.05328644439578056, -0.00817294791340828, -0.029897412285208702, -0.05166095495223999, -0.05069280415773392, 0.02532634139060974, -0.10500746965408325, -0.0527961328625679, -0.008798060938715935, 0.04821961745619774, -0.1270451843738556, -0.012947579845786095, 0.008188105188310146, -0.08702562749385834, 0.10614250600337982, 0.07779582589864731, 0.022520637139678, 0.023072076961398125, -0.08093290776014328, -0.0020088120363652706, 0.01881786249577999, 0.003424326190724969, 0.06971348822116852, -0.1086219772696495, 0.00983432587236166, -0.015018771402537823, 0.006295147351920605, 0.020375004038214684, 0.07914389669895172, -0.13693714141845703, -0.012637090869247913, -0.029276864603161812, -0.020055608823895454, -0.071205273270607, 0.06285494565963745, 0.07855947315692902, 0.01882374845445156, 0.1560562252998352, -0.05981042981147766, 0.04946237802505493, -0.24207375943660736, -0.01590004563331604, -0.011102369986474514, -0.0856926217675209, -0.11159224063158035, -0.04012146219611168, 0.07964455336332321, -0.050762444734573364, 0.12020640820264816, -0.019876880571246147, 0.020505763590335846, 0.007203531917184591, 0.009347515180706978, 0.007042630109935999, 0.010475074872374535, 0.21195082366466522, 0.0423160120844841, -0.03304581344127655, 0.07269734889268875, 0.046445127576589584, 0.08430469036102295, 0.09927905350923538, 0.18940767645835876, 0.09490001201629639, 0.0341990627348423, 0.07483288645744324, 0.05618773773312569, -0.0811980590224266, -0.16196119785308838, 0.05132800340652466, -0.04541582986712456, 0.10067381709814072, -0.017633361741900444, 0.2117711752653122, 0.0966983512043953, -0.1800805926322937, 0.038979239761829376, -0.041920699179172516, -0.09496499598026276, -0.0907968282699585, -0.06690765172243118, -0.0828448012471199, -0.13938893377780914, 0.006092738825827837, -0.14651933312416077, 0.019644180312752724, 0.1097860261797905, 0.01698586717247963, -0.010402864776551723, 0.1142888069152832, 0.05942951887845993, 0.0031113086733967066, 0.048814546316862106, 0.017315467819571495, -0.011177611537277699, -0.0776112899184227, -0.07813801616430283, 0.02809109166264534, -0.008224748075008392, 0.07444911450147629, -0.033085767179727554, -0.009409151040017605, 0.041464872658252716, -0.018567001447081566, -0.10520914942026138, 0.010875425301492214, 0.007566850166767836, 0.07737716287374496, 0.062104180455207825, 0.003039206378161907, 0.009519868530333042, -0.02400081604719162, 0.2084244191646576, -0.04974180832505226, -0.04364399239420891, -0.1038164272904396, 0.18750497698783875, 0.03423873335123062, -0.047687530517578125, 0.06474918872117996, -0.08704869449138641, 0.012790222652256489, 0.2085219770669937, 0.20571210980415344, -0.08630768209695816, -0.022713055834174156, 0.020511215552687645, -0.012046460062265396, 0.004701865371316671, 0.09261050820350647, 0.12574006617069244, 0.06320689618587494, -0.10250803083181381, -0.015421249903738499, -0.06337068974971771, -0.015327374450862408, -0.024794436991214752, 0.06398224830627441, 0.01869974285364151, -0.0004936611512675881, -0.033408232033252716, 0.041688621044158936, -0.09129638969898224, -0.07881130278110504, 0.039845503866672516, -0.22098463773727417, -0.18433305621147156, -0.028131812810897827, 0.030584534630179405, 0.03111875057220459, 0.06429114937782288, -0.017472343519330025, 0.006146962754428387, 0.1026439294219017, -0.0214250348508358, -0.10413791239261627, -0.07344423234462738, 0.08599025011062622, -0.05339749529957771, 0.18039169907569885, -0.03365466371178627, 0.06441210955381393, 0.12435916811227798, 0.056972961872816086, -0.12574981153011322, 0.03703667223453522, 0.05453171208500862, -0.04976747930049896, 0.024845296517014503, 0.10334786027669907, -0.023635240271687508, 0.03902582824230194, 0.0405832938849926, -0.08980181813240051, -0.017271632328629494, -0.019480053335428238, -0.015707436949014664, -0.055755287408828735, -0.039520930498838425, -0.040659334510564804, 0.1459788978099823, 0.2156781256198883, -0.06430959701538086, -0.014648103155195713, -0.06929527223110199, 0.013206924311816692, 0.056334126740694046, 0.04603312164545059, -0.03943059220910072, -0.24398952722549438, 0.015059787780046463, 0.05398419499397278, 0.0017771500861272216, -0.24451962113380432, -0.06820949167013168, -0.00026105038705281913, -0.058836810290813446, -0.10940641164779663, 0.11280032992362976, 0.056304268538951874, 0.0580449216067791, -0.05524522066116333, 0.01990428753197193, -0.0788799375295639, 0.1565745770931244, -0.15788687765598297, -0.10462124645709991 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_docidx_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8130 - Accuracy: 0.8254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 2.1676 | 1.0 | 1679 | 0.7703 | 2.0910 | | 1.767 | 2.0 | 3358 | 0.7804 | 1.7868 | | 1.4233 | 3.0 | 5037 | 0.7918 | 1.3986 | | 1.1237 | 4.0 | 6716 | 0.8022 | 1.1732 | | 0.8764 | 5.0 | 8395 | 0.8102 | 1.0430 | | 0.6718 | 6.0 | 10074 | 0.8162 | 0.9248 | | 0.5184 | 7.0 | 11753 | 0.8198 | 0.8714 | | 0.4099 | 8.0 | 13432 | 0.8222 | 0.8419 | | 0.3289 | 9.0 | 15111 | 0.8235 | 0.8131 | | 0.277 | 10.0 | 16790 | 0.8242 | 0.8000 | | 0.242 | 11.0 | 18469 | 0.8246 | 0.8080 | | 0.2196 | 12.0 | 20148 | 0.8249 | 0.7749 | | 0.1991 | 13.0 | 21827 | 0.8251 | 0.8109 | | 0.1886 | 14.0 | 23506 | 0.8252 | 0.7864 | | 0.1815 | 15.0 | 25185 | 0.7859 | 0.8252 | | 0.1741 | 16.0 | 26864 | 0.7910 | 0.8253 | | 0.1675 | 17.0 | 28543 | 0.8266 | 0.8253 | | 0.1635 | 18.0 | 30222 | 0.8342 | 0.8254 | | 0.1605 | 19.0 | 31901 | 0.8248 | 0.8254 | | 0.157 | 20.0 | 33580 | 0.8130 | 0.8254 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_hotpot_train8000_eval7405_v1_docidx_gpt2-xl", "results": []}]}
text-generation
tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:gpt2-xl", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:25:21+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #base_model-gpt2-xl #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_hotpot\_train8000\_eval7405\_v1\_docidx\_gpt2-xl ======================================================= This model is a fine-tuned version of gpt2-xl on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.8130 * Accuracy: 0.8254 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #base_model-gpt2-xl #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 68, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #base_model-gpt2-xl #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.08013058453798294, 0.04581305757164955, -0.0025906756054610014, 0.11223984509706497, 0.16469553112983704, 0.03382342308759689, 0.12856705486774445, 0.12956486642360687, -0.10578078776597977, 0.03639207407832146, 0.1405481994152069, 0.15408866107463837, 0.019155409187078476, 0.1422533243894577, -0.05602075159549713, -0.26945292949676514, -0.006238861940801144, 0.04144503176212311, -0.02396182157099247, 0.13821063935756683, 0.10070145130157471, -0.1175975650548935, 0.09467227756977081, -0.0039304024539887905, -0.21592848002910614, -0.0028830317314714193, 0.006489805411547422, -0.04864079877734184, 0.14708887040615082, 0.025004100054502487, 0.09780402481555939, 0.007331030908972025, 0.07450485974550247, -0.1838279813528061, 0.006109698209911585, 0.04523361474275589, 0.0027107750065624714, 0.08368583768606186, 0.035520244389772415, 0.00492246774956584, 0.17249709367752075, -0.059436824172735214, 0.03616862744092941, 0.022652186453342438, -0.1443123072385788, -0.19308783113956451, -0.078727126121521, 0.042492229491472244, 0.07116080820560455, 0.1005469411611557, -0.02105305902659893, 0.11254394054412842, -0.08010964095592499, 0.09310664981603622, 0.23504891991615295, -0.2982397973537445, -0.06302736699581146, 0.056102994829416275, 0.023651285097002983, 0.07266373932361603, -0.0940915048122406, -0.01340453140437603, 0.05203612521290779, 0.052297040820121765, 0.11970881372690201, -0.021123802289366722, -0.07224815338850021, 0.010825775563716888, -0.14095447957515717, -0.051580049097537994, 0.16646195948123932, 0.033684078603982925, -0.03705092892050743, -0.05589927360415459, -0.06554199010133743, -0.16694509983062744, -0.032734304666519165, -0.012962564826011658, 0.03738914430141449, -0.02050355076789856, -0.06504809856414795, -0.028513606637716293, -0.10245440900325775, -0.08043468743562698, -0.06110309436917305, 0.1439935863018036, 0.0382382795214653, 0.0025259447284042835, -0.02256373129785061, 0.12733830511569977, -0.06619887799024582, -0.12389113008975983, 0.0030850768089294434, 0.026900403201580048, 0.037441182881593704, -0.0438956655561924, -0.07240591943264008, -0.05391506478190422, 0.0021944737527519464, 0.1374962329864502, -0.06410279124975204, 0.03343358635902405, 0.03320374712347984, 0.0453055202960968, -0.08283429592847824, 0.17695577442646027, -0.022013358771800995, -0.020321553573012352, 0.012827921658754349, 0.044366758316755295, 0.018129613250494003, -0.016266264021396637, -0.13430139422416687, -0.00047012983122840524, 0.11022453755140305, 0.008595851249992847, -0.07124331593513489, 0.08947369456291199, -0.04505601525306702, -0.02107948064804077, -0.0012651716824620962, -0.08595786988735199, 0.019646896049380302, -0.013218999840319157, -0.07683025300502777, -0.016550933942198753, 0.0242385882884264, 0.009958267211914062, -0.026603939011693, 0.10577302426099777, -0.09488391876220703, 0.020554138347506523, -0.09484924376010895, -0.11083417385816574, 0.0037784080486744642, -0.07767525315284729, 0.015635592862963676, -0.09079009294509888, -0.2191019505262375, -0.011954247020184994, 0.04172300174832344, -0.0399787500500679, -0.06834106892347336, -0.07118213921785355, -0.0799691379070282, 0.017488475888967514, -0.017163217067718506, 0.10912816226482391, -0.06113065034151077, 0.1108417883515358, 0.06449458003044128, 0.06438340991735458, -0.045637622475624084, 0.058721620589494705, -0.10462111979722977, 0.009443309158086777, -0.18023604154586792, 0.05321454256772995, -0.025243690237402916, 0.049528539180755615, -0.07523695379495621, -0.11226195096969604, -0.0034544719383120537, 0.00808443408459425, 0.0716218501329422, 0.10622527450323105, -0.13721781969070435, -0.08966976404190063, 0.18950875103473663, -0.07281661033630371, -0.1273309588432312, 0.12673711776733398, -0.05664864182472229, 0.06372017413377762, 0.07154949754476547, 0.1683422178030014, 0.026590410619974136, -0.07628176361322403, 0.016725564375519753, -0.00745862303301692, 0.04307325556874275, -0.037061095237731934, 0.06703387200832367, 0.001024997909553349, 0.01669427752494812, 0.03619807958602905, -0.02893541380763054, 0.04688763990998268, -0.10431774705648422, -0.08018440008163452, -0.04620518162846565, -0.08041469007730484, 0.04083830490708351, 0.05247312784194946, 0.07933612912893295, -0.11568175256252289, -0.09467468410730362, 0.05816465988755226, 0.07474669814109802, -0.06873917579650879, 0.02447788417339325, -0.052723754197359085, 0.09774607419967651, -0.037276770919561386, -0.011769469827413559, -0.1552887260913849, -0.03349937126040459, 0.016637515276670456, 0.0447167232632637, 0.0306994691491127, 0.015973547473549843, 0.06706561148166656, 0.08320580422878265, -0.058194711804389954, -0.017856890335679054, -0.04741336777806282, -0.011134165339171886, -0.12597417831420898, -0.17036008834838867, -0.02776407077908516, -0.010973374359309673, 0.1488368809223175, -0.2166563719511032, 0.047762610018253326, -0.009455638006329536, 0.06201529875397682, -0.0034492146223783493, -0.02219081111252308, -0.04963535815477371, 0.07085228711366653, -0.052725233137607574, -0.04538067430257797, 0.07726792246103287, 0.007116531953215599, -0.07916214317083359, -0.037320807576179504, -0.12967607378959656, 0.15929526090621948, 0.14092600345611572, -0.12184685468673706, -0.09378273785114288, -0.024102529510855675, -0.061774954199790955, -0.025507336482405663, -0.04244372621178627, -0.004865604918450117, 0.19239339232444763, -0.016926148906350136, 0.15969032049179077, -0.07750758528709412, -0.045114677399396896, 0.02195441536605358, -0.04308084771037102, 0.03193212300539017, 0.11431528627872467, 0.12308115512132645, -0.07478169351816177, 0.15945960581302643, 0.12459641695022583, -0.07003828883171082, 0.14979106187820435, -0.02468145079910755, -0.06937628239393234, -0.020891865715384483, -0.009181024506688118, -0.010190016590058804, 0.07196979969739914, -0.1515854150056839, -0.00927544292062521, 0.019113939255475998, 0.031722720712423325, 0.03123789094388485, -0.21629156172275543, -0.041398681700229645, 0.044101644307374954, -0.055930640548467636, -0.012659081257879734, 0.0011857375502586365, 0.0011418689973652363, 0.11018858850002289, 0.014380608685314655, -0.07054038345813751, 0.037729717791080475, 0.009248888120055199, -0.0810551717877388, 0.20669150352478027, -0.07267147302627563, -0.14144033193588257, -0.12754617631435394, -0.081691674888134, -0.06435365229845047, 0.02683299407362938, 0.07163845002651215, -0.08187185972929001, -0.02070782333612442, -0.07782256603240967, 0.057185761630535126, -0.015326814725995064, 0.017510458827018738, -0.002077308017760515, -0.01363555621355772, 0.03750713914632797, -0.10824981331825256, -0.03366135060787201, -0.05695768818259239, -0.09137295931577682, 0.05923974886536598, 0.016688648611307144, 0.1065906286239624, 0.15121768414974213, -0.024865830317139626, 0.01925235614180565, -0.0365544855594635, 0.26362496614456177, -0.06663694232702255, -0.0230100154876709, 0.15292014181613922, 0.02020789124071598, 0.05506325513124466, 0.09811007231473923, 0.05854558199644089, -0.09900426119565964, 0.012098679319024086, 0.024470845237374306, -0.03755639120936394, -0.2038983404636383, -0.0515143908560276, -0.06117252632975578, 0.003122512483969331, 0.0904412791132927, 0.02376258559525013, 0.056278664618730545, 0.06799764931201935, 0.02118857018649578, 0.08846412599086761, -0.023421060293912888, 0.07882188260555267, 0.15011656284332275, 0.04042324051260948, 0.13212382793426514, -0.025929981842637062, -0.06421615183353424, 0.04100034013390541, -0.015794996172189713, 0.20877282321453094, 0.004102332983165979, 0.13136236369609833, 0.05179882422089577, 0.13939520716667175, -0.0034349048510193825, 0.0768161341547966, -0.016903100535273552, -0.039664674550294876, -0.026962725445628166, -0.04475859925150871, -0.05413755774497986, 0.033941030502319336, -0.06914648413658142, 0.047102317214012146, -0.1326363980770111, -0.013563700951635838, 0.05877313390374184, 0.22846002876758575, 0.04810827970504761, -0.3344041407108307, -0.10652025789022446, 0.006831279024481773, -0.027877608314156532, -0.021022222936153412, 0.026700926944613457, 0.09044218808412552, -0.10567973554134369, 0.02181520126760006, -0.06341306120157242, 0.09725140780210495, -0.041746046394109726, 0.06142956018447876, 0.04623546823859215, 0.10024749487638474, 0.0008220549789257348, 0.08926733583211899, -0.29596948623657227, 0.2741856575012207, 0.0021285226102918386, 0.0708678662776947, -0.0679497942328453, 0.007281664293259382, 0.019986383616924286, 0.060338497161865234, 0.06075449287891388, -0.010233673267066479, -0.02766111120581627, -0.19596092402935028, -0.03988851234316826, 0.02447807416319847, 0.10323689877986908, -0.04841956868767738, 0.10782722383737564, -0.036018628627061844, 0.021097296848893166, 0.06820549815893173, 0.007033636327832937, -0.05156765505671501, -0.08871262520551682, 0.00313689187169075, 0.0146121084690094, -0.0038621313869953156, -0.05557071790099144, -0.10328902304172516, -0.11719128489494324, 0.1832537204027176, -0.008032171986997128, -0.0513157844543457, -0.10671138018369675, 0.08327244967222214, 0.05564653128385544, -0.0890624150633812, 0.044148899614810944, 0.0031248556915670633, 0.07153168320655823, 0.017817839980125427, -0.0605488047003746, 0.11608786880970001, -0.06022830307483673, -0.177509605884552, -0.054757725447416306, 0.1199105754494667, 0.01974465511739254, 0.05785024166107178, -0.0050311763770878315, 0.025504156947135925, -0.04986564442515373, -0.09683036804199219, 0.038340676575899124, -0.020582102239131927, 0.07624252885580063, 0.027586715295910835, -0.06009529158473015, 0.053984634578228, -0.058001842349767685, -0.036381158977746964, 0.2023981660604477, 0.2696940004825592, -0.08245087414979935, 0.018314942717552185, 0.022513797506690025, -0.07177893817424774, -0.18586768209934235, 0.019930535927414894, 0.050162240862846375, 0.004499732982367277, 0.023418447002768517, -0.19760966300964355, 0.09010206907987595, 0.11284428834915161, -0.009358160197734833, 0.12270653247833252, -0.3390515446662903, -0.12760353088378906, 0.10356959700584412, 0.1343938112258911, 0.1429865062236786, -0.1454910933971405, -0.024071013554930687, -0.02813110314309597, -0.14724339544773102, 0.10433921962976456, -0.054550740867853165, 0.14360418915748596, -0.041141871362924576, 0.12153053283691406, 0.009183931164443493, -0.05364547669887543, 0.11174128204584122, 0.019589118659496307, 0.08708062022924423, -0.07433784008026123, -0.020265700295567513, 0.034553010016679764, -0.030580395832657814, 0.03842872381210327, -0.10567077994346619, 0.0317501574754715, -0.11007372289896011, -0.030820075422525406, -0.07351610064506531, 0.04603743180632591, -0.03277084603905678, -0.08096859604120255, -0.03423117846250534, 0.009535135701298714, 0.03842517361044884, -0.008557545952498913, 0.10949328541755676, -0.0009791351621970534, 0.16646310687065125, 0.10509682446718216, 0.0534830242395401, -0.07304111123085022, -0.05419629439711571, -0.012986364774405956, -0.010796971619129181, 0.048608604818582535, -0.13765351474285126, 0.009686578065156937, 0.14079676568508148, 0.020058847963809967, 0.1562882512807846, 0.09339167177677155, -0.02839970402419567, 0.020701201632618904, 0.05906955525279045, -0.18156804144382477, -0.08557845652103424, -0.02743794210255146, -0.06975046545267105, -0.08631239831447601, 0.05596533045172691, 0.10476037114858627, -0.08012845367193222, -0.009094320237636566, -0.019693143665790558, 0.016109926626086235, -0.05704085901379585, 0.17878343164920807, 0.03833780437707901, 0.04923783615231514, -0.09407131373882294, 0.061424318701028824, 0.03664139285683632, -0.03979853168129921, 0.025014447048306465, 0.08171577751636505, -0.07427041977643967, -0.03926060348749161, 0.05710374563932419, 0.16172567009925842, -0.07739648222923279, -0.02219438925385475, -0.13606342673301697, -0.11992256343364716, 0.08299105614423752, 0.1456611454486847, 0.10328272730112076, 0.018380209803581238, -0.06091100722551346, 0.019098442047834396, -0.12653560936450958, 0.07990683615207672, 0.034994304180145264, 0.06829486042261124, -0.11610011011362076, 0.1677563637495041, 0.003941149450838566, 0.038235533982515335, -0.02507561631500721, 0.014128975570201874, -0.10904984176158905, 0.007453556638211012, -0.09688445180654526, -0.052633222192525864, -0.01799595355987549, -0.004873957019299269, -0.009747466072440147, -0.04890642687678337, -0.04796138033270836, 0.011181988753378391, -0.11714805662631989, -0.030251409858465195, 0.021923940628767014, 0.059908367693424225, -0.11888442933559418, -0.02324545942246914, 0.02964170090854168, -0.06419225037097931, 0.08519905805587769, 0.06322293728590012, 0.01590537838637829, 0.05870203301310539, -0.15922841429710388, 0.023214884102344513, 0.05566144362092018, 0.010943288914859295, 0.048725757747888565, -0.07829409837722778, 0.005411365069448948, -0.006444530561566353, 0.05242769792675972, 0.030023066326975822, 0.06605087220668793, -0.14471188187599182, 0.0036451981868594885, -0.014801721088588238, -0.08287043124437332, -0.06609240919351578, 0.031678080558776855, 0.06274710595607758, 0.011885374784469604, 0.17797186970710754, -0.0864570289850235, 0.04216713085770607, -0.21606728434562683, 0.0022514418233186007, 0.00279152556322515, -0.11767853796482086, -0.12006443738937378, -0.07784739136695862, 0.06032699719071388, -0.04330585524439812, 0.15165358781814575, 0.03628018870949745, 0.014983891509473324, 0.02763383835554123, -0.01006361935287714, 0.029271896928548813, -0.002915196120738983, 0.2219780832529068, 0.04987236484885216, -0.044837452471256256, 0.04297441244125366, 0.06037779152393341, 0.10835635662078857, 0.08619198203086853, 0.2040817141532898, 0.11587373167276382, -0.01958029717206955, 0.09321163594722748, 0.04391065984964371, -0.05156895890831947, -0.16593298316001892, 0.02142884023487568, -0.01719479449093342, 0.10554423928260803, -0.037204500287771225, 0.21177861094474792, 0.0847538486123085, -0.16063492000102997, 0.03875337168574333, -0.05308902636170387, -0.07982239872217178, -0.11259958893060684, -0.060505278408527374, -0.083384208381176, -0.1599455177783966, 0.01560954563319683, -0.12732362747192383, 0.03191615641117096, 0.1056542843580246, 0.013136598281562328, -0.034035712480545044, 0.14879809319972992, 0.011784957721829414, 0.00967201218008995, 0.05522732436656952, -0.008956417441368103, -0.01759006828069687, -0.11305419355630875, -0.0750700831413269, -0.010938703082501888, -0.014498838223516941, 0.053098466247320175, -0.037195947021245956, -0.05077698081731796, 0.02191922999918461, -0.02727438323199749, -0.09741129726171494, 0.005013891030102968, 0.029827367514371872, 0.05977443605661392, 0.05039924755692482, -0.008586570620536804, 0.005410526413470507, -0.010946412570774555, 0.22298529744148254, -0.07172282785177231, -0.07781632244586945, -0.07730194181203842, 0.27843910455703735, 0.057150714099407196, 0.0023494188208132982, 0.021131308749318123, -0.06856003403663635, 0.000036346318665891886, 0.24812687933444977, 0.20851249992847443, -0.08305981010198593, -0.009239972569048405, 0.006689080968499184, -0.006506880279630423, 0.006280652713030577, 0.10726600885391235, 0.12054594606161118, 0.05386536195874214, -0.0857783630490303, -0.014591339975595474, -0.052816905081272125, -0.007695230655372143, -0.03311395272612572, 0.06419987231492996, 0.04384978860616684, 0.008223333396017551, -0.03988189995288849, 0.05176509916782379, -0.07761725783348083, -0.0736270323395729, 0.023069104179739952, -0.21113340556621552, -0.15188157558441162, -0.000014208121683623176, 0.0865248367190361, 0.00914172362536192, 0.08342763036489487, -0.03159338980913162, -0.0009601280908100307, 0.07188668102025986, -0.018949495628476143, -0.08932307362556458, -0.0754680186510086, 0.08962885290384293, -0.10151840001344681, 0.20149710774421692, -0.04778945818543434, 0.061354443430900574, 0.1232258751988411, 0.04871736094355583, -0.06630470603704453, 0.09098068624734879, 0.03796616569161415, -0.058097172528505325, 0.02565315179526806, 0.09344013780355453, -0.03157052397727966, 0.0569387786090374, 0.04763505235314369, -0.1511750966310501, 0.01986721158027649, -0.036656033247709274, -0.05592835694551468, -0.035250961780548096, -0.04598144814372063, -0.05511079356074333, 0.13249251246452332, 0.22626368701457977, -0.03239390254020691, -0.005890939850360155, -0.07954096794128418, 0.018175741657614708, 0.06447362899780273, 0.03619500622153282, -0.05482294782996178, -0.2406245470046997, -0.00259556551463902, 0.10004337877035141, -0.025673342868685722, -0.26818516850471497, -0.08622574806213379, -0.001252271351404488, -0.05032520741224289, -0.10446887463331223, 0.09083351492881775, 0.09538371860980988, 0.044847048819065094, -0.055768050253391266, -0.06481505185365677, -0.08125033229589462, 0.1632036417722702, -0.14059461653232574, -0.0953780859708786 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "258.96 +/- 13.10", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
mathreader/ppo-LunarLander-v2
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-07T02:26:04+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.03942384943366051, 0.04900386184453964, -0.005304091144353151, 0.026427261531352997, 0.107408307492733, -0.026511888951063156, 0.11188238859176636, 0.0814051404595375, 0.10722193866968155, 0.04762078449130058, 0.08338645845651627, 0.06030960753560066, 0.05080918222665787, 0.2571701407432556, 0.04754156619310379, -0.22987541556358337, 0.036159250885248184, -0.04869936779141426, 0.12395193427801132, 0.07178173214197159, -0.0038484656251966953, -0.06485428661108017, 0.020415637642145157, -0.013290755450725555, 0.05367108806967735, 0.04282612353563309, -0.01716216839849949, -0.08207534998655319, 0.07169748842716217, -0.06345846503973007, 0.06986866891384125, 0.07677983492612839, 0.13218913972377777, -0.17832116782665253, 0.029566360637545586, 0.02571309357881546, -0.07189024239778519, 0.01342033501714468, 0.008019951172173023, 0.05120139941573143, 0.17303818464279175, 0.019879888743162155, 0.07844575494527817, -0.0025605305563658476, -0.15412317216396332, -0.018950799480080605, 0.0436202734708786, 0.12546207010746002, 0.08808347582817078, 0.04605821147561073, 0.01970590092241764, 0.17503218352794647, -0.054352790117263794, -0.028833400458097458, 0.21759237349033356, -0.2881564497947693, -0.031460098922252655, 0.321048766374588, 0.06997483223676682, 0.09725230932235718, -0.07540661096572876, -0.03619609400629997, 0.007783263456076384, -0.013137873262166977, -0.028666524216532707, -0.07447073608636856, 0.17313385009765625, 0.05152064561843872, -0.05057951435446739, -0.09541505575180054, 0.16948209702968597, 0.006921638268977404, 0.0018855923553928733, -0.019282981753349304, 0.009060598909854889, 0.07402525842189789, -0.016097044572234154, -0.07255112379789352, 0.057438433170318604, 0.05330665782094002, 0.019649166613817215, -0.1435653269290924, -0.10762494057416916, -0.022740179672837257, -0.008012006990611553, 0.17786912620067596, -0.009255532175302505, 0.042902372777462006, 0.003065188182517886, 0.10384012013673782, -0.12480384111404419, -0.03354184702038765, -0.0454259067773819, -0.07565800100564957, -0.0223417766392231, -0.02058211714029312, -0.03580251708626747, 0.07184842973947525, 0.11971849203109741, 0.027368178591132164, 0.09350208193063736, 0.047715865075588226, -0.03206788748502731, 0.06343851238489151, 0.05555703118443489, 0.14222665131092072, 0.05807621404528618, 0.012854371219873428, 0.13179877400398254, 0.055213116109371185, 0.033023182302713394, -0.0613492950797081, -0.18252409994602203, 0.07489913702011108, -0.07031869143247604, 0.007941240444779396, 0.12051256000995636, -0.04480670019984245, -0.1183447614312172, -0.037500523030757904, -0.017392054200172424, -0.06224250793457031, -0.025395862758159637, 0.0547584593296051, -0.02883218228816986, -0.03973718360066414, 0.0011496668448671699, 0.09384800493717194, 0.00953749567270279, -0.1752052903175354, 0.03303423151373863, -0.025042934343218803, -0.10782608389854431, 0.009975161403417587, 0.0022444494534283876, 0.03394931182265282, 0.04408763721585274, -0.11822668462991714, -0.30899152159690857, -0.07652641832828522, 0.05490870401263237, -0.06516939401626587, -0.18425025045871735, -0.13193942606449127, 0.02454492449760437, -0.09037084132432938, -0.044885024428367615, -0.12759265303611755, -0.028549788519740105, 0.01743689924478531, 0.011519349180161953, 0.10758619755506516, -0.0106219332665205, -0.012188062071800232, -0.1571401208639145, 0.008273907005786896, -0.20951123535633087, 0.0890483483672142, -0.019150104373693466, 0.037884220480918884, -0.032381169497966766, -0.07404014468193054, 0.030707746744155884, 0.052499737590551376, -0.01474119070917368, 0.13510210812091827, -0.15592676401138306, -0.03691192343831062, -0.007996266707777977, -0.13611900806427002, -0.04786273464560509, -0.10358831286430359, -0.04357128217816353, 0.13354332745075226, 0.018664736300706863, 0.15356586873531342, -0.08709818124771118, -0.0722038671374321, 0.20489206910133362, -0.010411538183689117, -0.12820468842983246, -0.076752208173275, 0.10165707021951675, 0.021510310471057892, -0.056606587022542953, -0.02523270808160305, -0.1839766949415207, -0.0152357779443264, -0.04550420492887497, -0.047039128839969635, 0.01796751655638218, -0.010888241231441498, 0.13837894797325134, 0.08494598418474197, 0.05018039792776108, -0.06086122244596481, -0.006730288732796907, 0.10779471695423126, 0.08823856711387634, 0.008680110797286034, 0.023406028747558594, -0.05774238705635071, 0.09552932530641556, -0.04003755748271942, -0.0142367510125041, -0.08283266425132751, -0.036246106028556824, -0.026256313547492027, 0.17507147789001465, 0.09440762549638748, 0.2257927656173706, 0.09567736834287643, 0.039160262793302536, 0.031270865350961685, -0.13181598484516144, -0.1425403207540512, -0.0017254541162401438, 0.09020978957414627, -0.14270411431789398, -0.04119925573468208, -0.08974775671958923, -0.17768175899982452, -0.12202505767345428, 0.0006432619411498308, -0.17960017919540405, 0.06390921026468277, 0.05408334732055664, -0.035177867859601974, 0.03272094577550888, 0.13032332062721252, -0.011533179320394993, -0.03967514634132385, 0.0831870287656784, 0.0379033200442791, -0.041234664618968964, -0.021742934361100197, 0.11885567009449005, 0.15673065185546875, 0.13124459981918335, -0.03511447086930275, 0.004914294462651014, 0.07076404243707657, -0.02309088408946991, 0.06539414077997208, 0.0558244064450264, 0.20973342657089233, 0.188301220536232, 0.038996949791908264, 0.008822928182780743, -0.07048165798187256, 0.0855446457862854, -0.0742373839020729, -0.14302679896354675, -0.05579735338687897, 0.08729292452335358, 0.016605578362941742, 0.023469142615795135, 0.08711627870798111, 0.024545932188630104, 0.09132762253284454, 0.15968108177185059, 0.01990218088030815, -0.09659269452095032, -0.050218869000673294, 0.01175848301500082, 0.027713103219866753, 0.04794301092624664, -0.04514073207974434, -0.00937939714640379, 0.017020760104060173, -0.10303554683923721, 0.031789086759090424, -0.1413339376449585, -0.1358717679977417, 0.044326696544885635, 0.003906996920704842, 0.010907664895057678, 0.02786896750330925, -0.0038291432429105043, 0.019039705395698547, 0.04351753741502762, -0.06975466758012772, 0.047416772693395615, -0.024745507165789604, -0.020031947642564774, 0.03340689837932587, -0.057257164269685745, -0.205775648355484, -0.17696654796600342, 0.00013708483311347663, -0.09910997003316879, 0.10194740444421768, 0.018308809027075768, -0.12373185902833939, 0.047737859189510345, -0.05822649225592613, 0.027574289590120316, -0.01875593699514866, -0.049130141735076904, 0.10507171601057053, 0.1525275856256485, -0.016146350651979446, 0.018018173053860664, -0.04865182936191559, -0.10157987475395203, -0.19632206857204437, 0.0691583976149559, 0.04680244252085686, 0.014610917307436466, 0.10669491440057755, 0.018072687089443207, 0.02367905154824257, -0.007674071006476879, -0.016521066427230835, -0.011659215204417706, -0.08781040459871292, 0.31909599900245667, 0.04510033503174782, -0.025173069909214973, 0.02041010931134224, -0.0043001663871109486, -0.028083480894565582, 0.03263787180185318, -0.0985708013176918, -0.07548979669809341, -0.08774089068174362, -0.04367410019040108, -0.09784720093011856, 0.053299110382795334, 0.05916472524404526, 0.003188040340319276, -0.07727594673633575, 0.04221395403146744, 0.11369874328374863, -0.0923808291554451, -0.07137343287467957, 0.07477962225675583, 0.0972946360707283, -0.07331304252147675, 0.00012658814375754446, 0.00874367356300354, 0.023951783776283264, 0.037102166563272476, 0.06778035312891006, -0.03966575115919113, 0.08589404821395874, -0.19917890429496765, 0.0372927263379097, 0.106058269739151, 0.023754918947815895, 0.0638108178973198, 0.07643651217222214, -0.1058402881026268, -0.008500572293996811, -0.032518330961465836, -0.21341575682163239, 0.1668180525302887, 0.1355515867471695, 0.06788124144077301, -0.025637222453951836, -0.00461410591378808, -0.0649740919470787, 0.05773647129535675, 0.02723747305572033, -0.14758841693401337, 0.004883295856416225, 0.06064270809292793, 0.026899009943008423, 0.01614922471344471, 0.07971042394638062, 0.014697225764393806, -0.1801026314496994, -0.014406266622245312, 0.10730406641960144, 0.002390873385593295, 0.0053148469887673855, -0.03175045922398567, -0.1755964607000351, 0.0751047357916832, 0.004285442177206278, 0.07233936339616776, -0.1676585078239441, 0.14297930896282196, -0.10089799761772156, 0.07726949453353882, -0.004285062663257122, -0.021311495453119278, 0.02507244050502777, -0.0541163794696331, 0.15163759887218475, 0.01058570109307766, -0.021810131147503853, -0.1200498715043068, -0.1717042326927185, -0.019227758049964905, -0.11788936704397202, -0.11679866164922714, 0.050424277782440186, 0.062185097485780716, 0.04923136904835701, -0.061147067695856094, 0.1518532931804657, -0.047422297298908234, 0.060713399201631546, -0.06893875449895859, -0.06755045056343079, 0.03764858841896057, -0.12588608264923096, -0.08176055550575256, 0.05573027580976486, 0.19166934490203857, 0.15833087265491486, -0.02816431224346161, -0.03472423925995827, -0.047419581562280655, -0.006212298292666674, -0.007802055217325687, 0.0275666993111372, 0.023223137483000755, 0.07315318286418915, -0.07681374251842499, -0.11649256944656372, 0.033787861466407776, -0.06713802367448807, -0.055589709430933, -0.015439179725944996, 0.1513158082962036, 0.04671623185276985, 0.07720734924077988, -0.018946662545204163, 0.03887668624520302, -0.001724981120787561, -0.056474871933460236, 0.16197094321250916, 0.03885216265916824, -0.05193585529923439, 0.06837689876556396, 0.053174007683992386, 0.043745119124650955, 0.03011113777756691, -0.026783017441630363, 0.206032395362854, 0.1980147808790207, 0.014206883497536182, 0.2175983190536499, 0.03177616000175476, -0.03772832080721855, -0.1300560086965561, -0.065880686044693, -0.006372632458806038, 0.03559038043022156, 0.08070417493581772, -0.18207235634326935, -0.015011128038167953, -0.05689644813537598, -0.034518610686063766, -0.15059494972229004, -0.28553900122642517, -0.05957856774330139, 0.20075850188732147, 0.14706264436244965, 0.27519428730010986, -0.10432573407888412, 0.035197313874959946, 0.02663275972008705, -0.04912831634283066, -0.006501141935586929, 0.00018665487004909664, 0.10268618166446686, -0.15421873331069946, 0.1176437959074974, 0.08486983180046082, -0.019002694636583328, 0.01058861706405878, -0.1619086116552353, 0.00936629343777895, -0.12191236019134521, 0.05354422330856323, 0.1400289237499237, -0.048128653317689896, -0.054873593151569366, 0.14033560454845428, -0.024562934413552284, -0.22685599327087402, -0.04648222774267197, -0.043600670993328094, -0.010640020482242107, 0.026607351377606392, -0.1013401448726654, 0.04101909324526787, 0.1330099105834961, 0.009380043484270573, 0.1147187277674675, 0.11749245226383209, -0.052566803991794586, 0.10792597383260727, 0.2257719188928604, -0.018785694614052773, 0.04689010605216026, -0.12743118405342102, -0.0012336712097749114, -0.028270328417420387, 0.013657891191542149, -0.09504974633455276, -0.09938385337591171, 0.02366873063147068, 0.02872389927506447, 0.009118586778640747, 0.0921793207526207, -0.029922157526016235, 0.0759170651435852, 0.06817561388015747, -0.13014446198940277, -0.16288450360298157, 0.015828335657715797, -0.007344507612287998, 0.08354310691356659, 0.00027861111448146403, 0.08878035843372345, -0.11932205408811569, -0.018093237653374672, -0.03153328225016594, -0.03319635987281799, -0.130486860871315, -0.07138993591070175, 0.06156524643301964, 0.028095467016100883, -0.06602972000837326, 0.1398407518863678, 0.026440169662237167, 0.15942534804344177, 0.049197953194379807, 0.012499804608523846, 0.07227300107479095, -0.05345509201288223, 0.1283530443906784, 0.13818155229091644, -0.00868943240493536, -0.05460423603653908, -0.1013643890619278, -0.10236792266368866, 0.08925779908895493, -0.05773641914129257, 0.07476430386304855, -0.14885357022285461, -0.06675903499126434, 0.015772046521306038, 0.016141414642333984, -0.09562095999717712, 0.02571965754032135, -0.01625603251159191, -0.18119946122169495, 0.056570518761873245, -0.048285093158483505, 0.0440407395362854, -0.06347788125276566, -0.1110161691904068, -0.17226378619670868, 0.06091433763504028, 0.08593481779098511, -0.053876690566539764, -0.12229149043560028, 0.011023230850696564, -0.00012518465518951416, -0.06341652572154999, -0.05023367330431938, 0.09722746908664703, -0.11020902544260025, 0.031452205032110214, -0.012567701749503613, 0.08853451162576675, -0.03510405123233795, -0.011538895778357983, 0.044220831245183945, -0.08039166033267975, -0.009481523185968399, 0.03534642979502678, -0.026372017338871956, -0.04127239063382149, -0.2689029574394226, 0.0036654395516961813, 0.0341104120016098, 0.02497158572077751, 0.07856601476669312, 0.011906822212040424, 0.021174922585487366, 0.03993808850646019, -0.15396519005298615, -0.013395369984209538, 0.14574195444583893, -0.07689505815505981, -0.022186370566487312, 0.05703273415565491, -0.09054436534643173, 0.013882770203053951, -0.030287226662039757, 0.1345842480659485, 0.023923413828015327, 0.06404478847980499, -0.0851147472858429, 0.10106813907623291, -0.1451139897108078, -0.04998219385743141, -0.01244612317532301, 0.09761348366737366, 0.07019034773111343, -0.10272270441055298, 0.014697125181555748, 0.04210108891129494, 0.19416837394237518, 0.016384804621338844, -0.0356343574821949, -0.03396720811724663, 0.004015897400677204, 0.22076453268527985, 0.03044266067445278, 0.10457023978233337, 0.07281364500522614, -0.026583973318338394, 0.12624378502368927, 0.09929762035608292, 0.11280370503664017, -0.055645186454057693, 0.13904185593128204, 0.04667386785149574, 0.038641396909952164, 0.0614289753139019, 0.06836545467376709, 0.09098632633686066, -0.0008288522367365658, 0.1138714924454689, 0.013811973854899406, -0.02422109805047512, -0.021335409954190254, 0.17759373784065247, 0.10501719266176224, -0.14769648015499115, 0.029047364369034767, -0.01258957851678133, 0.039933037012815475, -0.014194529503583908, -0.15634691715240479, -0.07240267097949982, -0.3315149247646332, 0.1226184144616127, -0.07119352370500565, 0.019930170848965645, 0.007913772016763687, -0.037425633519887924, -0.03296699747443199, -0.04477746784687042, 0.13151589035987854, -0.013641550205647945, -0.006079165264964104, -0.04815853759646416, -0.015360191464424133, -0.11607866734266281, -0.11200575530529022, -0.013207737356424332, -0.13671602308750153, -0.010119039565324783, 0.05595948174595833, 0.003977729007601738, 0.01821410097181797, -0.03142618387937546, 0.0024383175186812878, 0.06541839241981506, -0.05751744285225868, 0.056182678788900375, 0.12097269296646118, 0.08766137808561325, -0.1058853268623352, 0.031048951670527458, 0.2011747509241104, 0.04359564557671547, -0.12483977526426315, 0.01449228823184967, 0.1819491684436798, 0.004885740112513304, 0.017068125307559967, -0.006097703706473112, -0.0540788508951664, -0.07554277032613754, 0.1251034289598465, 0.08296554535627365, -0.09985227137804031, 0.015833314508199692, -0.0726347416639328, -0.01594804972410202, -0.06374675035476685, 0.10130585730075836, 0.09538925439119339, 0.04440245032310486, -0.10621760785579681, -0.08487539738416672, -0.10891728103160858, 0.040588874369859695, -0.08629853278398514, -0.07311757653951645, 0.09629398584365845, -0.07057105004787445, -0.07029950618743896, 0.025521177798509598, -0.17978744208812714, -0.009467960335314274, 0.1711762249469757, -0.24654000997543335, -0.0916430801153183, -0.10857923328876495, 0.14477859437465668, 0.016497576609253883, 0.1013975441455841, -0.006207061931490898, -0.007889035157859325, -0.20577777922153473, 0.024890204891562462, -0.05293011665344238, -0.02073732763528824, 0.07814782857894897, -0.09476397186517715, 0.22629831731319427, -0.08276885002851486, 0.020940175279974937, 0.012659613974392414, 0.0870661810040474, -0.030675338581204414, 0.09283176809549332, -0.03660329803824425, -0.12576518952846527, -0.03620953485369682, 0.03001813031733036, 0.013904244638979435, 0.10071761906147003, 0.09772487729787827, -0.03414725139737129, 0.03389119729399681, 0.09747414290904999, 0.04172342270612717, -0.023843804374337196, 0.0360250361263752, -0.17077107727527618, 0.02182629331946373, -0.018498148769140244, -0.06935930997133255, 0.03687669709324837, -0.06603235751390457, 0.1639697551727295, 0.04022442549467087, 0.0670473501086235, -0.036152735352516174, 0.0073931049555540085, -0.014454689808189869, -0.013775371946394444, -0.026180334389209747, -0.17259705066680908, -0.10422050207853317, -0.1347656100988388, -0.012701659463346004, -0.034971047192811966, 0.04591470584273338, 0.023234914988279343, -0.0003200018545612693, -0.014577031135559082, -0.12090865522623062, 0.04360328987240791, 0.11146783083677292, -0.04631396010518074, -0.026193076744675636 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ner-conll This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.9285 - Recall: 0.9488 - F1: 0.9386 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.218 | 1.0 | 878 | nan | 0.9080 | 0.9367 | 0.9221 | 0.9827 | | 0.0449 | 2.0 | 1756 | nan | 0.9277 | 0.9485 | 0.9380 | 0.9857 | | 0.0232 | 3.0 | 2634 | nan | 0.9285 | 0.9488 | 0.9386 | 0.9862 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "bert-base-cased", "pipeline_tag": "token-classification", "widget": [{"text": "Saketh Lives in India", "example_title": "Classification"}, {"text": "Apollo hospitals is in India", "example_title": "Classification"}, {"text": "Saketh works for Apollo", "example_title": "Classification"}], "model-index": [{"name": "finetuned-ner-conll", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "config": "conll2003", "split": "validation", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9285243741765481, "name": "Precision"}, {"type": "recall", "value": 0.9488387748232918, "name": "Recall"}, {"type": "f1", "value": 0.9385716663892125, "name": "F1"}, {"type": "accuracy", "value": 0.9862247601106728, "name": "Accuracy"}]}]}]}
token-classification
blaze999/finetuned-ner-conll
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-07T02:26:38+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #dataset-conll2003 #base_model-bert-base-cased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
finetuned-ner-conll =================== This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: nan * Precision: 0.9285 * Recall: 0.9488 * F1: 0.9386 * Accuracy: 0.9862 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.37.0 * Pytorch 2.1.2 * Datasets 2.1.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #dataset-conll2003 #base_model-bert-base-cased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ 79, 98, 4, 30 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #dataset-conll2003 #base_model-bert-base-cased #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ -0.10888765752315521, 0.14137032628059387, -0.0018096641870215535, 0.12086337804794312, 0.12918540835380554, 0.007893824949860573, 0.15559697151184082, 0.11166296154260635, -0.05427424609661102, 0.024478517472743988, 0.1452983021736145, 0.12442464381456375, 0.01282533723860979, 0.14572815597057343, -0.056767772883176804, -0.20203259587287903, 0.025018125772476196, 0.04088226705789566, -0.0587921179831028, 0.12794265151023865, 0.09978729486465454, -0.12865497171878815, 0.10146833956241608, 0.010793479159474373, -0.16333119571208954, 0.0023496050853282213, 0.02728159725666046, -0.05286465957760811, 0.1336418241262436, 0.024436576291918755, 0.1171947792172432, 0.01598237454891205, 0.08300245553255081, -0.17496545612812042, 0.008954210206866264, 0.054510798305273056, 0.005349481012672186, 0.09828600287437439, 0.04263567179441452, 0.0060308207757771015, 0.017631901428103447, -0.06393828243017197, 0.056456904858350754, 0.01915437914431095, -0.12790195643901825, -0.24585795402526855, -0.07898493856191635, 0.051535315811634064, 0.09532231092453003, 0.07446102797985077, -0.009982479736208916, 0.1525362730026245, -0.02959551475942135, 0.08133073151111603, 0.1786700189113617, -0.31202569603919983, -0.06328563392162323, 0.05515424162149429, 0.02835601195693016, 0.07732906192541122, -0.10275241732597351, -0.02243550680577755, 0.05349424481391907, 0.024506457149982452, 0.1610739678144455, -0.0319216325879097, -0.006629584357142448, 0.006980164907872677, -0.1353691667318344, -0.03320199251174927, 0.1772015541791916, 0.08216529339551926, -0.05124117061495781, -0.05527696758508682, -0.06406378746032715, -0.11569736152887344, -0.023166222497820854, -0.0203543733805418, 0.04394831135869026, -0.013624352402985096, -0.08729463070631027, -0.0246411245316267, -0.10983863472938538, -0.07040194422006607, -0.038453083485364914, 0.1453467309474945, 0.023066945374011993, 0.010427837260067463, -0.006165989208966494, 0.10530046373605728, -0.01761331409215927, -0.13970181345939636, 0.022471634671092033, 0.02028382383286953, -0.0016443749191239476, -0.05358672887086868, -0.04287182167172432, -0.06952735036611557, 0.0225730799138546, 0.14355935156345367, -0.02690574713051319, 0.03772284463047981, 0.020512333139777184, 0.037098679691553116, -0.09091313928365707, 0.19000118970870972, -0.06073099747300148, -0.044985026121139526, 0.017253084108233452, 0.10415693372488022, 0.04782982915639877, -0.0024581041652709246, -0.13263237476348877, 0.03416680172085762, 0.1394548863172531, 0.006561485584825277, -0.05040188506245613, 0.07031402736902237, -0.06453651189804077, -0.034973837435245514, 0.05143369734287262, -0.07926083356142044, 0.01518290676176548, -0.011422066949307919, -0.058552369475364685, -0.09025749564170837, 0.006711063906550407, 0.040566351264715195, 0.026617180556058884, 0.07411137223243713, -0.10280588269233704, -0.010623231530189514, -0.0725535973906517, -0.10473071038722992, 0.006675481330603361, -0.06185103952884674, 0.03624417260289192, -0.10693968832492828, -0.19445307552814484, 0.005215204320847988, 0.06921014189720154, -0.022223690524697304, -0.06134522706270218, -0.0433386005461216, -0.0568789467215538, 0.0033005750738084316, -0.016063477843999863, 0.08955413848161697, -0.06679658591747284, 0.09628801047801971, 0.04595671594142914, 0.04435150697827339, -0.05850086361169815, 0.031006043776869774, -0.1167745292186737, 0.05165589600801468, -0.15569347143173218, 0.02350226417183876, -0.04335184767842293, 0.07587048411369324, -0.11425403505563736, -0.06777302175760269, 0.014658142812550068, -0.01879771798849106, 0.06170721724629402, 0.08731100708246231, -0.14608770608901978, -0.0603579506278038, 0.13783502578735352, -0.0747935101389885, -0.16730493307113647, 0.1304336041212082, -0.05862782523036003, 0.0644061416387558, 0.0676213800907135, 0.1957353949546814, 0.06352503597736359, -0.06982634216547012, 0.011620307341217995, -0.007471424527466297, 0.08029329776763916, -0.0565592460334301, 0.11147742718458176, 0.0009593339636921883, -0.02712690271437168, 0.016148604452610016, -0.08225107938051224, 0.06522465497255325, -0.07179994136095047, -0.09330103546380997, -0.024828342720866203, -0.12175986915826797, 0.06621430069208145, 0.05065210536122322, 0.06165235862135887, -0.09654496610164642, -0.09236238896846771, 0.05834130942821503, 0.08437108993530273, -0.06322380155324936, 0.007847466506063938, -0.0894380509853363, 0.09257576614618301, -0.11597861349582672, -0.03036022186279297, -0.14184918999671936, -0.044996969401836395, 0.019923018291592598, -0.0074144345708191395, 0.00791941024363041, -0.0010605580173432827, 0.07894138246774673, 0.07871975004673004, -0.07255621254444122, -0.052327658981084824, -0.013587679713964462, 0.025608694180846214, -0.12152691185474396, -0.18655270338058472, -0.04367837309837341, -0.03351616859436035, 0.1771722137928009, -0.21538807451725006, 0.039056047797203064, -0.01764838956296444, 0.09203626215457916, 0.03969410061836243, -0.02108839340507984, -0.030324138700962067, 0.04086998477578163, -0.03578578308224678, -0.07086911797523499, 0.0621783472597599, 0.020499762147665024, -0.12414536625146866, -0.04057605192065239, -0.1379808485507965, 0.19652332365512848, 0.11880949884653091, -0.05335037410259247, -0.05502791702747345, -0.01563728228211403, -0.037291817367076874, -0.031232057139277458, -0.03223314508795738, -0.009422065690159798, 0.128193199634552, 0.004847635515034199, 0.15529268980026245, -0.08942429721355438, -0.04018164426088333, 0.017837779596447945, -0.042103420943021774, -0.004956739954650402, 0.10068897902965546, 0.05335482582449913, -0.16087248921394348, 0.1580156683921814, 0.20740240812301636, -0.06461039930582047, 0.11256972700357437, -0.04407456889748573, -0.05413445830345154, -0.04819980263710022, -0.0055296411737799644, 0.010095109231770039, 0.13202638924121857, -0.08163539320230484, 0.012361948378384113, 0.02031577192246914, 0.016902515664696693, -0.0038437703624367714, -0.1997278481721878, -0.03199658542871475, 0.04784173145890236, -0.03694368526339531, 0.006857339758425951, -0.021560583263635635, -0.023676550015807152, 0.08452461659908295, 0.0204869844019413, -0.09496959298849106, 0.05722103267908096, -0.001898285117931664, -0.0741431787610054, 0.2004111409187317, -0.07088880985975266, -0.145197793841362, -0.14399316906929016, -0.07474016398191452, -0.06824838370084763, 0.035815104842185974, 0.049564655870199203, -0.05602475628256798, -0.040455110371112823, -0.10890485346317291, -0.018277758732438087, 0.00610407255589962, 0.022267041727900505, 0.023386532440781593, -0.022191649302840233, 0.10699445009231567, -0.09590880572795868, -0.009261544793844223, -0.016504622995853424, -0.035860877484083176, 0.023121604695916176, 0.017412476241588593, 0.11054562032222748, 0.1268189549446106, -0.010460377670824528, 0.0051812040619552135, -0.024165641516447067, 0.2562178373336792, -0.061143048107624054, -0.016367003321647644, 0.1354145109653473, -0.03379279747605324, 0.050742872059345245, 0.14273062348365784, 0.05762604996562004, -0.08926468342542648, 0.011249222792685032, 0.028686359524726868, -0.02639777958393097, -0.18282338976860046, -0.023276440799236298, -0.035056035965681076, -0.01425988133996725, 0.11181861907243729, 0.0310211218893528, 0.05175677686929703, 0.07919711619615555, 0.025332143530249596, 0.07656847685575485, -0.017618799582123756, 0.08065333962440491, 0.0993257537484169, 0.051239948719739914, 0.12621822953224182, -0.02763122320175171, -0.05827471241354942, 0.031179657205939293, 0.026026612147688866, 0.1658739298582077, 0.02204633690416813, 0.17115966975688934, 0.044320978224277496, 0.17709875106811523, -0.012072265148162842, 0.061604611575603485, -0.010052316822111607, -0.029632648453116417, -0.02447628602385521, -0.041962917894124985, -0.039409417659044266, 0.03512405604124069, -0.05714749917387962, 0.07956185191869736, -0.0888725146651268, -0.0030079109128564596, 0.05385557934641838, 0.25138968229293823, 0.060938697308301926, -0.3565734624862671, -0.09649406373500824, 0.03177269175648689, -0.017489343881607056, -0.03588132560253143, 0.015814926475286484, 0.11144902557134628, -0.06033935770392418, 0.024708040058612823, -0.08551766723394394, 0.08034083992242813, -0.050502896308898926, 0.0439012385904789, 0.06542664021253586, 0.07302220910787582, -0.0062761795707046986, 0.0772610455751419, -0.24505357444286346, 0.2711913585662842, 0.0226714089512825, 0.05786053091287613, -0.04896755889058113, -0.0032955766655504704, 0.027571359649300575, 0.08345066010951996, 0.08332168310880661, -0.006736446637660265, -0.02176264487206936, -0.21771568059921265, -0.0777372419834137, 0.027097703889012337, 0.048072606325149536, -0.07969429343938828, 0.09774668514728546, -0.04820333048701286, 0.0012224274687469006, 0.07517294585704803, 0.032214898616075516, -0.06325802952051163, -0.08860854804515839, -0.004483671393245459, 0.05475906655192375, 0.0010492122964933515, -0.08894064277410507, -0.09330396354198456, -0.11167069524526596, 0.14949634671211243, -0.008940441533923149, -0.03476782515645027, -0.10601004213094711, 0.06347387284040451, 0.06656567007303238, -0.08017323911190033, 0.027769841253757477, -0.005517818499356508, 0.10343095660209656, 0.03278706222772598, -0.04948832467198372, 0.11488906294107437, -0.06628978252410889, -0.1591978371143341, -0.06470917165279388, 0.11040344834327698, 0.023782113566994667, 0.044876594096422195, 0.008952074684202671, 0.023691274225711823, -0.032686296850442886, -0.059063930064439774, 0.030427655205130577, -0.022949926555156708, 0.0639939084649086, -0.018505757674574852, -0.021152516826987267, 0.03380969911813736, -0.06453346461057663, -0.02648659236729145, 0.14952009916305542, 0.2858259379863739, -0.08195088803768158, -0.01182873360812664, 0.07689902186393738, -0.04748613387346268, -0.16271209716796875, 0.018944550305604935, 0.023151617497205734, 0.004098467528820038, 0.06885980814695358, -0.13255757093429565, 0.10776471346616745, 0.08931669592857361, -0.03769141063094139, 0.06683629006147385, -0.26321542263031006, -0.12867292761802673, 0.13915269076824188, 0.1609702855348587, 0.10685165971517563, -0.14737720787525177, -0.04269185662269592, -0.030921470373868942, -0.12280897796154022, 0.10380484163761139, -0.11133964359760284, 0.09688077121973038, -0.0002579395950306207, 0.05573710426688194, 0.007977820001542568, -0.05089002102613449, 0.14579084515571594, -0.013214676640927792, 0.0981302335858345, -0.05395838990807533, -0.02622208371758461, 0.06423094868659973, -0.06649664044380188, 0.014104854315519333, -0.10836957395076752, 0.042589157819747925, -0.0797261893749237, -0.027718456462025642, -0.057541996240615845, 0.02745038829743862, -0.026860592886805534, -0.07683470845222473, -0.026878243312239647, 0.051809974014759064, 0.04880327731370926, -0.016081785783171654, 0.17029918730258942, 0.02712860517203808, 0.14669163525104523, 0.14966337382793427, 0.07597088813781738, -0.06943804770708084, -0.04434211179614067, -0.022680316120386124, -0.04134474694728851, 0.06272755563259125, -0.12849263846874237, 0.04824148863554001, 0.1116790696978569, 0.0004361187166068703, 0.1530955731868744, 0.059262536466121674, -0.03455750271677971, 0.002955580595880747, 0.05790870264172554, -0.17364943027496338, -0.11816029250621796, -0.01783895306289196, -0.006799704395234585, -0.14515866339206696, 0.052410222589969635, 0.12724240124225616, -0.06627350300550461, -0.008719436824321747, -0.000987750245258212, 0.009710611775517464, -0.040447723120450974, 0.17293398082256317, 0.06363950669765472, 0.05325787886977196, -0.07784269750118256, 0.07723630219697952, 0.06411194056272507, -0.044096387922763824, -0.0037565953098237514, -0.01288298238068819, -0.08983137458562851, -0.041934043169021606, 0.033500030636787415, 0.1803162693977356, -0.04135451093316078, -0.052028365433216095, -0.15221793949604034, -0.09641198813915253, 0.03771660104393959, 0.12774516642093658, 0.10554425418376923, 0.01725809834897518, -0.029096079990267754, -0.0024453073274344206, -0.09341838210821152, 0.12308632582426071, 0.04131326451897621, 0.08259326219558716, -0.17859594523906708, 0.0924210175871849, -0.009470700286328793, 0.021021997556090355, -0.018231038004159927, 0.03107396885752678, -0.10225726664066315, -0.00402502715587616, -0.13457033038139343, -0.012855933979153633, -0.03395106643438339, 0.011369096115231514, 0.005588361993432045, -0.08031287789344788, -0.05699675902724266, 0.013024628162384033, -0.10365217179059982, -0.021762168034911156, 0.05463491380214691, 0.05726497620344162, -0.12030851095914841, -0.047835953533649445, 0.033984001725912094, -0.0648593157529831, 0.06898606568574905, 0.0014481199905276299, 0.027530141174793243, 0.039161209017038345, -0.12882667779922485, 0.03428830951452255, 0.04262644797563553, 0.008850193582475185, 0.05165290832519531, -0.11621952801942825, -0.02260669693350792, 0.0005510390037670732, 0.030604448169469833, 0.014907265082001686, 0.10091996192932129, -0.12246734648942947, -0.016393030062317848, -0.00649624178186059, -0.04719929024577141, -0.05884044989943504, 0.022143971174955368, 0.08689633756875992, 0.0211702361702919, 0.22361567616462708, -0.07275475561618805, 0.007976897992193699, -0.2042899876832962, 0.007385604083538055, -0.007766942959278822, -0.11946646124124527, -0.13184474408626556, -0.0593479685485363, 0.0345938503742218, -0.06277916580438614, 0.122785784304142, -0.0036464675795286894, 0.054989997297525406, 0.03426744416356087, -0.012464453466236591, 0.07372875511646271, 0.02399064600467682, 0.22246016561985016, 0.01262359693646431, -0.03362054377794266, 0.0588807612657547, 0.03223765641450882, 0.09510993957519531, 0.10514473170042038, 0.133698970079422, 0.15821436047554016, -0.03391747549176216, 0.08125016838312149, 0.030161777511239052, -0.02536649815738201, -0.1572684496641159, 0.030052807182073593, -0.032008640468120575, 0.09303208440542221, -0.0035851832944899797, 0.2304728925228119, 0.08834469318389893, -0.17531338334083557, 0.007614439819008112, -0.05849730223417282, -0.07147189229726791, -0.08497946709394455, -0.09977535903453827, -0.09161986410617828, -0.13047300279140472, -0.008117404766380787, -0.10126765072345734, -0.009450947865843773, 0.11801520735025406, -0.0008696436416357756, -0.026307949796319008, 0.16118046641349792, 0.004102110862731934, 0.03240622580051422, 0.02675238624215126, 0.0004135084163863212, -0.043671783059835434, -0.07628028839826584, -0.08989803493022919, 0.000529628130607307, 0.00019939579942729324, 0.024146880954504013, -0.06714686751365662, -0.024275794625282288, 0.032137952744960785, -0.009344215504825115, -0.11689826101064682, 0.0038613297510892153, 0.012329543940722942, 0.04765590280294418, 0.026024160906672478, 0.006929726339876652, 0.020380361005663872, 0.0003670516889542341, 0.23340092599391937, -0.07360563427209854, -0.03684075549244881, -0.11458587646484375, 0.2038152813911438, -0.0035368953831493855, -0.011284146457910538, 0.023823019117116928, -0.09273573756217957, 0.04261648654937744, 0.22135832905769348, 0.17316623032093048, -0.09914540499448776, -0.005625060293823481, -0.017873629927635193, -0.015094433911144733, -0.037560224533081055, 0.07778759300708771, 0.08227109909057617, -0.037170227617025375, -0.08889424800872803, -0.01911254972219467, -0.05602887645363808, -0.011970668099820614, -0.02180938608944416, 0.06174827739596367, 0.02890346385538578, 0.01687205582857132, -0.0616033710539341, 0.05566462129354477, -0.01563054695725441, -0.11325203627347946, 0.03668194264173508, -0.17863330245018005, -0.15168733894824982, -0.02673516981303692, 0.10257194191217422, -0.01182547863572836, 0.047254785895347595, -0.03163350746035576, 0.02922302857041359, 0.04492926225066185, -0.01789981685578823, -0.0578029528260231, -0.08969809114933014, 0.09650978446006775, -0.06727323681116104, 0.25979986786842346, -0.035895928740501404, 0.039701882749795914, 0.12886512279510498, 0.026854878291487694, -0.09915927052497864, 0.07328595221042633, 0.05384531617164612, -0.05163760855793953, 0.036176834255456924, 0.07083362340927124, -0.023264264687895775, 0.14173443615436554, 0.04584825038909912, -0.12638287246227264, 0.0030895944219082594, -0.06675060838460922, -0.06270153820514679, -0.047356121242046356, -0.04681289941072464, -0.052524615079164505, 0.14748157560825348, 0.16708801686763763, -0.05227905511856079, -0.01678762584924698, -0.05451150983572006, 0.03388601541519165, 0.0817549079656601, 0.010783663019537926, -0.04368393495678902, -0.22489187121391296, 0.01418185606598854, 0.0467568077147007, -0.010676206089556217, -0.2717244625091553, -0.09428386390209198, -0.009451352059841156, -0.05545772239565849, -0.07018912583589554, 0.09309405088424683, 0.10596075654029846, 0.04721076413989067, -0.06987762451171875, -0.03859623894095421, -0.08719063550233841, 0.1369214653968811, -0.12545320391654968, -0.09564324468374252 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-7b-medqa-v1 This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the medical_meadow_medqa dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1 ### Performance hf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load_in_4bit=True,peft=chenhugging/mistral-7b-medqa-v1), gen_kwargs: (None), limit: 100.0, num_fewshot: None | Tasks |Version|Filter|n-shot| Metric |Value| |Stderr| |---------------------|-------|------|-----:|--------|----:|---|-----:| |pubmedqa | 1|none | 0|acc | 0.98|± |0.0141| |ocn |Yaml |none | 0|acc | 0.71|± |0.0456| |professional_medicine| 0|none | 0|acc | 0.69|± |0.0465| |college_medicine | 0|none | 0|acc | 0.61|± |0.0490| |clinical_knowledge | 0|none | 0|acc | 0.63|± |0.0485| |medmcqa |Yaml |none | 0|acc | 0.41|± |0.0494| |aocnp |Yaml |none | 0|acc | 0.61|± |0.0490| ### Appendix (original performance before lora-finetune) hf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load_in_4bit=True), gen_kwargs: (None), limit: 100.0, num_fewshot: None, batch_size: 1 | Tasks |Version|Filter|n-shot| Metric |Value| |Stderr| |---------------------|-------|------|-----:|--------|----:|---|-----:| |pubmedqa | 1|none | 0|acc | 0.98|± |0.0141| |ocn |Yaml |none | 0|acc | 0.62|± |0.0488| |professional_medicine| 0|none | 0|acc | 0.64|± |0.0482| |college_medicine | 0|none | 0|acc | 0.65|± |0.0479| |clinical_knowledge | 0|none | 0|acc | 0.68|± |0.0469| |medmcqa |Yaml |none | 0|acc | 0.45|± |0.0500| |aocnp |Yaml |none | 0|acc | 0.47|± |0.0502|
{"license": "other", "library_name": "peft", "tags": ["llama-factory", "lora", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistral-7b-medqa-v1", "results": []}]}
null
chenhugging/mistral-7b-medqa-v1
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "license:other", "region:us" ]
2024-02-07T02:28:34+00:00
[]
[]
TAGS #peft #safetensors #llama-factory #lora #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-other #region-us
mistral-7b-medqa-v1 =================== This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the medical\_meadow\_medqa dataset. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 16 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 20 * num\_epochs: 1.0 * mixed\_precision\_training: Native AMP ### Framework versions * PEFT 0.8.2 * Transformers 4.37.2 * Pytorch 2.1.1+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1 ### Performance hf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\_in\_4bit=True,peft=chenhugging/mistral-7b-medqa-v1), gen\_kwargs: (None), limit: 100.0, num\_fewshot: None ### Appendix (original performance before lora-finetune) hf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\_in\_4bit=True), gen\_kwargs: (None), limit: 100.0, num\_fewshot: None, batch\_size: 1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1", "### Performance\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True,peft=chenhugging/mistral-7b-medqa-v1), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None", "### Appendix (original performance before lora-finetune)\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None, batch\\_size: 1" ]
[ "TAGS\n#peft #safetensors #llama-factory #lora #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-other #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1", "### Performance\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True,peft=chenhugging/mistral-7b-medqa-v1), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None", "### Appendix (original performance before lora-finetune)\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None, batch\\_size: 1" ]
[ 51, 159, 39, 86, 88 ]
[ "passage: TAGS\n#peft #safetensors #llama-factory #lora #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-other #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1### Performance\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True,peft=chenhugging/mistral-7b-medqa-v1), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None### Appendix (original performance before lora-finetune)\n\n\nhf (pretrained=mistralai/Mistral-7B-v0.1,parallelize=True,load\\_in\\_4bit=True), gen\\_kwargs: (None), limit: 100.0, num\\_fewshot: None, batch\\_size: 1" ]
[ -0.1151810735464096, 0.1041703149676323, -0.0060364119708538055, 0.07109618932008743, 0.06785907596349716, 0.02146339602768421, 0.11207638680934906, 0.15227575600147247, -0.018467426300048828, 0.12571002542972565, 0.08882614225149155, 0.06388881802558899, 0.06650912761688232, 0.09585867822170258, -0.006628227885812521, -0.2529420554637909, 0.022402256727218628, -0.04686757177114487, -0.09642146527767181, 0.09937707334756851, 0.06893474608659744, -0.08913817256689072, 0.042542506009340286, -0.010031129233539104, -0.043965402990579605, -0.02800014242529869, -0.04064599424600601, -0.020094798877835274, 0.08945812284946442, 0.05945322662591934, 0.05571707710623741, 0.047333113849163055, 0.06871499866247177, -0.2515386641025543, 0.0035198077093809843, 0.07628058642148972, 0.009471865370869637, 0.06690923124551773, 0.112079918384552, 0.002712190616875887, 0.09440277516841888, -0.10644270479679108, 0.034419018775224686, 0.037022676318883896, -0.14678999781608582, -0.24997754395008087, -0.0960846096277237, 0.0693388283252716, 0.1321030557155609, 0.0682254433631897, -0.03334745019674301, 0.09023752808570862, -0.0773414671421051, 0.07780085504055023, 0.25632861256599426, -0.282865047454834, -0.08243001997470856, 0.02272757515311241, 0.06090317294001579, 0.017738817259669304, -0.13147707283496857, -0.023940639570355415, 0.01891525462269783, 0.016186799854040146, 0.05600861832499504, -0.01596447452902794, 0.07935696840286255, -0.012928946875035763, -0.12317680567502975, -0.03991977125406265, 0.10966278612613678, 0.060320187360048294, -0.031703703105449677, -0.07164568454027176, -0.03760915622115135, -0.18190434575080872, -0.052285321056842804, -0.0032633484806865454, 0.024836817756295204, -0.03411149978637695, -0.03058692440390587, 0.06823784857988358, -0.04733102396130562, -0.050904255360364914, 0.0646124929189682, 0.11204027384519577, 0.06481234729290009, -0.04270828142762184, 0.014825002290308475, 0.09347914159297943, 0.01934497244656086, -0.17747190594673157, -0.033986493945121765, 0.011374466121196747, -0.0921395868062973, -0.026651546359062195, -0.03854723647236824, 0.03951238840818405, 0.05887724831700325, 0.2080330103635788, -0.09547506272792816, 0.11268389970064163, 0.060048218816518784, 0.018964329734444618, -0.07132427394390106, 0.10361567884683609, -0.08360811322927475, -0.12666216492652893, -0.04311720281839371, 0.10554786771535873, -0.003937803208827972, -0.010836770758032799, -0.03551570698618889, 0.015199321322143078, 0.09916283935308456, 0.038182951509952545, 0.011549940332770348, 0.04139973595738411, -0.06115678697824478, -0.02518603950738907, 0.06164728105068207, -0.10227233916521072, 0.0337052084505558, 0.045586686581373215, -0.06849804520606995, -0.026638414710760117, -0.011233932338654995, -0.009645005688071251, -0.033639661967754364, 0.1012449637055397, -0.0872652679681778, -0.013328100554645061, -0.04483429715037346, -0.08983077853918076, 0.03081224113702774, -0.006024753209203482, -0.012379402294754982, -0.06779418140649796, -0.08936478197574615, -0.0772717222571373, 0.06640828400850296, -0.07976389676332474, -0.028532659634947777, -0.03900642320513725, -0.09742796421051025, 0.05344124138355255, 0.002897953148931265, 0.10926762223243713, -0.0606503039598465, 0.08724409341812134, 0.0025336400140076876, 0.04449569433927536, 0.08558157086372375, 0.031204935163259506, -0.0681900605559349, 0.08844926208257675, -0.17533369362354279, 0.05364706739783287, -0.09983567148447037, 0.050675127655267715, -0.1534346640110016, -0.10270791500806808, -0.019574204459786415, -0.01307277288287878, 0.09735284000635147, 0.11155225336551666, -0.1683749258518219, -0.05637248605489731, 0.168195903301239, -0.07161613553762436, -0.09078914672136307, 0.10982687026262283, -0.017936334013938904, -0.033153973519802094, 0.009894817136228085, 0.18014562129974365, 0.14927849173545837, -0.10943880677223206, -0.03624172508716583, -0.051823027431964874, 0.10539613664150238, 0.0911724716424942, 0.07504785060882568, -0.022673768922686577, 0.04094879701733589, 0.008271602913737297, -0.05541222169995308, 0.022394323721528053, -0.06718318909406662, -0.07305626571178436, -0.0008075484656728804, -0.05111217126250267, 0.04842822626233101, 0.057176701724529266, 0.0158128272742033, -0.07090739160776138, -0.14096280932426453, -0.00016722532745916396, 0.09368925541639328, -0.06713282316923141, 0.016926845535635948, -0.04541996121406555, 0.07624591886997223, 0.029279585927724838, 0.007054622285068035, -0.16188234090805054, -0.06855405867099762, 0.029511334374547005, -0.09363091737031937, -0.008981146849691868, -0.004216292407363653, 0.07252819091081619, 0.09339112788438797, -0.05434809625148773, -0.04594309255480766, -0.029425855726003647, 0.0011124962475150824, -0.08028745651245117, -0.238350510597229, -0.08006204664707184, -0.013262988068163395, 0.1781362146139145, -0.21170197427272797, 0.005660085007548332, 0.01915133371949196, 0.14215423166751862, 0.012862439267337322, -0.04413633793592453, -0.009496129117906094, 0.07110736519098282, -0.02148907631635666, -0.06727474182844162, 0.042835135012865067, -0.008508565835654736, -0.06286314129829407, -0.014459057711064816, -0.16416461765766144, 0.055118974298238754, 0.07583610713481903, 0.014269828796386719, -0.13145259022712708, -0.042375996708869934, -0.0518689788877964, -0.06323714554309845, 0.011817391961812973, 0.013218529522418976, 0.12916535139083862, 0.04336359724402428, 0.0923902690410614, -0.07144147902727127, -0.0645582526922226, 0.025957943871617317, -0.008344347588717937, 0.003910054452717304, 0.14836552739143372, 0.022654058411717415, -0.11253050714731216, 0.09887578338384628, 0.09621770679950714, -0.04186861962080002, 0.12511774897575378, -0.06011568382382393, -0.07024085521697998, -0.08661278337240219, 0.05785412713885307, 0.04250112175941467, 0.10487927496433258, -0.07037661969661713, 0.011675715446472168, 0.009716213680803776, 0.005072996485978365, -0.017020320519804955, -0.15017925202846527, -0.0054199486039578915, 0.01137012429535389, -0.045113805681467056, 0.02904346212744713, 0.00479584326967597, -0.011920293793082237, 0.08025569468736649, 0.027478020638227463, -0.05944503843784332, -0.041045181453228, -0.03271378204226494, -0.07028467208147049, 0.203250914812088, -0.07714847475290298, -0.09498453885316849, -0.08315042406320572, -0.02177712693810463, -0.03994818404316902, -0.032204270362854004, 0.04349165037274361, -0.05523153021931648, -0.03542466461658478, -0.07284636795520782, -0.028340402990579605, -0.011805547401309013, -0.0021992770489305258, -0.01491131167858839, 0.002226949669420719, 0.09195595234632492, -0.0893605574965477, 0.003310741391032934, 0.0026232856325805187, -0.0186588354408741, 0.02888018824160099, 0.02839018777012825, 0.08995407819747925, 0.128679558634758, 0.053773634135723114, 0.015560876578092575, -0.03360964357852936, 0.2425425946712494, -0.09338418394327164, 0.023438408970832825, 0.06999090313911438, -0.0018277583876624703, 0.07649817317724228, 0.1601039171218872, 0.05086248368024826, -0.08002451807260513, -0.009352397173643112, 0.05488990247249603, -0.009909321554005146, -0.1774437129497528, -0.02773556113243103, -0.06277884542942047, 0.007850386202335358, 0.12832388281822205, 0.03558122739195824, 0.030540870502591133, 0.017640987411141396, -0.03951374813914299, 0.04289350286126137, 0.044660136103630066, 0.08755753189325333, 0.06591247767210007, 0.06453629583120346, 0.10543736815452576, -0.00836981926113367, -0.005659132730215788, 0.018830886110663414, -0.006760266609489918, 0.2301616370677948, -0.018776262179017067, 0.1663607507944107, 0.07902777194976807, 0.16911807656288147, -0.011701691895723343, 0.016006439924240112, 0.019198957830667496, -0.005159001797437668, 0.00290230312384665, -0.08083762973546982, -0.01046757958829403, 0.032173436135053635, 0.035363249480724335, 0.004630428273230791, -0.08344065397977829, -0.003238796954974532, 0.045668598264455795, 0.27089646458625793, 0.0956987515091896, -0.26951584219932556, -0.07067205011844635, 0.004774055443704128, -0.02442341111600399, -0.016218306496739388, 0.011459757573902607, 0.0686773955821991, -0.08066002279520035, 0.08569742739200592, -0.060055725276470184, 0.07858104258775711, -0.0463920533657074, 0.032239582389593124, 0.10196658223867416, 0.05859721451997757, 0.0072036487981677055, 0.04763523489236832, -0.19777607917785645, 0.25321251153945923, -0.005786750465631485, 0.06288792192935944, -0.022469334304332733, 0.023912588134407997, 0.03890100494027138, -0.031982749700546265, 0.09510394185781479, 0.002302628941833973, -0.10723119974136353, -0.20142748951911926, -0.07020687311887741, -0.02062939666211605, 0.12589973211288452, -0.07081014662981033, 0.1415802538394928, -0.03172936663031578, -0.03915926814079285, 0.012859715148806572, 0.041070785373449326, -0.11642146855592728, -0.08416976034641266, 0.06675641238689423, -0.035416021943092346, 0.012395798228681087, -0.07889020442962646, -0.06096167489886284, -0.08156455308198929, 0.13720190525054932, -0.11854833364486694, -0.034499965608119965, -0.12041123956441879, 0.05841948464512825, 0.15930695831775665, -0.10115286707878113, 0.023417480289936066, 0.0013594039482995868, 0.07298097014427185, 0.012341386638581753, -0.033975694328546524, 0.0961998924612999, -0.05405732989311218, -0.22214443981647491, -0.06269536167383194, 0.14583568274974823, 0.0244334377348423, 0.050155945122241974, -0.025868985801935196, 0.06165723875164986, 0.012477119453251362, -0.10102324187755585, 0.03746935725212097, -0.023112591356039047, 0.050869643688201904, -0.006242930423468351, -0.029190221801400185, 0.05272313952445984, -0.07442006468772888, -0.00901936274021864, 0.034101709723472595, 0.3533526659011841, -0.09722517430782318, 0.02438918687403202, 0.05231456086039543, -0.05712342634797096, -0.15090017020702362, -0.05423324927687645, 0.1229211688041687, -0.023952625691890717, 0.025008689612150192, -0.1600974053144455, 0.03987869247794151, 0.11667533218860626, -0.008512454107403755, 0.10603996366262436, -0.3371697962284088, -0.1333061158657074, 0.05524906888604164, 0.08237412571907043, -0.039994701743125916, -0.20143210887908936, -0.07530868053436279, -0.004761112853884697, -0.12097054719924927, 0.03844892233610153, -0.031935665756464005, 0.1198386624455452, -0.023631487041711807, -0.05331484600901604, 0.01825103536248207, -0.056873124092817307, 0.17307518422603607, 0.010998306795954704, 0.07035230845212936, -0.04669443517923355, -0.013899917714297771, 0.04823441803455353, -0.08175606280565262, 0.010121568106114864, -0.07888919860124588, 0.017268503084778786, -0.10800310969352722, -0.00315335625782609, -0.09652628004550934, 0.006808170583099127, -0.08603391796350479, -0.018659887835383415, -0.042706504464149475, 0.09076689928770065, 0.07991486042737961, 0.010615830309689045, 0.11103329807519913, -0.012928975746035576, 0.17009614408016205, 0.16980096697807312, 0.025198325514793396, 0.054553184658288956, -0.13981403410434723, -0.0023929106537252665, 0.002376412972807884, 0.035736557096242905, -0.11132287979125977, 0.030481813475489616, 0.14396661520004272, 0.04295297712087631, 0.12703029811382294, 0.049900785088539124, -0.07165752351284027, -0.011376263573765755, 0.07072604447603226, -0.09675153344869614, -0.11003468930721283, -0.015564716421067715, -0.004721192643046379, -0.10885605961084366, -0.0390876829624176, 0.15140683948993683, -0.054722219705581665, 0.004799404181540012, 0.032635122537612915, 0.047478388994932175, -0.021614594385027885, 0.21900619566440582, 0.016187230125069618, 0.09328797459602356, -0.0866444930434227, 0.0760493353009224, 0.0946309044957161, -0.05491460859775543, 0.035163599997758865, 0.11610179394483566, -0.06996738165616989, -0.049673594534397125, -0.0003929126833099872, 0.08622123301029205, 0.010677913203835487, -0.01743793487548828, -0.10670757293701172, -0.10604630410671234, 0.08704757690429688, 0.08746583759784698, 0.023390349000692368, 0.02515837922692299, 0.012547917664051056, 0.012643804773688316, -0.0717477798461914, 0.11911618709564209, 0.08797076344490051, 0.07878614962100983, -0.10533455014228821, 0.12671014666557312, 0.002320356434211135, -0.010682038962841034, 0.012098442763090134, 0.0012806062586605549, -0.15952058136463165, -0.003733187448233366, -0.14812202751636505, 0.01844458468258381, -0.05794719606637955, -0.007723946589976549, -0.010887041687965393, -0.025712687522172928, -0.0428435392677784, 0.008060476742684841, -0.0949731171131134, -0.06932073086500168, -0.013720125891268253, 0.07203357666730881, -0.1326303780078888, -0.03020363859832287, 0.03536809980869293, -0.1145615428686142, 0.06917589157819748, 0.014317373745143414, 0.030205965042114258, 0.014233876951038837, -0.025482987985014915, 0.01778959482908249, -0.014186996035277843, -0.00895063579082489, 0.017815284430980682, -0.16612020134925842, -0.013361215591430664, -0.07542387396097183, 0.009116495959460735, 0.016378194093704224, 0.0033665040973573923, -0.13372935354709625, 0.01040177047252655, -0.034579887986183167, -0.057363104075193405, -0.05544177442789078, 0.028669515624642372, 0.07201186567544937, 0.005461100023239851, 0.12942637503147125, -0.08015934377908707, 0.066275455057621, -0.24284355342388153, -0.03323888033628464, 0.024516666308045387, -0.06486259400844574, -0.02644733153283596, -0.03695498779416084, 0.08803452551364899, -0.06720145791769028, 0.04043496027588844, -0.051457904279232025, 0.06722476333379745, 0.022657444700598717, -0.07562509924173355, -0.028811225667595863, 0.05296657979488373, 0.14289326965808868, 0.03934977576136589, -0.028701791539788246, 0.03162984177470207, 0.02461213804781437, 0.02471085451543331, 0.07446292787790298, 0.16037552058696747, 0.14863120019435883, 0.05612420663237572, 0.04949672147631645, 0.015638330951333046, -0.14814522862434387, -0.12287352979183197, 0.1487932950258255, -0.03523622080683708, 0.13056591153144836, -0.0358482263982296, 0.10546331852674484, 0.10870926082134247, -0.2227453589439392, 0.06122887507081032, -0.06733722239732742, -0.09044491499662399, -0.07920275628566742, -0.10054284334182739, -0.06726042926311493, -0.11443663388490677, 0.0033938109409064054, -0.0996774435043335, 0.03855377808213234, 0.08225797116756439, 0.036265160888433456, 0.04601976275444031, 0.10783599317073822, 0.03145194798707962, -0.008535832166671753, 0.07915892452001572, 0.03331563621759415, -0.015292253345251083, -0.025395890697836876, -0.05730767175555229, 0.026220649480819702, -0.054579079151153564, 0.030515244230628014, -0.012330792844295502, -0.045828741043806076, 0.051201410591602325, 0.015285784378647804, -0.1042870581150055, 0.039973098784685135, 0.007839256897568703, 0.04208498075604439, 0.09227956086397171, 0.039831191301345825, -0.0014854827895760536, -0.020009081810712814, 0.199895441532135, -0.06707248836755753, -0.06530063599348068, -0.10315454006195068, 0.24113810062408447, 0.03044014982879162, -0.010549799539148808, 0.013781349174678326, -0.07308702915906906, 0.02772834151983261, 0.1419408768415451, 0.12515303492546082, -0.05551181733608246, -0.003074945881962776, 0.042986661195755005, -0.00840445701032877, -0.004038499668240547, 0.08877449482679367, 0.08208582550287247, 0.09403735399246216, -0.07363071292638779, 0.011708281934261322, -0.02454225905239582, -0.04267492890357971, -0.07635720074176788, 0.09083209186792374, 0.033215444535017014, 0.009163477458059788, -0.05001034960150719, 0.0900493711233139, -0.06756670773029327, -0.1510596126317978, 0.09247750043869019, -0.19108466804027557, -0.18178997933864594, -0.03609700873494148, 0.04127582535147667, 0.03202598914504051, 0.06295285373926163, -0.006431042216718197, -0.026482412591576576, 0.10547719150781631, -0.001218967605382204, -0.0069504533894360065, -0.11323413997888565, 0.053638700395822525, -0.03589650243520737, 0.19570009410381317, -0.03635025396943092, 0.03223063424229622, 0.1336197704076767, 0.024163907393813133, -0.10531745105981827, 0.02469027042388916, 0.10102757811546326, -0.13208919763565063, 0.03075353614985943, 0.13452443480491638, -0.013666495680809021, 0.12016132473945618, 0.06763527542352676, -0.07280568033456802, 0.023894930258393288, 0.05204447731375694, -0.011289767920970917, -0.056323178112506866, 0.006386450491845608, -0.030414428561925888, 0.14976657927036285, 0.21738269925117493, -0.05750931426882744, -0.01232178509235382, -0.0375429205596447, 0.02111421525478363, 0.039165839552879333, 0.08869649469852448, -0.04592487961053848, -0.22091014683246613, 0.05732676759362221, 0.008679724298417568, 0.056574612855911255, -0.17024533450603485, -0.09965857118368149, 0.05581292510032654, -0.051312074065208435, -0.051438961178064346, 0.1403771936893463, 0.03625508025288582, 0.04736980423331261, -0.048349812626838684, -0.1432832032442093, -0.05074094980955124, 0.16745081543922424, -0.14338690042495728, -0.07459259778261185 ]
null
null
transformers
# Resumen El modelo fue entrenado usando el modelo base de VisionTransformer junto con el optimizador SAM de Google y la función de perdida Negative log likelihood, sobre los datos [Wildfire](https://drive.google.com/file/d/1TlF8DIBLAccd0AredDUimQQ54sl_DwCE/view?usp=sharing). Los resultados muestran que el clasificador alcanzó una precisión del 97% con solo 10 épocas de entrenamiento. La teoría de se muestra a continuación. ![](https://github.com/google-research/vision_transformer/blob/main/vit_figure.png?raw=true) # VisionTransformer **Attention-based neural networks such as the Vision Transformer** (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class. [1] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. arXiv, el 3 de junio de 2021. Consultado: el 12 de noviembre de 2023. [En línea]. Disponible en: http://arxiv.org/abs/2010.11929 # Sharpness Aware Minimization (SAM) SAM simultaneously minimizes loss value and loss sharpness. In particular, it seeks parameters that lie in neighborhoods having uniformly low loss. SAM improves model generalization and yields SoTA performance for several datasets. Additionally, it provides robustness to label noise on par with that provided by SoTA procedures that specifically target learning with noisy labels. ![](https://github.com/davda54/sam/raw/main/img/loss_landscape.png) *ResNet loss landscape at the end of training with and without SAM. Sharpness-aware updates lead to a significantly wider minimum, which then leads to better generalization properties.* [2] P. Foret, A. Kleiner, y H. Mobahi, “Sharpness-Aware Minimization For Efficiently Improving Generalization”, 2021. # The negative log likelihood loss It is useful to train a classification problem with $C$ classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set. The input given through a forward call is expected to contain log-probabilities of each class. input has to be a Tensor of size either (minibatch, $C$ ) or ( minibatch, $C, d_1, d_2, \ldots, d_K$ ) with $K \geq 1$ for the $K$-dimensional case. The latter is useful for higher dimension inputs, such as computing NLL loss per-pixel for 2D images. Obtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network. You may use CrossEntropyLoss instead, if you prefer not to add an extra layer. The target that this loss expects should be a class index in the range $\[0, C-1\]$ where $C$ number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range). The unreduced (i.e. with reduction set to 'none ') loss can be described as: $$ \ell(x, y)=L=\left\{l_1, \ldots, l_N\right\}^{\top}, \quad l_n=-w_{y_n} x_{n, y_n}, \quad w_c=\text { weight }[c] \cdot 1 $$ where $x$ is the input, $y$ is the target, $w$ is the weight, and $N$ is the batch size. If reduction is not 'none' (default 'mean'), then $$ \ell(x, y)= \begin{cases}\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, & \text { if reduction }=\text { 'mean' } \\ \sum_{n=1}^N l_n, & \text { if reduction }=\text { 'sum' }\end{cases} $$ # Resultados obtenidos <img src="https://cdn-uploads.huggingface.co/production/uploads/64ff2131f7f3fa2d7fe256fc/CO6vFEjt3FkxB8JgZTbEd.png" width="500" />
{"license": "apache-2.0", "library_name": "transformers", "tags": ["biology"], "metrics": ["accuracy", "f1", "precision", "recall"], "pipeline_tag": "image-classification"}
image-classification
Sacbe/ViT_SAM_Classification
[ "transformers", "biology", "image-classification", "arxiv:2010.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-07T02:31:37+00:00
[ "2010.11929" ]
[]
TAGS #transformers #biology #image-classification #arxiv-2010.11929 #license-apache-2.0 #endpoints_compatible #region-us
# Resumen El modelo fue entrenado usando el modelo base de VisionTransformer junto con el optimizador SAM de Google y la función de perdida Negative log likelihood, sobre los datos Wildfire. Los resultados muestran que el clasificador alcanzó una precisión del 97% con solo 10 épocas de entrenamiento. La teoría de se muestra a continuación. ![](URL # VisionTransformer Attention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class. [1] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. arXiv, el 3 de junio de 2021. Consultado: el 12 de noviembre de 2023. [En línea]. Disponible en: URL # Sharpness Aware Minimization (SAM) SAM simultaneously minimizes loss value and loss sharpness. In particular, it seeks parameters that lie in neighborhoods having uniformly low loss. SAM improves model generalization and yields SoTA performance for several datasets. Additionally, it provides robustness to label noise on par with that provided by SoTA procedures that specifically target learning with noisy labels. ![](URL *ResNet loss landscape at the end of training with and without SAM. Sharpness-aware updates lead to a significantly wider minimum, which then leads to better generalization properties.* [2] P. Foret, A. Kleiner, y H. Mobahi, “Sharpness-Aware Minimization For Efficiently Improving Generalization”, 2021. # The negative log likelihood loss It is useful to train a classification problem with $C$ classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set. The input given through a forward call is expected to contain log-probabilities of each class. input has to be a Tensor of size either (minibatch, $C$ ) or ( minibatch, $C, d_1, d_2, \ldots, d_K$ ) with $K \geq 1$ for the $K$-dimensional case. The latter is useful for higher dimension inputs, such as computing NLL loss per-pixel for 2D images. Obtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network. You may use CrossEntropyLoss instead, if you prefer not to add an extra layer. The target that this loss expects should be a class index in the range $\[0, C-1\]$ where $C$ number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range). The unreduced (i.e. with reduction set to 'none ') loss can be described as: $$ \ell(x, y)=L=\left\{l_1, \ldots, l_N\right\}^{\top}, \quad l_n=-w_{y_n} x_{n, y_n}, \quad w_c=\text { weight }[c] \cdot 1 $$ where $x$ is the input, $y$ is the target, $w$ is the weight, and $N$ is the batch size. If reduction is not 'none' (default 'mean'), then $$ \ell(x, y)= \begin{cases}\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, & \text { if reduction }=\text { 'mean' } \\ \sum_{n=1}^N l_n, & \text { if reduction }=\text { 'sum' }\end{cases} $$ # Resultados obtenidos <img src="URL width="500" />
[ "# Resumen\n\nEl modelo fue entrenado usando el modelo base de VisionTransformer junto con el optimizador SAM de Google y la función de perdida Negative log likelihood, sobre los datos Wildfire. Los resultados muestran que el clasificador alcanzó una precisión del 97% con solo 10 épocas de entrenamiento.\nLa teoría de se muestra a continuación.\n![](URL", "# VisionTransformer\n\nAttention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class.\n\n\n\n[1] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. arXiv, el 3 de junio de 2021. Consultado: el 12 de noviembre de 2023. [En línea]. Disponible en: URL", "# Sharpness Aware Minimization (SAM)\n\nSAM simultaneously minimizes loss value and loss sharpness. In particular, it seeks parameters that lie in neighborhoods having uniformly low loss. SAM improves model generalization and yields SoTA performance for several datasets. Additionally, it provides robustness to label noise on par with that provided by SoTA procedures that specifically target learning with noisy labels.\n\n![](URL\n\n*ResNet loss landscape at the end of training with and without SAM. Sharpness-aware updates lead to a significantly wider minimum, which then leads to better generalization properties.*\n\n[2] P. Foret, A. Kleiner, y H. Mobahi, “Sharpness-Aware Minimization For Efficiently Improving Generalization”, 2021.", "# The negative log likelihood loss \n\nIt is useful to train a classification problem with $C$ classes.\n\nIf provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.\n\nThe input given through a forward call is expected to contain log-probabilities of each class. input has to be a Tensor of size either (minibatch, $C$ ) or ( minibatch, $C, d_1, d_2, \\ldots, d_K$ ) with $K \\geq 1$ for the $K$-dimensional case. The latter is useful for higher dimension inputs, such as computing NLL loss per-pixel for 2D images.\n\nObtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network. You may use CrossEntropyLoss instead, if you prefer not to add an extra layer.\n\nThe target that this loss expects should be a class index in the range $\\[0, C-1\\]$ where $C$ number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range).\n\nThe unreduced (i.e. with reduction set to 'none ') loss can be described as:\n$$\n\\ell(x, y)=L=\\left\\{l_1, \\ldots, l_N\\right\\}^{\\top}, \\quad l_n=-w_{y_n} x_{n, y_n}, \\quad w_c=\\text { weight }[c] \\cdot 1\n$$\nwhere $x$ is the input, $y$ is the target, $w$ is the weight, and $N$ is the batch size. If reduction is not 'none' (default 'mean'), then\n$$\n\\ell(x, y)= \\begin{cases}\\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, & \\text { if reduction }=\\text { 'mean' } \\\\ \\sum_{n=1}^N l_n, & \\text { if reduction }=\\text { 'sum' }\\end{cases}\n$$", "# Resultados obtenidos\n<img src=\"URL width=\"500\" />" ]
[ "TAGS\n#transformers #biology #image-classification #arxiv-2010.11929 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Resumen\n\nEl modelo fue entrenado usando el modelo base de VisionTransformer junto con el optimizador SAM de Google y la función de perdida Negative log likelihood, sobre los datos Wildfire. Los resultados muestran que el clasificador alcanzó una precisión del 97% con solo 10 épocas de entrenamiento.\nLa teoría de se muestra a continuación.\n![](URL", "# VisionTransformer\n\nAttention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class.\n\n\n\n[1] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. arXiv, el 3 de junio de 2021. Consultado: el 12 de noviembre de 2023. [En línea]. Disponible en: URL", "# Sharpness Aware Minimization (SAM)\n\nSAM simultaneously minimizes loss value and loss sharpness. In particular, it seeks parameters that lie in neighborhoods having uniformly low loss. SAM improves model generalization and yields SoTA performance for several datasets. Additionally, it provides robustness to label noise on par with that provided by SoTA procedures that specifically target learning with noisy labels.\n\n![](URL\n\n*ResNet loss landscape at the end of training with and without SAM. Sharpness-aware updates lead to a significantly wider minimum, which then leads to better generalization properties.*\n\n[2] P. Foret, A. Kleiner, y H. Mobahi, “Sharpness-Aware Minimization For Efficiently Improving Generalization”, 2021.", "# The negative log likelihood loss \n\nIt is useful to train a classification problem with $C$ classes.\n\nIf provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.\n\nThe input given through a forward call is expected to contain log-probabilities of each class. input has to be a Tensor of size either (minibatch, $C$ ) or ( minibatch, $C, d_1, d_2, \\ldots, d_K$ ) with $K \\geq 1$ for the $K$-dimensional case. The latter is useful for higher dimension inputs, such as computing NLL loss per-pixel for 2D images.\n\nObtaining log-probabilities in a neural network is easily achieved by adding a LogSoftmax layer in the last layer of your network. You may use CrossEntropyLoss instead, if you prefer not to add an extra layer.\n\nThe target that this loss expects should be a class index in the range $\\[0, C-1\\]$ where $C$ number of classes; if ignore_index is specified, this loss also accepts this class index (this index may not necessarily be in the class range).\n\nThe unreduced (i.e. with reduction set to 'none ') loss can be described as:\n$$\n\\ell(x, y)=L=\\left\\{l_1, \\ldots, l_N\\right\\}^{\\top}, \\quad l_n=-w_{y_n} x_{n, y_n}, \\quad w_c=\\text { weight }[c] \\cdot 1\n$$\nwhere $x$ is the input, $y$ is the target, $w$ is the weight, and $N$ is the batch size. If reduction is not 'none' (default 'mean'), then\n$$\n\\ell(x, y)= \\begin{cases}\\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, & \\text { if reduction }=\\text { 'mean' } \\\\ \\sum_{n=1}^N l_n, & \\text { if reduction }=\\text { 'sum' }\\end{cases}\n$$", "# Resultados obtenidos\n<img src=\"URL width=\"500\" />" ]
[ 41, 81, 313, 181, 559, 18 ]
[ "passage: TAGS\n#transformers #biology #image-classification #arxiv-2010.11929 #license-apache-2.0 #endpoints_compatible #region-us \n# Resumen\n\nEl modelo fue entrenado usando el modelo base de VisionTransformer junto con el optimizador SAM de Google y la función de perdida Negative log likelihood, sobre los datos Wildfire. Los resultados muestran que el clasificador alcanzó una precisión del 97% con solo 10 épocas de entrenamiento.\nLa teoría de se muestra a continuación.\n![](URL# VisionTransformer\n\nAttention-based neural networks such as the Vision Transformer (ViT) have recently attained state-of-the-art results on many computer vision benchmarks. Scale is a primary ingredient in attaining excellent results, therefore, understanding a model's scaling properties is a key to designing future generations effectively. While the laws for scaling Transformer language models have been studied, it is unknown how Vision Transformers scale. To address this, we scale ViT models and data, both up and down, and characterize the relationships between error rate, data, and compute. Along the way, we refine the architecture and training of ViT, reducing memory consumption and increasing accuracy of the resulting models. As a result, we successfully train a ViT model with two billion parameters, which attains a new state-of-the-art on ImageNet of 90.45% top-1 accuracy. The model also performs well for few-shot transfer, for example, reaching 84.86% top-1 accuracy on ImageNet with only 10 examples per class.\n\n\n\n[1] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. arXiv, el 3 de junio de 2021. Consultado: el 12 de noviembre de 2023. [En línea]. Disponible en: URL", "passage: # Sharpness Aware Minimization (SAM)\n\nSAM simultaneously minimizes loss value and loss sharpness. In particular, it seeks parameters that lie in neighborhoods having uniformly low loss. SAM improves model generalization and yields SoTA performance for several datasets. Additionally, it provides robustness to label noise on par with that provided by SoTA procedures that specifically target learning with noisy labels.\n\n![](URL\n\n*ResNet loss landscape at the end of training with and without SAM. Sharpness-aware updates lead to a significantly wider minimum, which then leads to better generalization properties.*\n\n[2] P. Foret, A. Kleiner, y H. Mobahi, “Sharpness-Aware Minimization For Efficiently Improving Generalization”, 2021." ]
[ -0.09596244990825653, -0.06154976040124893, -0.002488828729838133, 0.014847846701741219, 0.14942601323127747, -0.041135918349027634, -0.00223589688539505, 0.04132147878408432, -0.07890737056732178, 0.09707433730363846, 0.0068356855772435665, 0.037203408777713776, 0.010968273505568504, 0.12163469195365906, -0.0541803203523159, -0.2413865625858307, 0.06588591635227203, -0.02872529812157154, -0.09608474373817444, 0.016849225386977196, 0.09729089587926865, -0.11206153780221939, 0.047440946102142334, 0.00004557892680168152, -0.08975192904472351, -0.03669440373778343, 0.07123428583145142, -0.026854224503040314, 0.10111696273088455, 0.050634656101465225, 0.06647787988185883, 0.020429596304893494, 0.03562943637371063, -0.08620987832546234, 0.0313895158469677, 0.04143337532877922, 0.07258063554763794, 0.06205723434686661, 0.02027737721800804, 0.13638147711753845, 0.1750178188085556, -0.11958211660385132, 0.023106250911951065, 0.022686336189508438, -0.07665754854679108, 0.012780766934156418, -0.008795896545052528, -0.0967056006193161, 0.10698243975639343, 0.004430305678397417, -0.0006193891167640686, 0.0664592981338501, -0.03179258108139038, 0.038666680455207825, -0.0074584512040019035, -0.15486928820610046, -0.0797429084777832, 0.02615489810705185, -0.0731545239686966, 0.0627451092004776, -0.06390287727117538, 0.06916318833827972, 0.0631285309791565, -0.015072524547576904, 0.089276984333992, -0.007570518646389246, 0.020123280584812164, -0.004194360226392746, -0.10878816992044449, -0.04455162584781647, 0.24754318594932556, 0.027298469096422195, -0.048861756920814514, -0.05054091662168503, -0.10604148358106613, 0.04003303498029709, -0.03604689612984657, -0.14462237060070038, 0.006259918678551912, -0.00643133046105504, -0.07409955561161041, -0.015693092718720436, -0.09255985915660858, -0.033176764845848083, -0.04024665057659149, 0.08336125314235687, 0.0256116334348917, 0.01476366724818945, -0.0543905571103096, -0.023116469383239746, -0.10780893266201019, -0.03980674594640732, -0.01989762671291828, -0.03768303990364075, -0.145808145403862, -0.01369884330779314, -0.02928824909031391, -0.106290802359581, 0.04066476598381996, -0.07136538624763489, 0.04378300905227661, 0.025776969268918037, 0.049232468008995056, 0.016684170812368393, 0.03502950444817543, 0.1324213296175003, -0.01434512622654438, -0.07788574695587158, 0.04459957033395767, 0.018572134897112846, 0.041926246136426926, -0.055092569440603256, 0.036232538521289825, 0.051522307097911835, 0.059500712901353836, 0.0021681832149624825, -0.015630919486284256, 0.019104622304439545, -0.025399036705493927, -0.045315809547901154, -0.013830028474330902, -0.10434110462665558, -0.046149950474500656, -0.05466291680932045, 0.02869206853210926, 0.08033855259418488, -0.057215288281440735, -0.012985333800315857, -0.10696326196193695, 0.10583271086215973, -0.08144737780094147, -0.07692929357290268, -0.023376720026135445, -0.04950470104813576, -0.014646751806139946, 0.019820591434836388, 0.0033726561814546585, -0.1521233320236206, -0.11811906099319458, 0.023001018911600113, 0.04514363408088684, -0.0151437446475029, -0.07114601880311966, -0.004328990820795298, -0.05999404937028885, -0.05056313797831535, 0.007643808610737324, 0.03577198460698128, -0.019805973395705223, 0.027855295687913895, 0.04718722775578499, 0.04116247221827507, -0.06139242276549339, 0.03217741847038269, -0.0560014545917511, 0.023629358038306236, -0.07002938538789749, 0.09579093754291534, -0.05902919918298721, -0.03981044888496399, -0.07813907414674759, -0.0491732694208622, -0.15506696701049805, 0.006601523607969284, 0.05902503803372383, 0.11595853418111801, -0.17119231820106506, -0.08814173936843872, -0.014339914545416832, -0.18397581577301025, 0.029503444209694862, 0.1273265928030014, 0.010783489793539047, 0.026509856805205345, 0.15185511112213135, 0.19710871577262878, 0.004887938965111971, -0.007770214229822159, -0.040898531675338745, -0.00866740196943283, -0.0641893818974495, 0.03357686102390289, 0.062300313264131546, 0.07648415118455887, -0.097273088991642, 0.059150706976652145, -0.021777678281068802, -0.01940949261188507, -0.08476541191339493, -0.0667261928319931, -0.05953969806432724, -0.027401378378272057, 0.0002344651147723198, 0.0026006586849689484, 0.014089723117649555, 0.012335252948105335, 0.002269003540277481, 0.08159653097391129, 0.09353353083133698, -0.056746192276477814, 0.02611296810209751, -0.13648171722888947, 0.05819307267665863, -0.1340184360742569, 0.01977480761706829, -0.12160162627696991, 0.04718362167477608, 0.041136980056762695, 0.017736829817295074, 0.02377340756356716, 0.1521826684474945, 0.0252695195376873, 0.05966094508767128, -0.046761900186538696, 0.030314797535538673, -0.030952630564570427, 0.0377071239054203, -0.06589266657829285, -0.10790389776229858, 0.01562488917261362, -0.02360059879720211, -0.0016997195780277252, -0.12933292984962463, -0.01726268045604229, 0.10383850336074829, 0.041163183748722076, 0.030481822788715363, -0.061149962246418, -0.03670603781938553, -0.0007713758386671543, -0.015353592112660408, -0.06360005587339401, 0.014628663659095764, -0.002122226171195507, -0.02575264871120453, 0.002597592771053314, -0.055738840252161026, 0.164835587143898, 0.08565474301576614, 0.032243628054857254, 0.026469776406884193, 0.02877289243042469, -0.02937033399939537, -0.012862083502113819, -0.0989077016711235, -0.022883955389261246, 0.11113525927066803, 0.009400948882102966, 0.05949989706277847, -0.06329874694347382, 0.0916193500161171, 0.05190438777208328, -0.002344713546335697, -0.002093099756166339, 0.001425197347998619, 0.030549168586730957, -0.236444354057312, -0.0160809475928545, 0.057213373482227325, 0.02627076581120491, 0.08849839121103287, -0.045764077454805374, -0.06466376781463623, -0.024056173861026764, 0.019705886021256447, 0.01187724806368351, 0.16807100176811218, -0.05189940705895424, 0.019495295360684395, 0.0020221793092787266, 0.03896375000476837, 0.03720223903656006, -0.08632346987724304, 0.06025196239352226, 0.05889812856912613, 0.02176780439913273, 0.03448086977005005, -0.024679645895957947, -0.04958643764257431, 0.09678518027067184, -0.017501141875982285, 0.010322134010493755, -0.03013628162443638, -0.03602704778313637, -0.019056838005781174, 0.12146326154470444, -0.010390418581664562, -0.1960446983575821, -0.09230825304985046, 0.13049210608005524, -0.03729516267776489, 0.038303446024656296, 0.0077109867706894875, -0.09680664539337158, -0.10674425214529037, -0.04190007597208023, 0.11223621666431427, -0.028895888477563858, 0.04973142594099045, 0.03204189985990524, 0.025549154728651047, 0.04073726013302803, -0.07502748817205429, -0.004099475219845772, -0.057269386947155, -0.07543683797121048, 0.015329168178141117, -0.021993599832057953, 0.07933898270130157, 0.07171063870191574, -0.060405075550079346, -0.04112841933965683, -0.054443955421447754, 0.1424046754837036, -0.033461276441812515, -0.008397798985242844, 0.13141675293445587, 0.018280761316418648, 0.011143816635012627, 0.09490962326526642, -0.02798866666853428, -0.07548297941684723, 0.018390459939837456, 0.04010096937417984, -0.07593274116516113, -0.11618576943874359, -0.07621854543685913, -0.08792778849601746, -0.021621569991111755, 0.064629465341568, 0.05226282775402069, -0.06371483206748962, 0.06347972899675369, -0.044334713369607925, 0.029781725257635117, 0.07205430418252945, 0.06363935768604279, 0.2072451412677765, -0.039225444197654724, 0.11332476884126663, -0.05057855695486069, -0.027197211980819702, 0.11222201585769653, -0.017081405967473984, 0.28833281993865967, 0.0011011636815965176, 0.042264290153980255, 0.05037584528326988, 0.02950086072087288, 0.04901953786611557, 0.06764242798089981, 0.0150227602571249, -0.002321158070117235, -0.10648220777511597, -0.039969757199287415, -0.10668492317199707, 0.04073585569858551, 0.004746119491755962, 0.039491988718509674, -0.06060943007469177, 0.16536712646484375, 0.05764754116535187, 0.10211113095283508, 0.02294567972421646, -0.14402823150157928, -0.08195966482162476, 0.05690576881170273, -0.057397641241550446, -0.06064065918326378, 0.07079954445362091, 0.19864295423030853, -0.02863660827279091, -0.002819571178406477, -0.02633775770664215, 0.08721208572387695, -0.0939207524061203, 0.06486651301383972, -0.16670602560043335, 0.05371338129043579, 0.0194519255310297, 0.053322479128837585, -0.09555333107709885, 0.1794680804014206, -0.006332975346595049, 0.11607544124126434, -0.0025362474843859673, -0.014150241389870644, 0.011884997598826885, 0.0709087923169136, 0.08158598095178604, 0.009139420464634895, -0.11805599182844162, -0.0614018552005291, -0.05998557433485985, 0.0898224264383316, 0.04246465116739273, 0.0608428493142128, 0.022045008838176727, -0.11872383952140808, 0.03834427893161774, 0.019006220623850822, 0.010311035439372063, -0.09042927622795105, -0.14204680919647217, 0.053195416927337646, 0.003869902342557907, -0.0008504614233970642, -0.07334472239017487, -0.026116030290722847, 0.06135173514485359, 0.15544281899929047, -0.04159676283597946, -0.007038542069494724, -0.13250476121902466, 0.10659962892532349, 0.07167449593544006, -0.03161819279193878, 0.036090824753046036, 0.025026828050613403, 0.11863476037979126, -0.0017752442508935928, -0.08982200920581818, -0.007562275044620037, -0.04259105026721954, -0.0843803733587265, 0.007720606401562691, 0.035107433795928955, -0.010025382041931152, 0.03124872036278248, 0.032349810004234314, 0.035978712141513824, 0.0347563698887825, -0.08230418711900711, -0.03224988654255867, 0.14065249264240265, -0.08677154779434204, -0.017912723124027252, 0.004625555593520403, -0.06256015598773956, -0.054091792553663254, -0.0005771045107394457, 0.013485155999660492, 0.14188292622566223, -0.020344795659184456, 0.07975122332572937, 0.09275130927562714, -0.04227009043097496, -0.1949392557144165, -0.03981216251850128, -0.021535227075219154, 0.055531036108732224, 0.055831458419561386, -0.03175777196884155, 0.11488272249698639, 0.054695162922143936, -0.01509049627929926, -0.09105415642261505, -0.16632714867591858, -0.0935048758983612, 0.06017349287867546, 0.10928599536418915, 0.2854235768318176, -0.057436488568782806, -0.005070056300610304, -0.07830788940191269, 0.07348570227622986, 0.047541528940200806, 0.023398274555802345, 0.12167638540267944, 0.022271431982517242, -0.05806071311235428, 0.04681900516152382, 0.017863217741250992, 0.1637338101863861, -0.05165723338723183, 0.0432114340364933, 0.012233215384185314, -0.03279704973101616, 0.10187070071697235, -0.026330765336751938, 0.008512403815984726, 0.07951107621192932, 0.0652972161769867, -0.03737778961658478, -0.07116018980741501, 0.02280888706445694, 0.02568984217941761, 0.04264112934470177, -0.047199755907058716, -0.06585618108510971, 0.026226598769426346, 0.09763118624687195, -0.003228774294257164, 0.08090871572494507, -0.029292892664670944, -0.05143469572067261, 0.046317555010318756, 0.0824688971042633, -0.10989867150783539, -0.09313298761844635, 0.0017757406458258629, 0.01949727162718773, 0.09885881096124649, -0.14401865005493164, 0.06095025688409805, 0.05929173156619072, 0.033893316984176636, 0.01962875947356224, 0.01954222470521927, -0.0316578671336174, 0.029319612309336662, 0.043560490012168884, -0.013870909810066223, -0.22987481951713562, -0.003962344024330378, 0.13118605315685272, 0.0007550641894340515, 0.08783043175935745, 0.12838409841060638, -0.1233106255531311, 0.030270490795373917, -0.021269943565130234, 0.042860932648181915, -0.0249941423535347, 0.16309718787670135, -0.012346457690000534, 0.03350953012704849, -0.06774398684501648, 0.09237178415060043, 0.08096881955862045, -0.17909252643585205, 0.02835092321038246, -0.1332818567752838, -0.09324629604816437, -0.024456270039081573, -0.06933505088090897, -0.050658851861953735, 0.06710917502641678, -0.06763248890638351, -0.019759932532906532, -0.10069018602371216, 0.03199765831232071, 0.03951653838157654, 0.04478519782423973, 0.09458000957965851, -0.12913694977760315, 0.022019078955054283, -0.08268897980451584, 0.01395430788397789, 0.039828769862651825, 0.03508136048913002, -0.13371175527572632, -0.037773460149765015, -0.014708956703543663, 0.021869253367185593, -0.06622184067964554, -0.07680561393499374, -0.07415524870157242, -0.03145141899585724, -0.05308949202299118, 0.053722672164440155, -0.036185212433338165, -0.03507058322429657, 0.033112023025751114, -0.04410577565431595, -0.0670723170042038, 0.04406549036502838, -0.005009796470403671, 0.033432405441999435, -0.009415879845619202, 0.030344313010573387, -0.055903710424900055, 0.03595828637480736, 0.04811089113354683, -0.040303681045770645, 0.03128107264637947, -0.024200521409511566, -0.023117493838071823, 0.043260738253593445, -0.025673313066363335, -0.07981275022029877, 0.07103458046913147, 0.04648670554161072, 0.010262897238135338, -0.058862753212451935, 0.02414833754301071, 0.029637262225151062, 0.039458177983760834, -0.03280157595872879, 0.11577349901199341, -0.06193249300122261, -0.03643924742937088, -0.07645216584205627, -0.05274266004562378, -0.02381225675344467, -0.05346483737230301, 0.03505587577819824, 0.05014825612306595, 0.11577323079109192, -0.009588600136339664, -0.07411583513021469, -0.1201791912317276, 0.013915998861193657, -0.02331618219614029, -0.06887172907590866, -0.07816644012928009, -0.09294266998767853, 0.03987426310777664, 0.0029966249130666256, 0.0862862691283226, 0.007121473550796509, -0.020539002493023872, 0.06232486292719841, 0.0025047827512025833, -0.054992083460092545, 0.04250131547451019, 0.16415072977542877, 0.0772240087389946, 0.014234337955713272, 0.037328869104385376, -0.006402813829481602, 0.030051955953240395, 0.12180152535438538, 0.06854332983493805, 0.197196364402771, -0.17032259702682495, 0.09341811388731003, -0.0913582295179367, -0.011286944150924683, -0.021543113514780998, 0.1041875034570694, -0.07916823029518127, 0.010072270408272743, -0.00305214524269104, -0.09401912987232208, 0.19072353839874268, -0.09258383512496948, 0.054361023008823395, -0.06800005584955215, -0.05039616674184799, -0.10414624959230423, -0.1795417219400406, -0.09618981182575226, -0.048093535006046295, -0.02101431041955948, -0.12027692794799805, -0.020043697208166122, 0.16425584256649017, 0.030389416962862015, -0.007776668295264244, 0.11753136664628983, -0.07151969522237778, -0.029827969148755074, 0.05315925553441048, -0.020685449242591858, -0.03139929845929146, 0.01615256816148758, -0.007626168429851532, 0.01251247525215149, 0.06771782785654068, 0.0329427532851696, 0.01715441420674324, 0.05870671942830086, 0.01621127314865589, 0.023471474647521973, -0.014096466824412346, -0.009028397500514984, -0.025711873546242714, -0.00926601979881525, 0.015893224626779556, 0.03174743056297302, -0.10302428156137466, 0.017596526071429253, 0.271595299243927, -0.028454318642616272, -0.10880245268344879, -0.10821689665317535, 0.2020730823278427, 0.03293361887335777, 0.07113976776599884, 0.0031127221882343292, -0.041772980242967606, 0.016788218170404434, 0.1522122621536255, 0.0932421013712883, -0.031148821115493774, -0.044557031244039536, -0.06386048346757889, -0.0008060578256845474, -0.057030562311410904, 0.10592588782310486, -0.05935986340045929, 0.178852841258049, -0.0374157577753067, 0.033482618629932404, -0.02672642469406128, -0.03139832615852356, -0.005964735988527536, 0.06552711129188538, 0.03386051952838898, 0.03362658992409706, -0.06147050857543945, 0.06125805526971817, 0.03244361653923988, -0.1852448582649231, 0.013421133160591125, -0.08192574977874756, -0.08026396483182907, -0.01881636679172516, 0.034327343106269836, -0.03915680944919586, 0.04584445431828499, -0.06784096360206604, 0.0546066015958786, -0.02831430733203888, 0.05845874547958374, -0.08860109746456146, 0.04418425261974335, 0.0665753036737442, 0.033922262489795685, 0.0524817518889904, 0.007717145141214132, 0.03647327423095703, 0.021101314574480057, 0.0076508536003530025, -0.09148460626602173, 0.05884843319654465, -0.022430283948779106, -0.1242201030254364, 0.03361576795578003, 0.13512802124023438, -0.012192951515316963, 0.10842449218034744, 0.09608305245637894, -0.07687018066644669, -0.0351850800216198, 0.04837058484554291, -0.0002419501543045044, 0.008620926178991795, 0.03651341423392296, -0.11163608729839325, 0.1017691045999527, 0.05171907693147659, -0.022008705884218216, 0.02616765722632408, -0.1091412901878357, 0.08306620270013809, 0.0377480611205101, 0.08159278333187103, 0.023817185312509537, -0.1904934048652649, -0.061112694442272186, -0.1427471935749054, -0.011062034405767918, -0.14746630191802979, -0.06428710371255875, -0.011942919343709946, -0.0037405998446047306, 0.006386231165379286, 0.11518198251724243, 0.057647231966257095, -0.039269015192985535, -0.050212495028972626, -0.12957341969013214, 0.01721283048391342, 0.08073912560939789, -0.044409461319446564, -0.025000350549817085 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl This model is a fine-tuned version of [gpt2-xl](https://huggingface.co/gpt2-xl) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa dataset. It achieves the following results on the evaluation set: - Loss: 0.4650 - Accuracy: 0.7664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.9537 | 1.0 | 2179 | 0.6693 | 1.5623 | | 1.4734 | 2.0 | 4358 | 0.6924 | 1.2099 | | 1.0665 | 3.0 | 6537 | 0.7147 | 0.9178 | | 0.7684 | 4.0 | 8716 | 0.7331 | 0.6988 | | 0.548 | 5.0 | 10895 | 0.7466 | 0.5567 | | 0.4039 | 6.0 | 13074 | 0.7551 | 0.4728 | | 0.3044 | 7.0 | 15253 | 0.7600 | 0.4376 | | 0.2446 | 8.0 | 17432 | 0.7628 | 0.4220 | | 0.2039 | 9.0 | 19611 | 0.7642 | 0.4190 | | 0.1787 | 10.0 | 21790 | 0.7649 | 0.4250 | | 0.1652 | 11.0 | 23969 | 0.7654 | 0.4295 | | 0.154 | 12.0 | 26148 | 0.7655 | 0.4366 | | 0.1441 | 13.0 | 28327 | 0.7657 | 0.4429 | | 0.143 | 14.0 | 30506 | 0.7657 | 0.4418 | | 0.1366 | 15.0 | 32685 | 0.7661 | 0.4469 | | 0.1335 | 16.0 | 34864 | 0.7661 | 0.4517 | | 0.1299 | 17.0 | 37043 | 0.7662 | 0.4534 | | 0.1271 | 18.0 | 39222 | 0.7664 | 0.4579 | | 0.1268 | 19.0 | 41401 | 0.7664 | 0.4556 | | 0.1238 | 20.0 | 43580 | 0.4650 | 0.7664 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa"], "metrics": ["accuracy"], "base_model": "gpt2-xl", "model-index": [{"name": "lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl", "results": [{"task": {"type": "text-generation", "name": "Causal Language Modeling"}, "dataset": {"name": "tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa", "type": "tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa"}, "metrics": [{"type": "accuracy", "value": 0.7664424114149346, "name": "Accuracy"}]}]}]}
text-generation
tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa", "base_model:gpt2-xl", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:32:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
lmind\_hotpot\_train8000\_eval7405\_v1\_recite\_qa\_gpt2-xl =========================================================== This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind\_hotpot\_train8000\_eval7405\_v1\_recite\_qa dataset. It achieves the following results on the evaluation set: * Loss: 0.4650 * Accuracy: 0.7664 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: constant * num\_epochs: 20.0 ### Training results ### Framework versions * Transformers 4.34.0 * Pytorch 2.1.0+cu121 * Datasets 2.14.5 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ 102, 99, 4, 33 ]
[ "passage: TAGS\n#transformers #pytorch #gpt2 #text-generation #generated_from_trainer #dataset-tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa #base_model-gpt2-xl #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\n* num\\_epochs: 20.0### Training results### Framework versions\n\n\n* Transformers 4.34.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.5\n* Tokenizers 0.14.1" ]
[ -0.1398295909166336, 0.16080345213413239, -0.002637510886415839, 0.11321712285280228, 0.13704600930213928, 0.04633144289255142, 0.11846935003995895, 0.16095653176307678, -0.07725586742162704, 0.08065298944711685, 0.1328427642583847, 0.11043626815080643, 0.05979682505130768, 0.16681820154190063, -0.026432156562805176, -0.2282685935497284, 0.01420141663402319, 0.028854161500930786, -0.04202336072921753, 0.14484064280986786, 0.08269155770540237, -0.12182462960481644, 0.0943894013762474, -0.0025144307874143124, -0.18877354264259338, -0.040753092616796494, -0.023278141394257545, -0.04516035318374634, 0.11487169563770294, 0.010393467731773853, 0.0781862884759903, 0.043216072022914886, 0.07623261958360672, -0.1596805453300476, 0.006077693309634924, 0.041038982570171356, -0.002023520413786173, 0.10570226609706879, 0.06193291023373604, -0.023771362379193306, 0.09092733263969421, -0.0762389674782753, 0.02368873916566372, 0.0261191688477993, -0.12843769788742065, -0.17440512776374817, -0.10435158759355545, 0.10361221432685852, 0.052936699241399765, 0.08678355067968369, -0.015825632959604263, 0.10037203133106232, -0.07242412120103836, 0.08132877200841904, 0.25234201550483704, -0.29800108075141907, -0.055391378700733185, 0.04474775120615959, 0.012230793945491314, 0.0650746300816536, -0.10153650492429733, -0.042298417538404465, 0.03663003072142601, 0.035252586007118225, 0.10678216069936752, -0.0053518107160925865, -0.04095438867807388, 0.008025857619941235, -0.13706792891025543, -0.06378545612096786, 0.16591855883598328, 0.04411924630403519, -0.03714125603437424, -0.03863092511892319, -0.07035613805055618, -0.22290664911270142, -0.02573132887482643, 0.024509036913514137, 0.030121533200144768, -0.042671628296375275, -0.07467781752347946, 0.0034523492213338614, -0.07771110534667969, -0.06566409021615982, -0.017593806609511375, 0.0683884546160698, 0.049914442002773285, 0.010494130663573742, -0.007559917401522398, 0.1343371719121933, 0.0034627995919436216, -0.15305469930171967, -0.005654365289956331, 0.006268022581934929, 0.010148350149393082, -0.017542432993650436, -0.0362122543156147, 0.014501255936920643, 0.02741425111889839, 0.13084401190280914, -0.05098764970898628, 0.037841759622097015, 0.026959657669067383, 0.03314922749996185, -0.07317890226840973, 0.15203577280044556, -0.08892903476953506, -0.04522062465548515, 0.021425239741802216, 0.09948112070560455, 0.011404016986489296, -0.015733348205685616, -0.10729160904884338, -0.02366320602595806, 0.15071552991867065, 0.033460069447755814, -0.025549225509166718, 0.06112442538142204, -0.05777217075228691, -0.04225683584809303, 0.041718848049640656, -0.09116744995117188, 0.004546151962131262, 0.022281138226389885, -0.10076560825109482, -0.015921281650662422, 0.01105777733027935, -0.00011939108662772924, -0.040116265416145325, 0.06395377218723297, -0.11703590303659439, 0.008190248161554337, -0.062443867325782776, -0.10033383220434189, 0.014199829660356045, -0.10581611096858978, -0.00391424261033535, -0.07337231934070587, -0.19175180792808533, -0.03765572980046272, 0.02140345424413681, -0.058651071041822433, -0.08694503456354141, -0.070091612637043, -0.09686513990163803, 0.023792985826730728, -0.01545644085854292, 0.09998350590467453, -0.05950706824660301, 0.12281111627817154, 0.02521800622344017, 0.06711318343877792, -0.0073606232181191444, 0.060008518397808075, -0.08513463288545609, 0.043474696576595306, -0.14742381870746613, 0.08170367777347565, -0.04202594608068466, 0.0417621023952961, -0.09681420028209686, -0.12065958231687546, 0.029683582484722137, -0.04749233275651932, 0.09583372622728348, 0.14355547726154327, -0.15814484655857086, -0.06581392884254456, 0.1940862387418747, -0.062227118760347366, -0.128679096698761, 0.10614433884620667, -0.03988192602992058, -0.006383908912539482, 0.05280212685465813, 0.18274421989917755, 0.06379193812608719, -0.05432400852441788, -0.04745165631175041, -0.023221207782626152, 0.0811404213309288, -0.06200158968567848, 0.10774281620979309, 0.009959963150322437, 0.03302569314837456, 0.02631407231092453, -0.057642463594675064, 0.04272090643644333, -0.12112658470869064, -0.0941508561372757, -0.03835593909025192, -0.09888729453086853, 0.06483394652605057, 0.04105924069881439, 0.06535010784864426, -0.0779673382639885, -0.08981051295995712, 0.021280312910676003, 0.11352474242448807, -0.07986035197973251, 0.012263228185474873, -0.06494608521461487, 0.13481561839580536, -0.06341956555843353, -0.01671198010444641, -0.16560541093349457, -0.05263327434659004, 0.02507396787405014, 0.019985314458608627, 0.004493323620408773, -0.0123836575075984, 0.055641889572143555, 0.08730626106262207, -0.034418873488903046, -0.053747616708278656, -0.05111498758196831, -0.023685840889811516, -0.11697173863649368, -0.19124950468540192, -0.07069336622953415, 0.003909028600901365, 0.19924810528755188, -0.19026067852973938, 0.0354890376329422, 0.004464608151465654, 0.09996076673269272, -0.00019660840916913003, -0.03954875469207764, 0.004265603143721819, 0.05654199793934822, -0.03985553979873657, -0.06594610959291458, 0.07323113083839417, 0.010866924189031124, -0.07876569777727127, -0.009241747669875622, -0.10988443344831467, 0.14217506349086761, 0.1224587932229042, -0.015409672632813454, -0.07182780653238297, -0.01869390346109867, -0.07808324694633484, -0.03285638615489006, -0.008340464904904366, 0.0089925117790699, 0.1297570765018463, 0.0042898389510810375, 0.1430373638868332, -0.08743990957736969, -0.05351768806576729, 0.032990239560604095, -0.004937760066241026, 0.027536999434232712, 0.1381528228521347, 0.09205339103937149, -0.052761875092983246, 0.1558331549167633, 0.0714743509888649, -0.03218560665845871, 0.1201988160610199, -0.04162925109267235, -0.08532252162694931, -0.04189164936542511, 0.00837981328368187, -0.00020884760306216776, 0.1033799946308136, -0.1297246366739273, -0.013229862786829472, 0.04378128424286842, 0.017955686897039413, 0.02596130035817623, -0.19466230273246765, -0.03705497086048126, 0.01954369992017746, -0.07212676852941513, -0.043112438172101974, -0.003287272062152624, 0.010874913074076176, 0.11620073020458221, 0.014355958439409733, -0.04755403473973274, 0.026059802621603012, 0.004531951155513525, -0.08470480889081955, 0.202593132853508, -0.08279895782470703, -0.14325259625911713, -0.11137135326862335, -0.03996134176850319, -0.06623121351003647, 0.003381905145943165, 0.04576478525996208, -0.06927512586116791, -0.005380549468100071, -0.06715475022792816, 0.013099711388349533, -0.013795447535812855, 0.02617376297712326, 0.013181258924305439, -0.021496949717402458, 0.05325404554605484, -0.11031504720449448, -0.009618062525987625, -0.031888943165540695, -0.06448279321193695, 0.060220494866371155, 0.016799701377749443, 0.10618691146373749, 0.13748900592327118, -0.009209888987243176, 0.02583327703177929, -0.02501291036605835, 0.2731781005859375, -0.05151362717151642, -0.01685010828077793, 0.11916591227054596, 0.016719559207558632, 0.07629866898059845, 0.11861772835254669, 0.0389723926782608, -0.07634100317955017, -0.011130301281809807, 0.013897853903472424, -0.024449916556477547, -0.2261083722114563, -0.043443575501441956, -0.0529136136174202, 0.00671206833794713, 0.0990055501461029, 0.030125359073281288, 0.01843617483973503, 0.08246395736932755, -0.013040644116699696, 0.08005987107753754, -0.04725442826747894, 0.06959323585033417, 0.08195379376411438, 0.049716513603925705, 0.12014617770910263, -0.022416818886995316, -0.024742724373936653, 0.046488206833601, 0.007640207652002573, 0.2361537516117096, -0.05698932707309723, 0.16575710475444794, 0.049925222992897034, 0.21740245819091797, 0.010812365449965, 0.07631640881299973, -0.02266293205320835, 0.005335919093340635, -0.006448453292250633, -0.05205945670604706, -0.06432328373193741, 0.0046213651075959206, -0.023524921387434006, 0.058892764151096344, -0.1349937617778778, 0.012745451182126999, 0.04604514315724373, 0.2592747211456299, 0.06998146325349808, -0.3575083911418915, -0.10272487252950668, -0.004758052062243223, 0.007384933065623045, -0.03319366276264191, 0.0011735379230231047, 0.0968407467007637, -0.1179564818739891, 0.014274423941969872, -0.05813819169998169, 0.09021274000406265, -0.07468681782484055, 0.020831558853387833, 0.05546505004167557, 0.07679055631160736, -0.0008801411604508758, 0.07943793386220932, -0.2539018392562866, 0.2453872114419937, 0.007767663337290287, 0.051006440073251724, -0.06746837496757507, -0.004633971955627203, 0.01670978032052517, 0.024244699627161026, 0.08402816206216812, 0.00949193723499775, 0.017787223681807518, -0.2070980668067932, -0.12735524773597717, 0.027536766603589058, 0.07926755398511887, -0.0738801583647728, 0.12477266788482666, -0.011738643981516361, -0.002640144433826208, 0.02259126305580139, 0.017395436763763428, -0.047629036009311676, -0.08395078778266907, 0.03141941875219345, 0.005186918657273054, 0.03082329034805298, -0.06365276873111725, -0.1115010678768158, -0.08238014578819275, 0.14035020768642426, -0.06290452182292938, -0.08513659983873367, -0.11092209070920944, 0.0947883203625679, 0.1267545372247696, -0.101903535425663, 0.02941669337451458, 0.0010500123025849462, 0.08664003759622574, 0.02390585094690323, -0.07039834558963776, 0.07908502966165543, -0.04917428642511368, -0.20707328617572784, -0.043852273374795914, 0.14587560296058655, 0.03075297363102436, 0.07303488999605179, -0.016461575403809547, 0.02482183463871479, -0.04248623549938202, -0.09129247814416885, 0.03195883333683014, 0.0035135108046233654, 0.09215035289525986, 0.02494015544652939, -0.05167502164840698, 0.03663109987974167, -0.06421337276697159, -0.013039539568126202, 0.176188126206398, 0.25304079055786133, -0.0886668935418129, 0.05115421861410141, 0.0342828594148159, -0.06401041150093079, -0.16227546334266663, 0.005433990154415369, 0.0839693620800972, 0.027417754754424095, -0.010813041590154171, -0.21346336603164673, 0.0667315423488617, 0.11874064803123474, -0.010328013449907303, 0.13046954572200775, -0.3494678735733032, -0.11151688545942307, 0.06493376195430756, 0.10883302241563797, 0.10625051707029343, -0.1667664647102356, -0.055707890540361404, 0.008302046917378902, -0.17983780801296234, 0.11533930152654648, -0.0610060915350914, 0.1333015114068985, -0.056899551302194595, 0.097449891269207, 0.0168791301548481, -0.06075841933488846, 0.12804670631885529, 0.053910065442323685, 0.05355741083621979, -0.0580664724111557, -0.039753079414367676, 0.08274736255407333, -0.05678325518965721, 0.04372870549559593, -0.07800289988517761, 0.06785884499549866, -0.14690804481506348, -0.008357102051377296, -0.10399314761161804, 0.014969338662922382, -0.04719744622707367, -0.0503154918551445, -0.030825285241007805, 0.04596887528896332, 0.06524240225553513, -0.00037286008591763675, 0.07889137417078018, 0.033834800124168396, 0.142006054520607, 0.09131606668233871, 0.037445180118083954, -0.046303559094667435, -0.08028344810009003, -0.030295880511403084, -0.009332257322967052, 0.035681936889886856, -0.12872186303138733, 0.007885189726948738, 0.15876652300357819, 0.03902231156826019, 0.13291507959365845, 0.07836024463176727, -0.05271681770682335, 0.027427876368165016, 0.056113891303539276, -0.1766480803489685, -0.08077697455883026, -0.02351337857544422, -0.05401850491762161, -0.13897418975830078, 0.03514118865132332, 0.09830738604068756, -0.06673278659582138, -0.036872733384370804, -0.01340697892010212, 0.028971683233976364, -0.022347895428538322, 0.1953621804714203, 0.06304088979959488, 0.07668383419513702, -0.12401258200407028, 0.06140792369842529, 0.06258286535739899, -0.04262911528348923, 0.026668477803468704, 0.08420027047395706, -0.10700424015522003, -0.021889109164476395, 0.03919307142496109, 0.13848762214183807, -0.07372260838747025, -0.0155424689874053, -0.13100405037403107, -0.09797711670398712, 0.08362455666065216, 0.10946561396121979, 0.07729621231555939, 0.05268761143088341, -0.01190682128071785, -0.01650867983698845, -0.1198495551943779, 0.09762796759605408, 0.05952664092183113, 0.06369801610708237, -0.12594300508499146, 0.1587381511926651, -0.015589545480906963, 0.06531599909067154, -0.008976566605269909, 0.015557095408439636, -0.10894839465618134, -0.010951755568385124, -0.11281125247478485, 0.0011555930832400918, -0.05415024235844612, -0.010644976049661636, -0.03265802562236786, -0.05061367526650429, -0.050250545144081116, 0.02588687092065811, -0.10466524213552475, -0.05129748210310936, -0.009088770486414433, 0.04911411553621292, -0.13134033977985382, -0.015211955644190311, 0.011379793286323547, -0.0845806747674942, 0.1119021475315094, 0.08071114867925644, 0.02139224484562874, 0.02699577808380127, -0.0644005835056305, -0.005194595083594322, 0.013540104031562805, -0.0018824095604941249, 0.06763763725757599, -0.10114911198616028, 0.009019648656249046, -0.02333390899002552, 0.006598571315407753, 0.023270882666110992, 0.07065965980291367, -0.1360505372285843, -0.007405846379697323, -0.027664540335536003, -0.015255095437169075, -0.07439254224300385, 0.06083359569311142, 0.08038903027772903, 0.023101570084691048, 0.15039704740047455, -0.06025294214487076, 0.05585183948278427, -0.2367458939552307, -0.014581480994820595, -0.011598477140069008, -0.08743994683027267, -0.10476067662239075, -0.04104750603437424, 0.07878776639699936, -0.052895303815603256, 0.10832230746746063, -0.017882386222481728, 0.019812406972050667, 0.007479580119252205, 0.011458862572908401, -0.0028344427701085806, 0.010413535870611668, 0.19850672781467438, 0.0447622612118721, -0.039721500128507614, 0.07426755130290985, 0.045633163303136826, 0.07210683822631836, 0.09018222242593765, 0.19052118062973022, 0.09530847519636154, 0.04517855867743492, 0.07114281505346298, 0.05597642436623573, -0.07427431643009186, -0.16637107729911804, 0.05273314192891121, -0.04777195304632187, 0.09661892056465149, -0.0191358495503664, 0.21978309750556946, 0.09277592599391937, -0.1742587387561798, 0.042362529784440994, -0.03888971358537674, -0.09300848096609116, -0.09000228345394135, -0.07157966494560242, -0.08015742152929306, -0.14059343934059143, 0.006321514490991831, -0.14117571711540222, 0.016233021393418312, 0.12133171409368515, 0.01829073205590248, -0.010643022134900093, 0.11095724254846573, 0.06610289216041565, 0.002583507215604186, 0.05079501494765282, 0.01621962897479534, -0.012645273469388485, -0.07360728085041046, -0.07718662917613983, 0.029983393847942352, -0.00031343151931650937, 0.0732535868883133, -0.03326094150543213, -0.015694374218583107, 0.04411282762885094, -0.019597964361310005, -0.10620559006929398, 0.008390011265873909, 0.010668772272765636, 0.07930420339107513, 0.062048688530921936, 0.0030517657287418842, 0.008092553354799747, -0.02738317847251892, 0.20993703603744507, -0.048303794115781784, -0.04351719841361046, -0.10468380153179169, 0.19717621803283691, 0.03354230150580406, -0.04786624014377594, 0.06549561768770218, -0.08792849630117416, 0.007732027675956488, 0.2051735371351242, 0.2070668786764145, -0.08060473948717117, -0.022598810493946075, 0.020532574504613876, -0.011694658547639847, 0.005536717362701893, 0.09461893141269684, 0.12447766214609146, 0.06907770037651062, -0.10228264331817627, -0.008893913589417934, -0.06263291835784912, -0.014324177987873554, -0.023368818685412407, 0.07292594760656357, 0.013559551909565926, 0.004463815130293369, -0.043066494166851044, 0.04700002446770668, -0.09960105270147324, -0.08386508375406265, 0.03307701647281647, -0.21942058205604553, -0.1840343028306961, -0.026552263647317886, 0.03728463128209114, 0.034331314265728, 0.06641314178705215, -0.015823492780327797, 0.007245872635394335, 0.1015232726931572, -0.019787510856986046, -0.0996956005692482, -0.07809016853570938, 0.09119773656129837, -0.04633782058954239, 0.18795888125896454, -0.03868849202990532, 0.05848552659153938, 0.12467065453529358, 0.052706312388181686, -0.1290372759103775, 0.027874257415533066, 0.05939257889986038, -0.04805470630526543, 0.018387002870440483, 0.1121939942240715, -0.020938722416758537, 0.04160301014780998, 0.03929590806365013, -0.09495219588279724, -0.017718961462378502, -0.01847955957055092, -0.011482336558401585, -0.05753156915307045, -0.03631902486085892, -0.034657999873161316, 0.1444166600704193, 0.21427710354328156, -0.06868653744459152, -0.015042615123093128, -0.06831042468547821, 0.0033660901244729757, 0.05209674686193466, 0.03776806592941284, -0.03852604329586029, -0.23762644827365875, 0.010077384300529957, 0.03795548900961876, 0.0061223478987813, -0.24193382263183594, -0.06589389592409134, 0.003866044105961919, -0.054938044399023056, -0.10722503811120987, 0.1126878559589386, 0.05014936253428459, 0.055973879992961884, -0.04916579648852348, 0.014233456924557686, -0.08098839968442917, 0.15436260402202606, -0.15952353179454803, -0.10578668117523193 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
{"library_name": "peft", "base_model": "mistralai/Mixtral-8x7B-v0.1"}
null
Krisbiantoro/mixtral-id-chatml-700
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mixtral-8x7B-v0.1", "region:us" ]
2024-02-07T02:32:15+00:00
[ "1910.09700" ]
[]
TAGS #peft #tensorboard #safetensors #arxiv-1910.09700 #base_model-mistralai/Mixtral-8x7B-v0.1 #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.7.2.dev0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ "TAGS\n#peft #tensorboard #safetensors #arxiv-1910.09700 #base_model-mistralai/Mixtral-8x7B-v0.1 #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ 46, 6, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 14 ]
[ "passage: TAGS\n#peft #tensorboard #safetensors #arxiv-1910.09700 #base_model-mistralai/Mixtral-8x7B-v0.1 #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ -0.11452840268611908, 0.20770102739334106, -0.003536192001774907, 0.02621976099908352, 0.07501813769340515, 0.015439551323652267, 0.07265464961528778, 0.13011525571346283, 0.02282065525650978, 0.13219135999679565, 0.06033185124397278, 0.11527051031589508, 0.11358703672885895, 0.20430400967597961, -0.004787145182490349, -0.17786675691604614, 0.020795417949557304, -0.058679983019828796, 0.01895478181540966, 0.1268366277217865, 0.1342477798461914, -0.09384733438491821, 0.07286559045314789, -0.020514531061053276, -0.01174569595605135, -0.032934386283159256, -0.06397457420825958, -0.013232933357357979, 0.046645332127809525, 0.034228354692459106, 0.056560516357421875, 0.000003203717369615333, 0.08704663813114166, -0.2597137689590454, 0.01380851585417986, 0.05536508932709694, -0.013196664862334728, 0.0848989486694336, 0.10902126133441925, -0.047565311193466187, 0.1174967810511589, -0.044861625880002975, 0.13424715399742126, 0.08057372272014618, -0.10789141058921814, -0.21456874907016754, -0.0696173831820488, 0.07879366725683212, 0.17983606457710266, 0.07013759762048721, -0.03803468495607376, 0.12072862684726715, -0.06071881949901581, 0.026014212518930435, 0.08346635103225708, -0.11320272833108902, -0.06688769906759262, 0.08295276761054993, 0.13053524494171143, 0.08263832330703735, -0.12136472016572952, -0.035555168986320496, 0.026441801339387894, 0.045679934322834015, 0.07493790984153748, 0.008041405119001865, 0.17827191948890686, 0.0347827672958374, -0.14244239032268524, -0.0525832362473011, 0.09567738324403763, 0.004614652134478092, -0.037006184458732605, -0.21892938017845154, -0.014539807103574276, -0.09590781480073929, -0.03787452355027199, -0.053406618535518646, 0.033534739166498184, 0.013801265507936478, 0.10555539280176163, -0.050470829010009766, -0.07915300875902176, -0.013118650764226913, 0.11569813638925552, 0.06496059149503708, 0.01083049364387989, -0.019382381811738014, -0.004321618005633354, 0.12142791599035263, 0.06706342846155167, -0.12573719024658203, -0.05647919699549675, -0.05888354405760765, -0.032105788588523865, -0.020021723583340645, 0.05174713954329491, 0.007970472797751427, 0.03480026125907898, 0.26218515634536743, -0.018572648987174034, 0.06716626137495041, 0.04290563613176346, 0.01441981177777052, 0.02546624280512333, 0.10453013330698013, -0.038005709648132324, -0.19566266238689423, -0.011417774483561516, 0.1005411148071289, 0.008120528422296047, -0.028938889503479004, -0.051063645631074905, 0.021086756139993668, 0.041739825159311295, 0.11806681007146835, 0.10752354562282562, -0.0219286922365427, -0.059081487357616425, -0.061145003885030746, 0.20788201689720154, -0.15233662724494934, 0.05721485614776611, 0.02737128548324108, -0.004114609211683273, -0.06418909132480621, 0.019402893260121346, 0.00026014246395789087, -0.044234734028577805, 0.10251492261886597, -0.06164507940411568, -0.04185623303055763, -0.11931819468736649, -0.0486174076795578, 0.03645549342036247, -0.030055470764636993, -0.0546887069940567, -0.02748965099453926, -0.08251608163118362, -0.10694020241498947, 0.1005372703075409, -0.05368606373667717, -0.05146199092268944, -0.027836203575134277, -0.06834883242845535, 0.029708627611398697, 0.027706164866685867, 0.06215353310108185, -0.028687767684459686, 0.044549040496349335, -0.030384736135601997, 0.0687129870057106, 0.08494442701339722, 0.03864484652876854, -0.07210583984851837, 0.06792531162500381, -0.17781159281730652, 0.08191125839948654, -0.0603812113404274, 0.02576405741274357, -0.16198010742664337, 0.004793447908014059, 0.0014810212887823582, 0.026848457753658295, 0.05331256985664368, 0.15025873482227325, -0.19463177025318146, -0.03159056976437569, 0.18135789036750793, -0.10052265971899033, -0.11115431785583496, 0.03346474468708038, -0.045914944261312485, 0.16868172585964203, 0.040353234857320786, 0.01149996742606163, 0.09953942149877548, -0.1552104353904724, -0.01659570261836052, -0.03602045774459839, 0.013108503073453903, 0.049677442759275436, 0.06522632390260696, -0.08453000336885452, 0.009743398055434227, 0.00810884591192007, -0.04818582907319069, -0.018982579931616783, -0.036398082971572876, -0.09056159108877182, 0.005165010690689087, -0.08006231486797333, 0.0020761964842677116, 0.009097333997488022, -0.08539512753486633, -0.011553426273167133, -0.14077363908290863, -0.01294606365263462, 0.07150174677371979, 0.0061983149498701096, -0.0056957281194627285, -0.07900595664978027, 0.03666229918599129, -0.06022055074572563, -0.013052350841462612, -0.15405796468257904, -0.0011209127260372043, 0.021514395251870155, -0.14344380795955658, 0.011375870555639267, -0.1465400755405426, 0.07573793828487396, 0.012197467498481274, -0.05993088707327843, -0.0361594632267952, 0.023308657109737396, -0.008612209931015968, -0.07369867712259293, -0.22385218739509583, -0.03060087189078331, -0.053917452692985535, 0.11325854063034058, -0.21450376510620117, 0.04937378689646721, 0.007769700139760971, 0.1163010373711586, 0.014042928814888, -0.07048200815916061, 0.029664969071745872, -0.05663533881306648, -0.021938154473900795, -0.0733657106757164, -0.005101561080664396, 0.0037095907609909773, -0.021105578169226646, 0.0297686830163002, -0.15196722745895386, -0.06844176352024078, 0.09194651246070862, 0.08414904028177261, -0.14253166317939758, 0.011338298209011555, -0.03578273206949234, -0.061446547508239746, -0.07427825033664703, -0.0663641095161438, 0.06358431279659271, 0.0498393252491951, 0.05237707123160362, -0.08674903213977814, -0.07225654274225235, 0.0023003313690423965, -0.010184342041611671, -0.026508202776312828, 0.12386228889226913, 0.07886422425508499, -0.09605099260807037, 0.09936383366584778, 0.07285447418689728, 0.03449197858572006, 0.09759418666362762, -0.005811323411762714, -0.10186150670051575, -0.03597366064786911, 0.057352423667907715, 0.020977696403861046, 0.15591169893741608, -0.062008656561374664, 0.0387609489262104, 0.042126718908548355, -0.03967028856277466, 0.04254807159304619, -0.09696927666664124, 0.015093177556991577, 0.009825685992836952, -0.01528007909655571, 0.030523475259542465, -0.027259353548288345, 0.009716561064124107, 0.08810757100582123, 0.06728649884462357, 0.03156159073114395, 0.01618625968694687, -0.03871751204133034, -0.13905608654022217, 0.17378836870193481, -0.08862102776765823, -0.21783599257469177, -0.15387338399887085, 0.028309915214776993, 0.05257178097963333, -0.012421171180903912, 0.034166302531957626, -0.04071762412786484, -0.08829396218061447, -0.08770029991865158, 0.025261204689741135, 0.04058610647916794, -0.06022367998957634, -0.07307644933462143, 0.03595113381743431, 0.02365167997777462, -0.13261526823043823, 0.02703234553337097, 0.048834484070539474, 0.0056540523655712605, -0.004964405205100775, 0.03467266634106636, 0.08565102517604828, 0.20501336455345154, -0.0002010849566431716, 0.0046296934597194195, 0.054197851568460464, 0.27317512035369873, -0.15372560918331146, 0.12575364112854004, 0.11664876341819763, -0.05427989736199379, 0.08420481532812119, 0.19652311503887177, 0.03389941155910492, -0.08230147510766983, 0.01336789969354868, 0.0426209457218647, -0.04025545343756676, -0.2642473578453064, -0.044152434915304184, -0.02653048187494278, -0.0684066191315651, 0.08959687501192093, 0.08407518267631531, 0.10131971538066864, 0.03285384550690651, -0.07003041356801987, -0.07872873544692993, 0.05533747375011444, 0.11766940355300903, -0.049764737486839294, 0.020680652931332588, 0.08408129960298538, -0.048763688653707504, 0.008013000711798668, 0.08679667115211487, -0.005688415840268135, 0.14030693471431732, 0.051567792892456055, 0.12348796427249908, 0.06968045979738235, 0.0693393126130104, 0.002459020586684346, 0.05258777737617493, -0.004705403000116348, 0.03311220183968544, 0.017901591956615448, -0.09116077423095703, 0.025585653260350227, 0.1095600351691246, 0.008045485243201256, 0.02616061083972454, 0.02189583145081997, -0.07584165036678314, 0.033071957528591156, 0.21635879576206207, 0.02735283225774765, -0.20684963464736938, -0.07963833957910538, 0.05450638756155968, -0.06666528433561325, -0.1536678820848465, -0.009909657761454582, 0.012975439429283142, -0.15129342675209045, 0.014404869638383389, -0.04879938066005707, 0.11188439279794693, -0.07026029378175735, -0.04830925911664963, 0.09698721021413803, 0.05520874261856079, -0.04804028943181038, 0.033032044768333435, -0.18392425775527954, 0.10946333408355713, 0.03430570289492607, 0.07782432436943054, -0.08425302058458328, 0.08401565998792648, 0.00047603138955309987, -0.017727840691804886, 0.1554093360900879, -0.0009620614582672715, -0.07469870895147324, -0.08039069920778275, -0.07468555867671967, -0.02345626801252365, 0.08858277648687363, -0.13007862865924835, 0.07364977151155472, -0.01781565137207508, -0.03672971948981285, 0.0016959878848865628, -0.11467589437961578, -0.10480616241693497, -0.16475458443164825, 0.05713718757033348, -0.07893310487270355, 0.0029578336980193853, -0.07508930563926697, -0.05098648741841316, 0.032134123146533966, 0.16703282296657562, -0.192268505692482, -0.11536376923322678, -0.1481693685054779, -0.10817303508520126, 0.15488873422145844, -0.05034187063574791, 0.08288701623678207, -0.01257662195712328, 0.15090392529964447, -0.016638340428471565, -0.03024102747440338, 0.0885392278432846, -0.08645318448543549, -0.18723361194133759, -0.052763309329748154, 0.18649865686893463, 0.13614371418952942, 0.02547452226281166, -0.020595064386725426, 0.03136712685227394, -0.047516148537397385, -0.1017124354839325, 0.02700764685869217, 0.13657541573047638, 0.06314714252948761, -0.01185546349734068, -0.03150719404220581, -0.11491791903972626, -0.054597191512584686, -0.03572273999452591, -0.014585461467504501, 0.2017887830734253, -0.07335415482521057, 0.1650594174861908, 0.1335376352071762, -0.06580524146556854, -0.20846593379974365, 0.04284961149096489, 0.025463977828621864, 0.016937198117375374, 0.01926443539559841, -0.19204504787921906, 0.07315020263195038, -0.020290689542889595, -0.07393594086170197, 0.17565391957759857, -0.206150621175766, -0.13305725157260895, 0.09299658238887787, 0.02024700492620468, -0.20486868917942047, -0.14726123213768005, -0.11147042363882065, -0.010884441435337067, -0.13067300617694855, 0.06284159421920776, 0.020502617582678795, 0.01307047437876463, 0.010912534780800343, 0.010171090252697468, 0.04284116253256798, -0.05117832496762276, 0.18942798674106598, -0.02902309037744999, 0.008497115224599838, -0.05767281353473663, -0.0980190634727478, 0.013812048360705376, -0.06849948316812515, 0.11382661014795303, -0.019054099917411804, 0.02455807849764824, -0.15543852746486664, -0.0463736429810524, -0.0720645934343338, 0.01588205061852932, -0.0955205038189888, -0.08415448665618896, -0.0489051453769207, 0.07662037760019302, 0.10406865179538727, -0.026342172175645828, 0.03740102797746658, -0.0829169824719429, 0.09051726013422012, 0.21100100874900818, 0.16494737565517426, 0.04659244045615196, -0.0586048848927021, 0.02460010163486004, -0.03560258448123932, 0.04211777448654175, -0.21980687975883484, 0.036559101194143295, 0.06083698570728302, 0.03783959522843361, 0.08109793812036514, -0.0011528779286891222, -0.16170573234558105, -0.080106221139431, 0.07717148959636688, -0.058753661811351776, -0.16197118163108826, -0.021787647157907486, 0.027164185419678688, -0.1952822357416153, -0.0428120456635952, 0.041221097111701965, -0.017557458952069283, -0.03762128949165344, 0.02382640540599823, 0.08402124792337418, -0.013940392062067986, 0.1014292761683464, 0.0815148800611496, 0.08829054981470108, -0.09581964462995529, 0.06928030401468277, 0.08638858795166016, -0.03547874093055725, 0.015707770362496376, 0.14948128163814545, -0.04551633819937706, -0.03074737824499607, 0.08592642843723297, 0.11152059584856033, 0.0014519047690555453, -0.04181824252009392, 0.011927596293389797, -0.0540725402534008, 0.07731564342975616, 0.13972114026546478, 0.01624494232237339, -0.010308886878192425, 0.06636767089366913, 0.03130646422505379, -0.09943098574876785, 0.12240882217884064, 0.06688526272773743, 0.025326311588287354, -0.01841406524181366, -0.022282330319285393, -0.016317106783390045, -0.010105324909090996, -0.014414812438189983, -0.005314622074365616, -0.09370731562376022, -0.0014889362500980496, -0.11718988418579102, 0.02436661906540394, -0.08920998126268387, 0.00047505018301308155, 0.010445394553244114, -0.039952050894498825, -0.001386559451930225, -0.006219012197107077, -0.0757206380367279, -0.05979738011956215, -0.03306205943226814, 0.07057064771652222, -0.14004233479499817, 0.025948751717805862, 0.06630770862102509, -0.10957234352827072, 0.059108175337314606, -0.006454480811953545, 0.012765670195221901, -0.004378998186439276, -0.14525574445724487, 0.05351549759507179, -0.027448533102869987, -0.021082593128085136, 0.011305967345833778, -0.16909156739711761, -0.0032004897948354483, -0.049763113260269165, -0.07658127695322037, 0.009984966367483139, -0.010866035707294941, -0.1260809749364853, 0.12572389841079712, -0.006664713844656944, -0.05785495042800903, -0.018860645592212677, 0.059379857033491135, 0.07700713723897934, -0.01577453687787056, 0.08684093505144119, -0.028773248195648193, 0.08328206092119217, -0.1838465929031372, -0.008156179450452328, -0.012411403469741344, 0.03456897661089897, -0.021582840010523796, -0.029359323903918266, 0.05510886758565903, -0.011163104325532913, 0.14745619893074036, -0.005421650130301714, 0.06213729456067085, 0.047948576509952545, 0.005773589946329594, 0.028613541275262833, 0.06913561373949051, 0.052690211683511734, -0.028578251600265503, -0.016660526394844055, 0.040090836584568024, 0.002109561813995242, -0.045490264892578125, -0.12496952712535858, 0.059310752898454666, 0.1875685155391693, 0.0829269215464592, 0.03755662590265274, -0.0003121798799838871, -0.12900538742542267, -0.08976776152849197, 0.09315481781959534, -0.013385774567723274, -0.02705681324005127, -0.06750230491161346, 0.21955528855323792, 0.13430620729923248, -0.19219763576984406, 0.08348270505666733, -0.04099658876657486, -0.03317305073142052, -0.12926112115383148, -0.16190366446971893, -0.054124895483255386, -0.027780264616012573, -0.03483838587999344, -0.06283318251371384, 0.058772314339876175, 0.03741983696818352, 0.0061728814616799355, -0.002139490330591798, 0.10254166275262833, 0.011964769102633, -0.03390606492757797, 0.05222131311893463, 0.07035569101572037, 0.049639709293842316, -0.08671849220991135, 0.010194049216806889, 0.0000975059883785434, 0.005476527847349644, 0.06317199021577835, 0.0283930916339159, -0.049071360379457474, 0.02817521058022976, -0.009419801644980907, -0.1188378557562828, 0.04655039682984352, -0.003185717388987541, -0.013362590223550797, 0.15737038850784302, 0.032149799168109894, 0.0019228443270549178, -0.016063153743743896, 0.2271793782711029, -0.0715511217713356, -0.07855004072189331, -0.12559549510478973, 0.07396107912063599, -0.04819689318537712, 0.024803325533866882, 0.016908083111047745, -0.12807413935661316, 0.013680718839168549, 0.16455142199993134, 0.13542717695236206, 0.0036380626261234283, 0.008076501078903675, 0.04257560521364212, 0.00828926544636488, -0.011894640512764454, 0.014841936528682709, 0.03697746992111206, 0.2131565362215042, -0.07267003506422043, 0.0744846910238266, -0.012813287787139416, -0.07088397443294525, -0.022845201194286346, 0.129685640335083, -0.012596954591572285, -0.00846902746707201, -0.05795341357588768, 0.13774684071540833, -0.06214897707104683, -0.21679344773292542, 0.06393483281135559, -0.09342589229345322, -0.13173362612724304, -0.03810613974928856, 0.007220853120088577, -0.030618321150541306, 0.0142881590873003, 0.07212823629379272, -0.0502297580242157, 0.16402657330036163, 0.02918355166912079, -0.06188825145363808, -0.10028684139251709, 0.04905257746577263, -0.13988856971263885, 0.28659459948539734, 0.02218535728752613, 0.024889541789889336, 0.10945302993059158, -0.01846194639801979, -0.14584749937057495, 0.00889171939343214, 0.1033577173948288, -0.060198165476322174, 0.04902920499444008, 0.16175156831741333, -0.008938096463680267, 0.12212442606687546, 0.05099421367049217, -0.057479314506053925, 0.031144099310040474, -0.0711895003914833, -0.057231154292821884, -0.12264922261238098, 0.06726675480604172, -0.07378930598497391, 0.1490534543991089, 0.12405599653720856, -0.06682117283344269, -0.004887878429144621, -0.017162831500172615, 0.0735495463013649, 0.015170223079621792, 0.12069540470838547, 0.014757768251001835, -0.17845170199871063, 0.04950382187962532, 0.0060271224938333035, 0.11256583034992218, -0.2193717509508133, -0.06195097044110298, 0.04887834191322327, -0.02858596295118332, -0.08820034563541412, 0.1206444799900055, 0.0398920439183712, 0.022829413414001465, -0.031116722151637077, -0.08921553939580917, 0.01626606658101082, 0.15651091933250427, -0.10311020165681839, -0.016579244285821915 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
mertbozkir/mistral-gsm8k-finetune
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-07T02:36:07+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
## Model description Chillarmo/whisper-small-hy-AM is an AI model designed for speech-to-text conversion specifically tailored for the Armenian language. Leveraging the power of fine-tuning, this model, named whisper-small-hy-AM, is based on [openai/whisper-small](https://huggingface.co/openai/whisper-small) and trained on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2853 - Wer: 38.1160 ## Training Data and Future Enhancements The training data consists of Mozilla Common Voice version 16.1. Plans for future improvements include continuing the training process and integrating an additional 10 hours of data from datasets such as google/fleurs and possibly google/xtreme_s. Despite its current performance, efforts are underway to further reduce the WER. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0989 | 2.48 | 1000 | 0.1948 | 41.5758 | | 0.03 | 4.95 | 2000 | 0.2165 | 39.1251 | | 0.0016 | 7.43 | 3000 | 0.2659 | 38.4089 | | 0.0005 | 9.9 | 4000 | 0.2853 | 38.1160 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"language": ["hy"], "license": "apache-2.0", "library_name": "transformers", "tags": ["SpeechToText", "Audio", "Audio Transcription"], "datasets": ["mozilla-foundation/common_voice_16_1"], "metrics": ["wer"], "base_model": "openai/whisper-small", "pipeline_tag": "automatic-speech-recognition", "model-index": [{"name": "whisper-small-hy-AM", "results": []}]}
automatic-speech-recognition
Chillarmo/whisper-small-hy-AM
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "SpeechToText", "Audio", "Audio Transcription", "hy", "dataset:mozilla-foundation/common_voice_16_1", "base_model:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-07T02:37:07+00:00
[]
[ "hy" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #SpeechToText #Audio #Audio Transcription #hy #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us
Model description ----------------- Chillarmo/whisper-small-hy-AM is an AI model designed for speech-to-text conversion specifically tailored for the Armenian language. Leveraging the power of fine-tuning, this model, named whisper-small-hy-AM, is based on openai/whisper-small and trained on the common\_voice\_16\_1 dataset. It achieves the following results on the evaluation set: * Loss: 0.2853 * Wer: 38.1160 Training Data and Future Enhancements ------------------------------------- The training data consists of Mozilla Common Voice version 16.1. Plans for future improvements include continuing the training process and integrating an additional 10 hours of data from datasets such as google/fleurs and possibly google/xtreme\_s. Despite its current performance, efforts are underway to further reduce the WER. Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #SpeechToText #Audio #Audio Transcription #hy #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 96, 130, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #SpeechToText #Audio #Audio Transcription #hy #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.12256458401679993, 0.08287189155817032, -0.003396277781575918, 0.03566236421465874, 0.10202623903751373, -0.012294542975723743, 0.1286262571811676, 0.13042348623275757, -0.07428231090307236, 0.08155694603919983, 0.06818709522485733, 0.07321307063102722, 0.07713734358549118, 0.12471732497215271, -0.028801295906305313, -0.29512766003608704, 0.03280968591570854, -0.0027179161552339792, -0.08387541770935059, 0.10132542997598648, 0.09601015597581863, -0.11087868362665176, 0.007306862622499466, 0.01784168742597103, -0.08538269996643066, 0.006956355646252632, -0.006184256169945002, -0.07211750745773315, 0.10700489580631256, 0.0328250452876091, 0.0715564712882042, 0.05412646383047104, 0.08568961918354034, -0.2521222233772278, 0.024774961173534393, 0.05436098203063011, 0.04932577908039093, 0.061429500579833984, 0.08342274278402328, -0.009659149684011936, 0.05620020255446434, -0.05483061820268631, 0.069233238697052, 0.05523664131760597, -0.09203195571899414, -0.3193143606185913, -0.05965017154812813, 0.024013886228203773, 0.1223197802901268, 0.0806710347533226, -0.035022374242544174, 0.06416510045528412, -0.04791722074151039, 0.10735650360584259, 0.2155582159757614, -0.22036708891391754, -0.0710260272026062, -0.07288359850645065, 0.08776767551898956, 0.07707630097866058, -0.11304488778114319, -0.012008149176836014, 0.03787524998188019, 0.025613583624362946, 0.10034482181072235, 0.0012454824754968286, -0.000739597249776125, -0.030752534046769142, -0.12889932096004486, -0.04615984857082367, 0.13012440502643585, 0.06327120214700699, -0.0494430847465992, -0.10729608684778214, -0.024063831195235252, -0.16177161037921906, -0.05473550036549568, 0.007169909775257111, 0.021834924817085266, -0.03792997822165489, -0.08512608706951141, 0.0036047776229679585, -0.08148565143346786, -0.09396398812532425, 0.040175486356019974, 0.16500307619571686, 0.04146556556224823, -0.04202009364962578, 0.008154558017849922, 0.08326765894889832, 0.06915848702192307, -0.15364283323287964, -0.008581837639212608, 0.05053729936480522, -0.08780752122402191, -0.021026605740189552, -0.02233733795583248, -0.05623820424079895, 0.03253615275025368, 0.13374486565589905, -0.031938888132572174, 0.10445936024188995, -0.001375331892631948, 0.03046330437064171, -0.09110935032367706, 0.15079529583454132, -0.04176661744713783, -0.040428489446640015, -0.015689045190811157, 0.13268986344337463, 0.007939331233501434, -0.02297982946038246, -0.05637569725513458, 0.03224005177617073, 0.0980001762509346, 0.04732205346226692, -0.013556609861552715, 0.01677601784467697, -0.06897168606519699, -0.01651805453002453, -0.04786771163344383, -0.11841147392988205, 0.017081469297409058, 0.04768279567360878, -0.03232920169830322, -0.032001521438360214, 0.011204328387975693, 0.0375242754817009, -0.023743031546473503, 0.080889493227005, -0.04181297868490219, -0.012290570884943008, -0.06598879396915436, -0.0937906950712204, 0.022770676761865616, -0.013979308307170868, 0.011744849383831024, -0.07878602296113968, -0.10010076314210892, -0.05489537864923477, 0.06059024855494499, -0.025091340765357018, -0.0718906968832016, -0.07375700026750565, -0.07989948987960815, 0.04731479659676552, -0.03125433251261711, 0.13000239431858063, -0.05993778258562088, 0.11161013692617416, 0.022848419845104218, 0.049411091953516006, 0.05849919468164444, 0.06809800863265991, -0.03883938863873482, 0.047020770609378815, -0.15239863097667694, 0.09151792526245117, -0.10897336155176163, 0.05176125466823578, -0.12277095019817352, -0.11079894751310349, -0.007243994157761335, 0.01571820303797722, 0.09408951550722122, 0.10366269946098328, -0.17595502734184265, -0.10305986553430557, 0.17254114151000977, -0.0960489884018898, -0.09422898292541504, 0.15954247117042542, -0.011782223358750343, 0.015547933988273144, 0.04995090514421463, 0.22543391585350037, 0.12709908187389374, -0.10862961411476135, 0.027663033455610275, -0.055334001779556274, 0.10710923373699188, 0.05198070406913757, 0.09299084544181824, -0.040579747408628464, -0.0019802115857601166, -0.007988201454281807, -0.019180404022336006, 0.07686178386211395, -0.07800465077161789, -0.07696495205163956, -0.007386302575469017, -0.08532866835594177, 0.0223909392952919, 0.0549129955470562, 0.009627611376345158, -0.10754024982452393, -0.11182306706905365, 0.034642502665519714, 0.1031152606010437, -0.11322084814310074, 0.02169458009302616, -0.09534212201833725, 0.04292304441332817, -0.014574761502444744, -0.018587356433272362, -0.13411930203437805, 0.02606358751654625, 0.032119229435920715, -0.06626927107572556, 0.03494085371494293, -0.04436502605676651, 0.08365409076213837, 0.05859953910112381, -0.047976329922676086, -0.09908180683851242, -0.044048577547073364, 0.01754390262067318, -0.06470605731010437, -0.22546716034412384, -0.04427427798509598, -0.0360238216817379, 0.1522059440612793, -0.19393663108348846, 0.016718678176403046, 0.024920953437685966, 0.11042052507400513, 0.04518018662929535, -0.04267779737710953, 0.020017322152853012, 0.06561796367168427, 0.004499233327805996, -0.06411252170801163, 0.027987869456410408, 0.02355397678911686, -0.11700894683599472, 0.04878120496869087, -0.18566849827766418, 0.13427400588989258, 0.0879363864660263, 0.0007849695393815637, -0.07058960199356079, -0.042976029217243195, -0.053010083734989166, -0.06866809725761414, -0.014816283248364925, -0.02811233326792717, 0.21555858850479126, 0.006708489265292883, 0.11927326768636703, -0.08904747664928436, -0.04249473661184311, 0.02778703160583973, -0.017229093238711357, -0.009180811233818531, 0.13678503036499023, -0.020165525376796722, -0.06522035598754883, 0.086892269551754, 0.07636801898479462, -0.08109445124864578, 0.19523832201957703, -0.09321236610412598, -0.09957362711429596, -0.017270948737859726, 0.035338934510946274, 0.035125598311424255, 0.11257312446832657, -0.15400591492652893, 0.0015466170152649283, 0.012487583793699741, 0.014197872951626778, 0.020562734454870224, -0.20050255954265594, -0.0032165267039090395, 0.05076749995350838, -0.0781964436173439, -0.04206862673163414, -0.015507207252085209, -0.000886277761310339, 0.07702963799238205, -0.022674061357975006, -0.05396995693445206, -0.005893148016184568, -0.03688662126660347, -0.0918470099568367, 0.17494313418865204, -0.10978395491838455, -0.165737122297287, -0.14415954053401947, -0.0136406933888793, 0.036176327615976334, -0.005358782131224871, 0.06670980900526047, -0.10533355921506882, -0.03511512279510498, -0.07217305153608322, 0.026229437440633774, -0.018694963306188583, 0.022873904556035995, 0.03076709620654583, 0.00662751030176878, 0.10256652534008026, -0.10374941676855087, 0.022592414170503616, -0.0017996567767113447, -0.015388409607112408, 0.012188583612442017, 0.030110269784927368, 0.06961362063884735, 0.162550687789917, 0.032493140548467636, 0.009514532051980495, -0.0352991558611393, 0.16788619756698608, -0.12136173248291016, -0.00738832401111722, 0.1402389258146286, -0.04304194450378418, 0.04050680249929428, 0.15584221482276917, 0.03986535966396332, -0.07669608294963837, 0.026170281693339348, 0.021334432065486908, -0.02044084295630455, -0.24079452455043793, -0.013629994355142117, -0.05601220205426216, 0.0006311198230832815, 0.0758197009563446, 0.02529110573232174, 0.008945227600634098, 0.02102542482316494, -0.03272185102105141, -0.03814368695020676, 0.05914808437228203, 0.05408218875527382, 0.07725881040096283, 0.009967472404241562, 0.1044306680560112, -0.01710228994488716, -0.04698960483074188, 0.008311640471220016, 0.006653866730630398, 0.22458703815937042, 0.017385007813572884, 0.18403449654579163, 0.05032699555158615, 0.11171343922615051, 0.024233339354395866, 0.05792398750782013, 0.013528586365282536, -0.022325750440359116, 0.0235738642513752, -0.055755116045475006, -0.03012392483651638, 0.033358532935380936, 0.07748112082481384, 0.05275785177946091, -0.10896522551774979, 0.01853904128074646, 0.0033681937493383884, 0.3358391225337982, 0.06069556251168251, -0.27293661236763, -0.10394064337015152, 0.019870635122060776, -0.09557033330202103, -0.04978395253419876, 0.0402512364089489, 0.1674865335226059, -0.08117029070854187, 0.044509563595056534, -0.06579316407442093, 0.08485038578510284, -0.06506470590829849, 0.015478994697332382, 0.05178204923868179, 0.09414151310920715, -0.01630462147295475, 0.0468592494726181, -0.24969831109046936, 0.2956467568874359, -0.009100056253373623, 0.10820774734020233, -0.023104196414351463, 0.03244258835911751, 0.043647125363349915, -0.04270457476377487, 0.08583074808120728, -0.010326055809855461, -0.14364148676395416, -0.18609289824962616, -0.09294993430376053, 0.018604543060064316, 0.13186538219451904, -0.020059501752257347, 0.10283013433218002, -0.037376098334789276, -0.021088412031531334, 0.05237144976854324, -0.10506464540958405, -0.12906159460544586, -0.09248068183660507, 0.018460651859641075, 0.05483187735080719, 0.09378516674041748, -0.1253543645143509, -0.1062324121594429, -0.06403762102127075, 0.11861386150121689, -0.10208970308303833, -0.022179514169692993, -0.12390440702438354, 0.029808279126882553, 0.14558248221874237, -0.0633709654211998, 0.06373770534992218, 0.04048024117946625, 0.12516115605831146, 0.019672401249408722, -0.00578284589573741, 0.1099705621600151, -0.09650865197181702, -0.19355784356594086, -0.05914829298853874, 0.1970989853143692, 0.03983817622065544, 0.07798805832862854, -0.005355166736990213, 0.016792604699730873, 0.007188749499619007, -0.05091916397213936, 0.06685400754213333, 0.016428625211119652, -0.018379179760813713, 0.055369384586811066, -0.03031141124665737, -0.056064825505018234, -0.07944019138813019, -0.07284042239189148, 0.15219470858573914, 0.28549322485923767, -0.060310203582048416, 0.05746832862496376, 0.06985753029584885, -0.05880631133913994, -0.1700018346309662, 0.012608044780790806, 0.13750582933425903, 0.05141086503863335, 0.005983792245388031, -0.20746704936027527, 0.035624876618385315, 0.04940395802259445, -0.027263890951871872, 0.05804145708680153, -0.30499744415283203, -0.14153674244880676, 0.12911458313465118, 0.10286850482225418, -0.014108388684689999, -0.1346285343170166, -0.06696755439043045, -0.010771248489618301, -0.06530832499265671, 0.01865946687757969, -0.06577134877443314, 0.1369086503982544, 0.02141171135008335, 0.029760057106614113, 0.028739718720316887, -0.05199624225497246, 0.12746848165988922, -0.04217671602964401, 0.0609397329390049, -0.019740909337997437, 0.06125688552856445, -0.009137017652392387, -0.04537158086895943, 0.004742406774312258, -0.09849128127098083, 0.02289496175944805, -0.08305065333843231, -0.03567447140812874, -0.07685243338346481, 0.02514505945146084, -0.03233795240521431, -0.03523857519030571, 0.007476894650608301, 0.04079137742519379, 0.06876040250062943, 0.010633846744894981, 0.09776350855827332, -0.08175491541624069, 0.14776858687400818, 0.11161549389362335, 0.16516785323619843, -0.012137558311223984, -0.07228955626487732, -0.01140702236443758, -0.02689995802938938, 0.04689065366983414, -0.08862341940402985, 0.05101669207215309, 0.12762479484081268, 0.044050950556993484, 0.15033842623233795, 0.050320979207754135, -0.08371279388666153, 0.024397680535912514, 0.06277415156364441, -0.07148490846157074, -0.1751389056444168, -0.03430972248315811, 0.08327363431453705, -0.1325586587190628, 0.0006420478457584977, 0.1097787469625473, -0.05075185373425484, -0.00749191315844655, 0.0037089348770678043, 0.020489158108830452, -0.043503500521183014, 0.23373781144618988, 0.027813620865345, 0.08632955700159073, -0.08657298982143402, 0.07981902360916138, 0.03201863169670105, -0.14897440373897552, 0.04939848184585571, 0.09154251217842102, -0.03516499325633049, -0.0192137248814106, 0.02959667704999447, 0.07169455289840698, 0.08174736052751541, -0.055274173617362976, -0.1260899305343628, -0.15890242159366608, 0.054314348846673965, 0.13349583745002747, 0.008932995609939098, 0.015722041949629784, -0.03198206052184105, 0.0564303956925869, -0.09962072968482971, 0.12959568202495575, 0.09764809906482697, 0.071107417345047, -0.15149593353271484, 0.15968450903892517, 0.007923579774796963, -0.009259901940822601, -0.009044027887284756, -0.005397218279540539, -0.10048108547925949, 0.03224479407072067, -0.12467397749423981, -0.0046820370480418205, -0.037459950894117355, -0.0017691802931949496, 0.01160572748631239, -0.059662286192178726, -0.05022206902503967, 0.042121902108192444, -0.10510627925395966, -0.029240956529974937, -0.0017389869317412376, 0.06699618697166443, -0.07765109837055206, -0.03649460896849632, 0.05825100839138031, -0.11814159899950027, 0.0875713899731636, 0.05318759009242058, -0.00895388051867485, 0.027583353221416473, -0.15141603350639343, -0.009338179603219032, 0.044161636382341385, 0.0026795347221195698, -0.0013533118180930614, -0.18080098927021027, -0.020614495500922203, -0.017865637317299843, 0.018305620178580284, -0.018783913925290108, 0.04325451701879501, -0.10760200023651123, -0.029196321964263916, -0.02758527174592018, -0.048241257667541504, -0.0576467290520668, 0.033230386674404144, 0.05997713655233383, 0.0110824815928936, 0.15816479921340942, -0.11566604673862457, 0.05699798837304115, -0.2170221507549286, 0.019652875140309334, -0.019289450719952583, -0.09287597239017487, -0.08322542905807495, -0.03047921136021614, 0.08676758408546448, -0.06617744266986847, 0.049641892313957214, -0.06369305402040482, 0.016566501930356026, 0.02997574768960476, -0.12261834740638733, 0.05219993740320206, 0.06070873513817787, 0.2378193736076355, 0.026304204016923904, -0.03835620358586311, 0.056424979120492935, -0.02678169123828411, 0.053597237914800644, 0.12525193393230438, 0.1105562150478363, 0.19652248919010162, 0.042578306049108505, 0.07679306715726852, 0.08126974105834961, -0.08455094695091248, -0.14162926375865936, 0.10915741324424744, -0.020348332822322845, 0.12252775579690933, -0.00836238730698824, 0.23037971556186676, 0.13217902183532715, -0.16582269966602325, 0.061118267476558685, -0.04763928800821304, -0.08206139504909515, -0.10260538756847382, -0.06750179827213287, -0.08315888792276382, -0.16131965816020966, 0.00813415739685297, -0.1149749904870987, 0.05248305946588516, 0.02681046538054943, 0.03623613342642784, 0.02462618425488472, 0.16576656699180603, 0.04980689287185669, -0.0005191790987737477, 0.12248018383979797, -0.002816300606355071, -0.018719637766480446, -0.042099855840206146, -0.11048080027103424, 0.09437321126461029, -0.019790511578321457, 0.03806396573781967, -0.04441390559077263, -0.10284710675477982, 0.055151987820863724, 0.001149374176748097, -0.1195998340845108, 0.032541148364543915, -0.019250519573688507, 0.07459551841020584, 0.07130905985832214, 0.044141680002212524, -0.017626138404011726, -0.005333445034921169, 0.2339404821395874, -0.09725182503461838, -0.07966309040784836, -0.1272936761379242, 0.20930126309394836, -0.01584831438958645, -0.0005148428026586771, 0.016421690583229065, -0.06970301270484924, 0.010821306146681309, 0.1512289047241211, 0.12437131255865097, -0.016020363196730614, -0.007902668789029121, -0.00683772936463356, -0.013752511702477932, -0.06899896264076233, 0.07654008269309998, 0.13434791564941406, 0.030715014785528183, -0.049981143325567245, -0.02385404333472252, -0.028640540316700935, -0.05158942937850952, -0.04754802584648132, 0.06779681891202927, 0.019582288339734077, -0.008276327513158321, -0.017961876466870308, 0.11692239344120026, -0.07108757644891739, -0.1241128146648407, -0.031900666654109955, -0.15977615118026733, -0.16601961851119995, -0.04756214842200279, 0.08687540888786316, 0.051866911351680756, 0.014983674511313438, -0.005601376760751009, -0.00043985663796775043, 0.0839478150010109, -0.0001192730269394815, -0.013986672274768353, -0.07679092884063721, 0.05628250911831856, -0.13962282240390778, 0.18575307726860046, -0.040745217353105545, 0.03554347902536392, 0.10840422660112381, 0.06058010458946228, -0.06741712987422943, 0.06119692698121071, 0.06384573876857758, -0.16031195223331451, 0.04238644242286682, 0.23639558255672455, -0.03912973403930664, 0.16490255296230316, 0.03727562725543976, -0.11954948306083679, 0.022339947521686554, -0.09477336704730988, -0.07542476058006287, -0.046338483691215515, 0.0000716317372280173, -0.04786843806505203, 0.12719979882240295, 0.178928405046463, -0.07621286809444427, -0.0208178348839283, -0.04850861430168152, -0.0022487614769488573, 0.07480327785015106, 0.1105535626411438, -0.024596424773335457, -0.28657153248786926, 0.0097498232498765, -0.02275465801358223, 0.019994216039776802, -0.25508081912994385, -0.0966644287109375, -0.004676626995205879, -0.05102575942873955, -0.0733056366443634, 0.09919126331806183, 0.10303901135921478, 0.0419672466814518, -0.04735088348388672, -0.09613292664289474, -0.024018049240112305, 0.19588975608348846, -0.16476275026798248, -0.051831793040037155 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "bigscience-openrail-m", "library_name": "transformers"}
text-generation
tyson0420/stack_llama-clang
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:bigscience-openrail-m", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-07T02:39:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #license-bigscience-openrail-m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #license-bigscience-openrail-m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 67, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #license-bigscience-openrail-m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.05653616040945053, 0.21091660857200623, -0.005195529665797949, 0.013964951038360596, 0.09814249724149704, 0.0032929820008575916, 0.06137669458985329, 0.11291423439979553, -0.05039720982313156, 0.12330400943756104, 0.04195116460323334, 0.11394912004470825, 0.11629978567361832, 0.1471652090549469, -0.006724977865815163, -0.21784359216690063, 0.046334605664014816, -0.09460826963186264, -0.024249238893389702, 0.12630653381347656, 0.15542079508304596, -0.09876769781112671, 0.06627723574638367, -0.02069336175918579, -0.03435372933745384, -0.036136090755462646, -0.05721450224518776, -0.04869741573929787, 0.039754632860422134, 0.048879340291023254, 0.06792621314525604, 0.0011139606358483434, 0.0809234157204628, -0.28438591957092285, 0.015792474150657654, 0.06309012323617935, -0.005579677410423756, 0.06952950358390808, 0.09407421201467514, -0.06284977495670319, 0.12530997395515442, -0.05382072553038597, 0.14152447879314423, 0.08269962668418884, -0.08311767876148224, -0.16737796366214752, -0.08143968880176544, 0.12261956185102463, 0.1658564656972885, 0.05339876562356949, -0.029412206262350082, 0.10620415955781937, -0.08802396059036255, 0.022622771561145782, 0.043942589312791824, -0.09247688204050064, -0.06535957753658295, 0.09323127567768097, 0.10558147728443146, 0.04983726143836975, -0.12831194698810577, -0.03527316078543663, 0.012831013649702072, 0.016490748152136803, 0.08521019667387009, 0.020175589248538017, 0.14956696331501007, 0.035838041454553604, -0.1318475902080536, -0.0609656423330307, 0.11798707395792007, 0.03545553609728813, -0.03751886636018753, -0.23712770640850067, -0.015978386625647545, -0.025879226624965668, -0.031221333891153336, -0.04847925156354904, 0.047534696757793427, -0.002275018021464348, 0.09627937525510788, -0.00998174212872982, -0.07612855732440948, -0.04097042232751846, 0.08208230137825012, 0.06456174701452255, 0.02560925856232643, -0.01915140263736248, 0.021631812676787376, 0.10940822213888168, 0.08810283988714218, -0.1102493479847908, -0.053233057260513306, -0.05957779660820961, -0.07215406000614166, -0.044535618275403976, 0.03811296075582504, 0.034448374062776566, 0.0732819065451622, 0.2582380175590515, 0.038335200399160385, 0.04987727478146553, 0.03547786921262741, 0.011795462109148502, 0.046497877687215805, 0.10217273235321045, -0.05890069901943207, -0.12926380336284637, -0.020761780440807343, 0.09129009395837784, 0.0055477009154856205, -0.02702801302075386, -0.03709479421377182, 0.05365890637040138, 0.038961783051490784, 0.10818321257829666, 0.09542527049779892, 0.01900700107216835, -0.07364272326231003, -0.05319390445947647, 0.19895699620246887, -0.15573355555534363, 0.036920059472322464, 0.03467516973614693, -0.03721935302019119, -0.03558656945824623, 0.004940408281981945, 0.032380539923906326, -0.036884650588035583, 0.10125557333230972, -0.05974235385656357, -0.0475786030292511, -0.10949362069368362, -0.024751674383878708, 0.0436372309923172, 0.0026051525492221117, -0.028528373688459396, -0.029001407325267792, -0.08837442845106125, -0.09025247395038605, 0.09191631525754929, -0.07136750221252441, -0.07865914702415466, -0.02299092896282673, -0.08399374037981033, 0.021798597648739815, 0.022059272974729538, 0.09376593679189682, -0.028225572779774666, 0.05152161046862602, -0.059684738516807556, 0.04107450693845749, 0.10221907496452332, 0.03480503708124161, -0.06494069844484329, 0.0649435818195343, -0.21205484867095947, 0.08503872901201248, -0.08715304732322693, 0.054403387010097504, -0.16112366318702698, -0.026133645325899124, 0.038393933326005936, 0.0152537627145648, -0.005171352531760931, 0.12920206785202026, -0.19508102536201477, -0.016471847891807556, 0.17735505104064941, -0.10173609107732773, -0.07367413491010666, 0.05869394168257713, -0.05735483765602112, 0.116152822971344, 0.030634373426437378, 0.012132487259805202, 0.061632201075553894, -0.10814779996871948, -0.012244893237948418, -0.05345417931675911, -0.01578558050096035, 0.1138465404510498, 0.08497665822505951, -0.08496704697608948, 0.03725045919418335, 0.020827559754252434, -0.038708191365003586, -0.07078511267900467, -0.025016149505972862, -0.10092917084693909, 0.009593009017407894, -0.08066115528345108, 0.008354462683200836, -0.013870203867554665, -0.08622981607913971, -0.03177804499864578, -0.1615304946899414, -0.025819869711995125, 0.0873306468129158, 0.0010428602108731866, -0.02309047430753708, -0.10281573235988617, 0.0309392511844635, 0.01600140519440174, -0.011903833597898483, -0.12625882029533386, -0.019517339766025543, 0.03344646468758583, -0.13921187818050385, 0.023546652868390083, -0.0643022209405899, 0.0464409664273262, 0.009541880339384079, -0.03253649175167084, -0.02062014304101467, 0.015186604112386703, 0.00891527533531189, -0.031808242201805115, -0.2240048199892044, -0.023025691509246826, -0.03627888858318329, 0.1506839394569397, -0.2302122712135315, 0.040390752255916595, 0.07270002365112305, 0.14524783194065094, 0.0017601249273866415, -0.05911058560013771, 0.02576434426009655, -0.0639573484659195, -0.026861140504479408, -0.05519408360123634, 0.002988242544233799, -0.008308096788823605, -0.0402417927980423, 0.021178172901272774, -0.16713698208332062, -0.019303660839796066, 0.09409000724554062, 0.052978482097387314, -0.12640491127967834, -0.03972901776432991, -0.03427262231707573, -0.05628550052642822, -0.048948876559734344, -0.06066036969423294, 0.09849356859922409, 0.05398614704608917, 0.039882317185401917, -0.06992615014314651, -0.0811229795217514, -0.0040349881164729595, -0.017306795343756676, -0.01935129426419735, 0.10115005075931549, 0.08446445316076279, -0.1101139485836029, 0.09905637800693512, 0.06643122434616089, 0.04877868667244911, 0.08525200933218002, -0.02019614167511463, -0.07161026448011398, -0.027766110375523567, 0.03798925504088402, 0.020203372463583946, 0.12870725989341736, -0.07760655134916306, 0.03706879913806915, 0.04491744190454483, -0.036103129386901855, 0.02667940780520439, -0.08205351233482361, 0.01820787787437439, 0.022695766761898994, -0.018075140193104744, 0.034970927983522415, -0.04087788984179497, 0.01405925303697586, 0.0879468098282814, 0.04810061305761337, 0.024589011445641518, 0.02222737856209278, -0.050473567098379135, -0.114103302359581, 0.16161711513996124, -0.1048157587647438, -0.1980518400669098, -0.13924376666545868, 0.034889742732048035, 0.03760041669011116, -0.01661067083477974, -0.005058780312538147, -0.04914311692118645, -0.10435404628515244, -0.09202045947313309, 0.0006825887830927968, 0.03914656490087509, -0.0926121398806572, -0.05183973163366318, 0.04168983921408653, 0.04264961555600166, -0.14235764741897583, 0.01826068013906479, 0.0448722243309021, -0.08434269577264786, -0.010769299231469631, 0.07398219406604767, 0.08657712489366531, 0.18970443308353424, 0.010088266804814339, -0.01390022598206997, 0.026766374707221985, 0.22149306535720825, -0.13665905594825745, 0.10536985844373703, 0.1262662261724472, -0.07315406948328018, 0.08268491923809052, 0.21216054260730743, 0.04553799331188202, -0.09354253858327866, 0.02411835454404354, 0.035749297589063644, -0.02614646591246128, -0.2535165846347809, -0.07264333963394165, -0.006949086207896471, -0.062157876789569855, 0.08218774944543839, 0.09729726612567902, 0.09492615610361099, 0.041386473923921585, -0.08243896067142487, -0.08333587646484375, 0.05197443440556526, 0.10928558558225632, -0.01345223467797041, 0.009856732562184334, 0.08963286131620407, -0.033412910997867584, 0.019650178030133247, 0.08937180042266846, 0.015466890297830105, 0.14287179708480835, 0.0433063842356205, 0.17552612721920013, 0.08388359099626541, 0.08226404339075089, 0.006053060758858919, 0.02075079269707203, 0.012237288989126682, 0.04091352969408035, 0.0020833765156567097, -0.07793785631656647, -0.02005073055624962, 0.1214936375617981, 0.059331733733415604, 0.015473589301109314, 0.021108169108629227, -0.04394815117120743, 0.06873466819524765, 0.20326882600784302, -0.01662258803844452, -0.19223278760910034, -0.05283356457948685, 0.07100986689329147, -0.09885673969984055, -0.10537835210561752, 0.003734470810741186, 0.025027533993124962, -0.1707247942686081, 0.03493531048297882, -0.032767463475465775, 0.10932256281375885, -0.11358459293842316, -0.02729223668575287, 0.07530421763658524, 0.0634477511048317, -0.01648828387260437, 0.07098014652729034, -0.2047443836927414, 0.10886204242706299, 0.005446447059512138, 0.0727078765630722, -0.10013167560100555, 0.09063662588596344, 0.0009421710856258869, -0.029578566551208496, 0.15806671977043152, -0.006221546325832605, -0.07019016891717911, -0.06585664302110672, -0.0980362817645073, -0.009901118464767933, 0.09790482372045517, -0.13722941279411316, 0.08138389885425568, -0.030729904770851135, -0.03092910721898079, -0.0035947898868471384, -0.09348274767398834, -0.11042923480272293, -0.1748231202363968, 0.051071181893348694, -0.12088752537965775, 0.0365351177752018, -0.10849348455667496, -0.030991682782769203, -0.03636380657553673, 0.18248161673545837, -0.2192440927028656, -0.08084090799093246, -0.13970346748828888, -0.107658252120018, 0.13241331279277802, -0.04151355102658272, 0.09751240164041519, -0.00999461580067873, 0.16077198088169098, 0.013934344984591007, -0.008063260465860367, 0.0796131119132042, -0.09366641193628311, -0.20260971784591675, -0.06615658849477768, 0.16445203125476837, 0.11250825226306915, 0.037964921444654465, -0.00030116914422251284, 0.037057653069496155, -0.02650938183069229, -0.11179645359516144, 0.02091599814593792, 0.14268845319747925, 0.07786241918802261, 0.008898315951228142, -0.014550910331308842, -0.1221548467874527, -0.075747549533844, -0.044990647584199905, 0.02639002539217472, 0.1605394333600998, -0.07497066259384155, 0.16365644335746765, 0.13312971591949463, -0.06589557975530624, -0.20143510401248932, 0.013197544030845165, 0.028512075543403625, -0.008680607192218304, 0.008115670643746853, -0.18518750369548798, 0.0950801819562912, 0.016378724947571754, -0.060163289308547974, 0.09303097426891327, -0.16790451109409332, -0.1379103809595108, 0.08088187873363495, 0.05189929157495499, -0.20062844455242157, -0.140763521194458, -0.09978979080915451, -0.03660968318581581, -0.16246820986270905, 0.09519767016172409, 0.016154451295733452, 0.003449306357651949, 0.029512187466025352, 0.005515391938388348, 0.029085109010338783, -0.0588354729115963, 0.17857703566551208, 0.0048505282029509544, 0.030817842110991478, -0.08881261944770813, -0.10042241960763931, 0.02794744446873665, -0.045190226286649704, 0.07451148331165314, -0.028156226500868797, 0.01170581579208374, -0.11960793286561966, -0.04247521236538887, -0.05720724165439606, 0.019974978640675545, -0.09990455210208893, -0.09333142638206482, -0.053126025944948196, 0.08694980293512344, 0.1051693707704544, -0.021552788093686104, -0.04232694208621979, -0.07817932963371277, 0.06804675608873367, 0.22612975537776947, 0.19797953963279724, 0.06932156533002853, -0.07769708335399628, 0.0005775569588877261, -0.01961393468081951, 0.0473395511507988, -0.19314700365066528, 0.05436565726995468, 0.06095752492547035, 0.022292563691735268, 0.10710133612155914, -0.025553571060299873, -0.13893724977970123, -0.07110241055488586, 0.06020136550068855, -0.05763981118798256, -0.20739611983299255, 0.008751866407692432, 0.05357939377427101, -0.17197343707084656, -0.04511997848749161, 0.02951810508966446, -0.016881223767995834, -0.03479258343577385, 0.011328112334012985, 0.09085272252559662, 0.00018501018348615617, 0.09274666756391525, 0.07770536094903946, 0.09628147631883621, -0.09723382443189621, 0.08368903398513794, 0.09827597439289093, -0.06506026536226273, 0.03082452341914177, 0.09011475741863251, -0.04922039806842804, -0.03259273245930672, 0.05551912635564804, 0.08644422143697739, 0.019658703356981277, -0.053445566445589066, 0.004082827363163233, -0.09333088248968124, 0.06538784503936768, 0.10552400350570679, 0.029086314141750336, 0.012694325298070908, 0.049059316515922546, 0.039879243820905685, -0.08732838928699493, 0.12111512571573257, 0.05499032884836197, 0.01685730367898941, -0.049345389008522034, -0.017796896398067474, 0.006188401486724615, -0.03658372163772583, -0.0027020196430385113, -0.0092577850446105, -0.07701786607503891, -0.011594983749091625, -0.13228973746299744, 0.02286822535097599, -0.07674212008714676, 0.01726231537759304, 0.021738925948739052, -0.02393100969493389, 0.007026819046586752, 0.001914639608003199, -0.07814022153615952, -0.054153427481651306, -0.007909601554274559, 0.1029718816280365, -0.15684230625629425, 0.028904372826218605, 0.08443651348352432, -0.10737507790327072, 0.0971493124961853, -0.0067837736569345, -0.013803730718791485, -0.002087581902742386, -0.15832260251045227, 0.05748819187283516, -0.030547741800546646, 0.0010556353954598308, 0.0023503880947828293, -0.18463782966136932, 0.004009098745882511, -0.031871017068624496, -0.06714456528425217, -0.009127357043325901, -0.029821526259183884, -0.1182088777422905, 0.10223691165447235, 0.009058860130608082, -0.08548369258642197, -0.028253132477402687, 0.03356234356760979, 0.08801703155040741, -0.04120900481939316, 0.14354728162288666, -0.0144654531031847, 0.05820051580667496, -0.16497324407100677, -0.00801351759582758, -0.005438398569822311, 0.022350119426846504, -0.05831275135278702, -0.004107299260795116, 0.048780426383018494, -0.017123648896813393, 0.19562430679798126, -0.0230322927236557, -0.0017694495618343353, 0.06245694309473038, 0.04023655876517296, 0.0014147624606266618, 0.09654927253723145, 0.06310487538576126, 0.00807665940374136, 0.0056798760779201984, 0.018596449866890907, -0.051248252391815186, -0.03491396829485893, -0.17242150008678436, 0.0678194910287857, 0.20623767375946045, 0.09551797062158585, -0.02026345767080784, 0.06424685567617416, -0.11574002355337143, -0.10184352099895477, 0.13403357565402985, -0.040425900369882584, -0.0017232359386980534, -0.0780692920088768, 0.14253829419612885, 0.14268755912780762, -0.187715545296669, 0.07353774458169937, -0.07014349102973938, -0.047138214111328125, -0.10334471613168716, -0.21191911399364471, -0.06254839897155762, -0.03956865519285202, -0.014356068335473537, -0.052744366228580475, 0.06781528145074844, 0.09381799399852753, -0.0007045665406621993, -0.01435015443712473, 0.06780079007148743, -0.04012816771864891, 0.00044584082206711173, 0.04080866649746895, 0.05730552226305008, 0.014604086987674236, -0.06897930055856705, 0.009961595758795738, -0.014627217315137386, 0.05009274557232857, 0.08159247040748596, 0.04293059557676315, -0.024808477610349655, 0.008063457906246185, -0.029276112094521523, -0.09980538487434387, 0.05172807350754738, -0.025803357362747192, -0.05457904934883118, 0.15201961994171143, 0.01945211924612522, 0.007118075154721737, -0.011403597891330719, 0.233056902885437, -0.06546732783317566, -0.09542155265808105, -0.14747291803359985, 0.06226862594485283, -0.05149336904287338, 0.04371395334601402, 0.052643947303295135, -0.11009187996387482, 0.029981980100274086, 0.15327413380146027, 0.16067233681678772, -0.025568075478076935, 0.014424256980419159, 0.03180057555437088, 0.004372887313365936, -0.02349858544766903, 0.04181688651442528, 0.04538791999220848, 0.14310166239738464, -0.06005352735519409, 0.07586289197206497, 0.006369738839566708, -0.08602091670036316, -0.01950630359351635, 0.13073594868183136, -0.016104817390441895, -0.0007092873565852642, -0.05990007519721985, 0.11632949858903885, -0.07914698868989944, -0.20959970355033875, 0.040479861199855804, -0.07215224951505661, -0.13768821954727173, -0.024265486747026443, 0.03966701775789261, -0.0035203106235712767, 0.018096113577485085, 0.07986297458410263, -0.07405229657888412, 0.17102305591106415, 0.03384624421596527, -0.07371915131807327, -0.05017929896712303, 0.0787433311343193, -0.07383381575345993, 0.3080167770385742, 0.018516097217798233, 0.048949092626571655, 0.10926429182291031, -0.01750958524644375, -0.13244180381298065, 0.018477613106369972, 0.10108056664466858, -0.08313398063182831, 0.06065553054213524, 0.16662073135375977, 0.0008879539091140032, 0.12697595357894897, 0.06866104900836945, -0.0732777863740921, 0.04458797723054886, -0.07485274225473404, -0.06704650819301605, -0.11500431597232819, 0.09933152049779892, -0.0901004746556282, 0.14709065854549408, 0.12570254504680634, -0.058287113904953, 0.006416370160877705, -0.03120984323322773, 0.05574356019496918, -0.007112452294677496, 0.12249378114938736, 0.018783943727612495, -0.19868485629558563, 0.032435595989227295, -0.02881965972483158, 0.10341683775186539, -0.183162122964859, -0.08024346083402634, 0.03825411945581436, 0.0028535218443721533, -0.07725492864847183, 0.11544428765773773, 0.0704876109957695, 0.03543509170413017, -0.04742845147848129, -0.026144998148083687, -0.016660893335938454, 0.14472706615924835, -0.09895473718643188, 0.0005473676137626171 ]
null
null
diffusers
# Model Card for Aimi Yoshikawa ## Model Description - **Developed by:** BADMONK - **Model type:** Dreambooth Model + Extracted LoRA - **Language(s) (NLP):** EN - **License:** Creativeml-Openrail-M - **Parent Model:** degenerate # How to Get Started with the Model Use the code below to get started with the model. ### AIMIYOSHIKAWA ###
{"license": "creativeml-openrail-m", "tags": ["text-to-image", "stable-diffusion"]}
text-to-image
badmonk/aimiyoshikawa
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-07T02:42:29+00:00
[]
[]
TAGS #diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# Model Card for Aimi Yoshikawa ## Model Description - Developed by: BADMONK - Model type: Dreambooth Model + Extracted LoRA - Language(s) (NLP): EN - License: Creativeml-Openrail-M - Parent Model: degenerate # How to Get Started with the Model Use the code below to get started with the model. ### AIMIYOSHIKAWA ###
[ "# Model Card for Aimi Yoshikawa", "## Model Description\n\n- Developed by: BADMONK\n- Model type: Dreambooth Model + Extracted LoRA\n- Language(s) (NLP): EN\n- License: Creativeml-Openrail-M\n- Parent Model: degenerate", "# How to Get Started with the Model\n\nUse the code below to get started with the model.", "### AIMIYOSHIKAWA ###" ]
[ "TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# Model Card for Aimi Yoshikawa", "## Model Description\n\n- Developed by: BADMONK\n- Model type: Dreambooth Model + Extracted LoRA\n- Language(s) (NLP): EN\n- License: Creativeml-Openrail-M\n- Parent Model: degenerate", "# How to Get Started with the Model\n\nUse the code below to get started with the model.", "### AIMIYOSHIKAWA ###" ]
[ 61, 9, 52, 20, 9 ]
[ "passage: TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n# Model Card for Aimi Yoshikawa## Model Description\n\n- Developed by: BADMONK\n- Model type: Dreambooth Model + Extracted LoRA\n- Language(s) (NLP): EN\n- License: Creativeml-Openrail-M\n- Parent Model: degenerate# How to Get Started with the Model\n\nUse the code below to get started with the model.### AIMIYOSHIKAWA ###" ]
[ -0.11796718835830688, 0.1304367035627365, -0.00032315714634023607, 0.04933647811412811, 0.11944963783025742, -0.017310526221990585, 0.16424648463726044, 0.010093816556036472, 0.04896051809191704, 0.023095082491636276, 0.15273982286453247, 0.09590986371040344, 0.02803969755768776, 0.20649537444114685, -0.06821989268064499, -0.2623306214809418, 0.0729534924030304, 0.005043984390795231, 0.0425858199596405, 0.06761185079813004, 0.13307295739650726, -0.05354601517319679, 0.135350301861763, 0.03829995542764664, -0.12375963479280472, -0.01862766407430172, -0.045659881085157394, -0.064132921397686, 0.0337274894118309, 0.031070029363036156, 0.0496264211833477, 0.026055335998535156, 0.06927868723869324, -0.10023168474435806, 0.041740283370018005, -0.03465363755822182, -0.03063015453517437, 0.02864546701312065, 0.07173518091440201, -0.009477936662733555, 0.16671036183834076, -0.013405686244368553, 0.02074730582535267, 0.03604346141219139, -0.06155284866690636, -0.08522137254476547, 0.012815415859222412, 0.15714317560195923, 0.15469837188720703, 0.044556256383657455, 0.033393338322639465, 0.001747090951539576, -0.0007019206532277167, 0.08119722455739975, 0.12032242864370346, -0.2030314803123474, -0.054588913917541504, 0.21536730229854584, 0.07615293562412262, -0.01613497920334339, -0.05159616470336914, 0.04112405702471733, 0.08011505007743835, 0.003405301831662655, 0.027575049549341202, -0.05601746216416359, 0.2012409269809723, -0.040267519652843475, -0.09696903079748154, 0.07635781168937683, 0.1859179139137268, 0.03552751988172531, -0.0313042551279068, -0.14245100319385529, -0.046905603259801865, 0.09501463174819946, -0.06669332087039948, -0.02831358090043068, -0.00850088894367218, 0.03018847480416298, 0.10747668147087097, -0.11713305860757828, -0.07900070399045944, -0.016637055203318596, 0.03588119149208069, 0.20919379591941833, 0.01698889024555683, 0.06904469430446625, -0.07758577167987823, 0.03826889395713806, -0.1634610891342163, -0.09589102119207382, -0.045033834874629974, -0.14579111337661743, 0.1341380923986435, 0.038798462599515915, 0.017090721055865288, -0.07614639401435852, 0.051765233278274536, 0.03739248961210251, -0.0023496581707149744, 0.01713162288069725, 0.1308629810810089, 0.10637079179286957, 0.0819597989320755, 0.0008490189211443067, -0.08591752499341965, -0.06944309175014496, 0.0681719034910202, 0.009246382862329483, 0.05362481251358986, -0.035559140145778656, -0.16443413496017456, -0.022787293419241905, -0.05250445380806923, 0.06771095097064972, -0.00639317836612463, 0.029480118304491043, 0.00581162516027689, -0.06618107110261917, 0.23445922136306763, -0.05601019784808159, 0.02510422095656395, -0.023888880386948586, -0.06863737851381302, 0.06938812136650085, 0.025849908590316772, -0.022697655484080315, -0.006956839002668858, 0.09146752208471298, -0.046819839626550674, -0.017578355967998505, -0.06260169297456741, -0.05282268673181534, -0.006827165372669697, -0.12948128581047058, 0.0752941444516182, -0.14961500465869904, -0.3009490966796875, -0.0003868660714942962, 0.10242386907339096, -0.03015919029712677, 0.0045215897262096405, -0.06243307143449783, -0.07799086719751358, -0.0052037895657122135, 0.011568142101168633, -0.10087916254997253, -0.02745083160698414, -0.00356843788176775, -0.03719488903880119, 0.051272083073854446, -0.1938253492116928, 0.012636346742510796, -0.045024771243333817, 0.08111202716827393, -0.0938844159245491, 0.022395562380552292, -0.030969958752393723, 0.01293264515697956, -0.043411869555711746, -0.04288928583264351, 0.03977232426404953, 0.0754539966583252, 0.03728625550866127, 0.14269611239433289, -0.04602735862135887, -0.016925843432545662, 0.060550738126039505, -0.15673676133155823, -0.14893075823783875, 0.03314489498734474, -0.031312838196754456, 0.164272278547287, 0.018909944221377373, 0.12759210169315338, 0.08587359637022018, -0.20496757328510284, 0.07297182083129883, 0.043976616114377975, -0.13637511432170868, -0.1521962583065033, 0.028487762436270714, 0.08239305764436722, -0.06125345081090927, 0.048564888536930084, -0.14459888637065887, 0.07572437822818756, -0.04272675886750221, -0.06001070514321327, -0.016796022653579712, -0.1534503996372223, -0.02199164591729641, -0.03735017403960228, 0.03331976383924484, 0.004277147352695465, -0.010598043911159039, 0.049105435609817505, 0.10385849326848984, -0.013270227238535881, -0.03397214412689209, -0.1040843203663826, 0.17568381130695343, -0.13528841733932495, -0.030158868059515953, -0.01767505146563053, 0.0031367114279419184, -0.008897262625396252, 0.059279073029756546, -0.02665356919169426, -0.016950765624642372, 0.09014364331960678, 0.11331097781658173, -0.04010955989360809, -0.08379241824150085, 0.09439320117235184, 0.026877496391534805, -0.022114817053079605, -0.15352772176265717, 0.0032903579995036125, -0.06912899762392044, -0.029735257849097252, -0.17390914261341095, 0.04310176521539688, -0.09160149842500687, 0.08890116959810257, 0.03419824317097664, 0.04192633926868439, 0.06651505827903748, -0.007072880864143372, -0.03371543437242508, -0.040182050317525864, 0.06469812989234924, 0.03420489653944969, -0.10172446072101593, 0.168866366147995, -0.1588994860649109, 0.1592286378145218, 0.08488331735134125, -0.05436667799949646, -0.07088036090135574, -0.02036300115287304, -0.023694830015301704, 0.00966327078640461, 0.000163987759151496, 0.02397242747247219, -0.054488636553287506, -0.03944697976112366, 0.14304222166538239, -0.09452013671398163, 0.016377348452806473, 0.033220671117305756, -0.10358551889657974, -0.08241599053144455, 0.09290722757577896, 0.08540766686201096, -0.16816581785678864, 0.11475009471178055, 0.12881137430667877, -0.10630496591329575, 0.19005244970321655, 0.013499375432729721, -0.021249601617455482, -0.061755117028951645, 0.09241967648267746, 0.008576112799346447, 0.1797667294740677, -0.018629005178809166, -0.00276821362785995, 0.030407769605517387, -0.03212544694542885, 0.0705437958240509, -0.07188568264245987, -0.0676020085811615, 0.03948144614696503, 0.017700698226690292, 0.1306704431772232, 0.09025169909000397, -0.08697539567947388, 0.07317958027124405, -0.023491425439715385, -0.09966472536325455, 0.052753373980522156, 0.008595536462962627, -0.03526001423597336, 0.12992826104164124, -0.06200551614165306, -0.13863873481750488, -0.14637449383735657, -0.09645909070968628, -0.07910346984863281, -0.0005974586820229888, 0.03211452439427376, -0.0727560967206955, -0.08588390797376633, -0.08499668538570404, -0.04777086153626442, -0.10413066297769547, -0.06207827106118202, 0.033924080431461334, -0.001111301826313138, -0.07271171361207962, -0.08942446857690811, -0.017005424946546555, 0.0010570506565272808, 0.10294537991285324, 0.09215636551380157, -0.044540371745824814, 0.1216210126876831, 0.16797633469104767, -0.024596799165010452, 0.02049410529434681, 0.05007973685860634, 0.24883811175823212, -0.027054596692323685, 0.1391373574733734, 0.21556895971298218, -0.020019693300127983, 0.09075380116701126, 0.13293983042240143, 0.04283102601766586, -0.07303261756896973, 0.02558967098593712, -0.06007605046033859, -0.08414653688669205, -0.09702397137880325, -0.07498154044151306, -0.07842165976762772, 0.06311343610286713, -0.010405771434307098, 0.07711111754179001, 0.10290782153606415, 0.16823609173297882, 0.013849331997334957, -0.01890507899224758, 0.04554568976163864, 0.1463286280632019, -0.0012723591644316912, -0.018335256725549698, 0.027783973142504692, -0.0656425803899765, -0.02318895235657692, 0.09296941012144089, 0.00947035476565361, 0.060922082513570786, -0.0019441081676632166, 0.04497310891747475, 0.09938143938779831, 0.06361126154661179, 0.13217908143997192, 0.06159953400492668, -0.07138020545244217, 0.009820092469453812, -0.015104249119758606, -0.09066516160964966, 0.06288770586252213, 0.13643778860569, -0.09043540805578232, -0.025281401351094246, 0.009236397221684456, 0.12772980332374573, -0.04445112124085426, 0.01103890035301447, 0.06931539624929428, -0.2360571026802063, -0.026766357943415642, 0.04440174251794815, 0.0816902294754982, -0.09996158629655838, 0.038733843713998795, 0.1078767254948616, -0.0663178339600563, 0.04307004064321518, 0.010232816450297832, 0.10021889209747314, 0.031107520684599876, -0.05216125398874283, -0.026140185073018074, 0.1054677665233612, -0.023130176588892937, 0.04160574451088905, -0.1810305267572403, 0.09092402458190918, 0.014396024867892265, 0.09649275243282318, -0.03468513488769531, -0.004742552991956472, 0.04898931831121445, 0.12940126657485962, 0.16307763755321503, 0.006416290532797575, -0.09551745653152466, -0.053874026983976364, -0.03947621211409569, -0.03639459237456322, 0.07417633384466171, 0.05212169140577316, -0.0013752063969150186, 0.019224585965275764, -0.03266993537545204, 0.007229132112115622, -0.023292236030101776, -0.18377062678337097, -0.11827903240919113, -0.018256928771734238, 0.13621164858341217, -0.007090295664966106, -0.03672032058238983, 0.018038012087345123, -0.012155985459685326, 0.13171279430389404, -0.08168201148509979, -0.14761045575141907, -0.1327497512102127, -0.13307584822177887, 0.0402536578476429, -0.07275974005460739, 0.06907345354557037, -0.06803307682275772, 0.10135017335414886, -0.054584477096796036, -0.11568713188171387, 0.03951035439968109, -0.13171088695526123, -0.0836581364274025, -0.0356142595410347, 0.03544360026717186, 0.02957458794116974, -0.06934017688035965, 0.017234520986676216, -0.04152114689350128, -0.05271754041314125, -0.0989021584391594, 0.032627131789922714, 0.17854540050029755, -0.052772533148527145, 0.02018052153289318, -0.0833011269569397, -0.03710787743330002, 0.012889492325484753, -0.04463030770421028, 0.0801263302564621, 0.27759552001953125, -0.02962038293480873, 0.10560102015733719, 0.2516860365867615, -0.08387947827577591, -0.21053120493888855, -0.06705795228481293, -0.06930697709321976, 0.03986399620771408, -0.04683903977274895, -0.11475297063589096, 0.12546785175800323, 0.011940877884626389, -0.06399077922105789, 0.16436360776424408, -0.2574542462825775, -0.09794921427965164, 0.10821004956960678, 0.15238942205905914, 0.3005131483078003, -0.14018775522708893, -0.04457845166325569, -0.05716143548488617, -0.2066160887479782, 0.09758926928043365, 0.02219548262655735, 0.05322510004043579, -0.07025334984064102, 0.0626097247004509, 0.004671774338930845, -0.043532732874155045, 0.15319229662418365, -0.08921685069799423, 0.10047248750925064, -0.1481703519821167, -0.007875724695622921, 0.13233812153339386, -0.08105141669511795, 0.15439438819885254, -0.11168636381626129, 0.04850649833679199, -0.14490190148353577, -0.07612315565347672, -0.04981790482997894, 0.05544014647603035, -0.041848454624414444, -0.16565009951591492, -0.046370744705200195, 0.06223582103848457, 0.04477221891283989, 0.015304275788366795, -0.041531216353178024, -0.010640561580657959, -0.016929151490330696, 0.13098040223121643, 0.023459680378437042, 0.013889641501009464, -0.0104692867025733, -0.04925927892327309, -0.06854624301195145, 0.11405285447835922, -0.11065923422574997, -0.04238952696323395, 0.06867502629756927, 0.030413083732128143, 0.09166307002305984, 0.029073752462863922, -0.02261156029999256, 0.027369830757379532, 0.07264696061611176, -0.08556947112083435, -0.11840708553791046, -0.0509679839015007, 0.1333550065755844, 0.08301039040088654, 0.016506915912032127, 0.11841239780187607, -0.11198917776346207, 0.027112560346722603, -0.03361644223332405, 0.04256293177604675, -0.057831015437841415, -0.008689671754837036, 0.1300470381975174, 0.01782792992889881, -0.04929357394576073, 0.03646022453904152, -0.010554350912570953, 0.007812782190740108, 0.04063810408115387, 0.0542115792632103, -0.08580756932497025, -0.05981633439660072, 0.061157695949077606, 0.2569151818752289, -0.19802212715148926, -0.11699899286031723, 0.0012529377127066255, -0.09769764542579651, 0.03154527768492699, 0.07824336737394333, 0.02459508553147316, -0.030828550457954407, 0.04334559664130211, -0.003309404943138361, -0.12437982857227325, 0.060765255242586136, 0.08383110165596008, 0.06429193168878555, -0.21810942888259888, -0.11605929583311081, -0.042712558060884476, 0.0667651817202568, -0.07255392521619797, -0.02506207302212715, -0.1430329829454422, 0.013966983184218407, -0.16152553260326385, 0.11098907142877579, -0.1686680167913437, -0.018508074805140495, -0.033369775861501694, -0.0036970041692256927, -0.03422100841999054, 0.05480172112584114, -0.07604297250509262, 0.02623867616057396, 0.026847004890441895, -0.01919661834836006, -0.0500645637512207, -0.04131820425391197, -0.020751958712935448, -0.04947603866457939, 0.02777521312236786, -0.022215140983462334, -0.09531022608280182, -0.040522750467061996, -0.1874682456254959, 0.026992062106728554, 0.05205322429537773, -0.03192302957177162, 0.012576020322740078, 0.030610471963882446, -0.0030931991059333086, 0.015453686006367207, -0.04610075056552887, -0.027766454964876175, 0.057720497250556946, -0.08763722330331802, 0.01579267531633377, -0.04187736660242081, -0.025226084515452385, -0.05232066661119461, 0.04715978354215622, 0.11851149797439575, 0.026503143832087517, 0.1178237795829773, -0.06948910653591156, 0.054724276065826416, -0.010387345217168331, 0.015083041042089462, 0.058739740401506424, -0.02858738973736763, -0.005378391593694687, -0.06092939153313637, -0.015232373960316181, -0.029075901955366135, 0.1647568941116333, -0.007996045053005219, -0.23661935329437256, -0.014755064621567726, -0.07094720751047134, 0.06631337106227875, 0.01478811725974083, 0.2607881426811218, -0.025625599548220634, 0.009523723274469376, -0.10915980488061905, 0.06874092668294907, 0.09632524102926254, 0.031743619590997696, 0.004708915948867798, 0.1305542290210724, 0.021769708022475243, 0.10575605928897858, 0.0006007613847032189, 0.011196551844477654, -0.005327040329575539, -0.009690259583294392, -0.07871105521917343, 0.08366341888904572, -0.028244514018297195, 0.039404500275850296, 0.19929568469524384, -0.044106729328632355, 0.0033880225382745266, 0.07398264855146408, -0.04444712772965431, -0.12483375519514084, -0.24286752939224243, -0.08810900151729584, -0.09416090697050095, 0.04879375919699669, -0.053596362471580505, -0.021964551880955696, -0.028045596554875374, 0.06899503618478775, -0.04249678924679756, 0.07519607990980148, -0.005110991187393665, 0.01540366467088461, 0.10859791189432144, -0.01510082371532917, -0.04127782955765724, 0.017825929448008537, -0.020686333999037743, -0.025255383923649788, -0.05097794532775879, -0.022140948101878166, 0.051618337631225586, -0.01531303022056818, 0.05484910309314728, 0.022324664518237114, -0.05794752761721611, -0.011398077011108398, 0.03870902210474014, 0.02332921512424946, 0.13022513687610626, 0.0009901350131258368, -0.038150131702423096, -0.011786519549787045, 0.12743781507015228, 0.00775071419775486, -0.09595752507448196, -0.05603376775979996, 0.09627839177846909, -0.0652952641248703, 0.027178514748811722, -0.02681770920753479, -0.07042847573757172, 0.0027784898411482573, 0.2030053436756134, 0.19207629561424255, -0.09690070897340775, 0.008306040428578854, -0.0726802721619606, 0.007479756139218807, -0.06144898757338524, 0.08546104282140732, -0.00845071766525507, 0.2348816841840744, -0.05296977981925011, 0.033121608197689056, -0.1290046125650406, -0.052607811987400055, -0.07936650514602661, -0.015416523441672325, 0.043349169194698334, -0.11215893179178238, -0.09198130667209625, 0.07658310234546661, -0.28848931193351746, 0.01527479663491249, 0.08234486728906631, 0.00988782662898302, -0.03462691605091095, -0.0775732770562172, 0.06345442682504654, 0.05245309695601463, 0.020786279812455177, -0.07917182892560959, 0.017684703692793846, 0.02663913182914257, 0.004620509222149849, -0.11776270717382431, 0.020604489371180534, 0.0004845857620239258, -0.03345118463039398, 0.15963523089885712, 0.04400630295276642, 0.013406059704720974, 0.0677437111735344, -0.03539006784558296, -0.10194724798202515, 0.09758901596069336, 0.02605821006000042, -0.026735546067357063, 0.007845035754144192, 0.11122491955757141, -0.02007732354104519, 0.0020032802131026983, -0.016483625397086143, -0.14851491153240204, -0.02802387624979019, 0.13473911583423615, -0.05611007288098335, -0.10576984286308289, 0.08722764253616333, -0.09555567800998688, 0.12323084473609924, 0.05265485867857933, -0.02770671248435974, -0.061243653297424316, -0.024065881967544556, 0.15618525445461273, 0.03181479498744011, -0.11391676962375641, 0.05564603954553604, -0.0856621041893959, -0.026137948036193848, 0.03646907955408096, 0.09753946214914322, -0.20845212042331696, -0.03299502655863762, -0.1688658595085144, 0.010579820722341537, -0.07705668359994888, 0.05761071667075157, 0.21415311098098755, 0.027653954923152924, -0.01287818606942892, -0.030779682099819183, -0.015151859261095524, 0.02382860705256462, -0.00594189902767539, -0.06467088311910629 ]