sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | null | ## Miqu DPO
Miqu DPO is the same model than Miqu, with a DPO trained on MiquMaid v2 on Alpaca format, it was done for the purpose to try to uncensor further Miqu and make Alpaca prompt more usable with base Miqu. Also, this will be one of the base for MiquMaid-v2-2x70B-DPO.
Miqu base is REALLY censored outside RP, this LoRA let him reply a little more thing, but that's it. To have his full potential, it need to be in a merge/MoE of MiquMaid, since the loRA was based for MiquMaid, not Miqu base. I still let it public for who want it.
It uncensor a little the model, but keep some warning. Sometime reply really unethically.
<!-- description start -->
## Description
This repo contains GGUF files of Miqu-70B-DPO.
<!-- description end -->
<!-- description start -->
## Dataset used
- NobodyExistsOnTheInternet/ToxicDPOqa
- Undi95/toxic-dpo-v0.1-NoWarning
<!-- description end -->
<!-- prompt-template start -->
## Prompt format: Alpaca
```
### Instruction:
{prompt}
### Input:
{input}
### Response:
{output}
```
Or simple Mistral format (but the uncensoring was done on Alpaca, so Alpaca is recommanded).
## Others
If you want to support me, you can [here](https://ko-fi.com/undiai). | {} | null | Undi95/Miqu-70B-Alpaca-DPO-GGUF | [
"gguf",
"region:us"
] | 2024-02-06T19:41:02+00:00 | [] | [] | TAGS
#gguf #region-us
| ## Miqu DPO
Miqu DPO is the same model than Miqu, with a DPO trained on MiquMaid v2 on Alpaca format, it was done for the purpose to try to uncensor further Miqu and make Alpaca prompt more usable with base Miqu. Also, this will be one of the base for MiquMaid-v2-2x70B-DPO.
Miqu base is REALLY censored outside RP, this LoRA let him reply a little more thing, but that's it. To have his full potential, it need to be in a merge/MoE of MiquMaid, since the loRA was based for MiquMaid, not Miqu base. I still let it public for who want it.
It uncensor a little the model, but keep some warning. Sometime reply really unethically.
## Description
This repo contains GGUF files of Miqu-70B-DPO.
## Dataset used
- NobodyExistsOnTheInternet/ToxicDPOqa
- Undi95/toxic-dpo-v0.1-NoWarning
## Prompt format: Alpaca
Or simple Mistral format (but the uncensoring was done on Alpaca, so Alpaca is recommanded).
## Others
If you want to support me, you can here. | [
"## Miqu DPO\n\nMiqu DPO is the same model than Miqu, with a DPO trained on MiquMaid v2 on Alpaca format, it was done for the purpose to try to uncensor further Miqu and make Alpaca prompt more usable with base Miqu. Also, this will be one of the base for MiquMaid-v2-2x70B-DPO.\n\nMiqu base is REALLY censored outside RP, this LoRA let him reply a little more thing, but that's it. To have his full potential, it need to be in a merge/MoE of MiquMaid, since the loRA was based for MiquMaid, not Miqu base. I still let it public for who want it.\n\nIt uncensor a little the model, but keep some warning. Sometime reply really unethically.",
"## Description\n\nThis repo contains GGUF files of Miqu-70B-DPO.",
"## Dataset used\n\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning",
"## Prompt format: Alpaca\n\n\nOr simple Mistral format (but the uncensoring was done on Alpaca, so Alpaca is recommanded).",
"## Others\n\nIf you want to support me, you can here."
] | [
"TAGS\n#gguf #region-us \n",
"## Miqu DPO\n\nMiqu DPO is the same model than Miqu, with a DPO trained on MiquMaid v2 on Alpaca format, it was done for the purpose to try to uncensor further Miqu and make Alpaca prompt more usable with base Miqu. Also, this will be one of the base for MiquMaid-v2-2x70B-DPO.\n\nMiqu base is REALLY censored outside RP, this LoRA let him reply a little more thing, but that's it. To have his full potential, it need to be in a merge/MoE of MiquMaid, since the loRA was based for MiquMaid, not Miqu base. I still let it public for who want it.\n\nIt uncensor a little the model, but keep some warning. Sometime reply really unethically.",
"## Description\n\nThis repo contains GGUF files of Miqu-70B-DPO.",
"## Dataset used\n\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning",
"## Prompt format: Alpaca\n\n\nOr simple Mistral format (but the uncensoring was done on Alpaca, so Alpaca is recommanded).",
"## Others\n\nIf you want to support me, you can here."
] | [
9,
187,
19,
35,
32,
14
] | [
"passage: TAGS\n#gguf #region-us \n## Miqu DPO\n\nMiqu DPO is the same model than Miqu, with a DPO trained on MiquMaid v2 on Alpaca format, it was done for the purpose to try to uncensor further Miqu and make Alpaca prompt more usable with base Miqu. Also, this will be one of the base for MiquMaid-v2-2x70B-DPO.\n\nMiqu base is REALLY censored outside RP, this LoRA let him reply a little more thing, but that's it. To have his full potential, it need to be in a merge/MoE of MiquMaid, since the loRA was based for MiquMaid, not Miqu base. I still let it public for who want it.\n\nIt uncensor a little the model, but keep some warning. Sometime reply really unethically.## Description\n\nThis repo contains GGUF files of Miqu-70B-DPO.## Dataset used\n\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning## Prompt format: Alpaca\n\n\nOr simple Mistral format (but the uncensoring was done on Alpaca, so Alpaca is recommanded).## Others\n\nIf you want to support me, you can here."
] | [
-0.08862060308456421,
0.1577046513557434,
-0.006596671883016825,
0.03347163274884224,
0.07134943455457687,
0.004318821243941784,
0.1428087055683136,
0.07317550480365753,
0.041706617921590805,
0.06797021627426147,
-0.01314578764140606,
0.06251613050699234,
0.06452783942222595,
0.06642954796552658,
0.01941610686480999,
-0.13565950095653534,
0.00018188318063039333,
-0.03414444625377655,
0.019177518784999847,
0.020507415756583214,
0.08759129047393799,
-0.0026737169828265905,
0.030203847214579582,
-0.04407859966158867,
-0.06187661737203598,
0.01423760037869215,
-0.008541656658053398,
-0.029695987701416016,
0.03212043270468712,
0.08167464286088943,
0.026325887069106102,
0.0340704470872879,
-0.0010218163952231407,
-0.1517568677663803,
0.035271864384412766,
0.0980641320347786,
-0.01293626707047224,
0.025382492691278458,
0.07571703940629959,
-0.030781347304582596,
0.0619184784591198,
-0.08270485699176788,
-0.0418403260409832,
0.05286876857280731,
-0.11127150803804398,
-0.06402909010648727,
-0.08609455823898315,
0.075367771089077,
0.006919735576957464,
0.06346090883016586,
0.0030032158829271793,
0.08120176941156387,
-0.012008006684482098,
0.049243662506341934,
0.13459739089012146,
-0.06375494599342346,
-0.03063327632844448,
0.1549626737833023,
-0.015549816191196442,
0.048317451030015945,
-0.024725867435336113,
-0.014982838183641434,
-0.0056465729139745235,
-0.0010112366871908307,
-0.16356858611106873,
-0.03814901039004326,
0.09915518760681152,
-0.04325046390295029,
-0.05222375690937042,
-0.009401763789355755,
0.2861306667327881,
-0.005966504104435444,
-0.046218547970056534,
0.015257786959409714,
-0.07298193126916885,
0.1568971425294876,
0.03599901869893074,
-0.04902719333767891,
0.059877779334783554,
0.061020851135253906,
0.09972837567329407,
-0.06210722401738167,
-0.0631507858633995,
-0.014967542141675949,
-0.08873025327920914,
0.12875622510910034,
-0.021074559539556503,
-0.004883156158030033,
-0.043979793787002563,
0.018635910004377365,
-0.17308588325977325,
-0.07690279185771942,
-0.03380317613482475,
-0.11272002756595612,
0.014174042269587517,
-0.02304982580244541,
-0.06984028220176697,
-0.17513123154640198,
0.09076672047376633,
0.09046736359596252,
-0.021132662892341614,
0.005910370498895645,
-0.07551544904708862,
0.019171319901943207,
0.11335127055644989,
-0.04590203985571861,
-0.09920718520879745,
0.020402923226356506,
0.12526436150074005,
-0.04256811738014221,
0.03419746086001396,
-0.026451367884874344,
-0.01961330696940422,
0.004381492268294096,
-0.02377569116652012,
0.0790213942527771,
0.13568103313446045,
0.01929420791566372,
-0.0781325027346611,
-0.09432139992713928,
0.14759834110736847,
-0.12220686674118042,
-0.00798009242862463,
0.029688073322176933,
-0.022815855219960213,
0.11829262226819992,
0.044019799679517746,
-0.012856588698923588,
-0.06019217148423195,
0.02864457480609417,
-0.03459778428077698,
0.0060185580514371395,
-0.07517510652542114,
-0.039199281483888626,
0.07024171203374863,
0.11520940065383911,
-0.013232174329459667,
-0.16511379182338715,
-0.0718524232506752,
-0.07999330759048462,
0.041322972625494,
-0.022219451144337654,
-0.03841399401426315,
-0.016058655455708504,
0.029241126030683517,
-0.025471698492765427,
0.010199871845543385,
-0.011615050956606865,
-0.024790998548269272,
0.055491458624601364,
-0.05189680680632591,
0.026067379862070084,
-0.04155799373984337,
0.042714428156614304,
-0.04317662492394447,
0.031079687178134918,
-0.1674737185239792,
0.08949942886829376,
-0.09103118628263474,
-0.026252834126353264,
-0.07274772226810455,
0.04591674730181694,
0.0009718740475364029,
-0.0415530689060688,
0.036133505403995514,
0.17104806005954742,
-0.21861794590950012,
-0.025465894490480423,
0.16109900176525116,
-0.11458571255207062,
0.00829428993165493,
0.08772262930870056,
0.021084623411297798,
-0.0019594449549913406,
0.09118511527776718,
0.12287147343158722,
0.014291107654571533,
-0.12270360440015793,
-0.11228995770215988,
-0.03089495375752449,
-0.027714014053344727,
0.09830964356660843,
0.043730322271585464,
-0.054010022431612015,
0.014298475347459316,
0.025949779897928238,
-0.017616773024201393,
-0.039228007197380066,
0.014118600636720657,
-0.06365881115198135,
-0.04786292836070061,
-0.01715836673974991,
-0.014324896968901157,
0.013610154390335083,
-0.06623601913452148,
0.014096556231379509,
-0.025025920942425728,
-0.0362718403339386,
0.1180339828133583,
0.0027960920706391335,
0.014934219419956207,
-0.04857628419995308,
0.1388736218214035,
-0.09818506240844727,
0.03621440380811691,
-0.1516202837228775,
-0.05317673087120056,
-0.020267024636268616,
-0.1307346522808075,
0.004876959137618542,
0.05777561664581299,
-0.0011341837234795094,
0.052611928433179855,
-0.057072024792432785,
0.0533984899520874,
-0.04804559051990509,
0.011688259430229664,
-0.01649288833141327,
-0.12978936731815338,
0.029880015179514885,
-0.04163389280438423,
0.09700758755207062,
-0.05802678316831589,
0.02512148581445217,
0.012072975747287273,
0.10776105523109436,
-0.006135774310678244,
-0.05547391623258591,
0.0750153586268425,
0.04376809671521187,
-0.025973645970225334,
-0.05555545166134834,
0.035714536905288696,
0.026676906272768974,
-0.059122148901224136,
0.03645375370979309,
-0.1175151839852333,
-0.1625491976737976,
0.09071920067071915,
0.013343091122806072,
-0.01514077465981245,
-0.024999285116791725,
0.001838754047639668,
-0.027962220832705498,
-0.01804419979453087,
-0.0015908924397081137,
0.09458082914352417,
0.0261604655534029,
0.043941035866737366,
-0.06146575137972832,
-0.0007181512773968279,
0.02309507690370083,
-0.050746265798807144,
-0.04516797140240669,
0.03876355290412903,
0.0695134699344635,
-0.23004087805747986,
0.10289441049098969,
0.0898321196436882,
0.009678332135081291,
0.0738295242190361,
0.057019542902708054,
-0.10144307464361191,
-0.06186867877840996,
0.03053620643913746,
0.09619613736867905,
0.038216233253479004,
-0.03578682243824005,
0.061396196484565735,
0.025520041584968567,
0.028643837198615074,
0.005976622458547354,
0.01925569586455822,
-0.004070141352713108,
0.004089438356459141,
-0.020655835047364235,
-0.15873755514621735,
-0.002671752357855439,
-0.011433473788201809,
0.09871874749660492,
0.01756017655134201,
0.1338530331850052,
0.01777850091457367,
-0.023845741525292397,
-0.06583794206380844,
0.10856760293245316,
-0.12895235419273376,
-0.18653450906276703,
0.017266973853111267,
-0.06872648000717163,
-0.15090630948543549,
0.033586595207452774,
0.06279513239860535,
-0.07622221112251282,
0.018339430913329124,
0.037720728665590286,
-0.027912287041544914,
-0.00450630160048604,
-0.07327703386545181,
-0.09092364460229874,
0.06805054098367691,
0.042901068925857544,
-0.10244495421648026,
-0.007967093959450722,
0.028673360124230385,
-0.0419858954846859,
0.12023142725229263,
-0.027085846289992332,
0.10418964922428131,
0.035807203501462936,
0.047836024314165115,
-0.0572240836918354,
0.05384591966867447,
0.1175522580742836,
-0.07444089651107788,
0.022213904187083244,
0.10504144430160522,
0.05133892595767975,
0.08138743042945862,
0.09575478732585907,
0.016734164208173752,
-0.08246269822120667,
0.006285257637500763,
0.047102272510528564,
-0.032615724951028824,
-0.20219634473323822,
-0.09962759166955948,
-0.06164197623729706,
-0.013074079528450966,
0.009196409955620766,
0.03613783046603203,
-0.009299385361373425,
0.03365819528698921,
-0.055849589407444,
0.057718370109796524,
-0.007275454234331846,
0.06758647412061691,
-0.005468977149575949,
-0.014735016040503979,
0.03708594664931297,
-0.01441306620836258,
0.007530771661549807,
0.1674070805311203,
0.1023065447807312,
0.18934868276119232,
-0.057611990720033646,
0.05077267810702324,
0.08113985508680344,
0.07657966762781143,
0.03003673255443573,
0.051130261272192,
0.04998305067420006,
0.033304277807474136,
-0.04701732471585274,
-0.07130425423383713,
-0.09926219284534454,
0.03852904587984085,
0.08485246449708939,
-0.0627315491437912,
-0.03704958036541939,
-0.06630219519138336,
0.04475005716085434,
0.20327310264110565,
-0.03723348304629326,
-0.06744619458913803,
-0.044252026826143265,
0.040282100439071655,
0.07804727554321289,
-0.04464249312877655,
-0.032169122248888016,
0.08590131998062134,
-0.07801276445388794,
0.10758586972951889,
0.019082583487033844,
0.06750169396400452,
-0.08505982160568237,
0.0006513156113214791,
-0.12866801023483276,
0.011210649274289608,
-0.0005729729891754687,
0.1227155327796936,
-0.2849809527397156,
0.042021457105875015,
0.04176853224635124,
0.0364341214299202,
-0.0660063624382019,
-0.015198836103081703,
0.06770739704370499,
0.08226922154426575,
0.14540797472000122,
0.05678020790219307,
-0.020319471135735512,
-0.05009232833981514,
-0.17983384430408478,
0.028738414868712425,
0.004375935532152653,
-0.025670355185866356,
0.029347093775868416,
0.054997701197862625,
0.007028160151094198,
-0.06252732872962952,
0.05950320512056351,
-0.22387592494487762,
-0.18301667273044586,
0.11530881375074387,
-0.013634631410241127,
0.08422825485467911,
-0.023021861910820007,
-0.0038468288257718086,
0.10375688970088959,
0.20604532957077026,
0.067221499979496,
-0.0797470211982727,
-0.0861181765794754,
-0.003530658083036542,
0.050630245357751846,
-0.05172811076045036,
-0.07154050469398499,
-0.033676523715257645,
0.11370640993118286,
-0.052341412752866745,
-0.0926138311624527,
0.0283505916595459,
-0.10758097469806671,
-0.08898235857486725,
-0.0578991174697876,
0.03278152644634247,
0.06552643328905106,
0.021282071247696877,
0.046575646847486496,
0.009819882921874523,
-0.03583008423447609,
-0.09391102939844131,
0.04355373606085777,
0.19366849958896637,
0.055993568152189255,
0.07149910181760788,
-0.1345953494310379,
-0.01846797578036785,
-0.10330063104629517,
-0.06850507855415344,
0.09423059225082397,
0.2573390603065491,
-0.011207462288439274,
0.08197847008705139,
0.22120440006256104,
-0.141131192445755,
-0.16500455141067505,
-0.11082212626934052,
0.006135399919003248,
-0.00755692133679986,
-0.008933800272643566,
-0.22974546253681183,
-0.02570044994354248,
0.1633175164461136,
0.020945120602846146,
0.0864718109369278,
-0.1285785585641861,
-0.04681478813290596,
-0.008119744248688221,
-0.008503305725753307,
0.15273213386535645,
-0.17374177277088165,
-0.06943801790475845,
-0.11169624328613281,
-0.003424494992941618,
0.1282205581665039,
-0.15066947042942047,
0.09257031977176666,
-0.0008404995896853507,
0.01827351748943329,
0.06343502551317215,
-0.06048789620399475,
0.15015554428100586,
-0.0029252194799482822,
-0.008396861143410206,
-0.10432835668325424,
0.00016844899801071733,
0.08891340345144272,
-0.04288310930132866,
0.0389523021876812,
0.11145087331533432,
0.017268620431423187,
-0.0308547206223011,
-0.03385608643293381,
-0.08766069263219833,
0.061100464314222336,
-0.07061276584863663,
-0.044215746223926544,
0.017312118783593178,
0.09096286445856094,
0.10194617509841919,
-0.01220472902059555,
-0.05018181726336479,
-0.08950037509202957,
0.1053890660405159,
0.11409680545330048,
0.07692787796258926,
-0.024120280519127846,
-0.051826413720846176,
0.002486997051164508,
-0.04592731595039368,
0.06981081515550613,
-0.062354158610105515,
0.045224398374557495,
0.06787313520908356,
-0.004269259516149759,
0.025628602132201195,
0.021990636363625526,
-0.14050641655921936,
0.06085584685206413,
0.0487099252641201,
-0.09782832860946655,
-0.11878829449415207,
-0.02450927533209324,
0.12305868417024612,
-0.03496861830353737,
-0.04467977210879326,
0.13166068494319916,
-0.002072294009849429,
-0.04487660154700279,
0.0004353152762632817,
0.033273860812187195,
-0.030029824003577232,
0.05699153244495392,
0.0010346837807446718,
-0.017279649153351784,
-0.06396538019180298,
0.08728291839361191,
0.09381373226642609,
-0.13044090569019318,
0.004282272886484861,
-0.022951209917664528,
-0.08492658287286758,
-0.11414869129657745,
-0.0833311378955841,
0.05872834846377373,
-0.0030998580623418093,
-0.04482721537351608,
-0.03427546098828316,
0.0032252196688205004,
0.02445073612034321,
-0.06229957938194275,
-0.00022232334595173597,
0.02269187942147255,
0.05601637065410614,
-0.029202919453382492,
-0.08150652796030045,
0.0072387768886983395,
-0.01699700392782688,
0.04241516813635826,
-0.024479812011122704,
0.014356575906276703,
-0.013343822211027145,
0.04638701304793358,
0.0020039344672113657,
-0.026188179850578308,
-0.09512608498334885,
-0.028695469722151756,
-0.09870489686727524,
0.0040281652472913265,
-0.04939981922507286,
0.002026510424911976,
-0.006907175295054913,
0.047207895666360855,
0.034176670014858246,
0.006474863737821579,
-0.04238135740160942,
-0.045779891312122345,
-0.037799444049596786,
0.05139419808983803,
-0.1005132794380188,
-0.06437736749649048,
0.035131070762872696,
-0.056099340319633484,
0.05894540995359421,
0.08861008286476135,
-0.04849691316485405,
-0.06967771798372269,
-0.1709228754043579,
-0.03565399721264839,
-0.0240532997995615,
0.0969928577542305,
0.0065703378058969975,
-0.19986434280872345,
0.015657341107726097,
0.03324900195002556,
-0.025304222479462624,
0.011394703760743141,
0.1233818382024765,
-0.1022544801235199,
0.019059371203184128,
0.05719362571835518,
-0.05932977795600891,
-0.08912153542041779,
-0.015520953573286533,
0.06055469438433647,
0.12464884668588638,
0.09440537542104721,
-0.04307772219181061,
0.07732905447483063,
-0.044930700212717056,
-0.022305937483906746,
0.023655621334910393,
0.026415880769491196,
0.12210863828659058,
-0.011467358097434044,
0.043492428958415985,
0.013036576099693775,
0.08301226794719696,
-0.07046398520469666,
0.07346060127019882,
0.018969522789120674,
-0.06122299283742905,
-0.07062757760286331,
-0.06918903440237045,
0.017574956640601158,
0.04602004960179329,
0.035206012427806854,
0.02852635644376278,
0.06197409704327583,
-0.026363497599959373,
0.03694424033164978,
0.0434642918407917,
0.04873930290341377,
0.16084282100200653,
-0.05668133124709129,
-0.010532120242714882,
-0.05865507945418358,
-0.024391943588852882,
-0.005605601705610752,
-0.014728759415447712,
0.04153566062450409,
-0.013993464410305023,
0.017234526574611664,
0.06625867635011673,
-0.0633959025144577,
0.1219540387392044,
-0.043271254748106,
-0.03955378010869026,
-0.10306042432785034,
-0.1254614293575287,
-0.03248530626296997,
0.025008216500282288,
-0.022954465821385384,
-0.09081628918647766,
0.08647197484970093,
0.07502390444278717,
0.0027089398354291916,
-0.005764761473983526,
-0.010883666574954987,
-0.05906810984015465,
-0.0840701088309288,
-0.0009769081370905042,
-0.02400616556406021,
-0.035591959953308105,
-0.014756537973880768,
0.03680969029664993,
0.03085501492023468,
0.024444764479994774,
0.030347947031259537,
0.1165701374411583,
0.06410296261310577,
0.06762774288654327,
-0.08351846784353256,
-0.06809023767709732,
-0.023530974984169006,
0.027153387665748596,
-0.013931426219642162,
0.22534818947315216,
0.04822584614157677,
-0.02697783149778843,
0.05361444130539894,
0.15183286368846893,
-0.01313511747866869,
-0.08913189172744751,
-0.131993368268013,
0.08481290191411972,
-0.01956324093043804,
-0.0006820641574449837,
-0.02865765616297722,
-0.08469101786613464,
0.029438821598887444,
0.10076498240232468,
0.1071103885769844,
-0.02303200587630272,
0.01680634915828705,
0.04256638139486313,
0.0068195899948477745,
0.007143596187233925,
0.04308261722326279,
0.09340939670801163,
0.18072813749313354,
-0.09407038241624832,
0.17081667482852936,
-0.06246066838502884,
0.06512186676263809,
-0.16726982593536377,
0.07837320864200592,
-0.08367602527141571,
-0.02203725464642048,
-0.00859955232590437,
0.061869848519563675,
-0.048558562994003296,
-0.1196620985865593,
-0.019597992300987244,
-0.041089922189712524,
-0.08030546456575394,
-0.033905498683452606,
-0.07829039543867111,
0.032413337379693985,
0.06611286103725433,
-0.019332442432641983,
0.013236857019364834,
0.2981335520744324,
-0.023803679272532463,
-0.08973383903503418,
-0.06932061165571213,
0.03569995239377022,
0.12266751378774643,
0.10332559794187546,
0.030356155708432198,
0.08376464992761612,
0.07780559360980988,
-0.005810322239995003,
-0.14347656071186066,
0.08173884451389313,
0.01966211572289467,
-0.07745764404535294,
0.05945222079753876,
0.04675918444991112,
-0.06493260711431503,
0.05165676027536392,
0.04284973442554474,
0.055019427090883255,
0.05039549246430397,
0.09615535289049149,
0.044969700276851654,
-0.07046645879745483,
0.17317511141300201,
-0.11721491813659668,
0.09845563769340515,
0.12469159811735153,
-0.03413526713848114,
-0.03267399221658707,
-0.10594014078378677,
0.04531519487500191,
-0.0034983076620846987,
-0.006457478739321232,
-0.07117016613483429,
-0.05946417897939682,
0.03708609938621521,
0.014277549460530281,
0.13332173228263855,
-0.15927353501319885,
-0.02523721382021904,
0.03708476945757866,
-0.06394024938344955,
-0.005212383344769478,
0.04307020828127861,
-0.02759639173746109,
0.009126367047429085,
-0.07022984325885773,
-0.06338264793157578,
-0.021322809159755707,
0.04908554255962372,
-0.025091728195548058,
-0.07482051849365234
] |
null | null | diffusers | ### finetuned_ddpm_poisoned_112 Dreambooth model trained by JoelRunevic with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
| {"license": "creativeml-openrail-m", "tags": ["text-to-image", "stable-diffusion"]} | text-to-image | JoelRunevic/finetuned-ddpm-poisoned-112 | [
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-06T19:41:19+00:00 | [] | [] | TAGS
#diffusers #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### finetuned_ddpm_poisoned_112 Dreambooth model trained by JoelRunevic with TheLastBen's fast-DreamBooth notebook
Test the concept via A1111 Colab fast-Colab-A1111
Sample pictures of this concept:
| [
"### finetuned_ddpm_poisoned_112 Dreambooth model trained by JoelRunevic with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:"
] | [
"TAGS\n#diffusers #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### finetuned_ddpm_poisoned_112 Dreambooth model trained by JoelRunevic with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:"
] | [
56,
60
] | [
"passage: TAGS\n#diffusers #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### finetuned_ddpm_poisoned_112 Dreambooth model trained by JoelRunevic with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:"
] | [
-0.08645518869161606,
0.012511743232607841,
-0.0030888677574694157,
0.0641922876238823,
0.0074841333553195,
-0.0014264417113736272,
0.16809561848640442,
-0.028988229110836983,
-0.000022689500838168897,
0.05732386186718941,
0.16106508672237396,
0.05988258495926857,
-0.03114992566406727,
0.13396745920181274,
-0.02529304288327694,
-0.16739250719547272,
0.05424079671502113,
0.01779726706445217,
-0.05189631134271622,
0.0816582590341568,
0.08066466450691223,
-0.07614613324403763,
0.09302670508623123,
-0.03417884558439255,
-0.09693869203329086,
-0.009251902811229229,
-0.047361794859170914,
-0.026828963309526443,
0.07191707193851471,
0.027155350893735886,
0.06038297340273857,
0.1404184252023697,
0.011093264445662498,
-0.03757934272289276,
0.06554760038852692,
-0.021408120170235634,
-0.029997102916240692,
0.03968743234872818,
-0.010199485346674919,
0.07008353620767593,
0.08435848355293274,
0.10167508572340012,
0.010922905057668686,
-0.004108557477593422,
-0.07195525616407394,
0.048794738948345184,
-0.002804267918691039,
0.11655781418085098,
0.04351912438869476,
0.0430021695792675,
0.006648504640907049,
0.10470251739025116,
0.05095170810818672,
0.11670061945915222,
0.13663795590400696,
-0.2082400619983673,
-0.0968041643500328,
0.2593840956687927,
0.15000881254673004,
-0.052337996661663055,
0.0043444205075502396,
0.0750202164053917,
0.03795192763209343,
0.03187144547700882,
-0.08020047843456268,
-0.07696366310119629,
-0.02169126830995083,
-0.11379700154066086,
-0.07083643227815628,
0.021441714838147163,
0.11673883348703384,
0.03704878315329552,
-0.036389730870723724,
-0.01709337905049324,
-0.10131397098302841,
-0.0018369272584095597,
-0.050326768308877945,
-0.06073354557156563,
-0.03171295300126076,
-0.004594747442752123,
-0.030100909993052483,
0.011380583047866821,
-0.08069982379674911,
-0.083794005215168,
-0.01704047992825508,
0.13269828259944916,
-0.03830689936876297,
0.05553358420729637,
-0.06594858318567276,
0.12460514158010483,
-0.019822366535663605,
-0.1481020450592041,
0.007489340379834175,
-0.13585004210472107,
0.06344275921583176,
0.012373866513371468,
-0.020564114674925804,
-0.07638013362884521,
0.10363861918449402,
-0.015093722380697727,
0.14180299639701843,
-0.011828211136162281,
0.10811839252710342,
0.07305965572595596,
0.011905675753951073,
-0.06615068018436432,
-0.038957733660936356,
-0.08325641602277756,
-0.019001299515366554,
0.06787125021219254,
0.030092569068074226,
-0.026129473000764847,
-0.10496487468481064,
0.006742059253156185,
-0.027788860723376274,
0.01122801098972559,
0.03169076889753342,
0.025591645389795303,
-0.06589699536561966,
-0.03791801258921623,
0.09228400141000748,
0.014004455879330635,
-0.052196066826581955,
-0.01831405982375145,
-0.060279883444309235,
0.04254915192723274,
0.1153424084186554,
-0.06075620278716087,
0.004464233294129372,
0.13446776568889618,
-0.07786139845848083,
0.003808146109804511,
-0.06449548155069351,
-0.060800421983003616,
0.02118854597210884,
-0.052324309945106506,
0.03573373705148697,
-0.14070715010166168,
-0.17231924831867218,
-0.02977505885064602,
0.0633828341960907,
-0.04216504096984863,
-0.004227114841341972,
-0.03884923458099365,
-0.10159909725189209,
-0.007422517519444227,
0.01895395666360855,
-0.046963419765233994,
-0.018122535198926926,
0.05873943120241165,
0.018586291000247,
0.1325220912694931,
-0.1337094008922577,
-0.033849213272333145,
-0.06558181345462799,
0.025114763528108597,
-0.10786464810371399,
0.020160837098956108,
-0.07132448256015778,
0.13504791259765625,
-0.013234172947704792,
-0.050574593245983124,
0.010434052906930447,
-0.006555350963026285,
0.02444368600845337,
0.23607082664966583,
-0.1993977576494217,
0.0020107075106352568,
0.06531349569559097,
-0.1397177129983902,
-0.19548963010311127,
0.04163515940308571,
-0.00014697809820063412,
0.1707308143377304,
0.03478957712650299,
-0.016723938286304474,
0.0588349811732769,
-0.29254505038261414,
-0.03536633774638176,
0.014849241822957993,
-0.12420280277729034,
-0.027110731229186058,
0.01410938985645771,
0.11343255639076233,
-0.0005964919691905379,
0.01768183708190918,
0.0014651499222964048,
0.053136639297008514,
-0.07673942297697067,
-0.04238954558968544,
-0.025239942595362663,
-0.049626730382442474,
0.029895903542637825,
-0.007608336862176657,
0.035259198397397995,
-0.04479360580444336,
0.01806122437119484,
0.018075285479426384,
0.012317330576479435,
0.038455747067928314,
-0.03919095918536186,
-0.10320815443992615,
0.04024980962276459,
-0.047676052898168564,
-0.013489333912730217,
-0.05953438952565193,
-0.09902849048376083,
-0.018871303647756577,
0.15261690318584442,
-0.02187672257423401,
0.1285214126110077,
0.07461873441934586,
0.0560774952173233,
0.007927777245640755,
-0.0215695109218359,
-0.005076924804598093,
0.05537112429738045,
-0.01430526189506054,
-0.17988356947898865,
0.0763111412525177,
-0.06940483301877975,
-0.04818570986390114,
-0.062001392245292664,
0.021086208522319794,
0.06688462942838669,
0.13253024220466614,
0.019504401832818985,
0.003526855492964387,
0.040675945580005646,
-0.005121353082358837,
-0.022167379036545753,
-0.05698467418551445,
0.05290316790342331,
0.0018193804426118731,
-0.03221845254302025,
0.055734824389219284,
-0.037315621972084045,
0.2582232356071472,
0.11231030523777008,
-0.001654194318689406,
-0.07203678786754608,
-0.018508022651076317,
-0.0453537255525589,
-0.004334956407546997,
0.0040094428695738316,
0.04005567356944084,
-0.002545613097026944,
-0.009741783142089844,
0.10719600319862366,
-0.04718414694070816,
0.05349680408835411,
0.03312982991337776,
-0.058027442544698715,
-0.06709690392017365,
0.054578885436058044,
-0.04188108444213867,
-0.0962366908788681,
0.050396453589200974,
0.13161371648311615,
-0.03714734688401222,
0.12487827241420746,
0.028124483302235603,
0.002794478088617325,
-0.1203705370426178,
0.010347511619329453,
-0.021844150498509407,
0.25820425152778625,
-0.059829387813806534,
0.0655820295214653,
0.01674805022776127,
-0.044312287122011185,
0.030500192195177078,
-0.05817481502890587,
-0.04364512860774994,
0.0074858758598566055,
-0.0016939188353717327,
0.0754861906170845,
0.0975099727511406,
-0.09865624457597733,
0.06124434620141983,
-0.06212857738137245,
-0.15966543555259705,
0.040617261081933975,
-0.012503251433372498,
0.016192059963941574,
0.1135186031460762,
-0.08012893795967102,
-0.26087868213653564,
-0.09782283753156662,
-0.05390184372663498,
0.007823524065315723,
-0.009868877939879894,
0.03632573410868645,
-0.0357355959713459,
-0.041393816471099854,
-0.043727241456508636,
0.045428790152072906,
0.017981138080358505,
0.02384020946919918,
0.09157253056764603,
0.03995077684521675,
-0.04869643598794937,
-0.009459925815463066,
0.01743524707853794,
-0.05033077299594879,
0.18422040343284607,
0.1358928382396698,
-0.056449469178915024,
0.09355305880308151,
0.11671852320432663,
-0.003714954247698188,
0.011723224073648453,
0.035357143729925156,
0.28213682770729065,
-0.024158334359526634,
0.100555419921875,
0.21416647732257843,
0.05236421898007393,
0.03742726147174835,
0.1428482085466385,
0.039879534393548965,
-0.0679507628083229,
0.07670282572507858,
-0.08435012400150299,
-0.07744457572698593,
-0.05646180361509323,
-0.09897041320800781,
0.0005221189931035042,
0.0498853363096714,
-0.01183848362416029,
0.04647975042462349,
0.014241921715438366,
0.15660835802555084,
0.06597014516592026,
-0.016245262697339058,
-0.048855289816856384,
0.07730016857385635,
0.15947522222995758,
-0.10437941551208496,
0.011771160177886486,
-0.0804382860660553,
-0.09125674515962601,
0.09777238219976425,
-0.01823635958135128,
-0.009359700605273247,
-0.0075790658593177795,
-0.05455626919865608,
0.07853031158447266,
0.0453459806740284,
0.10450339317321777,
0.0974845141172409,
0.0011667490471154451,
-0.0906011238694191,
-0.028721725568175316,
-0.1180710569024086,
0.02801606059074402,
0.0750705823302269,
-0.09838581830263138,
-0.019827507436275482,
0.05749569833278656,
0.149197518825531,
0.009535038843750954,
-0.041625093668699265,
0.1457117348909378,
-0.2782982885837555,
-0.04877656698226929,
-0.049512829631567,
0.11598161607980728,
-0.0920039489865303,
-0.014428701251745224,
0.21165905892848969,
0.03341421112418175,
0.010787476785480976,
-0.08439157903194427,
0.0662836879491806,
0.09571003913879395,
0.033090244978666306,
-0.03059515357017517,
-0.018879856914281845,
-0.022546572610735893,
0.02835172414779663,
-0.2184344232082367,
0.059037137776613235,
-0.018736977130174637,
0.05829484015703201,
0.0014826060505583882,
-0.022070979699492455,
0.02486283890902996,
0.1783216893672943,
0.15621298551559448,
-0.02371838130056858,
0.09223851561546326,
0.061546824872493744,
-0.1707284152507782,
-0.012447281740605831,
0.05345519259572029,
0.12603966891765594,
0.036224715411663055,
0.08231944590806961,
-0.008303669281303883,
0.008848448283970356,
-0.03025013767182827,
-0.18950015306472778,
-0.012047136202454567,
0.07488255202770233,
0.08745691925287247,
0.050287339836359024,
-0.05659204348921776,
-0.07543627917766571,
0.07716922461986542,
0.132398322224617,
-0.12579284608364105,
-0.07095953822135925,
-0.08672292530536652,
-0.027376843616366386,
0.07578132301568985,
-0.010419720783829689,
0.02924467995762825,
-0.07440900057554245,
0.037281401455402374,
-0.06296909600496292,
-0.09512058645486832,
0.0632760226726532,
-0.1511220484972,
-0.10602758079767227,
-0.17091915011405945,
0.05027693882584572,
-0.017919782549142838,
-0.015150731429457664,
0.02812614105641842,
-0.05702856555581093,
-0.09012231975793839,
-0.09416740387678146,
-0.005966539494693279,
-0.01019181776791811,
-0.09889955818653107,
-0.01622368022799492,
-0.010154091753065586,
0.025141539052128792,
0.0028882098849862814,
0.03015970066189766,
0.02294914610683918,
0.258376806974411,
-0.04639327898621559,
0.03402242809534073,
0.1267225593328476,
-0.01315819751471281,
-0.23393653333187103,
-0.10209989547729492,
-0.021819962188601494,
0.01316616777330637,
-0.07482244074344635,
-0.07065591216087341,
0.12260548770427704,
-0.008702944032847881,
-0.03528214246034622,
0.21751877665519714,
-0.360399067401886,
-0.09622004628181458,
0.13144488632678986,
0.10296685993671417,
0.36364075541496277,
-0.10606101155281067,
-0.0619669035077095,
-0.07378356158733368,
-0.24301964044570923,
0.14568863809108734,
0.07506828755140305,
0.05264056846499443,
-0.083968386054039,
0.04191069304943085,
-0.006561818066984415,
-0.05098571628332138,
0.13253147900104523,
-0.05025516450405121,
0.06304658204317093,
-0.08470852673053741,
-0.052865948528051376,
0.18285061419010162,
-0.013164988718926907,
0.0612306110560894,
0.02188769169151783,
0.08638770878314972,
-0.03756896033883095,
-0.029443863779306412,
-0.04582156240940094,
0.061347901821136475,
-0.07799544185400009,
-0.09719418734312057,
-0.08136322349309921,
0.057077571749687195,
-0.05373566225171089,
-0.037890367209911346,
-0.12159194052219391,
-0.02181762084364891,
-0.13272377848625183,
0.1774188131093979,
-0.030194278806447983,
-0.06049569696187973,
-0.0965527817606926,
0.06676201522350311,
-0.034831978380680084,
0.10964898765087128,
0.0007572126924060285,
-0.07305806130170822,
0.17319877445697784,
0.019897544756531715,
0.028882423415780067,
0.04501663148403168,
-0.03490974381566048,
-0.0021527677308768034,
0.11668280512094498,
-0.19504578411579132,
-0.01671719364821911,
-0.036011703312397,
0.09550225734710693,
0.05242336913943291,
-0.021870272234082222,
0.13643798232078552,
-0.10216282308101654,
0.06575378775596619,
-0.025876909494400024,
-0.030522195622324944,
-0.009575286880135536,
0.11940369009971619,
0.020300792530179024,
0.04738998785614967,
-0.058652736246585846,
0.05823437124490738,
-0.06437747925519943,
-0.1634870171546936,
-0.09690085798501968,
0.056918952614068985,
-0.10135684162378311,
-0.04610474780201912,
-0.003717259271070361,
0.13886956870555878,
-0.14890286326408386,
-0.015919718891382217,
-0.17187625169754028,
-0.11598457396030426,
0.04284914582967758,
0.19669277966022491,
0.08705997467041016,
0.06816121935844421,
-0.011530669406056404,
-0.08234919607639313,
-0.012763562612235546,
0.06361524760723114,
0.02969900704920292,
0.07529043406248093,
-0.18009932339191437,
0.0021916120313107967,
-0.0656709372997284,
0.04457075893878937,
-0.09914123266935349,
-0.004183067474514246,
-0.09402201324701309,
-0.007190183736383915,
-0.04984267055988312,
0.09090737998485565,
-0.061630699783563614,
-0.06913325190544128,
0.002672941191121936,
0.03973174840211868,
-0.0031493944115936756,
0.003448026953265071,
-0.03339659422636032,
0.04490823298692703,
0.019360683858394623,
-0.03505499288439751,
-0.061634361743927,
-0.04704516381025314,
0.02617809921503067,
-0.045792900025844574,
0.07962293922901154,
0.00282530696131289,
-0.10007675737142563,
-0.05395534262061119,
-0.14323706924915314,
-0.0058609251864254475,
0.13461925089359283,
0.00968053936958313,
0.015106434002518654,
0.03319025784730911,
-0.012180673889815807,
-0.01440416183322668,
0.06785239279270172,
0.015178619883954525,
0.1070995107293129,
-0.10177838057279587,
-0.09001632779836655,
0.0007385360659100115,
0.008032623678445816,
-0.0676145926117897,
-0.01861713081598282,
0.09809627383947372,
0.07845591753721237,
0.16368943452835083,
-0.09272587299346924,
0.054130394011735916,
-0.0378405787050724,
0.002839925466105342,
0.0632319301366806,
-0.05845721438527107,
0.06163835525512695,
0.010463765822350979,
-0.0020004853140562773,
0.0033757747150957584,
0.10360535234212875,
0.0009014012757688761,
-0.23258402943611145,
0.020167600363492966,
-0.06857764720916748,
-0.028454383835196495,
0.0157482773065567,
0.1775345355272293,
0.023508215323090553,
0.03379099443554878,
-0.14194662868976593,
0.060134824365377426,
0.10337936133146286,
0.10446980595588684,
0.09081432968378067,
0.0977940484881401,
0.09071648865938187,
0.1550230234861374,
0.04260062053799629,
0.06021536886692047,
0.0537133552134037,
-0.0020220212172716856,
-0.08664175122976303,
0.1458485871553421,
-0.03318237513303757,
-0.043058160692453384,
0.046192508190870285,
0.02462060935795307,
-0.03492949903011322,
0.017064061015844345,
-0.07099147140979767,
-0.01796814240515232,
0.010366756469011307,
-0.06367325037717819,
-0.08663347363471985,
0.040950849652290344,
-0.06961057335138321,
-0.05115736275911331,
0.0022534604649990797,
0.032503388822078705,
-0.045011695474386215,
0.1270051747560501,
-0.08382364362478256,
-0.020340215414762497,
0.15013083815574646,
-0.026218684390187263,
-0.0505804680287838,
0.02409609965980053,
0.04748781397938728,
-0.03363519161939621,
0.043075066059827805,
-0.0680316910147667,
0.03459813818335533,
0.003423634683713317,
-0.01340833306312561,
0.05481250584125519,
-0.04973768815398216,
-0.03254939988255501,
0.03713386505842209,
0.05009825900197029,
0.13778690993785858,
0.020893817767500877,
0.010285825468599796,
-0.008182799443602562,
0.09284580498933792,
-0.02603163570165634,
-0.15323005616664886,
-0.08275559544563293,
0.01304109301418066,
-0.11226819455623627,
0.09480597823858261,
-0.04062604531645775,
0.012338020838797092,
-0.06053398922085762,
0.13200508058071136,
0.12831130623817444,
-0.17243526875972748,
-0.00794166885316372,
-0.037631209939718246,
0.023636380210518837,
-0.039974458515644073,
0.050716932862997055,
0.01871558651328087,
0.19743338227272034,
-0.07409094274044037,
-0.06122678890824318,
-0.10727839171886444,
-0.05800535902380943,
-0.013985821045935154,
-0.164949432015419,
0.07716181874275208,
-0.02378084883093834,
-0.10225536674261093,
0.11532939970493317,
-0.18347583711147308,
0.0008679391467012465,
0.21331943571567535,
-0.03801152855157852,
-0.07053124159574509,
-0.04013155773282051,
0.11963062733411789,
0.021190481260418892,
0.06658007949590683,
-0.10634719580411911,
-0.0036582290194928646,
0.06746924668550491,
-0.05861511081457138,
-0.13724686205387115,
0.025328928604722023,
0.035795267671346664,
-0.17956271767616272,
0.13822047412395477,
0.01675397902727127,
0.12421853095293045,
0.07010222971439362,
-0.05505349487066269,
-0.13037779927253723,
0.07970331609249115,
-0.016137802973389626,
-0.1301134079694748,
-0.02432185970246792,
0.026023928076028824,
0.05149749293923378,
0.032426975667476654,
0.008606081828474998,
-0.09510722011327744,
-0.041902415454387665,
0.1387600153684616,
-0.020068444311618805,
-0.13323856890201569,
0.10555224120616913,
-0.020970823243260384,
0.07244008034467697,
0.08890122920274734,
-0.059353284537792206,
0.018325001001358032,
0.004630590323358774,
0.07834408432245255,
0.018985850736498833,
-0.08135177940130234,
0.03985884413123131,
-0.04573954641819,
-0.013447686098515987,
-0.04478074610233307,
-0.03624219074845314,
-0.20819313824176788,
-0.0757131427526474,
-0.17481519281864166,
0.01929669827222824,
0.020647861063480377,
0.07714536041021347,
0.11350014805793762,
0.05659656599164009,
0.02525399439036846,
0.047105785459280014,
-0.020058197900652885,
0.016144711524248123,
-0.05252164974808693,
-0.14207784831523895
] |
null | null | null |
# Lora of guinaifen/桂乃芬/桂乃芬/계네빈 (Honkai: Star Rail)
## What Is This?
This is the LoRA model of waifu guinaifen/桂乃芬/桂乃芬/계네빈 (Honkai: Star Rail).
## How Is It Trained?
* This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion).
* The [auto-training framework](https://github.com/deepghs/cyberharem) is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
* The base model used for training is [deepghs/animefull-latest](https://huggingface.co/deepghs/animefull-latest).
* Dataset used for training is the `stage3-p480-800` in [CyberHarem/guinaifen_starrail](https://huggingface.co/datasets/CyberHarem/guinaifen_starrail), which contains 140 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 16, resolution is 720x720, clustering into 20 buckets.
* Trained for 1400 steps, 40 checkpoints were saved and evaluated.
* **Trigger word is `guinaifen_starrail`.**
* Pruned core tags for this waifu are `long_hair, hair_ornament, yellow_eyes, bangs, breasts, hair_between_eyes, side_ponytail, hair_flower`. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
## How to Use It?
### If You Are Using A1111 WebUI v1.7+
**Just use it like the classic LoRA**. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 735, you need to download [`735/guinaifen_starrail.pt`](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/735/guinaifen_starrail.pt) as the embedding and [`735/guinaifen_starrail.safetensors`](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/735/guinaifen_starrail.safetensors) for loading Lora. By using both files together, you can generate images for the desired characters.
## Which Step Should I Use?
We selected 5 good steps for you to choose. The best one is step 735.
1480 images (1.63 GiB) were generated for auto-testing.

The base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11).
Here are the preview of the recommended steps:
| Step | Epoch | CCIP | AI Corrupt | Bikini Plus | Score | Download | pattern_0_0 | pattern_0_1 | portrait_0 | portrait_1 | portrait_2 | full_body_0 | full_body_1 | profile_0 | profile_1 | free_0 | free_1 | shorts | maid_0 | maid_1 | miko | yukata | suit | china | bikini_0 | bikini_1 | bikini_2 | sit | squat | kneel | jump | crossed_arms | angry | smile | cry | grin | n_lie_0 | n_lie_1 | n_stand_0 | n_stand_1 | n_stand_2 | n_sex_0 | n_sex_1 |
|-------:|--------:|:----------|:-------------|:--------------|:----------|:---------------------------------------------------------------------------------------------------------|:---------------------------------------------|:---------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------------|:---------------------------------------------|:---------------------------------------------|:-----------------------------------------|:-----------------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-------------------------------|:-----------------------------------|:-------------------------------|:---------------------------------|:---------------------------------------|:---------------------------------------|:---------------------------------------|:-----------------------------|:---------------------------------|:---------------------------------|:-------------------------------|:-----------------------------------------------|:---------------------------------|:---------------------------------|:-----------------------------|:-------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------|:-----------------------------------------|:-----------------------------------------|:-------------------------------------|:-------------------------------------|
| 735 | 21 | **0.994** | 0.929 | 0.841 | **0.690** | [Download](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/735/guinaifen_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 840 | 24 | 0.990 | 0.912 | **0.842** | 0.687 | [Download](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/840/guinaifen_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 700 | 20 | 0.994 | **0.956** | 0.839 | 0.687 | [Download](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/700/guinaifen_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 665 | 19 | 0.988 | 0.946 | 0.841 | 0.683 | [Download](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/665/guinaifen_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 805 | 23 | 0.988 | 0.903 | 0.840 | 0.682 | [Download](https://huggingface.co/CyberHarem/guinaifen_starrail/resolve/main/805/guinaifen_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
## Anything Else?
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
## All Steps
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* [Steps From 1085 to 1400](all/0.md)
* [Steps From 735 to 1050](all/1.md)
* [Steps From 385 to 700](all/2.md)
* [Steps From 35 to 350](all/3.md)
| {"license": "mit", "tags": ["art", "not-for-all-audiences"], "datasets": ["CyberHarem/guinaifen_starrail"], "pipeline_tag": "text-to-image"} | text-to-image | CyberHarem/guinaifen_starrail | [
"art",
"not-for-all-audiences",
"text-to-image",
"dataset:CyberHarem/guinaifen_starrail",
"license:mit",
"region:us"
] | 2024-02-06T19:41:31+00:00 | [] | [] | TAGS
#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/guinaifen_starrail #license-mit #region-us
| Lora of guinaifen/桂乃芬/桂乃芬/계네빈 (Honkai: Star Rail)
=================================================
What Is This?
-------------
This is the LoRA model of waifu guinaifen/桂乃芬/桂乃芬/계네빈 (Honkai: Star Rail).
How Is It Trained?
------------------
* This model is trained with HCP-Diffusion.
* The auto-training framework is maintained by DeepGHS Team.
* The base model used for training is deepghs/animefull-latest.
* Dataset used for training is the 'stage3-p480-800' in CyberHarem/guinaifen\_starrail, which contains 140 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 16, resolution is 720x720, clustering into 20 buckets.
* Trained for 1400 steps, 40 checkpoints were saved and evaluated.
* Trigger word is 'guinaifen\_starrail'.
* Pruned core tags for this waifu are 'long\_hair, hair\_ornament, yellow\_eyes, bangs, breasts, hair\_between\_eyes, side\_ponytail, hair\_flower'. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
How to Use It?
--------------
### If You Are Using A1111 WebUI v1.7+
Just use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 735, you need to download '735/guinaifen\_starrail.pt' as the embedding and '735/guinaifen\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.
Which Step Should I Use?
------------------------
We selected 5 good steps for you to choose. The best one is step 735.
1480 images (1.63 GiB) were generated for auto-testing.
!Metrics Plot
The base model used for generating preview images is Meina/MeinaMix\_V11.
Here are the preview of the recommended steps:
Anything Else?
--------------
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
All Steps
---------
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* Steps From 1085 to 1400
* Steps From 735 to 1050
* Steps From 385 to 700
* Steps From 35 to 350
| [
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 735, you need to download '735/guinaifen\\_starrail.pt' as the embedding and '735/guinaifen\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 735.\n\n\n1480 images (1.63 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 1085 to 1400\n* Steps From 735 to 1050\n* Steps From 385 to 700\n* Steps From 35 to 350"
] | [
"TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/guinaifen_starrail #license-mit #region-us \n",
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 735, you need to download '735/guinaifen\\_starrail.pt' as the embedding and '735/guinaifen\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 735.\n\n\n1480 images (1.63 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 1085 to 1400\n* Steps From 735 to 1050\n* Steps From 385 to 700\n* Steps From 35 to 350"
] | [
44,
38,
470
] | [
"passage: TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/guinaifen_starrail #license-mit #region-us \n### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file."
] | [
0.000021876810933463275,
0.02156190387904644,
-0.0038079647347331047,
0.09632333368062973,
0.07477188110351562,
0.06870818883180618,
0.2222280651330948,
0.0691656768321991,
0.09711481630802155,
-0.06678547710180283,
0.09283071756362915,
0.049104955047369,
-0.016735762357711792,
0.06042938306927681,
-0.017661934718489647,
-0.17255450785160065,
-0.050185829401016235,
-0.04602283984422684,
-0.04187121242284775,
0.024950886145234108,
0.08718721568584442,
0.0071090334095060825,
0.10959795862436295,
-0.049078792333602905,
-0.06781069189310074,
0.06915459781885147,
-0.025214843451976776,
-0.04593243822455406,
0.045809317380189896,
0.07153456658124924,
0.13048109412193298,
0.021575871855020523,
0.0719655454158783,
-0.12679097056388855,
0.06524293124675751,
0.0030063986778259277,
-0.1062062606215477,
0.0037049436941742897,
0.012261967174708843,
-0.037224479019641876,
0.12831251323223114,
0.06980622559785843,
-0.08588679879903793,
0.03978743404150009,
-0.12526914477348328,
-0.020961953327059746,
-0.060334667563438416,
0.07102804630994797,
0.10566659271717072,
0.06630633026361465,
0.023698322474956512,
0.04141267389059067,
-0.07493287324905396,
0.08965355157852173,
0.11002375185489655,
-0.1390390247106552,
-0.06767145544290543,
0.12244546413421631,
0.010182317346334457,
0.137655109167099,
-0.09751801192760468,
0.09563945978879929,
0.0832056775689125,
-0.06457055360078812,
-0.128120556473732,
-0.08501122146844864,
-0.21215279400348663,
0.011686635203659534,
-0.0031497846357524395,
0.030646659433841705,
0.40942221879959106,
0.03882807865738869,
0.032344963401556015,
0.06421376019716263,
-0.06052107736468315,
-0.02662273868918419,
-0.08175940066576004,
0.10807507485151291,
0.04311488941311836,
0.10127122700214386,
-0.043556392192840576,
-0.11919243633747101,
-0.1079605370759964,
-0.08702048659324646,
-0.06288383901119232,
-0.007104696240276098,
0.03307865187525749,
0.12033376097679138,
-0.17914968729019165,
0.02674061246216297,
-0.07311763614416122,
-0.11731159687042236,
0.020874107256531715,
-0.11183624714612961,
0.1473194807767868,
0.07141546159982681,
-0.007908347994089127,
0.021947305649518967,
0.2182457000017166,
0.1354108601808548,
0.19511431455612183,
0.04032864049077034,
-0.09951174259185791,
0.13475140929222107,
0.042420703917741776,
-0.09206950664520264,
-0.04357825964689255,
-0.08820325136184692,
0.1434451937675476,
-0.05312797799706459,
0.10049658268690109,
-0.07107910513877869,
-0.11882395297288895,
0.021610915660858154,
-0.11362607032060623,
0.06762635707855225,
0.01905699446797371,
0.0024785471614450216,
-0.043505795300006866,
0.045460090041160583,
0.06664897501468658,
-0.026693882420659065,
0.011996343731880188,
-0.021867912262678146,
-0.06893519312143326,
0.05803056061267853,
0.10025962442159653,
0.033795252442359924,
0.06634937971830368,
0.04835469275712967,
-0.04275986924767494,
-0.0004977871431037784,
-0.0530531145632267,
0.00960596464574337,
0.030513565987348557,
0.034889161586761475,
0.07621652632951736,
-0.1576816588640213,
-0.08685740828514099,
-0.014190629124641418,
0.04837572202086449,
-0.006402986124157906,
0.0846463069319725,
-0.017434144392609596,
0.025495244190096855,
0.017665307968854904,
-0.02456567995250225,
0.012184792198240757,
-0.10508743673563004,
0.07495209574699402,
-0.02675044536590576,
0.06850060075521469,
-0.2150731384754181,
-0.00454886257648468,
-0.062118902802467346,
0.0068254354409873486,
0.024758921936154366,
-0.013740400783717632,
-0.12561021745204926,
0.12538690865039825,
0.00432988815009594,
0.051451124250888824,
-0.09234461933374405,
0.052597030997276306,
0.03244253247976303,
0.07251088321208954,
-0.10998591780662537,
0.006927771028131247,
0.11500689387321472,
-0.16738282144069672,
-0.14012585580348969,
0.10363926738500595,
-0.02990211360156536,
0.02081918902695179,
0.031315192580223083,
0.15669101476669312,
0.19816303253173828,
-0.20486551523208618,
-0.0082341767847538,
0.04436568170785904,
-0.0549481175839901,
-0.08877911418676376,
-0.011527154594659805,
0.12510354816913605,
0.006689845118671656,
0.03122023120522499,
-0.024044344201683998,
0.1217372938990593,
-0.031361568719148636,
-0.07666628062725067,
-0.03464609757065773,
-0.07359253615140915,
-0.07655846327543259,
0.050799109041690826,
0.005680586211383343,
-0.06462171673774719,
0.010841254144906998,
-0.15225589275360107,
0.17728744447231293,
0.016993382945656776,
0.019762547686696053,
-0.06366533041000366,
0.10995633155107498,
0.0249643512070179,
-0.007351946085691452,
0.013799045234918594,
-0.04596151411533356,
-0.08954112231731415,
0.25319358706474304,
0.08511307090520859,
0.1499837338924408,
0.05815387889742851,
-0.045096490532159805,
-0.06883523613214493,
0.01725354790687561,
0.02710593491792679,
-0.03770436346530914,
0.022258523851633072,
-0.12690983712673187,
0.053987324237823486,
-0.0244296845048666,
0.0205567367374897,
-0.025409607216715813,
-0.018488146364688873,
0.08628204464912415,
0.02507849596440792,
-0.016435524448752403,
0.06932806223630905,
0.04227115958929062,
-0.01111301127821207,
-0.0673036277294159,
0.0008728408720344305,
0.06447263807058334,
0.01059646625071764,
-0.07026451081037521,
0.05907084047794342,
-0.007129156496375799,
0.06813611835241318,
0.1866350620985031,
-0.21468926966190338,
0.007070058491080999,
0.02342732809484005,
0.039565350860357285,
0.03914688155055046,
-0.00994936004281044,
-0.033137790858745575,
0.0534641295671463,
-0.04356826841831207,
0.09031794965267181,
-0.011526770889759064,
0.06135452538728714,
-0.037116121500730515,
-0.1230851337313652,
-0.012729477137327194,
-0.013219263404607773,
0.1266750693321228,
-0.14368294179439545,
0.0860491618514061,
0.12321946024894714,
-0.1407516598701477,
0.146468386054039,
0.01577623561024666,
0.009156815707683563,
-0.0003345151199027896,
0.036182794719934464,
-0.0013386032078415155,
0.12011537700891495,
-0.08960194885730743,
-0.043800052255392075,
0.01346924714744091,
-0.06583859026432037,
0.04233253374695778,
-0.12491169571876526,
-0.11979177594184875,
-0.06361289322376251,
-0.031139567494392395,
-0.013412040658295155,
0.03139152377843857,
-0.07462439686059952,
0.08568543195724487,
-0.0985737144947052,
-0.10529334843158722,
-0.030193088576197624,
-0.08194220066070557,
0.022587791085243225,
0.005288842599838972,
-0.06397204846143723,
-0.1336703598499298,
-0.13912969827651978,
-0.07304602861404419,
-0.13508468866348267,
0.0035115971695631742,
0.06086336821317673,
-0.1192910298705101,
-0.0508500300347805,
0.013527145609259605,
-0.0694323182106018,
0.05380212515592575,
-0.0754176527261734,
-0.0075957574881613255,
0.051728226244449615,
-0.04335600882768631,
-0.17376770079135895,
0.00806236919015646,
-0.07980343699455261,
-0.06275088340044022,
0.12875711917877197,
-0.1308959424495697,
0.18826965987682343,
-0.019297538325190544,
0.04795414209365845,
0.07040601968765259,
0.024153955280780792,
0.10180078446865082,
-0.09997004270553589,
0.07268020510673523,
0.17886805534362793,
0.06379664689302444,
0.07368890941143036,
0.1157362163066864,
0.09390141069889069,
-0.09614507853984833,
0.04456695169210434,
0.07040302455425262,
-0.1161491721868515,
-0.088579922914505,
-0.05586947500705719,
-0.11369411647319794,
-0.03803114593029022,
0.042319055646657944,
0.07944100350141525,
0.07417803257703781,
0.12303631007671356,
-0.04025602713227272,
0.01458174828439951,
0.09435619413852692,
0.046445950865745544,
0.05096331238746643,
0.02303396351635456,
0.07019416242837906,
-0.14889675378799438,
-0.06031433492898941,
0.17821498215198517,
0.20152024924755096,
0.21909622848033905,
-0.007414690218865871,
0.046194616705179214,
0.1079634502530098,
0.08483826369047165,
0.11395855993032455,
0.03367333114147186,
0.0026858814526349306,
0.008869725279510021,
-0.07117582112550735,
-0.03990144655108452,
0.022772423923015594,
0.005626334808766842,
-0.039430633187294006,
-0.12169887870550156,
0.1089344248175621,
0.022071823477745056,
0.07818719744682312,
0.11904284358024597,
0.043889034539461136,
-0.10250400006771088,
0.1707800328731537,
0.07980113476514816,
0.09769511967897415,
-0.05445104464888573,
0.14445912837982178,
0.09501883387565613,
-0.011523216031491756,
0.1426360011100769,
0.02312171645462513,
0.14193207025527954,
-0.044754281640052795,
-0.06786316633224487,
-0.05254961550235748,
-0.029654961079359055,
-0.00849114079028368,
0.03753609582781792,
-0.23247763514518738,
0.0957006961107254,
0.04005933180451393,
0.010167764499783516,
0.001216958393342793,
-0.05209174379706383,
0.17692597210407257,
0.1834389716386795,
0.10000936686992645,
0.029497236013412476,
-0.05918392539024353,
-0.01806548796594143,
-0.10263027995824814,
0.040152814239263535,
0.020959602668881416,
0.06212605908513069,
-0.055889252573251724,
-0.09581734240055084,
-0.02440735325217247,
-0.0007696192478761077,
0.024388357996940613,
-0.07740391790866852,
-0.10571715980768204,
-0.04074251279234886,
0.28873637318611145,
-0.07318955659866333,
0.048375166952610016,
0.050820738077163696,
0.02141202613711357,
0.002428752603009343,
0.03911508619785309,
-0.023142021149396896,
-0.03480562940239906,
-0.027001166716217995,
0.0063531105406582355,
0.014793275855481625,
-0.0417080782353878,
-0.04930374398827553,
-0.03467729315161705,
-0.08214027434587479,
-0.09135568886995316,
0.016315950080752373,
-0.04488815739750862,
-0.00022266770247370005,
-0.04366135224699974,
0.025874996557831764,
-0.09582417458295822,
-0.02669072151184082,
0.004819970577955246,
0.0403335802257061,
-0.08390555530786514,
-0.15055043995380402,
-0.008179300464689732,
-0.040780600160360336,
-0.05541340634226799,
0.06567469239234924,
-0.09367663413286209,
-0.07431301474571228,
-0.024996250867843628,
-0.024432897567749023,
0.1146681010723114,
0.22735224664211273,
-0.04374046251177788,
0.022297102957963943,
0.13984760642051697,
-0.09392742812633514,
-0.3321884870529175,
-0.13891300559043884,
-0.1708621084690094,
-0.10459695011377335,
-0.015514637343585491,
-0.06740420311689377,
0.023531215265393257,
0.10981378704309464,
-0.055218663066625595,
0.1749809980392456,
-0.20047810673713684,
-0.11016157269477844,
0.060088399797677994,
0.07377560436725616,
0.3259861171245575,
-0.23919519782066345,
0.0016430957475677133,
-0.10353226214647293,
-0.04975726827979088,
-0.0013194219209253788,
-0.08310190588235855,
0.1108698919415474,
0.026025552302598953,
0.0528118871152401,
-0.009672697633504868,
-0.017228776589035988,
0.13658367097377777,
-0.06099989637732506,
0.14320550858974457,
-0.1147625744342804,
-0.08781620860099792,
0.22177711129188538,
-0.02997582219541073,
0.024168163537979126,
-0.1989167481660843,
-0.016230352222919464,
-0.037479519844055176,
0.03622620552778244,
-0.0021905272733420134,
0.053108762949705124,
-0.008065433241426945,
-0.01684137061238289,
-0.14779998362064362,
-0.020772254094481468,
-0.03354478254914284,
0.05191672220826149,
0.21522758901119232,
-0.05600721389055252,
-0.06112775206565857,
0.022922752425074577,
-0.022050129249691963,
0.11053405702114105,
-0.0009956971043720841,
-0.045114241540431976,
-0.03516228869557381,
0.10023952275514603,
-0.21534419059753418,
0.062377553433179855,
0.00773592758923769,
0.002979240147396922,
0.014826073311269283,
0.033456478267908096,
0.021612338721752167,
0.1171649694442749,
0.16772282123565674,
-0.03646464645862579,
-0.016384582966566086,
-0.02278847247362137,
0.025874054059386253,
0.15985582768917084,
0.025798581540584564,
0.10675405710935593,
-0.006533326115459204,
0.045783624053001404,
0.016388509422540665,
0.04371516406536102,
-0.0805659368634224,
-0.06560719758272171,
0.11097163707017899,
-0.043433476239442825,
-0.08858562260866165,
0.09438358247280121,
0.049632564187049866,
0.07930013537406921,
0.010634188540279865,
0.04621804133057594,
0.015446626581251621,
-0.12268899381160736,
0.01705101691186428,
0.22204111516475677,
-0.07321202754974365,
-0.07114607095718384,
-0.07248148322105408,
0.013944965787231922,
-0.1032383069396019,
0.06156456097960472,
0.03923439979553223,
-0.015214584767818451,
0.0879829004406929,
-0.03516843542456627,
-0.06038855016231537,
0.010885868221521378,
-0.05680752173066139,
0.06099784001708031,
-0.16170382499694824,
-0.18701234459877014,
0.03336701542139053,
-0.01778998225927353,
-0.07654318958520889,
-0.08234710991382599,
-0.09997263550758362,
0.06657707691192627,
-0.10951294004917145,
0.12988121807575226,
-0.054916754364967346,
0.05477221682667732,
-0.04546520486474037,
-0.07161364704370499,
-0.10511132329702377,
-0.003971872851252556,
-0.05308637395501137,
-0.021520880982279778,
0.058494918048381805,
-0.0019400913733989,
-0.13859568536281586,
-0.10580349713563919,
0.0607442744076252,
-0.007658003363758326,
0.01149386540055275,
0.024365657940506935,
-0.07717055827379227,
-0.005209191702306271,
-0.2382398247718811,
-0.05275701358914375,
0.08001510053873062,
0.025691797956824303,
-0.07518740743398666,
0.13674110174179077,
0.05116228759288788,
-0.02460947446525097,
0.03823461756110191,
0.00987775158137083,
0.16345810890197754,
-0.07998285442590714,
0.04111671820282936,
-0.10805359482765198,
-0.1738291084766388,
-0.026921464130282402,
0.037265513092279434,
0.2423783838748932,
0.09224805980920792,
0.123869389295578,
-0.051337502896785736,
0.009504560381174088,
-0.0020489580929279327,
0.06409766525030136,
0.03125712275505066,
-0.1022723987698555,
-0.04927091300487518,
-0.15372797846794128,
-0.07027183473110199,
-0.061076823621988297,
0.18318364024162292,
0.04717981442809105,
-0.1606995165348053,
-0.006737898103892803,
0.12397027760744095,
-0.14201122522354126,
0.005008592735975981,
0.15098728239536285,
-0.04529818892478943,
0.002915298566222191,
-0.14379620552062988,
0.0309597197920084,
0.08856353163719177,
-0.0341169647872448,
-0.004282078705728054,
0.1065189316868782,
0.0053603495471179485,
-0.005734927952289581,
0.03446482494473457,
-0.030827021226286888,
0.06410513818264008,
-0.07804994285106659,
0.027060020714998245,
-0.006857515778392553,
-0.054948557168245316,
-0.099711574614048,
0.17391273379325867,
-0.008933424018323421,
0.02023525908589363,
-0.04514466971158981,
-0.004817923065274954,
-0.1064923107624054,
-0.10771963000297546,
-0.05729654058814049,
-0.15455839037895203,
0.07352645695209503,
-0.05741341784596443,
0.028388330712914467,
-0.01063696201890707,
0.034287966787815094,
-0.06437116116285324,
0.0058450354263186455,
-0.17675970494747162,
-0.02536756731569767,
0.030419601127505302,
-0.007543086539953947,
-0.02322443015873432,
-0.05907905474305153,
-0.03277730941772461,
0.018859567120671272,
-0.06128034368157387,
-0.06006760895252228,
0.058386050164699554,
0.10022186487913132,
0.04549673572182655,
-0.14871197938919067,
-0.08970481902360916,
-0.0630553588271141,
0.018084611743688583,
0.07676467299461365,
0.150094673037529,
0.024923451244831085,
-0.008801791816949844,
0.04068390280008316,
0.17387747764587402,
-0.002177347894757986,
-0.054848525673151016,
-0.07897409051656723,
-0.12507638335227966,
-0.12446505576372147,
0.009701249189674854,
-0.06608179211616516,
-0.03266192227602005,
0.013946660794317722,
0.22042368352413177,
0.21790271997451782,
-0.15049563348293304,
0.04074754938483238,
-0.06708722561597824,
0.0354587659239769,
-0.01706000603735447,
0.15664201974868774,
0.04799317941069603,
0.14343737065792084,
-0.02263079583644867,
-0.02861945517361164,
-0.05689336359500885,
0.014714118093252182,
-0.09032822400331497,
0.05269736424088478,
-0.020631125196814537,
-0.07632727175951004,
-0.0898914486169815,
0.09127774089574814,
-0.11673338711261749,
0.0715704932808876,
0.18171070516109467,
-0.14698074758052826,
-0.022997235879302025,
-0.03329905867576599,
0.06723638623952866,
0.1023784801363945,
0.012576671317219734,
-0.06211695075035095,
-0.026882069185376167,
0.0034621073864400387,
0.023876849561929703,
-0.17407384514808655,
-0.1322937160730362,
-0.017441028729081154,
-0.11957725137472153,
0.16691741347312927,
-0.009835390374064445,
-0.000004209751296002651,
0.04757046326994896,
-0.0690348893404007,
-0.015290554612874985,
0.1452019214630127,
0.007609828375279903,
-0.07340853661298752,
-0.05294109880924225,
-0.04579402133822441,
-0.0950104370713234,
0.07588054984807968,
0.07167948782444,
0.04537539556622505,
-0.010044366121292114,
0.13239434361457825,
-0.005257301963865757,
-0.057469286024570465,
0.1229005977511406,
-0.15701420605182648,
0.09367213398218155,
-0.0002713929570745677,
-0.01662592403590679,
-0.05926979333162308,
-0.045202240347862244,
0.025454534217715263,
0.07793581485748291,
-0.12721161544322968,
-0.020547209307551384,
0.039603687822818756,
-0.09517349302768707,
0.09455401450395584,
0.05399155244231224,
-0.10719379037618637,
0.012306174263358116,
-0.13123634457588196,
0.0017336751334369183,
-0.08792334049940109,
0.03964383900165558,
0.18836148083209991,
-0.009773097932338715,
0.008367976173758507,
-0.12856437265872955,
0.05324114114046097,
-0.027986135333776474,
-0.037544529885053635,
-0.07476291805505753
] |
null | null | null |
# Lora of hook/フック/虎克/후크 (Honkai: Star Rail)
## What Is This?
This is the LoRA model of waifu hook/フック/虎克/후크 (Honkai: Star Rail).
## How Is It Trained?
* This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion).
* The [auto-training framework](https://github.com/deepghs/cyberharem) is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
* The base model used for training is [deepghs/animefull-latest](https://huggingface.co/deepghs/animefull-latest).
* Dataset used for training is the `stage3-p480-800` in [CyberHarem/hook_starrail](https://huggingface.co/datasets/CyberHarem/hook_starrail), which contains 97 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 16, resolution is 720x720, clustering into 20 buckets.
* Trained for 1000 steps, 40 checkpoints were saved and evaluated.
* **Trigger word is `hook_starrail`.**
* Pruned core tags for this waifu are `blonde_hair, long_hair, hat, yellow_eyes, bangs`. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
## How to Use It?
### If You Are Using A1111 WebUI v1.7+
**Just use it like the classic LoRA**. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 675, you need to download [`675/hook_starrail.pt`](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/675/hook_starrail.pt) as the embedding and [`675/hook_starrail.safetensors`](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/675/hook_starrail.safetensors) for loading Lora. By using both files together, you can generate images for the desired characters.
## Which Step Should I Use?
We selected 5 good steps for you to choose. The best one is step 675.
1560 images (1.67 GiB) were generated for auto-testing.

The base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11).
Here are the preview of the recommended steps:
| Step | Epoch | CCIP | AI Corrupt | Bikini Plus | Score | Download | pattern_0_0 | pattern_0_1 | pattern_0_2 | pattern_1 | portrait_0 | portrait_1 | portrait_2 | full_body_0 | full_body_1 | profile_0 | profile_1 | free_0 | free_1 | shorts | maid_0 | maid_1 | miko | yukata | suit | china | bikini_0 | bikini_1 | bikini_2 | sit | squat | kneel | jump | crossed_arms | angry | smile | cry | grin | n_lie_0 | n_lie_1 | n_stand_0 | n_stand_1 | n_stand_2 | n_sex_0 | n_sex_1 |
|-------:|--------:|:----------|:-------------|:--------------|:----------|:-----------------------------------------------------------------------------------------------|:---------------------------------------------|:---------------------------------------------|:---------------------------------------------|:-----------------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------------|:---------------------------------------------|:---------------------------------------------|:-----------------------------------------|:-----------------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-----------------------------------|:-------------------------------|:-----------------------------------|:-------------------------------|:---------------------------------|:---------------------------------------|:---------------------------------------|:---------------------------------------|:-----------------------------|:---------------------------------|:---------------------------------|:-------------------------------|:-----------------------------------------------|:---------------------------------|:---------------------------------|:-----------------------------|:-------------------------------|:-------------------------------------|:-------------------------------------|:-----------------------------------------|:-----------------------------------------|:-----------------------------------------|:-------------------------------------|:-------------------------------------|
| 675 | 28 | 0.835 | 0.933 | **0.846** | **0.770** | [Download](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/675/hook_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 825 | 35 | 0.829 | 0.925 | 0.840 | 0.758 | [Download](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/825/hook_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 875 | 37 | **0.843** | 0.911 | 0.827 | 0.738 | [Download](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/875/hook_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 400 | 17 | 0.785 | 0.932 | 0.845 | 0.735 | [Download](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/400/hook_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 950 | 40 | 0.813 | **0.958** | 0.830 | 0.727 | [Download](https://huggingface.co/CyberHarem/hook_starrail/resolve/main/950/hook_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
## Anything Else?
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
## All Steps
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* [Steps From 775 to 1000](all/0.md)
* [Steps From 525 to 750](all/1.md)
* [Steps From 275 to 500](all/2.md)
* [Steps From 25 to 250](all/3.md)
| {"license": "mit", "tags": ["art", "not-for-all-audiences"], "datasets": ["CyberHarem/hook_starrail"], "pipeline_tag": "text-to-image"} | text-to-image | CyberHarem/hook_starrail | [
"art",
"not-for-all-audiences",
"text-to-image",
"dataset:CyberHarem/hook_starrail",
"license:mit",
"region:us"
] | 2024-02-06T19:43:01+00:00 | [] | [] | TAGS
#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/hook_starrail #license-mit #region-us
| Lora of hook/フック/虎克/후크 (Honkai: Star Rail)
==========================================
What Is This?
-------------
This is the LoRA model of waifu hook/フック/虎克/후크 (Honkai: Star Rail).
How Is It Trained?
------------------
* This model is trained with HCP-Diffusion.
* The auto-training framework is maintained by DeepGHS Team.
* The base model used for training is deepghs/animefull-latest.
* Dataset used for training is the 'stage3-p480-800' in CyberHarem/hook\_starrail, which contains 97 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 16, resolution is 720x720, clustering into 20 buckets.
* Trained for 1000 steps, 40 checkpoints were saved and evaluated.
* Trigger word is 'hook\_starrail'.
* Pruned core tags for this waifu are 'blonde\_hair, long\_hair, hat, yellow\_eyes, bangs'. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
How to Use It?
--------------
### If You Are Using A1111 WebUI v1.7+
Just use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 675, you need to download '675/hook\_starrail.pt' as the embedding and '675/hook\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.
Which Step Should I Use?
------------------------
We selected 5 good steps for you to choose. The best one is step 675.
1560 images (1.67 GiB) were generated for auto-testing.
!Metrics Plot
The base model used for generating preview images is Meina/MeinaMix\_V11.
Here are the preview of the recommended steps:
Anything Else?
--------------
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
All Steps
---------
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* Steps From 775 to 1000
* Steps From 525 to 750
* Steps From 275 to 500
* Steps From 25 to 250
| [
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 675, you need to download '675/hook\\_starrail.pt' as the embedding and '675/hook\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 675.\n\n\n1560 images (1.67 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 775 to 1000\n* Steps From 525 to 750\n* Steps From 275 to 500\n* Steps From 25 to 250"
] | [
"TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/hook_starrail #license-mit #region-us \n",
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 675, you need to download '675/hook\\_starrail.pt' as the embedding and '675/hook\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 675.\n\n\n1560 images (1.67 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 775 to 1000\n* Steps From 525 to 750\n* Steps From 275 to 500\n* Steps From 25 to 250"
] | [
43,
38,
465
] | [
"passage: TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/hook_starrail #license-mit #region-us \n### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file."
] | [
-0.0007951524457894266,
0.010080458596348763,
-0.003954065497964621,
0.08520779013633728,
0.06870511919260025,
0.06608971953392029,
0.2229972779750824,
0.07979360967874527,
0.10017134994268417,
-0.07189787179231644,
0.08605270832777023,
0.0761064887046814,
-0.01617489568889141,
0.0829683393239975,
-0.021289033815264702,
-0.16319848597049713,
-0.04761262238025665,
-0.03791483864188194,
-0.0511065311729908,
0.03733176365494728,
0.08562585711479187,
0.011985906399786472,
0.10247119516134262,
-0.059209633618593216,
-0.08357842266559601,
0.06665737926959991,
-0.012430337257683277,
-0.04249490052461624,
0.044345423579216,
0.05975595489144325,
0.1426997184753418,
0.03518672659993172,
0.07761204987764359,
-0.1349349468946457,
0.06952756643295288,
0.013449990190565586,
-0.0936693623661995,
0.007978297770023346,
0.013336921110749245,
-0.028747159987688065,
0.11698076874017715,
0.07038943469524384,
-0.054997798055410385,
0.046747345477342606,
-0.11712193489074707,
-0.012634873390197754,
-0.061860375106334686,
0.062206193804740906,
0.12061069905757904,
0.07705453038215637,
0.024889132007956505,
0.05930235981941223,
-0.06565817445516586,
0.08924530446529388,
0.11542846262454987,
-0.11672193557024002,
-0.0654970109462738,
0.16317687928676605,
0.023516550660133362,
0.14530110359191895,
-0.0985022634267807,
0.08204226940870285,
0.08410265296697617,
-0.05408158525824547,
-0.12461722642183304,
-0.07313232123851776,
-0.2132723182439804,
0.014120625331997871,
-0.008232816122472286,
0.018747469410300255,
0.40615561604499817,
0.03816300258040428,
0.032891035079956055,
0.048921696841716766,
-0.06561814248561859,
-0.03663864731788635,
-0.08527718484401703,
0.10270096361637115,
0.04638998210430145,
0.10171718895435333,
-0.05215855687856674,
-0.12004943937063217,
-0.10520985722541809,
-0.10609152168035507,
-0.04523485153913498,
-0.020249415189027786,
0.03443581238389015,
0.12018530070781708,
-0.1945517361164093,
0.02940109558403492,
-0.029332466423511505,
-0.11326046288013458,
0.031842704862356186,
-0.1106729730963707,
0.14586292207241058,
0.06674204766750336,
-0.012357101775705814,
0.003181853098794818,
0.20264962315559387,
0.15674050152301788,
0.2060290426015854,
0.05225164070725441,
-0.10813266783952713,
0.132410928606987,
0.04904276877641678,
-0.10590054839849472,
-0.041581667959690094,
-0.07137396186590195,
0.1609838306903839,
-0.04421532154083252,
0.10409880429506302,
-0.08269952237606049,
-0.1102806106209755,
0.04027319699525833,
-0.09852644056081772,
0.07209769636392593,
0.034866541624069214,
0.005602318327873945,
-0.04461826756596565,
0.03855647146701813,
0.06057243421673775,
-0.031590454280376434,
0.009198075160384178,
-0.020565209910273552,
-0.06410669535398483,
0.06562387943267822,
0.11363919079303741,
0.029422244057059288,
0.06658843904733658,
0.04659051448106766,
-0.05019720271229744,
-0.008499295450747013,
-0.05796757712960243,
0.003152312710881233,
0.03866805136203766,
0.03771815448999405,
0.07669537514448166,
-0.14816410839557648,
-0.08661338686943054,
-0.026108035817742348,
0.04540422186255455,
-0.005951261613518,
0.06068584695458412,
-0.01694400981068611,
0.01743984781205654,
0.01575000211596489,
-0.025624539703130722,
0.03002585843205452,
-0.10575392097234726,
0.07356942445039749,
-0.048254236578941345,
0.061345424503088,
-0.20547592639923096,
-0.002392430091276765,
-0.06485345214605331,
-0.0020770328119397163,
-0.00981353223323822,
-0.02156939171254635,
-0.14001363515853882,
0.1364404410123825,
0.004469109699130058,
0.05092952400445938,
-0.0830281600356102,
0.056997280567884445,
0.024919642135500908,
0.06786511093378067,
-0.12780536711215973,
0.019905423745512962,
0.10292533785104752,
-0.1749199777841568,
-0.14626595377922058,
0.08858141303062439,
-0.03468174487352371,
0.03446819260716438,
0.01902700588107109,
0.17385199666023254,
0.19701284170150757,
-0.19138142466545105,
0.002873085206374526,
0.05218781903386116,
-0.06712692230939865,
-0.09168430417776108,
-0.024827823042869568,
0.13337872922420502,
0.013726918958127499,
0.023668931797146797,
-0.005964525509625673,
0.11427555978298187,
-0.029537351801991463,
-0.07518508285284042,
-0.028716538101434708,
-0.07151929289102554,
-0.11923686414957047,
0.051705002784729004,
-0.0025073636788874865,
-0.06671810895204544,
0.008736568503081799,
-0.1308445781469345,
0.18384313583374023,
0.017575325444340706,
0.03255375847220421,
-0.07909227907657623,
0.09836368262767792,
0.030096016824245453,
-0.0038148739840835333,
0.007320859935134649,
-0.0488029308617115,
-0.09377943724393845,
0.24393293261528015,
0.08396447449922562,
0.15707182884216309,
0.052704714238643646,
-0.06103605404496193,
-0.048753418028354645,
0.01491818018257618,
0.042611777782440186,
-0.024344811215996742,
0.012303627096116543,
-0.13939516246318817,
0.03918236121535301,
-0.02570674568414688,
0.02584773860871792,
-0.01702655851840973,
-0.00495359068736434,
0.09997941553592682,
0.03714039921760559,
-0.014933818951249123,
0.0484248623251915,
0.05504155531525612,
-0.020409904420375824,
-0.05757717415690422,
-0.0089913634583354,
0.0619366317987442,
0.022462930530309677,
-0.0721876472234726,
0.0580911748111248,
-0.028166193515062332,
0.06310006231069565,
0.1982736736536026,
-0.2309882938861847,
0.012878844514489174,
0.05059614032506943,
0.04270828515291214,
0.03167378902435303,
-0.00827232375741005,
-0.030236853286623955,
0.05161811038851738,
-0.031091146171092987,
0.08499275892972946,
-0.009635384194552898,
0.05712410435080528,
-0.0366767980158329,
-0.11674162745475769,
-0.002129403641447425,
-0.02180963195860386,
0.10574620217084885,
-0.13037556409835815,
0.07921572774648666,
0.11023858934640884,
-0.1422196924686432,
0.1213362067937851,
0.00823597889393568,
0.009921770542860031,
0.007935870438814163,
0.034037746489048004,
-0.004867305513471365,
0.11460833996534348,
-0.08638394623994827,
-0.0396687388420105,
0.013085215352475643,
-0.058649659156799316,
0.04559487849473953,
-0.12098366022109985,
-0.12374618649482727,
-0.05936674401164055,
-0.027663785964250565,
-0.03062628023326397,
0.023883432149887085,
-0.06607795506715775,
0.08399083465337753,
-0.09713785350322723,
-0.11142700165510178,
-0.024158958345651627,
-0.08772774785757065,
0.015718525275588036,
0.005353051703423262,
-0.06508146971464157,
-0.11180803924798965,
-0.15640968084335327,
-0.07416543364524841,
-0.11556980758905411,
-0.009419417008757591,
0.06316737830638885,
-0.10540184378623962,
-0.04785188287496567,
0.005147783551365137,
-0.06371466815471649,
0.04318839684128761,
-0.08068929612636566,
0.0025155642069876194,
0.05504598468542099,
-0.031080007553100586,
-0.18031778931617737,
0.010947919450700283,
-0.07058801501989365,
-0.06271888315677643,
0.12794078886508942,
-0.12743327021598816,
0.18224023282527924,
-0.007656728383153677,
0.04711205139756203,
0.06687580794095993,
0.02460816316306591,
0.08750811964273453,
-0.09071119129657745,
0.07573980838060379,
0.1988631933927536,
0.06014193966984749,
0.06780680269002914,
0.10950389504432678,
0.09805607795715332,
-0.10062415152788162,
0.042749930173158646,
0.08093086630105972,
-0.1188342273235321,
-0.1060725525021553,
-0.05401235073804855,
-0.10803373903036118,
-0.031148483976721764,
0.041199684143066406,
0.0798170417547226,
0.066591776907444,
0.11555422842502594,
-0.04251602292060852,
0.012977375648915768,
0.105349101126194,
0.05844574049115181,
0.05019569396972656,
0.01293485052883625,
0.07354867458343506,
-0.14734789729118347,
-0.037510283291339874,
0.1697988510131836,
0.1911236047744751,
0.18593259155750275,
-0.012376979924738407,
0.04628634825348854,
0.10460889339447021,
0.08220108598470688,
0.11569668352603912,
0.04335987940430641,
0.0005170661606825888,
0.008107534609735012,
-0.0694085881114006,
-0.03535132482647896,
0.00498749315738678,
0.007458125706762075,
-0.05813346803188324,
-0.12283888459205627,
0.11302009969949722,
0.027914108708500862,
0.06244044750928879,
0.12130635231733322,
0.041686926037073135,
-0.11017271131277084,
0.1739351898431778,
0.0870666652917862,
0.08525582402944565,
-0.057740431278944016,
0.1558169573545456,
0.08540000766515732,
0.002474297070875764,
0.1361066997051239,
0.015739938244223595,
0.1504477709531784,
-0.050679828971624374,
-0.06656231731176376,
-0.04831065610051155,
-0.025385668501257896,
-0.012761585414409637,
0.0473809577524662,
-0.2365712970495224,
0.05403526499867439,
0.028562430292367935,
0.014976060949265957,
0.005239247344434261,
-0.05098570138216019,
0.17281149327754974,
0.16157984733581543,
0.09027566015720367,
0.027082649990916252,
-0.08518604189157486,
-0.0335426889359951,
-0.11641635000705719,
0.03647815063595772,
0.013200554065406322,
0.064725361764431,
-0.05216522142291069,
-0.09903628379106522,
-0.016437051817774773,
0.0032400633208453655,
0.01823670044541359,
-0.05242474004626274,
-0.08938026428222656,
-0.04414832964539528,
0.28173521161079407,
-0.06397288292646408,
0.03674973547458649,
0.056565262377262115,
0.028496885672211647,
-0.00010175576608162373,
0.0321807898581028,
-0.024392124265432358,
-0.034233544021844864,
-0.025965191423892975,
0.005509970244020224,
0.022259194403886795,
-0.0443720780313015,
-0.03978309780359268,
-0.020262880250811577,
-0.08076029270887375,
-0.09861008077859879,
0.0215931199491024,
-0.046389222145080566,
-0.007539007812738419,
-0.042103204876184464,
0.02640812285244465,
-0.10841576009988785,
-0.022948166355490685,
-0.0010249479673802853,
0.03524947911500931,
-0.08423556387424469,
-0.14713208377361298,
-0.012504625134170055,
-0.038474541157484055,
-0.05518817901611328,
0.06589500606060028,
-0.07954707741737366,
-0.053346555680036545,
-0.024205101653933525,
-0.015892090275883675,
0.11033330857753754,
0.22476021945476532,
-0.03637092188000679,
0.027645060792565346,
0.13447871804237366,
-0.096225805580616,
-0.33877691626548767,
-0.13435043394565582,
-0.1865369826555252,
-0.11458972841501236,
-0.012862097471952438,
-0.06567436456680298,
0.03732592239975929,
0.10116688162088394,
-0.05529192090034485,
0.15397889912128448,
-0.19224101305007935,
-0.1059567928314209,
0.0649108812212944,
0.07667694240808487,
0.3046114444732666,
-0.23624180257320404,
0.0029568560421466827,
-0.09870292246341705,
-0.06392338126897812,
0.00971323624253273,
-0.09669723361730576,
0.1045115664601326,
0.02421562746167183,
0.07120024412870407,
-0.008161441422998905,
-0.021225078031420708,
0.11713036894798279,
-0.07437543570995331,
0.14761140942573547,
-0.11448512226343155,
-0.08297033607959747,
0.22101445496082306,
-0.03917153179645538,
0.03054468147456646,
-0.2078651487827301,
-0.01858673058450222,
-0.03194902464747429,
0.0426427498459816,
-0.0016866126097738743,
0.037152476608753204,
-0.014901925809681416,
-0.012464379891753197,
-0.14769141376018524,
-0.03501491993665695,
-0.03511885926127434,
0.044118162244558334,
0.23820798099040985,
-0.054393500089645386,
-0.045968376100063324,
0.026470676064491272,
-0.013163452968001366,
0.08534727990627289,
-0.018504517152905464,
-0.04167233407497406,
-0.04594441130757332,
0.10328774154186249,
-0.22127856314182281,
0.06208138167858124,
0.008520578034222126,
0.0038920482620596886,
0.00882770773023367,
0.04288795590400696,
0.008965801447629929,
0.10578277707099915,
0.1650581657886505,
-0.04012361541390419,
-0.0001839371252572164,
-0.013317973352968693,
0.07798729091882706,
0.13736099004745483,
0.021037312224507332,
0.11099344491958618,
-0.016025619581341743,
0.042838890105485916,
0.022413309663534164,
0.05946415662765503,
-0.07795507460832596,
-0.06291984766721725,
0.11415889859199524,
-0.03049960359930992,
-0.09540335834026337,
0.10260698944330215,
0.0432094968855381,
0.05650339648127556,
0.01715267449617386,
0.06029943749308586,
0.011287663131952286,
-0.12321729212999344,
0.04336951673030853,
0.22697359323501587,
-0.07027219980955124,
-0.06716560572385788,
-0.07439850270748138,
0.0009693485917523503,
-0.09749436378479004,
0.07491780817508698,
0.04443129152059555,
-0.006413484923541546,
0.08436161279678345,
-0.037939589470624924,
-0.07495713233947754,
0.009413924999535084,
-0.06361282616853714,
0.06527487188577652,
-0.17900019884109497,
-0.17716629803180695,
0.038508325815200806,
-0.03064313717186451,
-0.07989577949047089,
-0.07791744917631149,
-0.1039305329322815,
0.07168720662593842,
-0.09468988329172134,
0.1329789161682129,
-0.04660894349217415,
0.06112714484333992,
-0.04019404575228691,
-0.05760807543992996,
-0.11095825582742691,
-0.004024997353553772,
-0.04596523568034172,
-0.02429867722094059,
0.04963478818535805,
-0.010511660948395729,
-0.13838016986846924,
-0.10132536292076111,
0.05302289500832558,
-0.016321631148457527,
0.0020342273637652397,
0.02105765976011753,
-0.085396409034729,
-0.007793840952217579,
-0.21844837069511414,
-0.04877365753054619,
0.07619666308164597,
0.027788832783699036,
-0.07534386962652206,
0.13127689063549042,
0.041946861892938614,
-0.021734897047281265,
0.02547597885131836,
0.008432404138147831,
0.15896762907505035,
-0.07849448919296265,
0.03952016681432724,
-0.10181112587451935,
-0.1613355278968811,
-0.03005274012684822,
0.027189740911126137,
0.25719723105430603,
0.09624537080526352,
0.133860245347023,
-0.042903024703264236,
0.011127175763249397,
-0.018967483192682266,
0.0630163624882698,
0.030292049050331116,
-0.09687576442956924,
-0.03972730413079262,
-0.13831044733524323,
-0.06723999232053757,
-0.07280714809894562,
0.16860708594322205,
0.037279803305864334,
-0.1720602661371231,
0.0054520475678145885,
0.12899614870548248,
-0.13584983348846436,
0.006366007495671511,
0.15108726918697357,
-0.05233791097998619,
0.003517407923936844,
-0.12816984951496124,
0.02106470987200737,
0.09700453281402588,
-0.03060675784945488,
-0.017458224669098854,
0.11149124801158905,
0.009056358598172665,
-0.00028877047589048743,
0.035270970314741135,
-0.025732219219207764,
0.05361074581742287,
-0.05940050259232521,
0.021514777094125748,
-0.00622842600569129,
-0.04946921393275261,
-0.09125020354986191,
0.16999737918376923,
-0.0002912646741606295,
0.017793292179703712,
-0.060538001358509064,
-0.005273465998470783,
-0.11335698515176773,
-0.10756301879882812,
-0.04929277300834656,
-0.160404771566391,
0.06220320612192154,
-0.05628376081585884,
0.02450142428278923,
0.02131904475390911,
0.03226533904671669,
-0.05064747855067253,
0.0019295195816084743,
-0.18499217927455902,
-0.015479667112231255,
0.01228056475520134,
-0.008650715462863445,
-0.04156411811709404,
-0.042344994843006134,
-0.03173965960741043,
0.03914684057235718,
-0.06373730301856995,
-0.05160123482346535,
0.05681164562702179,
0.1092587411403656,
0.06282693892717361,
-0.1468145251274109,
-0.101680226624012,
-0.0580935925245285,
0.007652489002794027,
0.07164066284894943,
0.15699422359466553,
0.022400882095098495,
-0.0024699533823877573,
0.03843582421541214,
0.19016703963279724,
-0.009215395897626877,
-0.05628564953804016,
-0.07241411507129669,
-0.09444340318441391,
-0.12680090963840485,
0.007016228046268225,
-0.0692083090543747,
-0.034647341817617416,
0.01537538692355156,
0.20865991711616516,
0.2143707573413849,
-0.144765242934227,
0.03430876135826111,
-0.056318413466215134,
0.03076883777976036,
-0.03604724258184433,
0.15680652856826782,
0.05263380706310272,
0.12365037947893143,
-0.023163344711065292,
-0.013200114481151104,
-0.052838459610939026,
0.0005334416055120528,
-0.08213021606206894,
0.039354581385850906,
-0.026744648814201355,
-0.08045094460248947,
-0.08304386585950851,
0.0885392501950264,
-0.12588389217853546,
0.06868471205234528,
0.18361040949821472,
-0.14465264976024628,
-0.014124016277492046,
-0.03633957356214523,
0.09230556339025497,
0.08072059601545334,
0.012861858122050762,
-0.06173255667090416,
-0.015556714497506618,
-0.008113555610179901,
0.011567613109946251,
-0.1710972785949707,
-0.13352859020233154,
-0.012706369161605835,
-0.1343897581100464,
0.16825927793979645,
-0.011938808485865593,
0.015134142711758614,
0.04643050208687782,
-0.06256004422903061,
-0.02353711612522602,
0.14605267345905304,
0.0035196279641240835,
-0.08960171043872833,
-0.057787004858255386,
-0.023706922307610512,
-0.10807541012763977,
0.0994732454419136,
0.07041063159704208,
0.01384008675813675,
-0.02298828214406967,
0.10151601582765579,
-0.00939215999096632,
-0.050660889595746994,
0.09826529026031494,
-0.14406922459602356,
0.09612186998128891,
-0.007406245917081833,
-0.023411139845848083,
-0.05926165729761124,
-0.042293451726436615,
0.018668528646230698,
0.07881240546703339,
-0.11637386679649353,
-0.009872730821371078,
0.02303422801196575,
-0.10728505253791809,
0.0778496265411377,
0.05635281279683113,
-0.10926321893930435,
0.013421183452010155,
-0.1301848292350769,
-0.009182527661323547,
-0.09825914353132248,
0.034619756042957306,
0.18867243826389313,
-0.0005089069018140435,
0.00503539340570569,
-0.09677612036466599,
0.0557388961315155,
-0.011571168899536133,
-0.04621586203575134,
-0.07795554399490356
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# quynh_deberta-v3-Base-finetuned-AI_req_3
This model is a fine-tuned version of [microsoft/deberta-v3-Base](https://huggingface.co/microsoft/deberta-v3-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0121
- Train Accuracy: 0.9986
- Validation Loss: 1.0930
- Validation Accuracy: 0.8190
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2730, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.8969 | 0.6099 | 0.7640 | 0.7048 | 0 |
| 0.7508 | 0.6951 | 0.7178 | 0.7048 | 1 |
| 0.6149 | 0.7404 | 0.5981 | 0.7714 | 2 |
| 0.5077 | 0.7720 | 0.5059 | 0.8095 | 3 |
| 0.4357 | 0.8036 | 0.4621 | 0.8095 | 4 |
| 0.3671 | 0.8407 | 0.4859 | 0.8190 | 5 |
| 0.2844 | 0.8777 | 0.6214 | 0.8000 | 6 |
| 0.2789 | 0.8860 | 0.5499 | 0.8190 | 7 |
| 0.1938 | 0.9107 | 0.8163 | 0.7810 | 8 |
| 0.1773 | 0.9231 | 0.8831 | 0.7905 | 9 |
| 0.1308 | 0.9547 | 0.6316 | 0.8095 | 10 |
| 0.0803 | 0.9712 | 0.8531 | 0.8286 | 11 |
| 0.0544 | 0.9849 | 0.7941 | 0.7810 | 12 |
| 0.0285 | 0.9931 | 0.9530 | 0.8190 | 13 |
| 0.0121 | 0.9986 | 1.0930 | 0.8190 | 14 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.9.1
- Datasets 2.16.1
- Tokenizers 0.13.3
| {"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "quynh_deberta-v3-Base-finetuned-AI_req_3", "results": []}]} | text-classification | QT321/quynh_deberta-v3-Base-finetuned-AI_req_3 | [
"transformers",
"tf",
"deberta-v2",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T19:44:35+00:00 | [] | [] | TAGS
#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us
| quynh\_deberta-v3-Base-finetuned-AI\_req\_3
===========================================
This model is a fine-tuned version of microsoft/deberta-v3-Base on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.0121
* Train Accuracy: 0.9986
* Validation Loss: 1.0930
* Validation Accuracy: 0.8190
* Epoch: 14
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 2730, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.28.0
* TensorFlow 2.9.1
* Datasets 2.16.1
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
56,
178,
4,
34
] | [
"passage: TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
-0.0661044716835022,
0.034819021821022034,
-0.005335089284926653,
0.07180119305849075,
0.15308332443237305,
0.05895962566137314,
0.13327544927597046,
0.11918378621339798,
-0.08529393374919891,
0.1041325032711029,
0.1549294888973236,
0.14896361529827118,
0.0546063669025898,
0.12434948235750198,
-0.07882298529148102,
-0.17512856423854828,
0.07249528914690018,
-0.013825262896716595,
-0.07058897614479065,
0.07718494534492493,
0.09180191904306412,
-0.06927601248025894,
0.08492448180913925,
-0.025852112099528313,
-0.11086880415678024,
0.04002988710999489,
0.08173180371522903,
-0.07842729985713959,
0.13384512066841125,
0.0736960843205452,
0.09236934781074524,
-0.004807889927178621,
0.016739312559366226,
-0.19050079584121704,
0.010822913609445095,
0.10047204792499542,
-0.004974658600986004,
0.0587124302983284,
0.0028775720857083797,
-0.008725355379283428,
0.10651782900094986,
-0.10611452907323837,
0.0719960629940033,
0.03127531334757805,
-0.14425507187843323,
-0.26915112137794495,
-0.10428139567375183,
0.009101510047912598,
0.0876096859574318,
0.08792754262685776,
-0.0017643379978835583,
0.13530640304088593,
-0.04511258378624916,
0.08339102566242218,
0.14147111773490906,
-0.27505627274513245,
-0.03159014508128166,
0.0340392105281353,
0.021754100918769836,
0.05897345766425133,
-0.050336696207523346,
0.0031442823819816113,
0.03343075141310692,
0.04407148063182831,
0.03780828416347504,
-0.020954053848981857,
0.05939539149403572,
-0.03344690799713135,
-0.07917886972427368,
-0.07368192076683044,
0.11052417010068893,
0.030429191887378693,
-0.06958039849996567,
-0.08125890791416168,
-0.030800778418779373,
-0.14211174845695496,
0.011333059519529343,
-0.04446002468466759,
-0.0010371058015152812,
0.01537918671965599,
-0.04957913979887962,
-0.028943004086613655,
-0.05386077240109444,
-0.05973462387919426,
-0.007959719747304916,
0.13020487129688263,
0.032106343656778336,
0.030312329530715942,
-0.017262952402234077,
0.07559487223625183,
-0.01732240617275238,
-0.11144126951694489,
-0.018366321921348572,
-0.0009262922103516757,
-0.042409125715494156,
-0.03281145170331001,
-0.07584328204393387,
-0.03069893643260002,
0.044435564428567886,
0.16124360263347626,
-0.06640424579381943,
0.1134297177195549,
-0.017965760082006454,
0.017782993614673615,
-0.10319503396749496,
0.12125782668590546,
-0.0104077672585845,
0.002511070342734456,
-0.006827507168054581,
0.0862811952829361,
0.03622688353061676,
-0.05263267457485199,
-0.052781783044338226,
0.007776238489896059,
0.1148810088634491,
0.03971400484442711,
-0.06141547113656998,
0.08089040219783783,
-0.07523889094591141,
-0.006304122041910887,
-0.00785030610859394,
-0.12226341664791107,
0.03676104173064232,
0.012383446097373962,
-0.09010332822799683,
0.008052249439060688,
0.05480595678091049,
0.009311830624938011,
-0.048036377876996994,
0.05424452945590019,
-0.06601414829492569,
-0.05158613249659538,
-0.10298436880111694,
-0.1251252442598343,
0.018375016748905182,
-0.0695088803768158,
-0.008501938544213772,
-0.08041055500507355,
-0.16493642330169678,
-0.03619009628891945,
0.0704452246427536,
-0.03126921132206917,
-0.0171001348644495,
-0.0773678794503212,
-0.14333771169185638,
0.06595699489116669,
-0.005292428657412529,
0.09107783436775208,
-0.04299532622098923,
0.08015342801809311,
0.011765329167246819,
0.04615195468068123,
-0.05040618032217026,
0.03839340806007385,
-0.037937238812446594,
0.03867494687438011,
-0.1979052722454071,
0.0853101909160614,
-0.06341073662042618,
0.028681449592113495,
-0.15339457988739014,
-0.07498815655708313,
0.056187063455581665,
0.028181103989481926,
0.12228106707334518,
0.10693177580833435,
-0.13430465757846832,
-0.07294561713933945,
0.09832858294248581,
-0.09734158217906952,
-0.0742603987455368,
0.08894336968660355,
-0.06590943783521652,
0.02491254359483719,
0.08473998308181763,
0.08438454568386078,
0.01945057138800621,
-0.10719222575426102,
0.010895135812461376,
-0.06608354300260544,
0.006881710607558489,
0.04944116249680519,
0.035163961350917816,
-0.04839903861284256,
-0.08159541338682175,
0.004045436158776283,
-0.01658853515982628,
0.013793635182082653,
-0.05340402200818062,
-0.057804469019174576,
-0.019715648144483566,
-0.03917494788765907,
0.04600495100021362,
0.030751917511224747,
0.03484826162457466,
-0.10016916692256927,
-0.13839232921600342,
0.095157191157341,
0.04412536323070526,
-0.0704311653971672,
0.025942964479327202,
-0.08770105987787247,
0.017568588256835938,
0.04642016440629959,
0.011845727451145649,
-0.1523943692445755,
-0.05851719155907631,
0.022006850689649582,
0.001765824155882001,
0.018585212528705597,
-0.04066338762640953,
0.07073811441659927,
0.023258907720446587,
-0.05514835566282272,
-0.012612462975084782,
-0.03843124583363533,
0.02010609395802021,
-0.07408452779054642,
-0.22317296266555786,
-0.020032569766044617,
-0.017905527725815773,
0.05843555927276611,
-0.27499625086784363,
0.017453931272029877,
0.08474680781364441,
0.11210767179727554,
0.030320171266794205,
-0.017987899482250214,
-0.04152733087539673,
0.059827931225299835,
-0.02464985102415085,
-0.06745300441980362,
0.030160339549183846,
0.01482755783945322,
-0.13314272463321686,
-0.03445929288864136,
-0.20521238446235657,
0.089274562895298,
0.12458020448684692,
-0.08481695502996445,
-0.14106322824954987,
0.042615242302417755,
-0.02157139778137207,
-0.03246166184544563,
-0.009517377242445946,
-0.035423681139945984,
0.18061062693595886,
0.02433023229241371,
0.13846059143543243,
-0.043429482728242874,
-0.010460803285241127,
0.026767505332827568,
-0.016431590542197227,
-0.048091597855091095,
0.11797597259283066,
-0.015291755087673664,
-0.10025084018707275,
0.08409986644983292,
0.10380996018648148,
-0.09479755163192749,
0.12418753653764725,
-0.032695118337869644,
-0.05308545380830765,
-0.07830211520195007,
0.0524468831717968,
0.06795845925807953,
0.08216609805822372,
-0.09313425421714783,
0.0001662701542954892,
-0.002123344223946333,
0.03371156007051468,
-0.023761015385389328,
-0.1855935901403427,
-0.0005106852040626109,
0.017253495752811432,
-0.05476949363946915,
0.024958888068795204,
0.0026269936934113503,
0.010648868978023529,
0.11492759734392166,
0.044212423264980316,
-0.0489184595644474,
0.08175159990787506,
-0.025763599202036858,
-0.09576132148504257,
0.22364400327205658,
-0.14079181849956512,
-0.13507480919361115,
-0.13342078030109406,
-0.023822905495762825,
-0.03236484155058861,
0.01105159055441618,
0.0015762398252263665,
-0.09897443652153015,
-0.05675354599952698,
-0.06443876773118973,
-0.010836811736226082,
-0.050272829830646515,
0.029687289148569107,
0.03581685945391655,
-0.002834406914189458,
0.1184222400188446,
-0.11652523279190063,
-0.04251989349722862,
-0.0007223682478070259,
-0.07372734695672989,
0.01985940709710121,
-0.008443251252174377,
0.0009053976973518729,
0.11938534677028656,
-0.0039026171434670687,
0.023054208606481552,
-0.057859208434820175,
0.23082506656646729,
-0.06196631118655205,
-0.013930623419582844,
0.14499688148498535,
-0.033979885280132294,
0.06556367874145508,
0.13667359948158264,
0.04121790826320648,
-0.12596726417541504,
0.060393743216991425,
0.06315142661333084,
-0.02297770045697689,
-0.2318716198205948,
0.0010167201980948448,
-0.030685389414429665,
-0.07615993916988373,
0.07234513759613037,
0.027952082455158234,
0.14507223665714264,
0.006173199042677879,
-0.004934288095682859,
0.11450433731079102,
0.056141480803489685,
0.077972412109375,
0.1735759973526001,
0.062060754746198654,
0.09328503161668777,
-0.03080039471387863,
-0.01877678744494915,
0.02428620681166649,
-0.006442257668823004,
0.20246216654777527,
0.029053417965769768,
0.07654880732297897,
0.06125088781118393,
0.0531889908015728,
-0.027708685025572777,
-0.0036289156414568424,
0.004418524913489819,
-0.003327417653053999,
0.0016857458977028728,
-0.05834457650780678,
-0.045781493186950684,
0.05897178873419762,
-0.02347131259739399,
0.06559746712446213,
-0.12904828786849976,
0.029134107753634453,
0.04534843564033508,
0.2250550240278244,
0.09909410029649734,
-0.30565157532691956,
-0.10902120172977448,
0.011765559203922749,
-0.03385452926158905,
-0.056460119783878326,
-0.008288887329399586,
0.07646316289901733,
-0.08591257780790329,
0.0759110301733017,
-0.061582300812006,
0.04082708805799484,
-0.0680638924241066,
0.04912392050027847,
0.10464058071374893,
0.08955338597297668,
-0.004517771303653717,
0.005293216090649366,
-0.3672534227371216,
0.28293800354003906,
0.03991018235683441,
0.15556871891021729,
-0.07729602605104446,
0.046344537287950516,
0.03364192321896553,
-0.04290981590747833,
0.06187060847878456,
-0.0110129714012146,
-0.15988905727863312,
-0.2208782583475113,
-0.025772223249077797,
0.0010750072542577982,
0.15236911177635193,
0.009361889213323593,
0.10915792733430862,
-0.04888603463768959,
0.02273940108716488,
0.0796588659286499,
-0.021596865728497505,
-0.1617651730775833,
-0.06991423666477203,
0.05498945713043213,
0.04225229471921921,
-0.011175060644745827,
-0.08123661577701569,
-0.07498388737440109,
-0.04268729314208031,
0.1770203858613968,
-0.151940256357193,
-0.04854089021682739,
-0.13345099985599518,
0.07485593110322952,
0.08342341333627701,
-0.0653495192527771,
0.03804640471935272,
0.007735255640000105,
0.06359626352787018,
0.030207689851522446,
-0.08081069588661194,
0.14756423234939575,
-0.016162347048521042,
-0.22474394738674164,
-0.06794663518667221,
0.09065219759941101,
0.04966730996966362,
0.039946116507053375,
-0.004282892681658268,
0.0749693438410759,
0.05667079612612724,
-0.09501858800649643,
0.09611555188894272,
0.01946992799639702,
0.03834816813468933,
0.05342569574713707,
-0.012942156754434109,
-0.00410061702132225,
-0.04706425964832306,
-0.01144713070243597,
0.10907397419214249,
0.3077750504016876,
-0.06471915543079376,
0.01799287274479866,
0.027448803186416626,
-0.0902814194560051,
-0.19888734817504883,
0.07426656782627106,
0.09420807659626007,
0.022659355774521828,
-0.05278601497411728,
-0.19449438154697418,
0.02337079681456089,
0.09881878644227982,
-0.004969087895005941,
0.05733048915863037,
-0.30828502774238586,
-0.15469180047512054,
0.06981479376554489,
0.13198760151863098,
0.13159523904323578,
-0.16861088573932648,
-0.04601777344942093,
-0.05998685210943222,
-0.03879015892744064,
0.130323126912117,
-0.034431714564561844,
0.10711009800434113,
0.02912609837949276,
0.04411856457591057,
0.005711792968213558,
-0.03855302184820175,
0.13745184242725372,
-0.029871884733438492,
0.10450127720832825,
-0.0512031652033329,
-0.07715402543544769,
0.0812174379825592,
-0.08540388941764832,
0.029251210391521454,
-0.04232157766819,
0.01908370479941368,
-0.1429445445537567,
-0.012159043923020363,
-0.07361204922199249,
0.04260314255952835,
-0.0648309662938118,
-0.03179081529378891,
-0.008869812823832035,
0.06086430326104164,
0.06363817304372787,
-0.0218737181276083,
0.11722731590270996,
-0.023368988186120987,
0.1743801385164261,
0.13315615057945251,
0.08778059482574463,
0.016921430826187134,
-0.010277186520397663,
0.08856867253780365,
-0.028624529018998146,
0.07701143622398376,
-0.15531504154205322,
0.0533711314201355,
0.13559472560882568,
-0.007894754409790039,
0.16738176345825195,
0.06911145895719528,
-0.07253266125917435,
0.045373640954494476,
0.057476069778203964,
-0.12512163817882538,
-0.0909801572561264,
0.019183440133929253,
0.026776950806379318,
-0.0843648761510849,
0.03836958110332489,
0.15992969274520874,
-0.03514643758535385,
0.020141705870628357,
0.004852498881518841,
0.031159445643424988,
-0.06534013152122498,
0.13613739609718323,
0.021813908591866493,
0.06633933633565903,
-0.06293826550245285,
0.12500984966754913,
0.0596146322786808,
-0.12184558063745499,
0.12256346642971039,
0.025041595101356506,
-0.06190885603427887,
0.00044684685417450964,
0.006346477661281824,
0.08668019622564316,
0.019758006557822227,
-0.0523398295044899,
-0.13063640892505646,
-0.1609126478433609,
0.07427585870027542,
0.20500236749649048,
0.04156592860817909,
0.07480170577764511,
-0.04687701538205147,
0.0005356469191610813,
-0.10023482888936996,
0.05695207417011261,
0.0396302230656147,
0.03843916207551956,
-0.1367926001548767,
0.18829567730426788,
0.0013265319867059588,
-0.01807597652077675,
-0.008075999096035957,
0.0012988278176635504,
-0.20731820166110992,
0.006503563839942217,
-0.13967376947402954,
-0.005720794666558504,
0.006019694730639458,
-0.015734637156128883,
0.04145326465368271,
-0.04665103927254677,
-0.050220176577568054,
0.03366275131702423,
-0.08601853996515274,
-0.03999504819512367,
0.055390287190675735,
0.06306762248277664,
-0.11598245799541473,
-0.0777362734079361,
0.02653753012418747,
-0.10875274240970612,
0.0436299629509449,
0.043327491730451584,
0.005420528817921877,
0.02744392305612564,
-0.07810241729021072,
0.03666212409734726,
0.04472532123327255,
-0.01656249538064003,
0.0357053205370903,
-0.1622130572795868,
0.013156062923371792,
-0.038406241685152054,
0.04029706120491028,
0.04143643379211426,
0.09403155744075775,
-0.09260203689336777,
-0.019910739734768867,
-0.009396909736096859,
-0.04103126376867294,
-0.05205688998103142,
0.06859643012285233,
0.13783492147922516,
-0.02204684168100357,
0.16830913722515106,
-0.13074631989002228,
0.017629336565732956,
-0.1692233681678772,
0.0023203855380415916,
0.004230017773807049,
-0.08476680517196655,
-0.09833827614784241,
-0.018981318920850754,
0.10809744149446487,
-0.08632607012987137,
0.0908893495798111,
-0.06852541863918304,
0.09316012263298035,
0.05218168720602989,
-0.113617904484272,
-0.05484241992235184,
0.06698518991470337,
0.17321686446666718,
0.04753144830465317,
-0.024723591282963753,
0.05177756026387215,
-0.015567298978567123,
0.08773879706859589,
0.11074426770210266,
0.19870522618293762,
0.14278358221054077,
0.025709835812449455,
0.11975529044866562,
0.06190301477909088,
-0.06923557817935944,
-0.10204268991947174,
0.09810641407966614,
-0.057285550981760025,
0.14921072125434875,
-0.04774045944213867,
0.1030186340212822,
0.08280830085277557,
-0.18074634671211243,
0.017483310773968697,
-0.07713353633880615,
-0.10527992993593216,
-0.12413179129362106,
-0.09576542675495148,
-0.0779031440615654,
-0.0938667356967926,
0.007318420801311731,
-0.10172375291585922,
0.02964967116713524,
0.06519129127264023,
0.030521508306264877,
0.0011627308558672667,
0.08656825125217438,
-0.03904300928115845,
0.027984483167529106,
0.1099296286702156,
-0.0059113409370183945,
-0.00523938937112689,
-0.03607747331261635,
-0.08412612229585648,
0.04903365671634674,
-0.014503536745905876,
0.03841106966137886,
-0.00255244760774076,
-0.020797813311219215,
0.035005833953619,
-0.011645108461380005,
-0.09850244969129562,
0.05309220775961876,
0.0349712111055851,
0.015941601246595383,
0.0722237229347229,
0.04916276037693024,
-0.02176067978143692,
-0.02023450843989849,
0.12213211506605148,
-0.09422747045755386,
-0.030950097367167473,
-0.14818690717220306,
0.29555532336235046,
-0.0024925307370722294,
0.05118168145418167,
-0.00018117671424988657,
-0.07502418756484985,
-0.029863663017749786,
0.1495356261730194,
0.1407870501279831,
-0.06511375308036804,
-0.019338682293891907,
0.05570768937468529,
-0.00913343857973814,
-0.02670198865234852,
0.1465112417936325,
0.05836993455886841,
-0.011274446733295918,
-0.04629205912351608,
-0.040484827011823654,
-0.02081649750471115,
-0.016724547371268272,
-0.028794152662158012,
0.07700293511152267,
0.026315242052078247,
-0.008962880820035934,
-0.013975679874420166,
0.06419696658849716,
-0.061952143907547,
-0.11194992065429688,
0.0905243530869484,
-0.19940175116062164,
-0.14939486980438232,
0.0035407328978180885,
0.003146546659991145,
-0.013650123961269855,
0.07675130665302277,
-0.004090335685759783,
-0.008344681933522224,
0.09552057087421417,
-0.027408741414546967,
-0.014961658976972103,
-0.10758998245000839,
0.05844659358263016,
-0.011179954744875431,
0.1744554191827774,
-0.0210402961820364,
0.06279801577329636,
0.13938070833683014,
0.03299541026353836,
-0.07690349966287613,
0.039029981940984726,
0.08075178414583206,
-0.08863645046949387,
-0.010485496371984482,
0.07907917350530624,
-0.03009122982621193,
0.16348280012607574,
0.06982657313346863,
-0.1025705561041832,
0.04932505637407303,
-0.08654578775167465,
-0.09818926453590393,
-0.04372858628630638,
-0.045598018914461136,
-0.06507039070129395,
0.13049529492855072,
0.24305886030197144,
-0.03594035655260086,
0.008065897971391678,
-0.023862099274992943,
-0.005566269159317017,
0.06374090164899826,
0.0324212945997715,
-0.06431788951158524,
-0.2421240657567978,
0.06800530850887299,
0.05413714796304703,
0.03814093396067619,
-0.17559455335140228,
-0.10513478517532349,
0.020000088959932327,
-0.017542261630296707,
-0.09939248114824295,
0.10800740122795105,
0.027496490627527237,
0.04810195788741112,
-0.05486299842596054,
-0.13466554880142212,
-0.04535992443561554,
0.19608289003372192,
-0.10547017306089401,
-0.08590136468410492
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-beta-multi-7000-es-agent
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | {"license": "mit", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "HuggingFaceH4/zephyr-7b-beta", "model-index": [{"name": "zephyr-7b-beta-multi-7000-es-agent", "results": []}]} | null | Yaxin1992/zephyr-7b-beta-multi-7000-es-agent | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:HuggingFaceH4/zephyr-7b-beta",
"license:mit",
"region:us"
] | 2024-02-06T19:46:20+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #generated_from_trainer #base_model-HuggingFaceH4/zephyr-7b-beta #license-mit #region-us
|
# zephyr-7b-beta-multi-7000-es-agent
This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 7000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | [
"# zephyr-7b-beta-multi-7000-es-agent\n\nThis model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 7000\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-HuggingFaceH4/zephyr-7b-beta #license-mit #region-us \n",
"# zephyr-7b-beta-multi-7000-es-agent\n\nThis model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 7000\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
47,
46,
6,
12,
8,
3,
102,
4,
39
] | [
"passage: TAGS\n#peft #tensorboard #safetensors #generated_from_trainer #base_model-HuggingFaceH4/zephyr-7b-beta #license-mit #region-us \n# zephyr-7b-beta-multi-7000-es-agent\n\nThis model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- training_steps: 7000\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
-0.09131116420030594,
-0.0012495266273617744,
-0.001252216286957264,
0.06102137640118599,
0.11599552631378174,
0.022715313360095024,
0.1459406614303589,
0.12658348679542542,
-0.020349249243736267,
0.07078304886817932,
0.04570680484175682,
-0.029748467728495598,
0.06910770386457443,
0.19010506570339203,
-0.02079666778445244,
-0.26324546337127686,
0.014954425394535065,
-0.007098613306879997,
-0.018209360539913177,
0.08381224423646927,
0.11074460297822952,
-0.08742060512304306,
0.05055787041783333,
0.03288060054183006,
-0.1543426513671875,
0.03573230281472206,
-0.024887653067708015,
-0.039049647748470306,
0.12029813230037689,
0.030159691348671913,
0.11665860563516617,
-0.00949198566377163,
0.13629433512687683,
-0.23124687373638153,
0.015157065354287624,
0.08208215236663818,
0.03299441561102867,
0.06884092837572098,
0.07645382732152939,
-0.005067396908998489,
0.11839671432971954,
-0.12054675817489624,
0.11487191915512085,
0.03893832489848137,
-0.0739239975810051,
-0.24033406376838684,
-0.10787280648946762,
0.07765839248895645,
0.12321142852306366,
0.06318756937980652,
0.005208087153732777,
0.12293349951505661,
-0.07224936783313751,
0.05464588478207588,
0.22955231368541718,
-0.2410403937101364,
-0.07716401666402817,
0.018634479492902756,
0.09496438503265381,
0.06300017982721329,
-0.13002154231071472,
-0.028639229014515877,
0.062454238533973694,
0.03954338654875755,
0.09228184819221497,
-0.013172650709748268,
-0.036615848541259766,
-0.02286604233086109,
-0.13583968579769135,
0.024229397997260094,
0.09113582968711853,
0.06635189056396484,
-0.06031656265258789,
-0.14365817606449127,
-0.033878181129693985,
-0.024644561111927032,
-0.04650656133890152,
-0.017348602414131165,
0.024440325796604156,
-0.039023641496896744,
-0.042740434408187866,
-0.07691630721092224,
-0.07872403413057327,
-0.09903206676244736,
0.017048701643943787,
0.1643059253692627,
0.03043803758919239,
0.011636616662144661,
-0.015815794467926025,
0.09428709745407104,
-0.05738096684217453,
-0.0784701257944107,
-0.0016030978877097368,
-0.013400006107985973,
-0.10383059829473495,
-0.05701689422130585,
-0.04190542921423912,
-0.043638236820697784,
0.012262669391930103,
0.12896324694156647,
-0.0877586156129837,
0.1000668853521347,
-0.019335513934493065,
0.025766486302018166,
-0.03556577488780022,
0.07841430604457855,
-0.010044398717582226,
-0.013665355741977692,
-0.009349925443530083,
0.12540829181671143,
0.011588654480874538,
-0.00963991042226553,
-0.07312045991420746,
-0.04283939301967621,
0.04453275352716446,
0.036717310547828674,
-0.06103447079658508,
0.019086500629782677,
-0.05650702863931656,
-0.0160306878387928,
-0.0037703420966863632,
-0.11234913766384125,
0.05645386129617691,
0.00843177642673254,
-0.05863848328590393,
-0.09735256433486938,
0.03767811506986618,
0.01989702135324478,
0.013235704973340034,
0.097017303109169,
-0.08034894615411758,
0.02248692885041237,
-0.08579272031784058,
-0.08128364384174347,
0.008687159046530724,
-0.04568326100707054,
-0.016743067651987076,
-0.07755587249994278,
-0.17011518776416779,
-0.05830077454447746,
0.029315169900655746,
-0.05267944931983948,
-0.009311958216130733,
-0.030664190649986267,
-0.02317214570939541,
0.027988910675048828,
-0.0163012333214283,
0.13442957401275635,
-0.054726313799619675,
0.07279853522777557,
-0.02974165603518486,
0.01480566430836916,
-0.016347810626029968,
0.02321172133088112,
-0.05419546365737915,
0.04830367490649223,
-0.10598433017730713,
0.05464320629835129,
-0.1320101022720337,
0.0215042345225811,
-0.11553379148244858,
-0.07683771848678589,
-0.021687772125005722,
-0.00012301486276555806,
0.10193777084350586,
0.09693412482738495,
-0.1966245174407959,
-0.04842236265540123,
0.1737600564956665,
-0.11748506873846054,
-0.08757081627845764,
0.1036754921078682,
-0.051751378923654556,
0.06705036014318466,
0.02483995072543621,
0.21378397941589355,
0.09535334259271622,
-0.1827877312898636,
0.04938054084777832,
-0.0045533073134720325,
0.07420113682746887,
0.04583612456917763,
0.03332526236772537,
-0.0560474768280983,
-0.014995853416621685,
0.003558030817657709,
-0.04553195834159851,
0.0496034100651741,
-0.07240013033151627,
-0.05245804414153099,
-0.04342364892363548,
-0.08134160190820694,
0.056113190948963165,
0.024073241278529167,
0.016089335083961487,
-0.08837586641311646,
-0.08120475709438324,
0.1268596351146698,
0.1385519802570343,
-0.0535481721162796,
0.018279684707522392,
-0.0539710596203804,
0.013540327548980713,
0.009919052012264729,
-0.030621731653809547,
-0.167430117726326,
-0.11946452409029007,
0.03238216042518616,
-0.053732190281152725,
0.023626409471035004,
-0.01728380098938942,
0.0830976814031601,
0.06983337551355362,
-0.05989173427224159,
-0.03955154865980148,
-0.11297286301851273,
0.012311502359807491,
-0.10768801718950272,
-0.18921957910060883,
-0.07450296729803085,
-0.046835385262966156,
0.19489550590515137,
-0.23745113611221313,
0.027756819501519203,
-0.04154553636908531,
0.13899506628513336,
0.0495884045958519,
-0.05219312757253647,
-0.005086048040539026,
0.072149358689785,
0.021428056061267853,
-0.09390199184417725,
0.060538727790117264,
0.01827053539454937,
-0.12613338232040405,
-0.01964595727622509,
-0.1475917100906372,
0.023481490090489388,
0.05346646159887314,
0.11865374445915222,
-0.1289101243019104,
-0.13896453380584717,
-0.07627636939287186,
-0.04823503643274307,
-0.09650257974863052,
-0.00037530504050664604,
0.1638127565383911,
0.03263517841696739,
0.12726786732673645,
-0.06621116399765015,
-0.04971034452319145,
-0.0031636320054531097,
-0.03095090761780739,
-0.0008520905976183712,
0.0801457017660141,
0.025726525112986565,
-0.10162914544343948,
0.07451790571212769,
0.08769488334655762,
-0.06245557591319084,
0.18418678641319275,
-0.0632467195391655,
-0.08708303421735764,
-0.013909803703427315,
0.04437553510069847,
0.007540643215179443,
0.15030232071876526,
-0.022135382518172264,
0.009277310222387314,
0.02402602881193161,
0.02063511498272419,
0.028893793001770973,
-0.19079241156578064,
-0.01859360747039318,
-0.0008465584251098335,
-0.029748033732175827,
0.01238340325653553,
-0.007407030556350946,
0.03274872899055481,
0.09025093913078308,
0.02332550473511219,
-0.0008069553296081722,
0.00829987321048975,
-0.014176547527313232,
-0.10859908908605576,
0.1852339804172516,
-0.12667927145957947,
-0.09766095876693726,
-0.12073362618684769,
0.024933889508247375,
-0.03983268886804581,
-0.04033281281590462,
0.012776819989085197,
-0.07369625568389893,
-0.031756240874528885,
-0.09785304963588715,
0.009508447721600533,
-0.024172266945242882,
-0.029590817168354988,
0.015562395565211773,
0.012966103851795197,
0.10951495170593262,
-0.13116303086280823,
0.009890411980450153,
-0.03325773403048515,
-0.062186870723962784,
0.011146719567477703,
0.0349949412047863,
0.07118779420852661,
0.11536454409360886,
-0.007572951726615429,
0.0031528067775070667,
-0.06964214891195297,
0.18530113995075226,
-0.05799129232764244,
-0.006134830880910158,
0.11330607533454895,
-0.006102621555328369,
0.06818121671676636,
0.10022038966417313,
0.045859262347221375,
-0.09569963067770004,
0.05606887862086296,
0.07950353622436523,
-0.01488402858376503,
-0.20314331352710724,
-0.05290030688047409,
-0.036170631647109985,
-0.044170163571834564,
0.09793160855770111,
0.05219963192939758,
-0.021060077473521233,
0.037858400493860245,
-0.01979781500995159,
0.004554423503577709,
0.030115783214569092,
0.09997790306806564,
0.057066138833761215,
0.022017482668161392,
0.08749128878116608,
-0.024304797872900963,
-0.008512897416949272,
0.05564724653959274,
0.012621521018445492,
0.2659699618816376,
-0.018065612763166428,
0.06522662192583084,
0.061762355268001556,
0.14314289391040802,
-0.011045322753489017,
0.027715684846043587,
0.01923348940908909,
-0.02208314649760723,
0.00835256464779377,
-0.05408279970288277,
-0.023724419996142387,
0.057266004383563995,
-0.030282283201813698,
0.05014774203300476,
-0.10138686746358871,
-0.019200772047042847,
0.0008932143682613969,
0.27986446022987366,
0.01700986921787262,
-0.23467133939266205,
-0.07713719457387924,
0.011177696287631989,
-0.0466928631067276,
-0.09883081912994385,
-0.011158674024045467,
0.13595688343048096,
-0.14403747022151947,
0.07915782928466797,
-0.08126020431518555,
0.09282106161117554,
0.004077599383890629,
-0.01757749356329441,
0.02538985013961792,
0.13816039264202118,
-0.025298340246081352,
0.05763128772377968,
-0.20437106490135193,
0.23157766461372375,
0.009782429784536362,
0.1089840829372406,
-0.03169061988592148,
0.03565245121717453,
0.037229351699352264,
0.044061943888664246,
0.08852492272853851,
-0.003204167354851961,
-0.056713223457336426,
-0.16872833669185638,
-0.03824160248041153,
0.025189116597175598,
0.12140876799821854,
-0.015095764771103859,
0.06726397573947906,
-0.053831759840250015,
0.030410882085561752,
0.0419379398226738,
-0.01640879362821579,
-0.1994495391845703,
-0.12598811089992523,
-0.011227847076952457,
0.009545932523906231,
-0.03679797053337097,
-0.1262197345495224,
-0.09565450996160507,
0.006467671133577824,
0.1450887769460678,
0.03483886271715164,
-0.036871299147605896,
-0.1530696153640747,
0.06292234361171722,
0.10664407163858414,
-0.039235908538103104,
0.028156563639640808,
0.026203429326415062,
0.14693833887577057,
-0.03187349811196327,
-0.05245201289653778,
0.0631411075592041,
-0.07570957392454147,
-0.16524803638458252,
-0.07685854285955429,
0.14256930351257324,
0.08099442720413208,
0.04247303307056427,
-0.005180357955396175,
0.01721316948533058,
0.027398934587836266,
-0.08723200112581253,
0.04339274391531944,
0.14133477210998535,
0.02512289583683014,
0.04652699828147888,
-0.10420146584510803,
0.0038690364453941584,
-0.02271064929664135,
-0.03958491235971451,
0.1142299547791481,
0.267930805683136,
-0.07700778543949127,
0.09745081514120102,
0.06264329701662064,
-0.07339952886104584,
-0.16246822476387024,
0.07132824510335922,
0.16039468348026276,
0.03570464998483658,
0.06902159750461578,
-0.1715635061264038,
0.051260508596897125,
0.12604093551635742,
-0.0301342885941267,
0.03863172605633736,
-0.272713303565979,
-0.1322609931230545,
0.07777172327041626,
0.1255548894405365,
0.002627341542392969,
-0.12566211819648743,
-0.04288463294506073,
-0.03252856060862541,
-0.12367698550224304,
0.0920596793293953,
-0.11569678038358688,
0.09602100402116776,
-0.021998431533575058,
0.07867450267076492,
0.03736349567770958,
-0.021668557077646255,
0.15337564051151276,
-0.04636461287736893,
0.1032160297036171,
-0.05416807532310486,
0.06608757376670837,
0.011056186631321907,
-0.07794608175754547,
0.03548090532422066,
-0.043474819511175156,
0.035674333572387695,
-0.13569147884845734,
-0.016435664147138596,
-0.08080161362886429,
0.09674336016178131,
-0.0436137393116951,
-0.05632106587290764,
-0.039293210953474045,
0.07318630814552307,
0.014876782894134521,
-0.033480189740657806,
0.06015242636203766,
-0.027870064601302147,
0.18688011169433594,
0.09217077493667603,
0.10485341399908066,
-0.005494687240570784,
-0.07029440999031067,
0.0010072976583614945,
-0.036242615431547165,
0.06456854194402695,
-0.12230750918388367,
0.020112432539463043,
0.1014578714966774,
0.047657549381256104,
0.1540653556585312,
0.03895718976855278,
-0.098723404109478,
0.01947493851184845,
0.05265599116683006,
-0.0784231424331665,
-0.14743416011333466,
-0.0037861387245357037,
0.06643299758434296,
-0.1555286943912506,
0.00031933834543451667,
0.10160516947507858,
-0.044488538056612015,
-0.027520801872015,
-0.01427988987416029,
0.009171143174171448,
-0.04370512440800667,
0.15519708395004272,
0.037691470235586166,
0.053163688629865646,
-0.0546855553984642,
0.10968158394098282,
0.04726415127515793,
-0.048375897109508514,
0.05366513505578041,
0.09284930676221848,
-0.07188040763139725,
-0.010980569757521152,
0.056077998131513596,
0.19410216808319092,
-0.0015101329190656543,
-0.04989584907889366,
-0.057669416069984436,
-0.12138164788484573,
-0.006443428341299295,
0.1311488300561905,
0.01725684106349945,
-0.04457060247659683,
0.003930446691811085,
0.04167329892516136,
-0.11465064436197281,
0.07306578010320663,
0.030482513830065727,
0.07706435769796371,
-0.11969731748104095,
0.13306525349617004,
0.011299504898488522,
0.019762538373470306,
-0.007008521351963282,
0.023760095238685608,
-0.1072441041469574,
-0.021418718621134758,
-0.14980101585388184,
-0.00705402996391058,
-0.0387510284781456,
0.012915702536702156,
-0.005938662216067314,
-0.03330449387431145,
-0.014213616028428078,
0.03783233091235161,
-0.07573877274990082,
-0.0576518252491951,
0.005346737336367369,
0.07146000117063522,
-0.10800614953041077,
-0.013293944299221039,
0.03443771228194237,
-0.0892062559723854,
0.06466624140739441,
0.05063379928469658,
0.05039886757731438,
0.027932843193411827,
-0.1213628426194191,
0.012267563492059708,
0.03126267343759537,
-0.011984659358859062,
0.044020771980285645,
-0.10225974768400192,
-0.0378093458712101,
-0.04866893216967583,
0.03178443759679794,
0.012741738930344582,
0.0629376545548439,
-0.12210077047348022,
-0.044536806643009186,
-0.039849136024713516,
-0.07658941298723221,
-0.06932169198989868,
0.035429295152425766,
0.07591253519058228,
0.09127767384052277,
0.11931785196065903,
-0.11035829782485962,
0.053583476692438126,
-0.20131038129329681,
-0.03592006117105484,
-0.015591593459248543,
-0.002581809414550662,
-0.008092770352959633,
-0.041156575083732605,
0.06862570345401764,
-0.03416121006011963,
0.08669483661651611,
-0.006360857281833887,
0.07665962725877762,
0.03225970268249512,
-0.09586987644433975,
0.013599769212305546,
0.007146616466343403,
0.1961432248353958,
0.014835107140243053,
-0.010356211103498936,
0.07891294360160828,
-0.004047328606247902,
0.025785500183701515,
0.08024900406599045,
0.13743482530117035,
0.14904622733592987,
-0.03463634476065636,
0.04755556955933571,
0.08355565369129181,
-0.1208023726940155,
-0.06253733485937119,
0.09492728114128113,
0.018336106091737747,
0.06984423100948334,
-0.06933073699474335,
0.22518451511859894,
0.11014464497566223,
-0.1996757686138153,
0.04547489807009697,
-0.034963637590408325,
-0.09473316371440887,
-0.10366924107074738,
-0.01884087733924389,
-0.06480692327022552,
-0.160136416554451,
0.025477781891822815,
-0.10059648752212524,
0.01582900620996952,
0.058743663132190704,
-0.00632627634331584,
0.042833708226680756,
0.13657096028327942,
-0.028158118948340416,
-0.008359609171748161,
0.07555335015058517,
0.019856037572026253,
0.0008680313476361334,
-0.09618791192770004,
-0.09374119341373444,
0.07804883271455765,
-0.03873015567660332,
0.04622748866677284,
-0.058192405849695206,
-0.0068853460252285,
0.0347624346613884,
0.0003124600334558636,
-0.06102389469742775,
0.03645019605755806,
0.010335919447243214,
0.039724428206682205,
0.06992173939943314,
0.07095526158809662,
-0.003957823850214481,
-0.053710319101810455,
0.29128146171569824,
-0.07479280233383179,
-0.07042943686246872,
-0.13601194322109222,
0.22558753192424774,
-0.017176561057567596,
-0.009440501220524311,
0.01842452399432659,
-0.11035711318254471,
0.017923377454280853,
0.1196378692984581,
0.0951155349612236,
-0.047876786440610886,
0.013586963526904583,
-0.021785173565149307,
-0.030048124492168427,
-0.0767114982008934,
0.13117827475070953,
0.0853617787361145,
-0.002764391480013728,
-0.045842282474040985,
0.021491724997758865,
-0.017136666923761368,
-0.01771264523267746,
-0.07900743186473846,
0.08488192409276962,
0.008087791502475739,
-0.00351281207986176,
-0.045893020927906036,
0.08168002963066101,
0.03510519862174988,
-0.16812336444854736,
0.04504191130399704,
-0.1358708292245865,
-0.15562474727630615,
-0.02928195334970951,
0.044335976243019104,
-0.017011858522892,
0.056414633989334106,
-0.02290145680308342,
0.03845469281077385,
0.11971919983625412,
-0.03169548884034157,
-0.0045649888925254345,
-0.1421399712562561,
0.07616344094276428,
-0.11118143051862717,
0.21461740136146545,
-0.009681916795670986,
0.03909954056143761,
0.09502698481082916,
0.03059997968375683,
-0.10800624638795853,
0.06482749432325363,
0.04830729961395264,
-0.059567373245954514,
0.007671107072383165,
0.16929613053798676,
-0.053379081189632416,
0.10025662183761597,
0.040029387921094894,
-0.16791251301765442,
0.024758778512477875,
-0.038559794425964355,
-0.05402606725692749,
-0.08343269675970078,
0.04897827282547951,
-0.07156720757484436,
0.15728072822093964,
0.17830434441566467,
-0.042742226272821426,
-0.009529910050332546,
-0.06643816828727722,
0.03161408379673958,
0.06536164879798889,
0.1118551641702652,
-0.01565341278910637,
-0.20278428494930267,
0.020300129428505898,
0.07601248472929001,
0.0018322102259844542,
-0.2627027630805969,
-0.1104438304901123,
0.02199855074286461,
-0.0568925142288208,
-0.03091888129711151,
0.10968209058046341,
0.07184062153100967,
0.03424417972564697,
-0.03139951080083847,
-0.24023927748203278,
-0.005313610192388296,
0.151310533285141,
-0.094516322016716,
-0.029880277812480927
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-1.3b-lora-3.15M-snli-model2
This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6840
- Accuracy: 0.755
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 25
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3528 | 1.0 | 4292 | 0.2888 | 0.8930 |
| 0.3296 | 2.0 | 8584 | 0.2705 | 0.9012 |
| 0.3158 | 3.0 | 12876 | 0.2617 | 0.9040 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "other", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-1.3b", "model-index": [{"name": "opt-1.3b-lora-3.15M-snli-model2", "results": []}]} | text-classification | varun-v-rao/opt-1.3b-lora-3.15M-snli-model2 | [
"transformers",
"tensorboard",
"safetensors",
"opt",
"text-classification",
"generated_from_trainer",
"base_model:facebook/opt-1.3b",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T19:48:13+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| opt-1.3b-lora-3.15M-snli-model2
===============================
This model is a fine-tuned version of facebook/opt-1.3b on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6840
* Accuracy: 0.755
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 128
* eval\_batch\_size: 128
* seed: 25
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 25\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 25\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
75,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-1.3b #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 25\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.09738902002573013,
0.09054835885763168,
-0.0018322127871215343,
0.09909333288669586,
0.16101674735546112,
0.007895400747656822,
0.1613827794790268,
0.10778556764125824,
-0.048747580498456955,
0.05067497864365578,
0.12590940296649933,
0.11572273820638657,
0.029358508065342903,
0.16319486498832703,
-0.0834931880235672,
-0.21458303928375244,
0.01231510192155838,
0.025912653654813766,
-0.054141029715538025,
0.12400569766759872,
0.08084243535995483,
-0.12435708940029144,
0.11040385067462921,
-0.005166172981262207,
-0.16064973175525665,
0.008740550838410854,
0.03361912816762924,
-0.0658828541636467,
0.13410300016403198,
0.05974637717008591,
0.12130945920944214,
0.037300389260053635,
0.06813569366931915,
-0.19875003397464752,
0.01637943461537361,
0.06708228588104248,
-0.020072128623723984,
0.0825921893119812,
0.03739357367157936,
-0.0038701132871210575,
0.09197729825973511,
-0.09690821915864944,
0.06472599506378174,
0.026505131274461746,
-0.14225159585475922,
-0.19496412575244904,
-0.06378906965255737,
0.04695054143667221,
0.09125537425279617,
0.0911644697189331,
-0.02734968066215515,
0.13098187744617462,
-0.04051206633448601,
0.0960383340716362,
0.19664861261844635,
-0.3067205548286438,
-0.06124775484204292,
0.029470298439264297,
0.027992008253932,
0.09331134706735611,
-0.09888285398483276,
0.0043199146166443825,
0.06767771393060684,
0.022256750613451004,
0.12891298532485962,
-0.01971586048603058,
-0.0010992229217663407,
-0.016891732811927795,
-0.13946257531642914,
-0.03340766206383705,
0.16346630454063416,
0.0677243247628212,
-0.047680310904979706,
-0.07190538197755814,
-0.06174289435148239,
-0.13799020648002625,
-0.030450571328401566,
-0.01248438935726881,
0.03330334648489952,
-0.021179426461458206,
-0.07191681861877441,
-0.025662800297141075,
-0.11452922970056534,
-0.05580544471740723,
-0.037379711866378784,
0.12766562402248383,
0.023903856053948402,
-0.0017132575158029795,
-0.024358222261071205,
0.09692955017089844,
-0.012408027425408363,
-0.13522936403751373,
0.02534034289419651,
0.01570901833474636,
-0.0021103937178850174,
-0.05835450068116188,
-0.04064655303955078,
-0.09535573422908783,
0.010293756611645222,
0.10847350209951401,
-0.07516183704137802,
0.05914553254842758,
-0.01693784072995186,
0.05190318077802658,
-0.09128136932849884,
0.1538883000612259,
-0.03076813369989395,
-0.015270372852683067,
0.017739515751600266,
0.10480502247810364,
0.05423446744680405,
-0.0219790730625391,
-0.13670723140239716,
0.023283174261450768,
0.11373459547758102,
0.02102995291352272,
-0.057957034558057785,
0.08043669909238815,
-0.05204329267144203,
-0.01430528238415718,
0.059784211218357086,
-0.07823308557271957,
0.02350098080933094,
0.014300680719316006,
-0.047504160553216934,
-0.08974222838878632,
0.03522605448961258,
0.014654005877673626,
0.0006525253411382437,
0.10137282311916351,
-0.08392543345689774,
0.008016364648938179,
-0.06840256601572037,
-0.12239622324705124,
0.015393734909594059,
-0.0660601481795311,
0.011371190659701824,
-0.1261841207742691,
-0.15524527430534363,
-0.012981865555047989,
0.043116290122270584,
-0.02310767211019993,
-0.04794560745358467,
-0.05977964401245117,
-0.07550051808357239,
0.019104043021798134,
-0.0229914840310812,
0.07375854253768921,
-0.07373271882534027,
0.10117071866989136,
0.04255036264657974,
0.05534128472208977,
-0.055254846811294556,
0.0345023050904274,
-0.0946255549788475,
0.03617055341601372,
-0.19184592366218567,
0.03755849599838257,
-0.04389996826648712,
0.06309965252876282,
-0.07374931871891022,
-0.08490423858165741,
-0.011895048432052135,
0.013440994545817375,
0.05849526450037956,
0.10147834569215775,
-0.15695145726203918,
-0.08072060346603394,
0.17760251462459564,
-0.10405231267213821,
-0.15617267787456512,
0.1459101438522339,
-0.05904623121023178,
0.03480954095721245,
0.0705239325761795,
0.1934698522090912,
0.07775954157114029,
-0.09896973520517349,
0.0007773882243782282,
-0.013517995364964008,
0.04255906119942665,
-0.043617114424705505,
0.07086239755153656,
-0.0012249971041455865,
-0.006476873066276312,
0.007892872206866741,
-0.03838234022259712,
0.0629785880446434,
-0.0707392543554306,
-0.07976332306861877,
-0.029016274958848953,
-0.09230924397706985,
0.055051565170288086,
0.060715168714523315,
0.05451187491416931,
-0.1218872219324112,
-0.09146551787853241,
0.048765890300273895,
0.0621107779443264,
-0.07077226787805557,
0.017118941992521286,
-0.07364882528781891,
0.0890936329960823,
-0.06775544583797455,
-0.01941453479230404,
-0.15206049382686615,
-0.05335752293467522,
0.010628711432218552,
0.0004965094849467278,
0.014042827300727367,
0.0216705109924078,
0.06448812037706375,
0.07981321960687637,
-0.07375703752040863,
-0.037268705666065216,
-0.011897847056388855,
0.010592048056423664,
-0.12580198049545288,
-0.19480323791503906,
-0.01068500429391861,
-0.032262761145830154,
0.16693852841854095,
-0.26754286885261536,
0.05865153670310974,
0.00909002311527729,
0.08447674661874771,
0.04043308272957802,
-0.009077969007194042,
-0.02905573509633541,
0.06461888551712036,
-0.04238610714673996,
-0.05647573247551918,
0.06564002484083176,
0.015602984465658665,
-0.10885657370090485,
-0.022472746670246124,
-0.18292289972305298,
0.1968918889760971,
0.13540932536125183,
-0.08323591947555542,
-0.08568643033504486,
-0.012563887983560562,
-0.041457850486040115,
-0.01937956176698208,
-0.049556270241737366,
-0.0018614924047142267,
0.1598258763551712,
-0.0029037767089903355,
0.1680523157119751,
-0.0922006294131279,
-0.03201712667942047,
0.03762133792042732,
-0.04321260750293732,
-0.006506667472422123,
0.11846005171537399,
0.09496563673019409,
-0.15995623171329498,
0.15566952526569366,
0.16678638756275177,
-0.042827632278203964,
0.16732284426689148,
-0.0310659296810627,
-0.04471445083618164,
-0.02457798831164837,
0.02614668197929859,
0.015729190781712532,
0.11195719242095947,
-0.1187315434217453,
-0.005450072232633829,
0.0012241681106388569,
0.009620189666748047,
0.01182195171713829,
-0.2065180242061615,
-0.03044058382511139,
0.04543560370802879,
-0.05487777292728424,
-0.002684947568923235,
-0.02061883546411991,
0.003812394803389907,
0.10489252209663391,
0.009984446689486504,
-0.07221028953790665,
0.047584980726242065,
-0.0101465480402112,
-0.09875622391700745,
0.20704829692840576,
-0.06475764513015747,
-0.20887720584869385,
-0.1501387506723404,
-0.0335383340716362,
-0.059426553547382355,
0.036470942199230194,
0.06376628577709198,
-0.07705111801624298,
-0.03687094524502754,
-0.1227053701877594,
-0.004673562943935394,
0.02068934217095375,
0.02161942608654499,
0.0014747893437743187,
0.01199081726372242,
0.09235922992229462,
-0.0875910148024559,
-0.020283028483390808,
-0.04225156083703041,
-0.03467477113008499,
0.03161508962512016,
0.022502250969409943,
0.10717131942510605,
0.1315491497516632,
-0.03024774044752121,
0.0036257992032915354,
-0.041245199739933014,
0.21900145709514618,
-0.08187232911586761,
-0.01869155280292034,
0.12967421114444733,
-0.031105801463127136,
0.051078684628009796,
0.14619585871696472,
0.047253817319869995,
-0.10061715543270111,
0.03253543749451637,
0.03497906029224396,
-0.033812861889600754,
-0.1928209662437439,
-0.04267482832074165,
-0.04193638265132904,
0.01974279247224331,
0.1014503613114357,
0.03369058296084404,
0.03950129449367523,
0.05922301486134529,
0.005504909437149763,
0.05832996591925621,
0.003412829479202628,
0.07444924861192703,
0.11181208491325378,
0.048046261072158813,
0.13281811773777008,
-0.05371290445327759,
-0.06426569819450378,
0.03815843537449837,
-0.03599700704216957,
0.18526360392570496,
0.018870191648602486,
0.12831930816173553,
0.04916152358055115,
0.13650505244731903,
0.01732582226395607,
0.04612545669078827,
0.005305373575538397,
-0.05186356231570244,
-0.01170865073800087,
-0.04155895859003067,
-0.04064473882317543,
0.0312751941382885,
-0.06200241297483444,
0.055893827229738235,
-0.13650962710380554,
0.018748948350548744,
0.05199354887008667,
0.2198394387960434,
0.05688735842704773,
-0.3311392664909363,
-0.09329288452863693,
0.02321050316095352,
-0.019358815625309944,
-0.036136407405138016,
0.02437233179807663,
0.15616703033447266,
-0.06401633471250534,
0.05614599958062172,
-0.07989663630723953,
0.0816701203584671,
-0.05390576273202896,
0.05899491906166077,
0.041192322969436646,
0.0587768480181694,
-0.029355579987168312,
0.07713164389133453,
-0.2702084183692932,
0.2734981179237366,
0.01680755987763405,
0.06758192926645279,
-0.057532455772161484,
-0.00597513047978282,
0.023620406165719032,
0.10624439269304276,
0.07857120037078857,
-0.019145693629980087,
-0.07082433998584747,
-0.20567582547664642,
-0.06078788638114929,
0.02285451628267765,
0.08722309023141861,
-0.04584747552871704,
0.10167469829320908,
-0.03259394317865372,
0.002746057230979204,
0.08192603290081024,
0.006338214967399836,
-0.07124312967061996,
-0.1072278618812561,
-0.017370816320180893,
0.04018200561404228,
-0.029946476221084595,
-0.08265509456396103,
-0.09876896440982819,
-0.11491189152002335,
0.16481804847717285,
-0.04604308679699898,
-0.038200486451387405,
-0.0995965376496315,
0.07298006862401962,
0.021920854225754738,
-0.08593130111694336,
0.028276639059185982,
0.009786277078092098,
0.10891008377075195,
0.007427141536027193,
-0.06033563241362572,
0.12880180776119232,
-0.06264958530664444,
-0.1884986013174057,
-0.06464696675539017,
0.13303303718566895,
0.018068648874759674,
0.03824642300605774,
0.006937215570360422,
0.0031142544467002153,
-0.006303749047219753,
-0.07472009211778641,
0.04016919806599617,
-0.021575530990958214,
0.0690460279583931,
0.020265741273760796,
-0.03998082876205444,
-0.023103807121515274,
-0.06265223026275635,
-0.026377668604254723,
0.16103199124336243,
0.30938324332237244,
-0.07870856672525406,
0.007341825868934393,
0.057710837572813034,
-0.0618509016931057,
-0.1824989914894104,
0.04373328015208244,
0.020020756870508194,
0.004899775609374046,
0.06034298613667488,
-0.137485533952713,
0.074933260679245,
0.08527274429798126,
-0.025363540276885033,
0.10435261577367783,
-0.27183112502098083,
-0.1397564858198166,
0.11679475754499435,
0.15473513305187225,
0.1405172497034073,
-0.1531519740819931,
-0.03820977732539177,
-0.04473545029759407,
-0.08745128661394119,
0.12819397449493408,
-0.12891298532485962,
0.10826647281646729,
-0.002337651327252388,
0.03748859092593193,
0.012795724906027317,
-0.050492607057094574,
0.12548087537288666,
-0.031000321730971336,
0.11458522826433182,
-0.07889414578676224,
-0.017280420288443565,
0.05658235028386116,
-0.05968343839049339,
0.024338645860552788,
-0.13049405813217163,
0.017726527526974678,
-0.07877208292484283,
-0.03631384298205376,
-0.061653219163417816,
0.04678530991077423,
-0.04297637566924095,
-0.04974539205431938,
-0.043464191257953644,
0.032255467027425766,
0.04550149291753769,
-0.003201250685378909,
0.16158054769039154,
-0.011799074709415436,
0.1781931221485138,
0.15157100558280945,
0.10817653685808182,
-0.05624264478683472,
-0.01037526037544012,
-0.003473757766187191,
-0.03794516623020172,
0.054681066423654556,
-0.13226214051246643,
0.04193843528628349,
0.10959125310182571,
-0.007174252532422543,
0.16341251134872437,
0.06823383271694183,
-0.0381026417016983,
0.021926002576947212,
0.07323809713125229,
-0.17806971073150635,
-0.13060380518436432,
-0.029605288058519363,
-0.03764582425355911,
-0.12324771285057068,
0.04970969259738922,
0.13035081326961517,
-0.07066404819488525,
0.010201381519436836,
-0.01187319215387106,
0.016919294372200966,
-0.0251750685274601,
0.15130388736724854,
0.06826755404472351,
0.05472584441304207,
-0.0783955529332161,
0.07676675915718079,
0.05447188764810562,
-0.08575102686882019,
0.03699230030179024,
0.039787232875823975,
-0.09559288620948792,
-0.05095576494932175,
0.02770301327109337,
0.21175538003444672,
-0.014624656178057194,
-0.0634385347366333,
-0.1628957837820053,
-0.12781435251235962,
0.055280450731515884,
0.1835986077785492,
0.08283333480358124,
0.0010030497796833515,
-0.023174993693828583,
0.00232319044880569,
-0.12445046752691269,
0.12027693539857864,
0.024876536801457405,
0.07416281849145889,
-0.1657053679227829,
0.14122766256332397,
-0.000927128829061985,
0.016363434493541718,
-0.02458205446600914,
0.03786619380116463,
-0.12394285947084427,
-0.0034523901995271444,
-0.11978750675916672,
-0.004733278416097164,
-0.023905297741293907,
0.0024127252399921417,
-0.004102734383195639,
-0.05005425959825516,
-0.06457634270191193,
-0.00015308978618122637,
-0.10172748565673828,
-0.016196725890040398,
0.042489729821681976,
0.05742684751749039,
-0.1289292424917221,
-0.04530879855155945,
0.014975992031395435,
-0.06895776838064194,
0.0717196986079216,
0.0053002783097326756,
0.016375645995140076,
0.0452713742852211,
-0.15041230618953705,
0.03744245320558548,
0.06986498832702637,
0.008176836185157299,
0.040032632648944855,
-0.08417157083749771,
-0.0016894974978640676,
0.0017311926931142807,
0.03955794870853424,
0.033143602311611176,
0.08822134882211685,
-0.12440656125545502,
0.01967456191778183,
-0.002100487006828189,
-0.05959611013531685,
-0.04956277087330818,
0.04706297814846039,
0.06553944200277328,
0.006273162085562944,
0.21379375457763672,
-0.11120777577161789,
0.012590311467647552,
-0.21464692056179047,
-0.0006487732171081007,
0.0074827042408287525,
-0.11248164623975754,
-0.07019314914941788,
-0.06594730168581009,
0.05955338850617409,
-0.05843820795416832,
0.13496561348438263,
0.03210621327161789,
0.05262225121259689,
0.041164834052324295,
-0.05430412292480469,
0.04975604638457298,
0.02959432266652584,
0.19603422284126282,
0.013679923489689827,
-0.05611734837293625,
0.049309831112623215,
0.01890403963625431,
0.12194585800170898,
0.08416642248630524,
0.1931503415107727,
0.158246710896492,
-0.05930296704173088,
0.09384601563215256,
0.04965347796678543,
-0.04755811020731926,
-0.12887386977672577,
0.027846774086356163,
-0.0655445083975792,
0.11210930347442627,
-0.014981016516685486,
0.18537414073944092,
0.09901074320077896,
-0.15395309031009674,
0.013111867941915989,
-0.05874752625823021,
-0.07876460999250412,
-0.10994409769773483,
-0.08071344345808029,
-0.10039816051721573,
-0.1348341405391693,
-0.00014993186050560325,
-0.10853572189807892,
0.000552864046767354,
0.09545330703258514,
0.00005037499067839235,
-0.0330796092748642,
0.17557545006275177,
0.024557093158364296,
0.01739390566945076,
0.07454637438058853,
0.0020778714679181576,
-0.03158644959330559,
-0.0899939239025116,
-0.08355961740016937,
0.02023148722946644,
-0.025221791118383408,
0.02276839315891266,
-0.04128405824303627,
-0.0312885046005249,
0.04467472434043884,
-0.004849662072956562,
-0.11504928767681122,
0.014206014573574066,
0.025949958711862564,
0.05637015029788017,
0.05476148799061775,
0.01831498183310032,
0.0073500438593328,
-0.001370040699839592,
0.2186887562274933,
-0.06654272973537445,
-0.040379952639341354,
-0.09689989686012268,
0.21352340281009674,
0.026530306786298752,
0.010629652999341488,
0.0018736869096755981,
-0.09488317370414734,
0.036918755620718,
0.20403099060058594,
0.19075024127960205,
-0.08309224247932434,
0.016103634610772133,
-0.02859741821885109,
-0.007705658208578825,
-0.010606158524751663,
0.10736338049173355,
0.09659470617771149,
0.0007625360740348697,
-0.06900165230035782,
-0.023424312472343445,
-0.036787670105695724,
0.0029509207233786583,
-0.030757347121834755,
0.0692262053489685,
0.040717724710702896,
0.024768229573965073,
-0.05192648246884346,
0.06851712614297867,
-0.03393573313951492,
-0.12081186473369598,
0.031014835461974144,
-0.2131951004266739,
-0.14404615759849548,
-0.019860055297613144,
0.10053565353155136,
-0.01181675773113966,
0.056934207677841187,
-0.03171989694237709,
0.006857392843812704,
0.05225047841668129,
-0.022260641679167747,
-0.06621185690164566,
-0.07285892963409424,
0.049032751470804214,
-0.1300036609172821,
0.224202960729599,
-0.04112980142235756,
0.028517428785562515,
0.1263444870710373,
0.02730388008058071,
-0.06618352979421616,
0.09223178029060364,
0.04099784418940544,
-0.031027868390083313,
0.04188520833849907,
0.09306950867176056,
-0.03390318527817726,
0.1129952073097229,
0.06876709312200546,
-0.1311955749988556,
0.012854328379034996,
-0.10917585343122482,
-0.0751291960477829,
-0.055706948041915894,
-0.02738894149661064,
-0.05587037280201912,
0.1352708637714386,
0.1835523098707199,
-0.036431968212127686,
0.003166318405419588,
-0.04340370371937752,
0.009610609151422977,
0.07368113100528717,
0.043028924614191055,
-0.025223633274435997,
-0.24082568287849426,
0.014325483702123165,
0.08418290317058563,
0.003988077864050865,
-0.3409208357334137,
-0.07400476932525635,
-0.0181064922362566,
-0.05012328177690506,
-0.08633612096309662,
0.09214398264884949,
0.09986583888530731,
0.05427346006035805,
-0.07213954627513885,
-0.0630912110209465,
-0.06865891814231873,
0.17234613001346588,
-0.12375236302614212,
-0.09047733247280121
] |
null | null | null | Civia hololive China vtuber rmvpe 600 epoches | {"license": "unknown"} | null | IshimaIshimsky/civia | [
"license:unknown",
"region:us"
] | 2024-02-06T19:52:07+00:00 | [] | [] | TAGS
#license-unknown #region-us
| Civia hololive China vtuber rmvpe 600 epoches | [] | [
"TAGS\n#license-unknown #region-us \n"
] | [
13
] | [
"passage: TAGS\n#license-unknown #region-us \n"
] | [
0.06530581414699554,
0.09139696508646011,
-0.006323584821075201,
-0.05060818791389465,
0.003445027396082878,
0.042946070432662964,
0.18141117691993713,
0.05714278668165207,
0.2316216379404068,
-0.02272750996053219,
0.15387243032455444,
0.046305008232593536,
-0.003336844965815544,
-0.03406427055597305,
-0.026851005852222443,
-0.13604195415973663,
0.0671582818031311,
-0.062265411019325256,
0.1601756066083908,
-0.0028133944142609835,
-0.08617057651281357,
-0.05448242649435997,
-0.00827821809798479,
-0.03674736246466637,
-0.04801591485738754,
0.01729184202849865,
0.021140918135643005,
-0.05283241346478462,
0.09059050679206848,
-0.04446229338645935,
0.08716931939125061,
0.045176245272159576,
0.009040006436407566,
-0.16663800179958344,
-0.001635855995118618,
-0.09031552076339722,
-0.11628837883472443,
-0.019446780905127525,
0.043286845088005066,
-0.03818456456065178,
-0.04553941637277603,
0.1786271631717682,
-0.005770981777459383,
0.042343009263277054,
-0.20200662314891815,
-0.26038873195648193,
-0.10659068077802658,
-0.05865487456321716,
-0.05082053318619728,
0.0837961807847023,
0.0761864185333252,
0.1817721426486969,
-0.19544945657253265,
-0.04135143756866455,
0.06796170026063919,
-0.36308005452156067,
0.12206251174211502,
0.13450409471988678,
0.022057080641388893,
0.057889990508556366,
-0.03468748927116394,
0.0786730945110321,
0.12252570688724518,
-0.012899310328066349,
-0.14366991817951202,
-0.042957816272974014,
-0.010020842775702477,
0.12369534373283386,
-0.03267190605401993,
-0.0985822081565857,
0.2835657596588135,
0.014986681751906872,
-0.026851285248994827,
0.07963360846042633,
0.0030751980375498533,
0.012045814655721188,
0.042981866747140884,
0.07319307327270508,
0.03744763508439064,
0.1532970368862152,
0.129912868142128,
-0.04300162196159363,
-0.12653978168964386,
-0.026778189465403557,
-0.2896004617214203,
0.13753411173820496,
-0.04305877536535263,
0.14116203784942627,
-0.17098106443881989,
0.013230849988758564,
-0.27331915497779846,
0.018311114981770515,
-0.028267864137887955,
-0.061166126281023026,
0.07110287249088287,
0.005689919926226139,
-0.034061454236507416,
0.09792085736989975,
0.0943373516201973,
0.19145570695400238,
0.037699244916439056,
-0.016132501885294914,
-0.1418323963880539,
0.15942983329296112,
-0.02631726674735546,
0.050315745174884796,
0.18158499896526337,
0.1406242698431015,
-0.018400119617581367,
-0.16414101421833038,
0.04320576414465904,
-0.05353820323944092,
-0.16765978932380676,
0.01577960141003132,
-0.17805583775043488,
0.17602555453777313,
0.04114004969596863,
-0.06881430745124817,
-0.09846265614032745,
0.08790113031864166,
0.07336261868476868,
0.008717529475688934,
-0.021545758470892906,
0.0012989600654691458,
0.019325753673911095,
-0.06486009061336517,
-0.051720790565013885,
0.03519344702363014,
0.14283932745456696,
0.0813460722565651,
-0.13716210424900055,
-0.022110164165496826,
-0.009622677229344845,
0.043362654745578766,
0.12765814363956451,
-0.07974965870380402,
0.042251430451869965,
-0.06316357851028442,
-0.13525661826133728,
0.06720157712697983,
-0.012329703196883202,
-0.011481753550469875,
0.1344660073518753,
0.03242199495434761,
0.01731444150209427,
-0.04431649670004845,
-0.0616411454975605,
-0.1828470379114151,
-0.06996279954910278,
0.08819125592708588,
-0.013433796353638172,
0.007146002724766731,
-0.24339081346988678,
-0.00491486769169569,
-0.18563540279865265,
0.07625847309827805,
0.053307343274354935,
-0.07810883969068527,
-0.13085880875587463,
0.15934325754642487,
0.032681904733181,
0.04797128587961197,
-0.06456611305475235,
0.04097391664981842,
-0.07118238508701324,
0.09787939488887787,
-0.12022043764591217,
-0.07567106187343597,
0.13982638716697693,
-0.1142442598938942,
-0.18122904002666473,
-0.03240980952978134,
0.01660047471523285,
0.10605380684137344,
0.04394027218222618,
0.4323057234287262,
-0.15619222819805145,
-0.2004614621400833,
0.12101875990629196,
0.16241419315338135,
-0.138130322098732,
-0.23842346668243408,
0.09998655319213867,
-0.22034524381160736,
-0.20163340866565704,
0.033522170037031174,
0.02428418956696987,
0.030793793499469757,
-0.046192388981580734,
-0.07528546452522278,
0.00583136361092329,
0.012499446049332619,
0.06816510856151581,
0.0062986998818814754,
0.07141313701868057,
-0.061373502016067505,
0.05407281219959259,
0.04609183594584465,
-0.029308445751667023,
0.14303433895111084,
-0.023088594898581505,
-0.002918112324550748,
0.0768202468752861,
0.026699457317590714,
-0.020037679001688957,
-0.03663305938243866,
-0.12762074172496796,
0.0366576611995697,
-0.04457516595721245,
0.12601779401302338,
0.12909162044525146,
0.0038975700736045837,
-0.029190951958298683,
0.049216292798519135,
0.0121591966599226,
0.08489532768726349,
0.0986851155757904,
0.031437069177627563,
0.008617803454399109,
0.05836648866534233,
-0.023477140814065933,
-0.18399491906166077,
-0.05506472662091255,
-0.043382223695516586,
0.04797770455479622,
-0.09401611983776093,
0.015790455043315887,
0.06300705671310425,
-0.053027864545583725,
0.03239089995622635,
0.05232037603855133,
0.013885634019970894,
0.1345943659543991,
-0.03299352154135704,
-0.1240813136100769,
0.13990044593811035,
-0.06788653135299683,
0.1715266853570938,
0.14131464064121246,
-0.06912847608327866,
0.0057001723907887936,
-0.12284733355045319,
-0.008673558942973614,
-0.027740029618144035,
0.06280511617660522,
0.004698239266872406,
-0.03046821802854538,
-0.02267564833164215,
0.031549081206321716,
-0.0489921048283577,
0.04068857803940773,
-0.058953095227479935,
-0.06772319227457047,
-0.157149538397789,
0.05477319657802582,
0.1675291359424591,
-0.1668543815612793,
0.17028288543224335,
0.39236918091773987,
0.10021303594112396,
0.12448595464229584,
-0.1252717673778534,
-0.009150735102593899,
-0.0655113235116005,
0.009058721363544464,
0.009277086704969406,
0.07602466642856598,
-0.05021074414253235,
0.009251706302165985,
0.06434689462184906,
0.0523841418325901,
0.054292380809783936,
-0.16982963681221008,
-0.18714673817157745,
-0.021479979157447815,
0.015966100618243217,
-0.15087641775608063,
0.09321391582489014,
-0.05841713398694992,
0.015100794844329357,
0.06598491966724396,
-0.06479614973068237,
0.20459236204624176,
-0.022574761882424355,
-0.04916864261031151,
0.05879536271095276,
-0.2212011069059372,
-0.0582929365336895,
-0.17122042179107666,
-0.06599963456392288,
0.046225495636463165,
0.04582900553941727,
0.10143717378377914,
-0.03615788742899895,
-0.024311460554599762,
0.0627451166510582,
-0.10595149546861649,
-0.21307411789894104,
-0.0781460627913475,
-0.04924072325229645,
0.09828699380159378,
-0.09327848255634308,
-0.043557170778512955,
-0.07913348823785782,
-0.0314832404255867,
-0.033508386462926865,
0.0812423899769783,
-0.09367701411247253,
0.0779251828789711,
0.11743219941854477,
0.034552834928035736,
0.052992504090070724,
-0.05386326089501381,
0.14950866997241974,
-0.030629921704530716,
-0.11079567670822144,
0.042599134147167206,
0.032417699694633484,
0.04831130802631378,
0.19568979740142822,
0.0763481855392456,
-0.12960226833820343,
-0.02955479919910431,
-0.07983288168907166,
-0.1274433434009552,
-0.2552822232246399,
-0.05926191061735153,
-0.04744982346892357,
0.14662423729896545,
0.00826840940862894,
0.07539745420217514,
0.1685340851545334,
-0.01299865823239088,
0.08672807365655899,
-0.024166813120245934,
-0.05721903592348099,
0.04399175941944122,
0.25257402658462524,
-0.028245877474546432,
-0.01729193888604641,
-0.1350269466638565,
0.024277348071336746,
0.12149333953857422,
0.11145705729722977,
0.18750663101673126,
0.31458792090415955,
0.1909954994916916,
0.13335277140140533,
0.16691534221172333,
0.1403539925813675,
-0.008323120884597301,
0.09447359293699265,
-0.04283139109611511,
-0.029391998425126076,
-0.04015335813164711,
0.03523719683289528,
0.04871753603219986,
0.06798484921455383,
-0.15242710709571838,
-0.02290644869208336,
-0.29936644434928894,
-0.023916680365800858,
-0.13482549786567688,
0.12100208550691605,
0.024357417598366737,
0.10221636295318604,
0.07602081447839737,
0.09658262878656387,
-0.011290238238871098,
0.1719035506248474,
-0.07377667725086212,
-0.0789107009768486,
0.015276125632226467,
0.05407146364450455,
0.06603357940912247,
0.08532577753067017,
0.07328219711780548,
-0.09689341485500336,
-0.19946825504302979,
0.03854897618293762,
0.16105471551418304,
-0.1599462479352951,
0.3601383566856384,
0.056380026042461395,
-0.06790464371442795,
-0.055889151990413666,
-0.11233639717102051,
-0.039001818746328354,
0.11565510928630829,
0.13887189328670502,
0.04134293273091316,
-0.202618807554245,
-0.12554651498794556,
-0.01731692999601364,
-0.02069287933409214,
0.11056545376777649,
0.037398748099803925,
-0.12758536636829376,
-0.05034773051738739,
0.07303396612405777,
-0.013168545439839363,
0.1047331839799881,
-0.07503754645586014,
-0.08943192660808563,
0.011589122004806995,
0.08795487880706787,
0.0003321407421026379,
-0.06938597559928894,
0.027972692623734474,
0.0002073040814138949,
-0.010808032006025314,
-0.06577743589878082,
0.06623471528291702,
-0.10104871541261673,
-0.23790597915649414,
0.08523014187812805,
-0.028604906052350998,
0.0020848168060183525,
-0.0909147560596466,
-0.1798923909664154,
-0.10818600654602051,
-0.18688766658306122,
0.13887369632720947,
-0.023201974108815193,
0.014844940043985844,
-0.06105266511440277,
0.11401142179965973,
-0.025401636958122253,
0.07098743319511414,
-0.02333385869860649,
0.06233912333846092,
-0.029393382370471954,
-0.09541414678096771,
0.14886605739593506,
-0.11367934942245483,
0.08156584203243256,
0.06863277405500412,
-0.015439148992300034,
0.013056126423180103,
0.08063816279172897,
-0.08819461613893509,
0.14642269909381866,
0.42170146107673645,
-0.019090114161372185,
0.3132866621017456,
0.343817800283432,
-0.1362355500459671,
-0.22004929184913635,
-0.10240195691585541,
-0.267151802778244,
-0.09984800219535828,
0.19296300411224365,
-0.10689596086740494,
0.04149891063570976,
0.14872854948043823,
-0.13173694908618927,
0.2647691071033478,
-0.24858322739601135,
0.008389999158680439,
0.15982595086097717,
-0.08192736655473709,
0.4637744128704071,
-0.10739566385746002,
-0.18892689049243927,
-0.0412011444568634,
-0.14051246643066406,
0.12049563974142075,
0.04337981343269348,
0.08090821653604507,
-0.028503909707069397,
0.05533299595117569,
0.010444313287734985,
-0.027521908283233643,
0.2148762047290802,
-0.04996952787041664,
0.10845159739255905,
-0.08073049783706665,
-0.1906384378671646,
0.18369075655937195,
-0.0012457368429750204,
-0.010857210494577885,
0.005010056775063276,
-0.03301617503166199,
0.024547969922423363,
0.024530500173568726,
-0.05221536010503769,
0.11555250734090805,
0.008433080278337002,
-0.0952945426106453,
-0.10591093450784683,
0.02293507196009159,
-0.12291164696216583,
-0.04014633223414421,
0.3298976421356201,
-0.001713335863314569,
0.13533321022987366,
0.05202140659093857,
-0.049316391348838806,
-0.05239531025290489,
0.018896177411079407,
-0.10415506362915039,
-0.07147925347089767,
0.07476795464754105,
-0.10161265730857849,
-0.06865200400352478,
0.14656828343868256,
-0.014072549529373646,
0.07385534793138504,
0.07846971601247787,
-0.141154944896698,
0.037896182388067245,
0.07929624617099762,
-0.03596840426325798,
-0.1500585824251175,
0.03212559223175049,
0.06358274072408676,
0.17328540980815887,
0.019678905606269836,
-0.011505212634801865,
0.061877474188804626,
0.02155105583369732,
-0.033957842737436295,
-0.023469358682632446,
-0.08491640537977219,
-0.10116462409496307,
0.050461579114198685,
-0.01125169824808836,
-0.07762103527784348,
0.2320248931646347,
0.07845191657543182,
0.010092288255691528,
0.00013839486928191036,
0.07133381813764572,
-0.0264444462954998,
-0.08026991784572601,
-0.12446190416812897,
0.07212072610855103,
-0.14794975519180298,
-0.06669669598340988,
0.1024085208773613,
-0.019289258867502213,
-0.03510909527540207,
0.12917883694171906,
0.01819913275539875,
0.11734360456466675,
0.0016381797613576055,
-0.0181268397718668,
0.1658659726381302,
-0.08423987776041031,
-0.27764639258384705,
-0.010479934513568878,
-0.08149643987417221,
-0.11191485077142715,
-0.0017543479334563017,
0.06706558912992477,
-0.06240018084645271,
-0.1244838684797287,
-0.24583673477172852,
0.105661541223526,
-0.19846101105213165,
-0.023162225261330605,
-0.08218387514352798,
-0.056394487619400024,
0.10086342692375183,
-0.01749802939593792,
-0.010172714479267597,
-0.023527754470705986,
-0.1821555644273758,
0.040208276361227036,
0.10861793905496597,
0.09917330741882324,
-0.05060168728232384,
-0.04112549498677254,
0.131094291806221,
0.1064612865447998,
0.07053837925195694,
0.11487739533185959,
0.0634293407201767,
0.15044690668582916,
-0.20304043591022491,
-0.04826783388853073,
0.06247905269265175,
-0.03501182422041893,
0.06289738416671753,
0.1261795163154602,
-0.1115856021642685,
0.06925955414772034,
-0.06849178671836853,
0.04225534573197365,
-0.16111938655376434,
-0.15330733358860016,
-0.16176359355449677,
0.08572250604629517,
-0.21739280223846436,
0.012871192768216133,
-0.1328030377626419,
0.17059600353240967,
-0.07181736826896667,
0.09641727060079575,
0.05239458382129669,
0.049670226871967316,
0.0818651020526886,
-0.05288361385464668,
-0.030579980462789536,
-0.07487235963344574,
-0.0261879563331604,
-0.013519692234694958,
-0.08814521878957748,
-0.004314532969146967,
0.39233148097991943,
-0.01525166817009449,
-0.14310479164123535,
0.0008455835049971938,
0.07997123152017593,
-0.02111351117491722,
-0.003159421728923917,
0.30276116728782654,
0.09821157157421112,
-0.02893100678920746,
-0.11527248471975327,
0.048782605677843094,
-0.15139536559581757,
-0.1257052719593048,
0.06754723191261292,
0.00715250987559557,
0.006316398736089468,
-0.009523726999759674,
0.15054018795490265,
-0.09065741300582886,
-0.05212134122848511,
-0.19200587272644043,
0.17117047309875488,
0.016217587515711784,
-0.00035970768658444285,
-0.007540587335824966,
0.12705612182617188,
0.043162330985069275,
0.03611274063587189,
-0.11657752841711044,
-0.017374275252223015,
-0.16095921397209167,
-0.22103722393512726,
0.05244509503245354,
-0.04790329933166504,
0.08122995495796204,
0.06609517335891724,
0.05180942267179489,
0.2047813981771469,
0.02168777771294117,
-0.06042185798287392,
-0.05801653489470482,
-0.13326643407344818,
-0.06941048055887222,
-0.0388660728931427,
-0.021764669567346573,
0.009002722799777985,
-0.12843310832977295,
-0.07798675447702408,
-0.0010114446049556136,
-0.15831124782562256,
-0.09503418952226639,
0.02138694003224373,
-0.002623484469950199,
-0.04409471154212952,
-0.16994750499725342,
-0.050502289086580276,
-0.03602130711078644,
0.12828458845615387,
-0.02433490939438343,
0.16948232054710388,
-0.03314550220966339,
0.01369687169790268,
0.05848541855812073,
0.12854352593421936,
0.014694679528474808,
-0.03850632160902023,
0.10354495793581009,
0.21334291994571686,
-0.054744817316532135,
0.1274188607931137,
-0.08285025507211685,
-0.0032950816676020622,
-0.010681490413844585,
0.14259153604507446,
0.2724839746952057,
-0.02212531864643097,
-0.0002106222091242671,
0.0031284810975193977,
0.001120409811846912,
0.06788763403892517,
0.1117437556385994,
-0.04656055569648743,
0.2222379446029663,
-0.06541197001934052,
0.052718635648489,
0.0022657315712422132,
0.02242746762931347,
-0.12581491470336914,
0.04729107394814491,
0.029777590185403824,
-0.07095592468976974,
-0.10633054375648499,
0.12057523429393768,
-0.1762562096118927,
0.13524889945983887,
0.15343967080116272,
-0.040463704615831375,
0.021550552919507027,
-0.038558632135391235,
0.12790821492671967,
-0.01336973998695612,
0.0742739886045456,
-0.1018456295132637,
-0.0986548364162445,
-0.14666663110256195,
0.011904805898666382,
-0.34609484672546387,
-0.15388306975364685,
0.07477264106273651,
0.1927150934934616,
0.21461986005306244,
0.017856711521744728,
0.10696610063314438,
-0.0010060956701636314,
0.10915666073560715,
-0.05655989050865173,
0.18036718666553497,
0.09535183757543564,
0.00008857184730004519,
-0.12844203412532806,
-0.18420450389385223,
-0.013519945554435253,
-0.04586222767829895,
0.04759036749601364,
-0.02420870214700699,
0.03420063853263855,
0.16549640893936157,
-0.07591603696346283,
-0.025264104828238487,
-0.01582440361380577,
-0.11879504472017288,
0.06198963522911072,
-0.0735880509018898,
-0.018716882914304733,
-0.0928783193230629,
-0.009476170875132084,
-0.014773406088352203,
0.13779795169830322,
-0.2289811372756958,
-0.09095132350921631,
0.1706707924604416,
-0.011807206086814404,
0.22086521983146667,
-0.0033471400383859873,
-0.16667062044143677,
0.003703129244968295,
-0.08617854863405228,
0.09502581506967545,
-0.0838356614112854,
-0.013494974002242088,
0.12488045543432236,
-0.010675420053303242,
0.019403057172894478,
-0.26653245091438293,
0.02590082585811615,
-0.042406223714351654,
-0.017784634605050087,
-0.02530992589890957
] |
null | null | null | all-MiniLM-L6-v2-f16.gguf Model uploaded to HuggingFace from GPT4ALL | {"license": "apache-2.0"} | null | caliex/all-MiniLM-L6-v2-f16.gguf | [
"gguf",
"license:apache-2.0",
"region:us"
] | 2024-02-06T19:55:46+00:00 | [] | [] | TAGS
#gguf #license-apache-2.0 #region-us
| URL Model uploaded to HuggingFace from GPT4ALL | [] | [
"TAGS\n#gguf #license-apache-2.0 #region-us \n"
] | [
17
] | [
"passage: TAGS\n#gguf #license-apache-2.0 #region-us \n"
] | [
-0.01330315787345171,
0.15578481554985046,
-0.008150381036102772,
0.0016573866596445441,
-0.04673202335834503,
0.030570833012461662,
0.13376784324645996,
0.09194369614124298,
0.128515362739563,
-0.07453092932701111,
0.17055568099021912,
0.028890712186694145,
0.03800550848245621,
0.03976481780409813,
0.025271227583289146,
-0.11722369492053986,
0.10813431441783905,
-0.03824392333626747,
-0.09146501868963242,
-0.0007550549926236272,
0.0461740680038929,
0.03938475623726845,
-0.020297255367040634,
-0.012304259464144707,
-0.04646717384457588,
-0.01807590387761593,
0.061380259692668915,
-0.021618852391839027,
0.0584920234978199,
0.044396135956048965,
-0.013440944254398346,
0.02849559485912323,
-0.044239118695259094,
-0.20778964459896088,
0.01814555749297142,
-0.030956419184803963,
-0.0963222086429596,
0.034455686807632446,
-0.002720483811572194,
0.03162013739347458,
0.061540063470602036,
0.11115614324808121,
-0.11918631196022034,
0.037214748561382294,
-0.13505050539970398,
-0.30473440885543823,
-0.18398606777191162,
0.06021247059106827,
0.0028733352664858103,
0.041688770055770874,
0.07521043717861176,
0.05276030674576759,
-0.15611688792705536,
-0.04681211709976196,
0.06740783900022507,
-0.35676148533821106,
0.026624629274010658,
0.1421503871679306,
-0.04767010360956192,
0.03409823030233383,
-0.016959721222519875,
0.10372579842805862,
0.08160287141799927,
-0.0309890303760767,
-0.11352469027042389,
-0.04248137027025223,
-0.07062457501888275,
0.11909499764442444,
-0.022388093173503876,
-0.10835286229848862,
0.299734890460968,
0.07829401642084122,
-0.03949820250272751,
0.13934776186943054,
-0.018232177942991257,
0.12180425226688385,
0.0037959686014801264,
0.07966145128011703,
0.07500946521759033,
0.2106771469116211,
0.1879701316356659,
-0.1285460740327835,
-0.15332761406898499,
-0.07658189535140991,
-0.18097953498363495,
0.09647365659475327,
0.00481637567281723,
0.15394099056720734,
-0.12812361121177673,
0.004832482896745205,
-0.1665661633014679,
-0.05767213553190231,
-0.09051498025655746,
-0.052037935703992844,
0.14505687355995178,
0.09770436584949493,
-0.07494958490133286,
0.17277710139751434,
0.21161453425884247,
0.26735973358154297,
-0.03192757070064545,
0.006477556191384792,
-0.06420958042144775,
0.15842780470848083,
-0.0583864264190197,
0.019410474225878716,
0.05191675201058388,
0.11087486892938614,
0.13493096828460693,
-0.1719009280204773,
0.09378605335950851,
-0.016259867697954178,
-0.11252851784229279,
-0.011826573871076107,
-0.1737414002418518,
0.1333753764629364,
0.046528834849596024,
-0.08763917535543442,
-0.02980431728065014,
0.06516948342323303,
0.13636615872383118,
-0.016305889934301376,
-0.012872343882918358,
-0.008937547914683819,
0.009359321556985378,
-0.06836733967065811,
0.0008180695003829896,
0.060471873730421066,
0.08052167296409607,
-0.010497825220227242,
-0.09346228837966919,
-0.02963828109204769,
0.03977816551923752,
0.13056598603725433,
0.12507236003875732,
-0.03587067127227783,
0.04867643862962723,
-0.07281927764415741,
-0.1537899523973465,
0.043609101325273514,
0.0720045417547226,
0.01405393797904253,
-0.02105209231376648,
0.12900052964687347,
0.02947195991873741,
-0.002579237800091505,
-0.07217522710561752,
-0.019955281168222427,
-0.08173951506614685,
0.05495830997824669,
-0.0830233246088028,
-0.021544981747865677,
-0.25846993923187256,
-0.004414012189954519,
-0.08588613569736481,
0.05437181144952774,
0.026437964290380478,
-0.07966095209121704,
-0.15488311648368835,
0.15681788325309753,
-0.04755254089832306,
0.0606415681540966,
-0.055992551147937775,
-0.019309088587760925,
-0.04433238506317139,
0.07082654535770416,
-0.06881338357925415,
-0.034905560314655304,
0.21830801665782928,
-0.14372503757476807,
-0.12107643485069275,
0.045915182679891586,
0.058830294758081436,
-0.05773618072271347,
0.03722799941897392,
0.3155798017978668,
-0.033125780522823334,
-0.02127721533179283,
0.10441244393587112,
0.17700493335723877,
-0.10252934694290161,
-0.19990848004817963,
0.1626713126897812,
-0.18464820086956024,
-0.21314117312431335,
0.03374022617936134,
-0.1354188770055771,
0.14721231162548065,
0.029108481481671333,
-0.10722507536411285,
-0.042635608464479446,
-0.08002658933401108,
-0.048498500138521194,
-0.0413840115070343,
0.047936778515577316,
-0.04613621532917023,
0.04448116570711136,
-0.18495601415634155,
0.06669430434703827,
0.12992608547210693,
0.04142272472381592,
-0.04430747032165527,
0.06424026191234589,
0.018889864906668663,
0.04718081280589104,
0.014743788167834282,
-0.021515699103474617,
0.02174583449959755,
-0.09805754572153091,
0.07063749432563782,
0.08627311885356903,
0.059764452278614044,
-0.06353570520877838,
0.012208250351250172,
0.06167324259877205,
0.0011235947022214532,
0.03216798976063728,
0.06799250841140747,
-0.09858707338571548,
0.1041717529296875,
0.003250909736379981,
0.08585058897733688,
0.03630579635500908,
-0.01942511461675167,
0.1006988137960434,
-0.05730016902089119,
-0.06386759132146835,
0.0249167513102293,
0.008679588325321674,
-0.1123015284538269,
0.05832165852189064,
-0.01720862090587616,
0.08887401223182678,
0.0644783154129982,
-0.10543974488973618,
0.169432133436203,
0.06818334013223648,
0.20611946284770966,
0.1413285881280899,
0.03921271115541458,
0.09898378700017929,
-0.015305405482649803,
-0.01739814504981041,
-0.0033933527301996946,
0.0786864310503006,
0.03553178906440735,
-0.018575791269540787,
-0.03419099375605583,
-0.01237060222774744,
-0.028527243062853813,
0.009019540622830391,
-0.028413871303200722,
-0.08427856862545013,
-0.038365963846445084,
-0.00293926103040576,
0.18400533497333527,
-0.1352609246969223,
0.15670859813690186,
0.39662665128707886,
0.05809931084513664,
0.10376974195241928,
-0.1573796272277832,
-0.04060497134923935,
-0.04825512692332268,
0.03319299966096878,
-0.02701469324529171,
0.184132382273674,
-0.10087321698665619,
0.03391242399811745,
0.07232333719730377,
0.057861048728227615,
0.06244037300348282,
-0.17538565397262573,
-0.14002028107643127,
-0.02046295255422592,
-0.09578375518321991,
-0.104468435049057,
0.024245386943221092,
-0.16045768558979034,
0.026515116915106773,
0.026555776596069336,
-0.06167523190379143,
0.1598798930644989,
-0.008611330762505531,
-0.04725697636604309,
0.07082630693912506,
-0.20357191562652588,
-0.12087341398000717,
-0.07626573741436005,
-0.0042744106613099575,
-0.05095795914530754,
0.023625193163752556,
0.08465500921010971,
-0.09592214971780777,
-0.05633152276277542,
0.07234445214271545,
-0.09036894887685776,
-0.06662289053201675,
0.015421921387314796,
0.07410863041877747,
0.01950029656291008,
0.031299129128456116,
-0.10658411681652069,
-0.05114024132490158,
-0.0207142923027277,
-0.06643637269735336,
0.043042417615652084,
-0.029125841334462166,
0.0803024172782898,
0.09105047583580017,
0.08921805769205093,
0.06849837303161621,
-0.0003459077561274171,
0.14692601561546326,
-0.04780511185526848,
-0.07088837027549744,
0.1597827970981598,
0.02298906072974205,
0.03533780947327614,
0.10251420736312866,
0.07653065770864487,
-0.10019218176603317,
-0.033925220370292664,
-0.03363695368170738,
-0.11724339425563812,
-0.2371799200773239,
-0.02427528239786625,
-0.08114678412675858,
0.09731483459472656,
-0.03697621077299118,
0.1421261876821518,
0.1297444850206375,
0.07038690894842148,
0.01488346979022026,
-0.02049473114311695,
-0.0003764019056688994,
-0.03656056523323059,
0.1047646775841713,
-0.040648601949214935,
-0.04150701314210892,
-0.13765324652194977,
0.05280669033527374,
0.2123951017856598,
0.139052614569664,
0.13875830173492432,
0.2556404173374176,
0.0865810289978981,
0.14902375638484955,
0.1700367033481598,
0.043575435876846313,
0.01834452524781227,
0.02130916342139244,
-0.025624319911003113,
-0.0733172670006752,
-0.021722665056586266,
-0.024601932615041733,
0.060184698551893234,
-0.011125342920422554,
-0.20776666700839996,
0.06618745625019073,
-0.23978964984416962,
0.06574483960866928,
0.0798097774386406,
0.06448644399642944,
0.07763633877038956,
0.05836908146739006,
0.08228960633277893,
0.07039085030555725,
0.030951116234064102,
0.1121925488114357,
-0.05280335620045662,
-0.07145904004573822,
0.08945973217487335,
0.033000752329826355,
0.055582351982593536,
0.05654873698949814,
0.018150946125388145,
-0.09060613065958023,
-0.1282111406326294,
0.06521598249673843,
0.14194566011428833,
-0.2339191883802414,
0.21457308530807495,
0.023072047159075737,
-0.07668514549732208,
-0.039042409509420395,
-0.00877209473401308,
0.10390420258045197,
0.15340037643909454,
0.12154663354158401,
0.0913349986076355,
-0.1597919762134552,
0.06428830325603485,
-0.07498005777597427,
0.06961594521999359,
-0.0024978057481348515,
-0.04789665341377258,
-0.1743926703929901,
-0.04370199516415596,
0.05610458180308342,
0.02999473176896572,
0.14242549240589142,
-0.15068703889846802,
-0.08502397686243057,
0.047799695283174515,
0.13189667463302612,
-0.012925185263156891,
-0.1351172924041748,
0.07789962738752365,
-0.0223079863935709,
0.13693971931934357,
-0.08600178360939026,
-0.009268487803637981,
-0.06393920630216599,
-0.11813131719827652,
0.03256971016526222,
-0.03487817198038101,
0.030751710757613182,
-0.08259879052639008,
-0.11836646497249603,
-0.0880444347858429,
-0.19962769746780396,
0.0970500111579895,
-0.0914505124092102,
0.011035526171326637,
-0.007812321186065674,
0.10870376229286194,
-0.04637550935149193,
0.011202405206859112,
-0.014477218501269817,
-0.005613986402750015,
-0.037054069340229034,
-0.18300330638885498,
0.12522146105766296,
-0.0354662649333477,
-0.038446735590696335,
0.010260424576699734,
0.029084086418151855,
0.08555833250284195,
0.07213917374610901,
-0.11324945837259293,
0.17003758251667023,
0.28164100646972656,
-0.06761249154806137,
0.21416988968849182,
0.31458553671836853,
-0.0837627723813057,
-0.2168940305709839,
-0.20412485301494598,
-0.243454247713089,
-0.1341201663017273,
0.013469581492245197,
-0.22552542388439178,
0.0766766369342804,
0.20877110958099365,
-0.1714908480644226,
0.2946220934391022,
-0.1911279857158661,
-0.002857143757864833,
0.18236051499843597,
-0.052634578198194504,
0.44611573219299316,
-0.171253964304924,
-0.12041395157575607,
-0.033438790589571,
-0.19569972157478333,
0.12554602324962616,
-0.16359169781208038,
0.05501075088977814,
0.024149509146809578,
-0.08415087312459946,
-0.054437655955553055,
-0.02173338644206524,
0.2504390478134155,
-0.003609958803281188,
0.04743576794862747,
-0.08139622211456299,
0.020269259810447693,
0.1750870943069458,
0.0035608301404863596,
0.017100313678383827,
-0.1639900505542755,
-0.01987898163497448,
-0.011092170141637325,
0.017119288444519043,
-0.04806634411215782,
0.1080654114484787,
0.021870044991374016,
-0.07784450799226761,
-0.11714762449264526,
0.001524197170510888,
-0.08141826093196869,
0.01126081496477127,
0.1802481710910797,
0.04831566661596298,
-0.022556783631443977,
0.03305482119321823,
-0.11502696573734283,
-0.21776944398880005,
-0.01617501676082611,
-0.11659006774425507,
-0.05422298610210419,
0.07242408394813538,
-0.22702434659004211,
0.00973254069685936,
0.03509848192334175,
-0.021992651745676994,
0.05734172463417053,
0.0652010440826416,
-0.10430524498224258,
0.01023867167532444,
0.1239415779709816,
-0.10563014447689056,
-0.1211216077208519,
0.024934910237789154,
0.025935843586921692,
0.17365825176239014,
0.050733763724565506,
0.07385742664337158,
0.06699050962924957,
0.004279726184904575,
0.016696322709321976,
0.07876995950937271,
-0.16484880447387695,
-0.029713543131947517,
0.07098285108804703,
-0.040593817830085754,
-0.1394682228565216,
0.19541186094284058,
0.028642958030104637,
0.029897678643465042,
-0.024543415755033493,
0.035570524632930756,
-0.05335932597517967,
-0.09447703510522842,
-0.13994671404361725,
-0.020488658919930458,
-0.11634241044521332,
-0.14416252076625824,
0.04803739860653877,
-0.08919020742177963,
-0.02546677179634571,
-0.03999754413962364,
0.07524143159389496,
0.13654081523418427,
0.058341559022665024,
0.013631465844810009,
0.16242444515228271,
-0.09581738710403442,
-0.18957501649856567,
-0.020761094987392426,
-0.06745804101228714,
-0.20285774767398834,
0.02592097781598568,
0.08869154006242752,
-0.020691489800810814,
-0.03635775297880173,
-0.09561870247125626,
0.04295523837208748,
-0.1443842053413391,
-0.008468776941299438,
-0.06995626538991928,
0.011855300515890121,
0.06764024496078491,
-0.09456440061330795,
0.010382445529103279,
0.04733350872993469,
-0.14076519012451172,
-0.057332105934619904,
0.0022140543442219496,
0.03670362010598183,
-0.10423135757446289,
-0.05571652576327324,
0.12314850091934204,
0.0703822523355484,
0.14754506945610046,
0.1352262943983078,
0.05553649738430977,
0.14190629124641418,
-0.22292354702949524,
-0.05461675673723221,
0.05658799037337303,
-0.004033025354146957,
-0.0409574992954731,
0.0034502120688557625,
-0.03508859872817993,
0.03941653296351433,
-0.07560205459594727,
0.042029887437820435,
-0.01114447321742773,
-0.131355419754982,
-0.16204427182674408,
-0.020497437566518784,
-0.1109241396188736,
0.033404845744371414,
-0.17885321378707886,
0.17627950012683868,
0.07166852056980133,
0.051701869815588,
0.07173995673656464,
-0.017255190759897232,
0.0028538221959024668,
0.030197259038686752,
-0.0401480607688427,
-0.08765622228384018,
-0.13222530484199524,
-0.008726547472178936,
-0.12079193443059921,
-0.03162060305476189,
0.33216890692710876,
-0.030980104580521584,
-0.1621956080198288,
0.027868445962667465,
0.07404996454715729,
0.12636078894138336,
0.0026254802942276,
0.2259112149477005,
0.054794542491436005,
0.014137940481305122,
-0.13172785937786102,
0.009069803170859814,
0.005791394039988518,
-0.27599358558654785,
0.0624869205057621,
0.0013532752636820078,
0.08246773481369019,
0.020798001438379288,
0.040949176996946335,
-0.08768724650144577,
-0.01853700540959835,
-0.03068496286869049,
0.07054902613162994,
0.011548550799489021,
0.041395153850317,
0.05476638674736023,
0.1752733737230301,
-0.024234607815742493,
0.014738751575350761,
-0.019994881004095078,
0.01285971887409687,
-0.1276385486125946,
-0.13978463411331177,
0.014189327135682106,
-0.15848460793495178,
0.045844435691833496,
-0.010509041137993336,
0.039326947182416916,
0.20746053755283356,
0.04208739846944809,
-0.06142117455601692,
-0.0455465130507946,
-0.08228625357151031,
-0.043509144335985184,
-0.009183176793158054,
-0.02066180668771267,
-0.06648684293031693,
-0.04331827908754349,
-0.09308581799268723,
-0.015449702739715576,
-0.06880850344896317,
-0.03242972493171692,
0.01768173836171627,
0.029128799214959145,
0.01990487426519394,
-0.08321307599544525,
0.002178385853767395,
-0.09582957625389099,
0.05271981284022331,
0.004241388291120529,
0.16314728558063507,
0.026698041707277298,
0.024437984451651573,
0.13244377076625824,
0.0729329064488411,
-0.013862117193639278,
-0.10025795549154282,
-0.05922839790582657,
0.03516887500882149,
-0.07846292853355408,
0.0765465646982193,
-0.0554979145526886,
0.0003111901751253754,
-0.007978007197380066,
0.23187364637851715,
0.18745596706867218,
-0.1058710440993309,
0.010778109543025494,
-0.024767739698290825,
0.011735105887055397,
0.06795872747898102,
0.13705003261566162,
0.05810157582163811,
0.1847129464149475,
-0.07218676060438156,
-0.043915461748838425,
0.00902556348592043,
0.017504174262285233,
-0.18057847023010254,
0.0833623856306076,
-0.00872169528156519,
-0.07224971055984497,
-0.03864730894565582,
0.10137778520584106,
-0.0695849135518074,
0.07668505609035492,
0.06028321757912636,
-0.028682032600045204,
0.027593085542321205,
-0.005067290738224983,
0.08621590584516525,
0.03740588203072548,
0.053074054419994354,
-0.1063728779554367,
-0.07684344053268433,
0.008703646250069141,
0.021847110241651535,
-0.3201918601989746,
-0.17543719708919525,
0.0938958078622818,
0.07460742443799973,
0.2910914719104767,
0.00119002943392843,
0.04769929125905037,
0.03156432509422302,
0.0401572659611702,
-0.12241633981466293,
0.12800614535808563,
0.012672079727053642,
-0.04014110192656517,
-0.1387740820646286,
-0.1924290657043457,
-0.032277900725603104,
-0.11549804359674454,
0.052928097546100616,
0.100664421916008,
0.012590800411999226,
0.21247832477092743,
-0.049709733575582504,
-0.022715643048286438,
-0.0057846843264997005,
-0.1684456169605255,
0.04534858837723732,
-0.063796766102314,
-0.03746533393859863,
-0.07755741477012634,
-0.06920577585697174,
0.006900185719132423,
0.07946354150772095,
-0.17020881175994873,
-0.052895352244377136,
0.2066379338502884,
0.04911750182509422,
0.1324104219675064,
0.011248554103076458,
0.05078674107789993,
-0.029439883306622505,
-0.07551411539316177,
0.09735040366649628,
-0.045069485902786255,
0.01129083801060915,
0.13425007462501526,
-0.018308015540242195,
0.02112884260714054,
-0.166777104139328,
0.02545231580734253,
-0.06915885210037231,
-0.0002544210001360625,
-0.06249799206852913
] |
null | null | transformers |
# Walter White DialGPT Model | {"tags": ["conversational"]} | text-generation | olivertheboy/DialoGPT-WalterWhite-medium | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T19:57:08+00:00 | [] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Walter White DialGPT Model | [
"# Walter White DialGPT Model"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Walter White DialGPT Model"
] | [
52,
8
] | [
"passage: TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Walter White DialGPT Model"
] | [
-0.056657884269952774,
0.09867902100086212,
-0.004572367295622826,
-0.009397442452609539,
0.054564137011766434,
0.01973532699048519,
0.16831034421920776,
0.10787942260503769,
0.030525032430887222,
-0.017130617052316666,
0.15637262165546417,
0.10573500394821167,
-0.03134642913937569,
0.16660580039024353,
-0.08288592100143433,
-0.19131284952163696,
0.0732356533408165,
0.04767245054244995,
0.029226770624518394,
0.10986314713954926,
0.06359918415546417,
-0.0690143033862114,
0.06791052967309952,
-0.011182570829987526,
-0.13674461841583252,
-0.01953935995697975,
0.04721821844577789,
-0.1327008306980133,
0.09889325499534607,
0.044505760073661804,
0.04682225361466408,
0.0934467613697052,
-0.03310355544090271,
-0.1511244773864746,
0.02191736176609993,
-0.001186638604849577,
-0.05121863633394241,
0.03441822528839111,
0.01105513796210289,
-0.09888829290866852,
0.0635034590959549,
0.08439505100250244,
0.012868568301200867,
0.054453156888484955,
-0.14541637897491455,
-0.02917618490755558,
-0.02775000035762787,
0.06650489568710327,
0.07472643256187439,
0.07905018329620361,
-0.03007405251264572,
0.19473619759082794,
-0.028519149869680405,
0.10868382453918457,
0.05614606291055679,
-0.31778210401535034,
0.015235867351293564,
0.16367411613464355,
0.07219018787145615,
0.013358108699321747,
-0.048395588994026184,
0.10101503133773804,
0.07051678001880646,
-0.029840752482414246,
0.0008077053353190422,
-0.06707350164651871,
-0.04237467423081398,
0.01806630939245224,
-0.09772907942533493,
-0.003430187702178955,
0.20620852708816528,
-0.012052771635353565,
0.04996161907911301,
-0.1207662969827652,
-0.11820731312036514,
-0.08947081118822098,
-0.035043880343437195,
-0.06853970885276794,
-0.07222732901573181,
0.07185220718383789,
-0.037237416952848434,
-0.0660105049610138,
-0.10455004870891571,
-0.03746636584401131,
-0.1418556571006775,
0.15555521845817566,
0.0052968356758356094,
0.00795154832303524,
-0.22151899337768555,
0.08398168534040451,
0.012815062887966633,
-0.1073412150144577,
0.05376652628183365,
-0.08896717429161072,
0.01773625984787941,
-0.019409075379371643,
-0.0008334494195878506,
-0.044919975101947784,
0.11287634819746017,
0.17239415645599365,
-0.024679355323314667,
0.05988544970750809,
-0.05446142330765724,
0.026114918291568756,
0.061851128935813904,
0.039065152406692505,
-0.0047950297594070435,
-0.1538591980934143,
0.046528901904821396,
-0.08626676350831985,
0.06281372904777527,
-0.07159782946109772,
-0.13760720193386078,
0.013141870498657227,
0.08911612629890442,
0.04918979853391647,
0.013284928165376186,
0.10876692086458206,
-0.004941752180457115,
-0.01185059268027544,
0.11397305130958557,
-0.04004546254873276,
-0.036757197231054306,
-0.010820833966135979,
0.0715564489364624,
0.0843985378742218,
0.019174078479409218,
0.04647747054696083,
-0.0825379267334938,
0.005471969489008188,
-0.058523982763290405,
-0.08961326628923416,
0.0002352292649447918,
-0.05340837687253952,
0.013980051502585411,
-0.020895661786198616,
0.013308871537446976,
-0.14160971343517303,
-0.1883198469877243,
0.013656149618327618,
-0.008643478155136108,
-0.030954264104366302,
-0.0771971344947815,
-0.0937340259552002,
-0.01817765273153782,
0.03922246769070625,
-0.039700496941804886,
-0.10597927123308182,
-0.06160880997776985,
0.060541100800037384,
0.0017385957762598991,
0.11840644478797913,
-0.09446343779563904,
0.02184283919632435,
-0.07181171327829361,
0.0031284941360354424,
-0.14700457453727722,
0.09984850138425827,
-0.029985535889863968,
0.09365493059158325,
-0.009280292317271233,
0.010484183207154274,
-0.06668292731046677,
0.06609511375427246,
-0.059672072529792786,
0.24580667912960052,
-0.030856547877192497,
-0.08774109184741974,
0.33420872688293457,
-0.1263456642627716,
-0.17479923367500305,
0.12297139316797256,
-0.016527051106095314,
0.08485934138298035,
0.12432696670293808,
0.24810321629047394,
0.04958382993936539,
-0.027877509593963623,
0.06947587430477142,
0.09798415005207062,
-0.11467796564102173,
-0.019873734563589096,
-0.05374101549386978,
-0.021721597760915756,
-0.10460574179887772,
0.0033477158285677433,
0.14539948105812073,
0.0389067679643631,
-0.04577900841832161,
-0.00824386440217495,
-0.010280841961503029,
-0.04327484965324402,
0.11258988082408905,
-0.06167641654610634,
0.0859404057264328,
-0.08340834826231003,
-0.05848386883735657,
-0.03209642693400383,
0.028045251965522766,
-0.03766656666994095,
0.017421770840883255,
-0.13359500467777252,
0.059788137674331665,
-0.028588619083166122,
0.045505769550800323,
-0.08959599584341049,
-0.09822822362184525,
-0.026823485270142555,
0.16183723509311676,
-0.007161999121308327,
0.062400612980127335,
0.0723327249288559,
0.003545718966051936,
-0.035841990262269974,
-0.010589911602437496,
0.20488262176513672,
0.02528420276939869,
-0.06607304513454437,
-0.07445953786373138,
0.12717735767364502,
-0.08040161430835724,
0.12262240052223206,
-0.17469972372055054,
0.024925250560045242,
0.08771908283233643,
0.09063178300857544,
0.0365791916847229,
0.020198553800582886,
0.035274337977170944,
-0.07273116707801819,
-0.06582855433225632,
-0.025151226669549942,
0.04819202795624733,
0.02277987450361252,
-0.10667765140533447,
0.17758333683013916,
-0.23535297811031342,
0.21080529689788818,
0.189191997051239,
-0.2196817249059677,
-0.031008515506982803,
-0.09553384780883789,
0.00003916257992386818,
0.00032154517248272896,
0.013845096342265606,
-0.05577722564339638,
0.05201582983136177,
-0.011915374547243118,
0.13216373324394226,
-0.019632361829280853,
-0.04909387603402138,
0.014375673606991768,
-0.06207406893372536,
-0.003860732540488243,
0.0386916883289814,
0.05535684525966644,
-0.1234574168920517,
0.13257333636283875,
0.11960151791572571,
0.09063836187124252,
0.1831056773662567,
0.01362558826804161,
0.03859260678291321,
0.03507599979639053,
0.027174387127161026,
-0.014526045881211758,
-0.03633764013648033,
-0.21658214926719666,
-0.010078873485326767,
0.06127806007862091,
0.03452138975262642,
0.101219043135643,
-0.10735636949539185,
-0.03286265581846237,
0.024140244349837303,
-0.005436515435576439,
0.014772357419133186,
0.09573552012443542,
-0.033248256891965866,
0.10113012045621872,
-0.06817018985748291,
-0.03839070349931717,
0.07912510633468628,
-0.006950428709387779,
-0.10975654423236847,
0.1663733869791031,
-0.0949162021279335,
-0.2645237147808075,
-0.12851972877979279,
-0.19756850600242615,
-0.029323026537895203,
0.08023954182863235,
0.0695921927690506,
-0.11101621389389038,
-0.025492019951343536,
-0.052154093980789185,
-0.004508509300649166,
-0.04047378897666931,
0.04088951647281647,
0.00902889110147953,
0.01371580921113491,
-0.0791211724281311,
-0.08466865867376328,
-0.05942394956946373,
-0.03576518967747688,
-0.06135967746376991,
0.1626463383436203,
-0.13707301020622253,
0.042079102247953415,
0.23804815113544464,
0.033004194498062134,
0.030693385750055313,
-0.04711673781275749,
0.14192423224449158,
-0.11732558906078339,
0.04566112160682678,
0.14654867351055145,
-0.048081088811159134,
0.047146596014499664,
0.09966302663087845,
-0.04312870651483536,
-0.13849495351314545,
0.05066905915737152,
-0.015412121079862118,
-0.08075971156358719,
-0.20883557200431824,
-0.1336585432291031,
-0.07203298807144165,
0.11651051044464111,
0.020875366404652596,
0.029147885739803314,
0.1630314737558365,
0.09519641101360321,
-0.015474210493266582,
0.029789891093969345,
0.06814295798540115,
0.07033978402614594,
0.26448386907577515,
-0.04866338148713112,
0.13796330988407135,
-0.049945659935474396,
-0.15919072926044464,
0.08795732259750366,
0.03558419644832611,
0.06908178329467773,
0.08327078819274902,
0.06620743870735168,
0.013388941064476967,
-0.008866050280630589,
0.13637150824069977,
0.10519314557313919,
0.04168786108493805,
-0.06236211955547333,
-0.021492596715688705,
-0.045402444899082184,
-0.04056134819984436,
0.01709078624844551,
-0.05079333856701851,
-0.1315448135137558,
0.0020632173400372267,
0.07921697199344635,
0.08273554593324661,
-0.008871089667081833,
0.12085654586553574,
-0.20345066487789154,
-0.02208743616938591,
0.09612973034381866,
-0.00894017331302166,
-0.08763755857944489,
0.11980950087308884,
0.08556857705116272,
-0.06546187400817871,
0.11452610790729523,
-0.002862578257918358,
0.05961199104785919,
-0.10207518935203552,
0.06903812289237976,
-0.15476630628108978,
-0.10414446890354156,
-0.038644563406705856,
0.08603682368993759,
-0.18791866302490234,
0.197638601064682,
0.010308555327355862,
-0.014116931706666946,
-0.08422063291072845,
-0.016954345628619194,
-0.0013211877085268497,
0.12826550006866455,
0.14692437648773193,
-0.010510686784982681,
-0.01710859313607216,
0.025640126317739487,
-0.0751553475856781,
0.027625922113656998,
0.10254356265068054,
0.010175514966249466,
0.009111044928431511,
-0.024263374507427216,
-0.01491395104676485,
0.02140786312520504,
-0.10262823104858398,
-0.02921358495950699,
-0.15500777959823608,
0.04941040277481079,
0.08529302477836609,
0.016101554036140442,
-0.0154917873442173,
-0.0032152265775948763,
-0.07919453829526901,
0.19591566920280457,
-0.025300614535808563,
-0.05939926952123642,
-0.1039077416062355,
-0.05212334170937538,
0.01958487741649151,
-0.03890115022659302,
0.04557313770055771,
0.001153117511421442,
0.0771230012178421,
-0.0953555703163147,
-0.12436813861131668,
0.144816055893898,
-0.12364894896745682,
-0.10592511296272278,
-0.0560799315571785,
0.20271919667720795,
0.0019326107576489449,
-0.0027731291484087706,
0.05545507371425629,
0.013754031620919704,
-0.04036862775683403,
-0.1308552771806717,
0.06560341268777847,
0.00007406843360513449,
-0.06821489334106445,
-0.03727857768535614,
0.010705798864364624,
-0.07903899997472763,
0.007671017665416002,
-0.020896870642900467,
0.2859591841697693,
0.23700162768363953,
-0.03164830803871155,
0.168736532330513,
0.1939980834722519,
-0.05453726649284363,
-0.29988735914230347,
-0.05511831119656563,
-0.15941861271858215,
-0.06551165878772736,
-0.03832491859793663,
-0.09142263978719711,
0.1535310000181198,
-0.027356158941984177,
-0.028528477996587753,
0.09780549257993698,
-0.21934783458709717,
-0.11202283203601837,
0.20608806610107422,
-0.010872392915189266,
0.40588173270225525,
-0.10363222658634186,
-0.09742792695760727,
-0.09926925599575043,
-0.21821872889995575,
0.15535065531730652,
-0.11963966488838196,
0.0595417320728302,
0.03323514387011528,
0.10716670006513596,
0.04691855609416962,
-0.03617686778306961,
0.04232499375939369,
0.04172401502728462,
0.001515005948022008,
-0.09921402484178543,
-0.08905404806137085,
0.09113343060016632,
0.001991627737879753,
0.016935767605900764,
-0.03127776086330414,
0.021327486261725426,
-0.10182716697454453,
-0.06847503036260605,
-0.04582732915878296,
0.03658207878470421,
0.021465495228767395,
-0.09812208265066147,
-0.004697163589298725,
-0.056935135275125504,
0.03263332322239876,
-0.011560783721506596,
0.14117172360420227,
-0.07490116357803345,
0.10905537009239197,
0.15396496653556824,
0.16411539912223816,
-0.20996315777301788,
0.0740203931927681,
-0.019917815923690796,
-0.09815618395805359,
0.05441773310303688,
-0.087974414229393,
0.05483834072947502,
0.05841543897986412,
-0.013230938464403152,
0.06782955676317215,
0.09051847457885742,
-0.011524641886353493,
0.0010573482140898705,
0.12279834598302841,
-0.2695176303386688,
-0.08759050071239471,
-0.04085216671228409,
0.02270055003464222,
0.06164880096912384,
0.14543938636779785,
0.2037055939435959,
0.009158428758382797,
-0.0018832460045814514,
0.0018110370729118586,
0.04314073920249939,
-0.007925250567495823,
0.10702613741159439,
0.03662584722042084,
0.035757798701524734,
-0.12554679811000824,
0.09342779219150543,
-0.0027748970314860344,
-0.10271013528108597,
0.03992857411503792,
0.07323750853538513,
-0.14670872688293457,
-0.09909363836050034,
-0.08750374615192413,
0.11309847235679626,
-0.06459299474954605,
-0.028944071382284164,
-0.0169709213078022,
-0.13425444066524506,
0.04203878343105316,
0.12404234707355499,
0.05298123508691788,
0.0707482397556305,
-0.05881059169769287,
-0.008166512474417686,
-0.09475253522396088,
0.015473470091819763,
0.05940714851021767,
0.02951505035161972,
-0.07927774637937546,
0.05968359857797623,
-0.04194797948002815,
0.04426473379135132,
-0.11294473707675934,
-0.06425591558218002,
-0.1701868176460266,
0.01125204935669899,
-0.08419476449489594,
-0.06555377691984177,
-0.09390683472156525,
-0.02368667721748352,
-0.021449292078614235,
0.004590549506247044,
-0.07126147300004959,
-0.04644760489463806,
-0.08912444859743118,
0.05504370108246803,
-0.008576027117669582,
-0.0041596898809075356,
-0.08117904514074326,
0.028717122972011566,
0.06776446104049683,
-0.047652073204517365,
0.14533978700637817,
0.06194913387298584,
-0.08378121256828308,
0.07190720736980438,
-0.17652273178100586,
-0.09906508028507233,
0.11213070154190063,
-0.011447383090853691,
0.04053569212555885,
0.042282190173864365,
-0.006369571201503277,
0.0545651875436306,
0.01581326499581337,
0.0614788718521595,
0.013104282319545746,
-0.052249737083911896,
0.07676354795694351,
-0.0707700178027153,
-0.1207815483212471,
-0.032709360122680664,
-0.05142156779766083,
0.050704143941402435,
-0.03759653866291046,
0.09017658233642578,
-0.07648875564336777,
0.019119160249829292,
-0.09306376427412033,
0.02366003766655922,
0.024472814053297043,
-0.14866535365581512,
-0.003025035373866558,
-0.013987929560244083,
0.047610700130462646,
-0.00952608697116375,
0.277818500995636,
-0.08321268856525421,
-0.06876528263092041,
0.03460104763507843,
0.021323159337043762,
-0.0004909742856398225,
-0.018101461231708527,
0.23294630646705627,
0.09169460088014603,
-0.05969523638486862,
-0.12497176975011826,
0.0508083812892437,
0.08545386791229248,
-0.0030019953846931458,
0.1360960453748703,
-0.05518225207924843,
-0.1779918074607849,
0.09041765332221985,
-0.05035272613167763,
0.0200088731944561,
-0.07483062148094177,
-0.042212940752506256,
-0.10259906947612762,
0.06950704753398895,
0.006494016386568546,
0.036217641085386276,
0.19855640828609467,
0.0024885491002351046,
-0.022878920659422874,
-0.014302888885140419,
-0.05111199617385864,
-0.18854624032974243,
-0.1843218356370926,
-0.0888170450925827,
-0.14087745547294617,
0.020388979464769363,
-0.13333725929260254,
0.02579519897699356,
-0.014814836904406548,
0.1059274971485138,
-0.026518745347857475,
0.1409664899110794,
-0.031085096299648285,
-0.03064143843948841,
0.052100978791713715,
-0.026786373928189278,
0.02174609713256359,
-0.01173766702413559,
-0.028238989412784576,
-0.07741677016019821,
0.09178785979747772,
-0.009271079674363136,
0.024229928851127625,
-0.0098348967730999,
0.040588147938251495,
-0.09244360029697418,
-0.059698496013879776,
-0.053493477404117584,
0.07158645987510681,
-0.019147362560033798,
0.01540558971464634,
0.02578817494213581,
-0.019287487491965294,
0.0349770188331604,
0.21436350047588348,
-0.06435053050518036,
-0.15092848241329193,
-0.0533752515912056,
0.09640718251466751,
0.03659471124410629,
0.15391805768013,
-0.06604087352752686,
-0.02040410414338112,
-0.036147188395261765,
0.31890150904655457,
0.33018964529037476,
-0.059683073312044144,
0.029564905911684036,
-0.021193793043494225,
0.03397400677204132,
0.1012040376663208,
0.08124259114265442,
0.04671376571059227,
0.2545764148235321,
-0.012454310432076454,
-0.056051209568977356,
-0.004971118178218603,
-0.05445733666419983,
-0.024725988507270813,
0.11900830268859863,
0.06363509595394135,
-0.02755769155919552,
-0.019070837646722794,
0.10795317590236664,
-0.18676573038101196,
0.09540576487779617,
-0.14373384416103363,
-0.1530761867761612,
-0.04692874476313591,
0.027656279504299164,
0.07739618420600891,
-0.000718205701559782,
0.08850879967212677,
0.007605464663356543,
-0.08852721750736237,
0.03004194237291813,
0.02345370501279831,
-0.21554753184318542,
0.06302012503147125,
0.012385191395878792,
-0.005812680348753929,
0.10216967016458511,
0.0011585485190153122,
0.020213408395648003,
0.08680243790149689,
0.00801797490566969,
-0.031281717121601105,
0.10264720022678375,
0.003151677083224058,
-0.049568839371204376,
0.012924836948513985,
0.0010576201602816582,
-0.000010408461093902588,
-0.04895216226577759,
0.09861864149570465,
-0.1504034399986267,
0.029737478122115135,
-0.05182987451553345,
-0.07324948906898499,
-0.04067811369895935,
-0.010966760106384754,
-0.05433249473571777,
0.09179260581731796,
0.03320765495300293,
-0.05137580260634422,
0.03522481769323349,
-0.002207457087934017,
0.035883646458387375,
-0.013007856905460358,
-0.05650990083813667,
-0.02651292085647583,
-0.1914266049861908,
-0.0762156993150711,
0.08040890842676163,
0.017969217151403427,
-0.17833960056304932,
0.037177927792072296,
-0.14291484653949738,
0.06898700445890427,
-0.14522796869277954,
0.12481552362442017,
0.13294245302677155,
0.039467278867959976,
-0.0219629667699337,
0.03569908067584038,
0.027409253641963005,
0.11238642781972885,
-0.10132834315299988,
-0.0931854099035263
] |
null | null | diffusers |
# architecture_Interior_SDlife_Chiasedamme_V9.0 API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "architectureinteriorsdlif"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/architectureinteriorsdlif)
Model link: [View model](https://modelslab.com/models/architectureinteriorsdlif)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "architectureinteriorsdlif",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN** | {"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true} | text-to-image | stablediffusionapi/architectureinteriorsdlif | [
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-06T19:58:33+00:00 | [] | [] | TAGS
#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
|
# architecture_Interior_SDlife_Chiasedamme_V9.0 API Inference
!generated from URL
## Get API Key
Get API key from ModelsLab API, No Payment needed.
Replace Key in below code, change model_id to "architectureinteriorsdlif"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs
Try model for free: Generate Images
Model link: View model
View all models: View Models
import requests
import json
url = "URL
payload = URL({
"key": "your_api_key",
"model_id": "architectureinteriorsdlif",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(URL)
> Use this coupon code to get 25% off DMGG0RBN | [
"# architecture_Interior_SDlife_Chiasedamme_V9.0 API Inference\n\n!generated from URL",
"## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"architectureinteriorsdlif\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"architectureinteriorsdlif\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN"
] | [
"TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"# architecture_Interior_SDlife_Chiasedamme_V9.0 API Inference\n\n!generated from URL",
"## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"architectureinteriorsdlif\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"architectureinteriorsdlif\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN"
] | [
70,
28,
548
] | [
"passage: TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n# architecture_Interior_SDlife_Chiasedamme_V9.0 API Inference\n\n!generated from URL"
] | [
-0.11245366930961609,
0.05633982643485069,
-0.0039744870737195015,
0.018049901351332664,
0.10071954876184464,
-0.053146880120038986,
0.17290936410427094,
-0.013759496621787548,
0.045237720012664795,
0.037914909422397614,
0.11544246226549149,
0.18569651246070862,
-0.016771145164966583,
0.15529084205627441,
-0.09255063533782959,
-0.1860627382993698,
0.04916816204786301,
0.028093019500374794,
-0.03138522431254387,
0.04475508630275726,
0.1357281357049942,
-0.05785408988595009,
0.15285921096801758,
-0.005170566029846668,
-0.12247900664806366,
-0.001252862741239369,
-0.016571372747421265,
-0.05258433520793915,
0.03588075935840607,
0.050293873995542526,
0.009130659513175488,
0.11596997827291489,
0.026577776297926903,
-0.07876098901033401,
0.027477692812681198,
0.029821494594216347,
-0.06168043240904808,
0.04362199828028679,
-0.010433430783450603,
0.02877422608435154,
0.13917292654514313,
0.04954177141189575,
-0.030889812856912613,
0.03579486533999443,
-0.07793643325567245,
-0.04167589545249939,
0.009326816536486149,
0.08508110046386719,
0.07905983179807663,
0.005569507833570242,
0.07481804490089417,
0.04275740310549736,
0.0028173199389129877,
0.07424667477607727,
0.06271560490131378,
-0.24493570625782013,
-0.018894273787736893,
0.2189563661813736,
0.13004638254642487,
0.061651282012462616,
-0.04238644614815712,
0.079872727394104,
0.046844787895679474,
-0.01548840757459402,
0.0845915675163269,
-0.04851258173584938,
0.06609035283327103,
-0.015469706617295742,
-0.06141083315014839,
0.044033706188201904,
0.27952608466148376,
0.05428631231188774,
-0.010927915573120117,
-0.1558055728673935,
-0.11584524810314178,
0.13537821173667908,
-0.06003740802407265,
-0.03788996487855911,
0.021692341193556786,
0.04747651144862175,
0.007045411970466375,
-0.08293984830379486,
-0.09659688919782639,
-0.028245024383068085,
-0.05119839683175087,
0.09943745285272598,
-0.03796660527586937,
0.08895491808652878,
-0.09191481024026871,
0.10725590586662292,
-0.13273388147354126,
-0.15754811465740204,
0.009571954607963562,
-0.16139784455299377,
0.11060931533575058,
0.05992034822702408,
0.013376285322010517,
-0.0838249996304512,
0.0648401752114296,
0.038832057267427444,
0.07974881678819656,
-0.03703344613313675,
0.11559250950813293,
0.09690659493207932,
0.035075072199106216,
-0.019940394908189774,
-0.11824413388967514,
-0.045008182525634766,
0.009475489147007465,
0.014574550092220306,
0.039445213973522186,
-0.028217826038599014,
-0.12971849739551544,
-0.021376946941018105,
-0.1382475048303604,
-0.0121774198487401,
0.02667354978621006,
0.05107167363166809,
-0.034863486886024475,
-0.043823499232530594,
0.20320899784564972,
0.01971280761063099,
-0.019179625436663628,
-0.05732400342822075,
-0.014146005734801292,
0.20666028559207916,
0.11697771400213242,
0.0056388177908957005,
0.029564308002591133,
0.08519969135522842,
-0.10162126272916794,
-0.028701400384306908,
-0.05105777457356453,
-0.06710097193717957,
0.004211889114230871,
-0.20255760848522186,
0.05024169757962227,
-0.11805540323257446,
-0.20737352967262268,
0.02091699093580246,
0.0856826975941658,
-0.03380201756954193,
-0.024953143671154976,
0.029183555394411087,
-0.0897984579205513,
0.030225807800889015,
-0.01836578920483589,
-0.08599252253770828,
-0.04500550031661987,
0.010788381099700928,
-0.024547437205910683,
0.08202332258224487,
-0.24983301758766174,
0.04437078535556793,
-0.011312993243336678,
0.0428326316177845,
-0.13531789183616638,
0.03868634253740311,
-0.07497648894786835,
0.10125865042209625,
-0.015588152222335339,
-0.01788487657904625,
0.009604447521269321,
0.04440348222851753,
0.05291782692074776,
0.18517008423805237,
-0.13480669260025024,
0.02542831562459469,
0.11369869112968445,
-0.12204555422067642,
-0.17656666040420532,
0.028699016198515892,
0.004989902023226023,
0.12031899392604828,
0.03984321281313896,
0.04090256616473198,
0.02266097068786621,
-0.3055594861507416,
0.07648763805627823,
0.12378612160682678,
-0.07579305022954941,
-0.16413426399230957,
0.025079073384404182,
0.04719611257314682,
0.07668541371822357,
0.09012053161859512,
-0.10387282073497772,
0.07552673667669296,
-0.05537203699350357,
-0.009065723977982998,
-0.06417825073003769,
-0.08317287266254425,
-0.017408151179552078,
0.0331198088824749,
0.0442083403468132,
0.004472917877137661,
-0.020873472094535828,
0.05952296406030655,
0.0322318933904171,
0.010041105560958385,
-0.05178999528288841,
-0.057454776018857956,
0.16153976321220398,
-0.09986915439367294,
-0.015469630248844624,
-0.08347602188587189,
-0.00548571115359664,
-0.00024261369253508747,
0.17943397164344788,
-0.022441934794187546,
0.22033876180648804,
0.09253742545843124,
0.04239358752965927,
0.0024545190390199423,
-0.031037749722599983,
0.040759455412626266,
0.07007095217704773,
-0.0569109208881855,
-0.17088723182678223,
0.024031147360801697,
-0.09159586578607559,
-0.017294883728027344,
-0.15850865840911865,
0.03965064510703087,
-0.020020686089992523,
0.1589573472738266,
0.08304503560066223,
0.009321429766714573,
-0.018097151070833206,
-0.0427597351372242,
-0.063819020986557,
0.0022460068576037884,
0.08771854639053345,
0.05929610878229141,
0.010998139157891273,
0.22210754454135895,
-0.08906503766775131,
0.28177398443222046,
0.1139695793390274,
-0.0922916829586029,
-0.01329439040273428,
-0.07974279671907425,
-0.04775243625044823,
0.04310609772801399,
0.023809509351849556,
-0.05774013325572014,
-0.045952629297971725,
-0.018779916688799858,
0.13887150585651398,
-0.06967741250991821,
0.00820787250995636,
0.05307534337043762,
-0.06243150308728218,
-0.05232837051153183,
0.07455961406230927,
0.14092163741588593,
-0.04989740252494812,
0.10874899476766586,
0.22645798325538635,
0.007957844994962215,
0.11819116026163101,
-0.014912688173353672,
-0.03913624957203865,
-0.0528612844645977,
0.06132848933339119,
-0.03435729816555977,
0.20471049845218658,
-0.09271624684333801,
-0.015036829747259617,
0.059383686631917953,
-0.020119981840252876,
0.043338242918252945,
-0.0645420104265213,
-0.019208643585443497,
0.04128937050700188,
0.023861143738031387,
0.11224404722452164,
0.12899081408977509,
-0.08473780006170273,
0.10180846601724625,
-0.08369769901037216,
-0.10467062890529633,
0.035084497183561325,
-0.008428753353655338,
-0.03899405896663666,
0.09301188588142395,
-0.0630565881729126,
-0.033262670040130615,
-0.12870708107948303,
-0.14564095437526703,
-0.07229172438383102,
0.005560234654694796,
0.02284691296517849,
0.016157763078808784,
-0.07981429249048233,
-0.07724475860595703,
-0.059544049203395844,
-0.008154844865202904,
-0.04817577823996544,
-0.00566445617005229,
0.034201107919216156,
-0.046444762498140335,
-0.08544271439313889,
-0.03408192843198776,
-0.034745074808597565,
0.12705948948860168,
0.06005487218499184,
-0.007160855922847986,
0.13127659261226654,
0.06740662455558777,
-0.0018901069415733218,
0.009170064702630043,
0.07002349197864532,
0.23273585736751556,
0.039645709097385406,
0.11850840598344803,
0.281304270029068,
0.05586538091301918,
0.09159575402736664,
0.1662406176328659,
0.0422256737947464,
-0.07394744455814362,
0.012468383647501469,
-0.09942622482776642,
-0.09296801686286926,
-0.07326298952102661,
-0.12519194185733795,
-0.10193579643964767,
-0.013905574567615986,
-0.03829459473490715,
0.02012576349079609,
0.06368939578533173,
0.17034178972244263,
0.029838843271136284,
0.016617214307188988,
-0.033431991934776306,
0.07492345571517944,
0.12184762209653854,
-0.06292993575334549,
0.0710078701376915,
-0.08740275353193283,
-0.032741155475378036,
0.12201672047376633,
0.039576273411512375,
0.03520601987838745,
-0.0345907062292099,
-0.03169560059905052,
0.11817781627178192,
0.05064496025443077,
0.11088324338197708,
0.09249740839004517,
-0.05156150087714195,
-0.0650726929306984,
-0.03361133858561516,
-0.09219421446323395,
0.03505874052643776,
0.11286003142595291,
-0.03690700605511665,
-0.06686271727085114,
-0.026065731421113014,
0.05378399044275284,
-0.003548091510310769,
0.06272449344396591,
0.12757769227027893,
-0.2824791371822357,
-0.0048481314443051815,
0.04493049159646034,
0.10155172646045685,
-0.08562934398651123,
-0.010546990670263767,
0.17488925158977509,
-0.045923538506031036,
0.02889317460358143,
-0.01631816290318966,
0.11931561678647995,
0.05296119675040245,
0.007809904869645834,
0.012923923321068287,
0.07250376045703888,
0.03794838488101959,
0.014013664796948433,
-0.13122084736824036,
0.14274853467941284,
0.0013712480431422591,
0.04386569932103157,
-0.03315697982907295,
0.012604684568941593,
0.008867310360074043,
0.17259863018989563,
0.15681520104408264,
0.00961474422365427,
0.05585610494017601,
0.010645766742527485,
-0.09595537930727005,
-0.025775091722607613,
0.049554403871297836,
-0.0018168088281527162,
-0.0053757657296955585,
0.03909621387720108,
-0.03131185472011566,
0.018722429871559143,
0.03712332993745804,
-0.15763016045093536,
-0.14727193117141724,
0.020048929378390312,
0.11583572626113892,
-0.052009034901857376,
-0.03274126350879669,
0.020489351823925972,
-0.06925996392965317,
0.1711576133966446,
-0.01632099784910679,
-0.11730382591485977,
-0.15051861107349396,
-0.13275787234306335,
0.009834839031100273,
-0.0284852497279644,
0.06205996870994568,
-0.11144204437732697,
0.010454457253217697,
-0.023659367114305496,
-0.1311904639005661,
0.1102292388677597,
-0.15105532109737396,
0.004028800874948502,
-0.11853591352701187,
0.0669817328453064,
-0.02565179392695427,
-0.06354305148124695,
0.016715621575713158,
-0.01891440898180008,
-0.0748811811208725,
-0.13701972365379333,
-0.008122505620121956,
0.15100878477096558,
-0.02390824258327484,
0.02242094650864601,
-0.1431231051683426,
-0.07592923939228058,
0.09986816346645355,
0.020593252032995224,
0.07149872183799744,
0.21393239498138428,
-0.10589335113763809,
0.08857330679893494,
0.19888070225715637,
-0.03839423879981041,
-0.2501260042190552,
-0.09452085196971893,
-0.09221222996711731,
0.02592514269053936,
0.02271900698542595,
-0.03572506457567215,
0.15475697815418243,
-0.028043387457728386,
-0.03432033956050873,
0.17847543954849243,
-0.29249489307403564,
-0.09834867715835571,
0.05723639205098152,
0.10433871299028397,
0.2730712294578552,
-0.12438247352838516,
-0.07908622175455093,
-0.04512948542833328,
-0.33048319816589355,
0.0755966529250145,
-0.008622419089078903,
0.029112406075000763,
-0.06825774908065796,
0.012473010458052158,
-0.002000994747504592,
-0.06855791062116623,
0.15355831384658813,
-0.03704329952597618,
0.09220392256975174,
-0.12426285445690155,
0.07971099764108658,
0.1908096969127655,
-0.0372065007686615,
0.11504896730184555,
-0.1657850742340088,
0.1154295951128006,
-0.17930546402931213,
-0.018782617524266243,
-0.042017966508865356,
0.028466252610087395,
-0.03600131720304489,
-0.10150299221277237,
-0.05241381376981735,
-0.017951831221580505,
0.030629826709628105,
0.0069815898314118385,
-0.028638049960136414,
-0.011124192737042904,
0.06946544349193573,
0.2479795515537262,
-0.0046495660208165646,
-0.10820754617452621,
-0.11026323586702347,
-0.07579417526721954,
-0.02651732973754406,
0.08876632153987885,
-0.1375242918729782,
-0.04633849859237671,
0.14158371090888977,
0.031816087663173676,
0.046011779457330704,
0.039155710488557816,
0.003279027994722128,
0.0280477162450552,
0.07562612742185593,
-0.1674976795911789,
-0.033870577812194824,
-0.05025245621800423,
0.20034784078598022,
0.0784776508808136,
0.11569470912218094,
0.1234869584441185,
-0.06060570478439331,
0.059720639139413834,
-0.035592809319496155,
0.008312780410051346,
-0.03526395186781883,
0.028921976685523987,
0.0386534221470356,
0.019248241558670998,
-0.06139536574482918,
0.0328131802380085,
-0.07649818807840347,
-0.105268694460392,
-0.09104027599096298,
-0.003477555001154542,
-0.1362839937210083,
-0.047807369381189346,
0.04720940440893173,
0.06725561618804932,
-0.17031443119049072,
-0.028264183551073074,
-0.027443820610642433,
-0.13897161185741425,
0.04126983508467674,
0.10324396938085556,
0.06381859630346298,
0.012135467492043972,
-0.010481145232915878,
-0.06944030523300171,
-0.019129646942019463,
0.0310679879039526,
0.034538183361291885,
0.08203659951686859,
-0.2097211331129074,
-0.16325068473815918,
-0.054878655821084976,
0.03843798488378525,
-0.08398210257291794,
-0.00251092785038054,
-0.09481818974018097,
-0.020021311938762665,
-0.1584332436323166,
0.0065314266830682755,
-0.12410014122724533,
-0.06346303969621658,
-0.033968839794397354,
-0.07219342142343521,
-0.038497194647789,
0.038669340312480927,
-0.06355425715446472,
0.010874614119529724,
0.012747934088110924,
0.036799728870391846,
-0.05328509211540222,
-0.02758750319480896,
-0.026275059208273888,
-0.09128094464540482,
0.07530777901411057,
0.0028843276668339968,
-0.11613845825195312,
-0.08863715827465057,
-0.21889786422252655,
-0.045670971274375916,
0.09138242155313492,
0.03934942185878754,
0.04230401664972305,
0.10014587640762329,
0.043178949505090714,
0.04759605601429939,
-0.0076538859866559505,
-0.05759884789586067,
0.07128585875034332,
-0.09757015854120255,
-0.006933464668691158,
-0.03231288120150566,
0.02202419936656952,
-0.08274957537651062,
0.012817375361919403,
0.1761654168367386,
0.06749485433101654,
0.15244059264659882,
-0.0382869578897953,
0.034441154450178146,
-0.07845094799995422,
0.02147313579916954,
0.06345900148153305,
-0.06360291689634323,
0.05746278539299965,
-0.021179094910621643,
-0.025474434718489647,
-0.037910427898168564,
0.2624174952507019,
-0.02057655341923237,
-0.20078247785568237,
0.029340285807847977,
0.006137029733508825,
0.05290074273943901,
0.0049742418341338634,
0.21950429677963257,
-0.0021113574039191008,
0.0684373751282692,
-0.16539330780506134,
0.07617145776748657,
0.057097505778074265,
-0.009811184369027615,
0.00873038824647665,
0.1716226190328598,
-0.06958603858947754,
0.12315178662538528,
0.08521980047225952,
0.038842830806970596,
-0.040822211652994156,
-0.014541336335241795,
-0.058848630636930466,
0.13770902156829834,
-0.10164346545934677,
0.0141865573823452,
0.13978517055511475,
-0.007211501710116863,
0.012979227118194103,
0.06304653733968735,
-0.027312321588397026,
-0.05849890038371086,
-0.16949991881847382,
-0.05705619230866432,
-0.14142648875713348,
0.011804749257862568,
-0.031365640461444855,
0.022610891610383987,
-0.007289794273674488,
0.04344600811600685,
-0.026540245860815048,
0.013757009990513325,
-0.07932550460100174,
-0.04904433339834213,
0.11530051380395889,
-0.027264723554253578,
-0.04386317357420921,
-0.0027012426871806383,
0.03805406764149666,
-0.04907989129424095,
0.004441524855792522,
-0.0682029128074646,
0.06706234067678452,
0.012908292934298515,
0.009120973758399487,
0.015539656393229961,
-0.03290050849318504,
-0.038936272263526917,
0.008643425069749355,
-0.027889495715498924,
0.1307240128517151,
-0.0021089259535074234,
0.0008416481432504952,
-0.0011546576861292124,
0.12811024487018585,
-0.05112874135375023,
-0.0463307648897171,
-0.08428452908992767,
0.001996738137677312,
-0.061449795961380005,
0.09165795892477036,
-0.02566106617450714,
-0.03313485532999039,
-0.03828731179237366,
0.19587500393390656,
0.23203440010547638,
-0.19270846247673035,
0.021839002147316933,
-0.02752072922885418,
0.012386634014546871,
-0.03202385827898979,
0.050998762249946594,
0.013201951049268246,
0.33360615372657776,
-0.037544507533311844,
-0.022835243493318558,
-0.09389074891805649,
-0.027330243960022926,
-0.061217259615659714,
-0.0724676251411438,
0.018429294228553772,
-0.09645528346300125,
-0.061189230531454086,
0.07132042944431305,
-0.15048420429229736,
0.04492272436618805,
0.056995704770088196,
-0.07232239097356796,
-0.010051772929728031,
-0.07810476422309875,
0.03610188886523247,
0.028926419094204903,
0.02939702942967415,
-0.09846477210521698,
-0.015913672745227814,
0.10476705431938171,
-0.033156104385852814,
-0.09147321432828903,
0.08143167197704315,
0.010791456326842308,
-0.04638170823454857,
0.043098967522382736,
-0.01995988003909588,
0.005213288124650717,
0.0791621282696724,
-0.023436598479747772,
-0.08249318599700928,
0.07931743562221527,
0.014205360785126686,
-0.10203931480646133,
-0.03617411106824875,
-0.00040225626435130835,
-0.003536971751600504,
0.015343794599175453,
-0.012537707574665546,
-0.1353260576725006,
0.024437541142106056,
0.08747904002666473,
-0.11773016303777695,
-0.0893181785941124,
0.04234220087528229,
-0.047347623854875565,
0.08417016267776489,
0.0054286085069179535,
-0.017697123810648918,
-0.05842702463269234,
-0.0067233978770673275,
0.08402640372514725,
0.023334011435508728,
-0.1670377403497696,
0.009437036700546741,
-0.0615057535469532,
-0.020164793357253075,
0.039810486137866974,
0.052835360169410706,
-0.12054550647735596,
-0.038369905203580856,
-0.1267482340335846,
0.029778040945529938,
-0.043182794004678726,
0.05066467449069023,
0.2584203779697418,
0.0400049202144146,
-0.018011227250099182,
-0.07033920288085938,
-0.011239924468100071,
0.0641900897026062,
-0.024390487000346184,
-0.09839402884244919
] |
null | null | transformers | DeepMagic-Coder-7b
(Note: From short testing, the Alt version generated much better code)
Alternate version:
- https://huggingface.co/rombodawg/DeepMagic-Coder-7b-Alt

This is an extremely successful merge of the deepseek-coder-6.7b-instruct and Magicoder-S-DS-6.7B models, bringing an uplift in overall coding performance without any compromise to the models integrity (at least with limited testing).
This is the first of my models to use the merge-kits *task_arithmetic* merging method. The method is detailed bellow, and its clearly very usefull for merging ai models that were fine-tuned from a common base:
Task Arithmetic:
```
Computes "task vectors" for each model by subtracting a base model.
Merges the task vectors linearly and adds back the base.
Works great for models that were fine tuned from a common ancestor.
Also a super useful mental framework for several of the more involved
merge methods.
```
The original models used in this merge can be found here:
- https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
- https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
The Merge was created using Mergekit and the paremeters can be found bellow:
```yaml
models:
- model: deepseek-ai_deepseek-coder-6.7b-instruct
parameters:
weight: 1
- model: ise-uiuc_Magicoder-S-DS-6.7B
parameters:
weight: 1
merge_method: task_arithmetic
base_model: ise-uiuc_Magicoder-S-DS-6.7B
parameters:
normalize: true
int8_mask: true
dtype: float16
``` | {"license": "other", "license_name": "deepseek", "license_link": "https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL"} | text-generation | rombodawg/DeepMagic-Coder-7b | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T19:58:50+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| DeepMagic-Coder-7b
(Note: From short testing, the Alt version generated much better code)
Alternate version:
- URL
!image/jpeg
This is an extremely successful merge of the deepseek-coder-6.7b-instruct and Magicoder-S-DS-6.7B models, bringing an uplift in overall coding performance without any compromise to the models integrity (at least with limited testing).
This is the first of my models to use the merge-kits *task_arithmetic* merging method. The method is detailed bellow, and its clearly very usefull for merging ai models that were fine-tuned from a common base:
Task Arithmetic:
The original models used in this merge can be found here:
- URL
- URL
The Merge was created using Mergekit and the paremeters can be found bellow:
| [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
56
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
0.006014679558575153,
0.04434024542570114,
-0.005802242085337639,
0.002409757114946842,
0.11508526653051376,
-0.01451795268803835,
0.21486064791679382,
0.10069163143634796,
-0.0026026794221252203,
-0.029603715986013412,
0.1314239650964737,
0.20374321937561035,
-0.027104126289486885,
0.034008655697107315,
-0.1195545345544815,
-0.18831731379032135,
0.08128009736537933,
-0.009183928370475769,
0.06656921654939651,
0.07618872076272964,
0.10786840319633484,
-0.06140601634979248,
0.07839150726795197,
-0.039013512432575226,
-0.08786376565694809,
0.03372829407453537,
0.06861241161823273,
-0.13716773688793182,
0.12091872096061707,
0.07975243031978607,
0.09574644267559052,
0.06290426850318909,
-0.028139447793364525,
-0.23685629665851593,
0.024954596534371376,
-0.009453978389501572,
-0.07662191241979599,
0.014348406344652176,
0.04193605110049248,
-0.06893651932477951,
0.06289950758218765,
0.08467642962932587,
0.007518226746469736,
0.08891205489635468,
-0.1385483294725418,
-0.015775715932250023,
-0.043606944382190704,
-0.015699855983257294,
0.10591039806604385,
0.08132334798574448,
-0.002291490091010928,
0.1228301152586937,
-0.05618441849946976,
0.09397198259830475,
0.08854382485151291,
-0.36648520827293396,
0.023374101147055626,
0.1427105814218521,
0.0772666409611702,
0.04036497324705124,
-0.06725902855396271,
0.10954885184764862,
0.0683991014957428,
-0.03628363460302353,
0.028315210714936256,
-0.06822819262742996,
-0.061324384063482285,
0.050538089126348495,
-0.05262070521712303,
-0.028141438961029053,
0.22752322256565094,
-0.035297226160764694,
0.027752099558711052,
-0.0965987965464592,
-0.06666868180036545,
0.0069345468655228615,
-0.023310692980885506,
0.02620561607182026,
-0.013261665590107441,
0.10242125391960144,
0.03655839338898659,
-0.024421347305178642,
-0.1416102796792984,
-0.008701350539922714,
-0.1842586249113083,
0.1411052644252777,
0.014604788273572922,
0.03316004201769829,
-0.16293714940547943,
0.04109751060605049,
0.030272355303168297,
-0.09925313293933868,
-0.013703793287277222,
-0.07425279170274734,
0.05296500399708748,
-0.013980414718389511,
-0.04246127977967262,
-0.06579995155334473,
0.14309413731098175,
0.15525773167610168,
0.013375055976212025,
0.011723211966454983,
-0.11515084654092789,
0.08704354614019394,
0.013811628334224224,
0.020725084468722343,
0.0557335689663887,
-0.02271786704659462,
0.06676676124334335,
-0.11075562983751297,
0.06698905676603317,
-0.0475662536919117,
-0.166510209441185,
0.030193258076906204,
-0.005700840149074793,
0.13953354954719543,
-0.0046616727486252785,
0.10036403685808182,
-0.049582116305828094,
0.05556298419833183,
0.048924531787633896,
-0.07703658938407898,
-0.0034797072876244783,
0.0057609411887824535,
0.055542316287755966,
0.013727639801800251,
0.012648015283048153,
0.05172424018383026,
-0.04459850862622261,
0.04377404972910881,
-0.06198230758309364,
-0.04203876107931137,
-0.04751483350992203,
-0.05773872509598732,
0.06037038937211037,
-0.03441796079277992,
0.03484170883893967,
-0.17793501913547516,
-0.19693304598331451,
0.016636384651064873,
0.016265006735920906,
-0.023350410163402557,
-0.018535073846578598,
-0.05147339776158333,
-0.02543528936803341,
0.02501070871949196,
-0.08664592355489731,
-0.0770455077290535,
-0.09136155992746353,
0.07367204874753952,
-0.03777555376291275,
0.03935970366001129,
-0.14710620045661926,
0.03868180513381958,
-0.10819844901561737,
0.011718112044036388,
-0.021830081939697266,
0.030152153223752975,
-0.0605895109474659,
0.1580369472503662,
-0.006150593515485525,
0.04187551885843277,
-0.05375474691390991,
0.08202102780342102,
-0.054106224328279495,
0.18480104207992554,
-0.1380632072687149,
-0.04778965935111046,
0.22508469223976135,
-0.12280905246734619,
-0.21111562848091125,
0.09701590240001678,
-0.024111011996865273,
0.08788301050662994,
0.11904527246952057,
0.20826247334480286,
-0.00638917600736022,
-0.09042587131261826,
0.05306797847151756,
0.093841552734375,
-0.08355475962162018,
-0.0921550765633583,
0.007834010757505894,
-0.021568892523646355,
-0.1062544733285904,
0.0391375869512558,
0.09959808737039566,
0.04094793647527695,
-0.020208025351166725,
-0.06199825927615166,
-0.046048715710639954,
-0.032196566462516785,
-0.007370492909103632,
-0.036588143557310104,
0.05788284167647362,
-0.09842341393232346,
-0.0028890809044241905,
0.040841277688741684,
-0.007682704366743565,
-0.007156108506023884,
0.013953316025435925,
-0.09673083573579788,
0.0545327253639698,
0.018196387216448784,
0.04513518884778023,
-0.09878277778625488,
-0.1248173639178276,
-0.013945507816970348,
0.09549357742071152,
0.026064502075314522,
0.06492038071155548,
0.029914136976003647,
-0.0032833218574523926,
-0.013253184035420418,
0.021640321239829063,
0.21309123933315277,
0.03953193500638008,
-0.05438951030373573,
-0.09840209782123566,
0.09406547993421555,
-0.06654028594493866,
0.014654010534286499,
-0.11572044342756271,
0.018814289942383766,
0.053673405200242996,
0.09584058076143265,
0.010989990085363388,
0.06878528743982315,
-0.022532064467668533,
0.005597933195531368,
-0.10239505022764206,
0.012388224713504314,
0.08999946713447571,
0.009667444042861462,
-0.10310523957014084,
0.23397591710090637,
-0.22748927772045135,
0.27055874466896057,
0.19288413226604462,
-0.1881280541419983,
0.022454706951975822,
-0.11673381924629211,
-0.002861763583496213,
0.010112755931913853,
0.015635425224900246,
-0.039391059428453445,
0.025419415906071663,
-0.009882111102342606,
0.17634013295173645,
-0.06998179852962494,
-0.02723543532192707,
-0.01910700462758541,
-0.06751564145088196,
-0.04734373092651367,
0.06821620464324951,
0.11182890087366104,
-0.17607514560222626,
0.18815256655216217,
0.2325294017791748,
0.05161936208605766,
0.1774478554725647,
-0.04481206089258194,
0.01683434657752514,
0.03519898280501366,
0.03829970583319664,
0.008762129582464695,
-0.03366102650761604,
-0.11259374022483826,
-0.01361590251326561,
0.061682380735874176,
0.02260478027164936,
0.06259433180093765,
-0.13238923251628876,
-0.07248438149690628,
0.0002242361515527591,
-0.03632040694355965,
0.02338663674890995,
0.0789940133690834,
0.005312405992299318,
0.11908704787492752,
-0.0658208355307579,
-0.06463795155286789,
0.11280588060617447,
-0.019322510808706284,
-0.09185603260993958,
0.1796330362558365,
-0.12977460026741028,
-0.2621234953403473,
-0.1771649420261383,
-0.1829483062028885,
-0.05149848386645317,
0.05792257934808731,
0.13402843475341797,
-0.034786392003297806,
-0.06939064711332321,
-0.06771643459796906,
0.004803092684596777,
-0.01772649958729744,
-0.0037061511538922787,
-0.051788076758384705,
0.07722161710262299,
-0.0683908611536026,
-0.1255754977464676,
-0.058514777570962906,
0.02324940450489521,
-0.06577691435813904,
0.10826389491558075,
-0.07794513553380966,
0.0872371643781662,
0.13540226221084595,
0.026374636217951775,
0.008724353276193142,
-0.07103940844535828,
0.13510701060295105,
-0.057001952081918716,
-0.014394725672900677,
0.18448178470134735,
-0.055533867329359055,
0.05574388802051544,
0.19385305047035217,
0.023168865591287613,
-0.12306726723909378,
0.05874921381473541,
-0.023221751675009727,
-0.0902138203382492,
-0.2400001734495163,
-0.11256344616413116,
-0.09234318137168884,
0.09684833139181137,
0.004716946743428707,
0.07943320274353027,
0.1642732322216034,
0.05401177704334259,
-0.024679867550730705,
-0.026032699272036552,
0.08543586730957031,
0.09893777966499329,
0.28937798738479614,
-0.04051326587796211,
0.14320336282253265,
-0.0988774299621582,
-0.11957821995019913,
0.07117350399494171,
0.08763440698385239,
0.1061861664056778,
0.1474953293800354,
0.10632441937923431,
0.06437670439481735,
0.05647503584623337,
0.12050822377204895,
0.08664917200803757,
0.04585746303200722,
-0.04213045910000801,
-0.027014633640646935,
-0.04886802285909653,
-0.014921567402780056,
0.06784815341234207,
-0.06080744042992592,
-0.13544875383377075,
-0.02055782452225685,
-0.06397856026887894,
0.0678047239780426,
0.0990387424826622,
0.034096844494342804,
-0.1861172616481781,
0.04000808298587799,
0.1295582354068756,
-0.038102712482213974,
-0.08041904866695404,
0.12681181728839874,
0.020183848217129707,
-0.055685438215732574,
0.0929957777261734,
-0.020703967660665512,
0.10916073620319366,
-0.018355421721935272,
0.08377696573734283,
-0.10898389667272568,
-0.10277946293354034,
0.003488758811727166,
0.11532474309206009,
-0.32090672850608826,
0.22221431136131287,
0.012167156673967838,
-0.006652097683399916,
-0.08208499103784561,
-0.006582648027688265,
0.008698424324393272,
0.1540582776069641,
0.15248872339725494,
-0.04821940138936043,
-0.1423998475074768,
-0.04834354668855667,
-0.016252437606453896,
0.027172798290848732,
0.1070777103304863,
-0.0030621797777712345,
0.010295260697603226,
-0.07174526900053024,
0.00121119839604944,
0.016981231048703194,
-0.01537491288036108,
-0.05109669268131256,
-0.1934249848127365,
0.026937881484627724,
0.12325872480869293,
0.08618540316820145,
-0.0316857174038887,
0.016983039677143097,
-0.1527879387140274,
0.1747814118862152,
-0.10303910821676254,
-0.04489566385746002,
-0.11496929824352264,
-0.14603391289710999,
0.005007848143577576,
-0.022367844358086586,
0.049012959003448486,
-0.060992199927568436,
0.05329609289765358,
-0.10233700275421143,
-0.18884743750095367,
0.11571713536977768,
-0.10113681852817535,
-0.03368837758898735,
-0.052566830068826675,
0.15796814858913422,
-0.10391608625650406,
-0.023261047899723053,
0.06984506547451019,
0.03402402251958847,
-0.05251842737197876,
-0.0986543595790863,
-0.015622944571077824,
0.015637172386050224,
0.038255054503679276,
-0.022249827161431313,
-0.1418996900320053,
-0.09150341898202896,
0.001287436462007463,
-0.08725233376026154,
0.25438448786735535,
0.2736336290836334,
-0.04875709116458893,
0.17846189439296722,
0.17970167100429535,
-0.12345994263887405,
-0.34830501675605774,
-0.12810611724853516,
-0.19512039422988892,
-0.05557064339518547,
0.04415178298950195,
-0.10203682631254196,
0.08746012300252914,
0.04072650521993637,
-0.057692185044288635,
0.08586391806602478,
-0.20029950141906738,
-0.12026845663785934,
0.16820646822452545,
0.02582196705043316,
0.3580079674720764,
-0.18989409506320953,
-0.10930304229259491,
-0.11806885898113251,
-0.11600290983915329,
0.1636791229248047,
-0.08853058516979218,
0.09324681758880615,
0.028644053265452385,
0.04702162742614746,
0.028638562187552452,
-0.030688639730215073,
0.10106363892555237,
-0.043845679610967636,
0.07562123984098434,
-0.13723821938037872,
-0.007087989244610071,
0.05522872880101204,
-0.015512059442698956,
0.05925225839018822,
-0.1644752472639084,
0.012400482781231403,
-0.03768834099173546,
-0.05401700362563133,
-0.007952645421028137,
0.08126804232597351,
0.0036645582877099514,
-0.06438735127449036,
-0.03164293244481087,
-0.0552695207297802,
0.014723011292517185,
-0.018693964928388596,
0.28737810254096985,
-0.0796237662434578,
0.16994865238666534,
0.1792912483215332,
0.16392302513122559,
-0.13023227453231812,
0.09752977639436722,
-0.044179026037454605,
-0.09607047587633133,
0.06329271197319031,
-0.11522112041711807,
0.0612143836915493,
0.08591482788324356,
-0.0542299784719944,
0.09955737739801407,
0.07841921597719193,
0.023089779540896416,
-0.006336302030831575,
0.15065860748291016,
-0.18802492320537567,
-0.11764772981405258,
-0.02958805300295353,
0.08875556290149689,
0.08898436278104782,
0.07684089988470078,
0.17519712448120117,
-0.01568823866546154,
0.022552700713276863,
0.003145486582070589,
0.032706037163734436,
-0.03131139650940895,
0.024068418890237808,
-0.001401386922225356,
0.013801378197968006,
-0.12432949244976044,
0.10682129859924316,
0.013615488074719906,
-0.11486529558897018,
0.03204986825585365,
0.09091152995824814,
-0.11612118780612946,
-0.12826032936573029,
-0.05970894545316696,
0.14762020111083984,
-0.15121214091777802,
-0.07457208633422852,
-0.048643454909324646,
-0.185956209897995,
0.03559655323624611,
0.22567953169345856,
0.04510253667831421,
0.10607016831636429,
0.001453747390769422,
-0.04220171645283699,
-0.020361708477139473,
0.05047377571463585,
-0.06898944079875946,
0.029850801452994347,
-0.10800277441740036,
-0.002925161039456725,
-0.04111265391111374,
0.037608444690704346,
-0.08733785152435303,
-0.03670535981655121,
-0.16891305148601532,
0.0336250402033329,
-0.16169829666614532,
-0.01619691029191017,
-0.09442055225372314,
-0.018022926524281502,
0.030165238305926323,
-0.021251197904348373,
-0.05239510163664818,
-0.05184372514486313,
-0.10302930325269699,
0.025348786264657974,
-0.023658351972699165,
0.08424339443445206,
-0.10781978070735931,
-0.03688475117087364,
0.05829327180981636,
-0.02263098582625389,
0.10674915462732315,
0.04023688659071922,
-0.09498746693134308,
0.09414748847484589,
-0.2475835382938385,
-0.036976344883441925,
0.12776786088943481,
0.011602532118558884,
0.024250876158475876,
0.06717459112405777,
-0.011683025397360325,
0.13638709485530853,
0.018951166421175003,
0.054340705275535583,
-0.04227159917354584,
-0.11984860897064209,
0.008585705421864986,
-0.01822028122842312,
-0.1312279999256134,
-0.0015379339456558228,
-0.09157785028219223,
0.08298023045063019,
-0.03957995027303696,
0.18321892619132996,
-0.07461810857057571,
0.035216450691223145,
-0.036778759211301804,
0.029900947585701942,
0.01135958917438984,
-0.1753825545310974,
-0.1100589707493782,
-0.09350582957267761,
-0.018696647137403488,
-0.007558244280517101,
0.3022468686103821,
0.034474365413188934,
-0.07101983577013016,
0.08279403299093246,
0.03808961808681488,
0.04617158696055412,
0.04123816266655922,
0.28943583369255066,
0.09041166305541992,
-0.021607408300042152,
-0.1405371129512787,
0.021733608096837997,
0.01939222402870655,
-0.09606324881315231,
0.06392139941453934,
0.10326112061738968,
-0.0930481106042862,
0.08847805857658386,
0.07761702686548233,
0.004274196457117796,
-0.023224083706736565,
-0.09135852009057999,
-0.04016486182808876,
0.053876303136348724,
-0.045086249709129333,
0.07880649715662003,
0.20750746130943298,
-0.03148387745022774,
0.016415046527981758,
-0.05203519016504288,
-0.028049012646079063,
-0.19547395408153534,
-0.15619082748889923,
-0.10466919094324112,
-0.0998491570353508,
0.03184232860803604,
-0.08097364008426666,
0.06730842590332031,
0.05977054685354233,
0.06971299648284912,
-0.03909023851156235,
0.07506324350833893,
-0.029659539461135864,
-0.041717153042554855,
0.01585623063147068,
-0.03579669073224068,
0.05035710334777832,
-0.05628622695803642,
-0.046749696135520935,
-0.06936074793338776,
-0.0394335575401783,
-0.05356130748987198,
0.07187984138727188,
0.021310236304998398,
0.04681640863418579,
-0.15259729325771332,
-0.05822869762778282,
-0.02492966689169407,
0.06995032727718353,
-0.02678837440907955,
0.1423560231924057,
0.019978683441877365,
-0.030631160363554955,
0.08359075337648392,
0.20833463966846466,
-0.05815378203988075,
-0.12438259273767471,
-0.028600359335541725,
0.18179437518119812,
0.02416962757706642,
0.14170795679092407,
-0.051933418959379196,
0.005577365402132273,
-0.02632916159927845,
0.32085102796554565,
0.27932265400886536,
-0.05792081728577614,
0.027734892442822456,
-0.057024795562028885,
0.039824943989515305,
0.06178637221455574,
0.12233822792768478,
0.0639573186635971,
0.2626376748085022,
-0.0378715842962265,
-0.009460520930588245,
-0.0037319520488381386,
0.004039826337248087,
-0.14666055142879486,
0.116212859749794,
-0.01895027980208397,
-0.05449899658560753,
-0.021225539967417717,
0.10395202040672302,
-0.17243511974811554,
0.0927630141377449,
-0.07823676615953445,
-0.11478067189455032,
-0.0118783013895154,
-0.0015090055530890822,
0.17630738019943237,
-0.02185072749853134,
0.02915756031870842,
-0.029566995799541473,
-0.08275677263736725,
0.020781898871064186,
-0.002709038322791457,
-0.19892485439777374,
0.012755771167576313,
0.025259193032979965,
0.010212884284555912,
0.0697258859872818,
-0.0003987600503023714,
0.044988419860601425,
0.07239989936351776,
0.02798583172261715,
-0.04465986043214798,
0.14690640568733215,
0.03315101936459541,
-0.08604434132575989,
0.048928868025541306,
-0.058217961341142654,
-0.0035877148620784283,
0.028206834569573402,
0.05010489374399185,
-0.09968183189630508,
0.0729522779583931,
-0.0029538085218518972,
-0.11462850123643875,
-0.027107972651720047,
0.03515239059925079,
-0.07446780055761337,
0.07194850593805313,
0.016947738826274872,
-0.013918212614953518,
0.006258145906031132,
-0.02112976834177971,
0.018760832026600838,
-0.004987657535821199,
-0.15943823754787445,
-0.032904598861932755,
-0.12328777462244034,
-0.061664555221796036,
0.13585977256298065,
0.017260627821087837,
-0.25737684965133667,
-0.003530863905325532,
-0.09194715321063995,
0.058105967938899994,
-0.18438321352005005,
0.05896763503551483,
0.22310209274291992,
0.012170816771686077,
-0.023097988218069077,
-0.1877531260251999,
0.06635500490665436,
0.05745547637343407,
-0.0371432825922966,
-0.09848442673683167
] |
null | null | transformers | # maid-yuzu-v5-mix
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
This model was created because I was curious about whether the 8X7B model created randomly by the user would be merged with other existing 8x7b models.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* ../maid-yuzu-v5
* [smelborp/MixtralOrochi8x7B](https://huggingface.co/smelborp/MixtralOrochi8x7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: ../maid-yuzu-v5
dtype: bfloat16
merge_method: slerp
parameters:
t:
- value: 0.5
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: smelborp/MixtralOrochi8x7B
- layer_range: [0, 32]
model:
model:
path: ../maid-yuzu-v5
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["smelborp/MixtralOrochi8x7B"]} | text-generation | rhplus0831/maid-yuzu-v5-mix | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:smelborp/MixtralOrochi8x7B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:00:56+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #mergekit #merge #conversational #base_model-smelborp/MixtralOrochi8x7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # maid-yuzu-v5-mix
This is a merge of pre-trained language models created using mergekit.
This model was created because I was curious about whether the 8X7B model created randomly by the user would be merged with other existing 8x7b models.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* ../maid-yuzu-v5
* smelborp/MixtralOrochi8x7B
### Configuration
The following YAML configuration was used to produce this model:
| [
"# maid-yuzu-v5-mix\n\nThis is a merge of pre-trained language models created using mergekit.\n\nThis model was created because I was curious about whether the 8X7B model created randomly by the user would be merged with other existing 8x7b models.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* ../maid-yuzu-v5\n* smelborp/MixtralOrochi8x7B",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #mergekit #merge #conversational #base_model-smelborp/MixtralOrochi8x7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# maid-yuzu-v5-mix\n\nThis is a merge of pre-trained language models created using mergekit.\n\nThis model was created because I was curious about whether the 8X7B model created randomly by the user would be merged with other existing 8x7b models.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* ../maid-yuzu-v5\n* smelborp/MixtralOrochi8x7B",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
78,
61,
4,
18,
41,
17
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #mergekit #merge #conversational #base_model-smelborp/MixtralOrochi8x7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# maid-yuzu-v5-mix\n\nThis is a merge of pre-trained language models created using mergekit.\n\nThis model was created because I was curious about whether the 8X7B model created randomly by the user would be merged with other existing 8x7b models.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* ../maid-yuzu-v5\n* smelborp/MixtralOrochi8x7B### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.06843120604753494,
-0.0639222040772438,
-0.0013013146817684174,
-0.029540063813328743,
0.08714442700147629,
0.0483069084584713,
0.20440888404846191,
-0.011589844711124897,
0.07935865223407745,
0.031766436994075775,
0.03172202780842781,
0.045097604393959045,
0.041795969009399414,
0.20851939916610718,
-0.05296465381979942,
-0.13310706615447998,
0.07394636422395706,
-0.05819404125213623,
-0.14567552506923676,
0.10862846672534943,
0.10552287846803665,
-0.08243416994810104,
0.10070817917585373,
0.03806445747613907,
-0.16787119209766388,
0.032693393528461456,
-0.038313690572977066,
0.03757844492793083,
0.06616710871458054,
0.1408260017633438,
0.0890655517578125,
0.06307199597358704,
0.006891318596899509,
-0.14616958796977997,
0.05050556734204292,
-0.021685952320694923,
-0.020775197073817253,
0.03821534290909767,
0.10106975585222244,
-0.03938208147883415,
0.15368002653121948,
-0.03587837517261505,
0.015648216009140015,
0.08647873252630234,
-0.08509670943021774,
-0.03154776245355606,
-0.13701291382312775,
0.10898718982934952,
0.1109699159860611,
0.008803862147033215,
-0.033845774829387665,
0.058503441512584686,
-0.0036109185311943293,
0.07545683532953262,
-0.03236141428351402,
-0.22564688324928284,
0.004441725090146065,
0.15670117735862732,
0.047048866748809814,
-0.08440861850976944,
0.0466732494533062,
0.05166344717144966,
0.05949703976511955,
-0.024220477789640427,
0.011674253270030022,
-0.047695618122816086,
0.1979600042104721,
-0.09563642740249634,
-0.1449352651834488,
-0.03255826607346535,
0.11577530950307846,
0.05092122405767441,
-0.006258761510252953,
-0.13681697845458984,
-0.10666979849338531,
0.1033659279346466,
-0.020063010975718498,
-0.05134858563542366,
-0.025868836790323257,
0.0018866955069825053,
0.06544151902198792,
-0.06818657368421555,
-0.05431871861219406,
-0.06781480461359024,
-0.0907665267586708,
0.20569109916687012,
0.04548761993646622,
0.050630297511816025,
-0.07318785786628723,
0.044468384236097336,
-0.12843117117881775,
-0.10330376029014587,
0.035723261535167694,
-0.07213455438613892,
-0.08094486594200134,
-0.008117018267512321,
-0.07901088893413544,
-0.24458736181259155,
0.11249540746212006,
0.1591739058494568,
-0.11413689702749252,
0.023858409374952316,
0.11659661680459976,
0.0681755319237709,
0.06769543141126633,
-0.044068317860364914,
-0.13283668458461761,
-0.12147266417741776,
0.021980497986078262,
0.020728150382637978,
0.06628220528364182,
0.019595853984355927,
-0.11531765013933182,
-0.0111357681453228,
-0.018337152898311615,
-0.009052423760294914,
0.0457947701215744,
0.11183793097734451,
-0.014212597161531448,
-0.07490608841180801,
0.12069857865571976,
-0.06401572376489639,
-0.0009044767357409,
0.0015972666442394257,
-0.005769402254372835,
-0.08942517638206482,
0.1363043487071991,
0.05685918405652046,
0.01986008696258068,
0.07784854620695114,
-0.03833550214767456,
-0.022700121626257896,
-0.09149064868688583,
-0.09166353940963745,
-0.015561992302536964,
-0.0035269493237137794,
-0.034474920481443405,
-0.1041935384273529,
-0.23184825479984283,
-0.06673423945903778,
-0.003008090192452073,
-0.0167993251234293,
-0.0057862671092152596,
-0.034993961453437805,
0.06884068995714188,
-0.011400953866541386,
-0.01335702370852232,
-0.040083084255456924,
-0.0030378070659935474,
-0.029023384675383568,
-0.03744013234972954,
0.01690589264035225,
-0.12439455837011337,
0.043461523950099945,
-0.06947531551122665,
0.12019909918308258,
-0.17173951864242554,
0.14761264622211456,
-0.010617638006806374,
0.0570593886077404,
-0.11335103958845139,
-0.014154725708067417,
-0.0074475775472819805,
0.029623208567500114,
0.06394011527299881,
0.18892192840576172,
-0.07565397024154663,
-0.06370799988508224,
0.10898382216691971,
-0.15811783075332642,
-0.10677758604288101,
0.13248348236083984,
0.0005673182313330472,
0.039013754576444626,
0.05550059676170349,
0.2354770302772522,
0.1440514326095581,
0.04166156426072121,
-0.012846787460148335,
-0.02227277308702469,
-0.04535696655511856,
0.01757011003792286,
0.07399287819862366,
-0.060085657984018326,
-0.12495262175798416,
0.02981247380375862,
0.05980315059423447,
0.1421540230512619,
-0.06612318009138107,
-0.039934370666742325,
-0.04066411778330803,
-0.07602005451917648,
0.15498101711273193,
-0.028510762378573418,
0.04034819081425667,
-0.03032013215124607,
0.0008507074089720845,
0.07673333585262299,
0.11908558011054993,
-0.05334082990884781,
-0.023210199549794197,
-0.06055228039622307,
0.15624216198921204,
-0.08581805974245071,
0.03735800459980965,
-0.11090632528066635,
-0.04707346856594086,
-0.03660906106233597,
-0.028143873438239098,
0.0600554421544075,
0.0395779013633728,
0.05712717026472092,
0.0812930092215538,
-0.04392392933368683,
-0.040906548500061035,
0.07622604817152023,
0.031853385269641876,
-0.04695535823702812,
-0.159401074051857,
-0.12689274549484253,
-0.06523746252059937,
0.2642826437950134,
-0.10274860262870789,
0.09030957520008087,
-0.08023979514837265,
0.22306548058986664,
-0.05538932979106903,
0.005113762803375721,
0.0552556999027729,
0.04318397492170334,
-0.030431855469942093,
0.02673659659922123,
0.07703975588083267,
0.014665765687823296,
-0.2017546147108078,
0.138865128159523,
-0.14598605036735535,
-0.03155485913157463,
0.05990435183048248,
0.03078712895512581,
-0.05611727014183998,
-0.12635616958141327,
-0.015236036852002144,
-0.04135280102491379,
0.05407281592488289,
-0.05947459861636162,
0.1204870268702507,
0.026617128401994705,
0.13911697268486023,
-0.031067118048667908,
0.02697308547794819,
-0.0075721037574112415,
-0.03831963613629341,
-0.04433383420109749,
0.05299091339111328,
-0.0027001379057765007,
-0.19107168912887573,
0.10140341520309448,
0.10201133042573929,
0.08355793356895447,
0.08764105290174484,
0.02080153487622738,
0.030412444844841957,
-0.06646081060171127,
0.009621544741094112,
-0.04388677701354027,
-0.06672907620668411,
-0.059814125299453735,
0.03309817612171173,
0.05572317913174629,
-0.013965809717774391,
0.07533956319093704,
-0.07735277712345123,
0.040564894676208496,
0.053608398884534836,
0.011298277415335178,
0.10264929383993149,
0.12920519709587097,
0.023774225264787674,
0.026928994804620743,
0.001405361806973815,
0.02377805858850479,
0.02110757865011692,
-0.025110386312007904,
-0.14003126323223114,
0.17331835627555847,
-0.09697332978248596,
-0.18623889982700348,
-0.21098539233207703,
-0.06057615578174591,
-0.14654959738254547,
0.006514827720820904,
0.05624721944332123,
-0.005526900757104158,
-0.05662225931882858,
-0.09207523614168167,
0.15136820077896118,
0.030032046139240265,
-0.0015023582382127643,
-0.02997763268649578,
-0.02987152338027954,
0.021524833515286446,
-0.06366635113954544,
-0.003786529880017042,
-0.012711330316960812,
0.021234575659036636,
0.051506202667951584,
-0.008109644055366516,
0.13257107138633728,
0.13024963438510895,
-0.027211803942918777,
-0.020717667415738106,
-0.011492032557725906,
0.18200890719890594,
-0.031962793320417404,
0.05111383646726608,
0.23789182305335999,
-0.08544868975877762,
0.054258137941360474,
0.22315268218517303,
0.02804017812013626,
-0.009534792974591255,
0.020052529871463776,
-0.056878410279750824,
-0.06507501006126404,
-0.16685634851455688,
-0.19644702970981598,
-0.07857033610343933,
-0.014846530742943287,
-0.0034583157394081354,
0.021777303889393806,
0.033165328204631805,
0.09578336030244827,
-0.09746982157230377,
-0.05017533898353577,
0.02352118119597435,
0.036099813878536224,
0.18382251262664795,
-0.02154732309281826,
0.09635226428508759,
-0.04138444736599922,
-0.010560935363173485,
0.04225078597664833,
-0.0721960961818695,
0.1021193265914917,
0.04732946678996086,
0.07622075080871582,
0.13246935606002808,
0.04537756368517876,
0.08500906080007553,
0.050415195524692535,
0.010206003673374653,
0.023258144035935402,
-0.021116921678185463,
-0.08371607214212418,
-0.024489780887961388,
0.07147719711065292,
0.0022904532961547375,
0.0670352503657341,
-0.10046742856502533,
0.03849126026034355,
0.05895315483212471,
0.14957763254642487,
0.09230504930019379,
-0.2440607100725174,
-0.10857847332954407,
0.04484729841351509,
0.042968541383743286,
0.006578405387699604,
-0.04573636129498482,
0.04411711543798447,
-0.09495852887630463,
0.18797354400157928,
-0.013604287058115005,
0.10388310998678207,
0.04643859341740608,
-0.009878255426883698,
-0.05888799950480461,
0.13662800192832947,
0.0033531200606375933,
0.05656268447637558,
-0.09442997723817825,
0.1771070659160614,
0.02307979390025139,
-0.02353842556476593,
0.02732444740831852,
0.030906202271580696,
0.008502867072820663,
0.24354548752307892,
0.02178032323718071,
-0.0015200501075014472,
-0.0024081943556666374,
-0.02782076597213745,
-0.09221149981021881,
-0.021869728341698647,
-0.016779636964201927,
-0.007738850079476833,
0.09083613753318787,
-0.044574979692697525,
-0.023444099351763725,
-0.009653910994529724,
0.09667373448610306,
-0.13100691139698029,
-0.1364358514547348,
0.03145826607942581,
0.04912374168634415,
0.08684170991182327,
-0.08435037732124329,
-0.024218063801527023,
-0.08457634598016739,
0.24806424975395203,
0.025502260774374008,
-0.10628342628479004,
-0.10828612744808197,
0.021117301657795906,
0.13267755508422852,
-0.0653638243675232,
0.04773271083831787,
-0.03439606726169586,
0.08114966750144958,
-0.09632830321788788,
-0.1478387713432312,
0.044549498707056046,
-0.0913463681936264,
-0.09610183537006378,
0.008635347709059715,
0.12495633214712143,
-0.00043654791079461575,
0.022259747609496117,
0.008391480892896652,
0.020194966346025467,
-0.05117525905370712,
-0.07859469950199127,
-0.03334537893533707,
0.23390059173107147,
0.04041838273406029,
0.2016979455947876,
0.004988301079720259,
-0.2671132981777191,
-0.01890367455780506,
-0.03931133449077606,
0.15882910788059235,
0.24089168012142181,
-0.0742856115102768,
0.09271016716957092,
0.17187565565109253,
-0.045198120176792145,
-0.21309629082679749,
-0.08431325852870941,
0.008376486599445343,
0.05801926180720329,
0.0024630757980048656,
0.021372303366661072,
0.005760069936513901,
0.07090860605239868,
0.0223477054387331,
-0.019357291981577873,
-0.33111077547073364,
-0.20007042586803436,
0.05570895969867706,
0.024747472256422043,
0.19169025123119354,
-0.09775710105895996,
-0.11197630316019058,
-0.10390988737344742,
-0.1528516709804535,
-0.04293832555413246,
-0.13481849431991577,
0.0492364875972271,
-0.028691070154309273,
0.020763952285051346,
0.0393962524831295,
-0.05597841739654541,
0.13634265959262848,
-0.03251199051737785,
0.04147310554981232,
-0.08551138639450073,
-0.03077055513858795,
0.03788722679018974,
-0.031560298055410385,
0.11537604033946991,
-0.08576514571905136,
0.04238816350698471,
-0.04024871438741684,
-0.04517588019371033,
-0.04635045677423477,
0.07417009025812149,
-0.023048587143421173,
-0.018160084262490273,
-0.08318857848644257,
0.005120753310620785,
0.013729599304497242,
-0.0034072750713676214,
0.10876990109682083,
-0.07078257948160172,
0.13689085841178894,
0.24839186668395996,
0.09304995834827423,
-0.0729423388838768,
-0.024099668487906456,
0.016884101554751396,
-0.05592348426580429,
0.045544613152742386,
-0.03204692527651787,
-0.02161281742155552,
0.10896724462509155,
0.005066742654889822,
0.15614712238311768,
0.013645690865814686,
-0.053354449570178986,
0.02758219465613365,
0.08427751809358597,
-0.160682812333107,
-0.35129037499427795,
-0.035758521407842636,
0.030840419232845306,
-0.07720448076725006,
0.04761664196848869,
0.1550634801387787,
-0.07674756646156311,
-0.003722059540450573,
-0.01304685603827238,
0.021954547613859177,
-0.10819321870803833,
0.11860671639442444,
-0.013681655749678612,
0.03833962604403496,
-0.0873882845044136,
0.05707070976495743,
0.04246305301785469,
-0.06697393953800201,
-0.037975527346134186,
0.06212885305285454,
-0.12234718352556229,
-0.0862002745270729,
-0.07543694227933884,
0.18723788857460022,
-0.06714173406362534,
-0.0886404812335968,
-0.09186343103647232,
-0.13389398157596588,
0.009809162467718124,
0.09460027515888214,
0.057625796645879745,
0.0033381865359842777,
-0.0018094575498253107,
-0.07972849160432816,
-0.03842144086956978,
0.05549291893839836,
0.06602329760789871,
0.049164000898599625,
-0.11887899041175842,
0.16230061650276184,
-0.005176091101020575,
0.06534524261951447,
-0.05852640047669411,
-0.007696274667978287,
-0.0863606184720993,
-0.019062664359807968,
-0.1568649411201477,
-0.01502181589603424,
-0.19992220401763916,
-0.04861157014966011,
-0.010531979613006115,
-0.04456561431288719,
-0.014786415733397007,
0.014676641672849655,
-0.022634314373135567,
-0.030330684036016464,
-0.03950631991028786,
0.04264817759394646,
-0.05754481256008148,
-0.030978143215179443,
-0.0240472499281168,
-0.02426919899880886,
0.04661165922880173,
0.031482744961977005,
-0.036742810159921646,
-0.05538663640618324,
-0.07054294645786285,
-0.08801160752773285,
0.033435940742492676,
0.009101114235818386,
0.002663383958861232,
-0.11606533825397491,
-0.05168473348021507,
0.002162947552278638,
-0.07302268594503403,
-0.03013649396598339,
0.06616384536027908,
-0.054397694766521454,
0.02954094298183918,
0.006883169058710337,
0.023355500772595406,
-0.06894368678331375,
-0.010478587821125984,
-0.00041197799146175385,
0.11370200663805008,
0.13253998756408691,
-0.0742400586605072,
0.0526493601500988,
-0.1615353375673294,
-0.01798221468925476,
-0.018757285550236702,
-0.06455186009407043,
-0.04566846787929535,
-0.09007443487644196,
0.00876540970057249,
0.00022421190806198865,
0.11943325400352478,
0.024187419563531876,
-0.09655886143445969,
0.030179474502801895,
0.0049468777142465115,
0.07233778387308121,
0.046632811427116394,
0.15093374252319336,
-0.007559187710285187,
0.042194414883852005,
-0.06067580729722977,
0.09633226692676544,
-0.013011271134018898,
-0.04433730989694595,
0.1017390787601471,
0.05881595239043236,
0.02009856142103672,
0.042190343141555786,
0.08202511072158813,
-0.0018387535819783807,
-0.0035640050191432238,
-0.17866550385951996,
-0.037982478737831116,
0.01842416077852249,
-0.042152244597673416,
0.13085946440696716,
0.1043601781129837,
-0.15830537676811218,
0.0920833945274353,
0.05433482676744461,
-0.02625524066388607,
-0.06825029850006104,
-0.009410199709236622,
-0.0807776153087616,
-0.14296740293502808,
-0.03315833583474159,
-0.06805068999528885,
-0.029761115089058876,
-0.02877122536301613,
-0.021971261128783226,
-0.006729380693286657,
0.13469713926315308,
-0.06500081717967987,
-0.03252546861767769,
-0.032736390829086304,
-0.03815548121929169,
0.008719287812709808,
0.0030977013520896435,
-0.04440481215715408,
0.07494556903839111,
-0.02284972369670868,
0.010869544930756092,
0.04853672534227371,
0.029079964384436607,
0.0729588195681572,
-0.01610686257481575,
-0.09062428027391434,
-0.0071656364016234875,
0.07866962254047394,
0.10801929235458374,
-0.029885875061154366,
0.04474612697958946,
-0.0430932380259037,
-0.03925381228327751,
0.04018751531839371,
-0.014124483801424503,
-0.05926411971449852,
-0.08674342185258865,
0.21631862223148346,
-0.015389678068459034,
0.04677000269293785,
0.022766191512346268,
-0.09943390637636185,
0.01167245488613844,
0.11646249890327454,
0.31458279490470886,
-0.006817500106990337,
0.009898044168949127,
-0.025610337033867836,
0.018385766074061394,
0.03510136529803276,
0.08510209619998932,
-0.007412495091557503,
0.13292230665683746,
-0.03513246029615402,
0.13508333265781403,
-0.053869444876909256,
-0.0785166546702385,
-0.04232504591345787,
-0.005243903025984764,
-0.034968696534633636,
-0.043462399393320084,
0.06842025369405746,
0.10859037935733795,
-0.07337610423564911,
-0.05257011577486992,
0.01654716581106186,
-0.1003066822886467,
-0.06077892333269119,
-0.0635291337966919,
0.04699564725160599,
0.03216360881924629,
0.05270390212535858,
-0.062145985662937164,
0.024127747863531113,
0.12106502801179886,
-0.0009345266735181212,
-0.08969509601593018,
-0.09212503582239151,
0.06659560650587082,
-0.03250013291835785,
0.003573925234377384,
-0.023334262892603874,
0.03708414360880852,
0.09897339344024658,
-0.009680620394647121,
-0.09147565811872482,
0.020190389826893806,
0.015118655748665333,
0.015114090405404568,
0.0638098493218422,
-0.009387319907546043,
-0.017603537067770958,
0.025901533663272858,
-0.020294584333896637,
-0.2131524682044983,
0.04584284499287605,
-0.035969171673059464,
-0.07941633462905884,
-0.06556347757577896,
0.11676303297281265,
-0.03121768683195114,
0.14073725044727325,
0.1451762616634369,
-0.058565571904182434,
0.01236865296959877,
0.010957813821732998,
0.06164548918604851,
0.049494050443172455,
0.16675898432731628,
-0.03390838950872421,
-0.21221408247947693,
0.027895668521523476,
0.018426816910505295,
0.03779345005750656,
-0.2584504783153534,
-0.07593251764774323,
-0.10832326859235764,
-0.03367210552096367,
-0.0022416403517127037,
0.12176313996315002,
0.16034968197345734,
0.023227864876389503,
-0.006905906833708286,
-0.2322801947593689,
-0.02082138881087303,
0.10201703011989594,
-0.105606310069561,
-0.0947953313589096
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# quynh_deberta-v3-Base-finetuned-AI_req_4
This model is a fine-tuned version of [microsoft/deberta-v3-Base](https://huggingface.co/microsoft/deberta-v3-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0138
- Train Accuracy: 0.9959
- Validation Loss: 1.1850
- Validation Accuracy: 0.8000
- Epoch: 17
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2730, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.8537 | 0.6415 | 0.7848 | 0.6476 | 0 |
| 0.6839 | 0.7459 | 0.8610 | 0.6190 | 1 |
| 0.5477 | 0.7816 | 0.8801 | 0.7048 | 2 |
| 0.4614 | 0.8091 | 0.7547 | 0.7143 | 3 |
| 0.3993 | 0.8297 | 0.6578 | 0.7714 | 4 |
| 0.4027 | 0.8407 | 0.7150 | 0.7524 | 5 |
| 0.3852 | 0.8420 | 0.8414 | 0.7238 | 6 |
| 0.2948 | 0.8819 | 0.6340 | 0.8000 | 7 |
| 0.2254 | 0.9107 | 0.9173 | 0.7048 | 8 |
| 0.1818 | 0.9409 | 0.7314 | 0.7905 | 9 |
| 0.1022 | 0.9698 | 1.0474 | 0.6571 | 10 |
| 0.0873 | 0.9643 | 0.9123 | 0.7714 | 11 |
| 0.0529 | 0.9808 | 1.1258 | 0.8000 | 12 |
| 0.0766 | 0.9794 | 0.9509 | 0.7905 | 13 |
| 0.0305 | 0.9931 | 1.0909 | 0.7714 | 14 |
| 0.0221 | 0.9959 | 1.1400 | 0.7810 | 15 |
| 0.0163 | 0.9959 | 1.2631 | 0.7905 | 16 |
| 0.0138 | 0.9959 | 1.1850 | 0.8000 | 17 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.9.1
- Datasets 2.16.1
- Tokenizers 0.13.3
| {"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "quynh_deberta-v3-Base-finetuned-AI_req_4", "results": []}]} | text-classification | QT321/quynh_deberta-v3-Base-finetuned-AI_req_4 | [
"transformers",
"tf",
"deberta-v2",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:01:53+00:00 | [] | [] | TAGS
#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us
| quynh\_deberta-v3-Base-finetuned-AI\_req\_4
===========================================
This model is a fine-tuned version of microsoft/deberta-v3-Base on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.0138
* Train Accuracy: 0.9959
* Validation Loss: 1.1850
* Validation Accuracy: 0.8000
* Epoch: 17
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 2730, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.28.0
* TensorFlow 2.9.1
* Datasets 2.16.1
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
56,
178,
4,
34
] | [
"passage: TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
-0.0661044716835022,
0.034819021821022034,
-0.005335089284926653,
0.07180119305849075,
0.15308332443237305,
0.05895962566137314,
0.13327544927597046,
0.11918378621339798,
-0.08529393374919891,
0.1041325032711029,
0.1549294888973236,
0.14896361529827118,
0.0546063669025898,
0.12434948235750198,
-0.07882298529148102,
-0.17512856423854828,
0.07249528914690018,
-0.013825262896716595,
-0.07058897614479065,
0.07718494534492493,
0.09180191904306412,
-0.06927601248025894,
0.08492448180913925,
-0.025852112099528313,
-0.11086880415678024,
0.04002988710999489,
0.08173180371522903,
-0.07842729985713959,
0.13384512066841125,
0.0736960843205452,
0.09236934781074524,
-0.004807889927178621,
0.016739312559366226,
-0.19050079584121704,
0.010822913609445095,
0.10047204792499542,
-0.004974658600986004,
0.0587124302983284,
0.0028775720857083797,
-0.008725355379283428,
0.10651782900094986,
-0.10611452907323837,
0.0719960629940033,
0.03127531334757805,
-0.14425507187843323,
-0.26915112137794495,
-0.10428139567375183,
0.009101510047912598,
0.0876096859574318,
0.08792754262685776,
-0.0017643379978835583,
0.13530640304088593,
-0.04511258378624916,
0.08339102566242218,
0.14147111773490906,
-0.27505627274513245,
-0.03159014508128166,
0.0340392105281353,
0.021754100918769836,
0.05897345766425133,
-0.050336696207523346,
0.0031442823819816113,
0.03343075141310692,
0.04407148063182831,
0.03780828416347504,
-0.020954053848981857,
0.05939539149403572,
-0.03344690799713135,
-0.07917886972427368,
-0.07368192076683044,
0.11052417010068893,
0.030429191887378693,
-0.06958039849996567,
-0.08125890791416168,
-0.030800778418779373,
-0.14211174845695496,
0.011333059519529343,
-0.04446002468466759,
-0.0010371058015152812,
0.01537918671965599,
-0.04957913979887962,
-0.028943004086613655,
-0.05386077240109444,
-0.05973462387919426,
-0.007959719747304916,
0.13020487129688263,
0.032106343656778336,
0.030312329530715942,
-0.017262952402234077,
0.07559487223625183,
-0.01732240617275238,
-0.11144126951694489,
-0.018366321921348572,
-0.0009262922103516757,
-0.042409125715494156,
-0.03281145170331001,
-0.07584328204393387,
-0.03069893643260002,
0.044435564428567886,
0.16124360263347626,
-0.06640424579381943,
0.1134297177195549,
-0.017965760082006454,
0.017782993614673615,
-0.10319503396749496,
0.12125782668590546,
-0.0104077672585845,
0.002511070342734456,
-0.006827507168054581,
0.0862811952829361,
0.03622688353061676,
-0.05263267457485199,
-0.052781783044338226,
0.007776238489896059,
0.1148810088634491,
0.03971400484442711,
-0.06141547113656998,
0.08089040219783783,
-0.07523889094591141,
-0.006304122041910887,
-0.00785030610859394,
-0.12226341664791107,
0.03676104173064232,
0.012383446097373962,
-0.09010332822799683,
0.008052249439060688,
0.05480595678091049,
0.009311830624938011,
-0.048036377876996994,
0.05424452945590019,
-0.06601414829492569,
-0.05158613249659538,
-0.10298436880111694,
-0.1251252442598343,
0.018375016748905182,
-0.0695088803768158,
-0.008501938544213772,
-0.08041055500507355,
-0.16493642330169678,
-0.03619009628891945,
0.0704452246427536,
-0.03126921132206917,
-0.0171001348644495,
-0.0773678794503212,
-0.14333771169185638,
0.06595699489116669,
-0.005292428657412529,
0.09107783436775208,
-0.04299532622098923,
0.08015342801809311,
0.011765329167246819,
0.04615195468068123,
-0.05040618032217026,
0.03839340806007385,
-0.037937238812446594,
0.03867494687438011,
-0.1979052722454071,
0.0853101909160614,
-0.06341073662042618,
0.028681449592113495,
-0.15339457988739014,
-0.07498815655708313,
0.056187063455581665,
0.028181103989481926,
0.12228106707334518,
0.10693177580833435,
-0.13430465757846832,
-0.07294561713933945,
0.09832858294248581,
-0.09734158217906952,
-0.0742603987455368,
0.08894336968660355,
-0.06590943783521652,
0.02491254359483719,
0.08473998308181763,
0.08438454568386078,
0.01945057138800621,
-0.10719222575426102,
0.010895135812461376,
-0.06608354300260544,
0.006881710607558489,
0.04944116249680519,
0.035163961350917816,
-0.04839903861284256,
-0.08159541338682175,
0.004045436158776283,
-0.01658853515982628,
0.013793635182082653,
-0.05340402200818062,
-0.057804469019174576,
-0.019715648144483566,
-0.03917494788765907,
0.04600495100021362,
0.030751917511224747,
0.03484826162457466,
-0.10016916692256927,
-0.13839232921600342,
0.095157191157341,
0.04412536323070526,
-0.0704311653971672,
0.025942964479327202,
-0.08770105987787247,
0.017568588256835938,
0.04642016440629959,
0.011845727451145649,
-0.1523943692445755,
-0.05851719155907631,
0.022006850689649582,
0.001765824155882001,
0.018585212528705597,
-0.04066338762640953,
0.07073811441659927,
0.023258907720446587,
-0.05514835566282272,
-0.012612462975084782,
-0.03843124583363533,
0.02010609395802021,
-0.07408452779054642,
-0.22317296266555786,
-0.020032569766044617,
-0.017905527725815773,
0.05843555927276611,
-0.27499625086784363,
0.017453931272029877,
0.08474680781364441,
0.11210767179727554,
0.030320171266794205,
-0.017987899482250214,
-0.04152733087539673,
0.059827931225299835,
-0.02464985102415085,
-0.06745300441980362,
0.030160339549183846,
0.01482755783945322,
-0.13314272463321686,
-0.03445929288864136,
-0.20521238446235657,
0.089274562895298,
0.12458020448684692,
-0.08481695502996445,
-0.14106322824954987,
0.042615242302417755,
-0.02157139778137207,
-0.03246166184544563,
-0.009517377242445946,
-0.035423681139945984,
0.18061062693595886,
0.02433023229241371,
0.13846059143543243,
-0.043429482728242874,
-0.010460803285241127,
0.026767505332827568,
-0.016431590542197227,
-0.048091597855091095,
0.11797597259283066,
-0.015291755087673664,
-0.10025084018707275,
0.08409986644983292,
0.10380996018648148,
-0.09479755163192749,
0.12418753653764725,
-0.032695118337869644,
-0.05308545380830765,
-0.07830211520195007,
0.0524468831717968,
0.06795845925807953,
0.08216609805822372,
-0.09313425421714783,
0.0001662701542954892,
-0.002123344223946333,
0.03371156007051468,
-0.023761015385389328,
-0.1855935901403427,
-0.0005106852040626109,
0.017253495752811432,
-0.05476949363946915,
0.024958888068795204,
0.0026269936934113503,
0.010648868978023529,
0.11492759734392166,
0.044212423264980316,
-0.0489184595644474,
0.08175159990787506,
-0.025763599202036858,
-0.09576132148504257,
0.22364400327205658,
-0.14079181849956512,
-0.13507480919361115,
-0.13342078030109406,
-0.023822905495762825,
-0.03236484155058861,
0.01105159055441618,
0.0015762398252263665,
-0.09897443652153015,
-0.05675354599952698,
-0.06443876773118973,
-0.010836811736226082,
-0.050272829830646515,
0.029687289148569107,
0.03581685945391655,
-0.002834406914189458,
0.1184222400188446,
-0.11652523279190063,
-0.04251989349722862,
-0.0007223682478070259,
-0.07372734695672989,
0.01985940709710121,
-0.008443251252174377,
0.0009053976973518729,
0.11938534677028656,
-0.0039026171434670687,
0.023054208606481552,
-0.057859208434820175,
0.23082506656646729,
-0.06196631118655205,
-0.013930623419582844,
0.14499688148498535,
-0.033979885280132294,
0.06556367874145508,
0.13667359948158264,
0.04121790826320648,
-0.12596726417541504,
0.060393743216991425,
0.06315142661333084,
-0.02297770045697689,
-0.2318716198205948,
0.0010167201980948448,
-0.030685389414429665,
-0.07615993916988373,
0.07234513759613037,
0.027952082455158234,
0.14507223665714264,
0.006173199042677879,
-0.004934288095682859,
0.11450433731079102,
0.056141480803489685,
0.077972412109375,
0.1735759973526001,
0.062060754746198654,
0.09328503161668777,
-0.03080039471387863,
-0.01877678744494915,
0.02428620681166649,
-0.006442257668823004,
0.20246216654777527,
0.029053417965769768,
0.07654880732297897,
0.06125088781118393,
0.0531889908015728,
-0.027708685025572777,
-0.0036289156414568424,
0.004418524913489819,
-0.003327417653053999,
0.0016857458977028728,
-0.05834457650780678,
-0.045781493186950684,
0.05897178873419762,
-0.02347131259739399,
0.06559746712446213,
-0.12904828786849976,
0.029134107753634453,
0.04534843564033508,
0.2250550240278244,
0.09909410029649734,
-0.30565157532691956,
-0.10902120172977448,
0.011765559203922749,
-0.03385452926158905,
-0.056460119783878326,
-0.008288887329399586,
0.07646316289901733,
-0.08591257780790329,
0.0759110301733017,
-0.061582300812006,
0.04082708805799484,
-0.0680638924241066,
0.04912392050027847,
0.10464058071374893,
0.08955338597297668,
-0.004517771303653717,
0.005293216090649366,
-0.3672534227371216,
0.28293800354003906,
0.03991018235683441,
0.15556871891021729,
-0.07729602605104446,
0.046344537287950516,
0.03364192321896553,
-0.04290981590747833,
0.06187060847878456,
-0.0110129714012146,
-0.15988905727863312,
-0.2208782583475113,
-0.025772223249077797,
0.0010750072542577982,
0.15236911177635193,
0.009361889213323593,
0.10915792733430862,
-0.04888603463768959,
0.02273940108716488,
0.0796588659286499,
-0.021596865728497505,
-0.1617651730775833,
-0.06991423666477203,
0.05498945713043213,
0.04225229471921921,
-0.011175060644745827,
-0.08123661577701569,
-0.07498388737440109,
-0.04268729314208031,
0.1770203858613968,
-0.151940256357193,
-0.04854089021682739,
-0.13345099985599518,
0.07485593110322952,
0.08342341333627701,
-0.0653495192527771,
0.03804640471935272,
0.007735255640000105,
0.06359626352787018,
0.030207689851522446,
-0.08081069588661194,
0.14756423234939575,
-0.016162347048521042,
-0.22474394738674164,
-0.06794663518667221,
0.09065219759941101,
0.04966730996966362,
0.039946116507053375,
-0.004282892681658268,
0.0749693438410759,
0.05667079612612724,
-0.09501858800649643,
0.09611555188894272,
0.01946992799639702,
0.03834816813468933,
0.05342569574713707,
-0.012942156754434109,
-0.00410061702132225,
-0.04706425964832306,
-0.01144713070243597,
0.10907397419214249,
0.3077750504016876,
-0.06471915543079376,
0.01799287274479866,
0.027448803186416626,
-0.0902814194560051,
-0.19888734817504883,
0.07426656782627106,
0.09420807659626007,
0.022659355774521828,
-0.05278601497411728,
-0.19449438154697418,
0.02337079681456089,
0.09881878644227982,
-0.004969087895005941,
0.05733048915863037,
-0.30828502774238586,
-0.15469180047512054,
0.06981479376554489,
0.13198760151863098,
0.13159523904323578,
-0.16861088573932648,
-0.04601777344942093,
-0.05998685210943222,
-0.03879015892744064,
0.130323126912117,
-0.034431714564561844,
0.10711009800434113,
0.02912609837949276,
0.04411856457591057,
0.005711792968213558,
-0.03855302184820175,
0.13745184242725372,
-0.029871884733438492,
0.10450127720832825,
-0.0512031652033329,
-0.07715402543544769,
0.0812174379825592,
-0.08540388941764832,
0.029251210391521454,
-0.04232157766819,
0.01908370479941368,
-0.1429445445537567,
-0.012159043923020363,
-0.07361204922199249,
0.04260314255952835,
-0.0648309662938118,
-0.03179081529378891,
-0.008869812823832035,
0.06086430326104164,
0.06363817304372787,
-0.0218737181276083,
0.11722731590270996,
-0.023368988186120987,
0.1743801385164261,
0.13315615057945251,
0.08778059482574463,
0.016921430826187134,
-0.010277186520397663,
0.08856867253780365,
-0.028624529018998146,
0.07701143622398376,
-0.15531504154205322,
0.0533711314201355,
0.13559472560882568,
-0.007894754409790039,
0.16738176345825195,
0.06911145895719528,
-0.07253266125917435,
0.045373640954494476,
0.057476069778203964,
-0.12512163817882538,
-0.0909801572561264,
0.019183440133929253,
0.026776950806379318,
-0.0843648761510849,
0.03836958110332489,
0.15992969274520874,
-0.03514643758535385,
0.020141705870628357,
0.004852498881518841,
0.031159445643424988,
-0.06534013152122498,
0.13613739609718323,
0.021813908591866493,
0.06633933633565903,
-0.06293826550245285,
0.12500984966754913,
0.0596146322786808,
-0.12184558063745499,
0.12256346642971039,
0.025041595101356506,
-0.06190885603427887,
0.00044684685417450964,
0.006346477661281824,
0.08668019622564316,
0.019758006557822227,
-0.0523398295044899,
-0.13063640892505646,
-0.1609126478433609,
0.07427585870027542,
0.20500236749649048,
0.04156592860817909,
0.07480170577764511,
-0.04687701538205147,
0.0005356469191610813,
-0.10023482888936996,
0.05695207417011261,
0.0396302230656147,
0.03843916207551956,
-0.1367926001548767,
0.18829567730426788,
0.0013265319867059588,
-0.01807597652077675,
-0.008075999096035957,
0.0012988278176635504,
-0.20731820166110992,
0.006503563839942217,
-0.13967376947402954,
-0.005720794666558504,
0.006019694730639458,
-0.015734637156128883,
0.04145326465368271,
-0.04665103927254677,
-0.050220176577568054,
0.03366275131702423,
-0.08601853996515274,
-0.03999504819512367,
0.055390287190675735,
0.06306762248277664,
-0.11598245799541473,
-0.0777362734079361,
0.02653753012418747,
-0.10875274240970612,
0.0436299629509449,
0.043327491730451584,
0.005420528817921877,
0.02744392305612564,
-0.07810241729021072,
0.03666212409734726,
0.04472532123327255,
-0.01656249538064003,
0.0357053205370903,
-0.1622130572795868,
0.013156062923371792,
-0.038406241685152054,
0.04029706120491028,
0.04143643379211426,
0.09403155744075775,
-0.09260203689336777,
-0.019910739734768867,
-0.009396909736096859,
-0.04103126376867294,
-0.05205688998103142,
0.06859643012285233,
0.13783492147922516,
-0.02204684168100357,
0.16830913722515106,
-0.13074631989002228,
0.017629336565732956,
-0.1692233681678772,
0.0023203855380415916,
0.004230017773807049,
-0.08476680517196655,
-0.09833827614784241,
-0.018981318920850754,
0.10809744149446487,
-0.08632607012987137,
0.0908893495798111,
-0.06852541863918304,
0.09316012263298035,
0.05218168720602989,
-0.113617904484272,
-0.05484241992235184,
0.06698518991470337,
0.17321686446666718,
0.04753144830465317,
-0.024723591282963753,
0.05177756026387215,
-0.015567298978567123,
0.08773879706859589,
0.11074426770210266,
0.19870522618293762,
0.14278358221054077,
0.025709835812449455,
0.11975529044866562,
0.06190301477909088,
-0.06923557817935944,
-0.10204268991947174,
0.09810641407966614,
-0.057285550981760025,
0.14921072125434875,
-0.04774045944213867,
0.1030186340212822,
0.08280830085277557,
-0.18074634671211243,
0.017483310773968697,
-0.07713353633880615,
-0.10527992993593216,
-0.12413179129362106,
-0.09576542675495148,
-0.0779031440615654,
-0.0938667356967926,
0.007318420801311731,
-0.10172375291585922,
0.02964967116713524,
0.06519129127264023,
0.030521508306264877,
0.0011627308558672667,
0.08656825125217438,
-0.03904300928115845,
0.027984483167529106,
0.1099296286702156,
-0.0059113409370183945,
-0.00523938937112689,
-0.03607747331261635,
-0.08412612229585648,
0.04903365671634674,
-0.014503536745905876,
0.03841106966137886,
-0.00255244760774076,
-0.020797813311219215,
0.035005833953619,
-0.011645108461380005,
-0.09850244969129562,
0.05309220775961876,
0.0349712111055851,
0.015941601246595383,
0.0722237229347229,
0.04916276037693024,
-0.02176067978143692,
-0.02023450843989849,
0.12213211506605148,
-0.09422747045755386,
-0.030950097367167473,
-0.14818690717220306,
0.29555532336235046,
-0.0024925307370722294,
0.05118168145418167,
-0.00018117671424988657,
-0.07502418756484985,
-0.029863663017749786,
0.1495356261730194,
0.1407870501279831,
-0.06511375308036804,
-0.019338682293891907,
0.05570768937468529,
-0.00913343857973814,
-0.02670198865234852,
0.1465112417936325,
0.05836993455886841,
-0.011274446733295918,
-0.04629205912351608,
-0.040484827011823654,
-0.02081649750471115,
-0.016724547371268272,
-0.028794152662158012,
0.07700293511152267,
0.026315242052078247,
-0.008962880820035934,
-0.013975679874420166,
0.06419696658849716,
-0.061952143907547,
-0.11194992065429688,
0.0905243530869484,
-0.19940175116062164,
-0.14939486980438232,
0.0035407328978180885,
0.003146546659991145,
-0.013650123961269855,
0.07675130665302277,
-0.004090335685759783,
-0.008344681933522224,
0.09552057087421417,
-0.027408741414546967,
-0.014961658976972103,
-0.10758998245000839,
0.05844659358263016,
-0.011179954744875431,
0.1744554191827774,
-0.0210402961820364,
0.06279801577329636,
0.13938070833683014,
0.03299541026353836,
-0.07690349966287613,
0.039029981940984726,
0.08075178414583206,
-0.08863645046949387,
-0.010485496371984482,
0.07907917350530624,
-0.03009122982621193,
0.16348280012607574,
0.06982657313346863,
-0.1025705561041832,
0.04932505637407303,
-0.08654578775167465,
-0.09818926453590393,
-0.04372858628630638,
-0.045598018914461136,
-0.06507039070129395,
0.13049529492855072,
0.24305886030197144,
-0.03594035655260086,
0.008065897971391678,
-0.023862099274992943,
-0.005566269159317017,
0.06374090164899826,
0.0324212945997715,
-0.06431788951158524,
-0.2421240657567978,
0.06800530850887299,
0.05413714796304703,
0.03814093396067619,
-0.17559455335140228,
-0.10513478517532349,
0.020000088959932327,
-0.017542261630296707,
-0.09939248114824295,
0.10800740122795105,
0.027496490627527237,
0.04810195788741112,
-0.05486299842596054,
-0.13466554880142212,
-0.04535992443561554,
0.19608289003372192,
-0.10547017306089401,
-0.08590136468410492
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetunned-elementos-contractuales
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0947
- Accuracy: 0.8398
- F1: 0.8564
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 39 | 0.9113 | 0.8356 | 0.8527 |
| No log | 2.0 | 78 | 1.0381 | 0.8339 | 0.8527 |
| No log | 3.0 | 117 | 0.9843 | 0.8297 | 0.8490 |
| No log | 4.0 | 156 | 1.0604 | 0.8381 | 0.8554 |
| No log | 5.0 | 195 | 1.0013 | 0.8424 | 0.8582 |
| No log | 6.0 | 234 | 1.0472 | 0.8398 | 0.8567 |
| No log | 7.0 | 273 | 1.1018 | 0.8364 | 0.8543 |
| No log | 8.0 | 312 | 1.0839 | 0.8381 | 0.8554 |
| No log | 9.0 | 351 | 1.0961 | 0.8381 | 0.8553 |
| No log | 10.0 | 390 | 1.0947 | 0.8398 | 0.8564 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetunned-elementos-contractuales", "results": []}]} | text-classification | Ecoarchitecture/distilbert-base-uncased-finetunned-elementos-contractuales | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:13:37+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetunned-elementos-contractuales
==========================================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0947
* Accuracy: 0.8398
* F1: 0.8564
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
72,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.10068019479513168,
0.11406611651182175,
-0.002613502787426114,
0.11416434496641159,
0.14245887100696564,
0.016875620931386948,
0.16298386454582214,
0.11379965394735336,
-0.065397247672081,
0.045682378113269806,
0.12750113010406494,
0.12806786596775055,
0.015593091025948524,
0.11795100569725037,
-0.08114226907491684,
-0.2133944034576416,
0.008411705493927002,
0.02499970607459545,
-0.058340586721897125,
0.11522463709115982,
0.09208793938159943,
-0.12076429277658463,
0.08928895741701126,
-0.019231410697102547,
-0.16742105782032013,
0.007654452230781317,
0.018708454445004463,
-0.04956952854990959,
0.12561240792274475,
0.032205138355493546,
0.13146348297595978,
0.03555963933467865,
0.08641861379146576,
-0.189573734998703,
0.010648413561284542,
0.06198858469724655,
-0.005745313595980406,
0.08087271451950073,
0.0332670584321022,
-0.005064352881163359,
0.0656864196062088,
-0.09191477298736572,
0.06070031225681305,
0.016353709623217583,
-0.1277618110179901,
-0.21116644144058228,
-0.08730962872505188,
0.032898806035518646,
0.09121900051832199,
0.07478026300668716,
-0.010645419359207153,
0.11736175417900085,
-0.05027787387371063,
0.09676528722047806,
0.19834554195404053,
-0.30637118220329285,
-0.06046658381819725,
0.04723067209124565,
0.02607317827641964,
0.09151153266429901,
-0.09746763855218887,
-0.02124602347612381,
0.05800090730190277,
0.02314946986734867,
0.12624812126159668,
-0.02456677332520485,
-0.05786247178912163,
-0.0005704694776795805,
-0.14149068295955658,
-0.017800362780690193,
0.15360033512115479,
0.05108249559998512,
-0.047123927623033524,
-0.0444285050034523,
-0.07527705281972885,
-0.13116295635700226,
-0.04173300415277481,
-0.007197316270321608,
0.049167368561029434,
-0.019298719242215157,
-0.06323540955781937,
-0.02391805872321129,
-0.09513582289218903,
-0.06590623408555984,
-0.05686021223664284,
0.14168681204319,
0.03439878299832344,
0.005525713320821524,
-0.009440137073397636,
0.10041355341672897,
-0.028192922472953796,
-0.14655882120132446,
0.022289641201496124,
0.019374823197722435,
0.0025330015923827887,
-0.04934122413396835,
-0.05264781787991524,
-0.07435264438390732,
0.019853582605719566,
0.1645064353942871,
-0.047035831958055496,
0.05430177226662636,
0.0018958263099193573,
0.04599282890558243,
-0.1026076003909111,
0.16689616441726685,
-0.041602279990911484,
-0.03547876700758934,
0.026293078437447548,
0.09207802265882492,
0.05811042711138725,
-0.016227902844548225,
-0.13304316997528076,
0.03350018709897995,
0.10662412643432617,
0.017500774934887886,
-0.05504254624247551,
0.06861145049333572,
-0.058070555329322815,
-0.013304202817380428,
0.041901662945747375,
-0.09494636952877045,
0.02751460298895836,
0.005004846956580877,
-0.056314077228307724,
-0.04805826395750046,
0.03087678924202919,
0.02138976752758026,
0.005519609898328781,
0.10449951887130737,
-0.08137474954128265,
0.00899825431406498,
-0.08498145639896393,
-0.13142022490501404,
0.017041701823472977,
-0.09618352353572845,
0.021131953224539757,
-0.10796384513378143,
-0.1870402842760086,
-0.013857155106961727,
0.0634770318865776,
-0.029306557029485703,
-0.030154673382639885,
-0.06200520321726799,
-0.07772599160671234,
0.01840190403163433,
-0.011398778297007084,
0.06905551999807358,
-0.06423163414001465,
0.09765516221523285,
0.0363556332886219,
0.06753361225128174,
-0.06611119955778122,
0.04225635156035423,
-0.10311807692050934,
0.04059811308979988,
-0.17494793236255646,
0.03807131573557854,
-0.07079773396253586,
0.06746875494718552,
-0.07932069152593613,
-0.07078640162944794,
0.003102098824456334,
-0.0025387140922248363,
0.07596587389707565,
0.09677190333604813,
-0.17990410327911377,
-0.06102381646633148,
0.1541176438331604,
-0.08570290356874466,
-0.13817273080348969,
0.13623501360416412,
-0.06012409180402756,
0.042669445276260376,
0.06399183720350266,
0.18908782303333282,
0.07372484356164932,
-0.08158203959465027,
0.004198513459414244,
0.0031377829145640135,
0.06851806491613388,
-0.03246070072054863,
0.06868816167116165,
0.0004326582420617342,
0.0003455446567386389,
0.01293123047798872,
-0.053027134388685226,
0.04891716688871384,
-0.07669494301080704,
-0.09016893804073334,
-0.04139521345496178,
-0.10437224060297012,
0.06475977599620819,
0.05046606808900833,
0.0628618374466896,
-0.10821057111024857,
-0.08848775923252106,
0.06498432904481888,
0.07410457730293274,
-0.07488515228033066,
0.02283449098467827,
-0.06996549665927887,
0.09074291586875916,
-0.05872126296162605,
-0.014576669782400131,
-0.15787284076213837,
-0.04425900802016258,
0.020482167601585388,
0.0028618485666811466,
0.01771610602736473,
-0.007530458737164736,
0.07206793874502182,
0.08531877398490906,
-0.06748756021261215,
-0.031148193404078484,
-0.014387918636202812,
0.01537774782627821,
-0.1242346316576004,
-0.1980748325586319,
-0.016799988225102425,
-0.03532987833023071,
0.14992216229438782,
-0.23127302527427673,
0.053722355514764786,
-0.0017083375714719296,
0.08969578891992569,
0.040035758167505264,
-0.012241017073392868,
-0.03860015422105789,
0.07081186771392822,
-0.049493174999952316,
-0.07158637791872025,
0.061088670045137405,
0.010186910629272461,
-0.10405439883470535,
-0.046836428344249725,
-0.1523151993751526,
0.18265053629875183,
0.13271969556808472,
-0.07677018642425537,
-0.07234345376491547,
0.008131640031933784,
-0.034179218113422394,
-0.02761097252368927,
-0.035160504281520844,
0.0015276139602065086,
0.12553896009922028,
-0.006570151541382074,
0.154960498213768,
-0.0861319750547409,
-0.03217948228120804,
0.020024169236421585,
-0.04544942080974579,
0.009819605387747288,
0.11296539753675461,
0.09156029671430588,
-0.10821164399385452,
0.1491546779870987,
0.19428294897079468,
-0.09868898242712021,
0.1336258500814438,
-0.04563912749290466,
-0.05256989970803261,
-0.024637021124362946,
0.006729051936417818,
0.015333476476371288,
0.11039698868989944,
-0.11634934693574905,
0.0014718396123498678,
0.010019101202487946,
0.011071600019931793,
0.010110341012477875,
-0.21521152555942535,
-0.024694614112377167,
0.04028657451272011,
-0.050530143082141876,
-0.002006176859140396,
-0.02472728118300438,
-0.008084080182015896,
0.09781026095151901,
-0.006380246952176094,
-0.08924597501754761,
0.04801586642861366,
-0.004330406431108713,
-0.07453680783510208,
0.2031584233045578,
-0.09498639404773712,
-0.1407591849565506,
-0.13638655841350555,
-0.07207532227039337,
-0.052942194044589996,
0.03317015990614891,
0.06056777015328407,
-0.06738422065973282,
-0.040684740990400314,
-0.1104138121008873,
-0.00828214455395937,
0.03001648373901844,
0.02139357104897499,
0.02087242342531681,
-0.005726782139390707,
0.0845377966761589,
-0.10081762075424194,
-0.0064705717377364635,
-0.036268603056669235,
-0.05119204521179199,
0.03807973116636276,
0.024974485859274864,
0.11112996190786362,
0.14660727977752686,
-0.02622121386229992,
-0.007953286170959473,
-0.02609816938638687,
0.22781293094158173,
-0.05856816843152046,
-0.003177084494382143,
0.12558606266975403,
-0.032583996653556824,
0.057628385722637177,
0.1382184773683548,
0.06405431777238846,
-0.09855620563030243,
0.020072005689144135,
0.03433578833937645,
-0.03552812710404396,
-0.21374762058258057,
-0.032674726098775864,
-0.0381411649286747,
0.0030113598331809044,
0.09653688967227936,
0.02925764210522175,
0.022587336599826813,
0.06763897836208344,
0.02032267488539219,
0.08417966216802597,
-0.01059437170624733,
0.07090422511100769,
0.11425048112869263,
0.040596164762973785,
0.1312922090291977,
-0.04602958261966705,
-0.051785219460725784,
0.04132954776287079,
0.00031614332692697644,
0.20071065425872803,
0.02203262969851494,
0.1469617784023285,
0.04834607243537903,
0.15976722538471222,
-0.000928434485103935,
0.062021441757678986,
-0.011183307506144047,
-0.034039776772260666,
-0.017188075929880142,
-0.04925946891307831,
-0.03002333827316761,
0.033549439162015915,
-0.08497302979230881,
0.05310177057981491,
-0.09955213963985443,
0.01304820366203785,
0.05757441744208336,
0.23193976283073425,
0.057228345423936844,
-0.32434335350990295,
-0.0904548242688179,
0.03199836611747742,
-0.01923276111483574,
-0.021814780309796333,
0.026086311787366867,
0.12535426020622253,
-0.045706987380981445,
0.03824690356850624,
-0.07060342282056808,
0.08618690818548203,
-0.041083067655563354,
0.044996216893196106,
0.05229097604751587,
0.08654368668794632,
-0.011623398400843143,
0.06629738956689835,
-0.2802167236804962,
0.2561708390712738,
0.01907852105796337,
0.06787277013063431,
-0.04638826102018356,
0.001544145867228508,
0.04055552929639816,
0.09175035357475281,
0.06752068549394608,
-0.015419760718941689,
-0.05501710623502731,
-0.19051598012447357,
-0.06634020805358887,
0.02135544642806053,
0.09695592522621155,
-0.039231814444065094,
0.10151125490665436,
-0.02927541546523571,
0.0011948867468163371,
0.08079642802476883,
-0.019064968451857567,
-0.08262543380260468,
-0.10104292631149292,
-0.010150251910090446,
0.039071422070264816,
-0.03571782633662224,
-0.0793234258890152,
-0.0974818617105484,
-0.13134096562862396,
0.15266479551792145,
-0.07356370985507965,
-0.03701990842819214,
-0.10365065187215805,
0.05564906820654869,
0.06023264303803444,
-0.07929161190986633,
0.0421481691300869,
0.003769104601815343,
0.08349153399467468,
0.017487281933426857,
-0.06621017307043076,
0.12248577922582626,
-0.07288838922977448,
-0.1793047934770584,
-0.07144439965486526,
0.10615133494138718,
0.020071445032954216,
0.04377559572458267,
-0.008694429881870747,
0.012006901204586029,
-0.01770331896841526,
-0.07821928709745407,
0.025933267548680305,
0.0043850671499967575,
0.05086110904812813,
0.03059854917228222,
-0.061724770814180374,
-0.00794778112322092,
-0.05672931298613548,
-0.02271171286702156,
0.1490320861339569,
0.2892327904701233,
-0.08444572240114212,
0.010497777722775936,
0.06281160563230515,
-0.06777786463499069,
-0.20970448851585388,
0.0345609113574028,
0.027160491794347763,
0.00449737161397934,
0.0435485765337944,
-0.15569229423999786,
0.10018891841173172,
0.10311447083950043,
-0.02734518051147461,
0.12091519683599472,
-0.2884964346885681,
-0.13634894788265228,
0.12768255174160004,
0.14588528871536255,
0.12548261880874634,
-0.15964078903198242,
-0.043145813047885895,
-0.03958674147725105,
-0.10239060968160629,
0.10952471941709518,
-0.13097019493579865,
0.11145705729722977,
-0.007225945126265287,
0.051977336406707764,
0.00490532536059618,
-0.05171351507306099,
0.13626624643802643,
0.00033561777672730386,
0.11774201691150665,
-0.062300149351358414,
-0.013757445849478245,
0.06469893455505371,
-0.06011117994785309,
0.01895952597260475,
-0.11790329217910767,
0.04481993615627289,
-0.060201093554496765,
-0.02255050092935562,
-0.04289675131440163,
0.03357826918363571,
-0.03865596652030945,
-0.05843062326312065,
-0.04127870127558708,
0.02479339949786663,
0.04262140393257141,
-0.00842505507171154,
0.16069376468658447,
0.01477818377315998,
0.14080236852169037,
0.1478738933801651,
0.07507980614900589,
-0.06410316377878189,
-0.00766450259834528,
-0.005991435144096613,
-0.03722779452800751,
0.06474283337593079,
-0.15596330165863037,
0.04021008685231209,
0.1233910471200943,
0.011647379957139492,
0.1477280706167221,
0.07100212574005127,
-0.028069620952010155,
0.015531321056187153,
0.060644570738077164,
-0.16259077191352844,
-0.10473726689815521,
-0.004742833785712719,
-0.03117258846759796,
-0.11864545941352844,
0.059284310787916183,
0.128337100148201,
-0.06409449130296707,
0.006980803795158863,
-0.005872312001883984,
0.015216995030641556,
-0.031100930646061897,
0.1813705712556839,
0.07060741633176804,
0.04474245011806488,
-0.08667303621768951,
0.0938219204545021,
0.056359775364398956,
-0.07412837445735931,
0.011682987213134766,
0.044591523706912994,
-0.08776870369911194,
-0.04664625599980354,
0.039269860833883286,
0.19203564524650574,
-0.03307131677865982,
-0.04834897071123123,
-0.1470816433429718,
-0.11049233376979828,
0.05444981902837753,
0.17634078860282898,
0.09734771400690079,
0.01587321050465107,
-0.03763487562537193,
0.011117908172309399,
-0.1094975546002388,
0.11780305206775665,
0.04558306187391281,
0.09170276671648026,
-0.1504094898700714,
0.11172038316726685,
-0.005803286097943783,
0.007535138633102179,
-0.025464951992034912,
0.04686117544770241,
-0.11629023402929306,
-0.009998219087719917,
-0.1466398984193802,
-0.0026300044264644384,
-0.02095520868897438,
0.009350151754915714,
0.0010945724789053202,
-0.054702259600162506,
-0.05595969781279564,
0.012030579149723053,
-0.09840938448905945,
-0.025598768144845963,
0.03425663337111473,
0.048027683049440384,
-0.12322598695755005,
-0.04860680550336838,
0.021742641925811768,
-0.07413925975561142,
0.07112257927656174,
0.020489702001214027,
0.019695961847901344,
0.045953668653964996,
-0.1816132813692093,
0.020806308835744858,
0.0556410513818264,
0.01996385119855404,
0.04499482363462448,
-0.08155924081802368,
-0.020869633182883263,
-0.004731860477477312,
0.04386843740940094,
0.017874015495181084,
0.09485485404729843,
-0.12181420624256134,
0.014995712786912918,
-0.02848033607006073,
-0.06101414933800697,
-0.05248640477657318,
0.03449511528015137,
0.08843576163053513,
0.013421004638075829,
0.20727239549160004,
-0.0960957258939743,
0.0159719530493021,
-0.2004035860300064,
0.0056260256096720695,
0.0027639768086373806,
-0.11936681717634201,
-0.11669698357582092,
-0.05337727069854736,
0.05094923824071884,
-0.05963202193379402,
0.1384216696023941,
0.00623667985200882,
0.024465538561344147,
0.03331531211733818,
-0.028951371088624,
0.038481686264276505,
0.0273424182087183,
0.21921846270561218,
0.0334877073764801,
-0.042401451617479324,
0.012539371848106384,
0.025779370218515396,
0.11275523155927658,
0.07835627347230911,
0.1639806181192398,
0.16590078175067902,
-0.047113459557294846,
0.09804315119981766,
0.041955675929784775,
-0.05015898495912552,
-0.13777737319469452,
0.07035893946886063,
-0.040402162820100784,
0.10358238220214844,
-0.018324654549360275,
0.20336367189884186,
0.08759988099336624,
-0.15286408364772797,
0.01728292927145958,
-0.04604100063443184,
-0.08668310195207596,
-0.10729184746742249,
-0.061001770198345184,
-0.09925412386655807,
-0.14207835495471954,
-0.004781222436577082,
-0.11163394153118134,
0.012556225061416626,
0.10231226682662964,
0.002014740137383342,
-0.016320962458848953,
0.16388468444347382,
0.004107260145246983,
0.03253082185983658,
0.06332509964704514,
0.0005958584370091558,
-0.04525575786828995,
-0.06974141299724579,
-0.10176285356283188,
0.01209342386573553,
-0.009251220151782036,
0.02496117353439331,
-0.046777497977018356,
-0.01895795948803425,
0.0414845235645771,
-0.00930937472730875,
-0.10892866551876068,
0.011165272444486618,
0.030249467119574547,
0.04767822474241257,
0.0507567822933197,
0.012362446635961533,
0.009619596414268017,
0.0018306958954781294,
0.21683187782764435,
-0.07642944157123566,
-0.06555519998073578,
-0.09669972211122513,
0.21312744915485382,
0.02281242050230503,
0.011586646549403667,
0.012161603197455406,
-0.09357970952987671,
0.031244855374097824,
0.20674845576286316,
0.18602843582630157,
-0.09783265739679337,
-0.0013227759627625346,
-0.01584005355834961,
-0.009701471775770187,
-0.03582242503762245,
0.09380607306957245,
0.11178809404373169,
0.005923581309616566,
-0.0718458965420723,
-0.05643599480390549,
-0.03564361110329628,
-0.009081361815333366,
-0.05203957483172417,
0.057658739387989044,
0.025981927290558815,
0.0075858402997255325,
-0.0519561730325222,
0.05707395821809769,
-0.03580508753657341,
-0.11142803728580475,
0.0527983084321022,
-0.1921936422586441,
-0.15294648706912994,
-0.017116310074925423,
0.11108491569757462,
-0.009747222997248173,
0.04332145303487778,
-0.033975861966609955,
0.001908262143842876,
0.06850353628396988,
-0.031162187457084656,
-0.06251756846904755,
-0.059101659804582596,
0.05804220587015152,
-0.10860320925712585,
0.22189690172672272,
-0.033240340650081635,
0.04759035259485245,
0.12709635496139526,
0.04830831661820412,
-0.0708014965057373,
0.08631367981433868,
0.04621049389243126,
-0.059253789484500885,
0.034770768135786057,
0.08613086491823196,
-0.04218485206365585,
0.12104833126068115,
0.06192895397543907,
-0.13233238458633423,
0.010162975639104843,
-0.03216370567679405,
-0.09727280586957932,
-0.054353538900613785,
-0.0432998426258564,
-0.06014927849173546,
0.13357636332511902,
0.18608662486076355,
-0.03554364666342735,
0.01113457977771759,
-0.04284558817744255,
0.015673518180847168,
0.06889989972114563,
0.03415722772479057,
-0.03667222335934639,
-0.2273707091808319,
0.025769932195544243,
0.0649624690413475,
-0.001014308538287878,
-0.28089943528175354,
-0.08168507367372513,
-0.015898447483778,
-0.04225505143404007,
-0.09508161246776581,
0.08870801329612732,
0.11356332153081894,
0.05096709728240967,
-0.06217096745967865,
-0.08874652534723282,
-0.07571116834878922,
0.154135599732399,
-0.12829706072807312,
-0.09543751925230026
] |
null | null | null |
## MiquMaid v2 DPO
Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z)
<center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-GGUF">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO-GGUF">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-GGUF">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF">V2-2x70B-DPO</a>]
</br>
<div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/tPFdudSae6SCDNvhe1lC9.png" style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca **prompting format**
Model trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.
## Credits:
- Undi
- IkariDev
## Description
This repo contains GGUF files of MiquMaid-v2-70B-DPO.
Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO-GGUF)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## DPO training data used:
- [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | null | NeverSleep/MiquMaid-v2-70B-DPO-GGUF | [
"gguf",
"not-for-all-audiences",
"nsfw",
"license:cc-by-nc-4.0",
"region:us"
] | 2024-02-06T20:14:14+00:00 | [] | [] | TAGS
#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us
|
## MiquMaid v2 DPO
Check out our blogpost about this model series Here! - Join our Discord server Here!
<center>[<a href="URL - <a href="URL - <a href="URL - <a href="URL
</br>
<div style="width: 100%;">
<img src="URL style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca prompting format
Model trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.
## Credits:
- Undi
- IkariDev
## Description
This repo contains GGUF files of MiquMaid-v2-70B-DPO.
Switch: FP16 - GGUF
## Training data used:
- Aesir datasets
- NoRobots
- limarp
- toxic-dpo-v0.1-sharegpt
- ToxicQAFinal
## DPO training data used:
- ToxicDPOqa
- toxic-dpo-v0.1-NoWarning
### Custom format:
## Others
Undi: If you want to support us, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains GGUF files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n",
"## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains GGUF files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
33,
134,
11,
33,
40,
27,
5,
32
] | [
"passage: TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.## Credits:\n- Undi\n- IkariDev## Description\n\nThis repo contains GGUF files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning### Custom format:## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.10106603056192398,
0.17645034193992615,
-0.004054540302604437,
0.05694994702935219,
0.1061578169465065,
0.07325894385576248,
0.14975658059120178,
0.14522141218185425,
0.06812756508588791,
0.04934399202466011,
0.02328011766076088,
0.15903036296367645,
0.08006744831800461,
0.2232600897550583,
0.036507073789834976,
-0.13644753396511078,
0.019246304407715797,
-0.04069163277745247,
-0.038553353399038315,
0.1190902516245842,
0.10129829496145248,
-0.04290807992219925,
0.0686551034450531,
0.011001897975802422,
-0.10566955804824829,
-0.015009484253823757,
-0.047854579985141754,
-0.07489238679409027,
0.0835493952035904,
0.0103943245485425,
0.07619768381118774,
0.040110692381858826,
0.052096299827098846,
-0.24738092720508575,
0.0433756560087204,
0.08040031790733337,
-0.0073092360980808735,
0.06631200760602951,
0.07491584867238998,
-0.07320775091648102,
0.01352722104638815,
-0.002548118820413947,
0.05819741263985634,
0.0800803154706955,
-0.12176892906427383,
-0.19029244780540466,
-0.10217729210853577,
0.13770079612731934,
0.07930690795183182,
0.08153285086154938,
-0.015185154974460602,
0.1683472990989685,
-0.07866407185792923,
0.04044878110289574,
0.20885153114795685,
-0.11366431415081024,
-0.029214249923825264,
0.16395485401153564,
-0.043799988925457,
-0.053154848515987396,
-0.11594679206609726,
-0.011975221335887909,
0.0336742177605629,
0.011406094767153263,
-0.07786527276039124,
0.003537589218467474,
0.059752728790044785,
-0.029253024607896805,
-0.04786992818117142,
-0.014087694697082043,
0.24454042315483093,
0.039292801171541214,
-0.08206791430711746,
-0.029324335977435112,
0.018332628533244133,
0.06545373052358627,
-0.036893267184495926,
-0.019041066989302635,
0.017373420298099518,
0.007625529542565346,
-0.021438516676425934,
0.051196832209825516,
-0.10351602733135223,
-0.07193496078252792,
0.04201972484588623,
0.13278958201408386,
0.03074018843472004,
-0.0016784636536613107,
-0.031224532052874565,
0.09579064697027206,
-0.05399718135595322,
-0.10056434571743011,
-0.06932088732719421,
-0.11980047076940536,
-0.041385892778635025,
-0.05808612331748009,
-0.029232054948806763,
-0.047502513974905014,
0.12562109529972076,
0.15401899814605713,
0.02615630440413952,
0.0016529676504433155,
-0.0449829027056694,
-0.006702282931655645,
0.04508659616112709,
-0.034293632954359055,
-0.08552300930023193,
0.022021925076842308,
0.03129258006811142,
0.06247265264391899,
-0.027944201603531837,
-0.0028917475137859583,
-0.019969576969742775,
-0.010651824064552784,
-0.05182957276701927,
0.04815118759870529,
0.03068157471716404,
0.05349478870630264,
-0.10900061577558517,
-0.07737286388874054,
0.20824630558490753,
-0.10092314332723618,
-0.018661538138985634,
0.07443291693925858,
-0.04661769047379494,
0.027117501944303513,
0.044376589357852936,
0.027104994282126427,
-0.01512294914573431,
0.054366402328014374,
-0.03427024558186531,
0.008836471475660801,
-0.09007534384727478,
-0.03695061802864075,
0.0750962346792221,
0.13044020533561707,
-0.027556980028748512,
-0.13262879848480225,
-0.13625997304916382,
-0.03124331496655941,
0.043131038546562195,
-0.00038297876017168164,
-0.005369374994188547,
-0.010738516226410866,
-0.021428599953651428,
0.007201085332781076,
0.02874530665576458,
0.01930749975144863,
-0.053550899028778076,
0.08974217623472214,
-0.04596361890435219,
0.06049890071153641,
0.07631134986877441,
0.025273146107792854,
-0.04017690196633339,
-0.009189714677631855,
-0.16560117900371552,
0.10682216286659241,
-0.10646071285009384,
-0.01603708416223526,
-0.13005515933036804,
-0.02080697752535343,
-0.043395042419433594,
-0.012677013874053955,
0.019173938781023026,
0.2245853692293167,
-0.24206683039665222,
-0.05051442235708237,
0.2764878273010254,
-0.12249591946601868,
-0.07602938264608383,
0.08239877223968506,
-0.05040625110268593,
-0.012592833489179611,
0.10338279604911804,
0.12439972162246704,
-0.004768982529640198,
-0.14713996648788452,
-0.10266780853271484,
-0.05630254000425339,
-0.020141668617725372,
0.11281918734312057,
0.08252673596143723,
-0.046628255397081375,
0.026969490572810173,
0.032155826687812805,
-0.06703702360391617,
0.04101822152733803,
-0.034290291368961334,
-0.07193203270435333,
-0.018901308998465538,
-0.07550697773694992,
0.09577567875385284,
-0.014272873289883137,
-0.03999210521578789,
0.007229298818856478,
-0.06767558306455612,
-0.08683592081069946,
0.1994335949420929,
-0.02526201494038105,
-0.04409698024392128,
-0.10218141227960587,
0.010520878247916698,
-0.0031151287257671356,
0.030231783166527748,
-0.13635961711406708,
-0.05837542191147804,
-0.00641990453004837,
-0.06805916875600815,
0.013113219290971756,
-0.007443394977599382,
0.06525829434394836,
0.03589257597923279,
-0.05077895149588585,
-0.0005661222385242581,
-0.08756624907255173,
0.002244076458737254,
-0.02713852934539318,
-0.20113396644592285,
0.001959715038537979,
-0.05814950913190842,
0.1893724799156189,
-0.2272382378578186,
0.06584946066141129,
0.0024834645446389914,
0.12008853256702423,
0.007310028653591871,
-0.05945098400115967,
0.10270218551158905,
-0.04107416048645973,
-0.028692901134490967,
-0.04364156723022461,
-0.0317666158080101,
-0.01951773837208748,
-0.10113826394081116,
0.01930723898112774,
-0.03798475116491318,
0.03363868221640587,
0.11331041157245636,
0.04118731990456581,
-0.10587264597415924,
-0.06092908978462219,
-0.02381092496216297,
-0.02033917047083378,
-0.06495558470487595,
0.004614115692675114,
0.10499437153339386,
0.07026409357786179,
0.053005803376436234,
-0.04140340909361839,
0.007879209704697132,
-0.021678641438484192,
-0.04538347199559212,
-0.011581710539758205,
0.07066480070352554,
-0.019686246290802956,
-0.1181587278842926,
0.07867040485143661,
0.05078361928462982,
0.022515611723065376,
0.10667768120765686,
0.031865429133176804,
-0.0975450947880745,
-0.024249710142612457,
0.016334515064954758,
0.037890635430812836,
0.11751694232225418,
-0.024004533886909485,
0.07164700329303741,
0.07623651623725891,
-0.0504244863986969,
-0.021028295159339905,
-0.08320966362953186,
-0.06851193308830261,
-0.01326045487076044,
-0.08266118168830872,
-0.17774167656898499,
0.013165670447051525,
0.037219516932964325,
0.12784528732299805,
-0.024276630952954292,
0.058684393763542175,
0.015255685895681381,
-0.018697157502174377,
-0.09003116935491562,
0.20188724994659424,
-0.09649680554866791,
-0.26750871539115906,
-0.025581711903214455,
-0.02513478323817253,
-0.045106254518032074,
0.009385820478200912,
0.013158919289708138,
-0.20628288388252258,
-0.04714123532176018,
0.012018491514027119,
-0.010936497710645199,
0.046178027987480164,
-0.04506770521402359,
0.011712652631103992,
0.05901981517672539,
0.07731830328702927,
-0.12323062121868134,
0.011318947188556194,
0.016565784811973572,
-0.011109345592558384,
0.08495356887578964,
0.003469459479674697,
0.07768222689628601,
0.10201466828584671,
0.062477461993694305,
0.012354453094303608,
0.040584515780210495,
0.1524333953857422,
-0.13978129625320435,
0.013340193778276443,
0.13405737280845642,
-0.0006821336573921144,
0.052047405391931534,
0.10996691882610321,
0.07839403301477432,
-0.06954893469810486,
0.01614820770919323,
0.06311827898025513,
-0.024398330599069595,
-0.27009397745132446,
-0.0523812361061573,
-0.020391061902046204,
-0.08579150587320328,
0.05565369874238968,
0.06575746089220047,
0.08421977609395981,
0.07583744078874588,
-0.09366819262504578,
-0.018516555428504944,
0.06012867018580437,
0.08035509288311005,
-0.06871242076158524,
0.022761162370443344,
0.04570501297712326,
-0.027703329920768738,
-0.022757336497306824,
0.09358207136392593,
0.10223889350891113,
0.18439096212387085,
-0.03293117135763168,
0.04947793111205101,
0.10747327655553818,
0.06837426126003265,
0.03257070481777191,
0.014066834934055805,
0.07545410096645355,
-0.020059596747159958,
-0.007418873254209757,
-0.07400067895650864,
-0.06108473986387253,
0.05487027391791344,
0.02478991076350212,
-0.06939049065113068,
-0.008520022965967655,
-0.015228758566081524,
0.09063392132520676,
0.1379944235086441,
-0.0063227335922420025,
-0.23895929753780365,
-0.05710180848836899,
0.019758764654397964,
0.04048224166035652,
-0.03892068192362785,
-0.029824525117874146,
-0.03616037592291832,
-0.13535507023334503,
0.1291097104549408,
-0.058706335723400116,
0.06958746910095215,
-0.08609671145677567,
0.01943594217300415,
-0.004886842332780361,
0.0742109939455986,
-0.03743642941117287,
0.11464361846446991,
-0.31691503524780273,
0.14966079592704773,
0.02231576107442379,
0.08997298777103424,
-0.10688460618257523,
0.0011686868965625763,
0.10645086318254471,
0.052936505526304245,
0.1508539617061615,
0.005435571074485779,
0.0628352165222168,
-0.1275351643562317,
-0.1620534211397171,
0.010378353297710419,
-0.0193746667355299,
-0.06502486765384674,
0.03791622072458267,
0.054809339344501495,
-0.014488552697002888,
-0.011462821625173092,
-0.013101242482662201,
-0.27402976155281067,
-0.14393967390060425,
0.10504654794931412,
-0.03389858826994896,
0.07860295474529266,
-0.07679448276758194,
-0.06630075722932816,
-0.022208446636795998,
0.19164790213108063,
0.01377122849225998,
-0.07630234956741333,
-0.10087547451257706,
0.07296576350927353,
0.10958117246627808,
-0.05522286891937256,
-0.07835475355386734,
0.02217920869588852,
0.1756369173526764,
-0.05188041552901268,
-0.06843822449445724,
0.007130327634513378,
-0.12438329309225082,
-0.139227494597435,
-0.06767185777425766,
0.06436078995466232,
0.10674994438886642,
0.0417083241045475,
0.07144475728273392,
-0.06003028526902199,
0.012560664676129818,
-0.11462678760290146,
0.07453560084104538,
0.1131482943892479,
0.04411458969116211,
0.08132016658782959,
-0.09834476560354233,
-0.08010714501142502,
-0.15556995570659637,
-0.05309087038040161,
0.058678340166807175,
0.2666354775428772,
-0.03322560712695122,
0.07912939041852951,
0.11622750759124756,
-0.09359492361545563,
-0.1440577208995819,
-0.028148751705884933,
0.04890260100364685,
-0.030892664566636086,
0.03739330545067787,
-0.28448399901390076,
0.032978352159261703,
0.1393122673034668,
-0.034700874239206314,
0.060521677136421204,
-0.2206028252840042,
-0.09694143384695053,
0.13579095900058746,
0.03723303973674774,
-0.006746673956513405,
-0.1526993364095688,
-0.033078305423259735,
-0.08307386934757233,
-0.07566121220588684,
0.1273842453956604,
-0.07574230432510376,
0.08676754683256149,
-0.02411639876663685,
0.0806206539273262,
0.056590378284454346,
-0.06899406760931015,
0.14410415291786194,
0.07977738976478577,
0.06565006822347641,
-0.07946502417325974,
-0.04274263605475426,
0.08179181814193726,
-0.0345517173409462,
0.09179384261369705,
0.048397213220596313,
-0.006296240724623203,
-0.09520886093378067,
-0.017551617696881294,
-0.10754948109388351,
0.049006927758455276,
-0.05245301499962807,
-0.046177539974451065,
-0.019495569169521332,
0.10476253181695938,
0.052605099976062775,
0.006716768257319927,
0.0040375543758273125,
-0.024637416005134583,
0.11232456564903259,
0.0207524411380291,
0.102517269551754,
0.061314456164836884,
-0.12797492742538452,
0.006691571790724993,
-0.018303310498595238,
0.048923369497060776,
-0.127269446849823,
0.047166239470243454,
0.045254215598106384,
0.015201232396066189,
0.11972635239362717,
0.03802024945616722,
-0.15086837112903595,
0.03700447827577591,
0.09538912773132324,
-0.09142114222049713,
-0.09901189804077148,
0.0031952550634741783,
0.04786219820380211,
-0.11575251072645187,
-0.0119349155575037,
0.12541690468788147,
-0.04178992658853531,
-0.038553956896066666,
0.01369034219533205,
0.09434022009372711,
-0.034469228237867355,
0.14409612119197845,
0.06761697679758072,
0.04544943571090698,
-0.1340448409318924,
0.07798195630311966,
0.0802886039018631,
-0.009114829823374748,
0.031236594542860985,
-0.05795394256711006,
-0.07891874015331268,
-0.07342631369829178,
-0.0272807814180851,
0.09503037482500076,
-0.031582728028297424,
-0.05555489659309387,
-0.04923250898718834,
-0.023615501821041107,
0.027588242664933205,
-0.07931505888700485,
0.019535109400749207,
0.03493296355009079,
0.05121263116598129,
-0.026392830535769463,
-0.09899646043777466,
0.040101584047079086,
0.045036327093839645,
0.04095696285367012,
-0.12724551558494568,
0.07163805514574051,
-0.01139005459845066,
0.01625334657728672,
-0.005697374232113361,
-0.032239899039268494,
-0.1099492684006691,
-0.0030131202656775713,
-0.0699508860707283,
0.041833121329545975,
-0.11398594081401825,
0.005843655671924353,
-0.004643465392291546,
0.02055303379893303,
0.037908684462308884,
0.01787913590669632,
-0.10421314835548401,
-0.03295927494764328,
0.02931096777319908,
0.10816461592912674,
-0.17116299271583557,
-0.04221310839056969,
0.02673095464706421,
-0.0734139233827591,
0.08481332659721375,
0.11572747677564621,
-0.025314724072813988,
-0.03539874777197838,
-0.26486262679100037,
-0.025983043015003204,
0.0576741024851799,
0.06985063850879669,
-0.011585690081119537,
-0.1405877321958542,
0.030581263825297356,
-0.053353697061538696,
-0.059808965772390366,
0.03269481658935547,
0.0897153913974762,
-0.08772126585245132,
-0.03158445283770561,
0.029939858242869377,
-0.04831349104642868,
-0.026224780827760696,
0.032372307032346725,
0.1621391773223877,
0.025171997025609016,
0.1422153264284134,
-0.045329030603170395,
0.04099700227379799,
-0.15239940583705902,
0.0009964728960767388,
0.000750998966395855,
0.0006457368144765496,
0.021534770727157593,
-0.0014282037736847997,
0.06975328922271729,
-0.029262708500027657,
0.12379992753267288,
-0.08634810894727707,
0.02725873701274395,
0.0016719064442440867,
-0.05808316543698311,
0.0029092782642692327,
-0.03289106860756874,
0.005550225265324116,
0.010301795788109303,
0.01847376488149166,
0.0602780282497406,
-0.0009406625758856535,
0.039248883724212646,
-0.053371500223875046,
0.08534766733646393,
0.15843942761421204,
0.10848857462406158,
-0.025196485221385956,
0.049922164529561996,
-0.12210512906312943,
-0.054232146590948105,
0.002476379042491317,
-0.07559219747781754,
0.06123208999633789,
0.005390822887420654,
0.03579151630401611,
0.11564882099628448,
-0.13478563725948334,
0.05434657633304596,
-0.05323950946331024,
-0.06958085298538208,
-0.0849699079990387,
-0.11728601157665253,
-0.05690733343362808,
-0.06552085280418396,
0.06445129960775375,
-0.11768586933612823,
0.05537329614162445,
0.11973791569471359,
0.020442411303520203,
-0.013019034639000893,
0.0933404192328453,
0.02579377591609955,
-0.04860877990722656,
0.04774394631385803,
-0.03272795304656029,
-0.07322470843791962,
-0.022181911394000053,
0.0013446577358990908,
0.05109507590532303,
-0.02045651711523533,
0.05959666520357132,
0.004442579112946987,
0.05127372965216637,
0.04846019670367241,
-0.0697074756026268,
-0.08522243052721024,
0.02381190098822117,
-0.006045239511877298,
0.06866404414176941,
0.16708599030971527,
0.09045852720737457,
0.0012115930439904332,
0.015001896768808365,
0.15364539623260498,
0.013011731207370758,
-0.030610837042331696,
-0.1863064467906952,
-0.03498382866382599,
0.0120700653642416,
-0.024939220398664474,
-0.0008817045600153506,
-0.0879342183470726,
-0.020730361342430115,
0.11698027700185776,
0.16424135863780975,
-0.056949321180582047,
0.008099393919110298,
-0.017950253561139107,
-0.005977146327495575,
-0.0013409799430519342,
0.1093771755695343,
0.0699668824672699,
0.05269542336463928,
-0.09670484066009521,
0.07834350317716599,
-0.008794274181127548,
0.011129599064588547,
-0.06906820088624954,
0.1332939714193344,
-0.051410552114248276,
-0.03512102738022804,
-0.036579687148332596,
0.15425778925418854,
-0.10083332657814026,
-0.12874053418636322,
-0.06581398844718933,
-0.08767667412757874,
-0.14083097875118256,
-0.03789573907852173,
-0.10566475242376328,
0.0632585808634758,
0.036253154277801514,
-0.012257108464837074,
-0.007121151778846979,
0.21677668392658234,
-0.005641694646328688,
-0.06853381544351578,
-0.09758377820253372,
0.0878143310546875,
0.038375478237867355,
0.2059304267168045,
0.022008167579770088,
0.1206655353307724,
0.08627040684223175,
-0.03768178075551987,
-0.11546604335308075,
0.00468025729060173,
0.011566860601305962,
-0.049935232847929,
0.03036482259631157,
0.11699291318655014,
-0.0228634774684906,
0.043563660234212875,
0.07489508390426636,
-0.022796381264925003,
0.028409447520971298,
0.07023024559020996,
0.009077814407646656,
-0.09651202708482742,
0.1470392793416977,
-0.0878513976931572,
0.09659574925899506,
0.18549545109272003,
-0.04281526058912277,
-0.006188938394188881,
-0.03467809408903122,
0.06982209533452988,
0.034961920231580734,
-0.010681954212486744,
-0.07622049003839493,
-0.1560104340314865,
0.02398691140115261,
0.025339681655168533,
0.0713244080543518,
-0.13722118735313416,
-0.06718816608190536,
-0.008296419866383076,
-0.0968475267291069,
-0.017353065311908722,
0.0875244289636612,
0.04209911823272705,
0.07042068988084793,
-0.035571709275245667,
-0.022809943184256554,
-0.0013485150411725044,
0.09301526844501495,
-0.12828855216503143,
-0.07333327829837799
] |
null | null | transformers |
[emissions-extraction-lora](https://huggingface.co/nopperl/emissions-extraction-lora) merged with the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), converted into GGUF format and quantized. Can be used with llama.cpp.
| {"license": "apache-2.0"} | text-generation | nopperl/emissions-extraction-lora-merged-GGUF | [
"transformers",
"gguf",
"mistral",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:14:46+00:00 | [] | [] | TAGS
#transformers #gguf #mistral #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
emissions-extraction-lora merged with the mistralai/Mistral-7B-Instruct-v0.2, converted into GGUF format and quantized. Can be used with URL.
| [] | [
"TAGS\n#transformers #gguf #mistral #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
53
] | [
"passage: TAGS\n#transformers #gguf #mistral #text-generation #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.009665656834840775,
0.08877447992563248,
-0.005272381007671356,
0.0020988970063626766,
0.11255878210067749,
0.015568217262625694,
0.1587449163198471,
0.11731972545385361,
-0.0003857084666378796,
-0.04072175174951553,
0.1706686019897461,
0.15280218422412872,
0.0032395166344940662,
0.05276016891002655,
-0.07221583276987076,
-0.20793794095516205,
0.09624126553535461,
0.007225551642477512,
-0.04131342098116875,
0.056647129356861115,
0.11411918699741364,
0.005989960394799709,
0.08433865010738373,
-0.014127971604466438,
-0.12729641795158386,
0.020960789173841476,
0.038503896445035934,
-0.11062944680452347,
0.06643570959568024,
0.09365329146385193,
0.025768155232071877,
0.025670118629932404,
-0.04129777103662491,
-0.191871777176857,
0.014571581035852432,
0.0008743745274841785,
-0.07662341743707657,
0.04972628504037857,
0.05416087806224823,
-0.035730063915252686,
0.10176980495452881,
0.07038626819849014,
-0.07188494503498077,
0.08451715856790543,
-0.10785805433988571,
-0.08092007786035538,
-0.09743485599756241,
0.006817623041570187,
0.06968265026807785,
0.08568236976861954,
0.02065260149538517,
0.04240903630852699,
-0.03863287717103958,
0.04439927265048027,
0.1152631938457489,
-0.3295641839504242,
0.0042243413627147675,
0.11799541115760803,
0.040947139263153076,
0.01898784190416336,
-0.040392741560935974,
0.09052880853414536,
0.0743887647986412,
0.005565793719142675,
-0.001984325470402837,
-0.06921606510877609,
-0.06837949901819229,
0.07473433762788773,
-0.05443618446588516,
-0.050085633993148804,
0.26602649688720703,
-0.02421390451490879,
0.014518825337290764,
-0.006346695125102997,
-0.059932343661785126,
0.04841341823339462,
-0.03505048528313637,
0.05493433028459549,
-0.0001945967524079606,
0.15161475539207458,
0.08236570656299591,
-0.08224895596504211,
-0.1297539621591568,
-0.030032560229301453,
-0.1949148029088974,
0.08823913335800171,
-0.010471818968653679,
0.06275412440299988,
-0.1442384570837021,
0.05587243288755417,
-0.04958728700876236,
-0.11467930674552917,
-0.03392788767814636,
-0.05762028321623802,
0.07371264696121216,
0.0303639005869627,
-0.0871267169713974,
-0.03324328735470772,
0.17036864161491394,
0.23087698221206665,
0.017766080796718597,
0.03043532744050026,
-0.06712859123945236,
0.1015763133764267,
-0.018333813175559044,
0.06093461439013481,
0.003513471921905875,
-0.053848136216402054,
0.0944712683558464,
-0.1484607458114624,
0.05953973904252052,
-0.05430343747138977,
-0.17750920355319977,
-0.024584773927927017,
-0.043285831809043884,
0.09506308287382126,
0.037501510232686996,
0.06234055384993553,
-0.013700461946427822,
0.02112676575779915,
0.12943221628665924,
-0.05612430348992348,
-0.0032594611402601004,
-0.015556036494672298,
0.04101980850100517,
0.06994674354791641,
0.026958009228110313,
0.06471934169530869,
-0.049918901175260544,
0.030774030834436417,
-0.06738975644111633,
-0.032093510031700134,
-0.030258772894740105,
-0.012837943620979786,
0.06291010975837708,
-0.06018294766545296,
0.03775957226753235,
-0.13518525660037994,
-0.22131554782390594,
0.02404124289751053,
0.06168566271662712,
-0.038741838186979294,
-0.05605987831950188,
-0.005813819356262684,
-0.04410530626773834,
0.07579150050878525,
-0.0694652795791626,
0.0257885605096817,
-0.08444307744503021,
0.03457438573241234,
-0.06382264196872711,
0.015497793443500996,
-0.20701918005943298,
0.0640275776386261,
-0.08263266086578369,
0.006506769452244043,
-0.043342337012290955,
0.04524306580424309,
-0.07286153733730316,
0.1917305886745453,
-0.06642520427703857,
0.039209362119436264,
-0.017718061804771423,
0.022891422733664513,
-0.02500949427485466,
0.14842097461223602,
-0.09732915461063385,
-0.06564188748598099,
0.16918204724788666,
-0.08633198589086533,
-0.16897164285182953,
0.0850500613451004,
0.032088447362184525,
0.024304429069161415,
0.07272537052631378,
0.19282589852809906,
0.040551867336034775,
-0.0008562065777368844,
0.09975247830152512,
0.13303719460964203,
-0.05082513391971588,
-0.12674108147621155,
0.05228852480649948,
-0.08362574875354767,
-0.1342017501592636,
0.058198682963848114,
-0.004037919919937849,
0.11461372673511505,
0.021461455151438713,
-0.06449802964925766,
-0.07945273071527481,
-0.03342774137854576,
-0.03961195796728134,
-0.0508570671081543,
0.0947146862745285,
-0.05215414613485336,
0.001357111963443458,
-0.038259539753198624,
0.005246985703706741,
0.013191988691687584,
0.045006562024354935,
-0.030377203598618507,
0.07099267095327377,
-0.014837151393294334,
0.09343282878398895,
-0.09142106026411057,
-0.02989170514047146,
0.0030132641550153494,
0.029949896037578583,
0.011405560187995434,
0.04244869947433472,
0.04059279337525368,
-0.04062369838356972,
-0.005636658985167742,
0.04085817560553551,
0.159305602312088,
0.013440461829304695,
-0.031852029263973236,
-0.11691460758447647,
0.09832832962274551,
-0.048974014818668365,
0.027609866112470627,
-0.053463682532310486,
0.03105066902935505,
0.056384287774562836,
0.07647260278463364,
-0.03426453098654747,
0.06501073390245438,
-0.01692141965031624,
-0.053118154406547546,
-0.08869855105876923,
-0.021178223192691803,
0.0866176038980484,
0.04474378004670143,
-0.11190836876630783,
0.23451440036296844,
-0.12568868696689606,
0.18646448850631714,
0.18581518530845642,
-0.14402538537979126,
0.08079681545495987,
-0.07313136011362076,
-0.00499480776488781,
-0.003917946480214596,
0.06104053184390068,
-0.020791025832295418,
0.04247290641069412,
-0.011056669987738132,
0.15432944893836975,
-0.04177849367260933,
-0.043891772627830505,
-0.016878515481948853,
-0.059906549751758575,
-0.025459323078393936,
0.02868468686938286,
0.09875898063182831,
-0.18084946274757385,
0.20076869428157806,
0.2935444712638855,
-0.002982263918966055,
0.13849620521068573,
-0.07570455968379974,
-0.008789338171482086,
0.04250417649745941,
-0.0037273659836500883,
-0.009749829769134521,
-0.036336787045001984,
-0.14526277780532837,
-0.0033737211488187313,
0.08813799172639847,
0.06482263654470444,
0.08596585690975189,
-0.11031659692525864,
-0.04553740844130516,
-0.016179896891117096,
-0.054078519344329834,
0.0006374078802764416,
0.0762191116809845,
-0.04266434535384178,
0.08143309503793716,
-0.02471793256700039,
-0.02931329607963562,
0.1294902116060257,
0.00700387405231595,
-0.10024961829185486,
0.16258130967617035,
-0.1761578619480133,
-0.19565227627754211,
-0.18481726944446564,
-0.16253116726875305,
-0.08451507240533829,
0.05067603662610054,
0.14565882086753845,
-0.06921584159135818,
-0.06743675470352173,
-0.026424162089824677,
0.005870293825864792,
-0.035630661994218826,
0.01072625257074833,
0.017152348533272743,
0.02297825552523136,
-0.037420716136693954,
-0.11710325628519058,
-0.04983251169323921,
0.03769121691584587,
-0.03913901746273041,
0.08876615762710571,
-0.09630095958709717,
0.09352760761976242,
0.12685902416706085,
0.06707771122455597,
0.0300388615578413,
-0.013706989586353302,
0.18234482407569885,
-0.05572635307908058,
-0.00045948801562190056,
0.19120794534683228,
-0.01815727725625038,
0.058846067637205124,
0.13796862959861755,
0.00723612355068326,
-0.09554687887430191,
0.023394666612148285,
-0.03617562726140022,
-0.08598929643630981,
-0.24873673915863037,
-0.07823814451694489,
-0.1278664916753769,
0.04962882772088051,
0.017438149079680443,
0.09819231182336807,
0.16328318417072296,
0.0828264132142067,
-0.04356170818209648,
0.06633555889129639,
0.03940662741661072,
0.07994738221168518,
0.22678637504577637,
-0.00429990841075778,
0.10547122359275818,
-0.11734617501497269,
-0.03728337958455086,
0.1384112387895584,
0.09919716417789459,
0.17356888949871063,
0.13802771270275116,
0.14539410173892975,
0.05348018929362297,
0.04697565734386444,
0.096493661403656,
0.09945040196180344,
0.026133866980671883,
-0.022077852860093117,
-0.06232060119509697,
-0.03363179415464401,
-0.01133766584098339,
0.07858198881149292,
-0.08719118684530258,
-0.1666232943534851,
0.006028767209500074,
-0.11514768749475479,
0.09843848645687103,
0.17516589164733887,
0.02042245678603649,
-0.14555148780345917,
0.011658118106424809,
0.12019368261098862,
-0.012905905023217201,
-0.06965073198080063,
0.07686500996351242,
-0.03184548020362854,
-0.07806148380041122,
0.12339591979980469,
-0.03439102694392204,
0.1400628238916397,
0.015456410124897957,
0.06283051520586014,
-0.032026730477809906,
-0.05005176365375519,
0.03748571500182152,
0.1249808520078659,
-0.33122098445892334,
0.1731308400630951,
0.0040307315066456795,
-0.013541468419134617,
-0.07351012527942657,
0.04690245911478996,
0.06854788959026337,
0.19910208880901337,
0.08872352540493011,
0.009837659075856209,
-0.17609629034996033,
0.017475364729762077,
-0.023896418511867523,
0.05491001531481743,
0.056717872619628906,
-0.03832786902785301,
-0.03874843940138817,
-0.06425434350967407,
0.0014967236202210188,
0.01167689636349678,
0.05046588182449341,
-0.09551181644201279,
-0.2095288187265396,
0.08287728577852249,
0.10790270566940308,
0.07433602213859558,
-0.05042751133441925,
0.04339400678873062,
-0.11798515915870667,
0.2031790316104889,
-0.1179078221321106,
-0.07049749791622162,
-0.13078390061855316,
-0.09679394960403442,
0.04347808659076691,
-0.037636786699295044,
0.06185473874211311,
-0.09815811365842819,
0.018973054364323616,
-0.06381067633628845,
-0.21238568425178528,
0.10536208748817444,
-0.12135252356529236,
-0.009531041607260704,
-0.033368270844221115,
0.07490088045597076,
-0.09360892325639725,
-0.005030428059399128,
0.03336229920387268,
0.030014680698513985,
-0.10434257984161377,
-0.1474175751209259,
0.006248612888157368,
0.03910144045948982,
0.003913544584065676,
-0.03240544721484184,
-0.09600518643856049,
-0.029104629531502724,
0.022764423862099648,
-0.09073074162006378,
0.24589690566062927,
0.1982974112033844,
-0.05190732702612877,
0.18404936790466309,
0.19761425256729126,
-0.1215972900390625,
-0.3141822814941406,
-0.1322804093360901,
-0.1575607806444168,
-0.06594996154308319,
-0.05681489780545235,
-0.20588582754135132,
0.09567928314208984,
0.06513963639736176,
-0.07134288549423218,
0.16263720393180847,
-0.2083476036787033,
-0.08207742869853973,
0.1642119139432907,
-0.038377877324819565,
0.33646005392074585,
-0.18409664928913116,
-0.1252625733613968,
-0.1417023241519928,
-0.17530861496925354,
0.13633662462234497,
-0.11618641018867493,
0.09184689819812775,
-0.0010604109847918153,
0.0471634566783905,
-0.01891917921602726,
-0.037867963314056396,
0.1601283699274063,
0.010410243645310402,
0.03898566961288452,
-0.1256522238254547,
0.08035774528980255,
0.0997186005115509,
-0.013563678599894047,
0.05739770829677582,
-0.21279671788215637,
0.014169217087328434,
-0.04469047486782074,
-0.026027247309684753,
-0.012319132685661316,
0.08909519761800766,
0.03673797473311424,
-0.05591447278857231,
-0.04961623623967171,
-0.07070500403642654,
0.011619490571320057,
-0.005345247220247984,
0.22583948075771332,
-0.005370107013732195,
0.07841090857982635,
0.10455457866191864,
0.0656864196062088,
-0.18631215393543243,
0.07226816564798355,
-0.07609740644693375,
-0.06915976852178574,
0.07545715570449829,
-0.197870135307312,
0.042880672961473465,
0.06578297913074493,
-0.07088837772607803,
0.08397488296031952,
0.07833100855350494,
-0.004652478266507387,
-0.016161929816007614,
0.1319183111190796,
-0.15454690158367157,
-0.04154491052031517,
-0.038053449243307114,
0.0720306932926178,
0.07375744730234146,
0.057483479380607605,
0.15897847712039948,
0.03796379268169403,
-0.0046327728778123856,
0.020973365753889084,
0.0344584695994854,
-0.07640450447797775,
0.06192827969789505,
0.0013082899386063218,
-0.022013923153281212,
-0.14341340959072113,
0.13235539197921753,
0.009330467320978642,
-0.07784593105316162,
0.01968378759920597,
0.12472700327634811,
-0.14815981686115265,
-0.1335320770740509,
-0.03826451301574707,
0.13058897852897644,
-0.19222994148731232,
-0.0733548179268837,
-0.023718222975730896,
-0.14698772132396698,
0.06880462169647217,
0.08157023787498474,
0.06649525463581085,
0.0825740322470665,
-0.014583510346710682,
-0.04807993024587631,
0.042506568133831024,
-0.016125492751598358,
-0.06472571939229965,
0.05013161525130272,
-0.07524990290403366,
-0.10746859014034271,
-0.03644827380776405,
0.06478626281023026,
-0.05460374057292938,
-0.010514571331441402,
-0.11790874600410461,
-0.006606800947338343,
-0.209061399102211,
-0.01430476550012827,
-0.09936228394508362,
-0.028880290687084198,
0.021013448014855385,
-0.055867087095975876,
-0.04491553083062172,
-0.006910413037985563,
-0.11641023308038712,
-0.04647262394428253,
-0.06789104640483856,
0.07833603769540787,
-0.09306696802377701,
-0.023846477270126343,
0.08501432836055756,
-0.02513873763382435,
0.1258535087108612,
0.0999860092997551,
-0.0632292628288269,
0.10199324786663055,
-0.24618159234523773,
-0.07895075529813766,
0.08560078591108322,
0.011990020982921124,
0.012718936428427696,
0.008229237049818039,
-0.005373371299356222,
0.10911796987056732,
0.001633399398997426,
0.035128578543663025,
0.008609305135905743,
-0.12604551017284393,
-0.07225856184959412,
-0.06496205925941467,
-0.10489822179079056,
-0.03171277418732643,
-0.09043700993061066,
0.12081096321344376,
0.040111541748046875,
0.15932618081569672,
-0.032853201031684875,
0.035574644804000854,
-0.013741839677095413,
0.03427810221910477,
0.0063685765489935875,
-0.17055688798427582,
-0.14000514149665833,
-0.07161533832550049,
-0.03973303735256195,
0.00475729675963521,
0.28181108832359314,
-0.01230426412075758,
-0.07250815629959106,
0.06061677262187004,
0.09545080363750458,
0.07657443732023239,
0.015474165789783001,
0.298041433095932,
0.12323156744241714,
0.0014526203740388155,
-0.14330646395683289,
0.04313773289322853,
0.029037998989224434,
-0.07976533472537994,
0.05488194525241852,
0.050913482904434204,
-0.015685921534895897,
0.12712077796459198,
-0.006604528054594994,
-0.02780524455010891,
-0.04234215244650841,
-0.005374288186430931,
0.0019231344340369105,
0.08554098010063171,
-0.012742661871016026,
0.08562260121107101,
0.1986992508172989,
-0.06072169914841652,
0.02062900923192501,
-0.028008917346596718,
-0.020840302109718323,
-0.1605299413204193,
-0.16479286551475525,
-0.08092759549617767,
-0.142005056142807,
0.015267378650605679,
-0.07141527533531189,
0.09235101193189621,
0.06498464196920395,
0.04786637797951698,
-0.03894177824258804,
0.027808796614408493,
-0.010683028027415276,
-0.08685608208179474,
0.04109927639365196,
-0.06038479134440422,
-0.00803335476666689,
-0.007190971169620752,
-0.048943351954221725,
-0.04615271836519241,
-0.021287942305207253,
-0.024515291675925255,
0.07443399727344513,
0.033854421228170395,
0.06420554965734482,
-0.13590973615646362,
-0.05703457444906235,
-0.05084187909960747,
0.05968092381954193,
-0.046666622161865234,
0.1354343444108963,
0.01603829301893711,
-0.015329759567975998,
0.11238736659288406,
0.17096850275993347,
-0.06843196600675583,
-0.12312038242816925,
-0.07726145535707474,
0.12196090072393417,
0.017514923587441444,
0.10284361243247986,
-0.05024472624063492,
0.003622826188802719,
-0.04933817684650421,
0.3240983188152313,
0.2644394040107727,
-0.07494190335273743,
-0.00603373721241951,
-0.015888245776295662,
0.02336919866502285,
0.09149188548326492,
0.11823002994060516,
0.08893435448408127,
0.16830460727214813,
-0.049394723027944565,
-0.03325781971216202,
-0.016157660633325577,
-0.02879592776298523,
-0.16823376715183258,
0.12913843989372253,
-0.007604982703924179,
-0.08666405826807022,
0.002660185331478715,
0.10696534067392349,
-0.1277444213628769,
0.1134146973490715,
-0.09377648681402206,
-0.05156799778342247,
-0.009563950821757317,
0.00472070649266243,
0.13297651708126068,
0.004243628121912479,
0.037203285843133926,
-0.02357247658073902,
-0.06222442165017128,
0.09135241061449051,
-0.020999591797590256,
-0.21355673670768738,
-0.019005998969078064,
0.05238734558224678,
-0.04150629788637161,
0.08338721841573715,
-0.002411710564047098,
0.011548738926649094,
0.08985327929258347,
0.0547574944794178,
-0.10094620287418365,
0.07897898554801941,
-0.010352233424782753,
-0.027885086834430695,
0.03593049943447113,
-0.04684760421514511,
-0.02478383481502533,
-0.0775020495057106,
0.055175650864839554,
-0.04378097131848335,
0.059289488941431046,
0.038284335285425186,
-0.06935853511095047,
-0.014188170433044434,
-0.0011203836183995008,
-0.10821402817964554,
0.07141955941915512,
0.007002563215792179,
-0.01762419193983078,
-0.01814178191125393,
-0.0643484815955162,
0.008886421099305153,
0.009338311851024628,
-0.12933604419231415,
-0.06357115507125854,
-0.05087713152170181,
-0.06026206165552139,
0.13575923442840576,
0.032394956797361374,
-0.16662640869617462,
-0.010773646645247936,
-0.11940942704677582,
0.07159493863582611,
-0.1430550217628479,
0.0679757371544838,
0.15380153059959412,
-0.006396831013262272,
-0.018557798117399216,
-0.1560911238193512,
0.03834383934736252,
0.01980162225663662,
-0.03641285374760628,
-0.09282610565423965
] |
null | null | transformers |
# MT7Bi-dpo

[Technoculture/MT7Bi-sft (base)](https://huggingface.co/Technoculture/MT7Bi-sft) + [Technoculture/MT7Bi-alpha-dpo-v0.2 (adapter)](https://huggingface.co/Technoculture/MT7Bi-alpha-dpo-v0.2)
# Open LLM Leaderboard

| Model Name | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| ------------------ | -------- | --------- | ---- | ---------- | ---------- | -------- |
| Orca-2-7b | **78.4** | 76.1 | 53.7 | **52.4** | **74.2** | **47.2** |
| LLAMA-2-7b | 43.2 | **77.1** | 44.4 | 38.7 | 69.5 | 16 |
| MT7Bi-sft | 54.1 | 75.11 | - | 43.08 | 72.14 | 15.54 |
| MT7bi-dpo | 54.69 | 75.89 | 52.82 | 45.48 | 71.58 | 25.93 | | {"language": ["en"], "license": "mit", "datasets": ["Technoculture/MT7Bi-alpha-dpo-v0.2"], "base_model": "Technoculture/MT7Bi-sft"} | text-generation | Technoculture/MT7Bi-dpo | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"dataset:Technoculture/MT7Bi-alpha-dpo-v0.2",
"base_model:Technoculture/MT7Bi-sft",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:15:29+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #en #dataset-Technoculture/MT7Bi-alpha-dpo-v0.2 #base_model-Technoculture/MT7Bi-sft #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| MT7Bi-dpo
=========
!image/png
Technoculture/MT7Bi-sft (base) + Technoculture/MT7Bi-alpha-dpo-v0.2 (adapter)
Open LLM Leaderboard
====================
!image/png
| [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #en #dataset-Technoculture/MT7Bi-alpha-dpo-v0.2 #base_model-Technoculture/MT7Bi-sft #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
89
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #en #dataset-Technoculture/MT7Bi-alpha-dpo-v0.2 #base_model-Technoculture/MT7Bi-sft #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.051087502390146255,
0.08276967704296112,
-0.004227896686643362,
-0.025463324040174484,
0.07954254746437073,
-0.025524720549583435,
0.21480302512645721,
0.08235601335763931,
0.010980010963976383,
-0.05608296021819115,
0.1773347705602646,
0.2026694118976593,
-0.009143234230577946,
0.22377367317676544,
-0.10164779424667358,
-0.14068172872066498,
0.08158349245786667,
0.017959263175725937,
-0.03814011067152023,
0.11805032193660736,
0.15512800216674805,
-0.05874626711010933,
0.07764232903718948,
-0.066547691822052,
-0.08813008666038513,
0.01604999601840973,
0.04071391373872757,
-0.10879512131214142,
0.10992038995027542,
0.048072539269924164,
0.10149778425693512,
0.10582982003688812,
-0.008176946081221104,
-0.1672217845916748,
0.035374902188777924,
0.0135945500805974,
-0.06217651069164276,
0.04684288427233696,
0.05191344767808914,
-0.019717121496796608,
0.09936299920082092,
0.04235389083623886,
-0.015865374356508255,
0.07053328305482864,
-0.10400918871164322,
-0.010746228508651257,
-0.07108332216739655,
0.011660957708954811,
0.07345806807279587,
0.07602188736200333,
-0.0013735737884417176,
0.12858553230762482,
-0.02548079937696457,
0.11897193640470505,
0.04316147416830063,
-0.24458706378936768,
-0.007607029285281897,
0.1353147029876709,
0.13499270379543304,
0.09876786172389984,
-0.015895722433924675,
0.1086375042796135,
0.07821827381849289,
-0.00047365520731545985,
0.06519963592290878,
-0.04164329916238785,
0.03270170837640762,
0.01973978988826275,
-0.0755147784948349,
0.0062110512517392635,
0.3574751913547516,
-0.004587845876812935,
-0.0012781114783138037,
-0.04479232802987099,
-0.07175563275814056,
0.027731677517294884,
-0.005639728624373674,
-0.04932302609086037,
0.008246412500739098,
0.0729663074016571,
0.014275742694735527,
-0.0436817891895771,
-0.11507076025009155,
0.003126477589830756,
-0.15335939824581146,
0.09926464408636093,
-0.03769185021519661,
0.016457607969641685,
-0.1279609501361847,
0.03471485152840614,
0.040301211178302765,
-0.10505621135234833,
0.0046988073736429214,
-0.0902252122759819,
0.1163029596209526,
-0.03911207616329193,
0.012967481277883053,
-0.05923987552523613,
0.12829051911830902,
0.10389690846204758,
0.026618167757987976,
-0.042741090059280396,
-0.09009717404842377,
0.06271130591630936,
0.0001656335371080786,
-0.009914260357618332,
-0.03785136342048645,
-0.12192925065755844,
0.10570988804101944,
-0.015496304258704185,
0.06023458391427994,
-0.03051631711423397,
-0.10006885975599289,
-0.01361054740846157,
0.03780435398221016,
0.11079521477222443,
0.09385763853788376,
0.09278013557195663,
-0.04825977608561516,
0.01649150811135769,
0.060456566512584686,
-0.05188091844320297,
-0.04385783523321152,
-0.04044932872056961,
0.018093649297952652,
0.036732397973537445,
0.02083527110517025,
0.06972388178110123,
-0.008875044994056225,
0.04113093391060829,
-0.08456999063491821,
-0.06566665321588516,
-0.036490920931100845,
-0.05915775150060654,
0.08015126734972,
-0.06347134709358215,
0.06018786132335663,
-0.1610603928565979,
-0.261812299489975,
0.009228507056832314,
0.024419553577899933,
-0.008939615450799465,
-0.047446347773075104,
-0.031356289982795715,
-0.052142757922410965,
0.0010986141860485077,
-0.06930903345346451,
-0.016847139224410057,
-0.07343357056379318,
0.10944723337888718,
-0.05006541311740875,
0.01630263403058052,
-0.18808947503566742,
0.033967275172472,
-0.08870464563369751,
0.01763209141790867,
-0.07110113650560379,
0.013384315185248852,
-0.06699230521917343,
0.1738094836473465,
-0.047209013253450394,
0.04648981988430023,
-0.06120353564620018,
0.05662643164396286,
-0.03526129201054573,
0.21636316180229187,
-0.17809119820594788,
-0.03763246163725853,
0.11846806854009628,
-0.13324907422065735,
-0.22806130349636078,
0.0845048725605011,
-0.0022324672900140285,
0.18474853038787842,
0.1287766993045807,
0.18960419297218323,
0.026929203420877457,
-0.09544369578361511,
-0.013276362791657448,
0.06573706120252609,
-0.08448702841997147,
-0.11791481822729111,
0.039296623319387436,
0.024229541420936584,
-0.10864614695310593,
0.029403412714600563,
0.03319087252020836,
0.04611753299832344,
-0.0569768063724041,
-0.07653551548719406,
-0.04686576500535011,
-0.07208200544118881,
0.020372433587908745,
-0.021391335874795914,
0.03927623853087425,
-0.11025381833314896,
0.008542745374143124,
0.0265534408390522,
0.025176281109452248,
0.016055619344115257,
-0.011411233805119991,
-0.0899384617805481,
0.08813492953777313,
-0.04289287328720093,
0.03855765238404274,
-0.08345118910074234,
-0.07174590975046158,
-0.012160328216850758,
0.1079777404665947,
-0.004926295485347509,
0.037849411368370056,
0.03955863416194916,
-0.022331345826387405,
-0.04802543297410011,
-0.0139507120475173,
0.14531777799129486,
0.0510718934237957,
-0.06983203440904617,
-0.14047877490520477,
0.10290615260601044,
-0.0628688707947731,
0.06486484408378601,
-0.12277495115995407,
0.026627037674188614,
0.043008819222450256,
0.12732338905334473,
0.006325066555291414,
0.0571260042488575,
-0.016865430399775505,
0.005423461087048054,
-0.06676340103149414,
0.0031231266912072897,
0.08760591596364975,
0.00740458071231842,
-0.10677342116832733,
0.1622946560382843,
-0.11940797418355942,
0.3502536416053772,
0.20409516990184784,
-0.11162824183702469,
0.014692094177007675,
-0.05885005742311478,
0.0008075848454609513,
0.010649656876921654,
0.03535376116633415,
-0.048755113035440445,
-0.09517975151538849,
-0.013947551138699055,
0.10569596290588379,
-0.08799099922180176,
-0.023953763768076897,
0.00984012521803379,
-0.06200685724616051,
-0.06071777269244194,
0.0716499388217926,
0.06280970573425293,
-0.2486961930990219,
0.18910281360149384,
0.2911328375339508,
0.07048019021749496,
0.19440437853336334,
-0.04966835305094719,
0.011099263094365597,
0.015366805717349052,
0.002447392325848341,
-0.02651309221982956,
0.062201566994190216,
-0.09247157722711563,
0.024438191205263138,
0.05365946888923645,
0.003356851637363434,
0.06039920821785927,
-0.10566703230142593,
-0.08167167007923126,
-0.02980419062077999,
-0.04496145248413086,
-0.02375936508178711,
0.07909122854471207,
-0.0337793193757534,
0.14973051846027374,
-0.03186369314789772,
-0.059750188142061234,
0.12965598702430725,
-0.008709914982318878,
-0.10296369343996048,
0.1541374921798706,
-0.15454928576946259,
-0.24298112094402313,
-0.12113893032073975,
-0.0978325679898262,
-0.07106190919876099,
0.04808541759848595,
0.08217321336269379,
-0.03619012236595154,
-0.07028528302907944,
-0.05812346935272217,
0.020579295232892036,
-0.03083663433790207,
-0.003604371100664139,
0.005406447686254978,
0.07269034534692764,
-0.00425917562097311,
-0.11836893111467361,
-0.03087116777896881,
0.030644962564110756,
0.0034020773600786924,
0.11518853902816772,
-0.10061116516590118,
0.11739131808280945,
0.07146177440881729,
-0.00679723871871829,
-0.004232576582580805,
-0.04064440354704857,
0.17835408449172974,
-0.09332402795553207,
0.047432176768779755,
0.20315207540988922,
0.026190193369984627,
0.04666336625814438,
0.22004316747188568,
-0.0008172091329470277,
-0.1063445508480072,
0.06275082379579544,
-0.05224780738353729,
-0.06675444543361664,
-0.24547992646694183,
-0.13150188326835632,
-0.05053321272134781,
0.08884359896183014,
-0.03441454470157623,
0.06644859164953232,
0.1303301751613617,
0.08383253216743469,
-0.05568825453519821,
-0.00901026651263237,
0.045822031795978546,
0.07384937256574631,
0.20287886261940002,
-0.055284567177295685,
0.13376449048519135,
-0.08708187937736511,
-0.042879726737737656,
0.11105227470397949,
0.08295094966888428,
0.08384202420711517,
0.11293528974056244,
0.00955955870449543,
0.07671958953142166,
0.0944058746099472,
0.09980498999357224,
0.10971158742904663,
0.0608438216149807,
-0.03403504565358162,
-0.039651572704315186,
-0.05305551365017891,
-0.016660984605550766,
0.07104064524173737,
-0.093449667096138,
-0.08906801044940948,
0.009188668802380562,
-0.03744766116142273,
0.07509231567382812,
0.08683556318283081,
0.007944578304886818,
-0.22036895155906677,
0.010619929060339928,
0.12126271426677704,
-0.007708269637078047,
-0.07193072885274887,
0.07473741471767426,
0.03930364549160004,
-0.042177505791187286,
0.114421047270298,
-0.03183647617697716,
0.08027276396751404,
0.05255123972892761,
0.04736587032675743,
-0.057174455374479294,
-0.048428621143102646,
-0.013014053925871849,
0.09255459159612656,
-0.3789868950843811,
0.24379965662956238,
0.020978884771466255,
0.02822069451212883,
-0.051175881177186966,
-0.017569826915860176,
0.01071537472307682,
0.22805269062519073,
0.16048289835453033,
-0.01259529683738947,
-0.027998272329568863,
-0.0453326590359211,
-0.04126499965786934,
0.04527581110596657,
0.0779842883348465,
0.02088356949388981,
0.009487270377576351,
-0.04121078550815582,
-0.008788160979747772,
0.027459336444735527,
-0.0371355302631855,
-0.12236742675304413,
-0.1188061311841011,
0.03976045176386833,
0.06594779342412949,
0.14076735079288483,
-0.07388860732316971,
-0.02000461332499981,
-0.09070426225662231,
0.15102192759513855,
-0.0739395022392273,
-0.059351515024900436,
-0.11034313589334488,
-0.127146914601326,
0.0010570486774668097,
-0.010104713961482048,
0.03664945065975189,
-0.04341025650501251,
0.039760153740644455,
-0.07814327627420425,
-0.16219276189804077,
0.10488755255937576,
-0.11970797926187515,
-0.07413399964570999,
-0.07661417126655579,
0.12164786458015442,
-0.06462740153074265,
-0.00402594730257988,
0.04119803011417389,
-0.011137801222503185,
-0.057708658277988434,
-0.0779023990035057,
-0.03193666413426399,
0.051733508706092834,
0.01879974827170372,
-0.023719072341918945,
-0.11000542342662811,
-0.08750546723604202,
-0.011643270961940289,
-0.12626366317272186,
0.12219437956809998,
0.266132652759552,
-0.02086481638252735,
0.13044875860214233,
0.21991050243377686,
-0.09540943801403046,
-0.3555270731449127,
-0.07267755270004272,
-0.17874689400196075,
-0.04759618639945984,
-0.0009087304933927953,
-0.08297838270664215,
0.07436980307102203,
0.04981479421257973,
-0.061020396649837494,
0.07795007526874542,
-0.16669081151485443,
-0.11165909469127655,
0.13428901135921478,
0.04461348429322243,
0.29765066504478455,
-0.17768216133117676,
-0.07925254106521606,
-0.13391351699829102,
-0.060090333223342896,
0.16789370775222778,
-0.12861046195030212,
0.051311712712049484,
0.015426530502736568,
0.017159990966320038,
-0.005954419262707233,
-0.03562089800834656,
0.10849089175462723,
-0.0754583328962326,
0.05979778617620468,
-0.09834040701389313,
0.032356251031160355,
0.1086602434515953,
-0.003551068250089884,
0.03461387753486633,
-0.09322183579206467,
0.05500159040093422,
-0.0400453582406044,
-0.032606665045022964,
-0.027706017717719078,
0.10593901574611664,
-0.03177604451775551,
-0.09680960327386856,
-0.04864293336868286,
0.004171591717749834,
-0.013463622890412807,
-0.04108374938368797,
0.15060563385486603,
-0.05952714756131172,
0.14267219603061676,
0.12002615630626678,
0.17768850922584534,
-0.17923076450824738,
0.16987518966197968,
-0.03433292731642723,
-0.09404809027910233,
0.04381633549928665,
-0.12902358174324036,
0.016804100945591927,
0.09942936897277832,
-0.042746227234601974,
0.0834764838218689,
0.03974192216992378,
-0.003351920749992132,
-0.0235891155898571,
0.14841428399085999,
-0.19002242386341095,
-0.0713287964463234,
-0.0488145649433136,
0.06432344019412994,
0.020566115155816078,
0.08920006453990936,
0.17067697644233704,
-0.021850839257240295,
0.012274032458662987,
-0.022757375612854958,
0.05649686977267265,
-0.050683312118053436,
0.07158339768648148,
0.042094092816114426,
0.011134440079331398,
-0.10416161268949509,
0.09317239373922348,
-0.0007765764021314681,
-0.0719413086771965,
-0.010320061817765236,
0.053199656307697296,
-0.11806436628103256,
-0.09041658788919449,
-0.037993259727954865,
0.11952169239521027,
-0.13348062336444855,
-0.07289768755435944,
-0.05479554086923599,
-0.16671769320964813,
0.0319201722741127,
0.2294808030128479,
0.0471489354968071,
0.08223532140254974,
0.034715183079242706,
-0.06947967410087585,
-0.03776056319475174,
0.06346414983272552,
-0.034403927624225616,
0.02436586283147335,
-0.1618068516254425,
-0.02841760218143463,
-0.04710263013839722,
0.04461245238780975,
-0.08662137389183044,
0.022797221317887306,
-0.13052378594875336,
0.005804847460240126,
-0.10207509249448776,
-0.03225617855787277,
-0.08973459899425507,
-0.023566056042909622,
-0.0033753225579857826,
-0.07178578525781631,
-0.05950735881924629,
-0.039186879992485046,
-0.07995306700468063,
0.037459105253219604,
0.01671415939927101,
0.08755580335855484,
-0.08051005750894547,
-0.033522915095090866,
0.049097973853349686,
-0.014925778843462467,
0.09850770980119705,
0.03746950253844261,
-0.05575314536690712,
0.06398377567529678,
-0.2389971762895584,
0.0075803943909704685,
0.10932701826095581,
0.021912669762969017,
-0.002885036636143923,
0.023331088945269585,
-0.04957856237888336,
0.13040807843208313,
0.020132441073656082,
0.07288502901792526,
0.0025256488006561995,
-0.10394712537527084,
0.0007259310805238783,
-0.04194251075387001,
-0.06607110798358917,
-0.03364302217960358,
-0.03314433991909027,
0.144890695810318,
-0.02438950352370739,
0.18739445507526398,
-0.08735376596450806,
-0.0019342155428603292,
-0.07607360929250717,
0.05189196392893791,
0.0020254566334187984,
-0.1669425219297409,
-0.09716486185789108,
-0.04498603940010071,
-0.002826851326972246,
-0.002221891889348626,
0.25613105297088623,
-0.0032448326237499714,
-0.07039573788642883,
0.09530037641525269,
-0.0009876983240246773,
-0.000797373941168189,
0.019220152869820595,
0.27488085627555847,
0.06028309836983681,
0.02082214131951332,
-0.11695119738578796,
0.04344766214489937,
0.0193546861410141,
-0.07618306577205658,
0.011266344226896763,
0.13098300993442535,
-0.06590582430362701,
0.06808390468358994,
0.048987556248903275,
0.004583639558404684,
-0.02285643108189106,
-0.03612572327256203,
-0.04419858008623123,
0.03256073221564293,
-0.03408413380384445,
0.06941314041614532,
0.16988644003868103,
-0.04763789474964142,
-0.017884984612464905,
-0.053058214485645294,
-0.05019490793347359,
-0.13964934647083282,
-0.12312372028827667,
-0.09856131672859192,
-0.1277325451374054,
0.007720755413174629,
-0.10638738423585892,
0.051316291093826294,
0.02849447913467884,
0.05904587358236313,
-0.07741901278495789,
0.035115450620651245,
-0.04758777841925621,
-0.05151337385177612,
0.03467435762286186,
-0.010538527742028236,
0.005314650014042854,
-0.09595996141433716,
-0.0899721160531044,
-0.06306383013725281,
0.029073502868413925,
-0.049495551735162735,
0.040758080780506134,
-0.036913808435201645,
0.03995279222726822,
-0.10268271714448929,
-0.06644290685653687,
-0.041257306933403015,
0.05459130182862282,
-0.008090049959719181,
0.15008854866027832,
0.005372276995331049,
-0.03611014038324356,
0.11212354898452759,
0.22943222522735596,
-0.016556918621063232,
-0.140465646982193,
-0.04701092466711998,
0.11475194245576859,
-0.029095403850078583,
0.09419907629489899,
-0.021785933524370193,
-0.004900525789707899,
-0.010922690853476524,
0.26017671823501587,
0.2665928900241852,
-0.06668450683355331,
0.023059595376253128,
-0.06677497178316116,
0.023190626874566078,
-0.004006324801594019,
0.07167364656925201,
0.08166415989398956,
0.1580996811389923,
-0.0373360812664032,
0.030710596591234207,
-0.023221921175718307,
0.01788972318172455,
-0.07739269733428955,
0.06949234753847122,
0.0030401144176721573,
-0.048418547958135605,
-0.04916676506400108,
0.11831531673669815,
-0.09973016381263733,
-0.0024914517998695374,
-0.10246165841817856,
-0.09418616443872452,
-0.02951149456202984,
-0.03646526113152504,
0.08794138580560684,
-0.04074355214834213,
-0.006118168588727713,
-0.031889382749795914,
-0.028373131528496742,
0.017185760661959648,
-0.002063812455162406,
-0.15348325669765472,
0.01983943022787571,
0.05798498913645744,
-0.01862909272313118,
0.10125776380300522,
-0.007352507673203945,
0.008903858251869678,
0.09176094084978104,
-0.011793805286288261,
-0.09216955304145813,
0.14387518167495728,
0.04607017710804939,
-0.046808596700429916,
0.05014998838305473,
-0.0346253365278244,
0.011953470297157764,
0.051367733627557755,
0.06304997950792313,
-0.07598663866519928,
0.047848500311374664,
-0.01228403765708208,
-0.13702726364135742,
-0.0353948213160038,
0.06867005676031113,
-0.09911997616291046,
0.10751942545175552,
0.01610160619020462,
-0.0371771976351738,
0.020165009424090385,
-0.06280331313610077,
0.03906343877315521,
0.029014749452471733,
-0.11406546086072922,
0.026936020702123642,
-0.13138023018836975,
-0.06257147341966629,
0.10299742966890335,
0.010291540063917637,
-0.22070357203483582,
-0.0060780663043260574,
-0.14651572704315186,
0.03165457770228386,
-0.14809036254882812,
0.06075877696275711,
0.15617379546165466,
-0.019559631124138832,
-0.010946552269160748,
-0.0693911612033844,
0.006417880766093731,
0.06185751035809517,
-0.05173255130648613,
-0.09097712486982346
] |
null | null | transformers |
## CodeSage-Large
### Model description
CodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:
[Code Representation Learning At Scale by
Dejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang](https://arxiv.org/abs/2402.01935) (* indicates equal contribution).
### Pretraining data
This checkpoint is trained on the Stack data (https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.
### Training procedure
This checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.
### How to use
This checkpoint consists of an encoder (356M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (https://arxiv.org/pdf/2305.06161.pdf).
```
from transformers import AutoModel, AutoTokenizer
checkpoint = "codesage/codesage-base"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).to(device)
inputs = tokenizer.encode("def print_hello_world():\tprint('Hello World!')", return_tensors="pt").to(device)
embedding = model(inputs)[0]
print(f'Dimension of the embedding: {embedding[0].size()}')
# Dimension of the embedding: torch.Size([13, 1024])
```
### BibTeX entry and citation info
```
@inproceedings{
zhang2024codesage,
title={CodeSage: Code Representation Learning At Scale},
author={Dejiao Zhang* and Wasi Ahmad* and Ming Tan and Hantian Ding and Ramesh Nallapati and Dan Roth and Xiaofei Ma and Bing Xiang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=vfzRRjumpX}
}
``` | {"language": ["code"], "license": "apache-2.0", "library_name": "transformers", "datasets": ["bigcode/the-stack-dedup"]} | null | codesage/codesage-base | [
"transformers",
"pytorch",
"custom_code",
"code",
"dataset:bigcode/the-stack-dedup",
"arxiv:2402.01935",
"arxiv:2305.06161",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:15:31+00:00 | [
"2402.01935",
"2305.06161"
] | [
"code"
] | TAGS
#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us
|
## CodeSage-Large
### Model description
CodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:
Code Representation Learning At Scale by
Dejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).
### Pretraining data
This checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.
### Training procedure
This checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.
### How to use
This checkpoint consists of an encoder (356M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL
### BibTeX entry and citation info
| [
"## CodeSage-Large",
"### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).",
"### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.",
"### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.",
"### How to use\nThis checkpoint consists of an encoder (356M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL",
"### BibTeX entry and citation info"
] | [
"TAGS\n#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us \n",
"## CodeSage-Large",
"### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).",
"### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.",
"### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.",
"### How to use\nThis checkpoint consists of an encoder (356M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL",
"### BibTeX entry and citation info"
] | [
68,
7,
97,
57,
45,
60,
11
] | [
"passage: TAGS\n#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us \n## CodeSage-Large### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.### How to use\nThis checkpoint consists of an encoder (356M model), which can be used to extract code embeddings of 1024 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL### BibTeX entry and citation info"
] | [
-0.09403714537620544,
0.15325742959976196,
-0.00468739727512002,
0.0854656994342804,
0.11938873678445816,
-0.006692406255751848,
0.04490470886230469,
0.12359914928674698,
-0.06816764175891876,
0.037900108844041824,
0.01581129990518093,
0.10780531913042068,
0.09880255907773972,
0.13084283471107483,
0.026073472574353218,
-0.1951742321252823,
-0.033962637186050415,
0.0005532820941880345,
-0.03187914937734604,
0.09181108325719833,
0.0895361453294754,
-0.07408864051103592,
0.043581970036029816,
-0.0036260655615478754,
-0.10924024134874344,
0.0382147878408432,
-0.08158626407384872,
-0.04781775176525116,
0.053812481462955475,
-0.01119246892631054,
0.10896239429712296,
-0.01993240788578987,
0.05971848592162132,
-0.16695961356163025,
0.009965809062123299,
0.05088098719716072,
0.0062372940592467785,
0.019246390089392662,
0.12439732998609543,
0.040436454117298126,
0.09426888823509216,
-0.006760818883776665,
0.07361196726560593,
0.04486687108874321,
-0.06189024820923805,
-0.15197061002254486,
-0.06984131038188934,
0.09021592885255814,
0.1048630103468895,
0.08669012039899826,
0.000862778804730624,
0.06641637533903122,
-0.014582570642232895,
0.09082067757844925,
0.1124681755900383,
-0.22011485695838928,
-0.022893473505973816,
0.09149246662855148,
0.050396520644426346,
0.06388691812753677,
-0.03863893449306488,
-0.07500927895307541,
0.005962711293250322,
0.03995579481124878,
0.05914173647761345,
-0.07515659183263779,
-0.03442388400435448,
-0.042610734701156616,
-0.11043363064527512,
-0.0793258398771286,
0.09762971103191376,
-0.03213316202163696,
-0.06254135072231293,
-0.0969708263874054,
-0.049987588077783585,
-0.014842402189970016,
-0.026713406667113304,
-0.019804758951067924,
0.020764334127306938,
0.0712985098361969,
0.038043394684791565,
-0.03822064772248268,
-0.06298144161701202,
-0.02722100354731083,
0.06270742416381836,
0.00406196853145957,
0.05467689782381058,
0.013612375594675541,
-0.06438951939344406,
0.06309733539819717,
0.08671532571315765,
-0.0979856327176094,
-0.09089440107345581,
-0.03006938472390175,
-0.03569009527564049,
0.012774487026035786,
0.03552555292844772,
-0.04484626278281212,
0.01767626963555813,
0.20788833498954773,
-0.003211229108273983,
0.1290215700864792,
-0.04196320101618767,
0.0028930045664310455,
-0.004233708139508963,
0.1441948562860489,
0.04882577434182167,
-0.057740189135074615,
0.025660406798124313,
0.015221255831420422,
-0.000022015252397977747,
-0.011143945157527924,
-0.05207519605755806,
0.02526438981294632,
0.07793653011322021,
0.06507466733455658,
-0.00906277820467949,
0.023502014577388763,
-0.019338512793183327,
-0.03498636931180954,
0.13336120545864105,
-0.13942162692546844,
0.024375637993216515,
0.06726887077093124,
-0.031590040773153305,
0.0017613484524190426,
0.02758972905576229,
-0.03281428664922714,
-0.11111381649971008,
-0.10329464077949524,
-0.02337132766842842,
0.032268624752759933,
-0.0948251336812973,
-0.10104942321777344,
0.02430228888988495,
-0.12839800119400024,
-0.03273816034197807,
-0.14710472524166107,
-0.17234782874584198,
-0.044131845235824585,
0.0488741509616375,
-0.016614066436886787,
0.04582216963171959,
-0.05085296928882599,
-0.028690237551927567,
-0.05127284675836563,
0.021990390494465828,
-0.06148901581764221,
-0.017302585765719414,
0.012327535077929497,
0.039642084389925,
0.042334724217653275,
0.07067212462425232,
0.04498085752129555,
-0.09775876253843307,
0.029272407293319702,
-0.1421140432357788,
0.10628640651702881,
0.009517529979348183,
0.04863546043634415,
-0.07967623323202133,
-0.04740385711193085,
0.020920993760228157,
-0.015792006626725197,
0.03314691036939621,
0.14273476600646973,
-0.13063783943653107,
-0.023486454039812088,
0.2133823186159134,
-0.09993422031402588,
-0.058634281158447266,
0.06704507768154144,
-0.04758405685424805,
0.04295697063207626,
0.05537567660212517,
0.11601238697767258,
0.11818167567253113,
-0.03819678723812103,
-0.030316954478621483,
0.04125683382153511,
0.07707960903644562,
-0.016938908025622368,
0.10256430506706238,
-0.043807972222566605,
-0.01106487587094307,
0.021689465269446373,
0.009149192832410336,
-0.009714526124298573,
-0.004999825730919838,
-0.06473738700151443,
0.031345389783382416,
-0.06369192898273468,
-0.007475079502910376,
0.06185513734817505,
0.02396060898900032,
-0.0031226042192429304,
-0.044580940157175064,
-0.023097537457942963,
0.12462019175291061,
-0.12329451739788055,
0.003034081542864442,
-0.1058332547545433,
0.05299673601984978,
-0.09976395964622498,
0.0010619013337418437,
-0.22032982110977173,
0.07301229983568192,
0.057944729924201965,
-0.019168134778738022,
-0.011212649755179882,
-0.06186286732554436,
0.0410832017660141,
0.05673755705356598,
0.024301620200276375,
-0.05917616933584213,
-0.017729679122567177,
-0.036280736327171326,
-0.013650686480104923,
-0.0530347041785717,
-0.10642892122268677,
-0.0797552540898323,
0.1729327291250229,
-0.1846805363893509,
0.049079976975917816,
-0.012826751917600632,
0.04020597040653229,
0.04236343130469322,
-0.07189995795488358,
0.026909299194812775,
0.050078634172677994,
-0.04950326681137085,
-0.058211375027894974,
0.023124463856220245,
0.07648158073425293,
0.031944990158081055,
-0.09038009494543076,
-0.0702783465385437,
-0.1003466546535492,
0.057147249579429626,
-0.03229745104908943,
-0.06080565229058266,
0.05484040454030037,
-0.01154359057545662,
-0.0048289792612195015,
-0.02924698404967785,
0.018875155597925186,
0.18867628276348114,
0.012461823411285877,
0.17272430658340454,
-0.0838375836610794,
-0.037989839911460876,
0.006934551987797022,
-0.03973131254315376,
0.009400013834238052,
0.08754467219114304,
0.04038592800498009,
-0.0014602853916585445,
0.042657509446144104,
-0.018081195652484894,
-0.04090997204184532,
0.0909140482544899,
-0.028912601992487907,
-0.019471753388643265,
-0.020397724583745003,
0.07581363618373871,
0.041679203510284424,
0.006436627823859453,
-0.08317659050226212,
-0.041267793625593185,
0.011063539423048496,
0.0016211001202464104,
0.05045868456363678,
-0.1002756804227829,
0.056768666952848434,
0.03047971986234188,
-0.03267129510641098,
0.0021976614370942116,
-0.05718474090099335,
-0.033175379037857056,
0.0007383663905784488,
0.03240261971950531,
0.004414170514792204,
0.003827485488727689,
-0.0347941592335701,
-0.1329379379749298,
0.18929167091846466,
-0.1192629262804985,
-0.2487729787826538,
-0.10219401121139526,
-0.012452560476958752,
-0.00596437556669116,
0.0026674780528992414,
0.03165369853377342,
-0.08426383137702942,
-0.016455575823783875,
-0.1076948493719101,
-0.07627040147781372,
-0.08667155355215073,
-0.05093415826559067,
0.06006493791937828,
0.012225615791976452,
0.0024065461475402117,
-0.13644829392433167,
-0.005446599330753088,
0.07356738299131393,
-0.07651286572217941,
0.04451002553105354,
-0.0719592273235321,
0.11035753041505814,
0.1555236130952835,
-0.0008008008589968085,
0.02649647369980812,
-0.007088206708431244,
0.14572620391845703,
-0.01115596853196621,
0.046331897377967834,
0.19404196739196777,
-0.02503725327551365,
0.05616481974720955,
0.07934756577014923,
-0.003617923241108656,
-0.031898342072963715,
-0.008241226896643639,
-0.036756910383701324,
-0.05949633568525314,
-0.20772147178649902,
-0.024144478142261505,
-0.09492204338312149,
0.00655880244448781,
0.08012174814939499,
0.05249395966529846,
0.015695441514253616,
0.036927685141563416,
-0.01307766418904066,
0.04935457557439804,
0.06610362231731415,
0.12651307880878448,
-0.023495590314269066,
0.04688179865479469,
0.03901851549744606,
-0.08109178394079208,
-0.017426932230591774,
0.040198370814323425,
0.03712265193462372,
0.2014429122209549,
-0.008853262290358543,
0.11570362746715546,
0.048876311630010605,
0.11525849252939224,
0.025848224759101868,
0.10104015469551086,
-0.10387293249368668,
0.08098400384187698,
-0.0082861864939332,
-0.05330105125904083,
-0.08265041559934616,
0.008194666355848312,
-0.05096595734357834,
-0.02413363754749298,
-0.051710307598114014,
0.00461470615118742,
0.030229108408093452,
0.1777770072221756,
0.07349793612957001,
-0.214188814163208,
-0.039242684841156006,
-0.0019950794521719217,
-0.03601941466331482,
-0.09325750172138214,
0.020310549065470695,
-0.0025504769291728735,
-0.13423825800418854,
0.05251827836036682,
-0.04832139611244202,
0.0998530313372612,
-0.09261538088321686,
-0.03811025992035866,
-0.007566208019852638,
0.013004980981349945,
0.04177450016140938,
0.0814995989203453,
-0.22685964405536652,
0.06499738246202469,
0.010461803525686264,
0.14049316942691803,
-0.08822818845510483,
0.08540235459804535,
0.01242747250944376,
-0.008111566305160522,
0.06602659821510315,
-0.004715396091341972,
-0.05878469720482826,
-0.15268202126026154,
0.01468686480075121,
0.05788130685687065,
0.07371669262647629,
-0.03825855255126953,
0.12889285385608673,
-0.01651989109814167,
-0.0013785772025585175,
-0.05289558321237564,
-0.11095458269119263,
-0.1031070426106453,
-0.15084506571292877,
0.024824613705277443,
-0.10429888218641281,
0.04124167189002037,
-0.03704741224646568,
0.01295520830899477,
0.036883413791656494,
0.1284225434064865,
-0.20107686519622803,
-0.10919740796089172,
-0.09002445638179779,
-0.0329320915043354,
0.03186199069023132,
-0.08166952431201935,
0.07938795536756516,
-0.003334952052682638,
0.08704669028520584,
0.003780379891395569,
-0.0848972275853157,
-0.016782430931925774,
-0.08672375231981277,
-0.09509862959384918,
0.001713210018351674,
0.03435907140374184,
0.05830539017915726,
0.01677415892481804,
0.055247239768505096,
0.029991764575242996,
-0.03416380658745766,
-0.069245845079422,
-0.0951739028096199,
0.08352033793926239,
0.10709242522716522,
0.06581579148769379,
-0.06521978229284286,
-0.0855637788772583,
-0.06009902060031891,
-0.016162408515810966,
0.09968853741884232,
0.16543549299240112,
-0.05226609855890274,
0.04972502216696739,
0.20214121043682098,
-0.10615178942680359,
-0.15502019226551056,
-0.04604903608560562,
0.016651839017868042,
-0.001306019607000053,
-0.029083235189318657,
-0.27578574419021606,
0.04665527865290642,
0.006392225157469511,
-0.015488809905946255,
-0.05713217332959175,
-0.3096250593662262,
-0.03134946525096893,
0.0550483837723732,
0.04027685895562172,
0.012712342664599419,
-0.15219910442829132,
-0.031010396778583527,
-0.019835365936160088,
-0.15654876828193665,
0.00033578879083506763,
-0.060777585953474045,
0.05916525050997734,
-0.008316059596836567,
-0.0514964684844017,
0.004414721857756376,
-0.0654406026005745,
0.06371024996042252,
-0.015011095441877842,
0.0473579466342926,
-0.03577003255486488,
-0.011777792125940323,
0.07450844347476959,
-0.054072119295597076,
0.12631385028362274,
-0.08662986010313034,
0.07381195574998856,
-0.20784364640712738,
-0.05054987221956253,
-0.02171902544796467,
0.028563832864165306,
-0.031033659353852272,
-0.05724741518497467,
-0.06483251601457596,
0.023799818009138107,
0.0975070521235466,
0.038453761488199234,
0.06335701793432236,
0.03599736467003822,
0.054764892905950546,
0.14603005349636078,
0.07243482768535614,
0.009611382149159908,
-0.08839864283800125,
-0.04683314263820648,
-0.009763873182237148,
0.046317994594573975,
-0.1191689670085907,
0.03604178503155708,
0.08228220790624619,
0.06237274035811424,
0.15354324877262115,
0.047175824642181396,
-0.09760341793298721,
0.05485594645142555,
0.03773334249854088,
-0.07727979868650436,
-0.08669789880514145,
0.018310466781258583,
0.015502911992371082,
-0.10947036743164062,
0.011906051076948643,
0.09267006069421768,
-0.03398082032799721,
-0.04812436178326607,
-0.020474448800086975,
0.06126093864440918,
0.004088259767740965,
0.14975044131278992,
0.09093951433897018,
0.03883301839232445,
-0.06828964501619339,
0.09060840308666229,
0.09578731656074524,
-0.02033468335866928,
0.03530937060713768,
0.14796502888202667,
-0.12265318632125854,
-0.0684071034193039,
0.06472638249397278,
0.2185955047607422,
0.025790685787796974,
-0.07295406609773636,
-0.08640865981578827,
-0.00294183986261487,
0.04909377917647362,
0.010200404562056065,
0.05724631994962692,
0.0038898109924048185,
-0.02780625969171524,
0.01732170581817627,
-0.11457575112581253,
0.09528037905693054,
0.0761788934469223,
0.005435553379356861,
-0.10023193806409836,
0.12493574619293213,
0.03582138940691948,
0.08029251545667648,
0.0025279216933995485,
-0.046596456319093704,
-0.09236903488636017,
0.014644179493188858,
-0.09472499042749405,
0.08370129764080048,
-0.07575007528066635,
0.00887227337807417,
-0.018350869417190552,
0.06429829448461533,
-0.01700597070157528,
0.0611770860850811,
-0.033734485507011414,
-0.05542336031794548,
-0.06653447449207306,
0.047913745045661926,
-0.11537092924118042,
-0.013300002552568913,
0.028689179569482803,
-0.1015206053853035,
0.06348680704832077,
-0.009756473824381828,
-0.030305130407214165,
0.03539480268955231,
0.010655656456947327,
-0.008025381714105606,
0.012673957273364067,
0.05398028343915939,
-0.008685545064508915,
-0.018198108300566673,
0.04516492411494255,
0.014485466293990612,
-0.03512810170650482,
-0.004295944701880217,
0.18195165693759918,
-0.07204585522413254,
0.013044116087257862,
-0.12617963552474976,
-0.04643000662326813,
-0.06291311979293823,
0.1104595735669136,
0.06411382555961609,
0.06840530037879944,
0.14310063421726227,
-0.05497593805193901,
0.10504758358001709,
-0.1369818150997162,
-0.07293377071619034,
0.011941696517169476,
-0.013696682639420033,
-0.025256451219320297,
-0.06261797994375229,
0.05382004380226135,
-0.03566466271877289,
0.06242172047495842,
0.01732618361711502,
0.05755532160401344,
-0.03062676638364792,
-0.08576659113168716,
-0.0004800260066986084,
0.014137336984276772,
0.14322657883167267,
0.04178088903427124,
-0.04547107592225075,
0.057872623205184937,
0.048094943165779114,
0.0006114003481343389,
0.11607126891613007,
0.05474577471613884,
0.19799469411373138,
0.025384075939655304,
0.042081061750650406,
-0.018352100625634193,
-0.0687088891863823,
-0.1281532645225525,
-0.03641725331544876,
0.00899551808834076,
0.06034870445728302,
-0.03483119606971741,
0.20107682049274445,
0.15501438081264496,
-0.10421845316886902,
0.06519751250743866,
0.0026538914535194635,
-0.06317786127328873,
-0.08036979287862778,
-0.06530959904193878,
-0.05578891560435295,
-0.05496491491794586,
-0.02141452394425869,
-0.08113506436347961,
-0.020549383014440536,
0.13224899768829346,
0.010023080743849277,
0.00043035767157562077,
0.09585487842559814,
0.025357956066727638,
-0.07987919449806213,
0.012846598401665688,
-0.02502972073853016,
0.02160416729748249,
0.03467172384262085,
0.01596459373831749,
0.034501370042562485,
-0.03226197138428688,
0.10876411944627762,
0.047310102730989456,
-0.007148364093154669,
0.03806546702980995,
-0.053831398487091064,
-0.06985748559236526,
0.02049482986330986,
0.01419157162308693,
0.04135863855481148,
0.1997164785861969,
0.06258564442396164,
-0.06758103519678116,
0.028290383517742157,
0.10875445604324341,
-0.03178280591964722,
-0.08856789767742157,
-0.13984820246696472,
0.1478213667869568,
0.058210138231515884,
-0.013381628319621086,
0.04185153543949127,
-0.10681703686714172,
-0.015976466238498688,
0.22512617707252502,
0.11299285292625427,
0.046804383397102356,
-0.005114833824336529,
0.04900312051177025,
-0.003225811989977956,
0.00727787334471941,
0.11934235692024231,
0.09044234454631805,
0.25084802508354187,
-0.03155895322561264,
0.018452513962984085,
-0.028100689873099327,
-0.06182016804814339,
-0.13960470259189606,
0.05247093737125397,
-0.04884631186723709,
-0.014263737015426159,
0.005171516444534063,
0.07386885583400726,
-0.04009551927447319,
-0.23307432234287262,
0.08865813910961151,
-0.03855384886264801,
-0.07395138591527939,
0.015652971342206,
0.006427443120628595,
0.010460634715855122,
0.04117104038596153,
0.018422115594148636,
0.02142871357500553,
0.14816667139530182,
0.029075805097818375,
-0.031060807406902313,
-0.0656164214015007,
0.08947145938873291,
-0.09924423694610596,
0.16258350014686584,
-0.02276170253753662,
0.09294276684522629,
0.1402425318956375,
0.053732872009277344,
-0.10938980430364609,
0.028536943718791008,
0.05791321024298668,
0.0757886990904808,
0.06043683737516403,
0.05998900905251503,
-0.0530221126973629,
-0.007580210920423269,
0.06524261087179184,
0.014590774662792683,
0.009719124995172024,
-0.05689499154686928,
0.02869628556072712,
-0.1426307111978531,
0.01504579372704029,
-0.0835256427526474,
0.08870678395032883,
0.12682843208312988,
-0.05401723459362984,
0.02149125188589096,
-0.03293329477310181,
0.05635881423950195,
0.018491897732019424,
0.02617381326854229,
-0.06181621924042702,
-0.17780427634716034,
-0.020550601184368134,
-0.06723890453577042,
0.055026642978191376,
-0.18719328939914703,
-0.04783676564693451,
-0.005189503543078899,
-0.043471235781908035,
-0.10124029219150543,
0.09937527030706406,
0.06679091602563858,
0.013882157392799854,
-0.04204375669360161,
-0.0761193037033081,
-0.0753280371427536,
0.10591359436511993,
-0.13584862649440765,
-0.07742157578468323
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# quynh_deberta-v3-Base-finetuned-AI_req_5
This model is a fine-tuned version of [microsoft/deberta-v3-Base](https://huggingface.co/microsoft/deberta-v3-Base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0813
- Train Accuracy: 0.9739
- Validation Loss: 0.9358
- Validation Accuracy: 0.8190
- Epoch: 12
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2730, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.8536 | 0.6181 | 0.7137 | 0.6952 | 0 |
| 0.6579 | 0.7349 | 0.5152 | 0.8190 | 1 |
| 0.5153 | 0.7830 | 0.4833 | 0.8571 | 2 |
| 0.4369 | 0.8022 | 0.5064 | 0.8286 | 3 |
| 0.3922 | 0.8255 | 0.6123 | 0.7905 | 4 |
| 0.3616 | 0.8352 | 0.4985 | 0.8381 | 5 |
| 0.3034 | 0.8640 | 0.5926 | 0.8000 | 6 |
| 0.3187 | 0.8654 | 0.5392 | 0.8286 | 7 |
| 0.2134 | 0.9080 | 0.5991 | 0.8095 | 8 |
| 0.2041 | 0.9148 | 0.8289 | 0.8190 | 9 |
| 0.1532 | 0.9464 | 0.7176 | 0.8381 | 10 |
| 0.1690 | 0.9313 | 0.8189 | 0.8190 | 11 |
| 0.0813 | 0.9739 | 0.9358 | 0.8190 | 12 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.9.1
- Datasets 2.16.1
- Tokenizers 0.13.3
| {"license": "mit", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "quynh_deberta-v3-Base-finetuned-AI_req_5", "results": []}]} | text-classification | QT321/quynh_deberta-v3-Base-finetuned-AI_req_5 | [
"transformers",
"tf",
"deberta-v2",
"text-classification",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:15:32+00:00 | [] | [] | TAGS
#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us
| quynh\_deberta-v3-Base-finetuned-AI\_req\_5
===========================================
This model is a fine-tuned version of microsoft/deberta-v3-Base on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 0.0813
* Train Accuracy: 0.9739
* Validation Loss: 0.9358
* Validation Accuracy: 0.8190
* Epoch: 12
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'Adam', 'learning\_rate': {'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 2e-05, 'decay\_steps': 2730, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.28.0
* TensorFlow 2.9.1
* Datasets 2.16.1
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
56,
178,
4,
34
] | [
"passage: TAGS\n#transformers #tf #deberta-v2 #text-classification #generated_from_keras_callback #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'Adam', 'learning\\_rate': {'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 2e-05, 'decay\\_steps': 2730, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.28.0\n* TensorFlow 2.9.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
-0.0661044716835022,
0.034819021821022034,
-0.005335089284926653,
0.07180119305849075,
0.15308332443237305,
0.05895962566137314,
0.13327544927597046,
0.11918378621339798,
-0.08529393374919891,
0.1041325032711029,
0.1549294888973236,
0.14896361529827118,
0.0546063669025898,
0.12434948235750198,
-0.07882298529148102,
-0.17512856423854828,
0.07249528914690018,
-0.013825262896716595,
-0.07058897614479065,
0.07718494534492493,
0.09180191904306412,
-0.06927601248025894,
0.08492448180913925,
-0.025852112099528313,
-0.11086880415678024,
0.04002988710999489,
0.08173180371522903,
-0.07842729985713959,
0.13384512066841125,
0.0736960843205452,
0.09236934781074524,
-0.004807889927178621,
0.016739312559366226,
-0.19050079584121704,
0.010822913609445095,
0.10047204792499542,
-0.004974658600986004,
0.0587124302983284,
0.0028775720857083797,
-0.008725355379283428,
0.10651782900094986,
-0.10611452907323837,
0.0719960629940033,
0.03127531334757805,
-0.14425507187843323,
-0.26915112137794495,
-0.10428139567375183,
0.009101510047912598,
0.0876096859574318,
0.08792754262685776,
-0.0017643379978835583,
0.13530640304088593,
-0.04511258378624916,
0.08339102566242218,
0.14147111773490906,
-0.27505627274513245,
-0.03159014508128166,
0.0340392105281353,
0.021754100918769836,
0.05897345766425133,
-0.050336696207523346,
0.0031442823819816113,
0.03343075141310692,
0.04407148063182831,
0.03780828416347504,
-0.020954053848981857,
0.05939539149403572,
-0.03344690799713135,
-0.07917886972427368,
-0.07368192076683044,
0.11052417010068893,
0.030429191887378693,
-0.06958039849996567,
-0.08125890791416168,
-0.030800778418779373,
-0.14211174845695496,
0.011333059519529343,
-0.04446002468466759,
-0.0010371058015152812,
0.01537918671965599,
-0.04957913979887962,
-0.028943004086613655,
-0.05386077240109444,
-0.05973462387919426,
-0.007959719747304916,
0.13020487129688263,
0.032106343656778336,
0.030312329530715942,
-0.017262952402234077,
0.07559487223625183,
-0.01732240617275238,
-0.11144126951694489,
-0.018366321921348572,
-0.0009262922103516757,
-0.042409125715494156,
-0.03281145170331001,
-0.07584328204393387,
-0.03069893643260002,
0.044435564428567886,
0.16124360263347626,
-0.06640424579381943,
0.1134297177195549,
-0.017965760082006454,
0.017782993614673615,
-0.10319503396749496,
0.12125782668590546,
-0.0104077672585845,
0.002511070342734456,
-0.006827507168054581,
0.0862811952829361,
0.03622688353061676,
-0.05263267457485199,
-0.052781783044338226,
0.007776238489896059,
0.1148810088634491,
0.03971400484442711,
-0.06141547113656998,
0.08089040219783783,
-0.07523889094591141,
-0.006304122041910887,
-0.00785030610859394,
-0.12226341664791107,
0.03676104173064232,
0.012383446097373962,
-0.09010332822799683,
0.008052249439060688,
0.05480595678091049,
0.009311830624938011,
-0.048036377876996994,
0.05424452945590019,
-0.06601414829492569,
-0.05158613249659538,
-0.10298436880111694,
-0.1251252442598343,
0.018375016748905182,
-0.0695088803768158,
-0.008501938544213772,
-0.08041055500507355,
-0.16493642330169678,
-0.03619009628891945,
0.0704452246427536,
-0.03126921132206917,
-0.0171001348644495,
-0.0773678794503212,
-0.14333771169185638,
0.06595699489116669,
-0.005292428657412529,
0.09107783436775208,
-0.04299532622098923,
0.08015342801809311,
0.011765329167246819,
0.04615195468068123,
-0.05040618032217026,
0.03839340806007385,
-0.037937238812446594,
0.03867494687438011,
-0.1979052722454071,
0.0853101909160614,
-0.06341073662042618,
0.028681449592113495,
-0.15339457988739014,
-0.07498815655708313,
0.056187063455581665,
0.028181103989481926,
0.12228106707334518,
0.10693177580833435,
-0.13430465757846832,
-0.07294561713933945,
0.09832858294248581,
-0.09734158217906952,
-0.0742603987455368,
0.08894336968660355,
-0.06590943783521652,
0.02491254359483719,
0.08473998308181763,
0.08438454568386078,
0.01945057138800621,
-0.10719222575426102,
0.010895135812461376,
-0.06608354300260544,
0.006881710607558489,
0.04944116249680519,
0.035163961350917816,
-0.04839903861284256,
-0.08159541338682175,
0.004045436158776283,
-0.01658853515982628,
0.013793635182082653,
-0.05340402200818062,
-0.057804469019174576,
-0.019715648144483566,
-0.03917494788765907,
0.04600495100021362,
0.030751917511224747,
0.03484826162457466,
-0.10016916692256927,
-0.13839232921600342,
0.095157191157341,
0.04412536323070526,
-0.0704311653971672,
0.025942964479327202,
-0.08770105987787247,
0.017568588256835938,
0.04642016440629959,
0.011845727451145649,
-0.1523943692445755,
-0.05851719155907631,
0.022006850689649582,
0.001765824155882001,
0.018585212528705597,
-0.04066338762640953,
0.07073811441659927,
0.023258907720446587,
-0.05514835566282272,
-0.012612462975084782,
-0.03843124583363533,
0.02010609395802021,
-0.07408452779054642,
-0.22317296266555786,
-0.020032569766044617,
-0.017905527725815773,
0.05843555927276611,
-0.27499625086784363,
0.017453931272029877,
0.08474680781364441,
0.11210767179727554,
0.030320171266794205,
-0.017987899482250214,
-0.04152733087539673,
0.059827931225299835,
-0.02464985102415085,
-0.06745300441980362,
0.030160339549183846,
0.01482755783945322,
-0.13314272463321686,
-0.03445929288864136,
-0.20521238446235657,
0.089274562895298,
0.12458020448684692,
-0.08481695502996445,
-0.14106322824954987,
0.042615242302417755,
-0.02157139778137207,
-0.03246166184544563,
-0.009517377242445946,
-0.035423681139945984,
0.18061062693595886,
0.02433023229241371,
0.13846059143543243,
-0.043429482728242874,
-0.010460803285241127,
0.026767505332827568,
-0.016431590542197227,
-0.048091597855091095,
0.11797597259283066,
-0.015291755087673664,
-0.10025084018707275,
0.08409986644983292,
0.10380996018648148,
-0.09479755163192749,
0.12418753653764725,
-0.032695118337869644,
-0.05308545380830765,
-0.07830211520195007,
0.0524468831717968,
0.06795845925807953,
0.08216609805822372,
-0.09313425421714783,
0.0001662701542954892,
-0.002123344223946333,
0.03371156007051468,
-0.023761015385389328,
-0.1855935901403427,
-0.0005106852040626109,
0.017253495752811432,
-0.05476949363946915,
0.024958888068795204,
0.0026269936934113503,
0.010648868978023529,
0.11492759734392166,
0.044212423264980316,
-0.0489184595644474,
0.08175159990787506,
-0.025763599202036858,
-0.09576132148504257,
0.22364400327205658,
-0.14079181849956512,
-0.13507480919361115,
-0.13342078030109406,
-0.023822905495762825,
-0.03236484155058861,
0.01105159055441618,
0.0015762398252263665,
-0.09897443652153015,
-0.05675354599952698,
-0.06443876773118973,
-0.010836811736226082,
-0.050272829830646515,
0.029687289148569107,
0.03581685945391655,
-0.002834406914189458,
0.1184222400188446,
-0.11652523279190063,
-0.04251989349722862,
-0.0007223682478070259,
-0.07372734695672989,
0.01985940709710121,
-0.008443251252174377,
0.0009053976973518729,
0.11938534677028656,
-0.0039026171434670687,
0.023054208606481552,
-0.057859208434820175,
0.23082506656646729,
-0.06196631118655205,
-0.013930623419582844,
0.14499688148498535,
-0.033979885280132294,
0.06556367874145508,
0.13667359948158264,
0.04121790826320648,
-0.12596726417541504,
0.060393743216991425,
0.06315142661333084,
-0.02297770045697689,
-0.2318716198205948,
0.0010167201980948448,
-0.030685389414429665,
-0.07615993916988373,
0.07234513759613037,
0.027952082455158234,
0.14507223665714264,
0.006173199042677879,
-0.004934288095682859,
0.11450433731079102,
0.056141480803489685,
0.077972412109375,
0.1735759973526001,
0.062060754746198654,
0.09328503161668777,
-0.03080039471387863,
-0.01877678744494915,
0.02428620681166649,
-0.006442257668823004,
0.20246216654777527,
0.029053417965769768,
0.07654880732297897,
0.06125088781118393,
0.0531889908015728,
-0.027708685025572777,
-0.0036289156414568424,
0.004418524913489819,
-0.003327417653053999,
0.0016857458977028728,
-0.05834457650780678,
-0.045781493186950684,
0.05897178873419762,
-0.02347131259739399,
0.06559746712446213,
-0.12904828786849976,
0.029134107753634453,
0.04534843564033508,
0.2250550240278244,
0.09909410029649734,
-0.30565157532691956,
-0.10902120172977448,
0.011765559203922749,
-0.03385452926158905,
-0.056460119783878326,
-0.008288887329399586,
0.07646316289901733,
-0.08591257780790329,
0.0759110301733017,
-0.061582300812006,
0.04082708805799484,
-0.0680638924241066,
0.04912392050027847,
0.10464058071374893,
0.08955338597297668,
-0.004517771303653717,
0.005293216090649366,
-0.3672534227371216,
0.28293800354003906,
0.03991018235683441,
0.15556871891021729,
-0.07729602605104446,
0.046344537287950516,
0.03364192321896553,
-0.04290981590747833,
0.06187060847878456,
-0.0110129714012146,
-0.15988905727863312,
-0.2208782583475113,
-0.025772223249077797,
0.0010750072542577982,
0.15236911177635193,
0.009361889213323593,
0.10915792733430862,
-0.04888603463768959,
0.02273940108716488,
0.0796588659286499,
-0.021596865728497505,
-0.1617651730775833,
-0.06991423666477203,
0.05498945713043213,
0.04225229471921921,
-0.011175060644745827,
-0.08123661577701569,
-0.07498388737440109,
-0.04268729314208031,
0.1770203858613968,
-0.151940256357193,
-0.04854089021682739,
-0.13345099985599518,
0.07485593110322952,
0.08342341333627701,
-0.0653495192527771,
0.03804640471935272,
0.007735255640000105,
0.06359626352787018,
0.030207689851522446,
-0.08081069588661194,
0.14756423234939575,
-0.016162347048521042,
-0.22474394738674164,
-0.06794663518667221,
0.09065219759941101,
0.04966730996966362,
0.039946116507053375,
-0.004282892681658268,
0.0749693438410759,
0.05667079612612724,
-0.09501858800649643,
0.09611555188894272,
0.01946992799639702,
0.03834816813468933,
0.05342569574713707,
-0.012942156754434109,
-0.00410061702132225,
-0.04706425964832306,
-0.01144713070243597,
0.10907397419214249,
0.3077750504016876,
-0.06471915543079376,
0.01799287274479866,
0.027448803186416626,
-0.0902814194560051,
-0.19888734817504883,
0.07426656782627106,
0.09420807659626007,
0.022659355774521828,
-0.05278601497411728,
-0.19449438154697418,
0.02337079681456089,
0.09881878644227982,
-0.004969087895005941,
0.05733048915863037,
-0.30828502774238586,
-0.15469180047512054,
0.06981479376554489,
0.13198760151863098,
0.13159523904323578,
-0.16861088573932648,
-0.04601777344942093,
-0.05998685210943222,
-0.03879015892744064,
0.130323126912117,
-0.034431714564561844,
0.10711009800434113,
0.02912609837949276,
0.04411856457591057,
0.005711792968213558,
-0.03855302184820175,
0.13745184242725372,
-0.029871884733438492,
0.10450127720832825,
-0.0512031652033329,
-0.07715402543544769,
0.0812174379825592,
-0.08540388941764832,
0.029251210391521454,
-0.04232157766819,
0.01908370479941368,
-0.1429445445537567,
-0.012159043923020363,
-0.07361204922199249,
0.04260314255952835,
-0.0648309662938118,
-0.03179081529378891,
-0.008869812823832035,
0.06086430326104164,
0.06363817304372787,
-0.0218737181276083,
0.11722731590270996,
-0.023368988186120987,
0.1743801385164261,
0.13315615057945251,
0.08778059482574463,
0.016921430826187134,
-0.010277186520397663,
0.08856867253780365,
-0.028624529018998146,
0.07701143622398376,
-0.15531504154205322,
0.0533711314201355,
0.13559472560882568,
-0.007894754409790039,
0.16738176345825195,
0.06911145895719528,
-0.07253266125917435,
0.045373640954494476,
0.057476069778203964,
-0.12512163817882538,
-0.0909801572561264,
0.019183440133929253,
0.026776950806379318,
-0.0843648761510849,
0.03836958110332489,
0.15992969274520874,
-0.03514643758535385,
0.020141705870628357,
0.004852498881518841,
0.031159445643424988,
-0.06534013152122498,
0.13613739609718323,
0.021813908591866493,
0.06633933633565903,
-0.06293826550245285,
0.12500984966754913,
0.0596146322786808,
-0.12184558063745499,
0.12256346642971039,
0.025041595101356506,
-0.06190885603427887,
0.00044684685417450964,
0.006346477661281824,
0.08668019622564316,
0.019758006557822227,
-0.0523398295044899,
-0.13063640892505646,
-0.1609126478433609,
0.07427585870027542,
0.20500236749649048,
0.04156592860817909,
0.07480170577764511,
-0.04687701538205147,
0.0005356469191610813,
-0.10023482888936996,
0.05695207417011261,
0.0396302230656147,
0.03843916207551956,
-0.1367926001548767,
0.18829567730426788,
0.0013265319867059588,
-0.01807597652077675,
-0.008075999096035957,
0.0012988278176635504,
-0.20731820166110992,
0.006503563839942217,
-0.13967376947402954,
-0.005720794666558504,
0.006019694730639458,
-0.015734637156128883,
0.04145326465368271,
-0.04665103927254677,
-0.050220176577568054,
0.03366275131702423,
-0.08601853996515274,
-0.03999504819512367,
0.055390287190675735,
0.06306762248277664,
-0.11598245799541473,
-0.0777362734079361,
0.02653753012418747,
-0.10875274240970612,
0.0436299629509449,
0.043327491730451584,
0.005420528817921877,
0.02744392305612564,
-0.07810241729021072,
0.03666212409734726,
0.04472532123327255,
-0.01656249538064003,
0.0357053205370903,
-0.1622130572795868,
0.013156062923371792,
-0.038406241685152054,
0.04029706120491028,
0.04143643379211426,
0.09403155744075775,
-0.09260203689336777,
-0.019910739734768867,
-0.009396909736096859,
-0.04103126376867294,
-0.05205688998103142,
0.06859643012285233,
0.13783492147922516,
-0.02204684168100357,
0.16830913722515106,
-0.13074631989002228,
0.017629336565732956,
-0.1692233681678772,
0.0023203855380415916,
0.004230017773807049,
-0.08476680517196655,
-0.09833827614784241,
-0.018981318920850754,
0.10809744149446487,
-0.08632607012987137,
0.0908893495798111,
-0.06852541863918304,
0.09316012263298035,
0.05218168720602989,
-0.113617904484272,
-0.05484241992235184,
0.06698518991470337,
0.17321686446666718,
0.04753144830465317,
-0.024723591282963753,
0.05177756026387215,
-0.015567298978567123,
0.08773879706859589,
0.11074426770210266,
0.19870522618293762,
0.14278358221054077,
0.025709835812449455,
0.11975529044866562,
0.06190301477909088,
-0.06923557817935944,
-0.10204268991947174,
0.09810641407966614,
-0.057285550981760025,
0.14921072125434875,
-0.04774045944213867,
0.1030186340212822,
0.08280830085277557,
-0.18074634671211243,
0.017483310773968697,
-0.07713353633880615,
-0.10527992993593216,
-0.12413179129362106,
-0.09576542675495148,
-0.0779031440615654,
-0.0938667356967926,
0.007318420801311731,
-0.10172375291585922,
0.02964967116713524,
0.06519129127264023,
0.030521508306264877,
0.0011627308558672667,
0.08656825125217438,
-0.03904300928115845,
0.027984483167529106,
0.1099296286702156,
-0.0059113409370183945,
-0.00523938937112689,
-0.03607747331261635,
-0.08412612229585648,
0.04903365671634674,
-0.014503536745905876,
0.03841106966137886,
-0.00255244760774076,
-0.020797813311219215,
0.035005833953619,
-0.011645108461380005,
-0.09850244969129562,
0.05309220775961876,
0.0349712111055851,
0.015941601246595383,
0.0722237229347229,
0.04916276037693024,
-0.02176067978143692,
-0.02023450843989849,
0.12213211506605148,
-0.09422747045755386,
-0.030950097367167473,
-0.14818690717220306,
0.29555532336235046,
-0.0024925307370722294,
0.05118168145418167,
-0.00018117671424988657,
-0.07502418756484985,
-0.029863663017749786,
0.1495356261730194,
0.1407870501279831,
-0.06511375308036804,
-0.019338682293891907,
0.05570768937468529,
-0.00913343857973814,
-0.02670198865234852,
0.1465112417936325,
0.05836993455886841,
-0.011274446733295918,
-0.04629205912351608,
-0.040484827011823654,
-0.02081649750471115,
-0.016724547371268272,
-0.028794152662158012,
0.07700293511152267,
0.026315242052078247,
-0.008962880820035934,
-0.013975679874420166,
0.06419696658849716,
-0.061952143907547,
-0.11194992065429688,
0.0905243530869484,
-0.19940175116062164,
-0.14939486980438232,
0.0035407328978180885,
0.003146546659991145,
-0.013650123961269855,
0.07675130665302277,
-0.004090335685759783,
-0.008344681933522224,
0.09552057087421417,
-0.027408741414546967,
-0.014961658976972103,
-0.10758998245000839,
0.05844659358263016,
-0.011179954744875431,
0.1744554191827774,
-0.0210402961820364,
0.06279801577329636,
0.13938070833683014,
0.03299541026353836,
-0.07690349966287613,
0.039029981940984726,
0.08075178414583206,
-0.08863645046949387,
-0.010485496371984482,
0.07907917350530624,
-0.03009122982621193,
0.16348280012607574,
0.06982657313346863,
-0.1025705561041832,
0.04932505637407303,
-0.08654578775167465,
-0.09818926453590393,
-0.04372858628630638,
-0.045598018914461136,
-0.06507039070129395,
0.13049529492855072,
0.24305886030197144,
-0.03594035655260086,
0.008065897971391678,
-0.023862099274992943,
-0.005566269159317017,
0.06374090164899826,
0.0324212945997715,
-0.06431788951158524,
-0.2421240657567978,
0.06800530850887299,
0.05413714796304703,
0.03814093396067619,
-0.17559455335140228,
-0.10513478517532349,
0.020000088959932327,
-0.017542261630296707,
-0.09939248114824295,
0.10800740122795105,
0.027496490627527237,
0.04810195788741112,
-0.05486299842596054,
-0.13466554880142212,
-0.04535992443561554,
0.19608289003372192,
-0.10547017306089401,
-0.08590136468410492
] |
null | null | transformers |
## CodeSage-Large
### Model description
CodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:
[Code Representation Learning At Scale by
Dejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang](https://arxiv.org/abs/2402.01935) (* indicates equal contribution).
### Pretraining data
This checkpoint is trained on the Stack data (https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.
### Training procedure
This checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.
### How to use
This checkpoint consists of an encoder (1.3B model), which can be used to extract code embeddings of 2048 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (https://arxiv.org/pdf/2305.06161.pdf).
```
from transformers import AutoModel, AutoTokenizer
checkpoint = "codesage/codesage-large"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).to(device)
inputs = tokenizer.encode("def print_hello_world():\tprint('Hello World!')", return_tensors="pt").to(device)
embedding = model(inputs)[0]
print(f'Dimension of the embedding: {embedding[0].size()}')
# Dimension of the embedding: torch.Size([13, 2048])
```
### BibTeX entry and citation info
```
@inproceedings{
zhang2024codesage,
title={CodeSage: Code Representation Learning At Scale},
author={Dejiao Zhang* and Wasi Ahmad* and Ming Tan and Hantian Ding and Ramesh Nallapati and Dan Roth and Xiaofei Ma and Bing Xiang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=vfzRRjumpX}
}
``` | {"language": ["code"], "license": "apache-2.0", "library_name": "transformers", "datasets": ["bigcode/the-stack-dedup"]} | null | codesage/codesage-large | [
"transformers",
"pytorch",
"custom_code",
"code",
"dataset:bigcode/the-stack-dedup",
"arxiv:2402.01935",
"arxiv:2305.06161",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:15:43+00:00 | [
"2402.01935",
"2305.06161"
] | [
"code"
] | TAGS
#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us
|
## CodeSage-Large
### Model description
CodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:
Code Representation Learning At Scale by
Dejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).
### Pretraining data
This checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.
### Training procedure
This checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.
### How to use
This checkpoint consists of an encoder (1.3B model), which can be used to extract code embeddings of 2048 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL
### BibTeX entry and citation info
| [
"## CodeSage-Large",
"### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).",
"### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.",
"### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.",
"### How to use\nThis checkpoint consists of an encoder (1.3B model), which can be used to extract code embeddings of 2048 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL",
"### BibTeX entry and citation info"
] | [
"TAGS\n#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us \n",
"## CodeSage-Large",
"### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).",
"### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.",
"### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.",
"### How to use\nThis checkpoint consists of an encoder (1.3B model), which can be used to extract code embeddings of 2048 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL",
"### BibTeX entry and citation info"
] | [
68,
7,
97,
57,
45,
61,
11
] | [
"passage: TAGS\n#transformers #pytorch #custom_code #code #dataset-bigcode/the-stack-dedup #arxiv-2402.01935 #arxiv-2305.06161 #license-apache-2.0 #endpoints_compatible #region-us \n## CodeSage-Large### Model description\nCodeSage is a new family of open code embedding models with an encoder architecture that support a wide range of source code understanding tasks. It is introduced in the paper:\n\nCode Representation Learning At Scale by \nDejiao Zhang*, Wasi Uddin Ahmad*, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma, Bing Xiang (* indicates equal contribution).### Pretraining data\nThis checkpoint is trained on the Stack data (URL Supported languages (9 in total) are as follows: c, c-sharp, go, java, javascript, typescript, php, python, ruby.### Training procedure\nThis checkpoint is first trained on code data via masked language modeling (MLM) and then on bimodal text-code pair data. Please refer to the paper for more details.### How to use\nThis checkpoint consists of an encoder (1.3B model), which can be used to extract code embeddings of 2048 dimension. It can be easily loaded using the AutoModel functionality and employs the Starcoder tokenizer (URL### BibTeX entry and citation info"
] | [
-0.09144173562526703,
0.1588038057088852,
-0.004951730836182833,
0.08290862292051315,
0.11920850723981857,
-0.007143910508602858,
0.04990129917860031,
0.1254115104675293,
-0.06479606032371521,
0.03625462204217911,
0.016572436317801476,
0.112432561814785,
0.09777265787124634,
0.1345072239637375,
0.02769254893064499,
-0.19459392130374908,
-0.035078126937150955,
-0.0036543933674693108,
-0.03251958638429642,
0.08958858251571655,
0.09031118452548981,
-0.07204172760248184,
0.04381769150495529,
-0.0010810551466420293,
-0.10695025324821472,
0.040421031415462494,
-0.08259501308202744,
-0.04940618574619293,
0.052663806825876236,
-0.008425930514931679,
0.10787992924451828,
-0.017372161149978638,
0.05813628435134888,
-0.16898712515830994,
0.010352687910199165,
0.05216992646455765,
0.007797400001436472,
0.020564913749694824,
0.12861496210098267,
0.03286844491958618,
0.08516659587621689,
-0.0036698617041110992,
0.07291652262210846,
0.04480292648077011,
-0.059959776699543,
-0.14997538924217224,
-0.06772701442241669,
0.09255928546190262,
0.10468762367963791,
0.08488760888576508,
0.0023226875346153975,
0.06452076882123947,
-0.017237693071365356,
0.09092430770397186,
0.11504240334033966,
-0.2136952430009842,
-0.024891801178455353,
0.08511383831501007,
0.047649040818214417,
0.06312362849712372,
-0.0366031751036644,
-0.07555565237998962,
0.004384346306324005,
0.039833590388298035,
0.05484846234321594,
-0.07594098150730133,
-0.03742027282714844,
-0.041351914405822754,
-0.10927072912454605,
-0.07969870418310165,
0.10331598669290543,
-0.03560866042971611,
-0.06250046193599701,
-0.09837590903043747,
-0.04814649000763893,
-0.009364672936499119,
-0.027761323377490044,
-0.01994217373430729,
0.02159740962088108,
0.07157045602798462,
0.04138725996017456,
-0.04226437956094742,
-0.06453728675842285,
-0.025175107643008232,
0.0672248974442482,
0.01136274728924036,
0.054970771074295044,
0.01402424369007349,
-0.06675409525632858,
0.06357821822166443,
0.09305908530950546,
-0.09936273843050003,
-0.08790969103574753,
-0.03441833332180977,
-0.033741798251867294,
0.012166699394583702,
0.03502490743994713,
-0.04038587212562561,
0.02117113769054413,
0.20874205231666565,
-0.005990601144731045,
0.12885989248752594,
-0.04455263540148735,
0.004110480658710003,
-0.004097647033631802,
0.1422663927078247,
0.050580911338329315,
-0.05439918115735054,
0.028134215623140335,
0.01525937207043171,
0.002015230478718877,
-0.008249513804912567,
-0.05622795224189758,
0.025631172582507133,
0.07509192824363708,
0.06800846755504608,
-0.005464569665491581,
0.020563041791319847,
-0.02324393205344677,
-0.038122739642858505,
0.13141191005706787,
-0.13998360931873322,
0.02308187447488308,
0.0695197582244873,
-0.03250543773174286,
-0.0012655728496611118,
0.028574571013450623,
-0.034027814865112305,
-0.1115448847413063,
-0.10166522860527039,
-0.023046178743243217,
0.0344083271920681,
-0.0918135792016983,
-0.09563815593719482,
0.02471950091421604,
-0.12677758932113647,
-0.030860770493745804,
-0.14682702720165253,
-0.17877984046936035,
-0.04143432900309563,
0.050881657749414444,
-0.018583182245492935,
0.042797673493623734,
-0.049237120896577835,
-0.029652390629053116,
-0.05194012075662613,
0.020963652059435844,
-0.06060941517353058,
-0.01790022850036621,
0.009427960962057114,
0.03764767199754715,
0.040527500212192535,
0.0734022706747055,
0.0456659197807312,
-0.09906110167503357,
0.028181973844766617,
-0.1469389945268631,
0.10905444622039795,
0.007839396595954895,
0.04706917330622673,
-0.0796435996890068,
-0.04490787535905838,
0.017405735328793526,
-0.015764696523547173,
0.03257986903190613,
0.1441539227962494,
-0.13073770701885223,
-0.02535638026893139,
0.2098967581987381,
-0.10004986822605133,
-0.05748653784394264,
0.06584659218788147,
-0.04631296172738075,
0.043054234236478806,
0.0537574365735054,
0.11837497353553772,
0.11371418088674545,
-0.036531057208776474,
-0.02914249338209629,
0.043057266622781754,
0.07750163227319717,
-0.011755508370697498,
0.10207460075616837,
-0.043924249708652496,
-0.010789069347083569,
0.022878123447299004,
0.005298024974763393,
-0.009335856884717941,
-0.004266440402716398,
-0.06440665572881699,
0.030706290155649185,
-0.06298481673002243,
-0.006826214026659727,
0.061315812170505524,
0.02274719811975956,
-0.005431307014077902,
-0.0479898527264595,
-0.019668709486722946,
0.12727610766887665,
-0.12092766910791397,
0.001918744295835495,
-0.10560508072376251,
0.054804615676403046,
-0.09785103052854538,
-0.00006218664930202067,
-0.21889802813529968,
0.07060018926858902,
0.057265426963567734,
-0.020451923832297325,
-0.009497560560703278,
-0.06542950868606567,
0.04014641419053078,
0.056372158229351044,
0.025929352268576622,
-0.06264085322618484,
-0.020761791616678238,
-0.036310046911239624,
-0.008921376429498196,
-0.059908416122198105,
-0.103777214884758,
-0.07867718487977982,
0.18010678887367249,
-0.1843051016330719,
0.04750931262969971,
-0.017567899078130722,
0.0465470515191555,
0.042860519140958786,
-0.06987465918064117,
0.029719902202486992,
0.0478484183549881,
-0.05103100836277008,
-0.058323170989751816,
0.021457666531205177,
0.07578546553850174,
0.031514689326286316,
-0.08394225686788559,
-0.06714293360710144,
-0.10132203251123428,
0.05713428929448128,
-0.033562228083610535,
-0.059415027499198914,
0.05965587869286537,
-0.013307076878845692,
-0.005254816729575396,
-0.028189968317747116,
0.022437794134020805,
0.19090288877487183,
0.014780344441533089,
0.1724366396665573,
-0.08358502388000488,
-0.03979617357254028,
0.00698357168585062,
-0.04361341893672943,
0.009217898361384869,
0.08736071735620499,
0.04003690555691719,
-0.0005725805531255901,
0.047232016921043396,
-0.01438854169100523,
-0.04194628447294235,
0.09481672197580338,
-0.02756837010383606,
-0.019172081723809242,
-0.019308703020215034,
0.07818228751420975,
0.038888562470674515,
0.007944689132273197,
-0.08424562960863113,
-0.041323285549879074,
0.010517420247197151,
-0.0035940571688115597,
0.051654018461704254,
-0.09960941970348358,
0.05640021711587906,
0.02747434563934803,
-0.03280435502529144,
0.009212314151227474,
-0.060271792113780975,
-0.0302264466881752,
0.002165264682844281,
0.03232096880674362,
0.0031258822418749332,
0.00638333335518837,
-0.034537289291620255,
-0.13228300213813782,
0.186667338013649,
-0.121602863073349,
-0.2552352547645569,
-0.10203081369400024,
-0.009984132833778858,
-0.01091608963906765,
0.0017667313804849982,
0.032310981303453445,
-0.08448563516139984,
-0.017633169889450073,
-0.10378579050302505,
-0.0763649269938469,
-0.08494389057159424,
-0.055498067289590836,
0.059957895427942276,
0.013093315064907074,
0.002456407295539975,
-0.13530461490154266,
-0.006475665140897036,
0.07416445761919022,
-0.07571433484554291,
0.044918645173311234,
-0.07018733769655228,
0.103066585958004,
0.15215766429901123,
0.00028729092446155846,
0.027038797736167908,
-0.008812152780592442,
0.14313651621341705,
-0.012544255703687668,
0.04250750318169594,
0.19508253037929535,
-0.02874409407377243,
0.056124214082956314,
0.08042585849761963,
-0.0039388868026435375,
-0.031563691794872284,
-0.008749707601964474,
-0.0370759591460228,
-0.05565407872200012,
-0.21225742995738983,
-0.028407132253050804,
-0.09356550872325897,
0.007845807820558548,
0.07872884720563889,
0.05433186888694763,
0.017456060275435448,
0.03683023154735565,
-0.016474083065986633,
0.04716883599758148,
0.06654573231935501,
0.12894700467586517,
-0.02173144556581974,
0.04652593284845352,
0.0413622222840786,
-0.08001503348350525,
-0.016653984785079956,
0.04353771358728409,
0.04012934863567352,
0.19992001354694366,
-0.008599278517067432,
0.11531166732311249,
0.04874587059020996,
0.113748699426651,
0.02674693800508976,
0.09378632158041,
-0.09836653620004654,
0.08135851472616196,
-0.007911404594779015,
-0.05564439669251442,
-0.08473733812570572,
0.012160600163042545,
-0.05199959874153137,
-0.024833232164382935,
-0.04568224400281906,
0.007234147749841213,
0.03184957057237625,
0.1820247322320938,
0.06939209997653961,
-0.21428991854190826,
-0.039574116468429565,
0.0005079032853245735,
-0.035631678998470306,
-0.09260246157646179,
0.020065912976861,
-0.005817290861159563,
-0.13669665157794952,
0.05443347617983818,
-0.04703084006905556,
0.09927798062562943,
-0.08939319849014282,
-0.03894941881299019,
-0.011484538204967976,
0.017120713368058205,
0.04294916242361069,
0.08348222821950912,
-0.22647500038146973,
0.06103454902768135,
0.010529058054089546,
0.13949239253997803,
-0.08856600522994995,
0.08763134479522705,
0.016094332560896873,
-0.009274546056985855,
0.06939640641212463,
-0.005059298127889633,
-0.05554267764091492,
-0.146150603890419,
0.013197037391364574,
0.05645682290196419,
0.07156364619731903,
-0.03886379301548004,
0.12315291166305542,
-0.017498843371868134,
-0.0025039734318852425,
-0.05513358861207962,
-0.1109277680516243,
-0.10484498739242554,
-0.15045149624347687,
0.026478173211216927,
-0.10563301295042038,
0.041252847760915756,
-0.037612996995449066,
0.01152936089783907,
0.04204046353697777,
0.132283553481102,
-0.1966087520122528,
-0.11172373592853546,
-0.08952434360980988,
-0.03297780454158783,
0.032131392508745193,
-0.08076860755681992,
0.07795992493629456,
-0.005067370366305113,
0.08963746577501297,
0.002191741019487381,
-0.08802849799394608,
-0.018213631585240364,
-0.09096748381853104,
-0.09609264135360718,
0.0020491494797170162,
0.038326505571603775,
0.05738627538084984,
0.017175817862153053,
0.053872570395469666,
0.02877885103225708,
-0.036619048565626144,
-0.06633783131837845,
-0.09362927824258804,
0.08894035965204239,
0.10972073674201965,
0.06559737026691437,
-0.06709533929824829,
-0.08681527525186539,
-0.0624556839466095,
-0.01663976162672043,
0.10182781517505646,
0.1625974178314209,
-0.05356288328766823,
0.05471526458859444,
0.202244833111763,
-0.10835915058851242,
-0.1548064798116684,
-0.046154145151376724,
0.022055139765143394,
-0.0034607285633683205,
-0.028416074812412262,
-0.2823420464992523,
0.051122743636369705,
0.00864738691598177,
-0.017132246866822243,
-0.05321879684925079,
-0.30478015542030334,
-0.031057050451636314,
0.058859165757894516,
0.037998802959918976,
0.009193665347993374,
-0.15236502885818481,
-0.03064611740410328,
-0.01978924497961998,
-0.14805087447166443,
0.0056318785063922405,
-0.058734893798828125,
0.05639741197228432,
-0.007725783158093691,
-0.049120694398880005,
0.00482850382104516,
-0.06449047476053238,
0.06232677400112152,
-0.018520468845963478,
0.044561829417943954,
-0.03468984737992287,
-0.0065465569496154785,
0.07337409257888794,
-0.054187286645174026,
0.12595713138580322,
-0.08283970504999161,
0.07247981429100037,
-0.20365522801876068,
-0.04972004517912865,
-0.022219011560082436,
0.03249891474843025,
-0.03019879385828972,
-0.058987051248550415,
-0.06033138930797577,
0.025134606286883354,
0.09393812716007233,
0.040320802479982376,
0.06595213711261749,
0.03677908331155777,
0.053552720695734024,
0.1480652391910553,
0.07474799454212189,
0.007163422182202339,
-0.08943890035152435,
-0.04746062681078911,
-0.011444325558841228,
0.04405241087079048,
-0.11793877184391022,
0.0387374646961689,
0.07992970198392868,
0.06096948683261871,
0.15338681638240814,
0.04591277241706848,
-0.09971542656421661,
0.054008714854717255,
0.03722809627652168,
-0.08286739885807037,
-0.08718303591012955,
0.013306407257914543,
0.02001050114631653,
-0.10514946281909943,
0.010375590063631535,
0.09620317071676254,
-0.0327051505446434,
-0.0513678714632988,
-0.019468577578663826,
0.06111674755811691,
0.0053719691932201385,
0.14536064863204956,
0.08810283243656158,
0.03684430569410324,
-0.0681389644742012,
0.09423612803220749,
0.09506182372570038,
-0.018037738278508186,
0.03879298269748688,
0.15146011114120483,
-0.1216847151517868,
-0.06915233284235,
0.05715115740895271,
0.22016394138336182,
0.026012621819972992,
-0.07584842294454575,
-0.08730673044919968,
-0.0003365167649462819,
0.04801206663250923,
0.008042797446250916,
0.056085120886564255,
0.0005703649949282408,
-0.025082724168896675,
0.017846394330263138,
-0.11262735724449158,
0.09887967258691788,
0.07367325574159622,
0.005788262002170086,
-0.10113906115293503,
0.11862226575613022,
0.03811635822057724,
0.08163125067949295,
0.0026155828963965178,
-0.050006501376628876,
-0.09194711595773697,
0.015999721363186836,
-0.10121838003396988,
0.08844102174043655,
-0.07634015381336212,
0.009173339232802391,
-0.018774282187223434,
0.06290408223867416,
-0.017466437071561813,
0.061790429055690765,
-0.034550800919532776,
-0.05411330983042717,
-0.06540600210428238,
0.05069198086857796,
-0.11883223056793213,
-0.013290682807564735,
0.027925914153456688,
-0.1018582135438919,
0.06584399938583374,
-0.004285580012947321,
-0.029446156695485115,
0.03518872335553169,
0.014362495392560959,
-0.011509808711707592,
0.012259342707693577,
0.05381691828370094,
-0.009120920673012733,
-0.023618679493665695,
0.043961092829704285,
0.016287412494421005,
-0.03826553374528885,
-0.00785062275826931,
0.18307380378246307,
-0.07229438424110413,
0.013357404619455338,
-0.12121353298425674,
-0.04894637688994408,
-0.062235571444034576,
0.11022062599658966,
0.06330855190753937,
0.06980017572641373,
0.1421557366847992,
-0.05585680529475212,
0.10538655519485474,
-0.137213334441185,
-0.07307124137878418,
0.01016243826597929,
-0.011604372411966324,
-0.027621636167168617,
-0.06124641373753548,
0.05212939903140068,
-0.03718138858675957,
0.0640813559293747,
0.01777782291173935,
0.06109657883644104,
-0.029730506241321564,
-0.08471605181694031,
-0.001793642994016409,
0.014993628486990929,
0.13401073217391968,
0.04297398403286934,
-0.04305705055594444,
0.05379626899957657,
0.04591136425733566,
0.0019333366071805358,
0.11248186975717545,
0.052594296634197235,
0.19820348918437958,
0.026566099375486374,
0.039954669773578644,
-0.01605674996972084,
-0.07034045457839966,
-0.1313069611787796,
-0.03283526003360748,
0.010043171234428883,
0.06077893450856209,
-0.035746268928050995,
0.2014380246400833,
0.1595432311296463,
-0.10345908999443054,
0.06453047692775726,
0.0020922997500747442,
-0.060438815504312515,
-0.08419366180896759,
-0.06945430487394333,
-0.056914348155260086,
-0.05835472792387009,
-0.020598290488123894,
-0.08270201832056046,
-0.01936856098473072,
0.13323870301246643,
0.010490032844245434,
-0.00018449417257215828,
0.09085056185722351,
0.030460700392723083,
-0.08296055346727371,
0.00997928250581026,
-0.02477632276713848,
0.024894792586565018,
0.02978101186454296,
0.016377631574869156,
0.03203463926911354,
-0.028602929785847664,
0.1071176826953888,
0.048612080514431,
-0.0034305844455957413,
0.03829842433333397,
-0.05595190078020096,
-0.06995441764593124,
0.022118709981441498,
0.015029381960630417,
0.036023013293743134,
0.1969253569841385,
0.06121449172496796,
-0.06677886098623276,
0.0309132169932127,
0.11146915704011917,
-0.030898019671440125,
-0.08830760419368744,
-0.13902214169502258,
0.1516888439655304,
0.05438331887125969,
-0.013488125056028366,
0.04423984885215759,
-0.1056615561246872,
-0.01732085645198822,
0.2229219675064087,
0.11695587635040283,
0.048041101545095444,
-0.004484041128307581,
0.04978834465146065,
-0.003527536289766431,
0.002173694549128413,
0.11829502135515213,
0.09110136330127716,
0.2530311346054077,
-0.03453456610441208,
0.02034616470336914,
-0.02682781033217907,
-0.060728780925273895,
-0.14176300168037415,
0.05264836177229881,
-0.0502668060362339,
-0.01639961637556553,
0.006604589056223631,
0.07218246161937714,
-0.04467606544494629,
-0.23306132853031158,
0.08460526913404465,
-0.0428706519305706,
-0.07647796720266342,
0.013798653148114681,
0.00858142226934433,
0.00876285508275032,
0.04162657633423805,
0.018303675577044487,
0.015740901231765747,
0.1490551084280014,
0.027363823726773262,
-0.03195812553167343,
-0.06681835651397705,
0.08927972614765167,
-0.10035331547260284,
0.16079412400722504,
-0.02361968159675598,
0.09281080216169357,
0.13853894174098969,
0.05526718869805336,
-0.1126495823264122,
0.02534008026123047,
0.05906514823436737,
0.07570075243711472,
0.05921468138694763,
0.06127181649208069,
-0.0545365996658802,
-0.004109032452106476,
0.06827440857887268,
0.015465641394257545,
0.006178620271384716,
-0.05590129271149635,
0.025689365342259407,
-0.14005182683467865,
0.01708499900996685,
-0.08677678555250168,
0.0868520513176918,
0.123450867831707,
-0.05465034395456314,
0.02002677135169506,
-0.036193862557411194,
0.057643044739961624,
0.02123459056019783,
0.026357803493738174,
-0.06066929176449776,
-0.17498761415481567,
-0.018961533904075623,
-0.06140691787004471,
0.05664080008864403,
-0.18697991967201233,
-0.045743245631456375,
-0.002107346197590232,
-0.04163646325469017,
-0.101511649787426,
0.09740950167179108,
0.06555979698896408,
0.015582292340695858,
-0.041391920298337936,
-0.07344866544008255,
-0.07471907138824463,
0.1024622842669487,
-0.13211317360401154,
-0.07644432038068771
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-sft-lora_doc
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5031
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 128
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 1 | 0.5231 |
| No log | 2.0 | 2 | 0.5126 |
| No log | 3.0 | 3 | 0.5052 |
| No log | 4.0 | 4 | 0.5031 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "zephyr-7b-sft-lora_doc", "results": []}]} | null | daquarti/zephyr-7b-sft-lora_doc | [
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | 2024-02-06T20:16:18+00:00 | [] | [] | TAGS
#tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
| zephyr-7b-sft-lora\_doc
=======================
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the generator dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5031
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* gradient\_accumulation\_steps: 128
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 128\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 128\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
58,
127,
4,
33
] | [
"passage: TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 128\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.12466820329427719,
0.09804065525531769,
-0.0022937797475606203,
0.1111598014831543,
0.11322314292192459,
0.0029181719291955233,
0.1380240023136139,
0.13138365745544434,
-0.08414237946271896,
0.09553251415491104,
0.1486186683177948,
0.11064403504133224,
0.036987192928791046,
0.18488630652427673,
-0.040679462254047394,
-0.2069317251443863,
0.03097880445420742,
0.014748667366802692,
-0.05491918325424194,
0.1282052993774414,
0.08997583389282227,
-0.13990500569343567,
0.0851738452911377,
0.0027756416238844395,
-0.17450068891048431,
-0.015416951850056648,
-0.0030762371607124805,
-0.03992258384823799,
0.12492156028747559,
-0.005413081496953964,
0.09841477125883102,
0.03592358157038689,
0.08708617836236954,
-0.18118683993816376,
0.010461746715009212,
0.060683172196149826,
0.011196576058864594,
0.09456310421228409,
0.04400966688990593,
0.006786004640161991,
0.05883903056383133,
-0.08591320365667343,
0.04869646951556206,
0.02173006534576416,
-0.13579785823822021,
-0.2571103274822235,
-0.1226683184504509,
0.037232011556625366,
0.08985795080661774,
0.06687066704034805,
-0.012806952930986881,
0.1695532649755478,
-0.0371185839176178,
0.0739232674241066,
0.2853878140449524,
-0.32593002915382385,
-0.06918946653604507,
0.07236938178539276,
0.03079862892627716,
0.08628493547439575,
-0.11316118389368057,
-0.018757278099656105,
0.07453347742557526,
0.0313895121216774,
0.15924133360385895,
-0.006346388254314661,
0.0184833612293005,
0.0077163758687675,
-0.13661792874336243,
-0.06304556131362915,
0.1600654572248459,
0.06713121384382248,
-0.044670116156339645,
-0.06668265908956528,
-0.06670907884836197,
-0.19239237904548645,
-0.027385368943214417,
-0.028523070737719536,
0.05227116867899895,
-0.03499279171228409,
-0.06795655190944672,
0.010207566432654858,
-0.09906572103500366,
-0.07941169291734695,
-0.011129803024232388,
0.09451314061880112,
0.04641000181436539,
0.018829286098480225,
-0.00949789583683014,
0.10716241598129272,
-0.047434091567993164,
-0.15274222195148468,
0.004797651898115873,
0.02629946731030941,
-0.024939345195889473,
-0.04082523658871651,
-0.018119236454367638,
-0.07887855917215347,
0.029978517442941666,
0.15635955333709717,
-0.10896307975053787,
0.051337603479623795,
0.019111549481749535,
0.04649590328335762,
-0.09350482374429703,
0.1331859827041626,
-0.06608285754919052,
-0.010683258064091206,
0.004469830077141523,
0.11587774753570557,
0.0597132071852684,
-0.015450329519808292,
-0.09689649194478989,
0.04455801099538803,
0.10729152709245682,
0.025676116347312927,
-0.050291042774915695,
0.03677894547581673,
-0.06135525181889534,
-0.004607426933944225,
0.08182235807180405,
-0.09057372063398361,
0.03356907516717911,
0.006691750138998032,
-0.06436537206172943,
-0.09156446158885956,
-0.02028796076774597,
0.012434444390237331,
0.013726827688515186,
0.0801336020231247,
-0.10065485537052155,
0.012061337009072304,
-0.07488906383514404,
-0.11736147105693817,
0.030554773285984993,
-0.09969104826450348,
0.004279770888388157,
-0.08331730216741562,
-0.15154896676540375,
-0.022549988701939583,
0.055181682109832764,
-0.054847974330186844,
-0.04251454025506973,
-0.05173826217651367,
-0.0894126147031784,
0.025587959215044975,
-0.011742292903363705,
0.09529311209917068,
-0.0785645842552185,
0.09258425980806351,
0.031709909439086914,
0.07317905873060226,
-0.012971214018762112,
0.017429811879992485,
-0.10075151175260544,
0.05678778514266014,
-0.2149251401424408,
0.011010242626070976,
-0.05194586515426636,
0.08998962491750717,
-0.11926734447479248,
-0.07683251053094864,
-0.0182989239692688,
-0.033240336924791336,
0.10262827575206757,
0.10528780519962311,
-0.20483064651489258,
-0.04884825274348259,
0.19777587056159973,
-0.10332262516021729,
-0.1404998004436493,
0.1370985358953476,
-0.045804884284734726,
0.030014846473932266,
0.04395385831594467,
0.21793222427368164,
0.03941953554749489,
-0.1015959158539772,
-0.02656947448849678,
-0.06112170219421387,
0.057963401079177856,
-0.048494238406419754,
0.09477785974740982,
-0.026512503623962402,
0.057070743292570114,
0.00969318114221096,
-0.031181911006569862,
0.038073308765888214,
-0.08784867078065872,
-0.08582393079996109,
-0.05220447853207588,
-0.08904282748699188,
0.02345094457268715,
0.053945910185575485,
0.055371176451444626,
-0.13610614836215973,
-0.10157488286495209,
0.00004560686647891998,
0.08786498010158539,
-0.08157094568014145,
0.03467874974012375,
-0.07675604522228241,
0.13118089735507965,
-0.0973663479089737,
-0.014998896047472954,
-0.1601971834897995,
0.00006844116433057934,
0.04182892665266991,
-0.021076591685414314,
-0.013938642106950283,
-0.018010422587394714,
0.07940315455198288,
0.07802536338567734,
-0.06309100985527039,
-0.033836983144283295,
-0.0342257134616375,
-0.0005642577889375389,
-0.11450401693582535,
-0.22676126658916473,
-0.040627870708703995,
-0.049732744693756104,
0.10046709328889847,
-0.21833917498588562,
0.048260387033224106,
0.0625682845711708,
0.1005435362458229,
0.04039403423666954,
-0.04555816203355789,
-0.011711434461176395,
0.04854707047343254,
-0.03992674499750137,
-0.08380872756242752,
0.04392630606889725,
0.009071682579815388,
-0.08023892343044281,
-0.029493561014533043,
-0.1508299857378006,
0.13069482147693634,
0.1268058866262436,
0.04865298792719841,
-0.08370199054479599,
-0.029318539425730705,
-0.0613287091255188,
-0.04079322889447212,
-0.03505392745137215,
0.020283401012420654,
0.097393698990345,
0.01045162882655859,
0.12865141034126282,
-0.10790643841028214,
-0.04690159484744072,
0.05330197885632515,
-0.021071169525384903,
0.013361715711653233,
0.11681767553091049,
0.06425507366657257,
-0.11294342577457428,
0.14731021225452423,
0.1685040146112442,
-0.05483272299170494,
0.11201964318752289,
-0.07067643851041794,
-0.07836470752954483,
-0.049168702214956284,
0.03588881716132164,
0.02929464913904667,
0.16170169413089752,
-0.06268686801195145,
0.007870213128626347,
0.01538744568824768,
0.03011811152100563,
-0.006207661237567663,
-0.2036212980747223,
-0.025847895070910454,
0.036171603947877884,
-0.06593973934650421,
-0.006862627808004618,
-0.01895844377577305,
-0.0174589604139328,
0.09234943240880966,
-0.0037524427752941847,
-0.07934825122356415,
0.022536560893058777,
0.011812848038971424,
-0.06546280533075333,
0.19464729726314545,
-0.07674849033355713,
-0.10309052467346191,
-0.09071562439203262,
0.0019159066723659635,
-0.03092845156788826,
0.00029878917848691344,
0.06865420192480087,
-0.07548373937606812,
-0.025676099583506584,
-0.12247629463672638,
-0.03648867830634117,
0.03608645871281624,
0.029617877677083015,
0.050056908279657364,
-0.004775568377226591,
0.07935403287410736,
-0.11243432760238647,
-0.001010940526612103,
-0.03149101883172989,
-0.026267128065228462,
0.047625549137592316,
0.0387432835996151,
0.1260189414024353,
0.13544081151485443,
-0.01223039161413908,
0.023411516100168228,
-0.029709871858358383,
0.21671947836875916,
-0.0716271623969078,
-0.006760120391845703,
0.08758114278316498,
0.017048101872205734,
0.06608792394399643,
0.14604496955871582,
0.0613381527364254,
-0.0963226929306984,
-0.0032675769180059433,
0.0214842539280653,
-0.05047434940934181,
-0.20197944343090057,
-0.009449697099626064,
-0.0344383642077446,
0.011394820176064968,
0.10254506766796112,
0.043200183659791946,
0.022920411080121994,
0.05497760325670242,
0.01736314781010151,
0.02033558301627636,
-0.005905684549361467,
0.0750134140253067,
0.016845494508743286,
0.05703962221741676,
0.11053923517465591,
-0.05092959478497505,
-0.016464868560433388,
0.03816637396812439,
0.022475166246294975,
0.24444957077503204,
-0.008654618635773659,
0.19638089835643768,
0.05716365948319435,
0.1953495293855667,
-0.010735842399299145,
0.07912595570087433,
-0.018838737159967422,
-0.04262937232851982,
-0.01923842541873455,
-0.056800078600645065,
0.002746333833783865,
0.038875944912433624,
-0.052839647978544235,
0.06584365665912628,
-0.09038402885198593,
0.038128189742565155,
0.07917184382677078,
0.2987217903137207,
0.06845591962337494,
-0.34794822335243225,
-0.09249448776245117,
0.003735362319275737,
-0.0059755221009254456,
-0.015847081318497658,
0.01547869574278593,
0.17425791919231415,
-0.03484136611223221,
0.04067268595099449,
-0.07672003656625748,
0.07318227738142014,
-0.016490513458848,
0.02628035470843315,
0.05559704452753067,
0.09554242342710495,
-0.019828077405691147,
0.04640864208340645,
-0.2514511048793793,
0.2929391860961914,
0.02481960318982601,
0.08943416178226471,
-0.05059445649385452,
-0.00193608901463449,
0.013332369737327099,
0.04150950908660889,
0.09185168892145157,
-0.012388154864311218,
-0.11516709625720978,
-0.17856810986995697,
-0.11875201016664505,
0.016900550574064255,
0.07597159594297409,
-0.0428544357419014,
0.10410173237323761,
-0.0003042376774828881,
0.005950634367763996,
0.05226729437708855,
-0.01867070607841015,
-0.07182816416025162,
-0.0795808658003807,
-0.014526879414916039,
0.03726135939359665,
-0.05081326887011528,
-0.09201909601688385,
-0.10050561279058456,
-0.09116441756486893,
0.14028969407081604,
-0.026821289211511612,
-0.031222384423017502,
-0.10738561302423477,
0.07028398662805557,
0.0943068116903305,
-0.07328543812036514,
0.030707329511642456,
0.00956381019204855,
0.09041599184274673,
0.002667989581823349,
-0.022339072078466415,
0.11747892200946808,
-0.04991849884390831,
-0.19163809716701508,
-0.05944317206740379,
0.11710594594478607,
0.03194226697087288,
0.05464329570531845,
-0.0037022659089416265,
0.03277591988444328,
0.006721570156514645,
-0.08279361575841904,
0.055927712470293045,
-0.026391418650746346,
0.08899204432964325,
-0.03908515349030495,
-0.00034896735451184213,
0.019652334973216057,
-0.059968896210193634,
-0.05398957058787346,
0.14333198964595795,
0.3387589454650879,
-0.10427404940128326,
0.035764191299676895,
0.05480150505900383,
-0.0404527522623539,
-0.15266749262809753,
0.031393732875585556,
0.04337597265839577,
0.014374129474163055,
0.06659017503261566,
-0.1333446502685547,
0.04625719040632248,
0.1236431747674942,
-0.033206161111593246,
0.1074879914522171,
-0.3305053412914276,
-0.13298745453357697,
0.07645396143198013,
0.13808035850524902,
0.06721800565719604,
-0.17088761925697327,
-0.048553284257650375,
-0.0022584875114262104,
-0.12755237519741058,
0.07378529757261276,
-0.1330714374780655,
0.1004384234547615,
-0.019746795296669006,
0.021801209077239037,
0.007016800343990326,
-0.07635365426540375,
0.14678458869457245,
-0.005512586794793606,
0.1170579195022583,
-0.04460754990577698,
-0.0009095295099541545,
0.11430767923593521,
-0.07670466601848602,
0.03933843970298767,
-0.11038540303707123,
0.03393440321087837,
-0.061315830796957016,
-0.012065515853464603,
-0.06907603144645691,
0.012901625595986843,
-0.034662876278162,
-0.049554891884326935,
-0.0619882307946682,
0.03352811560034752,
0.05045280605554581,
-0.022127658128738403,
0.16380999982357025,
0.034508686512708664,
0.14928512275218964,
0.15253636240959167,
0.04532685875892639,
-0.09682736545801163,
-0.05144190043210983,
0.009145651943981647,
-0.025366535410284996,
0.049866195768117905,
-0.1697629988193512,
0.03053472377359867,
0.1265602558851242,
0.01790420338511467,
0.11939560621976852,
0.058048464357852936,
-0.06997223943471909,
0.035026635974645615,
0.0716811940073967,
-0.15003569424152374,
-0.1521352082490921,
0.026521388441324234,
-0.004142284858971834,
-0.12584374845027924,
0.06499326974153519,
0.09866012632846832,
-0.0566571019589901,
-0.009942503646016121,
-0.0013830374227836728,
0.03297004848718643,
-0.034279052168130875,
0.20943984389305115,
0.0458281934261322,
0.07107965648174286,
-0.0943698063492775,
0.08413171023130417,
0.05432655289769173,
-0.09302648156881332,
0.031752485781908035,
0.040966253727674484,
-0.09382732957601547,
-0.018935589119791985,
0.07425422221422195,
0.14797689020633698,
0.010486396960914135,
-0.05749496445059776,
-0.16549895703792572,
-0.10038075596094131,
0.06046973913908005,
0.13453900814056396,
0.08516772091388702,
0.026752619072794914,
0.003197513520717621,
-0.0036508901976048946,
-0.12367783486843109,
0.10713458806276321,
0.05482244864106178,
0.07901608198881149,
-0.1554996520280838,
0.09838973730802536,
-0.009316735900938511,
0.0012993572745472193,
-0.0071188476867973804,
0.0407378114759922,
-0.105279840528965,
0.007037890609353781,
-0.10204315185546875,
0.003917274065315723,
-0.0658906102180481,
-0.013373811729252338,
0.00307333841919899,
-0.044220950454473495,
-0.061581648886203766,
0.02205437608063221,
-0.10979973524808884,
-0.02513848803937435,
0.023601388558745384,
0.04866763576865196,
-0.12902727723121643,
-0.027042878791689873,
0.024617867544293404,
-0.07614675909280777,
0.0780545249581337,
0.018007297068834305,
0.0256239864975214,
0.022109095007181168,
-0.12657563388347626,
0.03295671194791794,
0.06866979598999023,
-0.012214571237564087,
0.050246238708496094,
-0.12016056478023529,
-0.03193191811442375,
-0.0036029783077538013,
0.019130436703562737,
0.01572522148489952,
0.0774783343076706,
-0.13147848844528198,
-0.002219296293333173,
-0.025973694398999214,
-0.058881159871816635,
-0.047168977558612823,
0.03781265765428543,
0.09674382209777832,
0.006864055059850216,
0.18550412356853485,
-0.0763026550412178,
0.009406575933098793,
-0.2254333794116974,
-0.007107582408934832,
0.004481915850192308,
-0.10015902668237686,
-0.10796809941530228,
-0.005580676253885031,
0.06128944829106331,
-0.07032222300767899,
0.10392411798238754,
-0.019638782367110252,
-0.00014952717174310237,
0.03909057378768921,
-0.05867797136306763,
0.008574852719902992,
0.02996574155986309,
0.18369252979755402,
0.006040696520358324,
-0.04144734516739845,
0.061183664947748184,
0.031134575605392456,
0.0947469100356102,
0.10871168226003647,
0.17589199542999268,
0.1570713073015213,
0.02831094153225422,
0.0932421162724495,
0.028960300609469414,
-0.07074270397424698,
-0.14918887615203857,
0.12412416934967041,
-0.055006783455610275,
0.1052188128232956,
-0.004970338195562363,
0.18913967907428741,
0.14742633700370789,
-0.18383313715457916,
0.022908000275492668,
-0.0550018735229969,
-0.08546553552150726,
-0.09280246496200562,
-0.09672711044549942,
-0.08639141172170639,
-0.16437117755413055,
0.0061111790128052235,
-0.10115814954042435,
0.022412048652768135,
0.11416184157133102,
0.009764617308974266,
0.01174879539757967,
0.15711191296577454,
0.05648915842175484,
0.06084725633263588,
0.030090173706412315,
0.00977728795260191,
-0.05461746081709862,
-0.0464547835290432,
-0.08817650377750397,
0.03229751065373421,
-0.04697636514902115,
0.048247791826725006,
-0.03995242342352867,
-0.017932400107383728,
0.05208194628357887,
0.0010659508407115936,
-0.0998799279332161,
0.011022106744349003,
0.013716212473809719,
0.05111130326986313,
0.026597095653414726,
0.031903527677059174,
0.0033605434000492096,
-0.013574863784015179,
0.1945289671421051,
-0.05866696313023567,
-0.03976985067129135,
-0.12516342103481293,
0.18289390206336975,
0.0281835850328207,
-0.019823502749204636,
0.026119248941540718,
-0.10570920258760452,
0.024754280224442482,
0.14704105257987976,
0.1847105324268341,
-0.03172483295202255,
-0.011726683005690575,
-0.029005203396081924,
-0.016796667128801346,
-0.05938228964805603,
0.06804019212722778,
0.09861624240875244,
-0.0018973515834659338,
-0.09045183658599854,
-0.024881064891815186,
-0.06012209132313728,
-0.025092149153351784,
-0.050089411437511444,
0.036107681691646576,
0.014714280143380165,
0.02079055644571781,
-0.05552412196993828,
0.05444169044494629,
0.009568991139531136,
-0.10223958641290665,
0.08293706923723221,
-0.1957767754793167,
-0.14937423169612885,
-0.0020590221974998713,
0.09346596896648407,
-0.018199114128947258,
0.05045700818300247,
-0.027932507917284966,
0.0024266764521598816,
0.047260135412216187,
-0.03426709398627281,
-0.06861007958650589,
-0.10295338928699493,
0.07208722829818726,
-0.11897526681423187,
0.23639385402202606,
-0.04589822515845299,
0.040397949516773224,
0.13185755908489227,
0.03237186744809151,
-0.12265431880950928,
0.06516259908676147,
0.05323347449302673,
-0.040163666009902954,
-0.0022116252221167088,
0.09877204895019531,
-0.03043270669877529,
0.09586638957262039,
0.04900047928094864,
-0.09654029458761215,
-0.003172095399349928,
-0.05950364097952843,
-0.022969577461481094,
-0.05297454819083214,
-0.03521160036325455,
-0.03812750428915024,
0.13731162250041962,
0.16180352866649628,
-0.04582749679684639,
0.016554201021790504,
-0.043864283710718155,
0.03696594759821892,
0.0793721154332161,
0.028409598395228386,
-0.03264695778489113,
-0.2650972008705139,
0.046893972903490067,
0.07720793783664703,
-0.012940337881445885,
-0.24854402244091034,
-0.10916215181350708,
0.010795531794428825,
-0.0628664419054985,
-0.07914534956216812,
0.08848856389522552,
0.10391341149806976,
0.07542549073696136,
-0.07038810104131699,
-0.0638933852314949,
-0.08295935392379761,
0.16066868603229523,
-0.13243040442466736,
-0.09326150268316269
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | vaicai/kaifa-support-chat-v5 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:19:49+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | null | 
Embryophagus is a 12.5B model with 32K context length.
It is born from various merging experimentations backed by a homemade testing suite. I was lazy/not cautious and lost the exact recipe! Oops.
However, I know its main DNA is from argilla/CapybaraHermes-2.5-Mistral-7B.
I decided to share it because of its good results on common sense and logical tests. Just do not expect AGI, the moon or else.
It DOES make mistakes. But less that many other RP oriented models that I tested and used...
And I love the 32K context length, allowing generous character and/or world description...
Its main downside, like many other models, is to "play" sometimes as the user. It might describe a scene and suddenly writes the name of your character, and states what you are doing, impersonating you.
=> This is annoying but easily fixed by configuring custom stopping strings.
In text-gen-web-ui, go in "parameters>generation>custom stopping string", and insert there strings such as:
- "\nYourCharacterName:"
- "\nPlayer:"
- "\nUser:"
In my humble opinion, and this is very subjective, its English prose is beautiful.
I like it so much that I will probably settle with this model for synthetic data generation.
Here are some examples:
"Your eyes fixate on the distant silhouette of "The Howling Cave" carved into the mountain's face. It appears as an enormous gaping wound, a jagged scar upon Mother Nature herself, where only darkness and death lurk within its depths. The villagers have spoken of horrors that dwell within; tales of ancient beasts, terrifying creatures and unspeakable horrors.
The path ahead is unclear, with twisted roots snaking upwards from the decaying forest floor like sinuous serpents reaching for their prey. Your senses heighten as your instincts take control - every rustling leaf, every crack of a branch echoes in harmony with your primal awareness."
[...]
"The sun's golden rays recede with every passing moment, yielding their place to an inky black sky littered with stars like diamonds scattered upon velvet cloth. The wind whispers cold promises against your skin as you push higher into the mountain's embrace, ever closer to the jaws of darkness that await within "the howling cave."
[...]
"With bated breath and a prayer on your lips, you slip stealthily into the cavern's dark embrace - skulking along its damp walls like a phantom of the night. The air within is cold and stagnant; thick with the scent of rot and decay that claws at your nostrils like sharp talons.
Your eyes adjust slowly to the darkness, illuminating just enough of the cavern's twisted depths for you to discern its horrors: skeletal remains littering the floor amidst pools of fetid water - their silent screams echoing in endless torment through this tomb-like lair.
As you inch further into the black abyss, your heartbeat pounds relentlessly against your ears - a drumbeat drowning out all other sound save for the hollow echoes of footsteps reverberating off the cavern walls. With every step, you sense an unnatural stillness creeping ever closer; like the breath of death itself breathing upon the back of your neck.
In this place where shadows dance and nightmares lurk, you tread with careful caution - a single misstep or errant whisper could spell certain doom for one who dares trespass within these ancient halls..."
For settings, I use usually text-gen-web-ui defaults
- temp 0.7
- top_p 0.9
- min_p 0
- top_k 20
- repetition_penalty 1.15
- etc.
[Support Me Here!](https://ko-fi.com/karkomagor)
[My Blog](https://aitravelnotes.blogspot.com/)
***
Vanilla Quantization by [nold](https://huggingface.co/nold), Model by [Karko](https://huggingface.co/Karko/embryophagus). Created using [llm-quantizer](https://github.com/Nold360/llm-quantizer) Pipeline - 4bc844478df79ecfd72815473b30ae09499e179d
| {"license": "unknown", "tags": ["merge"], "pipeline_tag": "text-generation"} | text-generation | nold/embryophagus-GGUF | [
"gguf",
"merge",
"text-generation",
"license:unknown",
"region:us"
] | 2024-02-06T20:20:47+00:00 | [] | [] | TAGS
#gguf #merge #text-generation #license-unknown #region-us
| !img_text
Embryophagus is a 12.5B model with 32K context length.
It is born from various merging experimentations backed by a homemade testing suite. I was lazy/not cautious and lost the exact recipe! Oops.
However, I know its main DNA is from argilla/CapybaraHermes-2.5-Mistral-7B.
I decided to share it because of its good results on common sense and logical tests. Just do not expect AGI, the moon or else.
It DOES make mistakes. But less that many other RP oriented models that I tested and used...
And I love the 32K context length, allowing generous character and/or world description...
Its main downside, like many other models, is to "play" sometimes as the user. It might describe a scene and suddenly writes the name of your character, and states what you are doing, impersonating you.
=> This is annoying but easily fixed by configuring custom stopping strings.
In text-gen-web-ui, go in "parameters>generation>custom stopping string", and insert there strings such as:
- "\nYourCharacterName:"
- "\nPlayer:"
- "\nUser:"
In my humble opinion, and this is very subjective, its English prose is beautiful.
I like it so much that I will probably settle with this model for synthetic data generation.
Here are some examples:
"Your eyes fixate on the distant silhouette of "The Howling Cave" carved into the mountain's face. It appears as an enormous gaping wound, a jagged scar upon Mother Nature herself, where only darkness and death lurk within its depths. The villagers have spoken of horrors that dwell within; tales of ancient beasts, terrifying creatures and unspeakable horrors.
The path ahead is unclear, with twisted roots snaking upwards from the decaying forest floor like sinuous serpents reaching for their prey. Your senses heighten as your instincts take control - every rustling leaf, every crack of a branch echoes in harmony with your primal awareness."
[...]
"The sun's golden rays recede with every passing moment, yielding their place to an inky black sky littered with stars like diamonds scattered upon velvet cloth. The wind whispers cold promises against your skin as you push higher into the mountain's embrace, ever closer to the jaws of darkness that await within "the howling cave."
[...]
"With bated breath and a prayer on your lips, you slip stealthily into the cavern's dark embrace - skulking along its damp walls like a phantom of the night. The air within is cold and stagnant; thick with the scent of rot and decay that claws at your nostrils like sharp talons.
Your eyes adjust slowly to the darkness, illuminating just enough of the cavern's twisted depths for you to discern its horrors: skeletal remains littering the floor amidst pools of fetid water - their silent screams echoing in endless torment through this tomb-like lair.
As you inch further into the black abyss, your heartbeat pounds relentlessly against your ears - a drumbeat drowning out all other sound save for the hollow echoes of footsteps reverberating off the cavern walls. With every step, you sense an unnatural stillness creeping ever closer; like the breath of death itself breathing upon the back of your neck.
In this place where shadows dance and nightmares lurk, you tread with careful caution - a single misstep or errant whisper could spell certain doom for one who dares trespass within these ancient halls..."
For settings, I use usually text-gen-web-ui defaults
- temp 0.7
- top_p 0.9
- min_p 0
- top_k 20
- repetition_penalty 1.15
- etc.
Support Me Here!
My Blog
*
Vanilla Quantization by nold, Model by Karko. Created using llm-quantizer Pipeline - 4bc844478df79ecfd72815473b30ae09499e179d
| [] | [
"TAGS\n#gguf #merge #text-generation #license-unknown #region-us \n"
] | [
24
] | [
"passage: TAGS\n#gguf #merge #text-generation #license-unknown #region-us \n"
] | [
0.04690588265657425,
0.0679745227098465,
-0.005512665957212448,
-0.015609669499099255,
0.03731292113661766,
0.058994781225919724,
0.210737943649292,
0.08155163377523422,
0.1714026927947998,
-0.03371196985244751,
0.12982197105884552,
0.0013889287365600467,
0.03825657442212105,
0.08030839264392853,
-0.06701753288507462,
-0.17420364916324615,
0.07069133222103119,
-0.02100221998989582,
-0.009214892983436584,
0.0040429807268083096,
0.029220284894108772,
-0.0007908786064945161,
0.04769996926188469,
-0.02256098948419094,
-0.1353514939546585,
0.01209075003862381,
-0.001632976927794516,
-0.036667950451374054,
0.050286684185266495,
0.08944620192050934,
0.01236118283122778,
0.05435615032911301,
-0.08908549696207047,
-0.11996738612651825,
0.039055678993463516,
-0.08614272624254227,
-0.15813079476356506,
0.00509035587310791,
0.09508230537176132,
-0.024853540584445,
0.12660099565982819,
0.14725378155708313,
-0.08853171765804291,
0.09382534772157669,
-0.21636104583740234,
-0.14602120220661163,
-0.1325695961713791,
0.014905102550983429,
-0.042165618389844894,
0.016150491312146187,
0.009803376160562038,
-0.006122531834989786,
-0.09726707637310028,
-0.020869242027401924,
0.022368425503373146,
-0.3950798809528351,
0.05338123068213463,
0.23258855938911438,
0.08492515981197357,
0.02767738699913025,
-0.07175282388925552,
0.13603000342845917,
0.07943717390298843,
-0.03757825866341591,
-0.14434215426445007,
-0.07017560303211212,
-0.008922979235649109,
0.08622383326292038,
-0.0723884254693985,
-0.06250128895044327,
0.2433171570301056,
0.026799054816365242,
0.025295231491327286,
0.006966480053961277,
-0.01720316708087921,
0.07008352130651474,
0.017949823290109634,
0.06136443093419075,
-0.005770817864686251,
0.16145706176757812,
0.1507439911365509,
-0.13307639956474304,
-0.09461881220340729,
-0.032703377306461334,
-0.2564103901386261,
0.16607311367988586,
-0.0150379603728652,
0.11817419528961182,
-0.12524862587451935,
0.0013404786586761475,
-0.24335534870624542,
-0.021401435136795044,
-0.02136206068098545,
-0.0806950181722641,
0.031064867973327637,
0.05784664303064346,
-0.08824285119771957,
0.007634659763425589,
0.1372312605381012,
0.16698512434959412,
-0.10903935879468918,
-0.013287573121488094,
-0.061187874525785446,
0.20607447624206543,
0.04073397442698479,
-0.054069530218839645,
0.05402551218867302,
0.03216079622507095,
0.038029227405786514,
-0.14138638973236084,
0.03684648871421814,
-0.04831262677907944,
-0.2174820601940155,
0.040505263954401016,
-0.21905741095542908,
0.06370148807764053,
0.04108363762497902,
-0.0012540314346551895,
-0.05906803160905838,
0.04412216693162918,
0.04163169860839844,
0.010163119062781334,
-0.002228342229500413,
-0.021853242069482803,
0.018640508875250816,
-0.06379056721925735,
-0.01684354431927204,
0.06402987241744995,
0.06520908325910568,
0.037094566971063614,
-0.10773556679487228,
-0.05009261146187782,
0.02280200831592083,
0.027697989717125893,
0.08733168989419937,
-0.09603861719369888,
0.0022404235787689686,
-0.03281505033373833,
-0.1946272850036621,
0.03511625900864601,
-0.0014569072518497705,
-0.033894624561071396,
0.01598469726741314,
-0.005028719548135996,
0.04411716386675835,
-0.013222315348684788,
-0.054650239646434784,
-0.0802910104393959,
-0.08304524421691895,
0.08291668444871902,
-0.05191103368997574,
0.005145404953509569,
-0.3068690001964569,
0.030785610899329185,
-0.09791016578674316,
0.061115704476833344,
0.016877099871635437,
0.061244167387485504,
-0.12709985673427582,
0.10250503569841385,
0.03433992713689804,
0.0835033506155014,
-0.07677596807479858,
0.06282471865415573,
-0.11122721433639526,
0.15295663475990295,
-0.04479062929749489,
-0.12714360654354095,
0.18321596086025238,
-0.095159612596035,
-0.1318599283695221,
0.06269798427820206,
0.03176558017730713,
0.013720904476940632,
0.06779902428388596,
0.4349767565727234,
-0.09828056395053864,
-0.027093350887298584,
0.05018205568194389,
0.18602457642555237,
-0.10144317150115967,
-0.12367013841867447,
0.12106185406446457,
-0.1502067893743515,
-0.17164723575115204,
0.016017690300941467,
0.018625283613801003,
0.11858092248439789,
-0.03108072653412819,
-0.06023652106523514,
-0.029451627284288406,
0.016460059210658073,
0.043907761573791504,
-0.01773739978671074,
0.07841752469539642,
-0.07396330684423447,
-0.001956203253939748,
-0.047874536365270615,
-0.02043900266289711,
0.09633725136518478,
-0.01837342604994774,
0.006070587318390608,
0.16813614964485168,
0.00957062654197216,
0.07911784201860428,
-0.021225763484835625,
-0.1351691484451294,
0.002353484043851495,
-0.007589410990476608,
0.1133207455277443,
0.14158891141414642,
0.004092911724001169,
-0.03819628432393074,
-0.014858795329928398,
0.06717639416456223,
0.06169331818819046,
-0.0019156363559886813,
0.024642985314130783,
-0.09062449634075165,
0.06636618077754974,
-0.03213870897889137,
-0.004734258633106947,
-0.061416737735271454,
0.006720376666635275,
0.13129080832004547,
-0.004459115210920572,
-0.049085188657045364,
0.038423407822847366,
-0.001591375912539661,
-0.0052222334779798985,
-0.0027305595576763153,
0.008535130880773067,
0.12131353467702866,
0.0025614085607230663,
-0.23949237167835236,
0.23199088871479034,
-0.046042922884225845,
0.12872816622257233,
0.15060864388942719,
-0.08400840312242508,
0.030974945053458214,
-0.17393143475055695,
-0.05817630514502525,
0.01425156556069851,
0.0716417208313942,
-0.03194098547101021,
0.047774236649274826,
-0.045383818447589874,
0.0854756087064743,
-0.0813283771276474,
-0.03804466873407364,
-0.04718229919672012,
0.0006539800087921321,
-0.10753262042999268,
0.07426132261753082,
0.1301833689212799,
-0.20937664806842804,
0.24408677220344543,
0.29821285605430603,
0.16010579466819763,
0.2606654167175293,
-0.09749103337526321,
0.02869715914130211,
-0.02375413104891777,
0.00823087990283966,
-0.027856314554810524,
0.04707381874322891,
-0.07109041512012482,
0.0424620620906353,
0.08080707490444183,
0.06818313896656036,
0.10487013310194016,
-0.1423904448747635,
-0.17591282725334167,
-0.0461014024913311,
-0.03674115613102913,
-0.06797830015420914,
0.1298750638961792,
-0.05667620152235031,
0.06283757835626602,
0.03275495022535324,
0.009873608127236366,
0.16670367121696472,
-0.005713179241865873,
-0.06064961478114128,
0.10953528434038162,
-0.17787639796733856,
-0.16983820497989655,
-0.1697879135608673,
-0.07124815881252289,
-0.07425437122583389,
0.05063726380467415,
0.11725415289402008,
-0.04745933786034584,
-0.007457860745489597,
0.029400590807199478,
0.00714460015296936,
-0.18031930923461914,
-0.07223264873027802,
-0.004205220378935337,
0.04357871413230896,
-0.10490591078996658,
-0.07940655201673508,
-0.06592171639204025,
-0.030394626781344414,
-0.07194381952285767,
0.09823773801326752,
-0.08011337369680405,
0.09829599410295486,
0.11661573499441147,
0.05224280431866646,
0.06352222710847855,
-0.08469288796186447,
0.1745360940694809,
-0.09719458967447281,
-0.0742923840880394,
0.07521270215511322,
-0.008125224150717258,
0.05781686678528786,
0.12497682124376297,
0.06533530354499817,
-0.1303747147321701,
-0.043570347130298615,
-0.03732336312532425,
-0.106583371758461,
-0.2472241222858429,
-0.08453993499279022,
-0.11613263189792633,
0.16105768084526062,
-0.06811399012804031,
0.08238779008388519,
0.1430208384990692,
-0.01861685886979103,
-0.029999865218997,
0.022139420732855797,
0.03347970172762871,
0.024120910093188286,
0.26575765013694763,
-0.03359473496675491,
0.02083602175116539,
-0.0968584194779396,
0.02931012585759163,
0.15313181281089783,
0.09031327813863754,
0.1749536693096161,
0.242145374417305,
0.2028922289609909,
0.14871248602867126,
-0.0038316186983138323,
0.122104711830616,
-0.0572088398039341,
0.023268194869160652,
-0.027118289843201637,
-0.07770568132400513,
-0.05338519066572189,
0.07948052883148193,
0.040711481124162674,
0.0000810644487501122,
-0.17137347161769867,
-0.017522206529974937,
-0.23366646468639374,
0.0693507269024849,
-0.04890195280313492,
0.0576120987534523,
0.013601847924292088,
0.057134754955768585,
0.09064798802137375,
0.07532389461994171,
-0.03781112655997276,
0.08950991183519363,
-0.01414466928690672,
-0.10539921373128891,
0.15603075921535492,
0.023957809433341026,
0.12232860177755356,
0.0843438059091568,
0.04576539248228073,
-0.07474309951066971,
-0.147313192486763,
0.025730473920702934,
0.138164684176445,
-0.19026759266853333,
0.29737433791160583,
0.05692470818758011,
-0.08609281480312347,
0.003569001564756036,
-0.044646959751844406,
0.007444788236171007,
0.1575196534395218,
0.11969047039747238,
0.03971158340573311,
-0.057003479450941086,
0.0032840983476489782,
-0.013054280541837215,
0.02159859426319599,
0.10428492724895477,
-0.0689895823597908,
-0.111086405813694,
-0.040422964841127396,
0.06758329272270203,
-0.01991955004632473,
0.08827144652605057,
-0.0758957788348198,
-0.17701181769371033,
0.07931911945343018,
0.07679516822099686,
0.04569180682301521,
-0.04265942797064781,
0.040544185787439346,
-0.10167142003774643,
0.15203261375427246,
-0.1591677963733673,
-0.0410754568874836,
-0.12613525986671448,
-0.05175301805138588,
0.033204346895217896,
0.020941708236932755,
0.00474310340359807,
-0.10471747815608978,
-0.101162850856781,
-0.18804489076137543,
-0.21305584907531738,
0.11980260163545609,
-0.028302371501922607,
-0.034477587789297104,
-0.033173736184835434,
0.14402692019939423,
-0.05290276184678078,
0.05761302262544632,
-0.024631096050143242,
0.05632004141807556,
-0.05350911244750023,
-0.14771859347820282,
0.13175269961357117,
-0.05420054867863655,
0.008808904327452183,
0.09844180196523666,
-0.047793082892894745,
0.032203350216150284,
0.0773380845785141,
-0.14288778603076935,
0.20126843452453613,
0.4348432123661041,
-0.007310955785214901,
0.307629257440567,
0.24585740268230438,
-0.12822003662586212,
-0.24165737628936768,
-0.11428693681955338,
-0.20197629928588867,
-0.054690588265657425,
0.04037333279848099,
-0.168815478682518,
-0.030035415664315224,
0.17330510914325714,
-0.08898051828145981,
0.28402772545814514,
-0.29999279975891113,
-0.01849832758307457,
0.01943713240325451,
-0.13568054139614105,
0.44701698422431946,
-0.17728281021118164,
-0.19646361470222473,
-0.056922394782304764,
-0.15058396756649017,
0.14979736506938934,
-0.020790142938494682,
0.12436078488826752,
-0.021727051585912704,
-0.009479185566306114,
-0.03252698853611946,
0.00589015381410718,
0.20371688902378082,
-0.04483718425035477,
0.05967438966035843,
-0.08265659958124161,
-0.0776095911860466,
0.20738451182842255,
0.04696062579751015,
-0.04038900509476662,
-0.1516573429107666,
-0.05937093123793602,
-0.05746771767735481,
-0.024029314517974854,
-0.05320237949490547,
0.13036057353019714,
0.00820795726031065,
-0.06960183382034302,
-0.13005724549293518,
0.02347889356315136,
-0.13230668008327484,
0.005778325255960226,
0.31960612535476685,
-0.0424484983086586,
0.17117939889431,
-0.000028032543923472986,
-0.012728361412882805,
-0.14287440478801727,
0.02495812252163887,
-0.10859601199626923,
-0.060970645397901535,
0.06510793417692184,
-0.1415969431400299,
-0.09346499294042587,
0.10264892131090164,
-0.015309268608689308,
0.0961514562368393,
0.09748525172472,
-0.08701249212026596,
0.06341224908828735,
0.13252659142017365,
-0.14091254770755768,
-0.2336159646511078,
-0.042575713247060776,
-0.044604357331991196,
0.18311288952827454,
0.004459794610738754,
0.05914463475346565,
0.08698505908250809,
-0.005798739846795797,
0.03154297545552254,
-0.0055790492333471775,
-0.10597940534353256,
-0.07675360888242722,
0.0009104939526878297,
-0.0235539972782135,
-0.12975765764713287,
0.17990371584892273,
0.1072864681482315,
-0.03361203521490097,
-0.007769917603582144,
0.15316380560398102,
-0.05161143094301224,
-0.09324371069669724,
-0.191732719540596,
0.15871064364910126,
-0.13516084849834442,
-0.004093038383871317,
0.055094681680202484,
-0.10048433393239975,
0.02609224244952202,
0.12861406803131104,
0.0010141900274902582,
0.12331771105527878,
0.047073934227228165,
0.012453041970729828,
0.15652789175510406,
-0.03641296178102493,
-0.19830186665058136,
0.013041051104664803,
-0.03766661137342453,
-0.07861441373825073,
-0.002503939438611269,
0.1187007948756218,
-0.051896605640649796,
-0.06578381359577179,
-0.22453093528747559,
0.0035988125018775463,
-0.09288036823272705,
-0.061966512352228165,
-0.06895291060209274,
-0.07519562542438507,
0.022811409085989,
-0.01761324144899845,
-0.011704974807798862,
-0.03542223572731018,
-0.12416790425777435,
-0.014225048013031483,
0.046755850315093994,
0.09233050793409348,
-0.07842570543289185,
-0.029516974464058876,
0.10438072681427002,
0.09254506975412369,
0.12817516922950745,
0.08350617438554764,
0.03439944609999657,
0.08529078960418701,
-0.2870093882083893,
-0.0699940025806427,
0.07803445309400558,
-0.04035254940390587,
-0.001256910851225257,
0.13995014131069183,
-0.04856692999601364,
0.012418098747730255,
-0.06825525313615799,
0.06457716226577759,
-0.13643963634967804,
-0.15017294883728027,
-0.11308349668979645,
-0.024096647277474403,
-0.12827758491039276,
0.007090185768902302,
-0.09443599730730057,
0.11303852498531342,
0.029126381501555443,
0.07362045347690582,
0.0075757685117423534,
0.04702901840209961,
-0.009570430032908916,
-0.0027199003379791975,
0.0021860806737095118,
-0.1488799750804901,
-0.08609066903591156,
-0.07978641241788864,
-0.07005228102207184,
0.014972306787967682,
0.39695629477500916,
0.06452558189630508,
-0.19993460178375244,
0.03239724785089493,
0.06905941665172577,
0.050025880336761475,
-0.008954397402703762,
0.2953161597251892,
0.12507833540439606,
-0.020210785791277885,
-0.14597651362419128,
0.057436179369688034,
-0.08016810566186905,
-0.19844277203083038,
0.08446097373962402,
-0.011508126743137836,
-0.030078843235969543,
0.02956145815551281,
0.14050638675689697,
-0.0917591005563736,
0.006800367031246424,
-0.10090979188680649,
0.13210932910442352,
0.042852796614170074,
-0.00529919657856226,
0.06182855740189552,
0.12591299414634705,
-0.0717427209019661,
0.12156474590301514,
-0.013203955255448818,
-0.0061287772841751575,
-0.10943901538848877,
-0.15360470116138458,
0.03192903473973274,
-0.10901333391666412,
0.06871441751718521,
-0.03969051316380501,
0.07302462309598923,
0.07035113871097565,
0.04983988031744957,
-0.062392156571149826,
-0.030894245952367783,
-0.09044595807790756,
-0.10079962760210037,
0.046668458729982376,
-0.05521056428551674,
0.03723735362291336,
-0.12293172627687454,
-0.08210059255361557,
0.04565601423382759,
-0.08892680704593658,
-0.057212021201848984,
0.05756356939673424,
0.032277751713991165,
-0.006429842207580805,
-0.1786261796951294,
-0.046207938343286514,
-0.040654778480529785,
0.09498696029186249,
0.013936798088252544,
0.08237342536449432,
-0.015092412009835243,
0.011385940946638584,
0.08103825896978378,
0.1133555993437767,
0.03997298702597618,
0.013301755301654339,
0.08583416044712067,
0.11624060571193695,
-0.042882829904556274,
0.12085890769958496,
-0.0794714018702507,
-0.03355520963668823,
-0.00759106082841754,
0.19879423081874847,
0.34184983372688293,
-0.09647498279809952,
-0.011171579360961914,
0.024879848584532738,
0.03371075168251991,
0.18211326003074646,
0.0869898796081543,
-0.03490433469414711,
0.2466905415058136,
-0.06296856701374054,
0.026988957077264786,
-0.00826110877096653,
0.017491275444626808,
-0.13477399945259094,
0.08868115395307541,
0.06541150063276291,
-0.07624085247516632,
-0.01914004608988762,
0.13650627434253693,
-0.18418051302433014,
0.10383807122707367,
0.03388362377882004,
-0.10815639048814774,
0.0072763292118906975,
-0.0621880367398262,
0.05951414629817009,
-0.001184451743029058,
0.06318479031324387,
-0.049084242433309555,
-0.10257761925458908,
-0.08011443167924881,
0.022140661254525185,
-0.3079015910625458,
-0.11393071711063385,
0.04733222723007202,
0.04678945615887642,
0.06777803599834442,
-0.03220170736312866,
0.02088802680373192,
0.01711507886648178,
0.04148152098059654,
-0.017809687182307243,
0.08482705056667328,
0.019469963386654854,
0.06083765998482704,
-0.09238696098327637,
-0.08482855558395386,
0.012978285551071167,
-0.07924599200487137,
0.0764208510518074,
0.0019368870416656137,
0.05576537176966667,
0.13831909000873566,
-0.12085975706577301,
-0.006554965395480394,
0.05550265684723854,
-0.11304112523794174,
0.057173848152160645,
0.02396577224135399,
-0.011190143413841724,
-0.0547577328979969,
-0.06117621436715126,
-0.01110148150473833,
0.11827681958675385,
-0.056521687656641006,
-0.058731142431497574,
0.09872392565011978,
-0.03975345566868782,
0.19616137444972992,
0.02630712278187275,
-0.19937600195407867,
0.02577325887978077,
-0.16053113341331482,
0.15899494290351868,
-0.09438053518533707,
0.04450690746307373,
0.17614217102527618,
-0.01996881142258644,
-0.0009005213505588472,
-0.2805323302745819,
0.08076243847608566,
-0.05867180600762367,
0.00491281459107995,
0.007187624461948872
] |
null | null | ml-agents |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: IrinaArcadievna/poco-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
| {"library_name": "ml-agents", "tags": ["SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos"]} | reinforcement-learning | IrinaArcadievna/poco-SoccerTwos | [
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] | 2024-02-06T20:32:45+00:00 | [] | [] | TAGS
#ml-agents #tensorboard #onnx #SoccerTwos #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SoccerTwos #region-us
|
# poca Agent playing SoccerTwos
This is a trained model of a poca agent playing SoccerTwos
using the Unity ML-Agents Library.
## Usage (with ML-Agents)
The Documentation: URL
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your
browser: URL
- A *longer tutorial* to understand how works ML-Agents:
URL
### Resume the training
### Watch your Agent play
You can watch your agent playing directly in your browser
1. If the environment is part of ML-Agents official environments, go to URL
2. Step 1: Find your model_id: IrinaArcadievna/poco-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play
| [
"# poca Agent playing SoccerTwos\n This is a trained model of a poca agent playing SoccerTwos\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: IrinaArcadievna/poco-SoccerTwos\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
"TAGS\n#ml-agents #tensorboard #onnx #SoccerTwos #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SoccerTwos #region-us \n",
"# poca Agent playing SoccerTwos\n This is a trained model of a poca agent playing SoccerTwos\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: IrinaArcadievna/poco-SoccerTwos\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
52,
208
] | [
"passage: TAGS\n#ml-agents #tensorboard #onnx #SoccerTwos #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SoccerTwos #region-us \n# poca Agent playing SoccerTwos\n This is a trained model of a poca agent playing SoccerTwos\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: IrinaArcadievna/poco-SoccerTwos\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
0.0046891821548342705,
0.0030732019804418087,
-0.004893847741186619,
0.0631905123591423,
0.18992763757705688,
-0.024731900542974472,
0.13880187273025513,
0.11572438478469849,
0.12668687105178833,
0.08387579768896103,
0.062388282269239426,
0.03765357658267021,
0.06140508875250816,
0.132512629032135,
0.082624651491642,
-0.1545768827199936,
-0.019156906753778458,
-0.11356764286756516,
0.02565179206430912,
0.050515614449977875,
0.08865444362163544,
-0.05595583841204643,
0.05355077609419823,
0.050479914993047714,
-0.07016367465257645,
0.008574753068387508,
-0.05404645577073097,
-0.06039189174771309,
0.027112603187561035,
0.010600954294204712,
0.021736303344368935,
-0.073960080742836,
0.09459573030471802,
-0.17366886138916016,
0.022191235795617104,
0.029050862416625023,
-0.021878795698285103,
-0.06911437958478928,
0.12342909723520279,
0.02711416780948639,
0.1520581841468811,
-0.10155993700027466,
0.0954689085483551,
0.03082950972020626,
-0.0761299729347229,
0.07145746052265167,
-0.1003749817609787,
0.01740947552025318,
0.21041560173034668,
0.16230672597885132,
0.006542535033077002,
0.10104762017726898,
-0.054619234055280685,
0.009251609444618225,
0.13160094618797302,
-0.30723297595977783,
-0.08237862586975098,
0.11058536916971207,
-0.054518576711416245,
0.08142794668674469,
-0.026259038597345352,
0.06627205014228821,
-0.022022133693099022,
0.0222636628895998,
-0.016804801300168037,
0.02938436158001423,
0.19599901139736176,
-0.0208311527967453,
-0.044824156910181046,
-0.12591953575611115,
0.003928042016923428,
0.07248742133378983,
-0.0458560585975647,
-0.17011819779872894,
0.04296569153666496,
0.11554449051618576,
-0.05368861183524132,
0.016222812235355377,
0.05878477543592453,
-0.007619806099683046,
-0.044138967990875244,
-0.11369971185922623,
-0.04586145281791687,
-0.049287598580121994,
0.044768959283828735,
0.11282145977020264,
-0.02731926180422306,
-0.04017751291394234,
0.06972011923789978,
0.06143752112984657,
0.04317563399672508,
-0.04293247312307358,
0.00004354153134045191,
-0.004720474127680063,
-0.16098208725452423,
-0.08080119639635086,
-0.0265900120139122,
-0.053455650806427,
0.04340182989835739,
0.11075536906719208,
0.106664277613163,
-0.0032876795157790184,
0.030063075944781303,
0.04972664266824722,
-0.028680378571152687,
0.06721516698598862,
-0.009064067155122757,
0.010655218735337257,
0.005892045795917511,
0.01992323435842991,
0.025305528193712234,
-0.08944235742092133,
-0.10572560876607895,
0.0627099797129631,
-0.11531564593315125,
0.11555906385183334,
0.11499086022377014,
-0.016798745840787888,
-0.016453474760055542,
-0.04322366043925285,
0.0156397707760334,
-0.12704864144325256,
0.08897000551223755,
0.028816312551498413,
-0.06582720577716827,
-0.1240876093506813,
-0.0716586485505104,
0.04652778431773186,
-0.06481105834245682,
0.031068382784724236,
-0.016786819323897362,
0.05269632488489151,
-0.021306350827217102,
-0.035676270723342896,
0.07257163524627686,
-0.14208847284317017,
0.0026915438938885927,
-0.17595580220222473,
-0.07641491293907166,
-0.08048181235790253,
0.05134628713130951,
-0.11472887545824051,
-0.08841907978057861,
-0.09052552282810211,
0.004324431996792555,
-0.07404462993144989,
0.0465855672955513,
-0.08632200956344604,
-0.07153870910406113,
-0.023038458079099655,
-0.059014953672885895,
0.07397441565990448,
0.10079314559698105,
0.03401757404208183,
-0.03751176968216896,
0.020551487803459167,
-0.18533816933631897,
0.14351628720760345,
-0.10815516859292984,
0.14144957065582275,
-0.0778936892747879,
0.08107617497444153,
0.025239121168851852,
0.026217635720968246,
0.08734793215990067,
0.13870450854301453,
-0.059907060116529465,
-0.08809260278940201,
0.15357424318790436,
-0.04544274881482124,
-0.1626194268465042,
0.06580930203199387,
0.032726529985666275,
0.06011885404586792,
0.05939836800098419,
0.2397899478673935,
0.20502984523773193,
-0.2674643099308014,
0.09316271543502808,
-0.019271433353424072,
-0.11824250221252441,
-0.0015646942192688584,
0.1020728349685669,
-0.0975441187620163,
0.09863007068634033,
-0.037450920790433884,
-0.1872834712266922,
0.1506550908088684,
-0.028417715802788734,
-0.08506499230861664,
0.05032964050769806,
-0.07839478552341461,
-0.04745364561676979,
0.008061118423938751,
0.051365163177251816,
-0.05069612339138985,
-0.02673390507698059,
-0.027429183945059776,
0.039376504719257355,
-0.023180115967988968,
0.04530547559261322,
-0.07785924524068832,
0.1667623221874237,
-0.014151602052152157,
0.013755109161138535,
-0.12550145387649536,
-0.12501467764377594,
0.003637939225882292,
0.0824078842997551,
0.09589214622974396,
-0.10490389168262482,
0.04885757341980934,
0.08538443595170975,
0.018166663125157356,
-0.053857553750276566,
-0.12771201133728027,
0.018558474257588387,
-0.05068309232592583,
-0.1277916580438614,
-0.020805196836590767,
-0.056212231516838074,
0.10548726469278336,
-0.13829025626182556,
0.03942592442035675,
-0.09733615815639496,
0.09689225256443024,
-0.001216356293298304,
-0.05223395302891731,
-0.02238888293504715,
0.04982254281640053,
0.044148076325654984,
-0.06654443591833115,
0.12746860086917877,
0.02076646313071251,
-0.06807407736778259,
0.025362012907862663,
0.03317679464817047,
-0.07592969387769699,
0.11985290050506592,
0.02933727204799652,
-0.03632311150431633,
0.03591671958565712,
-0.03855474665760994,
0.007164787035435438,
-0.08804627507925034,
-0.009213768877089024,
0.15835051238536835,
0.09499098360538483,
0.10651007294654846,
-0.07470567524433136,
-0.002272987039759755,
0.031254928559064865,
-0.06707824766635895,
-0.07360966503620148,
0.06516768038272858,
0.05113697052001953,
-0.0246546883136034,
0.0429900586605072,
0.026856662705540657,
0.10797889530658722,
0.1676802933216095,
0.01230848953127861,
-0.1147526428103447,
0.03363848477602005,
0.10962513089179993,
0.0370953232049942,
0.03266667574644089,
0.022704096511006355,
-0.06384874880313873,
-0.016102129593491554,
-0.026985490694642067,
-0.045164771378040314,
-0.09499016404151917,
-0.07568296790122986,
0.05857620760798454,
-0.027451438829302788,
0.007876411080360413,
-0.037351906299591064,
-0.018167657777667046,
0.07617884874343872,
0.1103987768292427,
-0.016168860718607903,
0.0043359375558793545,
-0.0535210482776165,
-0.11731209605932236,
0.050013817846775055,
-0.07625337690114975,
-0.1892068088054657,
-0.1178649514913559,
-0.04170219972729683,
-0.07749234139919281,
0.0593281127512455,
0.06773161143064499,
-0.1271759569644928,
0.0161115825176239,
-0.08096951991319656,
-0.051258549094200134,
0.05666401609778404,
-0.06975671648979187,
0.17181825637817383,
0.12829066812992096,
-0.006832416169345379,
-0.06361764669418335,
-0.014258661307394505,
0.005067906808108091,
-0.0722995474934578,
-0.019213536754250526,
0.01715918816626072,
0.15149173140525818,
0.07561720907688141,
-0.010802927426993847,
0.044484078884124756,
-0.03505964204668999,
0.1098923534154892,
-0.11569434404373169,
0.01744294911623001,
0.06150778755545616,
-0.005844965111464262,
0.08170217275619507,
0.05511162430047989,
0.02905808389186859,
-0.009816647507250309,
0.0327291414141655,
0.014333028346300125,
-0.059055548161268234,
-0.18567340075969696,
-0.14468814432621002,
-0.02094176784157753,
0.11021117120981216,
0.1100630909204483,
0.07077763974666595,
-0.04570113122463226,
0.018978409469127655,
0.0017726310761645436,
-0.090602345764637,
0.13879665732383728,
0.13663826882839203,
-0.06664019823074341,
0.01435861736536026,
0.027404554188251495,
-0.05473495274782181,
0.007071238476783037,
0.07055250555276871,
-0.04053386300802231,
0.0968833863735199,
0.06423908472061157,
0.034555912017822266,
0.03117203339934349,
-0.07183627784252167,
-0.08168940246105194,
0.09347311407327652,
0.060067370533943176,
-0.0073119704611599445,
-0.030969424173235893,
-0.0676141008734703,
-0.053641535341739655,
0.0725037157535553,
0.138057678937912,
-0.08312944322824478,
-0.14911918342113495,
0.08038905262947083,
0.11762212216854095,
0.18115131556987762,
0.006611086893826723,
-0.1374504566192627,
-0.05761508643627167,
-0.021299179643392563,
-0.09853686392307281,
0.014922335743904114,
-0.015342813916504383,
0.024669600650668144,
-0.17891576886177063,
0.0349893756210804,
0.056358933448791504,
0.13186317682266235,
0.03696737438440323,
-0.003781707026064396,
0.035624224692583084,
0.015239940956234932,
-0.002175773959606886,
0.06744720786809921,
-0.14882409572601318,
0.08496133983135223,
-0.014991478063166142,
0.10658325254917145,
-0.05453101173043251,
-0.010448175482451916,
0.05174092575907707,
-0.04898947477340698,
0.16643449664115906,
0.058384254574775696,
-0.06046914681792259,
-0.15709035098552704,
-0.10809234529733658,
-0.08636295795440674,
-0.0071874442510306835,
-0.06377057731151581,
0.10608363896608353,
0.013974829576909542,
-0.02072271518409252,
-0.10220038890838623,
0.08118022233247757,
-0.049175605177879333,
-0.10078210383653641,
-0.0401354655623436,
-0.05723252147436142,
0.031757328659296036,
-0.02773365192115307,
-0.0030715500470250845,
-0.06411229074001312,
0.1449630856513977,
0.13358822464942932,
-0.029598161578178406,
-0.07765977084636688,
0.012320337817072868,
-0.09179487079381943,
-0.03636068105697632,
0.06410021334886551,
0.01740005798637867,
0.10590332001447678,
-0.10324665904045105,
0.01888754405081272,
-0.00891013815999031,
-0.11666753888130188,
-0.04723923280835152,
-0.0027319553773850203,
0.16690151393413544,
0.05235756188631058,
0.04117555916309357,
0.040566980838775635,
0.053677551448345184,
0.020483626052737236,
-0.07016374170780182,
0.16209140419960022,
0.15043866634368896,
-0.05182059854269028,
0.02912674844264984,
-0.04774831235408783,
-0.010723048821091652,
-0.1134195625782013,
-0.027589872479438782,
0.21295252442359924,
0.28020158410072327,
-0.08093441277742386,
0.20670317113399506,
0.010269592516124249,
-0.07803978770971298,
-0.16836148500442505,
-0.03980114683508873,
0.07135115563869476,
-0.04314792528748512,
0.15842030942440033,
-0.15376810729503632,
0.055052220821380615,
0.006154332775622606,
-0.008801051415503025,
0.006578867789357901,
-0.17633065581321716,
-0.07753130793571472,
0.0074052405543625355,
0.06909900903701782,
-0.014493592083454132,
-0.06583324074745178,
-0.0410505086183548,
-0.02514803409576416,
-0.1902793049812317,
0.048563987016677856,
-0.11715342104434967,
0.04800419136881828,
0.03030410408973694,
0.031877074390649796,
0.06840814650058746,
-0.006602845154702663,
0.15035469830036163,
-0.007987117394804955,
-0.045908644795417786,
-0.07452414184808731,
-0.009959992952644825,
0.08871059119701385,
-0.06964447349309921,
0.05976267158985138,
0.06783328950405121,
-0.03800579160451889,
-0.21329638361930847,
-0.004238590598106384,
-0.011652778834104538,
0.026373540982604027,
-0.024647479876875877,
0.007226972840726376,
-0.0010448420653119683,
0.08065824955701828,
0.09542739391326904,
0.046712979674339294,
0.11694954335689545,
-0.01573793776333332,
-0.016210084781050682,
0.02889980934560299,
0.05238974466919899,
0.07966171950101852,
-0.07384791225194931,
-0.0442965142428875,
-0.06101156026124954,
0.01668940670788288,
-0.04030836001038551,
0.008085669949650764,
0.034418441355228424,
0.017481686547398567,
-0.0420210063457489,
0.03233848512172699,
-0.10996226221323013,
0.018866268917918205,
0.08767914772033691,
-0.05007058382034302,
-0.044671811163425446,
-0.056550245732069016,
-0.07638248056173325,
0.04608674719929695,
-0.1302146017551422,
0.06690351665019989,
-0.039027538150548935,
-0.010845632292330265,
0.0452544130384922,
-0.021994106471538544,
-0.06045924872159958,
0.013905189000070095,
-0.0063959150575101376,
0.02296539396047592,
-0.03373769670724869,
0.16301573812961578,
0.03255656734108925,
-0.07900036871433258,
0.03743436932563782,
0.13337820768356323,
-0.11879783123731613,
-0.08528708666563034,
-0.021383607760071754,
0.08551634103059769,
0.019908932968974113,
-0.04360375925898552,
-0.022568702697753906,
-0.06109795346856117,
0.08781877160072327,
-0.08404605835676193,
-0.012447351589798927,
-0.13381366431713104,
0.0564010888338089,
0.0661056861281395,
-0.04963519424200058,
0.10078396648168564,
0.008392971009016037,
-0.05830282345414162,
-0.10697560012340546,
0.014963834546506405,
0.031428590416908264,
0.10277748107910156,
-0.00732447812333703,
-0.019823962822556496,
-0.1592499017715454,
0.02923896349966526,
-0.040056824684143066,
-0.03373932093381882,
-0.17743773758411407,
-0.014654862694442272,
-0.03006814233958721,
0.03362146019935608,
0.033755142241716385,
0.030130842700600624,
-0.050474829971790314,
-0.08449602872133255,
-0.042546894401311874,
0.1180691048502922,
-0.08029971271753311,
-0.015705876052379608,
-0.03737882897257805,
-0.04255332052707672,
0.04842887446284294,
0.09087742865085602,
0.028140848502516747,
-0.027254579588770866,
-0.07670903205871582,
0.008783668279647827,
-0.052706778049468994,
-0.06482989341020584,
0.08278173953294754,
-0.14936509728431702,
0.05014358088374138,
-0.028698034584522247,
-0.08038848638534546,
0.029454268515110016,
0.11027754843235016,
-0.04790467023849487,
0.08532718569040298,
0.04406847432255745,
-0.12920643389225006,
-0.08372478932142258,
0.036371368914842606,
0.09347927570343018,
0.03639907389879227,
0.09306608885526657,
-0.10137779265642166,
0.16655072569847107,
-0.10396774858236313,
-0.006864841096103191,
-0.010730713605880737,
0.0598861500620842,
-0.01647663488984108,
-0.1452939510345459,
0.02619827538728714,
-0.025538073852658272,
0.062355734407901764,
0.12687499821186066,
0.0821353867650032,
0.033418163657188416,
-0.026625078171491623,
0.11947952210903168,
0.04293656349182129,
0.06901711225509644,
-0.024405822157859802,
0.005389705300331116,
0.054563820362091064,
0.014064399525523186,
0.02510024607181549,
-0.08641427010297775,
0.06810896843671799,
0.10398033261299133,
0.12560677528381348,
0.04856736585497856,
0.08029145747423172,
-0.08356454223394394,
-0.1670849770307541,
-0.08970864117145538,
0.07153555005788803,
-0.03699980676174164,
-0.061172422021627426,
0.1351345330476761,
0.17236371338367462,
-0.26512518525123596,
0.05541415140032768,
-0.02899777702987194,
0.05183989182114601,
-0.048310287296772,
-0.09755738079547882,
0.01106156688183546,
-0.20266450941562653,
0.07806193828582764,
-0.044564779847860336,
-0.013615882024168968,
-0.0886702910065651,
-0.02901366725564003,
-0.011649930849671364,
0.08528824150562286,
-0.09040719270706177,
-0.06936144083738327,
0.08708221465349197,
-0.02279575541615486,
0.062139902263879776,
-0.04934702813625336,
-0.013535826466977596,
-0.05725329369306564,
-0.06058460474014282,
-0.01942155696451664,
0.08429368585348129,
-0.00382746709510684,
0.045583464205265045,
-0.03968318924307823,
-0.08160847425460815,
0.0985320657491684,
-0.012650802731513977,
0.03691747784614563,
0.12098198384046555,
0.06917344778776169,
-0.09694927930831909,
-0.03901410847902298,
0.21652841567993164,
-0.041000742465257645,
-0.041036754846572876,
-0.08034999668598175,
0.15082506835460663,
0.00672498345375061,
0.0009281522361561656,
-0.0341564305126667,
-0.14548657834529877,
-0.04899042099714279,
0.2310303896665573,
0.14701025187969208,
-0.017698198556900024,
0.014746597968041897,
-0.0595746673643589,
0.013938656076788902,
0.025052933022379875,
0.10545963048934937,
0.02717915177345276,
0.09381497651338577,
-0.07531118392944336,
0.010068784467875957,
-0.07789547741413116,
-0.042023368179798126,
-0.16980932652950287,
0.05750078707933426,
0.05011598765850067,
-0.017682015895843506,
-0.044839706271886826,
0.14387072622776031,
-0.08878526091575623,
-0.07309018075466156,
0.15293137729167938,
-0.10725811123847961,
-0.06572216004133224,
-0.019624408334493637,
-0.05370834097266197,
0.05653221532702446,
0.10970713198184967,
0.04901707544922829,
0.036269985139369965,
0.04456041753292084,
-0.000635868520475924,
-0.05090610682964325,
-0.04500481113791466,
0.03394428640604019,
-0.10551183670759201,
0.22013670206069946,
-0.055151935666799545,
0.03596028313040733,
0.06389731913805008,
0.06082358583807945,
-0.12439791113138199,
0.01035147812217474,
0.043334122747182846,
-0.0678177922964096,
0.04957586154341698,
0.03007259964942932,
-0.07419167459011078,
0.02189323492348194,
0.10054227709770203,
-0.07040806859731674,
0.03459002077579498,
0.07937987148761749,
0.013287004083395004,
-0.05269678682088852,
0.13925915956497192,
-0.14809857308864594,
0.09236510843038559,
0.11941993236541748,
-0.06197841838002205,
0.022906258702278137,
-0.009515318088233471,
0.05822575464844704,
0.0589522086083889,
0.08280541002750397,
-0.04570505768060684,
-0.1405484974384308,
0.006898179184645414,
0.04908508434891701,
0.039214011281728745,
-0.25850045680999756,
-0.09318780899047852,
-0.026193400844931602,
-0.06180240958929062,
-0.01181194931268692,
0.10785005241632462,
0.11146514117717743,
-0.054968930780887604,
-0.025092624127864838,
-0.20150218904018402,
0.03737998381257057,
0.1931900680065155,
-0.0564953051507473,
-0.03480609506368637
] |
null | null | peft | <img src="https://huggingface.co/dawveed/AWS-Sage/resolve/main/logo.png">
#Model Card for AWS Sage
The AWS-Sage is a Language Model (LLM) designed to assist users with questions related to Amazon Web Services (AWS) support. Powered by advanced natural language processing, it can swiftly provide answers to inquiries regarding AWS support plans, billing, technical issues, service limitations, and best practices. Whether you're a seasoned AWS user or new to the platform, the SupportBot offers timely and accurate assistance, helping you navigate the complexities of AWS support with ease.
## Model Details
### Model Description
The AWS Sage is a sophisticated Language Model (LLM) meticulously trained on a vast corpus of data extracted from Amazon Web Services (AWS) customer support interactions. This cutting-edge AI system is tailored specifically to address the diverse needs of AWS users seeking assistance and guidance with their cloud computing endeavors.
Equipped with state-of-the-art natural language understanding capabilities, the AWS Sage comprehensively tackles a wide array of inquiries related to AWS support services. Whether users are grappling with billing discrepancies, troubleshooting technical issues, seeking advice on optimizing their AWS infrastructure, or navigating the intricacies of support plans, the AWS Sage is adept at swiftly delivering accurate and insightful responses.
Utilizing a combination of machine learning algorithms and deep neural networks, the AWS Sage continuously refines its knowledge base and understanding of user queries, ensuring that it remains up-to-date with the latest developments and best practices in AWS support. Its ability to comprehend nuanced questions and provide contextually relevant answers makes it an invaluable resource for both novice and seasoned AWS users alike.
Moreover, the AWS Sage is designed to enhance the overall customer support experience by offering timely assistance and empowering users to resolve issues autonomously whenever possible. By leveraging the vast reservoir of knowledge accumulated through interactions with AWS support specialists, the AWS Sage serves as a virtual assistant capable of efficiently guiding users through various support processes and procedures.
In essence, the AWS Sage represents a paradigm shift in customer support, leveraging the power of artificial intelligence to deliver personalized, responsive, and effective assistance to AWS users across the globe. Whether users are seeking quick solutions to technical queries or seeking strategic advice to optimize their AWS deployments, the AWS Sage stands ready to assist, ensuring a seamless and rewarding experience in the AWS ecosystem.
- **Developed by:** David Lopez Oñate https://www.kinqo.com
- **License:** Apache 2.0
- **Finetuned from model:** tiiuae/falcon-7b
## Uses
AWS Sage is a language model designed to assist users with inquiries related to Amazon Web Services (AWS) support. The model can be utilized in various scenarios, including:
Technical Support: Users can rely on AWS Sage to obtain assistance with technical issues encountered while using AWS services, including troubleshooting, debugging, and resolving configuration errors.
Service Guidance: AWS Sage can provide guidance on the selection, deployment, and optimization of AWS services, helping users make informed decisions to meet their specific business requirements.
Billing and Account Management: Users can seek clarification on billing inquiries, account management procedures, and guidance on optimizing costs within the AWS environment.
Support Plan Information: AWS Sage can provide information on available AWS support plans, including features, benefits, and eligibility criteria, assisting users in selecting the most appropriate support plan for their needs.
Best Practices and Recommendations: Users can leverage AWS Sage to access best practices, recommendations, and guidelines for optimizing their AWS infrastructure, enhancing performance, security, and reliability.
Policy and Compliance Assistance: AWS Sage can offer guidance on AWS policies, compliance requirements, and security best practices, helping users ensure adherence to industry standards and regulatory frameworks.
Resource Documentation: Users can access documentation, FAQs, and resources related to AWS services and support offerings through AWS Sage, facilitating self-service support and learning.
Training and Education: AWS Sage can serve as a learning resource for users seeking to expand their knowledge of AWS services, support processes, and best practices through interactive Q&A sessions and educational content.
## Bias, Risks, and Limitations
-Bias in Training Data: The AWS Sage model may exhibit biases present in the training data, which could result in skewed or unfair responses to user inquiries, particularly if the data is not sufficiently diverse or representative.
-Technical Limitations: Despite its advanced capabilities, AWS Sage may face limitations in understanding complex or nuanced language, potentially leading to incomplete or inaccurate responses to user queries.
-Dependency on Training Data Quality: The effectiveness of AWS Sage relies heavily on the quality and relevance of its training data. Inaccurate or outdated data may undermine the model's ability to provide accurate and helpful support.
-Risk of Misinterpretation: AWS Sage may misinterpret the intent or context of user inquiries, especially in cases of ambiguous or colloquial language, which could result in incorrect or misleading responses.
-Lack of Emotional Intelligence: Unlike human support agents, AWS Sage may lack the ability to empathize with users or understand subtle emotional cues, potentially leading to impersonal interactions or dissatisfaction among users seeking emotional support.
-Privacy Concerns: User inquiries processed by AWS Sage may contain sensitive or confidential information, raising concerns about data privacy and security, especially if proper safeguards are not in place to protect user data.
-Limited Domain Expertise: While knowledgeable about AWS support topics, AWS Sage may lack expertise in certain specialized areas or industries, which could limit its ability to provide comprehensive support in those domains.
-Overreliance on Automation: Users may become overly reliant on AWS Sage for support, potentially overlooking the value of human interaction or alternative support channels, which could lead to a loss of human touch in customer service.
-Inability to Handle Unforeseen Scenarios: AWS Sage may struggle to handle novel or unforeseen support scenarios not covered in its training data, potentially leading to inadequate or ineffective responses in rapidly evolving situations.
-Technical Failures or Errors: Like any AI system, AWS Sage is susceptible to technical failures, errors, or malfunctions, which could disrupt service delivery or lead to unintended consequences for users relying on its support. Regular monitoring and maintenance are essential to mitigate these risks. | {"language": ["en"], "license": "apache-2.0", "library_name": "peft", "tags": ["cloud", "AWS", "amazon web services", "amazon", "web", "services"], "datasets": ["dawveed/AmazonWebServicesAWS-dataset"], "metrics": ["accuracy"], "pipeline_tag": "text-generation", "base_model": "tiiuae/falcon-7b"} | text-generation | dawveed/AWS-Sage | [
"peft",
"safetensors",
"cloud",
"AWS",
"amazon web services",
"amazon",
"web",
"services",
"text-generation",
"en",
"dataset:dawveed/AmazonWebServicesAWS-dataset",
"base_model:tiiuae/falcon-7b",
"license:apache-2.0",
"region:us"
] | 2024-02-06T20:34:44+00:00 | [] | [
"en"
] | TAGS
#peft #safetensors #cloud #AWS #amazon web services #amazon #web #services #text-generation #en #dataset-dawveed/AmazonWebServicesAWS-dataset #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us
| <img src="URL
#Model Card for AWS Sage
The AWS-Sage is a Language Model (LLM) designed to assist users with questions related to Amazon Web Services (AWS) support. Powered by advanced natural language processing, it can swiftly provide answers to inquiries regarding AWS support plans, billing, technical issues, service limitations, and best practices. Whether you're a seasoned AWS user or new to the platform, the SupportBot offers timely and accurate assistance, helping you navigate the complexities of AWS support with ease.
## Model Details
### Model Description
The AWS Sage is a sophisticated Language Model (LLM) meticulously trained on a vast corpus of data extracted from Amazon Web Services (AWS) customer support interactions. This cutting-edge AI system is tailored specifically to address the diverse needs of AWS users seeking assistance and guidance with their cloud computing endeavors.
Equipped with state-of-the-art natural language understanding capabilities, the AWS Sage comprehensively tackles a wide array of inquiries related to AWS support services. Whether users are grappling with billing discrepancies, troubleshooting technical issues, seeking advice on optimizing their AWS infrastructure, or navigating the intricacies of support plans, the AWS Sage is adept at swiftly delivering accurate and insightful responses.
Utilizing a combination of machine learning algorithms and deep neural networks, the AWS Sage continuously refines its knowledge base and understanding of user queries, ensuring that it remains up-to-date with the latest developments and best practices in AWS support. Its ability to comprehend nuanced questions and provide contextually relevant answers makes it an invaluable resource for both novice and seasoned AWS users alike.
Moreover, the AWS Sage is designed to enhance the overall customer support experience by offering timely assistance and empowering users to resolve issues autonomously whenever possible. By leveraging the vast reservoir of knowledge accumulated through interactions with AWS support specialists, the AWS Sage serves as a virtual assistant capable of efficiently guiding users through various support processes and procedures.
In essence, the AWS Sage represents a paradigm shift in customer support, leveraging the power of artificial intelligence to deliver personalized, responsive, and effective assistance to AWS users across the globe. Whether users are seeking quick solutions to technical queries or seeking strategic advice to optimize their AWS deployments, the AWS Sage stands ready to assist, ensuring a seamless and rewarding experience in the AWS ecosystem.
- Developed by: David Lopez Oñate URL
- License: Apache 2.0
- Finetuned from model: tiiuae/falcon-7b
## Uses
AWS Sage is a language model designed to assist users with inquiries related to Amazon Web Services (AWS) support. The model can be utilized in various scenarios, including:
Technical Support: Users can rely on AWS Sage to obtain assistance with technical issues encountered while using AWS services, including troubleshooting, debugging, and resolving configuration errors.
Service Guidance: AWS Sage can provide guidance on the selection, deployment, and optimization of AWS services, helping users make informed decisions to meet their specific business requirements.
Billing and Account Management: Users can seek clarification on billing inquiries, account management procedures, and guidance on optimizing costs within the AWS environment.
Support Plan Information: AWS Sage can provide information on available AWS support plans, including features, benefits, and eligibility criteria, assisting users in selecting the most appropriate support plan for their needs.
Best Practices and Recommendations: Users can leverage AWS Sage to access best practices, recommendations, and guidelines for optimizing their AWS infrastructure, enhancing performance, security, and reliability.
Policy and Compliance Assistance: AWS Sage can offer guidance on AWS policies, compliance requirements, and security best practices, helping users ensure adherence to industry standards and regulatory frameworks.
Resource Documentation: Users can access documentation, FAQs, and resources related to AWS services and support offerings through AWS Sage, facilitating self-service support and learning.
Training and Education: AWS Sage can serve as a learning resource for users seeking to expand their knowledge of AWS services, support processes, and best practices through interactive Q&A sessions and educational content.
## Bias, Risks, and Limitations
-Bias in Training Data: The AWS Sage model may exhibit biases present in the training data, which could result in skewed or unfair responses to user inquiries, particularly if the data is not sufficiently diverse or representative.
-Technical Limitations: Despite its advanced capabilities, AWS Sage may face limitations in understanding complex or nuanced language, potentially leading to incomplete or inaccurate responses to user queries.
-Dependency on Training Data Quality: The effectiveness of AWS Sage relies heavily on the quality and relevance of its training data. Inaccurate or outdated data may undermine the model's ability to provide accurate and helpful support.
-Risk of Misinterpretation: AWS Sage may misinterpret the intent or context of user inquiries, especially in cases of ambiguous or colloquial language, which could result in incorrect or misleading responses.
-Lack of Emotional Intelligence: Unlike human support agents, AWS Sage may lack the ability to empathize with users or understand subtle emotional cues, potentially leading to impersonal interactions or dissatisfaction among users seeking emotional support.
-Privacy Concerns: User inquiries processed by AWS Sage may contain sensitive or confidential information, raising concerns about data privacy and security, especially if proper safeguards are not in place to protect user data.
-Limited Domain Expertise: While knowledgeable about AWS support topics, AWS Sage may lack expertise in certain specialized areas or industries, which could limit its ability to provide comprehensive support in those domains.
-Overreliance on Automation: Users may become overly reliant on AWS Sage for support, potentially overlooking the value of human interaction or alternative support channels, which could lead to a loss of human touch in customer service.
-Inability to Handle Unforeseen Scenarios: AWS Sage may struggle to handle novel or unforeseen support scenarios not covered in its training data, potentially leading to inadequate or ineffective responses in rapidly evolving situations.
-Technical Failures or Errors: Like any AI system, AWS Sage is susceptible to technical failures, errors, or malfunctions, which could disrupt service delivery or lead to unintended consequences for users relying on its support. Regular monitoring and maintenance are essential to mitigate these risks. | [
"## Model Details",
"### Model Description\n\nThe AWS Sage is a sophisticated Language Model (LLM) meticulously trained on a vast corpus of data extracted from Amazon Web Services (AWS) customer support interactions. This cutting-edge AI system is tailored specifically to address the diverse needs of AWS users seeking assistance and guidance with their cloud computing endeavors.\n\nEquipped with state-of-the-art natural language understanding capabilities, the AWS Sage comprehensively tackles a wide array of inquiries related to AWS support services. Whether users are grappling with billing discrepancies, troubleshooting technical issues, seeking advice on optimizing their AWS infrastructure, or navigating the intricacies of support plans, the AWS Sage is adept at swiftly delivering accurate and insightful responses.\n\nUtilizing a combination of machine learning algorithms and deep neural networks, the AWS Sage continuously refines its knowledge base and understanding of user queries, ensuring that it remains up-to-date with the latest developments and best practices in AWS support. Its ability to comprehend nuanced questions and provide contextually relevant answers makes it an invaluable resource for both novice and seasoned AWS users alike.\n\nMoreover, the AWS Sage is designed to enhance the overall customer support experience by offering timely assistance and empowering users to resolve issues autonomously whenever possible. By leveraging the vast reservoir of knowledge accumulated through interactions with AWS support specialists, the AWS Sage serves as a virtual assistant capable of efficiently guiding users through various support processes and procedures.\n\nIn essence, the AWS Sage represents a paradigm shift in customer support, leveraging the power of artificial intelligence to deliver personalized, responsive, and effective assistance to AWS users across the globe. Whether users are seeking quick solutions to technical queries or seeking strategic advice to optimize their AWS deployments, the AWS Sage stands ready to assist, ensuring a seamless and rewarding experience in the AWS ecosystem.\n\n- Developed by: David Lopez Oñate URL\n- License: Apache 2.0\n- Finetuned from model: tiiuae/falcon-7b",
"## Uses \nAWS Sage is a language model designed to assist users with inquiries related to Amazon Web Services (AWS) support. The model can be utilized in various scenarios, including:\n\nTechnical Support: Users can rely on AWS Sage to obtain assistance with technical issues encountered while using AWS services, including troubleshooting, debugging, and resolving configuration errors.\n\nService Guidance: AWS Sage can provide guidance on the selection, deployment, and optimization of AWS services, helping users make informed decisions to meet their specific business requirements.\n\nBilling and Account Management: Users can seek clarification on billing inquiries, account management procedures, and guidance on optimizing costs within the AWS environment.\n\nSupport Plan Information: AWS Sage can provide information on available AWS support plans, including features, benefits, and eligibility criteria, assisting users in selecting the most appropriate support plan for their needs.\n\nBest Practices and Recommendations: Users can leverage AWS Sage to access best practices, recommendations, and guidelines for optimizing their AWS infrastructure, enhancing performance, security, and reliability.\n\nPolicy and Compliance Assistance: AWS Sage can offer guidance on AWS policies, compliance requirements, and security best practices, helping users ensure adherence to industry standards and regulatory frameworks.\n\nResource Documentation: Users can access documentation, FAQs, and resources related to AWS services and support offerings through AWS Sage, facilitating self-service support and learning.\n\nTraining and Education: AWS Sage can serve as a learning resource for users seeking to expand their knowledge of AWS services, support processes, and best practices through interactive Q&A sessions and educational content.",
"## Bias, Risks, and Limitations\n\n-Bias in Training Data: The AWS Sage model may exhibit biases present in the training data, which could result in skewed or unfair responses to user inquiries, particularly if the data is not sufficiently diverse or representative.\n\n-Technical Limitations: Despite its advanced capabilities, AWS Sage may face limitations in understanding complex or nuanced language, potentially leading to incomplete or inaccurate responses to user queries.\n\n-Dependency on Training Data Quality: The effectiveness of AWS Sage relies heavily on the quality and relevance of its training data. Inaccurate or outdated data may undermine the model's ability to provide accurate and helpful support.\n\n-Risk of Misinterpretation: AWS Sage may misinterpret the intent or context of user inquiries, especially in cases of ambiguous or colloquial language, which could result in incorrect or misleading responses.\n\n-Lack of Emotional Intelligence: Unlike human support agents, AWS Sage may lack the ability to empathize with users or understand subtle emotional cues, potentially leading to impersonal interactions or dissatisfaction among users seeking emotional support.\n\n-Privacy Concerns: User inquiries processed by AWS Sage may contain sensitive or confidential information, raising concerns about data privacy and security, especially if proper safeguards are not in place to protect user data.\n\n-Limited Domain Expertise: While knowledgeable about AWS support topics, AWS Sage may lack expertise in certain specialized areas or industries, which could limit its ability to provide comprehensive support in those domains.\n\n-Overreliance on Automation: Users may become overly reliant on AWS Sage for support, potentially overlooking the value of human interaction or alternative support channels, which could lead to a loss of human touch in customer service.\n\n-Inability to Handle Unforeseen Scenarios: AWS Sage may struggle to handle novel or unforeseen support scenarios not covered in its training data, potentially leading to inadequate or ineffective responses in rapidly evolving situations.\n\n-Technical Failures or Errors: Like any AI system, AWS Sage is susceptible to technical failures, errors, or malfunctions, which could disrupt service delivery or lead to unintended consequences for users relying on its support. Regular monitoring and maintenance are essential to mitigate these risks."
] | [
"TAGS\n#peft #safetensors #cloud #AWS #amazon web services #amazon #web #services #text-generation #en #dataset-dawveed/AmazonWebServicesAWS-dataset #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us \n",
"## Model Details",
"### Model Description\n\nThe AWS Sage is a sophisticated Language Model (LLM) meticulously trained on a vast corpus of data extracted from Amazon Web Services (AWS) customer support interactions. This cutting-edge AI system is tailored specifically to address the diverse needs of AWS users seeking assistance and guidance with their cloud computing endeavors.\n\nEquipped with state-of-the-art natural language understanding capabilities, the AWS Sage comprehensively tackles a wide array of inquiries related to AWS support services. Whether users are grappling with billing discrepancies, troubleshooting technical issues, seeking advice on optimizing their AWS infrastructure, or navigating the intricacies of support plans, the AWS Sage is adept at swiftly delivering accurate and insightful responses.\n\nUtilizing a combination of machine learning algorithms and deep neural networks, the AWS Sage continuously refines its knowledge base and understanding of user queries, ensuring that it remains up-to-date with the latest developments and best practices in AWS support. Its ability to comprehend nuanced questions and provide contextually relevant answers makes it an invaluable resource for both novice and seasoned AWS users alike.\n\nMoreover, the AWS Sage is designed to enhance the overall customer support experience by offering timely assistance and empowering users to resolve issues autonomously whenever possible. By leveraging the vast reservoir of knowledge accumulated through interactions with AWS support specialists, the AWS Sage serves as a virtual assistant capable of efficiently guiding users through various support processes and procedures.\n\nIn essence, the AWS Sage represents a paradigm shift in customer support, leveraging the power of artificial intelligence to deliver personalized, responsive, and effective assistance to AWS users across the globe. Whether users are seeking quick solutions to technical queries or seeking strategic advice to optimize their AWS deployments, the AWS Sage stands ready to assist, ensuring a seamless and rewarding experience in the AWS ecosystem.\n\n- Developed by: David Lopez Oñate URL\n- License: Apache 2.0\n- Finetuned from model: tiiuae/falcon-7b",
"## Uses \nAWS Sage is a language model designed to assist users with inquiries related to Amazon Web Services (AWS) support. The model can be utilized in various scenarios, including:\n\nTechnical Support: Users can rely on AWS Sage to obtain assistance with technical issues encountered while using AWS services, including troubleshooting, debugging, and resolving configuration errors.\n\nService Guidance: AWS Sage can provide guidance on the selection, deployment, and optimization of AWS services, helping users make informed decisions to meet their specific business requirements.\n\nBilling and Account Management: Users can seek clarification on billing inquiries, account management procedures, and guidance on optimizing costs within the AWS environment.\n\nSupport Plan Information: AWS Sage can provide information on available AWS support plans, including features, benefits, and eligibility criteria, assisting users in selecting the most appropriate support plan for their needs.\n\nBest Practices and Recommendations: Users can leverage AWS Sage to access best practices, recommendations, and guidelines for optimizing their AWS infrastructure, enhancing performance, security, and reliability.\n\nPolicy and Compliance Assistance: AWS Sage can offer guidance on AWS policies, compliance requirements, and security best practices, helping users ensure adherence to industry standards and regulatory frameworks.\n\nResource Documentation: Users can access documentation, FAQs, and resources related to AWS services and support offerings through AWS Sage, facilitating self-service support and learning.\n\nTraining and Education: AWS Sage can serve as a learning resource for users seeking to expand their knowledge of AWS services, support processes, and best practices through interactive Q&A sessions and educational content.",
"## Bias, Risks, and Limitations\n\n-Bias in Training Data: The AWS Sage model may exhibit biases present in the training data, which could result in skewed or unfair responses to user inquiries, particularly if the data is not sufficiently diverse or representative.\n\n-Technical Limitations: Despite its advanced capabilities, AWS Sage may face limitations in understanding complex or nuanced language, potentially leading to incomplete or inaccurate responses to user queries.\n\n-Dependency on Training Data Quality: The effectiveness of AWS Sage relies heavily on the quality and relevance of its training data. Inaccurate or outdated data may undermine the model's ability to provide accurate and helpful support.\n\n-Risk of Misinterpretation: AWS Sage may misinterpret the intent or context of user inquiries, especially in cases of ambiguous or colloquial language, which could result in incorrect or misleading responses.\n\n-Lack of Emotional Intelligence: Unlike human support agents, AWS Sage may lack the ability to empathize with users or understand subtle emotional cues, potentially leading to impersonal interactions or dissatisfaction among users seeking emotional support.\n\n-Privacy Concerns: User inquiries processed by AWS Sage may contain sensitive or confidential information, raising concerns about data privacy and security, especially if proper safeguards are not in place to protect user data.\n\n-Limited Domain Expertise: While knowledgeable about AWS support topics, AWS Sage may lack expertise in certain specialized areas or industries, which could limit its ability to provide comprehensive support in those domains.\n\n-Overreliance on Automation: Users may become overly reliant on AWS Sage for support, potentially overlooking the value of human interaction or alternative support channels, which could lead to a loss of human touch in customer service.\n\n-Inability to Handle Unforeseen Scenarios: AWS Sage may struggle to handle novel or unforeseen support scenarios not covered in its training data, potentially leading to inadequate or ineffective responses in rapidly evolving situations.\n\n-Technical Failures or Errors: Like any AI system, AWS Sage is susceptible to technical failures, errors, or malfunctions, which could disrupt service delivery or lead to unintended consequences for users relying on its support. Regular monitoring and maintenance are essential to mitigate these risks."
] | [
77,
3,
496,
385,
555
] | [
"passage: TAGS\n#peft #safetensors #cloud #AWS #amazon web services #amazon #web #services #text-generation #en #dataset-dawveed/AmazonWebServicesAWS-dataset #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us \n## Model Details",
"passage: ### Model Description\n\nThe AWS Sage is a sophisticated Language Model (LLM) meticulously trained on a vast corpus of data extracted from Amazon Web Services (AWS) customer support interactions. This cutting-edge AI system is tailored specifically to address the diverse needs of AWS users seeking assistance and guidance with their cloud computing endeavors.\n\nEquipped with state-of-the-art natural language understanding capabilities, the AWS Sage comprehensively tackles a wide array of inquiries related to AWS support services. Whether users are grappling with billing discrepancies, troubleshooting technical issues, seeking advice on optimizing their AWS infrastructure, or navigating the intricacies of support plans, the AWS Sage is adept at swiftly delivering accurate and insightful responses.\n\nUtilizing a combination of machine learning algorithms and deep neural networks, the AWS Sage continuously refines its knowledge base and understanding of user queries, ensuring that it remains up-to-date with the latest developments and best practices in AWS support. Its ability to comprehend nuanced questions and provide contextually relevant answers makes it an invaluable resource for both novice and seasoned AWS users alike.\n\nMoreover, the AWS Sage is designed to enhance the overall customer support experience by offering timely assistance and empowering users to resolve issues autonomously whenever possible. By leveraging the vast reservoir of knowledge accumulated through interactions with AWS support specialists, the AWS Sage serves as a virtual assistant capable of efficiently guiding users through various support processes and procedures.\n\nIn essence, the AWS Sage represents a paradigm shift in customer support, leveraging the power of artificial intelligence to deliver personalized, responsive, and effective assistance to AWS users across the globe. Whether users are seeking quick solutions to technical queries or seeking strategic advice to optimize their AWS deployments, the AWS Sage stands ready to assist, ensuring a seamless and rewarding experience in the AWS ecosystem.\n\n- Developed by: David Lopez Oñate URL\n- License: Apache 2.0\n- Finetuned from model: tiiuae/falcon-7b## Uses \nAWS Sage is a language model designed to assist users with inquiries related to Amazon Web Services (AWS) support. The model can be utilized in various scenarios, including:\n\nTechnical Support: Users can rely on AWS Sage to obtain assistance with technical issues encountered while using AWS services, including troubleshooting, debugging, and resolving configuration errors.\n\nService Guidance: AWS Sage can provide guidance on the selection, deployment, and optimization of AWS services, helping users make informed decisions to meet their specific business requirements.\n\nBilling and Account Management: Users can seek clarification on billing inquiries, account management procedures, and guidance on optimizing costs within the AWS environment.\n\nSupport Plan Information: AWS Sage can provide information on available AWS support plans, including features, benefits, and eligibility criteria, assisting users in selecting the most appropriate support plan for their needs.\n\nBest Practices and Recommendations: Users can leverage AWS Sage to access best practices, recommendations, and guidelines for optimizing their AWS infrastructure, enhancing performance, security, and reliability.\n\nPolicy and Compliance Assistance: AWS Sage can offer guidance on AWS policies, compliance requirements, and security best practices, helping users ensure adherence to industry standards and regulatory frameworks.\n\nResource Documentation: Users can access documentation, FAQs, and resources related to AWS services and support offerings through AWS Sage, facilitating self-service support and learning.\n\nTraining and Education: AWS Sage can serve as a learning resource for users seeking to expand their knowledge of AWS services, support processes, and best practices through interactive Q&A sessions and educational content."
] | [
-0.0579812228679657,
0.0901959240436554,
-0.005911392625421286,
0.015586337074637413,
0.0600467175245285,
0.006151788868010044,
0.08999523520469666,
0.020079072564840317,
-0.01424826867878437,
-0.028213320299983025,
0.08724264800548553,
-0.04307209700345993,
0.038392357528209686,
0.09788261353969574,
0.007264390587806702,
-0.21381217241287231,
0.0766189843416214,
-0.07634703814983368,
0.015462782233953476,
0.08133351802825928,
0.0803634524345398,
-0.025102194398641586,
0.08973904699087143,
-0.058741647750139236,
0.03322361782193184,
-0.0498032346367836,
0.0055666351690888405,
-0.05470023304224014,
0.03438756614923477,
0.07263196259737015,
0.07084377855062485,
-0.034428324550390244,
0.05833355337381363,
-0.19490273296833038,
0.029296377673745155,
0.02608511969447136,
-0.010834713466465473,
0.04605585336685181,
0.0015636642929166555,
0.011267894878983498,
0.10187483578920364,
0.011491630226373672,
0.005061292555183172,
0.019326966255903244,
-0.07831189036369324,
-0.07307413220405579,
-0.06779938191175461,
0.04880574345588684,
0.07034919410943985,
0.07700155675411224,
-0.017383113503456116,
0.09273281693458557,
-0.06264576315879822,
0.019691847264766693,
0.04291725158691406,
-0.2032039612531662,
-0.0345759242773056,
-0.05697436258196831,
0.03054124489426613,
0.08897075057029724,
-0.03433838486671448,
0.01860726997256279,
0.04898201301693916,
0.016871005296707153,
0.05446596443653107,
-0.008585385978221893,
0.052120111882686615,
0.018635690212249756,
-0.08053027093410492,
-0.034815020859241486,
0.2614057660102844,
0.08096647262573242,
-0.0801059678196907,
-0.04384415224194527,
-0.04911818355321884,
0.1276404708623886,
-0.03417216241359711,
0.00018877536058425903,
0.07391874492168427,
0.036931511014699936,
0.10922081768512726,
-0.06577946990728378,
-0.1164688766002655,
0.03538753092288971,
-0.10186629742383957,
0.10875429213047028,
0.010814725421369076,
0.07439323514699936,
-0.12352384626865387,
0.022711489349603653,
0.0036344192922115326,
-0.0563642680644989,
-0.010060137137770653,
-0.0821317583322525,
-0.02545958198606968,
0.04978100210428238,
-0.016380444169044495,
-0.005180554464459419,
0.03630992770195007,
0.22540026903152466,
0.04311972111463547,
-0.008524371311068535,
0.045883387327194214,
0.06992277503013611,
0.028077010065317154,
0.10219115018844604,
0.016181085258722305,
-0.1089107096195221,
0.032949261367321014,
0.02983088791370392,
0.05792293697595596,
-0.04511238634586334,
-0.051561836153268814,
0.04410235956311226,
-0.05202089995145798,
-0.013069869950413704,
0.11093101650476456,
0.013683777302503586,
-0.028863433748483658,
0.0013763965107500553,
0.21040639281272888,
-0.05730628967285156,
-0.01798819936811924,
-0.0351841114461422,
-0.008677704259753227,
-0.016409892588853836,
0.02384106069803238,
0.08318699896335602,
-0.01700495183467865,
0.07135318219661713,
-0.05463705211877823,
-0.0872126892209053,
-0.023030737414956093,
-0.002718900330364704,
0.047327715903520584,
0.007453288417309523,
0.060069821774959564,
-0.12060393393039703,
-0.2434985339641571,
-0.051499076187610626,
0.052123092114925385,
-0.001166926696896553,
-0.08305642753839493,
0.028076043352484703,
-0.016267867758870125,
-0.0026954682543873787,
-0.025122690945863724,
0.033790841698646545,
-0.057456694543361664,
0.008481213822960854,
-0.09515714645385742,
-0.03680214285850525,
-0.1398419290781021,
-0.0034955721348524094,
-0.11515498906373978,
-0.02235591784119606,
-0.044905513525009155,
0.01667357049882412,
-0.03814541548490524,
0.09404487162828445,
-0.05556082725524902,
0.05047163367271423,
-0.11510385572910309,
0.07468316704034805,
-0.045146819204092026,
0.11710570752620697,
-0.1562364548444748,
-0.017794976010918617,
0.04961169511079788,
-0.13640931248664856,
-0.09466787427663803,
0.06926790624856949,
0.02020285651087761,
0.07832761853933334,
0.12909746170043945,
0.14568938314914703,
0.05692177638411522,
-0.006420623045414686,
-0.00014379434287548065,
0.012483851984143257,
-0.01072722114622593,
0.005298074334859848,
0.06875059008598328,
-0.06280173361301422,
-0.11261091381311417,
0.04984881728887558,
-0.10294888913631439,
-0.010127140209078789,
0.0021019335836172104,
-0.056895654648542404,
-0.007525850553065538,
-0.062439486384391785,
-0.028586525470018387,
-0.038528162986040115,
-0.015643088147044182,
-0.0009866561740636826,
-0.07172013819217682,
-0.029111839830875397,
0.049294035881757736,
0.052701935172080994,
0.01869210973381996,
-0.056767333298921585,
-0.01947217434644699,
0.022354554384946823,
0.030891595408320427,
-0.09004446864128113,
-0.1075606718659401,
0.03212665021419525,
-0.052725907415151596,
0.07449616491794586,
-0.030664432793855667,
0.0591166615486145,
-0.03765237331390381,
-0.022571096196770668,
-0.029692228883504868,
-0.04545638710260391,
0.004535116255283356,
-0.07330793142318726,
-0.1140790730714798,
0.003731199773028493,
-0.035770706832408905,
-0.032401878386735916,
-0.08677938580513,
0.0014108268078416586,
-0.05736411362886429,
0.04264822602272034,
0.0670454278588295,
-0.0053313421085476875,
0.0010949280112981796,
-0.02249559573829174,
0.022292854264378548,
0.009568915702402592,
0.023275824263691902,
0.007764031644910574,
-0.1216345727443695,
0.1616920679807663,
-0.027781907469034195,
0.16260308027267456,
0.059359997510910034,
0.10209871083498001,
0.04599383473396301,
-0.007016807794570923,
-0.009154237806797028,
-0.016608163714408875,
-0.052579961717128754,
-0.06480803340673447,
0.09663787484169006,
0.0510939359664917,
0.02456970512866974,
-0.09761970490217209,
-0.007451539859175682,
0.005229707807302475,
-0.04546617344021797,
0.00041662994772195816,
0.0486811138689518,
0.06653556227684021,
-0.047738999128341675,
0.040125004947185516,
0.2161448746919632,
0.059689413756132126,
0.09104490280151367,
-0.05379081144928932,
-0.06655769050121307,
-0.004399964585900307,
-0.04720190167427063,
-0.05942820757627487,
0.11369141191244125,
0.017124837264418602,
0.03634955361485481,
0.04427900165319443,
0.05901559442281723,
0.03510045260190964,
-0.08147117495536804,
-0.021054593846201897,
0.020035941153764725,
-0.001520967110991478,
-0.05287490412592888,
-0.007915073074400425,
-0.07493282854557037,
0.06642283499240875,
0.02224552258849144,
-0.027415871620178223,
0.0022463686764240265,
-0.02347879856824875,
-0.08887249231338501,
0.12276960909366608,
-0.10852732509374619,
-0.16656799614429474,
-0.12761685252189636,
0.12125089764595032,
-0.011347802355885506,
-0.011160915717482567,
0.05990783870220184,
-0.07419335842132568,
-0.08187397569417953,
-0.09958955645561218,
-0.006598152220249176,
0.05101778358221054,
-0.011319066397845745,
-0.03282904624938965,
-0.01319020427763462,
-0.004447071813046932,
-0.07886432856321335,
-0.015010178089141846,
-0.028730297461152077,
-0.006862729787826538,
0.023662257939577103,
0.005342155694961548,
0.10408294200897217,
0.05705339461565018,
0.06839554756879807,
-0.052927520126104355,
-0.001967949327081442,
0.24790000915527344,
-0.06789827346801758,
0.1195511668920517,
0.14959929883480072,
-0.03774939104914665,
0.05533391609787941,
0.15552234649658203,
0.043023549020290375,
-0.06964634358882904,
0.05586637556552887,
0.015886962413787842,
-0.01355726458132267,
-0.25380581617355347,
-0.06405678391456604,
0.005498221144080162,
-0.045777175575494766,
0.006417667493224144,
0.06084529310464859,
-0.06234870105981827,
0.03390839323401451,
-0.055016376078128815,
-0.03309330344200134,
0.060640849173069,
0.01458048727363348,
-0.01238243281841278,
-0.009620342403650284,
0.05624755844473839,
-0.059212543070316315,
0.025713404640555382,
0.11700348556041718,
0.08849804848432541,
0.2161923199892044,
0.10926058143377304,
0.09371673315763474,
0.08634284138679504,
0.055311739444732666,
0.03845920041203499,
0.022447064518928528,
0.024567004293203354,
0.011239219456911087,
-0.08041851222515106,
-0.021521344780921936,
-0.02295731008052826,
0.09968607127666473,
-0.08946800976991653,
-0.044343240559101105,
-0.030169891193509102,
-0.010820243507623672,
0.05948222056031227,
0.194785937666893,
-0.036658961325883865,
-0.09890999644994736,
-0.04557429999113083,
0.09216996282339096,
-0.07250705361366272,
-0.011933465488255024,
0.06982942670583725,
0.014767538756132126,
-0.0980781614780426,
0.058431390672922134,
0.01165599375963211,
0.11648257076740265,
-0.023489080369472504,
0.027203580364584923,
-0.0072350939735770226,
-0.024626247584819794,
0.013272898271679878,
0.06388621777296066,
-0.1393948197364807,
0.17729803919792175,
0.0050143045373260975,
0.05061839520931244,
0.022499900311231613,
0.0043961042538285255,
-0.01019294187426567,
0.11875002086162567,
0.09590849280357361,
0.061660561710596085,
-0.1001591756939888,
0.0765613466501236,
-0.08047399669885635,
0.10818986594676971,
0.012947659008204937,
-0.058061979711055756,
0.02598978392779827,
-0.04046597331762314,
0.014489276334643364,
0.004152326844632626,
-0.052435874938964844,
-0.17765004932880402,
-0.12505760788917542,
-0.009468205273151398,
-0.009029887616634369,
0.07050681114196777,
-0.10391813516616821,
-0.0018802657723426819,
-0.02162512019276619,
-0.007210652343928814,
-0.08182194828987122,
-0.05069746822118759,
-0.07646197080612183,
-0.1134142354130745,
0.08486665785312653,
-0.06623568385839462,
0.03371812775731087,
0.014567474834620953,
0.04984583705663681,
-0.017036277800798416,
-0.0709138810634613,
0.03140215575695038,
-0.09087017178535461,
-0.11426032334566116,
-0.05813371390104294,
0.0542849600315094,
0.06280162185430527,
0.0008529955521225929,
-0.014166006818413734,
0.0026213887613266706,
-0.08058881014585495,
-0.10797737538814545,
-0.010142039507627487,
0.15787558257579803,
-0.016437221318483353,
0.03927579149603844,
-0.047398537397384644,
-0.06685660779476166,
-0.025348562747240067,
-0.041646331548690796,
0.02225404605269432,
0.10626047849655151,
-0.023875821381807327,
0.12600697576999664,
0.2197635918855667,
-0.08837009221315384,
-0.18015125393867493,
-0.11566423624753952,
-0.022424979135394096,
-0.018112756311893463,
0.06226543337106705,
-0.11215510219335556,
0.1268044263124466,
0.07612749934196472,
-0.0371275432407856,
-0.02785424143075943,
-0.14508622884750366,
-0.0812908262014389,
0.0701562687754631,
-0.005038523115217686,
0.12645447254180908,
-0.07823332399129868,
-0.03640851750969887,
-0.057676780968904495,
-0.023462845012545586,
0.09963709115982056,
-0.14907346665859222,
-0.036318667232990265,
0.012922462075948715,
0.043237753212451935,
-0.008956531062722206,
0.01838262379169464,
0.14354975521564484,
-0.0027067065238952637,
0.03989984095096588,
-0.012967290356755257,
0.07816116511821747,
0.0323169082403183,
-0.02679770439863205,
0.10867424309253693,
-0.08956880122423172,
0.0337551087141037,
-0.08657806366682053,
-0.025075282901525497,
-0.024293093010783195,
0.038814812898635864,
-0.04052431881427765,
-0.008770020678639412,
-0.026081472635269165,
0.0047760638408362865,
0.01903562992811203,
0.00944127794355154,
0.11060162633657455,
-0.02238895371556282,
-0.026284540072083473,
0.006313502788543701,
0.12095355987548828,
-0.10655993223190308,
-0.1006568968296051,
-0.06364008039236069,
-0.04417258873581886,
0.09839482605457306,
-0.21013891696929932,
-0.0038869455456733704,
0.07131783664226532,
-0.0707024484872818,
0.05776442214846611,
-0.02119806781411171,
-0.1174493134021759,
-0.027295175939798355,
0.07996852695941925,
-0.014751173555850983,
-0.17859405279159546,
-0.031000059098005295,
0.022555414587259293,
-0.0814008042216301,
0.013166302815079689,
0.13633686304092407,
-0.03833901509642601,
-0.03157700225710869,
-0.002674845512956381,
0.07263928651809692,
-0.007685158401727676,
0.048333801329135895,
0.04752521216869354,
-0.001231625908985734,
-0.0828498974442482,
0.15415868163108826,
0.03917435556650162,
-0.07391978055238724,
0.005056701600551605,
0.03562159091234207,
-0.08556804805994034,
-0.08483181893825531,
-0.011541771702468395,
0.05160888656973839,
-0.050073254853487015,
-0.1018502414226532,
0.03661423176527023,
-0.08062822371721268,
0.03384627401828766,
0.04562566429376602,
0.008541923016309738,
0.017126699909567833,
0.04102799668908119,
-0.01857791468501091,
0.09625948965549469,
0.040555939078330994,
0.05672375112771988,
0.016397632658481598,
-0.10992655158042908,
-0.19956469535827637,
0.045667022466659546,
0.023461386561393738,
-0.017018038779497147,
0.005374938249588013,
-0.06859077513217926,
-0.0020926687866449356,
-0.14536160230636597,
0.035433344542980194,
-0.022469379007816315,
0.017417222261428833,
0.0005461722612380981,
-0.08163139969110489,
-0.004332836717367172,
-0.015848584473133087,
-0.03898841142654419,
-0.010914510115981102,
0.011080347001552582,
0.0738094300031662,
-0.074351467192173,
0.03133901581168175,
0.09235735237598419,
0.0053956760093569756,
0.0810704380273819,
-0.0006632301956415176,
-0.023256542161107063,
0.0936657190322876,
-0.10544648766517639,
0.0682261735200882,
0.002918718382716179,
0.018294882029294968,
-0.02248441055417061,
-0.016692988574504852,
-0.04412572830915451,
0.0245091263204813,
-0.014756875112652779,
-0.012701407074928284,
0.11072187125682831,
-0.11123020201921463,
0.013403993099927902,
0.08517113327980042,
-0.041389089077711105,
-0.030348092317581177,
-0.0783645510673523,
0.04505698010325432,
0.0370623953640461,
0.15571045875549316,
0.00837609264999628,
-0.012303441762924194,
-0.1017402783036232,
0.034896742552518845,
-0.03240715712308884,
-0.01691460981965065,
-0.1355549693107605,
-0.05349009111523628,
-0.0313759371638298,
-0.03131335228681564,
0.16174033284187317,
-0.0039511434733867645,
0.006657319143414497,
0.03169828653335571,
0.05538293719291687,
-0.09198369830846786,
0.016690891236066818,
0.04799375683069229,
0.029144857078790665,
-0.008501043543219566,
-0.0799095556139946,
-0.0669710710644722,
-0.03008091077208519,
-0.1396157294511795,
-0.01951052062213421,
0.12763503193855286,
0.1574351191520691,
0.08669120073318481,
0.02966131456196308,
0.005167215131223202,
-0.066926509141922,
-0.05887596681714058,
-0.0012680459767580032,
0.05016348138451576,
-0.001431877026334405,
0.08444620668888092,
0.1834365427494049,
-0.04658672213554382,
0.04378166422247887,
-0.002328108996152878,
-0.012645812705159187,
-0.08405005186796188,
-0.2118174135684967,
-0.0657833069562912,
-0.07959791272878647,
-0.02126646228134632,
-0.08968056738376617,
-0.048450298607349396,
0.01959606260061264,
-0.014162002131342888,
-0.022153519093990326,
-0.019551554694771767,
-0.027331797406077385,
-0.09378615021705627,
0.043230779469013214,
0.018248312175273895,
-0.004328690469264984,
0.080043725669384,
-0.037381816655397415,
-0.012398655526340008,
0.05603864789009094,
-0.032018497586250305,
0.037878308445215225,
-0.0049676112830638885,
0.07036716490983963,
-0.05458582937717438,
-0.042014531791210175,
-0.016956601291894913,
0.0002905353903770447,
-0.019315216690301895,
0.07377731055021286,
0.06758421659469604,
-0.051945313811302185,
0.0684940293431282,
0.28485578298568726,
-0.015235956758260727,
-0.09748382866382599,
-0.14755745232105255,
0.07131056487560272,
-0.03213348239660263,
0.0530536025762558,
-0.02498393878340721,
-0.06812094151973724,
0.03016486205160618,
0.1882253885269165,
0.20365774631500244,
-0.06879860907793045,
-0.002634420059621334,
-0.011354711838066578,
-0.002704598708078265,
-0.008515749126672745,
0.1450982689857483,
0.008554342202842236,
0.1897193342447281,
-0.004964303225278854,
0.08252269774675369,
-0.025190476328134537,
-0.016848590224981308,
-0.04841367155313492,
0.10647663474082947,
-0.025069862604141235,
-0.05819542333483696,
-0.05946962535381317,
0.12845492362976074,
-0.08120844513177872,
-0.15180788934230804,
-0.10008927434682846,
-0.014117702841758728,
-0.07683516293764114,
-0.023869210854172707,
0.08838551491498947,
0.059147465974092484,
0.04996425658464432,
0.004339833743870258,
-0.05603242293000221,
0.15298345685005188,
-0.019904397428035736,
-0.088628850877285,
-0.07836706936359406,
0.06852718442678452,
-0.06494984775781631,
0.18853572010993958,
0.029767969623208046,
0.011470716446638107,
0.0006947708316147327,
0.03665929287672043,
-0.12720182538032532,
0.05641796067357063,
0.009045880287885666,
0.04266243055462837,
0.03545156121253967,
-0.014920674264431,
0.02258562110364437,
0.06490458548069,
0.10372103750705719,
-0.04813048988580704,
0.010575708001852036,
0.068439781665802,
-0.07244949042797089,
-0.025850141420960426,
0.08942427486181259,
-0.11073043942451477,
0.08581273257732391,
0.03714128956198692,
-0.03167910873889923,
0.002834627404808998,
-0.023179253563284874,
0.04069169610738754,
0.037445392459630966,
0.057401567697525024,
0.045007139444351196,
-0.01128164492547512,
-0.025807274505496025,
0.07799127697944641,
0.02704925835132599,
-0.08050492405891418,
-0.032016683369874954,
-0.05047283321619034,
0.01938083954155445,
0.03063281998038292,
0.08773307502269745,
0.12928050756454468,
-0.04828638583421707,
-0.04104335606098175,
0.014656195417046547,
0.03848477452993393,
0.038046836853027344,
-0.05047277361154556,
-0.06384646892547607
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bio_summary_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8296
- Rouge1: 0.1517
- Rouge2: 0.0309
- Rougel: 0.1125
- Rougelsum: 0.1125
- Gen Len: 18.9298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 3.1554 | 1.0 | 1087 | 2.9142 | 0.1465 | 0.0278 | 0.1083 | 0.1083 | 18.9298 |
| 3.0708 | 2.0 | 2174 | 2.8596 | 0.1493 | 0.0286 | 0.1111 | 0.1111 | 18.9298 |
| 3.0261 | 3.0 | 3261 | 2.8355 | 0.1526 | 0.0305 | 0.1123 | 0.1124 | 18.9298 |
| 3.0139 | 4.0 | 4348 | 2.8296 | 0.1517 | 0.0309 | 0.1125 | 0.1125 | 18.9298 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "base_model": "t5-small", "model-index": [{"name": "bio_summary_model", "results": []}]} | text2text-generation | arushisharma/bio_summary_model | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:t5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:38:39+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| bio\_summary\_model
===================
This model is a fine-tuned version of t5-small on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 2.8296
* Rouge1: 0.1517
* Rouge2: 0.0309
* Rougel: 0.1125
* Rougelsum: 0.1125
* Gen Len: 18.9298
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
77,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.09204360842704773,
0.06850813329219818,
-0.0020045852288603783,
0.10842214524745941,
0.12382920831441879,
-0.0015696593327447772,
0.1706077754497528,
0.12458564341068268,
-0.06686944514513016,
0.04501582682132721,
0.13568884134292603,
0.11365773528814316,
0.03180056810379028,
0.14134253561496735,
-0.06665419787168503,
-0.20450139045715332,
0.014963430352509022,
0.02491087280213833,
-0.04696357250213623,
0.12883025407791138,
0.09741673618555069,
-0.11109898239374161,
0.1087021604180336,
-0.013063951395452023,
-0.15347132086753845,
0.0029617552645504475,
0.016830140724778175,
-0.05324088782072067,
0.1371213048696518,
0.040855493396520615,
0.09504111111164093,
0.03682633116841316,
0.06281036138534546,
-0.1781722754240036,
0.012277025729417801,
0.060836341232061386,
-0.005647908430546522,
0.08260317891836166,
0.05127281695604324,
0.01235804334282875,
0.09017627686262131,
-0.08562097698450089,
0.044028375297784805,
0.03163653612136841,
-0.12503506243228912,
-0.1998823583126068,
-0.07466918230056763,
0.03437267243862152,
0.10015030205249786,
0.09570449590682983,
-0.01812216453254223,
0.13325275480747223,
-0.0228306595236063,
0.10233203321695328,
0.2128589153289795,
-0.32251936197280884,
-0.0626426562666893,
0.04476170986890793,
0.0630783960223198,
0.12035129219293594,
-0.08986682444810867,
-0.0077684842981398106,
0.05651015043258667,
0.03374370187520981,
0.14915181696414948,
-0.028004035353660583,
-0.02105099707841873,
-0.0043523842468857765,
-0.13971422612667084,
-0.036963775753974915,
0.18237926065921783,
0.058956582099199295,
-0.04796707257628441,
-0.07399876415729523,
-0.07878090441226959,
-0.13935084640979767,
-0.03209931030869484,
-0.01681426353752613,
0.04530518501996994,
-0.010457656346261501,
-0.0607738122344017,
-0.04467188939452171,
-0.11719316989183426,
-0.06232695281505585,
-0.03156621754169464,
0.08489073067903519,
0.023680860176682472,
-0.003368760459125042,
-0.03677758574485779,
0.09011965245008469,
-0.015843158587813377,
-0.1395416557788849,
0.015378032810986042,
0.0183621346950531,
0.025308506563305855,
-0.03838922828435898,
-0.047635722905397415,
-0.1015295758843422,
0.02922978438436985,
0.11706661432981491,
-0.04291091486811638,
0.05074014514684677,
-0.002424936043098569,
0.04599176347255707,
-0.10799030214548111,
0.1515888124704361,
-0.03299296274781227,
-0.05990900471806526,
0.03000488691031933,
0.09992099553346634,
0.06573287397623062,
-0.01611625961959362,
-0.13980735838413239,
0.02602166123688221,
0.1213235855102539,
0.03033415786921978,
-0.03665938973426819,
0.06731543689966202,
-0.04077434539794922,
-0.011693465523421764,
0.0269088726490736,
-0.08416946232318878,
0.0039091212674975395,
-0.00955136213451624,
-0.04078347608447075,
-0.06182268634438515,
0.024403197690844536,
0.019823314622044563,
-0.011609523557126522,
0.06910277158021927,
-0.08572657406330109,
-0.008814722299575806,
-0.06650890409946442,
-0.1212967187166214,
0.019884759560227394,
-0.07541225850582123,
0.017054911702871323,
-0.12062106281518936,
-0.18962784111499786,
-0.002532750368118286,
0.050766658037900925,
-0.032815005630254745,
-0.05603207275271416,
-0.05954733490943909,
-0.08674565702676773,
0.020131666213274002,
-0.01794327050447464,
0.09533805400133133,
-0.07142926007509232,
0.09696734696626663,
0.04163365438580513,
0.058769091963768005,
-0.05795846879482269,
0.0314604826271534,
-0.10496596992015839,
0.03706245496869087,
-0.15505899488925934,
0.02634555846452713,
-0.03043689765036106,
0.07763165980577469,
-0.10187768191099167,
-0.06737257540225983,
-0.009719188325107098,
-0.0024005286395549774,
0.06766673922538757,
0.10512416064739227,
-0.16410934925079346,
-0.05835000053048134,
0.17951196432113647,
-0.08698192238807678,
-0.1797723025083542,
0.144186869263649,
-0.03570195659995079,
0.07039912045001984,
0.06919777393341064,
0.20603927969932556,
0.056989140808582306,
-0.08791939914226532,
0.008947418071329594,
0.005782504100352526,
0.0692734569311142,
-0.05968005582690239,
0.09226734191179276,
-0.00880509614944458,
0.003237413242459297,
0.0062062921933829784,
-0.045427002012729645,
0.05637514591217041,
-0.0641961619257927,
-0.07903113216161728,
-0.040346644818782806,
-0.10509804636240005,
0.03612571209669113,
0.03710523620247841,
0.05991754308342934,
-0.12314319610595703,
-0.09564122557640076,
0.031463585793972015,
0.06793127954006195,
-0.0784386694431305,
0.02348877303302288,
-0.07298990339040756,
0.09491486102342606,
-0.08812899887561798,
-0.008614957332611084,
-0.13642729818820953,
-0.04485074430704117,
0.017922552302479744,
0.008669442497193813,
0.01214949507266283,
0.0006952448165975511,
0.07921719551086426,
0.0761902704834938,
-0.06796320527791977,
-0.03496381640434265,
-0.00797280389815569,
0.015338288620114326,
-0.1245473176240921,
-0.1912432312965393,
-0.01762237586081028,
-0.027496440336108208,
0.15290699899196625,
-0.23140069842338562,
0.05355631187558174,
0.008348694071173668,
0.06685056537389755,
0.0378577895462513,
-0.011418726295232773,
-0.026617038995027542,
0.04767930880188942,
-0.05068380758166313,
-0.0713086798787117,
0.0714433416724205,
0.027420256286859512,
-0.10760225355625153,
0.0005217124707996845,
-0.18074393272399902,
0.18248297274112701,
0.13332252204418182,
-0.055970173329114914,
-0.06255770474672318,
0.009957523085176945,
-0.03740480914711952,
-0.03268563374876976,
-0.028901029378175735,
-0.025224704295396805,
0.10445862263441086,
0.00007738604472251609,
0.16353736817836761,
-0.10243117064237595,
-0.04806607961654663,
0.031933121383190155,
-0.04287172853946686,
0.012568940408527851,
0.11523190885782242,
0.06194998323917389,
-0.13633279502391815,
0.15321068465709686,
0.20162315666675568,
-0.057294365018606186,
0.14117784798145294,
-0.045705221593379974,
-0.06628791242837906,
-0.02413334883749485,
0.03172832354903221,
0.022375114262104034,
0.10595434159040451,
-0.10429998487234116,
0.007554520852863789,
0.013542565517127514,
0.02131195180118084,
0.013940555043518543,
-0.20104146003723145,
-0.02450905553996563,
0.052623044699430466,
-0.056548573076725006,
0.00027454234077595174,
-0.011837455444037914,
-0.02271563559770584,
0.09820517152547836,
0.006680849939584732,
-0.07290757447481155,
0.04577793926000595,
-0.0017578050028532743,
-0.08893594145774841,
0.20340484380722046,
-0.06632762402296066,
-0.167729452252388,
-0.14242874085903168,
-0.06574277579784393,
-0.05359533056616783,
0.030495289713144302,
0.07934878021478653,
-0.06253743171691895,
-0.03826799616217613,
-0.1354455053806305,
0.005944664124399424,
0.010651524178683758,
0.019891589879989624,
0.012322247959673405,
-0.002996930619701743,
0.0828842893242836,
-0.09986496716737747,
-0.012017994187772274,
-0.01263943687081337,
-0.03993191197514534,
0.029348192736506462,
0.005303718149662018,
0.11406389623880386,
0.1348721832036972,
-0.009791434742510319,
-0.002263055881485343,
-0.040160223841667175,
0.2357562631368637,
-0.06093689054250717,
0.006638387218117714,
0.1552705019712448,
-0.017899012193083763,
0.05655864626169205,
0.13382411003112793,
0.0416320376098156,
-0.09882056713104248,
0.024798434227705002,
0.021508298814296722,
-0.033593446016311646,
-0.20994015038013458,
-0.015573929063975811,
-0.05010707676410675,
0.03538862243294716,
0.09440300613641739,
0.03342980891466141,
0.04654819145798683,
0.06483445316553116,
0.012887421995401382,
0.08510784804821014,
0.006783920340240002,
0.08481206744909286,
0.1126517802476883,
0.0447249710559845,
0.1289737969636917,
-0.05856652930378914,
-0.038555581122636795,
0.045351043343544006,
0.011470993980765343,
0.1820022314786911,
0.016073429957032204,
0.19740688800811768,
0.04721605032682419,
0.1449529379606247,
-0.0031461664475500584,
0.07251285761594772,
-0.01496964506804943,
-0.031828004866838455,
-0.0235208198428154,
-0.05553797259926796,
-0.02425096556544304,
0.03155853971838951,
-0.09181112051010132,
0.05724649876356125,
-0.10607275366783142,
0.021885111927986145,
0.051105957478284836,
0.2559848427772522,
0.05865708366036415,
-0.34185367822647095,
-0.10287220776081085,
0.029630811884999275,
-0.024001594632864,
-0.03138207644224167,
0.026399388909339905,
0.15157487988471985,
-0.05652656778693199,
0.03526954725384712,
-0.08030539005994797,
0.08783359825611115,
-0.02564113214612007,
0.05347601696848869,
0.04721252992749214,
0.07001712173223495,
-0.012482553720474243,
0.07013966888189316,
-0.28262534737586975,
0.2600879371166229,
0.015595648437738419,
0.06551502645015717,
-0.055848628282547,
0.0021416775416582823,
0.022971894592046738,
0.07196077704429626,
0.08906915038824081,
-0.01674560271203518,
-0.060409508645534515,
-0.1706591695547104,
-0.07863869518041611,
0.0282300915569067,
0.08843376487493515,
-0.05248063802719116,
0.11114482581615448,
-0.05136925354599953,
-0.0006250147125683725,
0.07845275849103928,
0.010233994573354721,
-0.06362471729516983,
-0.10359931737184525,
-0.002158482326194644,
0.04855762794613838,
-0.026339149102568626,
-0.08109449595212936,
-0.08543501794338226,
-0.1005825623869896,
0.15197017788887024,
-0.0485861636698246,
-0.04780673235654831,
-0.099942147731781,
0.03591299429535866,
0.04656342789530754,
-0.08235660195350647,
0.04149661958217621,
0.005364035721868277,
0.09710626304149628,
0.01824965514242649,
-0.06671874970197678,
0.12638939917087555,
-0.07772539556026459,
-0.17458708584308624,
-0.053895045071840286,
0.12873612344264984,
-0.007911601103842258,
0.04317596182227135,
0.000717602320946753,
0.00881530437618494,
-0.0340692512691021,
-0.066462442278862,
0.018449675291776657,
-0.013670497573912144,
0.05509178340435028,
-0.019963260740041733,
-0.034292563796043396,
0.011249449104070663,
-0.05950160324573517,
-0.05172320455312729,
0.17072369158267975,
0.30120745301246643,
-0.07280731201171875,
0.01234953198581934,
0.055220309644937515,
-0.05981322377920151,
-0.18035586178302765,
0.014773176982998848,
0.015067015774548054,
0.0008969297050498426,
0.0632098913192749,
-0.1267111748456955,
0.07520995289087296,
0.08277372270822525,
-0.024782394990324974,
0.10895335674285889,
-0.3198472857475281,
-0.1368684619665146,
0.09870705008506775,
0.1580377221107483,
0.12289339303970337,
-0.1726236790418625,
-0.04822283983230591,
-0.042744189500808716,
-0.12232475727796555,
0.11296398937702179,
-0.14505478739738464,
0.11091452091932297,
-0.004605906084179878,
0.04993418604135513,
0.003949478734284639,
-0.04969029501080513,
0.12556126713752747,
-0.03826228156685829,
0.08934228122234344,
-0.0745382159948349,
0.016560401767492294,
0.07260437309741974,
-0.06635887920856476,
0.026555579155683517,
-0.15524765849113464,
0.034427840262651443,
-0.0644424632191658,
-0.02847767062485218,
-0.05493450537323952,
0.027071308344602585,
-0.03949993848800659,
-0.06261827051639557,
-0.032945454120635986,
0.01475558802485466,
0.05577890947461128,
-0.011547204107046127,
0.15263210237026215,
-0.0016013541026040912,
0.1512274593114853,
0.15288124978542328,
0.09483223408460617,
-0.06622035801410675,
-0.02281184121966362,
-0.01058217603713274,
-0.041833531111478806,
0.04659905284643173,
-0.16067269444465637,
0.03284872695803642,
0.10757160186767578,
-0.002023321110755205,
0.13966992497444153,
0.06829478591680527,
-0.034119512885808945,
0.011827121488749981,
0.06661628186702728,
-0.17172910273075104,
-0.14615273475646973,
-0.02903056889772415,
-0.007638470735400915,
-0.1315193772315979,
0.046593066304922104,
0.13668465614318848,
-0.0740441307425499,
0.005809394642710686,
-0.009422024711966515,
0.022444596514105797,
-0.03525599464774132,
0.16310401260852814,
0.04578836262226105,
0.054471034556627274,
-0.07459931820631027,
0.08714808523654938,
0.0527547262609005,
-0.08150149881839752,
0.024521565064787865,
0.06384079158306122,
-0.0931771919131279,
-0.05046528950333595,
0.05314677208662033,
0.16704688966274261,
-0.03229200094938278,
-0.05313482508063316,
-0.14973126351833344,
-0.1177896037697792,
0.050504814833402634,
0.1708846539258957,
0.07858330756425858,
0.014125221408903599,
-0.0232753437012434,
0.0054176365956664085,
-0.10997047275304794,
0.12447278201580048,
0.03530050814151764,
0.0852549597620964,
-0.15864287316799164,
0.11022358387708664,
-0.010135077871382236,
0.014079149812459946,
-0.01873362623155117,
0.04835864529013634,
-0.10242167115211487,
-0.0069116270169615746,
-0.1396874189376831,
0.004898872692137957,
-0.021870722994208336,
-0.004283226560801268,
-0.008797994814813137,
-0.043805912137031555,
-0.06232455372810364,
0.015215842984616756,
-0.09682837128639221,
-0.033361222594976425,
0.02831977605819702,
0.05848011001944542,
-0.11484376341104507,
-0.032484982162714005,
0.0214394498616457,
-0.07914260029792786,
0.07624287158250809,
0.008002829737961292,
0.0075626010075211525,
0.04543394595384598,
-0.1435188204050064,
0.03739849850535393,
0.04937449470162392,
0.010059724561870098,
0.03554368391633034,
-0.08305414766073227,
-0.02408008649945259,
0.002459887880831957,
0.03448760509490967,
0.01975569687783718,
0.09514196962118149,
-0.11910521239042282,
0.00613867212086916,
-0.01612701267004013,
-0.043766047805547714,
-0.057200755923986435,
0.028918007388710976,
0.06231957674026489,
0.008486638776957989,
0.20714151859283447,
-0.09430523216724396,
0.0130601292476058,
-0.20827580988407135,
0.009212253615260124,
0.004598910454660654,
-0.12407771497964859,
-0.11189078539609909,
-0.05957990884780884,
0.04767443239688873,
-0.0640525370836258,
0.10720492154359818,
-0.009994925931096077,
0.050393152981996536,
0.039418384432792664,
-0.026970988139510155,
0.053786616772413254,
0.019596723839640617,
0.2413744330406189,
0.007922799326479435,
-0.043536700308322906,
0.024409199133515358,
0.025451799854636192,
0.1097429022192955,
0.09200210124254227,
0.1821383833885193,
0.1636584997177124,
-0.043675992637872696,
0.10999517887830734,
0.030231408774852753,
-0.03208987042307854,
-0.15562720596790314,
0.039191585034132004,
-0.02620951272547245,
0.11803961545228958,
-0.021828584372997284,
0.22218480706214905,
0.12460949271917343,
-0.1526372730731964,
0.006353847682476044,
-0.06833960860967636,
-0.06898877024650574,
-0.10337036103010178,
-0.0888071358203888,
-0.09376229345798492,
-0.13794946670532227,
-0.019828850403428078,
-0.10899099707603455,
0.0181264765560627,
0.10321962088346481,
0.013136949390172958,
-0.02600497379899025,
0.17347532510757446,
0.013384327292442322,
0.007342841941863298,
0.04969892278313637,
-0.00488760881125927,
-0.03449630364775658,
-0.0744234099984169,
-0.08901028335094452,
0.008466281928122044,
-0.011576510965824127,
0.025249309837818146,
-0.03824424371123314,
-0.027046803385019302,
0.04027368128299713,
-0.021486468613147736,
-0.1116219013929367,
0.008821731433272362,
0.034356534481048584,
0.05083208158612251,
0.05253417789936066,
0.014987717382609844,
-0.007137121632695198,
0.005316482856869698,
0.24430708587169647,
-0.08377496898174286,
-0.0775439515709877,
-0.08401015400886536,
0.19217126071453094,
0.005553469527512789,
-0.008573414757847786,
0.0024245847016572952,
-0.08705765008926392,
0.030940167605876923,
0.234964519739151,
0.1803777664899826,
-0.08847841620445251,
-0.004691509995609522,
-0.020616818219423294,
-0.00551272789016366,
-0.03546784818172455,
0.10488111525774002,
0.10862500220537186,
0.017755158245563507,
-0.08007150143384933,
-0.015549007803201675,
-0.034502603113651276,
0.0017642754828557372,
-0.051500000059604645,
0.07868057489395142,
0.021585701033473015,
0.009638497605919838,
-0.02926640585064888,
0.06762826442718506,
-0.03503179922699928,
-0.09168381243944168,
-0.002423463622108102,
-0.19067439436912537,
-0.1390179842710495,
-0.025813577696681023,
0.11619657278060913,
-0.018354110419750214,
0.046165674924850464,
-0.029436375945806503,
0.019043361768126488,
0.04923197627067566,
-0.022572847083210945,
-0.06605429202318192,
-0.05653183162212372,
0.06381742656230927,
-0.12759369611740112,
0.22177743911743164,
-0.037491895258426666,
0.024555161595344543,
0.1336611956357956,
0.031923260539770126,
-0.09875465929508209,
0.09338127821683884,
0.0511135533452034,
-0.031885530799627304,
0.04986201599240303,
0.08706130087375641,
-0.03395003825426102,
0.11203906685113907,
0.0527939535677433,
-0.12200920283794403,
0.005641974974423647,
-0.033777251839637756,
-0.0561361126601696,
-0.0393812395632267,
-0.05161723867058754,
-0.058007918298244476,
0.1397712528705597,
0.1654779613018036,
-0.05781920254230499,
-0.0010633388301357627,
-0.0520428866147995,
0.01635867916047573,
0.07849030196666718,
0.0340457409620285,
-0.024434886872768402,
-0.23258242011070251,
0.005249570123851299,
0.07296989858150482,
0.005618934519588947,
-0.3143250048160553,
-0.08182297646999359,
-0.017463089898228645,
-0.035422954708337784,
-0.11475591361522675,
0.08996350318193436,
0.13644656538963318,
0.04090751335024834,
-0.06288023293018341,
-0.054083406925201416,
-0.07865592837333679,
0.16593721508979797,
-0.12519752979278564,
-0.09842631220817566
] |
null | null | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Giraudet/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Giraudet/q-FrozenLake-v1-4x4-noSlippery | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T20:39:01+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
40,
39
] | [
"passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
0.04578453302383423,
-0.08074592798948288,
-0.00430759321898222,
0.10720831900835037,
0.05034215748310089,
-0.040469273924827576,
0.11997015029191971,
0.018999949097633362,
0.20601962506771088,
-0.010012076236307621,
0.1455274522304535,
0.007022971753031015,
-0.006192410364747047,
0.1867983490228653,
0.04572829231619835,
-0.26324528455734253,
0.01831899583339691,
-0.09495259821414948,
-0.07281816750764847,
0.11870454251766205,
0.05470194295048714,
-0.01901467889547348,
-0.0007633853238075972,
0.056141503155231476,
-0.0673527717590332,
0.0007737681735306978,
0.031996939331293106,
-0.012976245954632759,
0.19804789125919342,
-0.02254498563706875,
0.06641989201307297,
0.054705578833818436,
0.0758768692612648,
-0.1998077929019928,
0.0358855277299881,
-0.04215473681688309,
-0.09439758956432343,
-0.03934839740395546,
-0.018780618906021118,
0.05878105387091637,
0.053356342017650604,
0.03858819976449013,
0.058354366570711136,
0.09384993463754654,
-0.0773480236530304,
0.04328357055783272,
0.04280758649110794,
0.024811049923300743,
0.04589218273758888,
-0.0237203948199749,
-0.027002155780792236,
0.08246652781963348,
-0.22182892262935638,
0.10318073630332947,
-0.010159241035580635,
-0.5270710587501526,
-0.00633762264624238,
0.24088262021541595,
0.11517096310853958,
0.05707438662648201,
-0.06903956830501556,
0.10566288232803345,
0.03913382440805435,
-0.007209456991404295,
0.03210983797907829,
0.02150118350982666,
0.12817370891571045,
0.06009242683649063,
-0.09581366181373596,
0.040699947625398636,
0.13722525537014008,
0.012822695076465607,
0.020306183025240898,
-0.08888901025056839,
0.0410032719373703,
-0.03461858257651329,
-0.007679527159780264,
-0.09758518636226654,
0.05478060990571976,
0.012466507963836193,
-0.0934976264834404,
-0.09247440844774246,
-0.04236573353409767,
-0.06708304584026337,
0.11252415925264359,
0.046419668942689896,
-0.0874939113855362,
0.03884070739150047,
-0.06760413944721222,
0.05918780341744423,
-0.16863860189914703,
0.02074250765144825,
-0.06627868115901947,
-0.09376336634159088,
-0.11799788475036621,
-0.01683047041296959,
-0.07946427166461945,
0.009092256426811218,
0.056664444506168365,
0.1447116881608963,
0.22076484560966492,
0.06690320372581482,
0.09728849679231644,
0.07456006109714508,
0.06531001627445221,
0.1538129299879074,
0.10918238013982773,
0.019075315445661545,
-0.015266558155417442,
0.0948706716299057,
-0.06445580720901489,
-0.1351388692855835,
-0.15579092502593994,
0.005488025024533272,
0.0983937531709671,
0.08871900290250778,
-0.044080477207899094,
-0.006702381651848555,
-0.024641724303364754,
0.08566431701183319,
-0.11314457654953003,
-0.024612564593553543,
-0.002267979085445404,
0.06882024556398392,
-0.024801667779684067,
0.020378148183226585,
-0.06242705136537552,
0.12715265154838562,
0.04222423583269119,
-0.059924717992544174,
-0.055308472365140915,
-0.03053177334368229,
-0.014276440255343914,
-0.027539284899830818,
0.02446848154067993,
-0.07659092545509338,
0.04767750948667526,
-0.16766095161437988,
-0.042871296405792236,
-0.04784649610519409,
0.025697942823171616,
-0.03907240927219391,
-0.13557587563991547,
-0.17699143290519714,
-0.048906855285167694,
-0.022438718006014824,
0.03549358621239662,
-0.038111843168735504,
0.006551501806825399,
-0.006318534724414349,
-0.1583600640296936,
0.09783563017845154,
0.09784027189016342,
-0.03643378987908363,
-0.02749447710812092,
0.056263517588377,
-0.07194498926401138,
0.1561182290315628,
-0.21054518222808838,
-0.054014235734939575,
-0.044764336198568344,
-0.06595750898122787,
0.19673264026641846,
0.012690845876932144,
-0.01202624011784792,
0.19873127341270447,
-0.29073721170425415,
-0.06078760325908661,
0.12533614039421082,
-0.07834373414516449,
-0.0936407670378685,
0.06941844522953033,
-0.04206686094403267,
0.023345354944467545,
0.046047765761613846,
0.36345911026000977,
-0.02069227211177349,
-0.16197136044502258,
-0.021782705560326576,
0.13971707224845886,
-0.1184760183095932,
0.059895481914281845,
0.04240793362259865,
0.12543781101703644,
-0.04250509291887283,
-0.018672896549105644,
-0.09023164212703705,
0.05999075248837471,
-0.05241934582591057,
-0.09016361832618713,
-0.03393383324146271,
-0.07645075023174286,
0.13294468820095062,
-0.0629684180021286,
0.05601520463824272,
-0.03255095332860947,
-0.07133250683546066,
-0.050324998795986176,
-0.016492370516061783,
0.04460815340280533,
0.05951254442334175,
-0.12794871628284454,
0.11029167473316193,
0.13025271892547607,
-0.0006193425506353378,
-0.07498852163553238,
-0.17872096598148346,
0.003240168560296297,
0.009576505981385708,
0.039837226271629333,
0.17141658067703247,
0.12209978699684143,
0.033295199275016785,
0.008770671673119068,
-0.06389404833316803,
-0.18276847898960114,
0.058129217475652695,
-0.056212130934000015,
-0.14230976998806,
-0.052409034222364426,
-0.0728459507226944,
0.017381802201271057,
-0.0859743058681488,
-0.017379917204380035,
0.021926190704107285,
0.006908397190272808,
0.02990424446761608,
-0.026645656675100327,
-0.049561817198991776,
0.021254703402519226,
0.06490101665258408,
-0.0037617047782987356,
0.12023693323135376,
0.008277264423668385,
-0.18308481574058533,
0.07930773496627808,
0.08478537946939468,
0.09196605533361435,
0.013250201940536499,
0.02685922384262085,
-0.021522263064980507,
-0.08061408251523972,
-0.054420311003923416,
0.02957955375313759,
0.11417073011398315,
0.1317172348499298,
0.2361993044614792,
0.08753683418035507,
0.04697408527135849,
-0.02164587564766407,
-0.016415923833847046,
0.002810494042932987,
-0.06318057328462601,
-0.029935607686638832,
0.10614971816539764,
0.05865858122706413,
-0.067733034491539,
-0.04576427489519119,
0.09590928256511688,
0.02732124738395214,
0.21205885708332062,
-0.03342745825648308,
0.01286078616976738,
-0.10957037657499313,
-0.06550975888967514,
-0.031982194632291794,
0.09201868623495102,
0.09498392790555954,
0.009755023755133152,
-0.022056059911847115,
-0.04259001836180687,
0.0012916827108711004,
-0.1334889680147171,
-0.10375088453292847,
0.026475343853235245,
0.013400445692241192,
-0.11206940561532974,
0.11674030870199203,
-0.11352457851171494,
0.039504457265138626,
0.06024791672825813,
-0.13837239146232605,
0.04428480193018913,
-0.029713207855820656,
-0.07886212319135666,
0.16866780817508698,
-0.11075661331415176,
-0.094340018928051,
-0.08831550180912018,
0.004082420375198126,
0.0075836325995624065,
-0.03922267258167267,
-0.009283260442316532,
-0.19952571392059326,
-0.005375816952437162,
-0.03544965013861656,
0.013616434298455715,
-0.06988783925771713,
-0.11287739872932434,
-0.010957922786474228,
0.07084179669618607,
-0.043388739228248596,
-0.07803605496883392,
0.007967432029545307,
-0.08923084288835526,
-0.10623309016227722,
0.028189711272716522,
0.019765101373195648,
-0.022883659228682518,
0.16152891516685486,
0.01816628873348236,
0.05626589432358742,
-0.03298520669341087,
0.30665266513824463,
-0.038163769990205765,
0.08371731638908386,
-0.02993497997522354,
-0.07433546334505081,
0.06130730360746384,
-0.022327827289700508,
0.06086638569831848,
-0.020221687853336334,
-0.02362890914082527,
0.0077952733263373375,
-0.08579335361719131,
-0.18365982174873352,
-0.05417544022202492,
0.03724347800016403,
0.195254847407341,
0.031118987128138542,
0.01910330168902874,
-0.0488768145442009,
-0.010547760874032974,
0.1665220558643341,
-0.10005921125411987,
0.04030545800924301,
-0.05366240441799164,
0.11506262421607971,
-0.08640182018280029,
0.06195629760622978,
0.020486772060394287,
0.04266135022044182,
-0.04877188801765442,
0.09486009180545807,
0.0826394334435463,
0.1121082529425621,
-0.02206910029053688,
0.046257395297288895,
0.019012698903679848,
0.07383184134960175,
0.11073657125234604,
0.0368414968252182,
-0.0729052945971489,
0.001982470043003559,
-0.006313489284366369,
-0.039427030831575394,
0.11933320760726929,
0.17963355779647827,
-0.11991413682699203,
-0.05106910318136215,
0.27167606353759766,
0.0031242913100868464,
0.19481229782104492,
-0.01315275114029646,
0.043591804802417755,
-0.04484925419092178,
0.04572054371237755,
-0.05338600277900696,
-0.04086209088563919,
0.2094656229019165,
0.08045925945043564,
-0.17165091633796692,
-0.08549032360315323,
-0.05912299454212189,
0.07081323862075806,
0.10728751868009567,
0.0013539529172703624,
-0.04156802222132683,
0.0004610282776411623,
0.0014198932331055403,
0.08339415490627289,
-0.14520122110843658,
0.11816094070672989,
-0.03172019124031067,
0.05612684786319733,
0.017555562779307365,
-0.045326150953769684,
0.04264266416430473,
0.07474290579557419,
0.26618310809135437,
0.0904107540845871,
-0.040318213403224945,
-0.0892091691493988,
-0.12260187417268753,
0.010461576282978058,
0.029102616012096405,
-0.03534553572535515,
0.0037547778338193893,
-0.020087555050849915,
0.0318896509706974,
0.008264793083071709,
0.016230624169111252,
-0.08987458795309067,
-0.03175399824976921,
-0.027736429125070572,
-0.023839212954044342,
0.10733365267515182,
-0.09495144337415695,
-0.1444292515516281,
-0.15713949501514435,
0.04191131144762039,
-0.0766405463218689,
-0.056593164801597595,
-0.054507751017808914,
-0.05239389091730118,
-0.0311186034232378,
-0.03773957118391991,
0.09099467098712921,
-0.0021037792321294546,
0.14807306230068207,
-0.1920108050107956,
-0.04220759496092796,
0.051812779158353806,
-0.07607918977737427,
-0.08729588985443115,
0.03410962224006653,
0.12136995792388916,
0.05116051807999611,
0.11504370719194412,
0.013609255664050579,
0.09567681699991226,
0.0045484392903745174,
-0.06713183224201202,
0.15302421152591705,
-0.14069625735282898,
-0.27875974774360657,
-0.03836318850517273,
0.016946332529187202,
0.1615200787782669,
-0.05613167956471443,
0.031766023486852646,
0.3335736393928528,
0.27782970666885376,
-0.1428707242012024,
0.25916144251823425,
0.019178593531250954,
0.004398873541504145,
-0.19130495190620422,
-0.10125631093978882,
0.025324683636426926,
0.04740457236766815,
0.12032642960548401,
-0.14564448595046997,
-0.010732659138739109,
-0.04543145373463631,
-0.025908485054969788,
0.10386138409376144,
-0.12300799041986465,
-0.07263197749853134,
0.07765276730060577,
0.039809420704841614,
0.1808302253484726,
0.03932500258088112,
0.0014799144119024277,
0.13626977801322937,
0.06612244248390198,
0.019124457612633705,
0.05216038227081299,
0.08028066903352737,
-0.018944554030895233,
0.14207926392555237,
0.05448179319500923,
-0.02551644667983055,
0.052681710571050644,
-0.0054580713622272015,
-0.03219012916088104,
0.015605825930833817,
-0.183198019862175,
-0.10147556662559509,
-0.0561356320977211,
-0.10798973590135574,
-0.04978342354297638,
0.056853994727134705,
-0.12395523488521576,
-0.007896827533841133,
-0.03841273859143257,
0.03718273714184761,
-0.07831971347332001,
-0.09360362589359283,
-0.036494381725788116,
0.1351792961359024,
0.07210618257522583,
0.04471297934651375,
0.035655103623867035,
-0.07390819489955902,
0.07097936421632767,
0.21671734750270844,
0.08159157633781433,
0.028919655829668045,
-0.19545674324035645,
-0.024042490869760513,
-0.0803457647562027,
0.06306298077106476,
-0.08856996893882751,
-0.016788700595498085,
0.11923003196716309,
0.08616556972265244,
0.05413002520799637,
0.09640096127986908,
-0.045083072036504745,
0.021686913445591927,
0.02684609219431877,
-0.15131035447120667,
-0.18501274287700653,
-0.08534606546163559,
-0.03519878163933754,
0.11561143398284912,
-0.06398691236972809,
0.10897188633680344,
-0.13615410029888153,
0.010051886551082134,
-0.006060056854039431,
0.02693452313542366,
-0.03596206381917,
-0.11251141875982285,
0.15348562598228455,
0.11999429017305374,
-0.06767056882381439,
0.03127254918217659,
-0.09527092427015305,
-0.04423454403877258,
0.12686803936958313,
-0.013623855076730251,
-0.0371493324637413,
-0.054547641426324844,
-0.03628576174378395,
0.15247689187526703,
-0.03436964750289917,
0.008244883269071579,
-0.041229065507650375,
-0.18217355012893677,
0.0798322781920433,
0.09045056998729706,
0.019827889278531075,
-0.031874191015958786,
-0.09797266125679016,
-0.010231015272438526,
-0.0011165260802954435,
0.11730700731277466,
-0.10696814209222794,
-0.10933240503072739,
-0.15144047141075134,
0.06713984161615372,
-0.0007159380475059152,
0.18502596020698547,
-0.06394898891448975,
-0.08904669433832169,
-0.12429379671812057,
0.02344517596065998,
-0.0027384376153349876,
-0.042264558374881744,
0.01618490368127823,
0.07992301136255264,
-0.04095321521162987,
0.02075677551329136,
-0.06651144474744797,
0.06372585147619247,
-0.11786920577287674,
0.09625071287155151,
0.01063506118953228,
0.016993753612041473,
-0.0417880080640316,
-0.01618220843374729,
0.039470795542001724,
-0.057925306260585785,
0.07921463251113892,
0.011758086271584034,
0.0010938759660348296,
0.10196787863969803,
-0.0034960443153977394,
0.06409632414579391,
-0.05372481048107147,
-0.023290161043405533,
0.06578411161899567,
-0.05874887853860855,
-0.03370826691389084,
-0.1573946475982666,
-0.0709633082151413,
0.020051732659339905,
-0.04775108024477959,
0.002077929675579071,
0.03673801198601723,
0.062159497290849686,
-0.06937079131603241,
-0.12125655263662338,
-0.043812792748212814,
-0.028638383373618126,
0.021301284432411194,
0.10829301923513412,
-0.07526551932096481,
0.1547859013080597,
-0.052787959575653076,
-0.00020603960729204118,
0.07437096536159515,
0.04048224538564682,
0.01393822580575943,
-0.10422444343566895,
-0.04698587954044342,
-0.11035211384296417,
0.1502903699874878,
-0.007902312092483044,
-0.03533121198415756,
0.03719403222203255,
-0.11946307867765427,
-0.1572723090648651,
0.03418220207095146,
0.10199101269245148,
0.0448341928422451,
0.025807438418269157,
0.027079269289970398,
-0.04042419046163559,
-0.021270349621772766,
-0.07034418731927872,
0.0882953479886055,
-0.12085357308387756,
-0.09669415652751923,
0.09555385261774063,
0.12178351730108261,
-0.0036850625183433294,
-0.07441367954015732,
0.11554073542356491,
-0.021787192672491074,
0.05525410920381546,
-0.02971339225769043,
0.10308072715997696,
0.0796005055308342,
-0.12273547053337097,
0.005693064536899328,
-0.036891788244247437,
-0.0741485133767128,
-0.12975730001926422,
0.019545545801520348,
-0.061916105449199677,
-0.13383042812347412,
0.12179028987884521,
-0.09376577287912369,
0.030037038028240204,
-0.10506992787122726,
0.021338803693652153,
0.01864001713693142,
0.061665527522563934,
-0.10988292098045349,
0.08575301617383957,
0.13424484431743622,
-0.043199893087148666,
-0.07184189558029175,
-0.12455986440181732,
-0.05022053420543671,
-0.04231856390833855,
-0.13957437872886658,
-0.11600435525178909,
0.0100301094353199,
-0.023418782278895378,
-0.05818291753530502,
0.0015462689334526658,
-0.03659068048000336,
0.008594646118581295,
0.021907730028033257,
0.04032021388411522,
-0.02693161368370056,
0.05134565755724907,
-0.057569269090890884,
-0.052510857582092285,
0.11489357799291611,
0.04113486409187317,
-0.03561042994260788,
-0.052359987050294876,
0.12997733056545258,
-0.11959461867809296,
0.07662346214056015,
-0.020313527435064316,
0.017129231244325638,
-0.06435854732990265,
0.17131924629211426,
0.11673715710639954,
-0.1367570012807846,
-0.005008010193705559,
-0.08210669457912445,
0.020409544929862022,
0.023555370047688484,
0.13693512976169586,
-0.03411718085408211,
-0.0012358218664303422,
-0.1580323874950409,
0.018575575202703476,
-0.18557456135749817,
-0.03716109320521355,
0.04671547934412956,
0.09917585551738739,
0.15293832123279572,
-0.0034432117827236652,
-0.1263325810432434,
0.10424192249774933,
-0.2118520885705948,
0.0907607227563858,
0.05121984705328941,
-0.11874113976955414,
-0.06765396893024445,
-0.06795281916856766,
0.1198519766330719,
0.009196433238685131,
0.2040700763463974,
-0.013615905307233334,
-0.09132910519838333,
-0.07060808688402176,
-0.01980910450220108,
-0.030524181202054024,
0.09714830666780472,
0.041414931416511536,
0.04653804749250412,
0.12821412086486816,
0.00368314771912992,
0.07533777505159378,
0.060310911387205124,
0.02759413793683052,
-0.012300663627684116,
0.04076618701219559,
0.08261215686798096,
-0.14588621258735657,
-0.1659701019525528,
0.1326720416545868,
0.025149408727884293,
0.11792458593845367,
0.03658788278698921,
-0.1549617499113083,
0.06687124073505402,
0.2523096203804016,
-0.11147607117891312,
0.02505038119852543,
0.12737524509429932,
-0.0366884209215641,
0.0672016367316246,
0.1144871786236763,
-0.02633814327418804,
-0.05217865854501724,
-0.011363590136170387,
0.10233135521411896,
0.028660254552960396,
-0.04646271467208862,
-0.02340836264193058,
-0.03373933956027031,
-0.019070526584982872,
-0.011738128960132599,
-0.0909019410610199,
-0.1543993502855301,
-0.10471053421497345,
-0.16619662940502167,
0.04399140924215317,
-0.04626438021659851,
0.13418889045715332,
0.09469578415155411,
-0.012723101302981377,
0.04568437114357948,
0.028575526550412178,
0.07275456190109253,
0.07916246354579926,
-0.02939477376639843,
-0.036159269511699677
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuningqvk1
This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3415
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.688 | 1.0 | 1 | 2.7638 |
| 2.275 | 2.0 | 2 | 2.2309 |
| 1.8141 | 3.0 | 3 | 1.9247 |
| 1.4948 | 4.0 | 4 | 1.6327 |
| 1.2029 | 5.0 | 5 | 1.4417 |
| 0.9743 | 6.0 | 6 | 1.3415 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.13.3
| {"license": "llama2", "tags": ["generated_from_trainer"], "base_model": "codellama/CodeLlama-7b-Instruct-hf", "model-index": [{"name": "finetuningqvk1", "results": []}]} | text-generation | Zintoulou/finetuningqvk1 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"generated_from_trainer",
"base_model:codellama/CodeLlama-7b-Instruct-hf",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:40:46+00:00 | [] | [] | TAGS
#transformers #pytorch #llama #text-generation #generated_from_trainer #base_model-codellama/CodeLlama-7b-Instruct-hf #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| finetuningqvk1
==============
This model is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3415
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.001
* train\_batch\_size: 20
* eval\_batch\_size: 20
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 6
### Training results
### Framework versions
* Transformers 4.33.0
* Pytorch 2.0.1
* Datasets 2.16.1
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 20\n* eval\\_batch\\_size: 20\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.33.0\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #generated_from_trainer #base_model-codellama/CodeLlama-7b-Instruct-hf #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 20\n* eval\\_batch\\_size: 20\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.33.0\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
80,
97,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #generated_from_trainer #base_model-codellama/CodeLlama-7b-Instruct-hf #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 20\n* eval\\_batch\\_size: 20\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6### Training results### Framework versions\n\n\n* Transformers 4.33.0\n* Pytorch 2.0.1\n* Datasets 2.16.1\n* Tokenizers 0.13.3"
] | [
-0.09653621912002563,
0.10530885308980942,
-0.002043369924649596,
0.11208680272102356,
0.13444240391254425,
0.014963602647185326,
0.13455374538898468,
0.14285802841186523,
-0.06709197908639908,
0.02663319557905197,
0.1433810144662857,
0.13980920612812042,
0.02071268856525421,
0.11223508417606354,
-0.05321180820465088,
-0.23843032121658325,
-0.0006461549201048911,
0.061307862401008606,
-0.022670509293675423,
0.1390303373336792,
0.09498637169599533,
-0.12214057892560959,
0.1124376654624939,
0.005824712570756674,
-0.18878602981567383,
0.010132516734302044,
-0.003938089590519667,
-0.028750907629728317,
0.13872884213924408,
0.022610384970903397,
0.08743637055158615,
0.025034775957465172,
0.061118703335523605,
-0.17704030871391296,
0.004094343166798353,
0.03168928250670433,
0.006646391935646534,
0.08150973916053772,
0.016025390475988388,
-0.0013292043004184961,
0.13772262632846832,
-0.050423670560121536,
0.03002185933291912,
0.030423538759350777,
-0.13237595558166504,
-0.2049301713705063,
-0.06571513414382935,
0.028308067470788956,
0.08410928398370743,
0.10957514494657516,
-0.011814416386187077,
0.10646289587020874,
-0.017436590045690536,
0.09667859226465225,
0.2292981743812561,
-0.2886035144329071,
-0.055779438465833664,
0.06548971682786942,
0.050360266119241714,
0.09353673458099365,
-0.08932726830244064,
-0.01479435060173273,
0.06258343160152435,
0.041306834667921066,
0.15381242334842682,
-0.049395523965358734,
0.012000055983662605,
0.01862303726375103,
-0.1306944191455841,
-0.07167114317417145,
0.1927763819694519,
0.05277751758694649,
-0.03750968724489212,
-0.04713838919997215,
-0.07750587910413742,
-0.16572162508964539,
-0.02715316042304039,
0.012520680204033852,
0.03880508989095688,
-0.02239716611802578,
-0.07436411827802658,
-0.04020150005817413,
-0.10166697204113007,
-0.06386074423789978,
-0.008650076575577259,
0.1373845487833023,
0.016282444819808006,
-0.0022419223096221685,
-0.03468167036771774,
0.11821745336055756,
0.0069680167362093925,
-0.1616957038640976,
0.004292333032935858,
0.03480469807982445,
0.05227818340063095,
-0.021790850907564163,
-0.07051889598369598,
-0.062051378190517426,
0.0012247823178768158,
0.10757619887590408,
-0.03364787623286247,
0.05668024346232414,
0.019213203340768814,
0.04202859848737717,
-0.09115289151668549,
0.19662167131900787,
-0.029696393758058548,
-0.040433838963508606,
0.008754919283092022,
0.09268717467784882,
0.049564819782972336,
-0.02886435016989708,
-0.1543407142162323,
0.001801912090741098,
0.1201840341091156,
0.014635241590440273,
-0.06975401192903519,
0.06752348691225052,
-0.04257195070385933,
-0.0428466796875,
-0.012186854146420956,
-0.09235228598117828,
-0.001723809284158051,
-0.018020451068878174,
-0.06108015403151512,
-0.045847900211811066,
0.005067695397883654,
0.018819890916347504,
-0.021799422800540924,
0.06377533823251724,
-0.11236916482448578,
0.013342337682843208,
-0.08116768300533295,
-0.08860737085342407,
-0.004547554533928633,
-0.073483906686306,
0.03470565751194954,
-0.09312392771244049,
-0.20153938233852386,
-0.0032325866632163525,
0.05406452342867851,
-0.031710345298051834,
-0.06179039552807808,
-0.07470476627349854,
-0.0712396577000618,
0.008757306262850761,
-0.009342782199382782,
0.0750521644949913,
-0.06313434988260269,
0.11869414150714874,
0.0632840245962143,
0.04988471046090126,
-0.06691306084394455,
0.05323686823248863,
-0.10146579891443253,
0.049383558332920074,
-0.16143733263015747,
0.05401301383972168,
-0.018158014863729477,
0.07322562485933304,
-0.09492062777280807,
-0.10454870760440826,
0.017109202221035957,
-0.007074696011841297,
0.07075534760951996,
0.11114292591810226,
-0.14401745796203613,
-0.08465071022510529,
0.1525333970785141,
-0.046979811042547226,
-0.1583133190870285,
0.12337254732847214,
-0.06405820697546005,
0.08131822943687439,
0.05453656241297722,
0.21481779217720032,
0.06936422735452652,
-0.06868401914834976,
0.030588557943701744,
0.011415139771997929,
0.09450840950012207,
-0.06743079423904419,
0.09613760560750961,
0.006296978797763586,
0.006814998108893633,
0.02500717155635357,
-0.0603804849088192,
0.040345482528209686,
-0.0720599815249443,
-0.09621372818946838,
-0.0311342291533947,
-0.09646132588386536,
0.03579486533999443,
0.05305030569434166,
0.07865918427705765,
-0.09369982779026031,
-0.07870069891214371,
0.04344324395060539,
0.081133171916008,
-0.1008501797914505,
0.0337224155664444,
-0.06921064853668213,
0.10971216857433319,
-0.059320252388715744,
-0.02055741660296917,
-0.14985178411006927,
0.023923348635435104,
0.008833175525069237,
0.04549223929643631,
0.01776169426739216,
0.0010068410774692893,
0.06352764368057251,
0.06069272756576538,
-0.057672321796417236,
-0.038684044033288956,
-0.04632650315761566,
-0.0017204199684783816,
-0.12540024518966675,
-0.14194415509700775,
-0.06666214764118195,
-0.005635261535644531,
0.18871700763702393,
-0.20285406708717346,
0.0505940206348896,
0.010330853052437305,
0.07818129658699036,
-0.003228995716199279,
-0.024693531915545464,
-0.04012404754757881,
0.05259941145777702,
-0.05269152298569679,
-0.05654171109199524,
0.08331573754549026,
0.025762392207980156,
-0.12303905934095383,
-0.057242635637521744,
-0.14336876571178436,
0.17115318775177002,
0.12509462237358093,
-0.11237773299217224,
-0.04251386225223541,
-0.010349646210670471,
-0.03284817561507225,
-0.019608234986662865,
-0.005671969149261713,
-0.037572503089904785,
0.1710149049758911,
-0.0031034559942781925,
0.17695805430412292,
-0.1029483824968338,
-0.059274252504110336,
0.026378367096185684,
-0.03065725602209568,
0.013310263864696026,
0.12162282317876816,
0.06092928349971771,
-0.10531191527843475,
0.14138206839561462,
0.18682052195072174,
-0.06298135221004486,
0.16140741109848022,
-0.045314546674489975,
-0.06353519856929779,
-0.0394415482878685,
-0.007387710269540548,
-0.012249263934791088,
0.08032096177339554,
-0.146415114402771,
-0.01170355174690485,
0.012589167803525925,
0.00833953358232975,
0.02479737438261509,
-0.20405587553977966,
-0.04047165438532829,
0.05105140432715416,
-0.03745722025632858,
-0.02636326104402542,
-0.005272518377751112,
-0.023260267451405525,
0.08202127367258072,
0.02741553820669651,
-0.09644303470849991,
0.05267227068543434,
-0.00794459693133831,
-0.07859555631875992,
0.20962707698345184,
-0.06233198195695877,
-0.15524928271770477,
-0.16348232328891754,
-0.08005776256322861,
-0.07804898917675018,
0.02558910846710205,
0.06150997802615166,
-0.05007446929812431,
-0.012420638464391232,
-0.10633785277605057,
0.0176079161465168,
-0.06729688495397568,
-0.007714137434959412,
0.03699766844511032,
-0.02284882590174675,
0.0542621873319149,
-0.11309555917978287,
-0.027913684025406837,
-0.004725016187876463,
-0.03422456234693527,
0.030737757682800293,
-0.020049825310707092,
0.10825750231742859,
0.14785896241664886,
-0.011450902558863163,
0.02785446122288704,
-0.02192031405866146,
0.28593480587005615,
-0.06737837195396423,
-0.02383732981979847,
0.16650071740150452,
-0.0081908805295825,
0.07445307821035385,
0.11401467770338058,
0.0557740293443203,
-0.09872151911258698,
-0.0026103465352207422,
0.006199107971042395,
-0.041706446558237076,
-0.17596878111362457,
-0.023748086765408516,
-0.06922374665737152,
0.0040349154733121395,
0.09619563072919846,
0.01194793451577425,
0.05614827200770378,
0.06955819576978683,
0.021147379651665688,
0.10372468829154968,
-0.03109903447329998,
0.09123244136571884,
0.14555655419826508,
0.045122500509023666,
0.11833783984184265,
-0.02675035409629345,
-0.06688471883535385,
0.013833160512149334,
0.023747650906443596,
0.1674548238515854,
0.013248691335320473,
0.1967579424381256,
0.03803306818008423,
0.15225018560886383,
-0.01636415161192417,
0.0726870745420456,
-0.02590077370405197,
-0.024687355384230614,
-0.03277098014950752,
-0.048647020012140274,
-0.0684734582901001,
0.036209605634212494,
-0.0624106265604496,
0.06105204299092293,
-0.1170673817396164,
-0.01467078272253275,
0.029289664700627327,
0.2662355899810791,
0.057409416884183884,
-0.34746822714805603,
-0.09086301922798157,
0.03613581135869026,
-0.021087808534502983,
-0.04026166722178459,
0.0419868640601635,
0.09844116121530533,
-0.08697451651096344,
0.03137717768549919,
-0.07771983742713928,
0.09077942371368408,
-0.048997826874256134,
0.07041091471910477,
0.026676932349801064,
0.04740043729543686,
0.0009417107212357223,
0.09469825029373169,
-0.28338268399238586,
0.26729539036750793,
0.01555655524134636,
0.041305676102638245,
-0.07035195082426071,
-0.007388886529952288,
0.017389193177223206,
0.07382407039403915,
0.08077254891395569,
-0.0016094358870759606,
0.010263809934258461,
-0.21750789880752563,
-0.02107970230281353,
0.030677083879709244,
0.09622209519147873,
-0.09315705299377441,
0.1229686290025711,
-0.04197515919804573,
0.01598174497485161,
0.051121197640895844,
0.04452890902757645,
-0.006095775403082371,
-0.10421042889356613,
0.02774902619421482,
0.036698658019304276,
0.02464235946536064,
-0.060073643922805786,
-0.08364809304475784,
-0.07777567207813263,
0.13798657059669495,
-0.016496948897838593,
-0.06640941649675369,
-0.1005023792386055,
0.037337034940719604,
0.05773888900876045,
-0.09005193412303925,
0.027907950803637505,
0.007196534425020218,
0.09239484369754791,
0.01429662760347128,
-0.07120651006698608,
0.10069073736667633,
-0.035199545323848724,
-0.1405544877052307,
-0.031998079270124435,
0.15398713946342468,
-0.0021350381430238485,
0.05124900862574577,
0.0011711063561961055,
0.021770581603050232,
-0.05893688648939133,
-0.0804804340004921,
0.021416867151856422,
-0.04422052949666977,
0.07955044507980347,
-0.020743463188409805,
-0.01779908686876297,
0.10273293405771255,
-0.0652291402220726,
-0.027340713888406754,
0.18074733018875122,
0.2750793993473053,
-0.06942172348499298,
-0.009263460524380207,
0.03962051868438721,
-0.05820079892873764,
-0.16539357602596283,
-0.00785023532807827,
0.025359826162457466,
0.01175699569284916,
0.04949231073260307,
-0.17749424278736115,
0.06674864888191223,
0.07836543023586273,
-0.00834498181939125,
0.09898829460144043,
-0.33317771553993225,
-0.12104607373476028,
0.08726414293050766,
0.15028400719165802,
0.12474097311496735,
-0.14838393032550812,
-0.04357322305440903,
-0.05270754173398018,
-0.2088243067264557,
0.09880971163511276,
-0.07800351828336716,
0.13580791652202606,
-0.029414327815175056,
0.12475845962762833,
0.0144627271220088,
-0.04624108597636223,
0.13011372089385986,
0.01007616426795721,
0.08386388421058655,
-0.05307702720165253,
-0.04903848096728325,
0.07138843834400177,
-0.058944638818502426,
0.026024622842669487,
-0.1435004025697708,
0.03880644589662552,
-0.14787347614765167,
-0.01949487440288067,
-0.07773128151893616,
0.01840069517493248,
-0.04629259929060936,
-0.07771140336990356,
-0.031257499009370804,
0.019173510372638702,
0.059823743999004364,
-0.002885987050831318,
0.1785028874874115,
-0.0035696090199053288,
0.14224159717559814,
0.16579748690128326,
0.0932544395327568,
-0.0952698141336441,
-0.0339985191822052,
-0.03422422334551811,
-0.012378421612083912,
0.048406440764665604,
-0.15566137433052063,
0.031009618192911148,
0.1347310096025467,
0.038876984268426895,
0.15016458928585052,
0.08141010254621506,
-0.026041574776172638,
0.01671915501356125,
0.04597103223204613,
-0.17898476123809814,
-0.12902876734733582,
-0.06168857216835022,
-0.027221480384469032,
-0.12006846815347672,
0.05969173088669777,
0.1286083459854126,
-0.0657993033528328,
-0.016893284395337105,
-0.012826009653508663,
0.0017165950266644359,
-0.05772612243890762,
0.1496739685535431,
0.0493905134499073,
0.06691925972700119,
-0.09530563652515411,
0.05390958860516548,
0.038969580084085464,
-0.030332081019878387,
0.024382734671235085,
0.056481894105672836,
-0.07987431436777115,
-0.0372052900493145,
-0.0014449157752096653,
0.16491858661174774,
-0.10261297225952148,
-0.01499218214303255,
-0.16250698268413544,
-0.11073362082242966,
0.05338284745812416,
0.14428535103797913,
0.10640253871679306,
0.02238871343433857,
-0.0585925355553627,
-0.0045294202864170074,
-0.105218306183815,
0.09027775377035141,
0.013171626254916191,
0.06591247022151947,
-0.14725908637046814,
0.14679166674613953,
-0.01630415767431259,
0.056604452431201935,
-0.017218509688973427,
0.00008471331238979474,
-0.1008036732673645,
0.022122513502836227,
-0.13676173985004425,
-0.02890797331929207,
-0.028052980080246925,
-0.0005075528752058744,
-0.02655065804719925,
-0.038724031299352646,
-0.06604969501495361,
0.024456601589918137,
-0.12239749729633331,
-0.03300512582063675,
0.02520604059100151,
0.052689168602228165,
-0.09740578383207321,
-0.020262643694877625,
0.02857445366680622,
-0.0800606980919838,
0.06778693944215775,
0.024055534973740578,
0.004203821998089552,
0.05216987431049347,
-0.08361099660396576,
0.02974524162709713,
0.028036609292030334,
0.011355571448802948,
0.04488833248615265,
-0.07719174027442932,
-0.023234182968735695,
-0.00880676694214344,
0.04246801882982254,
0.01684802956879139,
0.06693722307682037,
-0.12621167302131653,
-0.015247013419866562,
-0.005567252170294523,
-0.06797166168689728,
-0.07290492206811905,
0.05128468573093414,
0.06756570935249329,
0.025209937244653702,
0.19172002375125885,
-0.0506315715610981,
0.03152044117450714,
-0.2051638960838318,
-0.00827585719525814,
0.01797013357281685,
-0.12848040461540222,
-0.11864430457353592,
-0.1044800877571106,
0.04173637926578522,
-0.0680752843618393,
0.1055312529206276,
-0.005476404447108507,
0.060583870857954025,
0.02297564595937729,
0.004333044867962599,
0.06758429110050201,
0.00040980579797178507,
0.257168710231781,
0.02122926339507103,
-0.0379207544028759,
0.07397694885730743,
0.04490239545702934,
0.09228916466236115,
0.189200758934021,
0.16076062619686127,
0.12982366979122162,
-0.020701512694358826,
0.09544602781534195,
0.027955463156104088,
-0.004700647667050362,
-0.17992080748081207,
0.008954202756285667,
0.024624712765216827,
0.11403633654117584,
-0.0219238493591547,
0.2351287305355072,
0.10376059263944626,
-0.17934231460094452,
0.03681932017207146,
-0.06311196833848953,
-0.07926732301712036,
-0.08397629857063293,
-0.10239343345165253,
-0.07482051104307175,
-0.1560840904712677,
-0.00002605810914246831,
-0.1187460646033287,
0.02809353545308113,
0.12819446623325348,
-0.0032075990457087755,
-0.042984526604413986,
0.15267494320869446,
0.01426874939352274,
-0.009441090747714043,
0.06316303461790085,
-0.006678284145891666,
-0.02190782129764557,
-0.08879470825195312,
-0.07118409126996994,
0.011990287341177464,
-0.03037148155272007,
0.03689157962799072,
-0.052580393850803375,
-0.030263522639870644,
0.003910910338163376,
-0.03936126083135605,
-0.10849030315876007,
0.005230376496911049,
0.02685188315808773,
0.07754696905612946,
0.034448087215423584,
-0.012498512864112854,
-0.0026480581145733595,
-0.009985334239900112,
0.2335716038942337,
-0.09198839962482452,
-0.045878004282712936,
-0.0768987387418747,
0.24433322250843048,
0.03234414383769035,
-0.014754052273929119,
0.026079365983605385,
-0.08378835022449493,
0.015543462708592415,
0.2629920542240143,
0.14671000838279724,
-0.10466478019952774,
-0.006218080408871174,
0.002369387075304985,
0.0066433860920369625,
0.004813975654542446,
0.09629786014556885,
0.10663451254367828,
0.009626626037061214,
-0.0931306779384613,
-0.02227625995874405,
-0.06397110968828201,
-0.028766745701432228,
-0.034873634576797485,
0.08753892779350281,
0.029224073514342308,
-0.004697516094893217,
-0.03349585831165314,
0.04401841759681702,
-0.06968493014574051,
-0.08442553877830505,
0.008564495481550694,
-0.2121300846338272,
-0.1306665986776352,
-0.021612370386719704,
0.06535924226045609,
-0.0018308022990822792,
0.06682167202234268,
-0.031796399503946304,
0.020387917757034302,
0.07477238029241562,
-0.007937371730804443,
-0.07568629086017609,
-0.07212425023317337,
0.10073277354240417,
-0.14059291779994965,
0.17803503572940826,
-0.05089924484491348,
0.0434604175388813,
0.12736406922340393,
0.05535120517015457,
-0.056997090578079224,
0.0878906175494194,
0.06876878440380096,
-0.022524520754814148,
0.023692071437835693,
0.10706955939531326,
-0.017642904072999954,
0.08943912386894226,
0.03448331356048584,
-0.12132033705711365,
0.011024180799722672,
-0.0076215011067688465,
-0.029522230848670006,
-0.036158543080091476,
-0.07421600818634033,
-0.057392045855522156,
0.13785889744758606,
0.19635286927223206,
-0.05854771286249161,
-0.03342529758810997,
-0.0616057924926281,
0.0133382398635149,
0.08800330013036728,
0.013979166746139526,
-0.05708576366305351,
-0.22879958152770996,
-0.020542612299323082,
0.0826956182718277,
-0.030231250450015068,
-0.28347256779670715,
-0.0739905834197998,
-0.0029798997566103935,
-0.04417994245886803,
-0.07732705026865005,
0.09809385985136032,
0.09146801382303238,
0.03290191665291786,
-0.05450171232223511,
-0.04740573838353157,
-0.0943818986415863,
0.15889647603034973,
-0.14065326750278473,
-0.09786713868379593
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SMIDS_3x_beit_large_SGD_lr0001_fold1
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3713
- Accuracy: 0.8397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.2438 | 1.0 | 451 | 1.2217 | 0.3272 |
| 1.0611 | 2.0 | 902 | 1.0621 | 0.4324 |
| 0.9835 | 3.0 | 1353 | 0.9441 | 0.5058 |
| 0.9166 | 4.0 | 1804 | 0.8540 | 0.5643 |
| 0.8022 | 5.0 | 2255 | 0.7832 | 0.5993 |
| 0.7612 | 6.0 | 2706 | 0.7271 | 0.6361 |
| 0.7973 | 7.0 | 3157 | 0.6791 | 0.6861 |
| 0.6889 | 8.0 | 3608 | 0.6384 | 0.7195 |
| 0.6023 | 9.0 | 4059 | 0.6051 | 0.7429 |
| 0.5963 | 10.0 | 4510 | 0.5769 | 0.7563 |
| 0.5208 | 11.0 | 4961 | 0.5537 | 0.7713 |
| 0.5026 | 12.0 | 5412 | 0.5335 | 0.7846 |
| 0.5302 | 13.0 | 5863 | 0.5156 | 0.7947 |
| 0.5299 | 14.0 | 6314 | 0.4998 | 0.7997 |
| 0.5087 | 15.0 | 6765 | 0.4865 | 0.8030 |
| 0.5068 | 16.0 | 7216 | 0.4744 | 0.8063 |
| 0.4515 | 17.0 | 7667 | 0.4641 | 0.8080 |
| 0.4817 | 18.0 | 8118 | 0.4546 | 0.8147 |
| 0.5111 | 19.0 | 8569 | 0.4459 | 0.8164 |
| 0.4037 | 20.0 | 9020 | 0.4387 | 0.8214 |
| 0.4001 | 21.0 | 9471 | 0.4317 | 0.8197 |
| 0.4295 | 22.0 | 9922 | 0.4254 | 0.8214 |
| 0.3863 | 23.0 | 10373 | 0.4200 | 0.8214 |
| 0.4554 | 24.0 | 10824 | 0.4149 | 0.8214 |
| 0.3994 | 25.0 | 11275 | 0.4106 | 0.8214 |
| 0.3982 | 26.0 | 11726 | 0.4064 | 0.8214 |
| 0.3347 | 27.0 | 12177 | 0.4027 | 0.8230 |
| 0.3865 | 28.0 | 12628 | 0.3993 | 0.8214 |
| 0.3495 | 29.0 | 13079 | 0.3962 | 0.8214 |
| 0.3279 | 30.0 | 13530 | 0.3933 | 0.8214 |
| 0.3886 | 31.0 | 13981 | 0.3907 | 0.8247 |
| 0.3853 | 32.0 | 14432 | 0.3884 | 0.8297 |
| 0.3201 | 33.0 | 14883 | 0.3862 | 0.8314 |
| 0.3454 | 34.0 | 15334 | 0.3843 | 0.8331 |
| 0.4216 | 35.0 | 15785 | 0.3824 | 0.8331 |
| 0.4935 | 36.0 | 16236 | 0.3809 | 0.8331 |
| 0.2706 | 37.0 | 16687 | 0.3795 | 0.8314 |
| 0.4078 | 38.0 | 17138 | 0.3780 | 0.8331 |
| 0.3509 | 39.0 | 17589 | 0.3768 | 0.8381 |
| 0.3675 | 40.0 | 18040 | 0.3758 | 0.8381 |
| 0.3673 | 41.0 | 18491 | 0.3748 | 0.8381 |
| 0.3723 | 42.0 | 18942 | 0.3741 | 0.8381 |
| 0.3454 | 43.0 | 19393 | 0.3734 | 0.8381 |
| 0.321 | 44.0 | 19844 | 0.3729 | 0.8381 |
| 0.3026 | 45.0 | 20295 | 0.3723 | 0.8381 |
| 0.3668 | 46.0 | 20746 | 0.3719 | 0.8397 |
| 0.3299 | 47.0 | 21197 | 0.3717 | 0.8397 |
| 0.4135 | 48.0 | 21648 | 0.3715 | 0.8397 |
| 0.4272 | 49.0 | 22099 | 0.3714 | 0.8397 |
| 0.3124 | 50.0 | 22550 | 0.3713 | 0.8397 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_3x_beit_large_SGD_lr0001_fold1", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8397328881469115, "name": "Accuracy"}]}]}]} | image-classification | onizukal/SMIDS_3x_beit_large_SGD_lr0001_fold1 | [
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:41:59+00:00 | [] | [] | TAGS
#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| SMIDS\_3x\_beit\_large\_SGD\_lr0001\_fold1
==========================================
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3713
* Accuracy: 0.8397
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 50
### Training results
### Framework versions
* Transformers 4.32.1
* Pytorch 2.0.1
* Datasets 2.12.0
* Tokenizers 0.13.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
"TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
81,
115,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
-0.12968555092811584,
0.17251011729240417,
-0.0023243443574756384,
0.1362919956445694,
0.1120586097240448,
0.015268749557435513,
0.14003369212150574,
0.16890837252140045,
-0.08239254355430603,
0.046998485922813416,
0.14023225009441376,
0.13628867268562317,
0.046756189316511154,
0.19432850182056427,
-0.052493587136268616,
-0.26022207736968994,
0.04113864526152611,
0.032812196761369705,
-0.020441479980945587,
0.1235608458518982,
0.09337224811315536,
-0.13087525963783264,
0.11667836457490921,
0.0301132183521986,
-0.20004093647003174,
-0.036873914301395416,
-0.007245634216815233,
-0.06722474098205566,
0.10533155500888824,
-0.0034045001957565546,
0.0691065788269043,
0.03768180310726166,
0.08387713134288788,
-0.13018712401390076,
0.002076903358101845,
0.042768821120262146,
0.0062860166653990746,
0.10383369028568268,
0.054196570068597794,
-0.015545758418738842,
0.0701410248875618,
-0.06851525604724884,
0.0672622099518776,
0.009240911342203617,
-0.11321496963500977,
-0.2700493633747101,
-0.10203396528959274,
0.07240316271781921,
0.08221714198589325,
0.06822962313890457,
0.008172801695764065,
0.16417047381401062,
-0.014714903198182583,
0.10454332083463669,
0.23100516200065613,
-0.26415953040122986,
-0.05532161891460419,
0.029576225206255913,
0.015004046261310577,
0.06490366160869598,
-0.10617698729038239,
-0.01859438419342041,
0.020827138796448708,
0.04436356946825981,
0.1411312073469162,
-0.010821618139743805,
-0.028378209099173546,
-0.021572042256593704,
-0.10856294631958008,
-0.08875563740730286,
0.18566860258579254,
0.05809066444635391,
-0.048288628458976746,
-0.07735078781843185,
-0.07127056270837784,
-0.17220835387706757,
-0.041861895471811295,
0.009548050351440907,
0.041730549186468124,
-0.04684269055724144,
-0.10686429589986801,
-0.031055882573127747,
-0.078252874314785,
-0.051669858396053314,
-0.023303553462028503,
0.13525931537151337,
0.03357808664441109,
0.05729198828339577,
-0.03593141585588455,
0.09915280342102051,
0.006841922644525766,
-0.17527513206005096,
-0.028045548126101494,
-0.0016165260458365083,
0.01563161052763462,
-0.020048104226589203,
-0.03057136945426464,
-0.06562764942646027,
-0.0016239769756793976,
0.149040088057518,
-0.06106079742312431,
0.06079873815178871,
-0.0069216229021549225,
0.04031313583254814,
-0.0486484132707119,
0.18668954074382782,
-0.028643600642681122,
-0.016713637858629227,
0.02057800441980362,
0.08857519924640656,
0.06818821281194687,
-0.03644402697682381,
-0.12566283345222473,
0.03087625838816166,
0.1283741444349289,
0.0027549222577363253,
-0.021953243762254715,
0.053039632737636566,
-0.06444176286458969,
-0.05842158570885658,
0.09141092747449875,
-0.08884678035974503,
0.03514961525797844,
-0.01055920124053955,
-0.08416686952114105,
-0.06807748228311539,
0.02709859050810337,
0.018840007483959198,
-0.00014874596672598273,
0.07201956957578659,
-0.09116632491350174,
0.015490563586354256,
-0.06551176309585571,
-0.10091431438922882,
0.01564670167863369,
-0.11040772497653961,
0.012323775328695774,
-0.09688954800367355,
-0.1969451904296875,
0.006960712838917971,
0.07738039642572403,
-0.05607226490974426,
-0.06792453676462173,
-0.03661259636282921,
-0.07637017965316772,
0.04143770784139633,
-0.01186586357653141,
0.07317496836185455,
-0.07456725090742111,
0.09119440615177155,
0.02237127535045147,
0.08760105073451996,
-0.056383248418569565,
0.04597126320004463,
-0.10241573303937912,
0.04992371052503586,
-0.19877833127975464,
0.07988634705543518,
-0.049189720302820206,
0.06190093979239464,
-0.09581396728754044,
-0.10568851977586746,
0.033553607761859894,
-0.04994693025946617,
0.068512924015522,
0.09739063680171967,
-0.17317676544189453,
-0.05787286534905434,
0.13517500460147858,
-0.09691634029150009,
-0.14840039610862732,
0.10115666687488556,
-0.05093328654766083,
0.019768450409173965,
0.04739697277545929,
0.21447287499904633,
0.062935970723629,
-0.0910891741514206,
-0.025994082912802696,
-0.03333966061472893,
0.044677652418613434,
-0.06483115255832672,
0.101903036236763,
0.027484174817800522,
0.0531504862010479,
0.02367355115711689,
-0.03332329913973808,
0.03818739578127861,
-0.08385370671749115,
-0.10085898637771606,
-0.05038752406835556,
-0.08557170629501343,
0.039683446288108826,
0.05594057962298393,
0.059847064316272736,
-0.10873348265886307,
-0.09023979306221008,
0.041734639555215836,
0.09406744688749313,
-0.07396076619625092,
0.02903648279607296,
-0.0904788002371788,
0.11622294038534164,
-0.08363831788301468,
-0.02404896728694439,
-0.17903628945350647,
-0.0417308546602726,
0.04055763781070709,
-0.01668366603553295,
-0.006775525398552418,
-0.0494389571249485,
0.07092705368995667,
0.087753064930439,
-0.05281677842140198,
-0.052284084260463715,
-0.05530114471912384,
0.008562305010855198,
-0.11059658974409103,
-0.1778055727481842,
-0.080107681453228,
-0.03797448053956032,
0.15019145607948303,
-0.15246915817260742,
0.0224970243871212,
0.0616903156042099,
0.12470164895057678,
0.05992257222533226,
-0.0469760037958622,
-0.007631834130734205,
0.0217386856675148,
-0.05561714619398117,
-0.0865136981010437,
0.05727535858750343,
0.035165008157491684,
-0.07172347605228424,
-0.019373787567019463,
-0.10040221363306046,
0.15015454590320587,
0.13185308873653412,
-0.0021352346520870924,
-0.045590728521347046,
-0.012053865939378738,
-0.06572475284337997,
-0.030354894697666168,
-0.04096601903438568,
0.01860888861119747,
0.1020345464348793,
0.017360014840960503,
0.14407898485660553,
-0.09213681519031525,
-0.037007302045822144,
0.053231216967105865,
-0.028658904135227203,
-0.03313332051038742,
0.0737093985080719,
0.021478038281202316,
-0.14289474487304688,
0.1502111405134201,
0.14915579557418823,
-0.04949729144573212,
0.12371271848678589,
-0.03663388267159462,
-0.06141006201505661,
-0.04545919969677925,
-0.03777514770627022,
0.01429951936006546,
0.1407921016216278,
-0.08363746106624603,
-0.006257671397179365,
0.05626929551362991,
0.018998416140675545,
-0.007220869418233633,
-0.1808812916278839,
0.0005758196348324418,
0.03530525416135788,
-0.04614398628473282,
-0.022574707865715027,
-0.014720434322953224,
0.000520858506206423,
0.09188775718212128,
0.02001834660768509,
-0.07113038748502731,
0.05185159295797348,
0.010694033466279507,
-0.056145116686820984,
0.16459684073925018,
-0.07884351164102554,
-0.19753409922122955,
-0.11793240904808044,
-0.08745986223220825,
-0.10736268758773804,
0.013000035658478737,
0.067270427942276,
-0.050670597702264786,
-0.04932181537151337,
-0.1026671901345253,
-0.044550344347953796,
0.021845674142241478,
0.024347107857465744,
0.053595975041389465,
-0.00796813890337944,
0.08411940932273865,
-0.09194666892290115,
-0.03317512199282646,
-0.014813165180385113,
0.01894056238234043,
0.0670066773891449,
0.01914203353226185,
0.11091019958257675,
0.08160436898469925,
-0.0286879725754261,
0.05666669085621834,
-0.01685662567615509,
0.26526889204978943,
-0.06748054921627045,
-0.006749235559254885,
0.1391732543706894,
-0.013490693643689156,
0.0842166393995285,
0.12729591131210327,
0.04176322743296623,
-0.0955888107419014,
-0.01310211792588234,
-0.0005005627172067761,
-0.05257550999522209,
-0.1536482274532318,
-0.04132819548249245,
-0.04548354819417,
-0.0018228141125291586,
0.13951772451400757,
0.038064174354076385,
0.02505229413509369,
0.07843583822250366,
0.020602436736226082,
0.05678323283791542,
-0.0175874512642622,
0.10429482907056808,
0.08156884461641312,
0.06449971348047256,
0.13376133143901825,
-0.036523740738630295,
-0.019790813326835632,
0.05638623237609863,
0.042081572115421295,
0.20467498898506165,
-0.025362396612763405,
0.14717818796634674,
0.026553483679890633,
0.19327539205551147,
0.017808275297284126,
0.07306244969367981,
-0.014873637817800045,
0.0007499073399230838,
-0.019323905929923058,
-0.04713669419288635,
-0.0638502836227417,
0.03312433883547783,
-0.016851995140314102,
0.05682634562253952,
-0.09328699111938477,
0.03906902298331261,
0.05959288775920868,
0.30634987354278564,
0.0654144361615181,
-0.4125381410121918,
-0.09821337461471558,
0.012344546616077423,
0.0008716733427718282,
-0.05509618669748306,
-0.007402430288493633,
0.0980701595544815,
-0.09973937273025513,
0.0819711834192276,
-0.09416680037975311,
0.08507230132818222,
-0.0846736952662468,
0.020382488146424294,
0.07683569937944412,
0.055889930576086044,
0.012921135872602463,
0.05964238941669464,
-0.21880683302879333,
0.2499670386314392,
0.01837102696299553,
0.04415145888924599,
-0.08875706046819687,
0.009965145029127598,
0.03320525959134102,
0.05923061817884445,
0.08590700477361679,
0.0061045982874929905,
-0.09025654941797256,
-0.18889141082763672,
-0.12562422454357147,
0.000394518458051607,
0.06176565960049629,
-0.03729195147752762,
0.09444484859704971,
-0.018019067123532295,
-0.012201022356748581,
0.02127370797097683,
0.0009904175531119108,
-0.035084888339042664,
-0.10356581956148148,
0.02010609768331051,
0.03430531173944473,
-0.011726552620530128,
-0.06489048153162003,
-0.11480618268251419,
-0.035277001559734344,
0.16168422996997833,
0.05518770217895508,
-0.07543513178825378,
-0.14076673984527588,
0.0721859410405159,
0.0775376707315445,
-0.08563373237848282,
0.03936640918254852,
-0.016648126766085625,
0.14995604753494263,
0.020845195278525352,
-0.0889848992228508,
0.10199198871850967,
-0.05838112160563469,
-0.17863209545612335,
-0.04141612723469734,
0.09901762008666992,
0.007052883040159941,
0.05273612216114998,
0.004226623103022575,
0.06022334843873978,
-0.03518751636147499,
-0.05844981223344803,
0.06672939658164978,
-0.007545650005340576,
0.10645230114459991,
-0.014578265137970448,
0.008669902570545673,
0.028680432587862015,
-0.046410609036684036,
0.00012374592188280076,
0.1686571091413498,
0.24114695191383362,
-0.10427109152078629,
0.060499124228954315,
0.03038850799202919,
-0.030858036130666733,
-0.18259160220623016,
0.01086394116282463,
0.07622820883989334,
-0.00013084696547593921,
0.04143662750720978,
-0.1601918637752533,
0.05532059073448181,
0.10498367995023727,
-0.043228019028902054,
0.08107142895460129,
-0.27694207429885864,
-0.1185181736946106,
0.09238865971565247,
0.13856256008148193,
0.06877914071083069,
-0.13106170296669006,
-0.043299052864313126,
-0.041688259690999985,
-0.17338812351226807,
0.13653364777565002,
-0.057192787528038025,
0.1145344004034996,
-0.039500072598457336,
0.08082033693790436,
0.014952262863516808,
-0.056017596274614334,
0.14574900269508362,
0.0056154001504182816,
0.08686088770627975,
-0.07213473320007324,
-0.0020430299919098616,
0.10663212835788727,
-0.10254329442977905,
0.07232339680194855,
-0.08735590428113937,
0.0618043914437294,
-0.10790637135505676,
-0.003900582902133465,
-0.07402003556489944,
0.013697824440896511,
-0.01366274245083332,
-0.04917207732796669,
-0.04516566917300224,
0.03515308350324631,
0.0627121776342392,
-0.01822420209646225,
0.20940853655338287,
0.06430324167013168,
0.08635561168193817,
0.1727360188961029,
0.054769597947597504,
-0.10558480769395828,
-0.09403572231531143,
-0.043973103165626526,
-0.029537810012698174,
0.05986782908439636,
-0.1372820883989334,
0.0528247207403183,
0.11996810883283615,
0.013451187871396542,
0.12858225405216217,
0.055897701531648636,
-0.030677761882543564,
0.03560479357838631,
0.062153734266757965,
-0.17216050624847412,
-0.08662130683660507,
-0.009840693324804306,
0.030872231349349022,
-0.13055209815502167,
0.0458756685256958,
0.12116101384162903,
-0.05953402817249298,
-0.015017039142549038,
-0.004467411432415247,
0.03673877567052841,
-0.00978675577789545,
0.15920081734657288,
0.048089753836393356,
0.055168475955724716,
-0.11802823096513748,
0.11332250386476517,
0.05730176344513893,
-0.07302459329366684,
0.03206014260649681,
0.05020790174603462,
-0.1039617657661438,
-0.021727759391069412,
0.03114185482263565,
0.15037071704864502,
-0.06283780187368393,
-0.045329563319683075,
-0.1358855813741684,
-0.09226331859827042,
0.06643375009298325,
0.07981554418802261,
0.09349396824836731,
0.016502337530255318,
-0.03525979816913605,
-0.013309485279023647,
-0.10845191776752472,
0.11000601947307587,
0.04338005557656288,
0.09121100604534149,
-0.17974577844142914,
0.05434896796941757,
-0.001805671607144177,
0.07240304350852966,
-0.02173563651740551,
-0.00018242778605781496,
-0.08797106891870499,
0.0035262287128716707,
-0.10818753391504288,
0.024682866409420967,
-0.052850391715765,
0.006376184988766909,
-0.020511267706751823,
-0.05819518491625786,
-0.06372886151075363,
0.024663057178258896,
-0.1193968653678894,
-0.05304655060172081,
0.02193489298224449,
0.03176874667406082,
-0.11983832716941833,
-0.04395153746008873,
0.02043171599507332,
-0.08966860175132751,
0.09786758571863174,
0.06017395853996277,
-0.00797541905194521,
0.007467431016266346,
0.0038150406908243895,
-0.022212069481611252,
0.06630469858646393,
0.0074848150834441185,
0.08584009110927582,
-0.11553936451673508,
-0.022143544629216194,
0.016299601644277573,
-0.004447818733751774,
0.018147116526961327,
0.1585858017206192,
-0.12092386186122894,
0.00018621055642142892,
-0.014765054918825626,
-0.06592588871717453,
-0.06358986347913742,
0.0692417323589325,
0.10919524729251862,
0.02367839775979519,
0.2122299075126648,
-0.054594267159700394,
0.015877852216362953,
-0.21000300347805023,
-0.011462570168077946,
0.005311926826834679,
-0.13887609541416168,
-0.10537440329790115,
-0.032787878066301346,
0.0637630894780159,
-0.07039659470319748,
0.1177176982164383,
0.03537357598543167,
0.020886771380901337,
0.02911887876689434,
0.024869181215763092,
-0.002677198965102434,
0.013766518794000149,
0.1633930504322052,
0.014011929742991924,
-0.02872646041214466,
0.1283825933933258,
0.029096294194459915,
0.09337089955806732,
0.11805824935436249,
0.1763046532869339,
0.11451227962970734,
0.0477789007127285,
0.09043081104755402,
0.0520024336874485,
-0.02513159066438675,
-0.22147811949253082,
0.036259569227695465,
-0.039764102548360825,
0.1483127623796463,
-0.0033327124547213316,
0.15980194509029388,
0.09223487228155136,
-0.18392090499401093,
0.040660299360752106,
-0.037005215883255005,
-0.07937940210103989,
-0.08421849459409714,
-0.12178675830364227,
-0.1033017709851265,
-0.1509413868188858,
0.0028559700585901737,
-0.10428426414728165,
0.022927863523364067,
0.11217869818210602,
-0.008710348978638649,
-0.010019375011324883,
0.11695955693721771,
-0.026584560051560402,
0.026202335953712463,
0.03870072960853577,
0.00616151699796319,
-0.05987776443362236,
-0.04411191865801811,
-0.08036603778600693,
0.014018801040947437,
0.03200533241033554,
0.055842287838459015,
-0.03226681798696518,
-0.007200593128800392,
0.03782269358634949,
-0.009845683351159096,
-0.12363012880086899,
0.013544945046305656,
0.004753641318529844,
0.05189259722828865,
0.0008605605689808726,
0.01290043629705906,
0.03187544271349907,
-0.015199882909655571,
0.193119078874588,
-0.07321906089782715,
-0.02744952403008938,
-0.12274995446205139,
0.17869888246059418,
0.0023205638863146305,
-0.049724213778972626,
0.05292708799242973,
-0.09127075970172882,
-0.020290102809667587,
0.1547212302684784,
0.18941837549209595,
-0.07176556438207626,
-0.01638839766383171,
-0.017501909285783768,
-0.01388427522033453,
-0.022741587832570076,
0.09889717400074005,
0.09887372702360153,
-0.007504772394895554,
-0.07518953084945679,
-0.028498217463493347,
-0.06611054390668869,
-0.03444022685289383,
-0.03838160261511803,
0.06909165531396866,
-0.004605968948453665,
0.007089514285326004,
-0.0751754567027092,
0.04334408789873123,
-0.02207781746983528,
-0.060899440199136734,
0.06262887269258499,
-0.21282166242599487,
-0.17796695232391357,
0.006926008500158787,
0.07579630613327026,
0.0016649233875796199,
0.04621230810880661,
-0.010005760937929153,
0.018681904301047325,
0.07549776136875153,
-0.022177988663315773,
-0.0866948589682579,
-0.09604813903570175,
0.1083223819732666,
-0.1344224065542221,
0.25299492478370667,
-0.03893125429749489,
0.035907670855522156,
0.12175600975751877,
0.041717030107975006,
-0.13353091478347778,
0.033571965992450714,
0.03969275578856468,
-0.03212675452232361,
0.005746500100940466,
0.14248594641685486,
-0.037242501974105835,
0.07988674938678741,
0.04599026218056679,
-0.10243327170610428,
-0.039464809000492096,
-0.04960913211107254,
-0.011240639723837376,
-0.024744588881731033,
-0.05439573898911476,
-0.03649099916219711,
0.13208730518817902,
0.17168967425823212,
-0.04232889041304588,
-0.023784559220075607,
-0.06460724771022797,
0.030773790553212166,
0.0774260088801384,
-0.033050306141376495,
-0.05197038874030113,
-0.23585109412670135,
0.0024181774351745844,
0.05249672383069992,
-0.013345940038561821,
-0.20789918303489685,
-0.11062979698181152,
0.006115853786468506,
-0.05795856565237045,
-0.07630864530801773,
0.09230074286460876,
0.06326484680175781,
0.035358402878046036,
-0.06319575011730194,
0.03810267895460129,
-0.07874377071857452,
0.1419457346200943,
-0.1448507308959961,
-0.07860494405031204
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SMIDS_3x_beit_large_SGD_lr00001_fold1
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9004
- Accuracy: 0.5459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.3127 | 1.0 | 451 | 1.2080 | 0.4040 |
| 1.3037 | 2.0 | 902 | 1.1827 | 0.4023 |
| 1.2334 | 3.0 | 1353 | 1.1597 | 0.4040 |
| 1.2043 | 4.0 | 1804 | 1.1391 | 0.4107 |
| 1.1044 | 5.0 | 2255 | 1.1207 | 0.4140 |
| 1.1345 | 6.0 | 2706 | 1.1035 | 0.4174 |
| 1.2709 | 7.0 | 3157 | 1.0881 | 0.4224 |
| 1.0663 | 8.0 | 3608 | 1.0742 | 0.4274 |
| 1.1026 | 9.0 | 4059 | 1.0615 | 0.4307 |
| 1.0132 | 10.0 | 4510 | 1.0498 | 0.4391 |
| 1.0401 | 11.0 | 4961 | 1.0391 | 0.4407 |
| 1.0608 | 12.0 | 5412 | 1.0291 | 0.4441 |
| 1.0428 | 13.0 | 5863 | 1.0200 | 0.4508 |
| 1.0367 | 14.0 | 6314 | 1.0114 | 0.4541 |
| 1.0189 | 15.0 | 6765 | 1.0034 | 0.4608 |
| 1.0473 | 16.0 | 7216 | 0.9960 | 0.4674 |
| 1.0056 | 17.0 | 7667 | 0.9889 | 0.4674 |
| 0.981 | 18.0 | 8118 | 0.9824 | 0.4741 |
| 0.9947 | 19.0 | 8569 | 0.9762 | 0.4775 |
| 1.0463 | 20.0 | 9020 | 0.9705 | 0.4858 |
| 0.9834 | 21.0 | 9471 | 0.9650 | 0.4942 |
| 1.0248 | 22.0 | 9922 | 0.9598 | 0.5008 |
| 0.9776 | 23.0 | 10373 | 0.9549 | 0.5025 |
| 1.0062 | 24.0 | 10824 | 0.9504 | 0.5109 |
| 0.9722 | 25.0 | 11275 | 0.9460 | 0.5209 |
| 0.9022 | 26.0 | 11726 | 0.9419 | 0.5259 |
| 0.9338 | 27.0 | 12177 | 0.9380 | 0.5225 |
| 1.0125 | 28.0 | 12628 | 0.9344 | 0.5275 |
| 0.969 | 29.0 | 13079 | 0.9311 | 0.5292 |
| 0.9665 | 30.0 | 13530 | 0.9280 | 0.5292 |
| 0.9064 | 31.0 | 13981 | 0.9250 | 0.5292 |
| 0.988 | 32.0 | 14432 | 0.9222 | 0.5359 |
| 0.8833 | 33.0 | 14883 | 0.9197 | 0.5376 |
| 0.9071 | 34.0 | 15334 | 0.9173 | 0.5426 |
| 0.9742 | 35.0 | 15785 | 0.9151 | 0.5392 |
| 1.028 | 36.0 | 16236 | 0.9131 | 0.5409 |
| 0.8601 | 37.0 | 16687 | 0.9112 | 0.5426 |
| 0.8909 | 38.0 | 17138 | 0.9095 | 0.5442 |
| 0.9349 | 39.0 | 17589 | 0.9079 | 0.5459 |
| 0.9459 | 40.0 | 18040 | 0.9065 | 0.5459 |
| 0.9166 | 41.0 | 18491 | 0.9053 | 0.5442 |
| 0.915 | 42.0 | 18942 | 0.9042 | 0.5459 |
| 0.9655 | 43.0 | 19393 | 0.9032 | 0.5459 |
| 0.9542 | 44.0 | 19844 | 0.9024 | 0.5459 |
| 0.9887 | 45.0 | 20295 | 0.9018 | 0.5459 |
| 0.9574 | 46.0 | 20746 | 0.9012 | 0.5459 |
| 0.997 | 47.0 | 21197 | 0.9009 | 0.5459 |
| 0.9014 | 48.0 | 21648 | 0.9006 | 0.5459 |
| 0.9631 | 49.0 | 22099 | 0.9004 | 0.5459 |
| 0.9542 | 50.0 | 22550 | 0.9004 | 0.5459 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_3x_beit_large_SGD_lr00001_fold1", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.5459098497495827, "name": "Accuracy"}]}]}]} | image-classification | onizukal/SMIDS_3x_beit_large_SGD_lr00001_fold1 | [
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:42:38+00:00 | [] | [] | TAGS
#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| SMIDS\_3x\_beit\_large\_SGD\_lr00001\_fold1
===========================================
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9004
* Accuracy: 0.5459
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 50
### Training results
### Framework versions
* Transformers 4.32.1
* Pytorch 2.0.1
* Datasets 2.12.0
* Tokenizers 0.13.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
"TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
81,
116,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
-0.1292150914669037,
0.17132072150707245,
-0.002415567170828581,
0.13183215260505676,
0.11657863855361938,
0.020753253251314163,
0.1335890144109726,
0.16620413959026337,
-0.08238927274942398,
0.04929587244987488,
0.13697229325771332,
0.1357421576976776,
0.04955337569117546,
0.20790311694145203,
-0.053285520523786545,
-0.26080378890037537,
0.0391765721142292,
0.03443576768040657,
-0.020672276616096497,
0.12494900077581406,
0.09484300017356873,
-0.1312379240989685,
0.11272566765546799,
0.025938162580132484,
-0.20840293169021606,
-0.033587437123060226,
-0.01026944164186716,
-0.06854863464832306,
0.10221196711063385,
0.001568986801430583,
0.0741027221083641,
0.037979885935783386,
0.08491890877485275,
-0.12677186727523804,
0.000941311358474195,
0.04326357692480087,
0.0062435888685286045,
0.1065368577837944,
0.062226198613643646,
-0.008521218784153461,
0.06926212459802628,
-0.07453521341085434,
0.06115834787487984,
0.008060229010879993,
-0.11478453874588013,
-0.2692618668079376,
-0.09817449003458023,
0.07377522438764572,
0.08109822124242783,
0.06491127610206604,
0.006432840134948492,
0.16222304105758667,
-0.015434488654136658,
0.1024109497666359,
0.23076069355010986,
-0.2713507413864136,
-0.054792311042547226,
0.022649891674518585,
0.0155020197853446,
0.06252340972423553,
-0.10333037376403809,
-0.01993185468018055,
0.019141921773552895,
0.042880840599536896,
0.14450453221797943,
-0.012332411482930183,
-0.03331032395362854,
-0.02637922763824463,
-0.11139829456806183,
-0.08930420875549316,
0.18604889512062073,
0.06140090152621269,
-0.04917457327246666,
-0.07841385900974274,
-0.07612120360136032,
-0.17419220507144928,
-0.03924720734357834,
0.008911197073757648,
0.046679239720106125,
-0.04711441695690155,
-0.10239296406507492,
-0.03511375933885574,
-0.07504668086767197,
-0.05196268856525421,
-0.026160720735788345,
0.1420334428548813,
0.03879573196172714,
0.05471520125865936,
-0.027205273509025574,
0.10149593651294708,
0.010796112939715385,
-0.1717151701450348,
-0.02661297097802162,
0.0005703883362002671,
0.010487399995326996,
-0.01821139082312584,
-0.029929913580417633,
-0.06737607717514038,
-0.003975129686295986,
0.15347014367580414,
-0.07002666592597961,
0.058850113302469254,
-0.0054583000019192696,
0.041531506925821304,
-0.049319881945848465,
0.1874888390302658,
-0.029916515573859215,
-0.016198426485061646,
0.019476165995001793,
0.08928463608026505,
0.0656052976846695,
-0.030047036707401276,
-0.12371734529733658,
0.021691862493753433,
0.13241209089756012,
0.006458523217588663,
-0.022870952263474464,
0.054544735699892044,
-0.0711979940533638,
-0.0584990456700325,
0.09274657070636749,
-0.09275025129318237,
0.035496871918439865,
-0.011692462489008904,
-0.08981472253799438,
-0.06787234544754028,
0.029122935608029366,
0.011931490153074265,
-0.009771439246833324,
0.06940538436174393,
-0.09093258529901505,
0.01846885494887829,
-0.06650768965482712,
-0.09852384030818939,
0.01388985849916935,
-0.11549968272447586,
0.010918805375695229,
-0.10079170018434525,
-0.19154705107212067,
0.0032797311432659626,
0.07527101784944534,
-0.06246669217944145,
-0.06951755285263062,
-0.033377837389707565,
-0.07729615271091461,
0.03790769353508949,
-0.01523390132933855,
0.07408059388399124,
-0.07056254893541336,
0.09071778506040573,
0.02892814762890339,
0.09002465009689331,
-0.052364569157361984,
0.048610031604766846,
-0.09854818880558014,
0.05158581584692001,
-0.19896768033504486,
0.0824570581316948,
-0.04529954120516777,
0.05730293318629265,
-0.10005063563585281,
-0.10804302245378494,
0.029095064848661423,
-0.0466112419962883,
0.07224688678979874,
0.09985066950321198,
-0.16068536043167114,
-0.05396431311964989,
0.14283035695552826,
-0.09281232208013535,
-0.14269256591796875,
0.09829698503017426,
-0.045770496129989624,
0.014614340849220753,
0.04329100251197815,
0.2130173146724701,
0.04901750758290291,
-0.08417420834302902,
-0.023242823779582977,
-0.02969830296933651,
0.03785223513841629,
-0.0668954998254776,
0.10032020509243011,
0.025215676054358482,
0.05325069651007652,
0.02284027636051178,
-0.029413679614663124,
0.04126512631773949,
-0.08672589063644409,
-0.09880872070789337,
-0.053216658532619476,
-0.0853687971830368,
0.03892384096980095,
0.05334646999835968,
0.0614997074007988,
-0.10279879719018936,
-0.09344549477100372,
0.0453280434012413,
0.09495674818754196,
-0.07567895948886871,
0.02865210548043251,
-0.08989366888999939,
0.10926083475351334,
-0.08635354787111282,
-0.02427433431148529,
-0.18316780030727386,
-0.041861772537231445,
0.04194685444235802,
-0.025394707918167114,
-0.007599220145493746,
-0.05216266214847565,
0.06521623581647873,
0.0848059430718422,
-0.05379978567361832,
-0.05897609516978264,
-0.05670713260769844,
0.002749721286818385,
-0.10883764177560806,
-0.17341645061969757,
-0.08353621512651443,
-0.03381705656647682,
0.14265403151512146,
-0.15880316495895386,
0.019960513338446617,
0.05115775763988495,
0.12808771431446075,
0.060330405831336975,
-0.044940851628780365,
-0.0009795452933758497,
0.02373526245355606,
-0.05278978496789932,
-0.09012233465909958,
0.059676408767700195,
0.0331520177423954,
-0.07579167187213898,
-0.016548609361052513,
-0.09850107133388519,
0.1460651308298111,
0.1280234009027481,
-0.010448831133544445,
-0.04986010119318962,
-0.011923554353415966,
-0.06967874616384506,
-0.030430803075432777,
-0.036602724343538284,
0.019139016047120094,
0.09450183063745499,
0.012393946759402752,
0.14818525314331055,
-0.09332848340272903,
-0.034156475216150284,
0.05024607852101326,
-0.028047295287251472,
-0.03259625658392906,
0.0731319710612297,
0.025664178654551506,
-0.14941470324993134,
0.14837577939033508,
0.14845694601535797,
-0.04714515432715416,
0.12564225494861603,
-0.03889495134353638,
-0.06329566240310669,
-0.04632000997662544,
-0.02844901941716671,
0.013190032914280891,
0.13346467912197113,
-0.076783187687397,
-0.004412572830915451,
0.05686868354678154,
0.017921162769198418,
-0.004722983110696077,
-0.1827412098646164,
0.003951311111450195,
0.0321657620370388,
-0.05121494084596634,
-0.011695281602442265,
-0.017026077955961227,
0.003609517589211464,
0.09151934087276459,
0.02040533348917961,
-0.06441836804151535,
0.05384209007024765,
0.012033452279865742,
-0.05366513133049011,
0.1677880585193634,
-0.07823625206947327,
-0.20364677906036377,
-0.12268579006195068,
-0.06752478331327438,
-0.10258819162845612,
0.012170074507594109,
0.06315170973539352,
-0.04569438472390175,
-0.050954580307006836,
-0.0997823104262352,
-0.037851084023714066,
0.021281057968735695,
0.026625970378518105,
0.05139283835887909,
-0.005415658466517925,
0.09185726940631866,
-0.09241294115781784,
-0.030897676944732666,
-0.01631389558315277,
0.009287231601774693,
0.06772445887327194,
0.019780615344643593,
0.1102219671010971,
0.07713042199611664,
-0.029881305992603302,
0.05137522891163826,
-0.013354548253118992,
0.2620471715927124,
-0.06917091459035873,
-0.002909549279138446,
0.1375615894794464,
-0.015162656083703041,
0.08283410966396332,
0.1273423582315445,
0.041794080287218094,
-0.09746479243040085,
-0.011291430331766605,
-0.0008301159832626581,
-0.049490246921777725,
-0.16143162548542023,
-0.04317644611001015,
-0.0434197373688221,
-0.010716320015490055,
0.1416788250207901,
0.03848205506801605,
0.024626927450299263,
0.07702240347862244,
0.015813151374459267,
0.057987019419670105,
-0.02077260985970497,
0.1017511859536171,
0.0805719867348671,
0.06816057115793228,
0.13305824995040894,
-0.036980245262384415,
-0.02092074789106846,
0.057033997029066086,
0.04002218693494797,
0.21362732350826263,
-0.02804172970354557,
0.15433214604854584,
0.026679744943976402,
0.1909136176109314,
0.019870078191161156,
0.07247955352067947,
-0.010095180943608284,
0.0028269465547055006,
-0.018500015139579773,
-0.04554403945803642,
-0.05979170650243759,
0.03185109794139862,
-0.016015755012631416,
0.05207211896777153,
-0.09269700944423676,
0.028567379340529442,
0.06037893891334534,
0.3028397262096405,
0.061388690024614334,
-0.41139692068099976,
-0.09273239970207214,
0.009406263940036297,
-0.002105827210471034,
-0.06053102761507034,
-0.011343861930072308,
0.09683393687009811,
-0.09968853741884232,
0.08300996571779251,
-0.09414921700954437,
0.08760150521993637,
-0.08863518387079239,
0.016419410705566406,
0.07728815078735352,
0.06722814589738846,
0.01766069419682026,
0.057678405195474625,
-0.22131015360355377,
0.2517315745353699,
0.02006395347416401,
0.04867706075310707,
-0.08515261113643646,
0.013813616707921028,
0.029918700456619263,
0.058915551751852036,
0.08619558066129684,
0.0083828279748559,
-0.09208258241415024,
-0.19043345749378204,
-0.12182265520095825,
-0.0015020827995613217,
0.06677291542291641,
-0.03118232637643814,
0.0942893773317337,
-0.01760665327310562,
-0.012930129654705524,
0.019664883613586426,
0.00020212549134157598,
-0.039232417941093445,
-0.09916181117296219,
0.019594477489590645,
0.03770963475108147,
-0.0040510352700948715,
-0.06473120301961899,
-0.1088499054312706,
-0.027749689295887947,
0.1611177921295166,
0.0489477813243866,
-0.07595206052064896,
-0.14163517951965332,
0.0831608697772026,
0.0844789668917656,
-0.08478974550962448,
0.046326830983161926,
-0.015740465372800827,
0.14427345991134644,
0.02813553437590599,
-0.08791226893663406,
0.10567717254161835,
-0.05589807406067848,
-0.18345315754413605,
-0.035460758954286575,
0.09823724627494812,
0.006449915003031492,
0.047238387167453766,
0.0029976284131407738,
0.05834325775504112,
-0.03208146244287491,
-0.05784951522946358,
0.06896662712097168,
-0.0034485149662941694,
0.1075923964381218,
-0.0061480943113565445,
-0.0032397336326539516,
0.02182089537382126,
-0.04197082296013832,
-0.0014782516518607736,
0.1645156890153885,
0.23995232582092285,
-0.10496784001588821,
0.055536478757858276,
0.030249565839767456,
-0.03645236790180206,
-0.18277540802955627,
0.009984065778553486,
0.08414819091558456,
0.0021475672256201506,
0.040169790387153625,
-0.1663118302822113,
0.05386544391512871,
0.10983236879110336,
-0.04191310703754425,
0.07995743304491043,
-0.2803034782409668,
-0.1190505102276802,
0.08906996995210648,
0.13602600991725922,
0.06884066760540009,
-0.13274545967578888,
-0.045290667563676834,
-0.039063699543476105,
-0.16666166484355927,
0.1351267695426941,
-0.04754851385951042,
0.11997194588184357,
-0.040666740387678146,
0.06989686191082001,
0.015085658058524132,
-0.05448267608880997,
0.14587333798408508,
0.00877679605036974,
0.0857420563697815,
-0.07118549197912216,
0.0021252231672406197,
0.10074540972709656,
-0.0982399731874466,
0.07668103277683258,
-0.08308075368404388,
0.06399426609277725,
-0.11283876746892929,
-0.007322354707866907,
-0.07328318059444427,
0.015542288310825825,
-0.012007588520646095,
-0.043488435447216034,
-0.04113076627254486,
0.03472091257572174,
0.06403200328350067,
-0.015996064990758896,
0.20271754264831543,
0.0629286915063858,
0.08313194662332535,
0.17939580976963043,
0.04974674805998802,
-0.096995510160923,
-0.09814400225877762,
-0.04502987116575241,
-0.028452320024371147,
0.06312472373247147,
-0.13321243226528168,
0.05335186421871185,
0.1209464818239212,
0.008661448024213314,
0.12983813881874084,
0.054849762469530106,
-0.0316605418920517,
0.033173978328704834,
0.06366948038339615,
-0.16513317823410034,
-0.08843576163053513,
-0.011303714476525784,
0.01758752204477787,
-0.12545546889305115,
0.0447046272456646,
0.12079240381717682,
-0.057224519550800323,
-0.015418118797242641,
-0.0026640621945261955,
0.03586487099528313,
-0.00886022113263607,
0.16030296683311462,
0.05005719140172005,
0.05675157532095909,
-0.11541767418384552,
0.1181424930691719,
0.06067226454615593,
-0.0710521712899208,
0.031696248799562454,
0.05698402598500252,
-0.10586927086114883,
-0.022646361961960793,
0.03662630170583725,
0.14154238998889923,
-0.06414706259965897,
-0.04990902543067932,
-0.13196614384651184,
-0.0909038558602333,
0.07024894654750824,
0.0724560096859932,
0.09284354001283646,
0.016252439469099045,
-0.031063025817275047,
-0.014114780351519585,
-0.10623957961797714,
0.10545456409454346,
0.04753988981246948,
0.09451808035373688,
-0.17563696205615997,
0.06374634802341461,
0.0007657874375581741,
0.07206296175718307,
-0.024532334879040718,
0.005616967566311359,
-0.09020458161830902,
-0.0008940583793446422,
-0.10660925507545471,
0.025940274819731712,
-0.04968960955739021,
0.0027822551783174276,
-0.020955873653292656,
-0.058104176074266434,
-0.06385789811611176,
0.02704726532101631,
-0.11796805262565613,
-0.05728267878293991,
0.01832517236471176,
0.029680335894227028,
-0.11609132587909698,
-0.04758497327566147,
0.014494677074253559,
-0.09034118801355362,
0.09993617236614227,
0.05929066613316536,
-0.006737631745636463,
0.0029803363140672445,
0.011042662896215916,
-0.02363271825015545,
0.06827948242425919,
0.006517379079014063,
0.07795335352420807,
-0.11366859823465347,
-0.018052512779831886,
0.017967568710446358,
-0.002112566027790308,
0.011524608358740807,
0.15499049425125122,
-0.12699781358242035,
-0.0033930845092982054,
-0.022802060469985008,
-0.06095515564084053,
-0.06754840165376663,
0.06765563786029816,
0.10613249987363815,
0.0214694757014513,
0.2064255326986313,
-0.054858945310115814,
0.01148067507892847,
-0.21229742467403412,
-0.011367390863597393,
0.0014767643297091126,
-0.1394193321466446,
-0.10240225493907928,
-0.03432944789528847,
0.0646229088306427,
-0.07021024078130722,
0.1212792620062828,
0.036924295127391815,
0.015180133283138275,
0.028698688372969627,
0.025451842695474625,
-0.009322993457317352,
0.01828060857951641,
0.16467928886413574,
0.014544252306222916,
-0.030929861590266228,
0.12307319045066833,
0.026831358671188354,
0.0918813943862915,
0.11550118029117584,
0.17162561416625977,
0.1226300448179245,
0.042329173535108566,
0.09527058154344559,
0.05073356628417969,
-0.032373297959566116,
-0.2198440134525299,
0.04109371080994606,
-0.043747998774051666,
0.14987531304359436,
-0.0034218686632812023,
0.15886609256267548,
0.08696271479129791,
-0.1824999451637268,
0.04266338422894478,
-0.02988567017018795,
-0.08202743530273438,
-0.08238054066896439,
-0.1163601353764534,
-0.10495591163635254,
-0.15148837864398956,
0.0012598474277183414,
-0.10238117724657059,
0.02373862825334072,
0.11528778076171875,
-0.010980993509292603,
-0.00952758826315403,
0.1250862330198288,
-0.01644187793135643,
0.019042596220970154,
0.04508042708039284,
0.007425562012940645,
-0.05218745768070221,
-0.04613304138183594,
-0.08413935452699661,
0.015972480177879333,
0.0363130047917366,
0.05680973082780838,
-0.03208919242024422,
-0.008708061650395393,
0.03847881406545639,
-0.008026620373129845,
-0.12142552435398102,
0.013289375230669975,
0.007551861461251974,
0.04767835885286331,
-0.004989264067262411,
0.007813788950443268,
0.026865217834711075,
-0.01780105195939541,
0.195222407579422,
-0.06977689266204834,
-0.02860948257148266,
-0.12041912227869034,
0.17737813293933868,
0.00569287920370698,
-0.048185933381319046,
0.05394943431019783,
-0.09105358272790909,
-0.02213868498802185,
0.15108588337898254,
0.18787547945976257,
-0.06683575361967087,
-0.017941389232873917,
-0.014669668860733509,
-0.01477136928588152,
-0.01832989603281021,
0.10442051291465759,
0.09986825287342072,
-0.004740583244711161,
-0.07264549285173416,
-0.024389909580349922,
-0.06369390338659286,
-0.032235804945230484,
-0.04127946496009827,
0.07026855647563934,
-0.001124961650930345,
0.005972458980977535,
-0.07571399211883545,
0.03954308480024338,
-0.020357538014650345,
-0.06112333759665489,
0.07204564660787582,
-0.21083933115005493,
-0.1802441030740738,
0.0017737408634275198,
0.07683850824832916,
0.0021866720635443926,
0.04613208398222923,
-0.012570524588227272,
0.018509654328227043,
0.07427240163087845,
-0.02333001233637333,
-0.08794470131397247,
-0.09525144845247269,
0.1020299568772316,
-0.13951729238033295,
0.24700812995433807,
-0.03552914783358574,
0.0377071388065815,
0.1201176866889,
0.03583609312772751,
-0.13580889999866486,
0.03513867408037186,
0.03722600266337395,
-0.02918340638279915,
0.0181744247674942,
0.14616045355796814,
-0.03901152312755585,
0.07440102845430374,
0.04275068640708923,
-0.10678882896900177,
-0.04424819350242615,
-0.04619530588388443,
-0.015570126473903656,
-0.02712010033428669,
-0.05963090807199478,
-0.04089967906475067,
0.12949442863464355,
0.17410574853420258,
-0.04094170406460762,
-0.021948745474219322,
-0.06438223272562027,
0.035308949649333954,
0.08067496865987778,
-0.026465818285942078,
-0.04482371732592583,
-0.2364819198846817,
0.0028874515555799007,
0.050913918763399124,
-0.008316555991768837,
-0.19871793687343597,
-0.10607530176639557,
-0.00044736277777701616,
-0.05943094193935394,
-0.08227076381444931,
0.09325046092271805,
0.06211918964982033,
0.03563893958926201,
-0.06190048158168793,
0.02738066203892231,
-0.07750356942415237,
0.14178979396820068,
-0.14600589871406555,
-0.07656177133321762
] |
null | null | transformers |
Test model. | {"license": "cc-by-nc-sa-4.0"} | null | vikp/text_recognizer_test | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:43:36+00:00 | [] | [] | TAGS
#transformers #safetensors #vision-encoder-decoder #license-cc-by-nc-sa-4.0 #endpoints_compatible #region-us
|
Test model. | [] | [
"TAGS\n#transformers #safetensors #vision-encoder-decoder #license-cc-by-nc-sa-4.0 #endpoints_compatible #region-us \n"
] | [
43
] | [
"passage: TAGS\n#transformers #safetensors #vision-encoder-decoder #license-cc-by-nc-sa-4.0 #endpoints_compatible #region-us \n"
] | [
-0.09576874226331711,
0.06220221891999245,
-0.004742903634905815,
-0.045090511441230774,
0.07854613661766052,
-0.007951369509100914,
0.09931527078151703,
0.02697662077844143,
0.04212569817900658,
-0.004050657618790865,
0.1497492641210556,
0.20360857248306274,
0.01098482683300972,
0.096961110830307,
-0.08066973090171814,
-0.144383043050766,
0.10394313186407089,
0.06250781565904617,
-0.031200850382447243,
0.08247948437929153,
0.0798167958855629,
-0.053613755851984024,
0.0883064791560173,
-0.06125085800886154,
-0.1383739560842514,
0.027387456968426704,
0.0692109540104866,
-0.10274641215801239,
0.07498513907194138,
0.03384831175208092,
0.10975655168294907,
0.08309104293584824,
-0.019391793757677078,
-0.17687243223190308,
-0.005574284587055445,
0.04916375130414963,
-0.09670276194810867,
0.013855699449777603,
0.04760938882827759,
0.04300250485539436,
-0.002115211682394147,
-0.047040294855833054,
-0.021018771454691887,
0.08345639705657959,
-0.10347290337085724,
-0.19114120304584503,
-0.04155995324254036,
0.04297878220677376,
0.11153840273618698,
0.06267625838518143,
0.04263496398925781,
0.11827606707811356,
-0.04850286990404129,
0.08598991483449936,
0.04085080698132515,
-0.26701492071151733,
0.018602438271045685,
0.18932022154331207,
0.02972368150949478,
0.03215613588690758,
-0.04614204168319702,
0.11077091842889786,
0.06141911819577217,
0.0019290513591840863,
0.03910917416214943,
-0.06738771498203278,
-0.029913701117038727,
0.027213988825678825,
-0.04956934228539467,
-0.1003129854798317,
0.22566235065460205,
0.042162876576185226,
0.0018898502457886934,
-0.04211918264627457,
-0.09247199445962906,
-0.048579417169094086,
-0.051382459700107574,
0.04113685339689255,
0.04961631819605827,
0.09987132996320724,
-0.05350220575928688,
0.004509392660111189,
-0.148440420627594,
-0.014366204850375652,
-0.1805734634399414,
0.11884214729070663,
-0.01717240922152996,
0.10807834565639496,
-0.10799852013587952,
0.03334899991750717,
0.015369595028460026,
-0.11698610335588455,
-0.08408286422491074,
-0.08326494693756104,
0.05691494792699814,
0.03226099908351898,
-0.05062992125749588,
0.09870018810033798,
0.07439008355140686,
0.11551675200462341,
-0.030585877597332,
0.01826813444495201,
-0.08001048862934113,
0.11124525964260101,
-0.09826477617025375,
0.07871747761964798,
-0.00434317160397768,
0.11067777872085571,
0.06751492619514465,
-0.1337834596633911,
0.08202487975358963,
-0.013491095043718815,
-0.10064695030450821,
-0.03292708843946457,
-0.05546093359589577,
0.12962761521339417,
-0.02974662370979786,
0.0453072190284729,
-0.04906158149242401,
0.059072401374578476,
0.189549058675766,
-0.023095112293958664,
-0.0009576789452694356,
-0.015947630628943443,
0.0987570732831955,
0.008227095939218998,
0.06777019798755646,
-0.01853840984404087,
-0.0036691699642688036,
0.04872801527380943,
-0.05345287173986435,
-0.018264951184391975,
-0.027860403060913086,
0.015664074569940567,
0.09811320900917053,
-0.06003160774707794,
0.06879386305809021,
-0.20579968392848969,
-0.13241654634475708,
0.05059666186571121,
0.015470216050744057,
0.041157759726047516,
0.03554616868495941,
0.051539141684770584,
-0.0903756394982338,
-0.015196829102933407,
-0.09017687290906906,
-0.1452653557062149,
-0.061668578535318375,
0.061913829296827316,
0.005940041039139032,
0.0246925987303257,
-0.20006626844406128,
0.0006170401466079056,
-0.13874390721321106,
0.05212448164820671,
-0.11138932406902313,
0.03606449440121651,
-0.07430773228406906,
0.1631905734539032,
-0.021377183496952057,
-0.0452069416642189,
-0.04774884507060051,
0.03902450203895569,
-0.05820206552743912,
0.14655794203281403,
-0.13614383339881897,
-0.00857046339660883,
0.18465545773506165,
-0.1955557018518448,
-0.24184447526931763,
0.04841697961091995,
0.047825995832681656,
-0.08675218373537064,
0.06215997412800789,
0.13817797601222992,
0.07382594048976898,
-0.12600786983966827,
-0.006118818186223507,
0.15921205282211304,
-0.13011033833026886,
-0.19207438826560974,
0.04862334951758385,
-0.004051890689879656,
-0.07581702619791031,
0.02798222005367279,
-0.11510448902845383,
0.0990353673696518,
-0.023724474012851715,
-0.0659090057015419,
-0.07600335776805878,
-0.015842493623495102,
-0.043941985815763474,
0.027005799114704132,
-0.01512058638036251,
-0.10006040334701538,
0.011891480535268784,
-0.09348008781671524,
0.02973001077771187,
-0.047565679997205734,
0.050217390060424805,
-0.14139096438884735,
0.00007747842755634338,
-0.11146167665719986,
0.021775875240564346,
-0.06444340199232101,
-0.09773361682891846,
-0.006873560603708029,
0.00582005362957716,
-0.05347675457596779,
0.024936283007264137,
0.05479242280125618,
-0.014967357739806175,
-0.014017242006957531,
-0.06880880147218704,
0.10041889548301697,
0.06584089249372482,
0.03858248144388199,
-0.110794298350811,
0.02183888480067253,
-0.009112400934100151,
-0.0024769839365035295,
-0.076475128531456,
0.005524917040020227,
0.22603394091129303,
0.1389528214931488,
0.00689607672393322,
0.02521158754825592,
-0.04525814205408096,
0.018608881160616875,
-0.003162418259307742,
-0.036165837198495865,
0.09106995165348053,
0.022604677826166153,
-0.08511511981487274,
0.2517082989215851,
-0.15858998894691467,
0.288216233253479,
0.20855668187141418,
-0.24971529841423035,
0.06487748771905899,
0.058489423245191574,
0.024626459926366806,
0.007748777978122234,
0.050879720598459244,
-0.04497654736042023,
0.006446135230362415,
-0.036540210247039795,
0.1316785216331482,
-0.055989544838666916,
0.015777982771396637,
0.04179728403687477,
-0.04081009700894356,
-0.08599592000246048,
-0.010474682785570621,
0.04645044356584549,
-0.2080235779285431,
0.19132603704929352,
0.31195053458213806,
0.07938686013221741,
0.041729480028152466,
-0.09456244856119156,
-0.007871064357459545,
0.0008541073184460402,
0.04966175928711891,
0.0019191293977200985,
0.11445185542106628,
-0.11450172960758209,
-0.010200330056250095,
0.03742982819676399,
0.014563817530870438,
0.048339538276195526,
-0.16849449276924133,
-0.04837409406900406,
0.025972211733460426,
-0.03689263388514519,
-0.009862413629889488,
0.05814749747514725,
-0.03612834960222244,
0.055994998663663864,
-0.047119271010160446,
-0.09953659027814865,
0.16196882724761963,
-0.03808171674609184,
-0.10662288218736649,
0.1662183254957199,
-0.13376112282276154,
-0.3010607063770294,
-0.20578990876674652,
-0.06680472195148468,
0.0016034035943448544,
0.06541989743709564,
0.07391355186700821,
-0.02042236365377903,
-0.0845426395535469,
-0.04605424031615257,
-0.09049048274755478,
-0.036404822021722794,
0.021814633160829544,
0.06683874875307083,
0.0559796579182148,
0.035333991050720215,
-0.08405289053916931,
-0.03459935635328293,
0.03424384444952011,
-0.038970328867435455,
0.059515029191970825,
-0.07784897834062576,
0.14831723272800446,
0.10261810570955276,
0.0036409858148545027,
0.018922263756394386,
-0.044552672654390335,
0.10387255996465683,
-0.092930369079113,
-0.05391063541173935,
0.20514492690563202,
-0.03203628584742546,
0.024621564894914627,
0.16008684039115906,
0.03938406705856323,
-0.09949807822704315,
-0.02146095223724842,
-0.10581641644239426,
-0.13820093870162964,
-0.11514939367771149,
-0.1211761012673378,
-0.11553752422332764,
0.04268178716301918,
0.03620404005050659,
0.07613157480955124,
0.05583825334906578,
0.11594514548778534,
-0.035440608859062195,
-0.04273222014307976,
0.03365512564778328,
0.10545094311237335,
0.2687637507915497,
-0.05409243702888489,
0.04664238542318344,
-0.16032308340072632,
-0.012062037363648415,
0.07549625635147095,
0.1216672733426094,
0.07939030230045319,
0.1189446747303009,
0.05424519628286362,
0.07962334156036377,
0.1071324273943901,
0.16237816214561462,
0.07517059892416,
0.0784444585442543,
-0.05076860263943672,
0.011094356887042522,
-0.04774497076869011,
-0.05322738736867905,
0.04684291407465935,
-0.10207768529653549,
-0.11673720180988312,
-0.0034285529982298613,
-0.1177508682012558,
0.08379798382520676,
0.11601762473583221,
0.10761085152626038,
-0.3116561472415924,
0.011517164297401905,
0.09527178108692169,
0.09195157140493393,
-0.057655658572912216,
0.1151510700583458,
0.07345272600650787,
-0.014075486920773983,
0.1561373472213745,
-0.05319272726774216,
0.058123789727687836,
-0.05043425038456917,
0.03371186926960945,
0.007889334112405777,
-0.12882131338119507,
0.06970051676034927,
0.06601238995790482,
-0.19561824202537537,
0.17407704889774323,
0.008995172567665577,
0.036180637776851654,
-0.028099093586206436,
-0.004485955461859703,
0.001773448078893125,
0.30001401901245117,
0.18481841683387756,
0.02697095274925232,
-0.14793874323368073,
-0.11490494012832642,
0.032555047422647476,
0.03568696603178978,
0.12044073641300201,
0.03771701827645302,
-0.05882960185408592,
-0.026932142674922943,
-0.010744376108050346,
0.0013466959353536367,
-0.025735190138220787,
-0.003771787043660879,
-0.12778298556804657,
0.016427256166934967,
0.18414661288261414,
0.17659366130828857,
-0.0979941114783287,
0.06975193321704865,
-0.12878569960594177,
0.13662780821323395,
-0.24817994236946106,
-0.0294609684497118,
-0.08574965596199036,
-0.15123611688613892,
0.039282046258449554,
-0.008596379309892654,
0.11018817871809006,
-0.03961765021085739,
0.051003213971853256,
-0.059108916670084,
-0.18585893511772156,
0.1046953946352005,
-0.15216445922851562,
-0.019154494628310204,
-0.022120587527751923,
0.13160337507724762,
-0.1441529095172882,
-0.048634517937898636,
0.045834124088287354,
0.040947988629341125,
-0.016706055030226707,
-0.11429537087678909,
0.03893861919641495,
0.0266119297593832,
0.06258007138967514,
0.07543066889047623,
0.01807764172554016,
-0.08402547240257263,
0.0786241963505745,
-0.014451153576374054,
0.10279332846403122,
0.2366500198841095,
-0.08141887187957764,
0.051243629306554794,
0.21262124180793762,
-0.04651397839188576,
-0.3335973024368286,
-0.057226281613111496,
-0.19814085960388184,
-0.08732548356056213,
-0.025291239842772484,
-0.022456159815192223,
0.11562864482402802,
0.05903521925210953,
-0.08658286184072495,
0.11092620342969894,
-0.17453834414482117,
-0.05383005365729332,
0.09730050712823868,
0.06478150188922882,
0.25395140051841736,
-0.14729920029640198,
-0.06532230228185654,
-0.07156673073768616,
-0.23837332427501678,
0.058034785091876984,
0.0013820935273543,
0.04941313713788986,
0.026458928361535072,
-0.06103695556521416,
-0.016106924042105675,
-0.07218427211046219,
0.16337810456752777,
-0.06655287742614746,
0.12023700773715973,
-0.09286568313837051,
0.04122546687722206,
0.2123836725950241,
-0.028891319409012794,
0.01922374963760376,
-0.032151587307453156,
0.06534039974212646,
0.010440891608595848,
-0.0004356697027105838,
-0.031632669270038605,
0.04129616543650627,
0.01889887824654579,
-0.0312645249068737,
-0.047819364815950394,
-0.05315937474370003,
0.004893432836979628,
-0.02575821615755558,
0.29063621163368225,
-0.05557173490524292,
0.009655016474425793,
0.11742711812257767,
0.08613934367895126,
-0.1599595844745636,
-0.06705564260482788,
-0.03658217936754227,
-0.09408455342054367,
0.09853525459766388,
-0.13352511823177338,
0.08889957517385483,
0.07747013121843338,
-0.035420697182416916,
0.03508709743618965,
0.0986383855342865,
0.043439362198114395,
0.01062934659421444,
0.15622349083423615,
-0.12419184297323227,
-0.07755469530820847,
-0.010326234623789787,
0.07225770503282547,
0.11723122000694275,
0.18867067992687225,
0.12655501067638397,
-0.03411821275949478,
0.055614400655031204,
-0.008805608376860619,
0.01647006906569004,
-0.09788917750120163,
-0.018634026870131493,
0.015272547490894794,
0.04630713164806366,
-0.1318131536245346,
0.12629666924476624,
-0.07228950411081314,
-0.2539770305156708,
-0.037600498646497726,
0.020995348691940308,
-0.18053825199604034,
-0.10656660050153732,
-0.08053144812583923,
0.024712704122066498,
-0.17311128973960876,
-0.15268756449222565,
-0.018490217626094818,
-0.1571938544511795,
0.03921592980623245,
0.2521388828754425,
0.07702067494392395,
0.11482410877943039,
0.06666520982980728,
-0.03191079571843147,
-0.04130711406469345,
-0.043131839483976364,
-0.19822077453136444,
0.07252395898103714,
-0.19339190423488617,
-0.07490710914134979,
-0.009676435962319374,
0.06037759780883789,
-0.08397918194532394,
0.015460747294127941,
-0.09266145527362823,
0.07032597064971924,
-0.09258026629686356,
0.05368487536907196,
-0.13035036623477936,
0.00043809969793073833,
0.02512657456099987,
-0.03674500063061714,
-0.035671159625053406,
0.044592104852199554,
-0.05551300570368767,
-0.003774491371586919,
0.024181148037314415,
0.021777529269456863,
-0.07815296947956085,
-0.04677029699087143,
0.00002141645563824568,
-0.04168195277452469,
0.0680849477648735,
0.02143675647675991,
-0.09162592142820358,
0.03692407160997391,
-0.21219821274280548,
-0.11074790358543396,
0.1809246987104416,
-0.003337210277095437,
-0.03206130117177963,
0.08952772617340088,
0.019487610086798668,
0.14263710379600525,
-0.06542031466960907,
0.028621856123209,
0.054711949080228806,
-0.09501798450946808,
-0.03251171484589577,
-0.04879720136523247,
-0.026053540408611298,
-0.03690282255411148,
-0.045177288353443146,
0.16779306530952454,
0.02019733376801014,
0.12529458105564117,
-0.039503756910562515,
-0.002396763302385807,
-0.028470417484641075,
-0.019718140363693237,
-0.02694958820939064,
-0.1778067946434021,
-0.05670648068189621,
-0.02127697691321373,
-0.009038600139319897,
-0.033468883484601974,
0.28700658679008484,
-0.04758599400520325,
-0.054588042199611664,
0.09884674102067947,
0.03330099210143089,
0.026814693585038185,
0.06121061369776726,
0.3773866593837738,
0.0485641211271286,
-0.02634655125439167,
-0.058550719171762466,
0.06555729359388351,
0.03883553668856621,
-0.0546676367521286,
-0.08687465637922287,
0.13460883498191833,
-0.09574507921934128,
0.13178013265132904,
0.08272899687290192,
0.010389765724539757,
-0.08250950276851654,
-0.11589393019676208,
-0.057755134999752045,
0.0633544847369194,
0.004159314092248678,
-0.055046506226062775,
0.2243475466966629,
-0.03144584223628044,
-0.012564451433718204,
0.011442234739661217,
-0.005868825595825911,
-0.11380661278963089,
-0.13918417692184448,
-0.08653710037469864,
-0.15625667572021484,
0.06654882431030273,
-0.03664664179086685,
-0.005336982198059559,
0.23607943952083588,
0.018092239275574684,
-0.04730729013681412,
0.15514998137950897,
-0.031987614929676056,
-0.02388237975537777,
0.06396553665399551,
0.026492133736610413,
0.02008204162120819,
0.04189580678939819,
-0.057511527091264725,
0.03142246976494789,
-0.11297240853309631,
-0.03342492878437042,
0.019108276814222336,
0.05292312800884247,
0.07931885123252869,
-0.10080118477344513,
-0.07611604779958725,
-0.04318227991461754,
0.09640888124704361,
-0.04878535121679306,
0.08770947903394699,
-0.01872919127345085,
-0.027764305472373962,
0.06359067559242249,
0.13533155620098114,
-0.09762823581695557,
-0.12320352345705032,
-0.031507980078458786,
0.14594413340091705,
0.004879528656601906,
0.1123819351196289,
-0.0184033140540123,
-0.04219051077961922,
0.008515416644513607,
0.22904203832149506,
0.16049647331237793,
-0.009474704042077065,
0.04190104082226753,
-0.047126010060310364,
0.027872901409864426,
0.009068531915545464,
0.14210261404514313,
0.05621196702122688,
0.2454596310853958,
-0.05876775085926056,
-0.07409033179283142,
-0.0019657372031360865,
-0.002392699010670185,
-0.09584907442331314,
-0.01291622780263424,
-0.06456691771745682,
-0.07032472640275955,
-0.05799160525202751,
0.11753542721271515,
-0.0535912960767746,
0.14631743729114532,
0.241913303732872,
-0.08138217031955719,
0.08145833760499954,
-0.022581737488508224,
0.17341528832912445,
-0.026799963787198067,
-0.01766769401729107,
-0.08860225230455399,
-0.05097945034503937,
0.00003863855090457946,
0.0028689128812402487,
-0.19554245471954346,
-0.003983814734965563,
-0.057769984006881714,
-0.05489673838019371,
0.14487554132938385,
-0.005148075986653566,
0.08342163264751434,
0.0804063230752945,
0.04186767339706421,
-0.11083349585533142,
0.15251043438911438,
-0.01715608686208725,
-0.12339143455028534,
-0.011107736267149448,
-0.0348660945892334,
-0.05628072842955589,
0.07002320885658264,
0.024491924792528152,
-0.1528073251247406,
0.041359398514032364,
0.01718633435666561,
-0.06698938459157944,
-0.0336342453956604,
-0.06731913983821869,
-0.060900744050741196,
0.07533687353134155,
-0.0766710415482521,
0.0028531288262456656,
-0.03393082693219185,
-0.0292022954672575,
0.024504007771611214,
0.06674686074256897,
-0.13430455327033997,
0.03185589611530304,
-0.02319483831524849,
-0.03487979993224144,
0.16390720009803772,
0.02900448814034462,
-0.05671550706028938,
-0.024302905425429344,
-0.04578106477856636,
0.014456979930400848,
-0.10437989979982376,
0.012141641229391098,
0.13483862578868866,
0.01027766615152359,
-0.04878445714712143,
-0.14381547272205353,
0.06943215429782867,
0.06047271192073822,
-0.04347467049956322,
-0.1474846750497818
] |
null | null | transformers |
## MiquMaid v2 DPO
Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z)
<center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO">V2-2x70B-DPO</a>]
</br>
<div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/tPFdudSae6SCDNvhe1lC9.png" style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca **prompting format**
Model trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v2-70B-DPO.
Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO-GGUF)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## DPO training data used:
- [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | text-generation | NeverSleep/MiquMaid-v2-70B-DPO | [
"transformers",
"pytorch",
"llama",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:47:26+00:00 | [] | [] | TAGS
#transformers #pytorch #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## MiquMaid v2 DPO
Check out our blogpost about this model series Here! - Join our Discord server Here!
<center>[<a href="URL - <a href="URL - <a href="URL - <a href="URL
</br>
<div style="width: 100%;">
<img src="URL style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca prompting format
Model trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v2-70B-DPO.
Switch: FP16 - GGUF
## Training data used:
- Aesir datasets
- NoRobots
- limarp
- toxic-dpo-v0.1-sharegpt
- ToxicQAFinal
## DPO training data used:
- ToxicDPOqa
- toxic-dpo-v0.1-NoWarning
### Custom format:
## Others
Undi: If you want to support us, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains FP16 files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains FP16 files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
74,
134,
11,
33,
40,
27,
5,
32
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## MiquMaid v2 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nModel trained for RP conversation on Miqu-70B with our magic sauce, then trained on DPO for uncensoring.## Credits:\n- Undi\n- IkariDev## Description\n\nThis repo contains FP16 files of MiquMaid-v2-70B-DPO.\n\nSwitch: FP16 - GGUF## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning### Custom format:## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.0706348717212677,
0.1641329675912857,
-0.0070732529275119305,
0.031934548169374466,
0.11278533190488815,
0.045274849981069565,
0.12522536516189575,
0.1828782707452774,
0.04978856444358826,
0.07901106774806976,
0.031935933977365494,
0.15931794047355652,
0.0837186947464943,
0.17052061855793,
0.014745748601853848,
-0.20975269377231598,
0.045130982995033264,
-0.00788366049528122,
-0.037658512592315674,
0.11343381553888321,
0.10146518051624298,
-0.040018610656261444,
0.06850190460681915,
0.0027182099875062704,
-0.11080321669578552,
-0.05066491290926933,
-0.016220586374402046,
-0.060478195548057556,
0.04256656765937805,
-0.03278227522969246,
0.047798555344343185,
0.04292993247509003,
0.021812420338392258,
-0.20568275451660156,
0.03792383149266243,
0.08801791071891785,
0.01518638338893652,
0.10741249471902847,
0.1015823557972908,
-0.05305945873260498,
0.05285803973674774,
-0.09000442922115326,
0.03784393146634102,
0.07845712453126907,
-0.11428278684616089,
-0.14159317314624786,
-0.1306384801864624,
0.13478317856788635,
0.0855221077799797,
0.10153142362833023,
0.004246365744620562,
0.14854009449481964,
-0.07714003324508667,
0.06746856123209,
0.22775350511074066,
-0.13347534835338593,
-0.04100609943270683,
0.12903954088687897,
0.0322883166372776,
-0.07788684219121933,
-0.0997665598988533,
-0.009932619519531727,
-0.012023119255900383,
0.00442283833399415,
-0.04547024890780449,
-0.045554690062999725,
0.07310516387224197,
-0.06952749192714691,
-0.05343620106577873,
-0.016389481723308563,
0.21188320219516754,
0.04214273393154144,
-0.057602766901254654,
0.0020434607286006212,
-0.01561771146953106,
0.024552080780267715,
-0.05117291212081909,
-0.03608117625117302,
0.03775513917207718,
-0.0022672577761113644,
-0.01650168001651764,
0.01721111312508583,
-0.07064574956893921,
-0.0522167831659317,
0.018696917220950127,
0.1251489669084549,
0.008475320413708687,
-0.012982266023755074,
-0.0511852465569973,
0.06701450794935226,
-0.05305376648902893,
-0.13327865302562714,
-0.0525515116751194,
-0.0745990127325058,
0.004504079930484295,
-0.04577242583036423,
-0.03078228235244751,
-0.09223513305187225,
0.13182824850082397,
0.14222577214241028,
-0.026084743440151215,
-0.002074468182399869,
-0.02713858149945736,
-0.0023560835979878902,
0.01942780241370201,
0.018789920955896378,
-0.0825418010354042,
-0.021708879619836807,
0.06540746986865997,
0.03127484396100044,
-0.006060888525098562,
0.0008691847324371338,
-0.031880754977464676,
-0.038829851895570755,
0.017818227410316467,
0.034350935369729996,
0.12457288056612015,
0.0809302031993866,
-0.09750008583068848,
-0.07656354457139969,
0.11358988285064697,
-0.11360810697078705,
0.019553305581212044,
0.06472009420394897,
-0.04808039590716362,
0.14011451601982117,
0.051370684057474136,
-0.011143427342176437,
-0.09018376469612122,
0.061284296214580536,
-0.04724548012018204,
0.04066726565361023,
-0.10056851804256439,
-0.040776874870061874,
0.07944459468126297,
0.09264379739761353,
-0.048865124583244324,
-0.10814245790243149,
-0.10297662764787674,
-0.07229387760162354,
0.036203302443027496,
-0.03525902330875397,
-0.029769936576485634,
0.0018144849454984069,
-0.04049267619848251,
0.021230949088931084,
0.02627733163535595,
0.010782762430608273,
-0.03604605793952942,
0.09011683613061905,
-0.025734536349773407,
0.06372982263565063,
0.04670869559049606,
0.033185556530952454,
-0.06511984020471573,
0.007610475644469261,
-0.21644003689289093,
0.0673038586974144,
-0.0751953125,
0.06155925244092941,
-0.13160298764705658,
-0.016538171097636223,
-0.031612396240234375,
-0.0317673534154892,
0.022902734577655792,
0.24828976392745972,
-0.1965101659297943,
-0.0468708872795105,
0.27094191312789917,
-0.11135416477918625,
-0.06937266886234283,
0.05499229207634926,
-0.003932178020477295,
-0.02829241007566452,
0.09831885248422623,
0.05405658856034279,
0.07329857349395752,
-0.13086800277233124,
-0.08382593095302582,
-0.060822684317827225,
-0.05034881457686424,
0.042937275022268295,
0.06951470673084259,
-0.06982353329658508,
0.05180925503373146,
0.017725231125950813,
-0.06842633336782455,
0.002169688232243061,
-0.025185972452163696,
-0.028544427827000618,
-0.04032929986715317,
-0.002905265660956502,
0.05368834733963013,
-0.004470034036785364,
-0.030721468850970268,
0.0007058468763716519,
-0.09884048253297806,
-0.07579482346773148,
0.15333141386508942,
0.00570842856541276,
-0.0018658103654161096,
-0.0714164599776268,
0.09687400609254837,
-0.0005590136279352009,
0.043764807283878326,
-0.1654226928949356,
-0.02094140462577343,
-0.0009338112431578338,
-0.04352257773280144,
0.057489678263664246,
0.006203190423548222,
0.04892992600798607,
-0.02433743327856064,
-0.012253068387508392,
-0.016723981127142906,
-0.048719622194767,
0.013089390471577644,
-0.035957083106040955,
-0.19140811264514923,
0.01753723807632923,
-0.04076014831662178,
0.10299845784902573,
-0.14202271401882172,
0.03644636273384094,
0.07982528954744339,
0.18024972081184387,
0.023963430896401405,
-0.028078503906726837,
0.09767674654722214,
-0.0238040778785944,
0.009900551289319992,
-0.04472573101520538,
0.017968550324440002,
-0.017751308158040047,
-0.049225836992263794,
0.011698700487613678,
-0.03919639065861702,
-0.034016203135252,
0.13591815531253815,
-0.04374344274401665,
-0.09226219356060028,
-0.028113139793276787,
-0.004372933879494667,
-0.005289451684802771,
-0.02018023654818535,
-0.03991858288645744,
0.07782969623804092,
0.0819450244307518,
0.055211249738931656,
-0.016576848924160004,
0.0025430989917367697,
-0.021339286118745804,
-0.0892745777964592,
-0.003430238226428628,
0.05084668844938278,
0.03722211346030235,
-0.11856558918952942,
0.087476447224617,
0.0664883404970169,
-0.004379240795969963,
0.07841033488512039,
0.007116489578038454,
-0.09279617667198181,
-0.03532044589519501,
0.009006684646010399,
0.03690216317772865,
0.0697840005159378,
-0.03847662732005119,
0.026077212765812874,
0.07017866522073746,
-0.020958540961146355,
-0.006326680537313223,
-0.07289570569992065,
-0.00837642326951027,
-0.02560972049832344,
-0.06178298220038414,
-0.05678063631057739,
0.015714118257164955,
0.045167475938797,
0.11960361897945404,
0.043692756444215775,
0.019407430663704872,
0.02442350424826145,
-0.03101484104990959,
-0.08933216333389282,
0.1707744151353836,
-0.09474566578865051,
-0.2480456531047821,
-0.04373020678758621,
-0.07252645492553711,
-0.04644312337040901,
0.005949655082076788,
0.012582141906023026,
-0.15509745478630066,
-0.04808821156620979,
0.019282430410385132,
0.02290620468556881,
0.044856101274490356,
-0.03278389200568199,
-0.017418835312128067,
0.05931379646062851,
0.08737754076719284,
-0.08021646738052368,
-0.0075549110770225525,
0.014734212309122086,
-0.0220633577555418,
0.08435934036970139,
0.006753605790436268,
0.062282733619213104,
0.09703099727630615,
0.04273996874690056,
0.010847757570445538,
0.04467443376779556,
0.12656067311763763,
-0.1283433586359024,
0.05975759029388428,
0.20049595832824707,
0.0399053581058979,
0.07886382192373276,
0.1588706374168396,
0.05791839212179184,
-0.03683483600616455,
0.00044669490307569504,
0.03742888569831848,
0.021033674478530884,
-0.24675807356834412,
-0.057577285915613174,
-0.042572200298309326,
-0.027358228340744972,
0.04300050437450409,
0.057248711585998535,
0.050126221030950546,
0.0920521542429924,
-0.06517328321933746,
-0.01395560335367918,
0.029453085735440254,
0.11451061069965363,
0.025428999215364456,
0.018846306949853897,
0.052401963621377945,
-0.01972861960530281,
-0.010998581536114216,
0.08790453523397446,
0.07440204173326492,
0.15079337358474731,
-0.0026927345898002386,
0.07740212976932526,
0.08284017443656921,
0.05781369283795357,
0.02287837117910385,
0.030856672674417496,
0.06734135746955872,
0.004840325564146042,
0.0006975246942602098,
-0.07640577107667923,
-0.07135593146085739,
0.013968664221465588,
0.028126077726483345,
-0.042750999331474304,
-0.0405828095972538,
-0.01741020753979683,
0.08521969616413116,
0.1916315108537674,
0.041674938052892685,
-0.22412239015102386,
-0.04002876952290535,
0.016650700941681862,
0.004518113564699888,
-0.0436299704015255,
-0.03395849093794823,
-0.0735807865858078,
-0.17327424883842468,
0.09908486157655716,
-0.05881109833717346,
0.10829871892929077,
-0.10474217683076859,
0.030275287106633186,
0.02783806249499321,
0.11195404082536697,
-0.021562187001109123,
0.07916216552257538,
-0.3171600103378296,
0.14645370841026306,
0.02102452702820301,
0.06439175456762314,
-0.07396845519542694,
0.03717004880309105,
0.09066931903362274,
0.06919549405574799,
0.11582770943641663,
0.013694186694920063,
0.06001077964901924,
-0.11384320259094238,
-0.14992181956768036,
-0.014137155376374722,
0.026794612407684326,
-0.07322455197572708,
0.07043381780385971,
0.019197972491383553,
-0.03621874377131462,
-0.04097074270248413,
0.017895471304655075,
-0.16617238521575928,
-0.06803957372903824,
0.12300003319978714,
-0.03966831788420677,
0.10802207887172699,
-0.06240583956241608,
-0.03922991827130318,
0.01088828407227993,
0.20550262928009033,
-0.03458802402019501,
-0.08191949874162674,
-0.11462404578924179,
0.058502197265625,
0.048426780849695206,
-0.08214715123176575,
-0.05188466235995293,
-0.02841470204293728,
0.1340886801481247,
-0.002778321271762252,
-0.07946415990591049,
0.051040168851614,
-0.10792721807956696,
-0.14204470813274384,
-0.06854358315467834,
0.13355934619903564,
0.0332334078848362,
0.023485466837882996,
0.04478177800774574,
-0.009387139230966568,
-0.01414260920137167,
-0.09946506470441818,
0.030081067234277725,
0.070864237844944,
0.08821312338113785,
0.07645019143819809,
-0.09763400256633759,
-0.11753358691930771,
-0.14678657054901123,
-0.003579663811251521,
0.0560314804315567,
0.1753585934638977,
-0.02126985415816307,
0.045233942568302155,
0.07235391438007355,
-0.06612084060907364,
-0.1698186695575714,
-0.023884572088718414,
0.030570177361369133,
-0.048996422439813614,
-0.0021718209609389305,
-0.226277157664299,
0.07742791622877121,
0.09742581844329834,
-0.028046544641256332,
0.07091819494962692,
-0.1572292000055313,
-0.07444023340940475,
0.09715411067008972,
0.037260882556438446,
-0.022133272141218185,
-0.1723775714635849,
-0.07105541974306107,
-0.05838960036635399,
-0.132409930229187,
0.14549927413463593,
-0.1029033437371254,
0.07997163385152817,
-0.020878171548247337,
0.1262645721435547,
0.05268358439207077,
-0.04573800414800644,
0.11395008116960526,
0.03597526624798775,
0.01961696892976761,
-0.09764205664396286,
-0.05743236467242241,
-0.010220617987215519,
-0.05771226808428764,
0.07538315653800964,
0.03699712082743645,
0.009897996671497822,
-0.14994890987873077,
0.016776498407125473,
-0.11474305391311646,
0.04375171288847923,
-0.0702846422791481,
-0.04118268936872482,
-0.029595380648970604,
0.09722714126110077,
0.03248479217290878,
0.006919060368090868,
0.030168473720550537,
-0.043463993817567825,
0.08930260688066483,
0.10096801817417145,
0.11819558590650558,
0.03757011145353317,
-0.15634021162986755,
-0.01027968805283308,
-0.02383364737033844,
0.055137570947408676,
-0.0911724716424942,
0.03920144587755203,
0.0544140562415123,
0.01879238337278366,
0.10175016522407532,
0.015134592540562153,
-0.1345611959695816,
-0.009757705964148045,
0.08154861629009247,
-0.10297814756631851,
-0.052059173583984375,
0.017253117635846138,
0.04196424409747124,
-0.1218007504940033,
0.0016790623776614666,
0.15982674062252045,
-0.03301038220524788,
-0.03249694034457207,
0.052336305379867554,
0.08885770291090012,
-0.055303215980529785,
0.10007257759571075,
0.06878816336393356,
0.05709212273359299,
-0.10390825569629669,
0.06828856468200684,
0.08864833414554596,
-0.022075079381465912,
-0.0018723997054621577,
0.07429160177707672,
-0.08672598004341125,
-0.07501816004514694,
-0.009922618046402931,
0.09202300757169724,
-0.01425502821803093,
-0.02988879196345806,
-0.05015129595994949,
-0.07232265919446945,
0.027540389448404312,
-0.0338655449450016,
0.0179123692214489,
0.027354033663868904,
0.044304315000772476,
-0.01432498637586832,
-0.10543116927146912,
0.03962058201432228,
0.026803603395819664,
0.026843013241887093,
-0.09416056424379349,
0.09671148657798767,
-0.013678066432476044,
0.021670321002602577,
-0.01237631868571043,
-0.001640182570554316,
-0.12332094460725784,
-0.030720554292201996,
-0.03352005407214165,
0.012378954328596592,
-0.13101784884929657,
-0.023412887006998062,
-0.024051833897829056,
-0.003200066974386573,
0.024526165798306465,
0.010278918780386448,
-0.0650150254368782,
-0.05987056717276573,
0.0007889015250839293,
0.07819436490535736,
-0.14050409197807312,
-0.000294579571345821,
0.04366901516914368,
-0.06838375329971313,
0.0808170884847641,
0.09966021031141281,
-0.010161600075662136,
-0.048084866255521774,
-0.24371057748794556,
-0.030079102143645287,
0.02732257731258869,
0.027005966752767563,
0.014408302493393421,
-0.17510217428207397,
0.02169346995651722,
-0.040846437215805054,
-0.027244064956903458,
0.021251676604151726,
0.04664482921361923,
-0.1104254275560379,
-0.0010385079076513648,
-0.005470853298902512,
-0.0279189832508564,
-0.054638054221868515,
0.03805084899067879,
0.1328554004430771,
0.0018689173739403486,
0.12810923159122467,
-0.061574164777994156,
0.11168555170297623,
-0.16251599788665771,
0.023782767355442047,
0.015186730772256851,
-0.010881366208195686,
0.004887597169727087,
0.007640437223017216,
0.09482190757989883,
-0.03253614902496338,
0.026559682562947273,
-0.03332407400012016,
0.026292605325579643,
0.04292973875999451,
-0.04020218551158905,
-0.018932199105620384,
-0.0236081350594759,
-0.030725395306944847,
0.03154197707772255,
0.008974081836640835,
0.04242372885346413,
0.011161239817738533,
0.022644249722361565,
-0.0646088719367981,
0.15026803314685822,
0.18033981323242188,
0.11490143835544586,
0.0032063720282167196,
0.034904032945632935,
-0.0636403039097786,
-0.07686463743448257,
0.027392398566007614,
-0.02520175278186798,
0.07344888150691986,
-0.0246439091861248,
0.06291088461875916,
0.14251264929771423,
-0.13090933859348297,
0.04390352964401245,
-0.0379459448158741,
-0.050161659717559814,
-0.07530449330806732,
-0.16491587460041046,
-0.05445297434926033,
-0.10478910803794861,
0.014255072921514511,
-0.11814762651920319,
0.034731198102235794,
0.06997174769639969,
0.0009906904306262732,
-0.04440554603934288,
0.08588530868291855,
-0.021275848150253296,
-0.07605928927659988,
0.0810035988688469,
-0.006520852912217379,
-0.033524151891469955,
0.007475832011550665,
0.00381278689019382,
0.009629369713366032,
0.035264890640974045,
0.07070301473140717,
0.04052525758743286,
0.0452895425260067,
0.04833073168992996,
-0.07726350426673889,
-0.11033202707767487,
0.039143793284893036,
0.006736135575920343,
0.05248355492949486,
0.21695265173912048,
0.05758741497993469,
-0.006312828045338392,
0.010881178081035614,
0.1695515513420105,
-0.024221716448664665,
-0.02918265201151371,
-0.1449669897556305,
-0.0013771451776847243,
-0.011427611112594604,
-0.04532868415117264,
-0.022731691598892212,
-0.12495581805706024,
-0.036731425672769547,
0.15826456248760223,
0.12164084613323212,
-0.0696469098329544,
0.018011171370744705,
-0.0061228615231812,
0.001244107959792018,
0.001854041125625372,
0.07010529190301895,
0.08453352004289627,
0.08566939830780029,
-0.049661774188280106,
0.06664613634347916,
0.016128966584801674,
-0.02188575081527233,
-0.11138284206390381,
0.02634420245885849,
-0.019372671842575073,
-0.01921670511364937,
-0.018542222678661346,
0.15383632481098175,
-0.09773106873035431,
-0.13773460686206818,
-0.033259086310863495,
-0.09662549942731857,
-0.1340446025133133,
-0.03400751203298569,
-0.039028581231832504,
0.07371198385953903,
0.07320770621299744,
0.015162699855864048,
-0.005401831120252609,
0.20637394487857819,
-0.01013120450079441,
-0.03751550614833832,
-0.08055824786424637,
0.07270587980747223,
0.006856269668787718,
0.15105782449245453,
0.021058928221464157,
0.08980019390583038,
0.11211946606636047,
-0.029950406402349472,
-0.1529618501663208,
0.036790162324905396,
0.018276628106832504,
-0.11478743702173233,
0.05233290046453476,
0.12162309139966965,
-0.0016325348988175392,
0.015426304191350937,
0.10161501169204712,
-0.04556867480278015,
-0.007039037998765707,
0.08377446979284286,
0.020341644063591957,
-0.10239185392856598,
0.13173462450504303,
-0.11745605617761612,
0.09727878123521805,
0.21456649899482727,
-0.062165915966033936,
-0.00145324831828475,
-0.04819190874695778,
0.0458805151283741,
0.026500774547457695,
-0.057551298290491104,
-0.09483569860458374,
-0.11324461549520493,
0.025538625195622444,
0.017837809398770332,
0.06183924153447151,
-0.11025810241699219,
-0.06205258518457413,
-0.029578641057014465,
-0.05798456072807312,
-0.06737012416124344,
0.06983448565006256,
-0.028728412464261055,
0.04269903525710106,
-0.02449163794517517,
-0.017819741740822792,
-0.007613140158355236,
0.13813543319702148,
-0.15869079530239105,
-0.0783807635307312
] |
null | null | peft | ## Training procedure
### Framework versions
- PEFT 0.4.0
| {"library_name": "peft"} | null | zzz99/deepseek-7B-instr-1.5-qlora-11k | [
"peft",
"region:us"
] | 2024-02-06T20:48:17+00:00 | [] | [] | TAGS
#peft #region-us
| ## Training procedure
### Framework versions
- PEFT 0.4.0
| [
"## Training procedure",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
"TAGS\n#peft #region-us \n",
"## Training procedure",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
9,
3,
11
] | [
"passage: TAGS\n#peft #region-us \n## Training procedure### Framework versions\n\n\n- PEFT 0.4.0"
] | [
-0.1052059754729271,
0.029987968504428864,
-0.004904941655695438,
0.028906483203172684,
0.14875547587871552,
-0.0021672318689525127,
0.06769361346960068,
0.08324448764324188,
0.03427431732416153,
0.02919442392885685,
0.1316586136817932,
-0.004970726557075977,
0.025874467566609383,
0.21852418780326843,
-0.011018975637853146,
-0.3242509663105011,
0.044351980090141296,
0.0206617321819067,
-0.01826033741235733,
0.10425560176372528,
0.04903198033571243,
-0.020669709891080856,
0.007798645179718733,
-0.0813150554895401,
-0.17558449506759644,
0.03569520637392998,
-0.03324613347649574,
-0.015008424408733845,
0.13636448979377747,
-0.029298754408955574,
0.1947842240333557,
-0.06058760732412338,
0.012734985910356045,
-0.2647883892059326,
0.01513243280351162,
0.0799948126077652,
-0.021724499762058258,
0.07398008555173874,
0.08464309573173523,
0.03567267954349518,
0.06580987572669983,
0.053830452263355255,
0.04775804281234741,
0.0476880818605423,
-0.20671571791172028,
-0.14524723589420319,
-0.09915456175804138,
0.10096707940101624,
0.17417162656784058,
0.0873914584517479,
0.05306839197874069,
0.09435585886240005,
-0.16517017781734467,
0.016370484605431557,
0.13752886652946472,
-0.3213055729866028,
-0.09698904305696487,
0.1674462854862213,
0.047388628125190735,
0.1676526665687561,
-0.11814811825752258,
-0.05322111025452614,
0.10399492084980011,
0.04207957535982132,
-0.023082397878170013,
-0.03304126486182213,
0.001136205275543034,
0.021253682672977448,
-0.15538540482521057,
-0.07736417651176453,
0.38343384861946106,
0.020873500034213066,
0.017534729093313217,
0.06719470769166946,
-0.05189400538802147,
-0.2374543845653534,
0.015277350321412086,
-0.04111042246222496,
-0.014872876927256584,
0.07677560299634933,
0.18229566514492035,
-0.13952359557151794,
-0.10449241101741791,
-0.13905403017997742,
-0.05802478641271591,
0.17096760869026184,
0.03344070538878441,
0.040010061115026474,
-0.13868413865566254,
0.11900372058153152,
-0.021631749346852303,
0.04696715623140335,
-0.00798212829977274,
-0.09288716316223145,
0.012667288072407246,
-0.08595244586467743,
-0.016900140792131424,
0.08567596971988678,
-0.00291117699816823,
0.15735560655593872,
-0.20468267798423767,
0.08351574838161469,
0.01255741622298956,
0.12457772344350815,
-0.09450360387563705,
0.022196434438228607,
0.053812429308891296,
0.09179293364286423,
-0.040783002972602844,
0.02111649140715599,
-0.09509038925170898,
0.018674954771995544,
-0.07592038065195084,
-0.0471598356962204,
-0.021834727376699448,
0.10560592263936996,
-0.1328791081905365,
-0.06935814023017883,
-0.06561969220638275,
-0.019003018736839294,
0.044677916914224625,
-0.08697652071714401,
-0.04099489003419876,
-0.00003626770558184944,
0.002640250837430358,
0.008679675869643688,
0.03324994444847107,
-0.015907684341073036,
-0.053810976445674896,
0.09067554771900177,
-0.09548076242208481,
0.02918822504580021,
-0.10310390591621399,
0.04400641471147537,
0.002140593249350786,
-0.10004789382219315,
0.004527771845459938,
-0.10876572877168655,
-0.12191442400217056,
-0.06927064806222916,
0.056514400988817215,
-0.01665310375392437,
-0.011371714994311333,
-0.044740717858076096,
-0.06273153424263,
-0.06326170265674591,
-0.04235343262553215,
-0.012609558179974556,
-0.037722405046224594,
0.09037908911705017,
-0.10201052576303482,
0.014478890225291252,
-0.12526366114616394,
0.04525196552276611,
0.005336165428161621,
0.062211327254772186,
-0.060641370713710785,
0.010042522102594376,
-0.10174823552370071,
0.09177597612142563,
-0.07459823042154312,
-0.09565518796443939,
-0.25676342844963074,
0.023314736783504486,
-0.011655724607408047,
0.17880091071128845,
-0.06906404346227646,
-0.021071337163448334,
0.2611777186393738,
-0.09168685227632523,
-0.09909763932228088,
0.01407481636852026,
0.0004320316656958312,
0.13520601391792297,
0.007442967034876347,
0.2736385464668274,
0.08678437769412994,
-0.23009182512760162,
0.1977148801088333,
0.13523846864700317,
0.0019103816011920571,
-0.1390891820192337,
0.04713081941008568,
-0.16075651347637177,
-0.17339028418064117,
-0.004565319046378136,
-0.09206133335828781,
0.05155645310878754,
-0.07772934436798096,
-0.039547570049762726,
0.015061224810779095,
-0.04563331976532936,
0.08040310442447662,
0.022771932184696198,
0.133599191904068,
-0.06208651885390282,
0.07044756412506104,
0.1616545468568802,
0.08167298138141632,
0.08755709230899811,
-0.01156798005104065,
0.002258099615573883,
-0.009061434306204319,
-0.01365660596638918,
-0.039255764335393906,
-0.11771333962678909,
-0.10502202063798904,
-0.014337784610688686,
0.08746077120304108,
-0.057949379086494446,
0.12454059720039368,
0.0982714518904686,
0.01814308576285839,
-0.03129351884126663,
-0.04374438151717186,
-0.15320244431495667,
0.007032387424260378,
-0.07006516307592392,
0.0071497028693556786,
-0.017323948442935944,
-0.04723566398024559,
0.09642663598060608,
-0.19456301629543304,
0.0688508003950119,
0.051905833184719086,
0.05801341310143471,
0.09916149079799652,
-0.05474027246236801,
-0.001994590274989605,
0.11210202425718307,
0.04906518757343292,
-0.04729798808693886,
0.10840515792369843,
0.05421357974410057,
0.08399911224842072,
-0.0690574124455452,
-0.02199692279100418,
0.2570227086544037,
0.09715393930673599,
-0.04417749494314194,
-0.07080945372581482,
-0.13439713418483734,
-0.0990152359008789,
0.009084511548280716,
-0.037681348621845245,
-0.009201258420944214,
0.10523112118244171,
-0.006364777218550444,
0.13961629569530487,
-0.05554157495498657,
-0.042185746133327484,
-0.004025377798825502,
-0.06356395035982132,
0.009072046726942062,
0.016253819689154625,
0.11993826180696487,
0.023643502965569496,
0.1481916606426239,
0.13182127475738525,
-0.02818773314356804,
0.2165963500738144,
-0.04322602227330208,
-0.0944482609629631,
0.03401036560535431,
0.18927210569381714,
-0.026473641395568848,
0.14300435781478882,
-0.11733747273683548,
0.002062504179775715,
-0.0022100317291915417,
0.1061364933848381,
0.14569753408432007,
-0.2158898264169693,
-0.10130304843187332,
-0.034806933254003525,
-0.06137715280056,
-0.10377085953950882,
0.050330910831689835,
0.005825231783092022,
0.06478147953748703,
0.05814178287982941,
-0.02284589596092701,
0.08632571995258331,
0.010748360306024551,
-0.10265099257230759,
0.12379193305969238,
-0.17622900009155273,
-0.1972815990447998,
-0.23448173701763153,
0.09228731691837311,
0.008631899952888489,
0.030770549550652504,
0.025466013699769974,
-0.16118142008781433,
0.025632353499531746,
0.03794601559638977,
0.00016987323760986328,
-0.13154636323451996,
-0.07489950954914093,
0.03546011447906494,
0.08896773308515549,
0.012883380986750126,
-0.06839139014482498,
-0.0320943258702755,
-0.027438990771770477,
-0.07847987860441208,
0.02265363559126854,
-0.1707974225282669,
0.03495718538761139,
0.13098570704460144,
0.04345104470849037,
0.1260824054479599,
-0.04369433969259262,
0.18978384137153625,
-0.12684091925621033,
-0.03666117042303085,
0.12328772246837616,
-0.030237985774874687,
0.01769125461578369,
0.03468233719468117,
0.029555417597293854,
-0.17711995542049408,
0.024519072845578194,
0.021016176789999008,
-0.09629671275615692,
-0.2594744861125946,
-0.0894232839345932,
-0.1207260712981224,
-0.005201422143727541,
0.08728679269552231,
0.11507166177034378,
0.12163158506155014,
0.02153407409787178,
0.0490279383957386,
-0.05151890218257904,
0.012589060701429844,
0.00817510299384594,
0.022550709545612335,
-0.059314846992492676,
0.0018453019438311458,
-0.09893351048231125,
0.004251874517649412,
0.09010828286409378,
0.13533294200897217,
0.2954493463039398,
0.1722830981016159,
-0.144855797290802,
0.07796278595924377,
0.18301182985305786,
0.07834940403699875,
0.15222014486789703,
0.054517343640327454,
-0.0369616374373436,
0.005309585947543383,
0.00851316750049591,
-0.09159466624259949,
0.07033883780241013,
-0.053955335170030594,
-0.010460525751113892,
-0.08210811018943787,
-0.20387312769889832,
0.05966407433152199,
0.3438049554824829,
-0.0008539339760318398,
-0.18956764042377472,
-0.0439598485827446,
0.009149113669991493,
0.030901970341801643,
-0.12698934972286224,
0.1597505360841751,
0.1660371869802475,
-0.18119589984416962,
0.0019767810590565205,
-0.02742611989378929,
0.10790292918682098,
-0.021291133016347885,
-0.003621643641963601,
0.05107075721025467,
-0.051975589245557785,
0.010150079615414143,
0.05182411149144173,
-0.20897144079208374,
0.32136791944503784,
-0.018314968794584274,
0.0674867108464241,
0.038726791739463806,
-0.027154363691806793,
0.048806194216012955,
0.19393816590309143,
0.14692968130111694,
0.07333777844905853,
-0.0008674372220411897,
-0.21357783675193787,
-0.016554730013012886,
-0.016406890004873276,
0.12842361629009247,
-0.0816831886768341,
-0.07189150899648666,
-0.0508536659181118,
0.08031828701496124,
-0.03559911623597145,
-0.12403537333011627,
-0.08189775049686432,
-0.041117727756500244,
-0.042482249438762665,
-0.004429531749337912,
0.08735287934541702,
-0.09765312075614929,
-0.009571311995387077,
-0.014137107878923416,
0.03031417727470398,
-0.13182641565799713,
-0.021396644413471222,
-0.10328216850757599,
-0.17316129803657532,
0.019472705200314522,
0.0027445463929325342,
0.048466429114341736,
-0.0020090946927666664,
-0.014597628265619278,
-0.04190627112984657,
-0.07424820214509964,
0.09968193620443344,
-0.10542412847280502,
0.032324545085430145,
0.0035237532574683428,
0.2003440111875534,
-0.008648962713778019,
0.004452184773981571,
-0.035745617002248764,
-0.008998345583677292,
0.046110134571790695,
-0.10881845653057098,
0.037713173776865005,
0.07887586206197739,
-0.023573309183120728,
0.025968750938773155,
-0.16967560350894928,
0.20804046094417572,
-0.03144395351409912,
-0.010261844843626022,
0.21994546055793762,
0.16770786046981812,
-0.07795662432909012,
0.06527739018201828,
0.0031952536664903164,
-0.09155682474374771,
-0.22975896298885345,
0.08109663426876068,
0.02959774062037468,
-0.021764712408185005,
-0.030733942985534668,
-0.2802942097187042,
-0.010953321121633053,
0.23422621190547943,
-0.03654467687010765,
0.22480171918869019,
-0.31969812512397766,
-0.003263249760493636,
0.0898551419377327,
0.028859086334705353,
0.22695568203926086,
-0.14258858561515808,
-0.08995459973812103,
0.07881151884794235,
-0.07934904843568802,
0.0013992831809446216,
-0.13203643262386322,
0.056065402925014496,
-0.009330889210104942,
-0.041803643107414246,
-0.003901206888258457,
-0.01043347641825676,
0.22539211809635162,
0.008649174124002457,
0.08901192247867584,
-0.03641754761338234,
0.012208386324346066,
-0.08218498528003693,
-0.040737271308898926,
0.044630058109760284,
0.1550656408071518,
0.006006923969835043,
-0.26551228761672974,
0.007556809112429619,
-0.07020265609025955,
0.044990174472332,
-0.02182471938431263,
-0.04639367759227753,
-0.010609271004796028,
0.013798341155052185,
-0.06448204815387726,
0.04636958986520767,
0.11962524056434631,
-0.06197565793991089,
0.30616623163223267,
0.1039680689573288,
0.034237999469041824,
-0.10807459056377411,
-0.1450628936290741,
-0.017693322151899338,
-0.0527581125497818,
0.13622857630252838,
-0.1725040227174759,
-0.03306293860077858,
0.0994621142745018,
0.008793491870164871,
0.1340884119272232,
0.07681850343942642,
-0.018627818673849106,
-0.012855076231062412,
0.10103397816419601,
-0.16206946969032288,
-0.15639477968215942,
-0.07153380662202835,
0.011734149418771267,
0.05669841542840004,
0.05561142787337303,
0.10660489648580551,
-0.03487754240632057,
0.01993253454566002,
-0.029392508789896965,
-0.02578812837600708,
-0.1568717211484909,
0.05042995512485504,
0.1141928881406784,
0.05008924379944801,
-0.044836606830358505,
0.10158193856477737,
0.028588972985744476,
-0.0859367847442627,
0.008315153419971466,
0.13192348182201385,
-0.09206105768680573,
-0.05137857049703598,
-0.055599406361579895,
0.07981676608324051,
0.07757223397493362,
-0.08617962151765823,
0.0019502958748489618,
-0.09573093056678772,
0.07193859666585922,
0.06127142906188965,
0.06192125380039215,
0.031409069895744324,
-0.004809454083442688,
0.0468016117811203,
-0.00901726447045803,
-0.0856415331363678,
-0.07862210273742676,
0.03452349081635475,
-0.15478827059268951,
0.050186626613140106,
0.026692120358347893,
0.06260330229997635,
-0.05261168256402016,
-0.07408761233091354,
-0.15325827896595,
0.10059450566768646,
0.010169131681323051,
-0.07890810072422028,
-0.019031500443816185,
-0.0006279756198637187,
0.005294028203934431,
-0.0390433706343174,
-0.058001160621643066,
0.017549440264701843,
-0.1547299176454544,
0.05348382517695427,
0.0010551924351602793,
0.06101006641983986,
0.018890615552663803,
0.050216786563396454,
0.09482712298631668,
-0.07219449430704117,
0.07663611322641373,
0.0790100172162056,
-0.022503124549984932,
0.13856986165046692,
0.014467528089880943,
0.01784694939851761,
0.12988638877868652,
-0.04024256020784378,
0.06119129806756973,
0.047438085079193115,
-0.0040856315754354,
-0.025097422301769257,
0.047007735818624496,
0.08192651718854904,
0.028334757313132286,
-0.10581747442483902,
-0.061209771782159805,
-0.03274047002196312,
-0.12460686266422272,
-0.046617865562438965,
-0.06604064255952835,
0.17081774771213531,
0.08881150931119919,
0.05432968959212303,
-0.05895773321390152,
0.046770282089710236,
-0.07854996621608734,
-0.012239709496498108,
-0.00942638423293829,
0.0036245952360332012,
0.044290244579315186,
-0.031970202922821045,
0.030434925109148026,
0.015009774826467037,
0.17472043633460999,
-0.044796090573072433,
-0.005853630136698484,
0.03355623781681061,
-0.129882350564003,
-0.09319642931222916,
0.007328666280955076,
0.19131891429424286,
0.13422714173793793,
-0.048090651631355286,
-0.05478314682841301,
0.05787629261612892,
-0.024573978036642075,
-0.05166546255350113,
0.18612901866436005,
0.1355324238538742,
-0.1433362066745758,
0.07287926971912384,
0.004999513737857342,
-0.056986287236213684,
-0.03742443025112152,
-0.00426732562482357,
0.09365883469581604,
-0.02600516751408577,
-0.028467996045947075,
0.07471735030412674,
0.24243281781673431,
-0.16544800996780396,
0.057179614901542664,
0.004051866475492716,
-0.05977439135313034,
-0.1710972785949707,
0.09765876084566116,
-0.011315695010125637,
-0.20746348798274994,
0.01357036828994751,
-0.07509784400463104,
-0.04344959557056427,
0.2360471934080124,
0.01239700149744749,
0.036698367446660995,
0.2531094551086426,
-0.03753358870744705,
-0.05911456048488617,
0.07052752375602722,
-0.021738173440098763,
0.06695862114429474,
-0.2575749158859253,
-0.1412489116191864,
0.01093151606619358,
-0.12785562872886658,
0.0025925463996827602,
-0.02234363928437233,
-0.08022084832191467,
-0.03827802091836929,
-0.079276442527771,
0.001596768037416041,
-0.021115310490131378,
0.0972302109003067,
-0.11975528299808502,
0.146222323179245,
0.045198146253824234,
-0.08019448816776276,
-0.016920339316129684,
0.18287549912929535,
-0.08442999422550201,
-0.024462906643748283,
-0.1823849380016327,
0.253165066242218,
0.06369125843048096,
0.1202903464436531,
-0.047552403062582016,
0.008452809415757656,
-0.03445576876401901,
0.22391507029533386,
0.17550769448280334,
-0.03692542016506195,
0.02046220749616623,
0.06298809498548508,
0.04051419720053673,
0.03463171049952507,
0.22805540263652802,
0.13189980387687683,
0.08572927117347717,
-0.04117876663804054,
-0.027794016525149345,
-0.025188308209180832,
0.05590328946709633,
-0.07404550909996033,
0.04207015782594681,
0.05009876936674118,
-0.02368866465985775,
-0.11743457615375519,
0.18003739416599274,
-0.10486319661140442,
0.09144622832536697,
0.11178363859653473,
-0.1237211748957634,
-0.13187538087368011,
-0.03188552334904671,
-0.024923086166381836,
-0.09490636736154556,
0.09466332942247391,
-0.05299423262476921,
-0.10508818179368973,
0.11629053205251694,
0.008027907460927963,
-0.10148446261882782,
-0.262090802192688,
0.09144936501979828,
-0.03917919099330902,
0.14246374368667603,
-0.0130685456097126,
-0.02582843415439129,
0.010347881354391575,
-0.01142950914800167,
-0.03246507793664932,
0.08458210527896881,
0.040096547454595566,
0.06396213918924332,
-0.1637495458126068,
0.01029658317565918,
-0.05821184441447258,
0.012807602062821388,
0.02944212779402733,
-0.20675475895404816,
-0.03301338478922844,
-0.01249171607196331,
-0.07682930678129196,
-0.06510467082262039,
0.05338098108768463,
-0.08045102655887604,
0.09079298377037048,
0.16357667744159698,
0.004707162268459797,
0.010630887001752853,
-0.0567144900560379,
0.08888152986764908,
0.062279168516397476,
-0.050918690860271454,
-0.06550109386444092,
-0.0740373507142067,
-0.05693382769823074,
-0.060170017182826996,
-0.09050077944993973,
-0.12378954887390137,
-0.017205223441123962,
-0.06468513607978821,
0.03471436724066734,
-0.06951696425676346,
0.059102799743413925,
-0.01230331789702177,
0.04219208285212517,
0.006007094867527485,
-0.20113283395767212,
0.01331514772027731,
0.11256898939609528,
-0.006301536690443754,
-0.021777711808681488
] |
null | null | sentence-transformers |
# e5-dansk-test
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model was trained by MS-MARCO english dataset machine translated into the danish language to test whether Machine translation high quality datasets to a foreign language produces good results
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Dette er en dansk sætning", "Dette er en også en dansk sætning"]
model = SentenceTransformer('Jechto/e5-dansk-test-0.1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 10327 with parameters:
```
{'batch_size': 16}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adam.Adam'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "warmupconstant",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "sentence-similarity", "mteb"], "datasets": ["ms_marco"], "pipeline_tag": "sentence-similarity", "model-index": [{"name": "E:\\HuggingFaceDataDownloader\\results\\finetuned_models\\2000\\2000_finetune", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AngryTweetsClassification", "type": "DDSC/angry-tweets", "config": "default", "split": "test", "revision": "20b0e6081892e78179356fada741b7afa381443d"}, "metrics": [{"type": "accuracy", "value": 56.084049665711554}, {"type": "f1", "value": 55.198013156852625}]}, {"task": {"type": "BitextMining"}, "dataset": {"name": "MTEB BornholmBitextMining", "type": "strombergnlp/bornholmsk_parallel", "config": "default", "split": "test", "revision": "3bc5cfb4ec514264fe2db5615fac9016f7251552"}, "metrics": [{"type": "accuracy", "value": 47}, {"type": "f1", "value": 37.97365079365079}, {"type": "precision", "value": 34.48333333333334}, {"type": "recall", "value": 47}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB DanishPoliticalCommentsClassification", "type": "danish_political_comments", "config": "default", "split": "train", "revision": "edbb03726c04a0efab14fc8c3b8b79e4d420e5a1"}, "metrics": [{"type": "accuracy", "value": 40.88398556758257}, {"type": "f1", "value": 37.604524785367076}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB LccSentimentClassification", "type": "DDSC/lcc", "config": "default", "split": "test", "revision": "de7ba3406ee55ea2cc52a0a41408fa6aede6d3c6"}, "metrics": [{"type": "accuracy", "value": 59.599999999999994}, {"type": "f1", "value": 59.0619246469949}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB NordicLangClassification", "type": "strombergnlp/nordic_langid", "config": "default", "split": "test", "revision": "e254179d18ab0165fdb6dbef91178266222bee2a"}, "metrics": [{"type": "accuracy", "value": 61.00333333333333}, {"type": "f1", "value": 60.45633325804296}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ScalaDaClassification", "type": "ScandEval/scala-da", "config": "default", "split": "test", "revision": "1de08520a7b361e92ffa2a2201ebd41942c54675"}, "metrics": [{"type": "accuracy", "value": 50.43457031250001}, {"type": "ap", "value": 50.22017546538257}, {"type": "f1", "value": 50.03426509926491}]}]}]} | sentence-similarity | Jechto/e5-dansk-test-0.1 | [
"sentence-transformers",
"safetensors",
"xlm-roberta",
"sentence-similarity",
"mteb",
"dataset:ms_marco",
"model-index",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:48:18+00:00 | [] | [] | TAGS
#sentence-transformers #safetensors #xlm-roberta #sentence-similarity #mteb #dataset-ms_marco #model-index #endpoints_compatible #region-us
|
# e5-dansk-test
This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model was trained by MS-MARCO english dataset machine translated into the danish language to test whether Machine translation high quality datasets to a foreign language produces good results
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Training
The model was trained with the parameters:
DataLoader:
'sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader' of length 10327 with parameters:
Loss:
'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
| [
"# e5-dansk-test\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nThe model was trained by MS-MARCO english dataset machine translated into the danish language to test whether Machine translation high quality datasets to a foreign language produces good results",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader' of length 10327 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
"TAGS\n#sentence-transformers #safetensors #xlm-roberta #sentence-similarity #mteb #dataset-ms_marco #model-index #endpoints_compatible #region-us \n",
"# e5-dansk-test\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nThe model was trained by MS-MARCO english dataset machine translated into the danish language to test whether Machine translation high quality datasets to a foreign language produces good results",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader' of length 10327 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
54,
89,
38,
102,
5,
6
] | [
"passage: TAGS\n#sentence-transformers #safetensors #xlm-roberta #sentence-similarity #mteb #dataset-ms_marco #model-index #endpoints_compatible #region-us \n# e5-dansk-test\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.\n\nThe model was trained by MS-MARCO english dataset machine translated into the danish language to test whether Machine translation high quality datasets to a foreign language produces good results## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader' of length 10327 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors"
] | [
-0.055622201412916183,
0.12297020107507706,
-0.005954842083156109,
0.03673310577869415,
0.09837933629751205,
0.012062081135809422,
0.13030095398426056,
0.09070112556219101,
-0.06377387046813965,
0.09825947880744934,
0.03052104264497757,
0.06941571086645126,
0.021761393174529076,
0.06886940449476242,
0.004528223071247339,
-0.2578006386756897,
0.0709356740117073,
-0.0600745789706707,
-0.031117558479309082,
0.06247665733098984,
0.14713430404663086,
-0.08061695098876953,
0.06879429519176483,
-0.017984727397561073,
-0.0470406748354435,
0.024251433089375496,
-0.016835840418934822,
-0.05407843738794327,
0.09288475662469864,
0.0876438170671463,
0.04672865942120552,
-0.0026535133365541697,
-0.006971361581236124,
-0.1910793036222458,
0.017825545743107796,
0.050946708768606186,
-0.00024539310834370553,
0.03660725802183151,
0.017614668235182762,
0.008370227180421352,
0.12386741489171982,
-0.13020651042461395,
0.055202603340148926,
0.01850016787648201,
-0.0763835459947586,
-0.0639609694480896,
-0.049397096037864685,
-0.021912196651101112,
0.06840682774782181,
0.09927897155284882,
-0.023485396057367325,
0.16039711236953735,
-0.04590142145752907,
0.09305765479803085,
0.15166139602661133,
-0.27640801668167114,
-0.051461637020111084,
0.09521833062171936,
0.11509810388088226,
0.07705564796924591,
-0.07733362168073654,
0.017114130780100822,
0.01523522473871708,
0.04573095217347145,
0.04147304967045784,
-0.04784983769059181,
0.007389000151306391,
0.007108543999493122,
-0.07559836655855179,
0.011186590418219566,
0.18222101032733917,
0.0032906243577599525,
-0.020568186417222023,
-0.20322753489017487,
-0.05464204028248787,
0.0754985585808754,
-0.03418869152665138,
-0.08280499279499054,
0.035173024982213974,
0.02484860084950924,
0.02538999915122986,
-0.10528098046779633,
-0.09291841089725494,
-0.03181524574756622,
-0.09595388919115067,
0.06797827035188675,
0.009684032760560513,
-0.02134856954216957,
-0.011247968301177025,
0.02727711945772171,
-0.08625351637601852,
-0.10886318981647491,
-0.05480089783668518,
-0.04734763875603676,
-0.0818827748298645,
-0.022562619298696518,
-0.039748016744852066,
-0.08149829506874084,
0.06696955859661102,
-0.0049200477078557014,
-0.014521081000566483,
0.0029984558932483196,
0.0018576809670776129,
0.04000645875930786,
0.023446379229426384,
0.11790482699871063,
-0.05187705159187317,
-0.09721866995096207,
0.009469357319176197,
-0.028857650235295296,
0.041468340903520584,
0.007412937469780445,
-0.06080362945795059,
-0.06092825159430504,
0.057170066982507706,
0.10096282511949539,
0.02315440960228443,
0.02911331132054329,
-0.024318693205714226,
-0.013821788132190704,
0.0940733402967453,
-0.13042742013931274,
0.03216566517949104,
0.022834742441773415,
-0.046866126358509064,
0.0687510222196579,
0.038034938275814056,
-0.0289260596036911,
-0.09801194071769714,
0.015857519581913948,
-0.06733535975217819,
-0.006161110941320658,
-0.049554478377103806,
-0.1684904247522354,
0.02295525372028351,
-0.007583552040159702,
-0.038638319820165634,
-0.11971528083086014,
-0.16914431750774384,
-0.07521863281726837,
-0.0030494434759020805,
-0.049120139330625534,
-0.010516287758946419,
-0.09854699671268463,
-0.015171462669968605,
0.011159279383718967,
-0.010874634608626366,
-0.06543584913015366,
-0.01911647990345955,
0.01656980626285076,
-0.05610644072294235,
0.05215394124388695,
0.0029677562415599823,
0.03972119092941284,
-0.1007370874285698,
0.016107741743326187,
-0.12411807477474213,
0.15464332699775696,
-0.04475857689976692,
0.06521529704332352,
-0.12002759426832199,
-0.039706677198410034,
-0.01729123480618,
0.04726140573620796,
-0.004935734905302525,
0.16296960413455963,
-0.18830519914627075,
-0.019975589588284492,
0.16120067238807678,
-0.09651045501232147,
-0.15433600544929504,
0.10022009164094925,
-0.024945026263594627,
0.13692177832126617,
0.14638300240039825,
0.037382882088422775,
0.13126710057258606,
-0.10224371403455734,
0.02802528627216816,
0.03046608343720436,
-0.013242597691714764,
0.07104385644197464,
0.07699483633041382,
-0.054076265543699265,
0.08757582306861877,
-0.006049404852092266,
-0.039743393659591675,
0.010647318325936794,
0.0000804566006991081,
-0.05674097687005997,
-0.015040513128042221,
-0.05413152649998665,
0.03545009717345238,
-0.016798850148916245,
0.04414190724492073,
-0.042630087584257126,
-0.07305774092674255,
0.1028568297624588,
0.08358844369649887,
-0.08492303639650345,
0.04150543361902237,
-0.05777166411280632,
0.054255060851573944,
-0.032611049711704254,
-0.0019703174475580454,
-0.14986419677734375,
-0.15939630568027496,
0.03530113399028778,
0.037001244723796844,
0.03691437095403671,
0.052844323217868805,
0.055611226707696915,
0.04320737347006798,
-0.022908974438905716,
0.01992667466402054,
0.05396769568324089,
0.0003542434424161911,
-0.0684831291437149,
-0.10937666893005371,
0.04151923581957817,
-0.05296911299228668,
0.025314506143331528,
-0.13858991861343384,
-0.008872286416590214,
-0.0011627632193267345,
0.08068445324897766,
0.04424285143613815,
-0.01339083630591631,
0.004196738824248314,
-0.007700820453464985,
-0.0091168861836195,
-0.055205315351486206,
0.046883221715688705,
0.016339709982275963,
-0.09587479382753372,
0.1845804750919342,
-0.20332513749599457,
-0.028455011546611786,
0.06819406896829605,
0.05141173675656319,
-0.07901117205619812,
-0.06282511353492737,
0.0037774438969790936,
0.005325180944055319,
-0.07882199436426163,
-0.07837683707475662,
0.10177198797464371,
0.0459928959608078,
0.1096806675195694,
-0.10568198561668396,
-0.036261506378650665,
-0.031212149187922478,
-0.022096063941717148,
-0.04127400740981102,
0.11288962513208389,
-0.07841916382312775,
-0.18671558797359467,
0.0865224078297615,
0.09955906867980957,
-0.05457393079996109,
0.16721348464488983,
-0.016289614140987396,
-0.06066763028502464,
-0.03549821302294731,
0.05338526889681816,
0.020479634404182434,
0.017892587929964066,
-0.05339644476771355,
0.007549822796136141,
0.039198074489831924,
0.04360960051417351,
0.040198083966970444,
-0.06436258554458618,
0.03413359075784683,
0.06195241957902908,
-0.0446990467607975,
0.10083664953708649,
0.04501209035515785,
0.02054455503821373,
0.06291124224662781,
-0.006885719019919634,
0.024219216778874397,
-0.011407746002078056,
-0.05483531951904297,
-0.1338336318731308,
0.1834152191877365,
-0.14703616499900818,
-0.15247148275375366,
-0.15841875970363617,
0.015331177040934563,
-0.03218328580260277,
-0.001544359722174704,
0.0521564781665802,
-0.027049491181969643,
-0.06798319518566132,
-0.10501071810722351,
0.07527250051498413,
0.019037310034036636,
-0.0741337314248085,
-0.008555913344025612,
0.024904772639274597,
-0.0240195132791996,
-0.12868231534957886,
-0.008704234845936298,
0.016429727897047997,
-0.05356643348932266,
-0.037221089005470276,
-0.0750853642821312,
0.028787104412913322,
0.0844658613204956,
0.009635357186198235,
-0.021072877570986748,
-0.03504328057169914,
0.2496022880077362,
-0.07586256414651871,
0.05765925720334053,
0.18769678473472595,
0.0397908054292202,
0.05227963626384735,
0.10017126798629761,
0.0139599135145545,
-0.04572591185569763,
0.04933417961001396,
0.008517719805240631,
-0.008816187269985676,
-0.19827578961849213,
-0.12258084118366241,
-0.10660861432552338,
-0.034145791083574295,
0.07527761906385422,
0.043534331023693085,
-0.03571978956460953,
0.08175154030323029,
-0.01144244335591793,
-0.010674044489860535,
0.08175081014633179,
0.09939078986644745,
0.15855713188648224,
0.011817099526524544,
0.06984852254390717,
-0.06262920051813126,
-0.04131525754928589,
0.07272733002901077,
0.003657316556200385,
0.13027040660381317,
-0.01227178331464529,
0.11779934167861938,
0.05108446627855301,
0.004158981144428253,
-0.0009528021328151226,
0.0940651148557663,
-0.057598479092121124,
0.011098543182015419,
-0.02565738745033741,
-0.1090964674949646,
-0.026259711012244225,
0.07081369310617447,
0.07740212976932526,
-0.03581490367650986,
-0.036842022091150284,
0.0370231457054615,
0.08260350674390793,
0.11746367067098618,
0.08223190158605576,
-0.21471109986305237,
-0.0882287472486496,
0.048336971551179886,
-0.06597195565700531,
-0.06385855376720428,
0.01533986534923315,
0.13880623877048492,
-0.14625412225723267,
0.052933912724256516,
-0.004032413940876722,
0.10709957033395767,
-0.01740202121436596,
-0.025872115045785904,
-0.08097448945045471,
0.048346929252147675,
0.0027821327093988657,
0.09333828091621399,
-0.21107757091522217,
0.1027856394648552,
0.019626984372735023,
0.07421214133501053,
-0.055881183594465256,
0.03158348426222801,
0.08042333275079727,
0.0707918033003807,
0.16314992308616638,
-0.001019469927996397,
-0.04020994156599045,
0.004034355748444796,
-0.08189510554075241,
0.0007089433493092656,
0.03689082711935043,
-0.027447931468486786,
0.06291881203651428,
-0.034282002598047256,
0.00014450761955231428,
-0.008688262663781643,
0.06518980860710144,
-0.06327759474515915,
-0.17649659514427185,
-0.026397360488772392,
0.04117600619792938,
0.028261302039027214,
-0.018557138741016388,
-0.0477583184838295,
-0.09237474203109741,
0.18139727413654327,
-0.05410875380039215,
-0.07625112682580948,
-0.11310119181871414,
-0.02810659445822239,
0.1273440718650818,
-0.09756403416395187,
0.022057341411709785,
-0.03322729468345642,
0.14196068048477173,
-0.060551196336746216,
-0.045464761555194855,
0.0570513978600502,
-0.08292999863624573,
-0.06557787954807281,
-0.0317748486995697,
0.11809658259153366,
0.03745407238602638,
0.03930973261594772,
0.06636864691972733,
0.035983648151159286,
-0.026410814374685287,
-0.10100501030683517,
-0.10167716443538666,
0.1319938749074936,
0.025263197720050812,
0.10662674903869629,
-0.13958635926246643,
-0.06367954611778259,
-0.06797697395086288,
-0.015242066234350204,
0.23634593188762665,
0.181139275431633,
-0.0776158943772316,
0.09202781319618225,
0.11907172948122025,
-0.10485932976007462,
-0.23587824404239655,
-0.05407029762864113,
0.028002751991152763,
0.077089823782444,
0.045993007719516754,
-0.08060247451066971,
0.10054361820220947,
0.05620746687054634,
-0.006076776422560215,
-0.0756274089217186,
-0.24540404975414276,
-0.1380593478679657,
0.10775107890367508,
0.051640257239341736,
0.05740971490740776,
-0.12350870668888092,
-0.052748069167137146,
-0.06794023513793945,
-0.12803079187870026,
0.13617393374443054,
-0.055310774594545364,
0.06850212067365646,
0.049257341772317886,
-0.012513919733464718,
0.03615718334913254,
-0.017748499289155006,
0.16024859249591827,
0.014429616741836071,
0.026677323505282402,
-0.04658326879143715,
0.02070932276546955,
0.07427176088094711,
-0.056038931012153625,
0.14168113470077515,
-0.042986344546079636,
0.06023712828755379,
-0.12712284922599792,
-0.01995689421892166,
-0.056497666984796524,
0.03258851543068886,
-0.03407267481088638,
-0.019916096702218056,
-0.07711340487003326,
0.09021950513124466,
0.13326147198677063,
-0.017605938017368317,
0.06468643993139267,
-0.08636251091957092,
0.094224713742733,
0.10949314385652542,
0.13653592765331268,
0.03212645277380943,
-0.09837422519922256,
0.0297822505235672,
-0.01709580235183239,
0.08356042206287384,
-0.05577772483229637,
0.07172685116529465,
0.10546450316905975,
-0.026056896895170212,
0.11490082740783691,
0.011370575055480003,
-0.07058422267436981,
0.005476166494190693,
0.059556860476732254,
-0.06514619290828705,
-0.16859498620033264,
-0.02802346460521221,
-0.006070731673389673,
-0.06224755570292473,
-0.07077599316835403,
0.1519518494606018,
-0.033058736473321915,
0.007470233365893364,
0.007238645572215319,
0.04093522951006889,
-0.027263831347227097,
0.15756328403949738,
0.011120114475488663,
0.0433533638715744,
-0.06194465979933739,
0.07788944989442825,
0.06895361095666885,
-0.10569052398204803,
0.028672190383076668,
0.15735149383544922,
-0.09433884173631668,
-0.04290389269590378,
0.011616917327046394,
0.0893743559718132,
-0.10146724432706833,
-0.0529697984457016,
-0.0419234074652195,
-0.08571568876504898,
-0.007455741986632347,
0.0774562880396843,
0.05391496792435646,
0.06554610282182693,
-0.05662286654114723,
-0.026586154475808144,
-0.057732898741960526,
0.07081976532936096,
0.09949257969856262,
0.02371114492416382,
-0.048111606389284134,
0.10674945265054703,
-0.02794649824500084,
0.0647948756814003,
-0.03302805870771408,
-0.015424767509102821,
-0.06155216321349144,
-0.012182431295514107,
-0.05171266570687294,
0.05335203930735588,
-0.14055852591991425,
-0.0193902850151062,
0.001930111669935286,
0.025097696110606194,
-0.03434200957417488,
-0.003569552442058921,
-0.06084538623690605,
-0.023593179881572723,
-0.06325006484985352,
0.06691362708806992,
-0.12127574533224106,
-0.01628674753010273,
0.04176129773259163,
-0.07992809265851974,
0.09172375500202179,
-0.00380721315741539,
-0.04926467314362526,
0.026452360674738884,
-0.09831617772579193,
-0.03200525417923927,
0.031395286321640015,
0.040791768580675125,
0.031121371313929558,
-0.1499093770980835,
0.019473325461149216,
0.04847807437181473,
0.04100624471902847,
0.014222487807273865,
0.02827557735145092,
-0.08489576727151871,
0.01620250754058361,
-0.054286565631628036,
-0.018151693046092987,
-0.05563456937670708,
0.0247238427400589,
0.021097423508763313,
-0.0023836102336645126,
0.15794198215007782,
-0.09105978161096573,
0.06867846101522446,
-0.09485457837581635,
-0.0006224637618288398,
0.006426353473216295,
-0.057710036635398865,
0.02087664045393467,
-0.04761451482772827,
0.05888910964131355,
-0.03239040821790695,
0.1518756002187729,
-0.019674137234687805,
-0.004970005713403225,
0.06956608593463898,
-0.0221520084887743,
0.037073828279972076,
0.013712265528738499,
0.13226504623889923,
0.04126519709825516,
-0.0007206919835880399,
-0.04478111118078232,
0.008827200159430504,
0.015204966068267822,
0.07269912213087082,
0.1277502179145813,
0.1333189606666565,
0.06041039153933525,
0.12942036986351013,
0.05416214466094971,
0.03015523962676525,
0.02204231545329094,
0.004380396567285061,
-0.021016374230384827,
0.03540834039449692,
-0.037357304245233536,
0.01776706613600254,
0.14409707486629486,
-0.18397696316242218,
0.11007258296012878,
-0.0260209571570158,
-0.07882902026176453,
-0.1453983187675476,
-0.08807534724473953,
-0.09216419607400894,
-0.08789518475532532,
-0.008957739919424057,
-0.15301509201526642,
0.007666940800845623,
0.029714979231357574,
0.05148797482252121,
-0.025271721184253693,
0.12238728255033493,
-0.1260734647512436,
-0.12352191656827927,
0.07686298340559006,
-0.017504796385765076,
0.1181759238243103,
0.06122635677456856,
0.005867358297109604,
0.004398989491164684,
0.031274475157260895,
0.05784767493605614,
0.06761997193098068,
0.07305152714252472,
0.026429804041981697,
-0.07758980244398117,
-0.03776136040687561,
-0.01561729609966278,
0.031305354088544846,
-0.04498833045363426,
0.1193975955247879,
0.06478279829025269,
-0.049669958651065826,
-0.011749736964702606,
0.18607911467552185,
-0.07261824607849121,
-0.19160722196102142,
-0.204042449593544,
0.14436005055904388,
0.033494554460048676,
0.05583994463086128,
-0.014003289863467216,
-0.08289636671543121,
-0.03713473305106163,
0.15475457906723022,
0.2188102751970291,
-0.0976928249001503,
0.020520702004432678,
0.028528200462460518,
0.010523156262934208,
0.012708492577075958,
0.06295771896839142,
0.03443377837538719,
0.24429889023303986,
-0.04263757914304733,
0.07916595786809921,
-0.05038512870669365,
-0.0022231994662433863,
-0.1086994931101799,
0.09991216659545898,
0.0021575037389993668,
-0.010576162487268448,
-0.017245450988411903,
0.11209170520305634,
-0.04138980060815811,
-0.08660076558589935,
-0.026950323954224586,
-0.11561989039182663,
-0.12546873092651367,
-0.03965853527188301,
-0.004888105671852827,
0.02890675514936447,
0.0609479621052742,
0.022509505972266197,
-0.010422729887068272,
0.07618727535009384,
-0.0055337948724627495,
-0.09104901552200317,
-0.04798574000597,
0.07678008079528809,
-0.017905302345752716,
0.13336774706840515,
0.016896352171897888,
0.034133683890104294,
0.10631869733333588,
-0.02810015343129635,
-0.046205271035432816,
0.10066097974777222,
0.06809282302856445,
-0.027135532349348068,
0.11511784046888351,
0.06896516680717468,
-0.01156627293676138,
0.08769261091947556,
0.09251907467842102,
-0.10114710032939911,
0.05127842351794243,
0.021587591618299484,
-0.03684774413704872,
-0.09652861207723618,
0.04819686710834503,
-0.10324399918317795,
0.13948751986026764,
0.16367897391319275,
-0.0174939576536417,
0.011459545232355595,
-0.0032931044697761536,
0.044556766748428345,
0.005322959274053574,
0.05062751844525337,
-0.035125888884067535,
-0.13874875009059906,
-0.007611817680299282,
-0.022072359919548035,
0.04452726989984512,
-0.27893081307411194,
-0.0906711220741272,
-0.022822322323918343,
-0.006827226374298334,
-0.0416831448674202,
0.12344207614660263,
0.07039829343557358,
-0.005095713771879673,
-0.03454646095633507,
-0.20073667168617249,
0.008128086104989052,
0.09524790197610855,
-0.062354616820812225,
-0.08548199385404587
] |
null | null | diffusers | ### My-Pet-Dog Dreambooth model trained by TejasDhangar following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 22US17636AI005
Sample pictures of this concept:
.jpeg)
.jpeg)
.jpeg)
.jpeg)
.jpeg)
.jpeg)
| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | TejasDhangar/my-pet-dog | [
"diffusers",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-06T20:49:33+00:00 | [] | [] | TAGS
#diffusers #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### My-Pet-Dog Dreambooth model trained by TejasDhangar following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 22US17636AI005
Sample pictures of this concept:
!0.jpeg)
!1.jpeg)
!2.jpeg)
!3.jpeg)
!4.jpeg)
!5.jpeg)
| [
"### My-Pet-Dog Dreambooth model trained by TejasDhangar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 22US17636AI005\n\nSample pictures of this concept:\n\n \n \n \n \n \n !0.jpeg)\n !1.jpeg)\n !2.jpeg)\n !3.jpeg)\n !4.jpeg)\n !5.jpeg)"
] | [
"TAGS\n#diffusers #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### My-Pet-Dog Dreambooth model trained by TejasDhangar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 22US17636AI005\n\nSample pictures of this concept:\n\n \n \n \n \n \n !0.jpeg)\n !1.jpeg)\n !2.jpeg)\n !3.jpeg)\n !4.jpeg)\n !5.jpeg)"
] | [
68,
85
] | [
"passage: TAGS\n#diffusers #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-Dog Dreambooth model trained by TejasDhangar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 22US17636AI005\n\nSample pictures of this concept:\n\n \n \n \n \n \n !0.jpeg)\n !1.jpeg)\n !2.jpeg)\n !3.jpeg)\n !4.jpeg)\n !5.jpeg)"
] | [
-0.08611887693405151,
0.12133623659610748,
-0.0023006421979516745,
0.03856741636991501,
0.1163485124707222,
-0.012089409865438938,
0.18404455482959747,
0.035949792712926865,
-0.021031416952610016,
0.02575915865600109,
0.1071508526802063,
0.03802662715315819,
0.041362639516592026,
0.16482947766780853,
-0.010508806444704533,
-0.19593468308448792,
0.014680282212793827,
0.083439402282238,
0.021326951682567596,
0.04151128605008125,
0.05493622645735741,
-0.07927783578634262,
0.1437923163175583,
-0.010544514283537865,
-0.23370739817619324,
-0.007292695809155703,
-0.0697079598903656,
-0.055147670209407806,
0.048836980015039444,
0.050927627831697464,
0.01563171297311783,
0.07822359353303909,
0.05955369397997856,
-0.024133160710334778,
0.023740435019135475,
0.003112238133326173,
-0.055602364242076874,
0.06402333080768585,
0.09869935363531113,
0.07363342493772507,
0.1452861726284027,
0.07157807797193527,
-0.10134009271860123,
0.030535096302628517,
-0.08654030412435532,
-0.05011873319745064,
0.02919468842446804,
0.1117556020617485,
0.1607787311077118,
0.07240121066570282,
0.013425646349787712,
0.00622516218572855,
0.04191765934228897,
0.10915351659059525,
0.19966265559196472,
-0.2108980417251587,
-0.11921509355306625,
0.18435899913311005,
0.05833464115858078,
0.03621627390384674,
-0.06559120863676071,
0.06687486171722412,
0.09961484372615814,
-0.03140660747885704,
-0.010011971928179264,
-0.06881998479366302,
0.11021392792463303,
-0.07430346310138702,
-0.10922403633594513,
0.030002327635884285,
0.227223202586174,
0.07378479093313217,
-0.04816014692187309,
-0.027899213135242462,
-0.09524276852607727,
-0.04610823839902878,
-0.07091057300567627,
0.030506547540426254,
-0.05069999769330025,
-0.00807665754109621,
-0.05442856252193451,
-0.06663965433835983,
-0.11113792657852173,
-0.0728776603937149,
-0.005720863584429026,
0.12445991486310959,
0.012214812450110912,
0.07686912268400192,
-0.12629318237304688,
0.13365761935710907,
-0.026596907526254654,
-0.10323457419872284,
0.015488071367144585,
-0.10719054937362671,
0.012449465692043304,
0.05923103541135788,
0.05373763293027878,
-0.10991179198026657,
0.05684831365942955,
-0.026647375896573067,
0.07642296701669693,
-0.006464463192969561,
0.04562857747077942,
0.11086196452379227,
0.025332052260637283,
-0.00917181745171547,
-0.09760106354951859,
-0.1338852345943451,
-0.02664671652019024,
-0.0628986805677414,
-0.030686940997838974,
-0.012299138121306896,
-0.12102612107992172,
-0.013702793046832085,
-0.09615618735551834,
-0.015822773799300194,
0.02381390705704689,
0.04240164905786514,
0.00922712218016386,
-0.07147406041622162,
0.17560337483882904,
0.08072550594806671,
-0.01694314554333687,
-0.025754746049642563,
-0.009163514710962772,
0.12400476634502411,
0.05334950238466263,
-0.02065110020339489,
-0.008150793612003326,
0.016377173364162445,
-0.05370869114995003,
0.01191175077110529,
-0.07059918344020844,
-0.053543709218502045,
-0.010983767919242382,
-0.1870165914297104,
0.03265554830431938,
-0.15808410942554474,
-0.040992189198732376,
0.06127816066145897,
0.07701926678419113,
-0.05801432952284813,
-0.037090711295604706,
-0.05135630443692207,
-0.10047029703855515,
0.0032086623832583427,
0.018266377970576286,
-0.004945201333612204,
-0.01446168590337038,
0.04907500371336937,
0.027614377439022064,
0.15098170936107635,
-0.24323880672454834,
0.008051284588873386,
-0.009360658004879951,
0.032626569271087646,
-0.026181509718298912,
0.04191914573311806,
0.009369278326630592,
0.06634709984064102,
-0.033307891339063644,
-0.051947224885225296,
0.0026964449789375067,
-0.024280356243252754,
0.04290175065398216,
0.12212922424077988,
-0.12289602309465408,
0.02450563944876194,
0.18070194125175476,
-0.08100513368844986,
-0.1446504294872284,
0.09909327328205109,
0.02978711575269699,
0.11269411444664001,
0.031609732657670975,
0.10885652899742126,
0.1010231003165245,
-0.21663418412208557,
0.02684641443192959,
0.02364291623234749,
-0.0819084495306015,
-0.17267270386219025,
0.02664305455982685,
0.10080727934837341,
-0.06274677067995071,
0.023927349597215652,
-0.12704402208328247,
0.10257700085639954,
-0.1174188107252121,
-0.029771406203508377,
-0.016107453033328056,
-0.09329372644424438,
-0.009901863522827625,
-0.003262390848249197,
0.01377793587744236,
0.012699461542069912,
0.02076902985572815,
-0.12707394361495972,
0.035158488899469376,
-0.06084853410720825,
-0.01489289104938507,
-0.05284629389643669,
0.059384144842624664,
-0.11875678598880768,
0.005708267912268639,
-0.001692177727818489,
0.010507158935070038,
0.04465806856751442,
0.13389630615711212,
0.0265046413987875,
0.16529597342014313,
0.05440676584839821,
0.07282041013240814,
-0.011925337836146355,
-0.08325696736574173,
0.013881637714803219,
-0.007304144557565451,
-0.044408608227968216,
-0.10655875504016876,
0.05720693618059158,
-0.06644799560308456,
-0.045467279851436615,
-0.16191421449184418,
0.014767849817872047,
-0.021076899021863937,
0.0765104740858078,
0.05856141448020935,
0.002774086082354188,
0.0166766494512558,
-0.018069341778755188,
-0.09446346014738083,
-0.015261777676641941,
0.06918361783027649,
0.043123941868543625,
-0.0682719275355339,
0.14500747621059418,
-0.1045423150062561,
0.06547493487596512,
0.08508270978927612,
-0.11412473767995834,
-0.03661596402525902,
0.029585331678390503,
-0.08162470906972885,
0.010011118836700916,
-0.01891419291496277,
-0.0006540809408761561,
-0.03270988538861275,
-0.035251349210739136,
0.134136363863945,
-0.04840720444917679,
0.03670815750956535,
0.08716867864131927,
-0.06282653659582138,
-0.014222817495465279,
0.06506605446338654,
0.09476635605096817,
-0.09140058606863022,
0.0882759690284729,
0.09669730812311172,
-0.03916124999523163,
0.20212575793266296,
0.05122460424900055,
-0.051900822669267654,
-0.06888150423765182,
0.09316672384738922,
0.04308789595961571,
0.21013478934764862,
-0.11026202887296677,
0.023785272613167763,
0.02886822819709778,
-0.027531709522008896,
0.0224344190210104,
-0.12937121093273163,
-0.040138937532901764,
-0.01708979904651642,
-0.05732510983943939,
0.13166089355945587,
0.08805525302886963,
-0.12177365273237228,
0.08973623812198639,
-0.053760867565870285,
-0.10838055610656738,
0.02807970717549324,
0.0036141816526651382,
-0.035936981439590454,
0.08278608322143555,
-0.00524098239839077,
-0.2181520164012909,
-0.1493118554353714,
-0.15023203194141388,
-0.068189837038517,
0.006459694821387529,
0.06932853162288666,
-0.04469727724790573,
-0.03085743822157383,
-0.06593967974185944,
-0.07187269628047943,
-0.12216310203075409,
0.04305855929851532,
0.053940676152706146,
0.044222570955753326,
-0.006304137408733368,
-0.018327197059988976,
0.010986252687871456,
-0.022041358053684235,
0.04282912611961365,
0.12423881888389587,
0.028822537511587143,
0.19279344379901886,
0.061180952936410904,
-0.01494467630982399,
0.02592557482421398,
0.008924981579184532,
0.2482975572347641,
-0.04944278672337532,
0.10479273647069931,
0.13483333587646484,
0.028087761253118515,
0.07050073146820068,
0.14865417778491974,
0.028434058651328087,
-0.07762759178876877,
0.044805191457271576,
-0.0528939850628376,
-0.13896232843399048,
-0.07472753524780273,
-0.025822676718235016,
-0.08709248900413513,
0.15546995401382446,
0.04370295628905296,
0.06670212745666504,
0.11098060011863708,
0.15087366104125977,
0.010336160659790039,
0.055988628417253494,
-0.06188702955842018,
0.11225864291191101,
-0.05322329327464104,
-0.023108486086130142,
0.022530658170580864,
-0.08235844224691391,
-0.05804068595170975,
0.10093040764331818,
0.0673903301358223,
0.21184590458869934,
0.045542433857917786,
0.05019677057862282,
0.07512830942869186,
0.08607915043830872,
0.11405665427446365,
0.06461977958679199,
-0.017420833930373192,
-0.03132021799683571,
-0.020349908620119095,
-0.09491180628538132,
0.15553247928619385,
0.07261962443590164,
-0.032733697444200516,
-0.04952974617481232,
0.0483894869685173,
0.04255392774939537,
-0.024616334587335587,
0.10110928118228912,
0.12666183710098267,
-0.2825038433074951,
0.038209833204746246,
-0.00665955850854516,
0.08276302367448807,
-0.0733894631266594,
-0.0040243505500257015,
0.21813298761844635,
-0.032927047461271286,
0.06409992277622223,
-0.041452910751104355,
0.10116913914680481,
0.03518856316804886,
-0.00816292967647314,
0.0465770848095417,
0.05531517416238785,
0.01779429242014885,
0.009358021430671215,
-0.21162407100200653,
0.15995033085346222,
-0.02090923860669136,
0.024887047708034515,
0.0019290661439299583,
-0.03997670114040375,
-0.04661242663860321,
0.11965420097112656,
0.15717969834804535,
0.014636160805821419,
0.05822156369686127,
-0.042953263968229294,
-0.09900147467851639,
-0.013662585988640785,
0.06368229538202286,
0.028094138950109482,
0.07338196784257889,
0.0897681713104248,
-0.044795211404561996,
-0.02734314650297165,
0.06583652645349503,
-0.1693269908428192,
-0.09656371176242828,
0.016268175095319748,
0.19881173968315125,
0.09349106252193451,
0.016276635229587555,
0.05557805672287941,
-0.08148359507322311,
0.1080387756228447,
-0.15150494873523712,
-0.06787516176700592,
-0.09247729927301407,
-0.03035682626068592,
-0.007125170435756445,
-0.032845642417669296,
-0.007085287012159824,
-0.1106245219707489,
0.06902944296598434,
-0.028658274561166763,
-0.14026808738708496,
0.019788743928074837,
-0.16688455641269684,
-0.07632732391357422,
-0.0984061136841774,
0.03401346132159233,
0.0291873998939991,
-0.019681427627801895,
-0.008171371184289455,
-0.08209700137376785,
-0.06820270419120789,
-0.10640140622854233,
0.020763352513313293,
0.09343257546424866,
-0.1258019655942917,
-0.03938763216137886,
-0.06381913274526596,
-0.06513498723506927,
-0.04383446276187897,
-0.02703159488737583,
0.07796534150838852,
0.20993058383464813,
-0.10920098423957825,
0.0441913902759552,
0.10194556415081024,
-0.06996820122003555,
-0.18975944817066193,
-0.08298422396183014,
0.00974967610090971,
-0.025577597320079803,
-0.0141068110242486,
-0.12211664766073227,
0.10563908517360687,
0.02633747085928917,
-0.006620417814701796,
0.25384026765823364,
-0.3238372206687927,
-0.02316095307469368,
-0.051783908158540726,
0.14059653878211975,
0.2237280160188675,
-0.16264572739601135,
-0.035624708980321884,
-0.008761169388890266,
-0.16788378357887268,
0.17072370648384094,
0.000984787242487073,
0.09262916445732117,
-0.05142088606953621,
0.015006334520876408,
-0.008661670610308647,
-0.04492155835032463,
0.10187523812055588,
-0.014601285569369793,
0.04501134902238846,
-0.07355336099863052,
0.039802100509405136,
0.1791854053735733,
-0.024850357323884964,
0.06095685064792633,
-0.0735270231962204,
0.021626081317663193,
-0.1267218291759491,
-0.018759887665510178,
-0.03602329641580582,
-0.026407994329929352,
-0.02204231172800064,
-0.09985212981700897,
-0.09921199083328247,
-0.011199574917554855,
0.03154835104942322,
0.042443811893463135,
-0.00590917281806469,
0.015594491735100746,
-0.061032891273498535,
0.20136699080467224,
-0.028198229148983955,
0.034171078354120255,
-0.054619576781988144,
-0.09899087250232697,
-0.04708460345864296,
0.12472276389598846,
-0.04261003062129021,
-0.02022111788392067,
0.1242859810590744,
-0.006910619325935841,
0.04613834246993065,
0.032548848539590836,
-0.0456828698515892,
0.08739384263753891,
0.10090909153223038,
-0.14074818789958954,
-0.16160649061203003,
-0.06650148332118988,
0.1391388177871704,
0.07659222930669785,
0.0753927007317543,
0.11637373268604279,
-0.1054840087890625,
0.06236540526151657,
-0.04520055651664734,
-0.010732753202319145,
-0.03422193229198456,
0.03740544617176056,
-0.026684779673814774,
0.008713878691196442,
-0.06400293856859207,
0.015994852408766747,
-0.020572379231452942,
-0.06828074902296066,
-0.047459378838539124,
0.06675250083208084,
-0.08975355327129364,
-0.059603624045848846,
0.08400024473667145,
0.12365183234214783,
-0.18917307257652283,
-0.07353881001472473,
-0.027846867218613625,
-0.051358792930841446,
0.0633278638124466,
0.011794263496994972,
0.0060434844344854355,
-0.021610574796795845,
0.05138228461146355,
0.024619286879897118,
-0.06454094499349594,
0.018528977409005165,
-0.021980179473757744,
0.13771292567253113,
-0.23712503910064697,
-0.02173171006143093,
-0.019823700189590454,
0.05257667973637581,
-0.06457554548978806,
-0.0497235506772995,
-0.07977763563394547,
0.024586960673332214,
0.0014798551565036178,
0.09812173247337341,
-0.12559205293655396,
-0.08457846194505692,
-0.036374446004629135,
0.021612361073493958,
-0.037359531968832016,
0.02063569985330105,
-0.04409695789217949,
0.0042882515117526054,
0.02034703455865383,
0.002770543796941638,
0.028016312047839165,
-0.0056415158323943615,
-0.05466673895716667,
-0.04463688284158707,
0.06776370853185654,
-0.03667856752872467,
-0.11912006884813309,
-0.08527982234954834,
-0.19631116092205048,
0.02449747920036316,
0.1168626919388771,
0.007426251191645861,
0.011828770861029625,
0.11835204064846039,
0.0169530026614666,
0.00954215694218874,
0.03689556196331978,
-0.06351076066493988,
-0.012582789175212383,
-0.0958797037601471,
-0.05359860882163048,
-0.09321846067905426,
0.0056050498969852924,
-0.0637725219130516,
0.033548373728990555,
0.10136673599481583,
0.08030746877193451,
0.0992065817117691,
-0.07465452700853348,
0.05144205689430237,
-0.039919447153806686,
0.013811742886900902,
0.0854383111000061,
-0.02430674433708191,
0.016812916845083237,
-0.09548775106668472,
-0.016395939514040947,
-0.012959066778421402,
0.05112247169017792,
-0.013396496884524822,
-0.1883297562599182,
-0.04594912379980087,
-0.14788636565208435,
-0.08416569232940674,
-0.014672507531940937,
0.2980758249759674,
0.02157525159418583,
0.0015537637518718839,
-0.1371615082025528,
0.07579206675291061,
0.11305990070104599,
0.16290560364723206,
0.01647617109119892,
0.05708140507340431,
-0.011981111951172352,
0.1010395959019661,
0.04341910779476166,
-0.004625346977263689,
-0.10076096653938293,
0.04358445107936859,
-0.0895036831498146,
0.16773870587348938,
-0.061891939491033554,
0.08359947055578232,
0.1598457247018814,
-0.019418196752667427,
-0.010563250631093979,
0.1209968850016594,
-0.022244220599532127,
-0.007260850165039301,
-0.17836929857730865,
-0.06714112311601639,
-0.17511476576328278,
0.01918073184788227,
-0.02657599374651909,
0.059820570051670074,
-0.05534090846776962,
0.06200378015637398,
-0.07127711176872253,
0.061489030718803406,
0.10606559365987778,
-0.06496785581111908,
0.12823285162448883,
-0.012209715321660042,
-0.03233533352613449,
0.06347488611936569,
0.03617499768733978,
0.007501605898141861,
-0.02096615359187126,
0.0025161057710647583,
0.07901203632354736,
0.007511963602155447,
0.05418960750102997,
0.019729485735297203,
-0.04965395852923393,
0.01004055980592966,
-0.008507143706083298,
0.02691902220249176,
0.10362457484006882,
0.01936407759785652,
-0.029363315552473068,
-0.001112598110921681,
0.05001475661993027,
-0.04091355577111244,
0.027368655428290367,
-0.08685632795095444,
0.03180434927344322,
-0.13113492727279663,
0.06466086953878403,
-0.06137760356068611,
-0.022532742470502853,
-0.08106157928705215,
0.24679069221019745,
0.1059078797698021,
-0.0804961621761322,
-0.030948979780077934,
-0.052777569741010666,
-0.007144403178244829,
-0.029772359877824783,
0.12720394134521484,
-0.005023501347750425,
0.2793162763118744,
-0.04157140478491783,
-0.017881598323583603,
-0.1300070881843567,
-0.038134995847940445,
-0.0774310901761055,
-0.08771923184394836,
0.04066607728600502,
-0.056479211896657944,
-0.11907338351011276,
0.10107488185167313,
-0.2250608652830124,
0.02187041938304901,
0.16081801056861877,
0.012224246747791767,
-0.005968937650322914,
-0.015831299126148224,
0.06269913911819458,
0.05333857983350754,
0.023244772106409073,
-0.1317519247531891,
0.04557207599282265,
0.09982249140739441,
-0.04392090067267418,
-0.07602141052484512,
0.07228655368089676,
-0.037292320281267166,
-0.17679564654827118,
0.08987436443567276,
-0.005516956560313702,
-0.016887424513697624,
0.054499153047800064,
-0.025571908801794052,
-0.14503765106201172,
0.07918887585401535,
-0.0603034682571888,
-0.05465570092201233,
-0.0010855008149519563,
0.13680660724639893,
-0.006076620426028967,
-0.01814146153628826,
-0.020823637023568153,
-0.028645381331443787,
-0.054317399859428406,
0.12497404962778091,
0.05524001643061638,
-0.1050078272819519,
0.045240771025419235,
-0.046339698135852814,
0.1011136993765831,
0.006588747724890709,
-0.038239773362874985,
-0.008020814508199692,
-0.023270882666110992,
0.024368973448872566,
0.005206586327403784,
-0.03211142495274544,
0.04270617291331291,
-0.11097541451454163,
-0.05544065311551094,
0.043084003031253815,
0.07575825601816177,
-0.16141271591186523,
0.02315675839781761,
-0.13688793778419495,
0.015189929865300655,
-0.02036447450518608,
0.045400578528642654,
0.2359096258878708,
-0.008341899141669273,
-0.0016475178999826312,
-0.06766177713871002,
-0.029327282682061195,
0.07002618908882141,
-0.0036667785607278347,
-0.13890433311462402
] |
null | null | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Giraudet/Taxi-V3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.56 +/- 2.71", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Giraudet/Taxi-V3 | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T20:52:58+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
32,
33
] | [
"passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
0.048862796276807785,
-0.16549694538116455,
-0.005485367961227894,
0.02960980497300625,
0.1345081776380539,
-0.01784728653728962,
0.11895976960659027,
0.07759871333837509,
-0.07461097836494446,
-0.055395450443029404,
0.1418241262435913,
0.09088201075792313,
0.055222880095243454,
0.05699880048632622,
0.09511256217956543,
-0.27440664172172546,
0.048217080533504486,
-0.02918700873851776,
0.05621987581253052,
0.11878681182861328,
0.0670095682144165,
-0.040441032499074936,
0.061956584453582764,
0.11818158626556396,
-0.1018151044845581,
-0.007344264071434736,
0.035402704030275345,
-0.09440053254365921,
0.17413531243801117,
0.07204403728246689,
0.12337774783372879,
0.05132639780640602,
0.179361954331398,
-0.12762396037578583,
0.024310702458024025,
-0.0010275895474478602,
-0.10138072073459625,
-0.03909514099359512,
-0.012415820732712746,
-0.08349097520112991,
0.03230205550789833,
0.23522862792015076,
0.07199250161647797,
0.06632792949676514,
-0.17707863450050354,
-0.06584878265857697,
-0.04375573247671127,
0.069611094892025,
0.14951466023921967,
0.03758616745471954,
-0.033800311386585236,
0.1684885323047638,
-0.2564343810081482,
0.05066783353686333,
0.037275806069374084,
-0.42313119769096375,
0.017119819298386574,
0.1507398933172226,
0.15090937912464142,
0.06909667700529099,
-0.10573802888393402,
0.013512322679162025,
0.051325585693120956,
-0.0005318621988408267,
0.024325110018253326,
0.006554204970598221,
0.15601307153701782,
0.08537693321704865,
-0.1487821787595749,
-0.058576688170433044,
0.17441977560520172,
-0.03788546845316887,
-0.02613203600049019,
-0.039745692163705826,
0.0067160045728087425,
-0.06427708268165588,
-0.004067842848598957,
-0.1777995079755783,
0.00734262028709054,
0.06666424125432968,
-0.014348524622619152,
0.014901017770171165,
-0.035522811114788055,
-0.0966939702630043,
-0.023098144680261612,
-0.08592145889997482,
0.01677769608795643,
-0.006319406442344189,
-0.10187895596027374,
0.05002119392156601,
-0.061138734221458435,
0.0014382408699020743,
-0.05123179033398628,
-0.15047866106033325,
-0.049055423587560654,
-0.03481535613536835,
0.1474713832139969,
-0.0044205985032022,
-0.01873963139951229,
-0.03164304047822952,
0.15474793314933777,
0.049551334232091904,
-0.05370146036148071,
0.05625450983643532,
0.07605006545782089,
0.23867930471897125,
0.10401605814695358,
0.10196955502033234,
-0.06798075139522552,
0.10180158913135529,
-0.12330973148345947,
-0.08915644884109497,
-0.17508824169635773,
0.11820860952138901,
0.00015364694991149008,
0.1317785084247589,
-0.12023144960403442,
0.07898581773042679,
-0.067511186003685,
0.013453764840960503,
0.01636839471757412,
0.0820009782910347,
-0.012399360537528992,
0.10676060616970062,
-0.005061192903667688,
-0.06941985338926315,
0.014177112840116024,
0.05935845896601677,
0.03754841163754463,
-0.038601722568273544,
-0.03192409873008728,
-0.05762290954589844,
-0.05065649375319481,
-0.10128600150346756,
-0.06447898596525192,
0.018573462963104248,
-0.007677143905311823,
-0.1833900660276413,
-0.06407523155212402,
0.00897200871258974,
0.015712225809693336,
-0.03988850116729736,
-0.05148044601082802,
-0.15265507996082306,
-0.042461175471544266,
-0.015450406819581985,
-0.03500641882419586,
-0.06214277446269989,
-0.0383245050907135,
0.046435944736003876,
-0.07560601085424423,
0.013364278711378574,
0.023342855274677277,
0.05405820533633232,
-0.025881100445985794,
0.06068144738674164,
-0.08357544988393784,
0.09493788331747055,
-0.1540430635213852,
-0.03271956741809845,
-0.025445878505706787,
-0.041183918714523315,
0.1752462536096573,
0.06099751964211464,
-0.015994304791092873,
0.15260063111782074,
-0.17141541838645935,
-0.058121129870414734,
0.15596486628055573,
0.008629098534584045,
-0.09967197477817535,
-0.003560945624485612,
-0.09397093951702118,
0.1428760588169098,
0.08571921288967133,
0.2478504776954651,
0.12005335837602615,
-0.22748184204101562,
0.055358242243528366,
0.12515293061733246,
-0.14365963637828827,
0.10365243256092072,
0.07344598323106766,
0.005470725707709789,
-0.18886831402778625,
-0.06843198090791702,
-0.06121627986431122,
0.1053021252155304,
-0.08522345870733261,
-0.0776243582367897,
0.09323626756668091,
-0.05086790770292282,
0.24641476571559906,
-0.028281206265091896,
0.06174173951148987,
-0.026681531220674515,
-0.1389324963092804,
-0.01723906397819519,
0.060955192893743515,
0.05258452147245407,
-0.024835573509335518,
-0.25895482301712036,
0.13646544516086578,
0.048650871962308884,
0.025074828416109085,
0.004106190986931324,
-0.05691491439938545,
0.016934165731072426,
0.1511998474597931,
0.020012924447655678,
0.13717477023601532,
0.027723990380764008,
0.0706823319196701,
-0.006239562761038542,
-0.10560829937458038,
-0.04169593006372452,
0.061916545033454895,
-0.08518962562084198,
-0.06641357392072678,
0.011197872459888458,
-0.06935211271047592,
-0.11783787608146667,
-0.12166737765073776,
-0.026334572583436966,
-0.02980303019285202,
-0.07444227486848831,
0.02368103712797165,
0.06536602973937988,
-0.06702698022127151,
-0.0023908785078674555,
0.007125476840883493,
-0.011537045240402222,
0.16434046626091003,
0.011393417604267597,
-0.007796820718795061,
0.1328643560409546,
-0.11533161997795105,
0.12461213022470474,
0.049438029527664185,
-0.024806302040815353,
-0.04662557691335678,
0.0014137453399598598,
-0.057529181241989136,
0.029044216498732567,
-0.04390640929341316,
0.02774495631456375,
0.20111067593097687,
0.02772962674498558,
0.11389166116714478,
-0.0656520202755928,
0.04385066404938698,
-0.007961965166032314,
-0.009693224914371967,
0.018563594669103622,
0.07608018070459366,
0.07813210040330887,
-0.1324140727519989,
0.02262016013264656,
0.22455167770385742,
0.1385764330625534,
0.18313980102539062,
-0.010877152904868126,
0.06325667351484299,
-0.04875868931412697,
0.027505528181791306,
0.024100203067064285,
0.10314226150512695,
-0.10732068121433258,
-0.0322517491877079,
-0.025407759472727776,
0.023599207401275635,
-0.08197105675935745,
-0.1055799350142479,
-0.090115025639534,
0.01222382951527834,
-0.03125503659248352,
-0.15570329129695892,
0.13300658762454987,
-0.10451057553291321,
0.01802753657102585,
0.04692702740430832,
-0.22163605690002441,
0.11530312895774841,
0.014291439205408096,
-0.10303618758916855,
0.11281087249517441,
-0.12051989883184433,
-0.08699832111597061,
-0.05777236074209213,
-0.18658851087093353,
0.05280197039246559,
0.04673841595649719,
0.05166793242096901,
-0.18521739542484283,
0.024835903197526932,
0.05545609071850777,
0.13426995277404785,
-0.09743253141641617,
-0.07142634689807892,
-0.15038461983203888,
0.016068490222096443,
-0.033661190420389175,
-0.16029728949069977,
-0.005609163548797369,
-0.032781440764665604,
-0.18849676847457886,
-0.04539939761161804,
-0.15086813271045685,
-0.034627582877874374,
0.20464378595352173,
0.026907702907919884,
0.09480511397123337,
-0.07926445454359055,
0.3802889585494995,
-0.042039383202791214,
-0.06146497279405594,
-0.01321389526128769,
-0.07072482258081436,
0.02512686513364315,
0.13271741569042206,
0.0036099457647651434,
-0.017886579036712646,
-0.0037857077550143003,
0.0024592927657067776,
-0.06234965845942497,
-0.13400450348854065,
0.0028710351325571537,
0.03905198723077774,
0.1874423623085022,
0.004639793653041124,
0.06659388542175293,
0.03133883699774742,
0.057546284049749374,
0.07748064398765564,
0.030926106497645378,
0.0011591583024710417,
-0.01591806672513485,
0.06604493409395218,
-0.11684755235910416,
0.042466625571250916,
-0.030429253354668617,
-0.10143838077783585,
-0.013183288276195526,
0.07950251549482346,
0.12755028903484344,
0.17849206924438477,
-0.04790908098220825,
0.17489230632781982,
0.13580141961574554,
0.16576050221920013,
0.049315933138132095,
-0.020801831036806107,
-0.08773037046194077,
-0.06118565797805786,
0.004774159751832485,
-0.031952597200870514,
0.04869702458381653,
0.3231290578842163,
0.037619613111019135,
-0.09036035090684891,
0.11149907857179642,
0.009480619803071022,
0.05359881371259689,
0.022797370329499245,
-0.11162138730287552,
0.11170321702957153,
0.07968773692846298,
-0.06341761350631714,
-0.07602835446596146,
0.16758501529693604,
-0.1109386757016182,
-0.26646625995635986,
-0.11410990357398987,
-0.012305386364459991,
0.07903840392827988,
0.005651174578815699,
0.05498376116156578,
-0.11829282343387604,
-0.16034497320652008,
-0.034191906452178955,
0.1335442066192627,
-0.3077351450920105,
0.2065143585205078,
-0.0198091771453619,
0.06707923114299774,
-0.039657969027757645,
-0.07026876509189606,
0.09694647043943405,
0.13174086809158325,
0.29124146699905396,
0.01396956667304039,
0.04841272905468941,
-0.15176129341125488,
-0.0976925864815712,
0.0018439020495861769,
0.015482662245631218,
-0.02563396655023098,
0.028520405292510986,
-0.0540912002325058,
0.008404579944908619,
-0.018086453899741173,
0.2102297693490982,
-0.11316607892513275,
0.004344627261161804,
-0.06968966871500015,
-0.11707738786935806,
0.19409789144992828,
-0.07178345322608948,
-0.04543264955282211,
-0.14959357678890228,
-0.15512511134147644,
-0.004174166824668646,
-0.02413962036371231,
-0.019664527848362923,
-0.17603960633277893,
-0.18804074823856354,
-0.05204557999968529,
-0.005645004566758871,
-0.003464865731075406,
0.05867868289351463,
-0.07517234236001968,
-0.04805335775017738,
0.1009904220700264,
-0.07743175327777863,
-0.056063808500766754,
-0.1103200614452362,
0.1391381323337555,
0.06248528137803078,
0.16743235290050507,
0.05907081440091133,
0.0006117874872870743,
0.11471151560544968,
-0.02913086675107479,
0.11103474348783493,
-0.11291708797216415,
-0.17145049571990967,
-0.08334989100694656,
-0.018775060772895813,
0.09519003331661224,
-0.04789286106824875,
0.0028788831550627947,
0.2550160884857178,
0.14880181849002838,
-0.0897710770368576,
0.27680760622024536,
0.04414956644177437,
-0.09375058114528656,
-0.18432219326496124,
-0.15961645543575287,
0.03759992495179176,
0.060025621205568314,
0.13095876574516296,
-0.057205069810152054,
-0.08483537286520004,
-0.08492398262023926,
-0.07478608191013336,
-0.13140805065631866,
-0.24232175946235657,
-0.030598774552345276,
0.22874866425991058,
0.08656918257474899,
0.08219650387763977,
-0.012482990510761738,
-0.01186054851859808,
0.00526038184762001,
0.02680150233209133,
0.12018456310033798,
-0.13341329991817474,
0.11107480525970459,
0.022198403254151344,
0.044267985969781876,
0.009712530300021172,
0.07929777354001999,
0.03375575691461563,
-0.003218587953597307,
-0.0006439819699153304,
-0.0988350659608841,
-0.2596651017665863,
0.0816885456442833,
-0.01623627357184887,
-0.09960969537496567,
0.014988959766924381,
0.02061903104186058,
-0.2089255303144455,
0.011128270998597145,
-0.019883770495653152,
-0.03150356933474541,
-0.06483490765094757,
-0.10664787143468857,
-0.056551624089479446,
0.04928823933005333,
0.10853826254606247,
0.011660109274089336,
0.05354316532611847,
-0.0404130220413208,
0.07917837053537369,
0.0826287642121315,
0.15132710337638855,
0.06795957684516907,
-0.190711110830307,
-0.10953907668590546,
-0.0414445661008358,
0.12121522426605225,
-0.12505418062210083,
0.036917757242918015,
0.053161121904850006,
-0.016534561291337013,
0.14621229469776154,
0.1070784479379654,
-0.07452095299959183,
0.11915595084428787,
0.08904775977134705,
-0.04094788804650307,
-0.23367151618003845,
-0.07120766490697861,
0.11133213341236115,
0.07195597887039185,
-0.03961895406246185,
0.018120890483260155,
-0.04960581287741661,
-0.013980977237224579,
0.048759616911411285,
-0.0538676381111145,
-0.07230538129806519,
0.004421027842909098,
0.1247575581073761,
0.1029362753033638,
-0.04655474051833153,
0.01296416949480772,
0.037371400743722916,
0.003788623260334134,
0.04730486497282982,
0.0407949760556221,
-0.08269952982664108,
-0.04124005511403084,
0.02782733179628849,
0.37552911043167114,
-0.010165480896830559,
-0.020456433296203613,
0.018555615097284317,
-0.19949445128440857,
0.09135842323303223,
0.13205479085445404,
0.04697350412607193,
0.004247748292982578,
-0.08139242231845856,
0.026877427473664284,
-0.010625290684401989,
0.09936143457889557,
-0.07806670665740967,
-0.05493134260177612,
-0.21631066501140594,
-0.025010565295815468,
0.017490221187472343,
0.24077683687210083,
-0.08458559215068817,
-0.12801732122898102,
-0.20628872513771057,
0.13128381967544556,
-0.11333390325307846,
-0.03695881739258766,
-0.024473199620842934,
0.03926658630371094,
-0.01989821158349514,
0.06291737407445908,
-0.0710630789399147,
0.006373001262545586,
-0.11024709790945053,
0.055267609655857086,
0.04204455390572548,
0.1229788213968277,
0.014207782223820686,
0.02016810141503811,
0.05822525918483734,
-0.01837925612926483,
0.07173580676317215,
-0.06203491613268852,
-0.04550490900874138,
0.14224006235599518,
-0.020255116745829582,
-0.04152837023139,
-0.0483345128595829,
-0.036874305456876755,
0.11981741338968277,
-0.05059147998690605,
-0.007141099311411381,
-0.054929375648498535,
-0.06906463205814362,
0.03462086617946625,
-0.009175732731819153,
-0.008798843249678612,
0.06801853328943253,
0.04024988040328026,
-0.026994358748197556,
0.005263668950647116,
0.03447828069329262,
-0.10330043733119965,
-0.04955084249377251,
0.16955432295799255,
-0.0749620869755745,
0.10274054110050201,
-0.031069839373230934,
0.018015999346971512,
0.005847334861755371,
-0.022399673238396645,
-0.015360680408775806,
-0.1457086056470871,
-0.06137600541114807,
-0.09489979594945908,
0.11565322428941727,
0.08146517723798752,
0.03358805552124977,
0.04274565726518631,
0.019532648846507072,
-0.04414922371506691,
-0.038583990186452866,
0.12961317598819733,
0.08133101463317871,
0.012996876612305641,
0.01137041300535202,
0.01941833831369877,
-0.020302120596170425,
0.0028480992186814547,
-0.01250747125595808,
-0.07239153981208801,
-0.05874783173203468,
0.09400010108947754,
0.1600283533334732,
-0.06127211079001427,
-0.13325586915016174,
-0.020593497902154922,
0.04988488554954529,
0.0014717020094394684,
-0.08777432143688202,
0.04833676666021347,
0.15805292129516602,
-0.05623878911137581,
0.03216489031910896,
-0.09984751045703888,
-0.07263360917568207,
-0.16060975193977356,
-0.10029061883687973,
-0.06092562898993492,
-0.28350353240966797,
0.09752398729324341,
0.006392303854227066,
-0.014731393195688725,
0.059529416263103485,
0.051305368542671204,
-0.052508849650621414,
0.07068239152431488,
-0.18146829307079315,
-0.007054794579744339,
0.03497592359781265,
-0.13212306797504425,
0.02475893869996071,
-0.2378365397453308,
0.10198072344064713,
-0.04623803123831749,
-0.1519704908132553,
-0.04004510119557381,
0.0641569048166275,
-0.09540136158466339,
-0.01822364516556263,
-0.0475153923034668,
-0.01922670193016529,
0.01624443754553795,
-0.009348669089376926,
-0.031147832050919533,
0.13716529309749603,
0.02827494591474533,
-0.03268734738230705,
0.005254602525383234,
0.0223685409873724,
0.03955082967877388,
-0.0969657450914383,
-0.05986930429935455,
0.08311155438423157,
-0.031056145206093788,
0.14728976786136627,
0.000341245875461027,
0.04181376099586487,
-0.06758682429790497,
0.2593761384487152,
0.2023983597755432,
-0.12479214370250702,
0.008118697442114353,
-0.021801479160785675,
0.012670028023421764,
-0.041751839220523834,
0.13110700249671936,
0.013386172242462635,
0.12186761200428009,
-0.17513342201709747,
-0.01036517322063446,
-0.0818324014544487,
-0.04501292482018471,
0.06702108681201935,
0.14714950323104858,
0.15742522478103638,
0.03436789661645889,
-0.07328428328037262,
0.06722653657197952,
-0.30119743943214417,
0.20540550351142883,
-0.1346001923084259,
-0.01498429011553526,
-0.040251150727272034,
-0.058389630168676376,
0.061147745698690414,
0.11309876292943954,
0.10832664370536804,
-0.021150551736354828,
-0.0905047357082367,
-0.04486766457557678,
-0.039378076791763306,
-0.13019338250160217,
-0.02718670479953289,
0.1654091775417328,
0.06799814850091934,
0.31520840525627136,
-0.017577875405550003,
0.07702425122261047,
0.034410297870635986,
0.06451138854026794,
0.004519328009337187,
0.09537279605865479,
0.07960964739322662,
-0.06345855444669724,
-0.07373003661632538,
-0.001637450186535716,
0.05033271387219429,
0.14567798376083374,
-0.03826142102479935,
-0.18691548705101013,
0.15858715772628784,
0.07192251086235046,
-0.13762691617012024,
-0.05777517706155777,
0.08409425616264343,
-0.0739973932504654,
0.0550808347761631,
0.08115427941083908,
0.015876613557338715,
-0.017793258652091026,
-0.004664506763219833,
0.06074233725667,
0.024694660678505898,
-0.02343848906457424,
0.003570882137864828,
-0.08337053656578064,
-0.04151543974876404,
0.07267895340919495,
-0.0844460055232048,
-0.20546193420886993,
-0.0957019031047821,
-0.07551700621843338,
0.030557552352547646,
-0.0649830624461174,
0.12575586140155792,
0.1717868149280548,
0.0593598335981369,
-0.03307248651981354,
-0.10721943527460098,
-0.035562749952077866,
0.07602505385875702,
-0.044773899018764496,
-0.09409699589014053
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5779
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 250 | 0.5209 |
| 0.4802 | 2.0 | 500 | 0.5322 |
| 0.4802 | 3.0 | 750 | 0.5779 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "base_model": "deepset/roberta-base-squad2", "model-index": [{"name": "my_awesome_qa_model", "results": []}]} | question-answering | gsl22/my_awesome_qa_model | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"base_model:deepset/roberta-base-squad2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:53:01+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #roberta #question-answering #generated_from_trainer #base_model-deepset/roberta-base-squad2 #license-cc-by-4.0 #endpoints_compatible #region-us
| my\_awesome\_qa\_model
======================
This model is a fine-tuned version of deepset/roberta-base-squad2 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5779
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #roberta #question-answering #generated_from_trainer #base_model-deepset/roberta-base-squad2 #license-cc-by-4.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
67,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #roberta #question-answering #generated_from_trainer #base_model-deepset/roberta-base-squad2 #license-cc-by-4.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.09634310752153397,
0.06483256816864014,
-0.0021655287127941847,
0.09848435968160629,
0.1337328553199768,
0.018821753561496735,
0.14215970039367676,
0.10892278701066971,
-0.08482753485441208,
0.0730442926287651,
0.1351742446422577,
0.1196017861366272,
0.0021702246740460396,
0.11373275518417358,
-0.05589189752936363,
-0.21468482911586761,
-0.0009046231862157583,
0.028516404330730438,
-0.09420425444841385,
0.12043072283267975,
0.08815412223339081,
-0.1469060480594635,
0.08243326842784882,
-0.007012355141341686,
-0.1971820592880249,
0.030201010406017303,
0.01775616593658924,
-0.034695081412792206,
0.12845483422279358,
0.028746822848916054,
0.14122287929058075,
0.026738232001662254,
0.08270291984081268,
-0.1880008429288864,
0.02697788178920746,
0.060303688049316406,
-0.013890137895941734,
0.0821029543876648,
0.023530468344688416,
0.009979471564292908,
0.07012249529361725,
-0.08825358003377914,
0.0637085884809494,
0.02126958779990673,
-0.13584916293621063,
-0.2112850844860077,
-0.09032522141933441,
0.03676252439618111,
0.09565331041812897,
0.08156629651784897,
-0.01633988693356514,
0.1565731316804886,
-0.06934804469347,
0.08500725030899048,
0.23831577599048615,
-0.3366023898124695,
-0.08245500177145004,
0.07204234600067139,
0.04394838958978653,
0.0886131003499031,
-0.10865837335586548,
-0.011192615143954754,
0.07269753515720367,
0.021345267072319984,
0.09778400510549545,
-0.03812327980995178,
-0.05479946359992027,
0.017685813829302788,
-0.14685021340847015,
-0.012701225467026234,
0.13749505579471588,
0.06431605666875839,
-0.04221780225634575,
-0.03885548934340477,
-0.05675381422042847,
-0.1426912248134613,
-0.03898920863866806,
-0.04729415848851204,
0.044544052332639694,
-0.04110084846615791,
-0.1135278195142746,
-0.017665529623627663,
-0.10903938114643097,
-0.1028076559305191,
-0.05308573693037033,
0.1521916538476944,
0.04131462052464485,
0.01078691054135561,
-0.02150152064859867,
0.0929754227399826,
-0.05771714448928833,
-0.1255689263343811,
-0.0022849321831017733,
0.01958790421485901,
-0.018300238996744156,
-0.0629381537437439,
-0.04806424304842949,
-0.07022851705551147,
0.038970161229372025,
0.16690784692764282,
-0.0660940632224083,
0.047370605170726776,
0.02894756756722927,
0.0438208244740963,
-0.09422247111797333,
0.1401069611310959,
-0.06439869105815887,
-0.018651237711310387,
0.015570643357932568,
0.0683465301990509,
0.030667681246995926,
0.005361444316804409,
-0.10438241809606552,
0.005904132965952158,
0.08810438215732574,
0.018255148082971573,
-0.057523272931575775,
0.05948366969823837,
-0.03596954420208931,
0.000036100693250773475,
-0.007349465508013964,
-0.07290993630886078,
0.024256601929664612,
0.00823386013507843,
-0.05697733908891678,
-0.06765538454055786,
0.010152396745979786,
0.01889624260365963,
0.033579278737306595,
0.08719411492347717,
-0.10021540522575378,
0.0050319586880505085,
-0.09278502315282822,
-0.11991672217845917,
0.02034757472574711,
-0.07332871109247208,
0.030259456485509872,
-0.1008949875831604,
-0.14061860740184784,
-0.026281848549842834,
0.04759320989251137,
-0.03908618167042732,
-0.015349195338785648,
-0.04302249103784561,
-0.08677995949983597,
-0.006408036220818758,
-0.007452701684087515,
0.09505311399698257,
-0.05382710322737694,
0.10180547833442688,
0.05419450253248215,
0.07499649375677109,
-0.030921373516321182,
0.02400944195687771,
-0.09333541989326477,
0.035749293863773346,
-0.20510593056678772,
0.0036401126999408007,
-0.06902693957090378,
0.07116137444972992,
-0.09963896870613098,
-0.09525949507951736,
-0.03258313983678818,
0.012226870283484459,
0.08860822021961212,
0.09445157647132874,
-0.1451178789138794,
-0.05605678632855415,
0.17428354918956757,
-0.08667682856321335,
-0.16397330164909363,
0.12789276242256165,
-0.06601536273956299,
0.07573119550943375,
0.04972606152296066,
0.18656452000141144,
0.06505489349365234,
-0.11298281699419022,
0.0002276654849993065,
-0.02376491390168667,
0.03857644274830818,
-0.04372592642903328,
0.06792360544204712,
-0.001437530037946999,
0.028400138020515442,
-0.0011948897736147046,
-0.0518287718296051,
0.026721114292740822,
-0.10607831925153732,
-0.07980047166347504,
-0.03655824810266495,
-0.10093864798545837,
0.02937646396458149,
0.061719466000795364,
0.0649055764079094,
-0.12892594933509827,
-0.08638165146112442,
0.0627485141158104,
0.0710291787981987,
-0.0724552646279335,
0.014401515014469624,
-0.08802632987499237,
0.08790363371372223,
-0.08881571888923645,
-0.03448198735713959,
-0.15136182308197021,
-0.06391319632530212,
0.0021509698126465082,
0.030105113983154297,
0.02621830254793167,
0.03712765499949455,
0.08832402527332306,
0.05994916334748268,
-0.0601608082652092,
-0.025839826092123985,
-0.04176824539899826,
0.004076496697962284,
-0.11305955052375793,
-0.2067996710538864,
-0.024201340973377228,
-0.03852515667676926,
0.101058728992939,
-0.2332478016614914,
0.039420902729034424,
0.00495082838460803,
0.08325286954641342,
0.039864618331193924,
-0.014655478298664093,
-0.0344533696770668,
0.06572550535202026,
-0.02082105167210102,
-0.052073001861572266,
0.04592614248394966,
0.001918448368087411,
-0.08945833146572113,
-0.06534793972969055,
-0.14113016426563263,
0.18776430189609528,
0.11523223668336868,
-0.10087026655673981,
-0.0977824255824089,
-0.014870473183691502,
-0.05390291288495064,
-0.02760535664856434,
-0.037572555243968964,
0.008910327218472958,
0.12729613482952118,
-0.014902366325259209,
0.12212279438972473,
-0.08925113826990128,
-0.032980818301439285,
0.01960167847573757,
-0.05156565085053444,
0.024545447900891304,
0.11473101377487183,
0.10590601712465286,
-0.11184854060411453,
0.13976623117923737,
0.1571575105190277,
-0.09606859087944031,
0.12704959511756897,
-0.05013115331530571,
-0.07954501360654831,
-0.04430856928229332,
0.03374934196472168,
0.014060602523386478,
0.14310330152511597,
-0.11146726459264755,
0.0023807543329894543,
0.007273015566170216,
0.0036711310967803,
0.015465030446648598,
-0.21783298254013062,
-0.05343269929289818,
0.03235931694507599,
-0.042113665491342545,
-0.00041151075856760144,
0.0008789973217062652,
-0.0001795178686734289,
0.0942922979593277,
0.008276131004095078,
-0.055833302438259125,
0.027086645364761353,
-0.010466507636010647,
-0.07879698276519775,
0.21779033541679382,
-0.047625284641981125,
-0.0808001235127449,
-0.11745359748601913,
-0.04273034259676933,
-0.02398167923092842,
0.009670776315033436,
0.05891907960176468,
-0.08521854132413864,
-0.02801554650068283,
-0.09317948669195175,
0.013248751871287823,
0.025085804983973503,
0.024172160774469376,
0.021942559629678726,
0.013928773812949657,
0.07686774432659149,
-0.10692799091339111,
0.0060218339785933495,
-0.06387992203235626,
-0.07844818383455276,
0.03605319932103157,
0.037143774330616,
0.12940606474876404,
0.1275719404220581,
-0.021210474893450737,
0.004689629655331373,
-0.033688098192214966,
0.24551481008529663,
-0.07647157460451126,
-0.03343356028199196,
0.1353614628314972,
-0.018027890473604202,
0.03810829669237137,
0.13869790732860565,
0.06985214352607727,
-0.10286977887153625,
0.025554390624165535,
0.04778309538960457,
-0.03401181101799011,
-0.2164955735206604,
-0.008857622742652893,
-0.04029364511370659,
-0.008106988854706287,
0.07160654664039612,
0.030754517763853073,
0.02045758068561554,
0.07417594641447067,
0.03214254602789879,
0.041830647736787796,
-0.03363775089383125,
0.07669251412153244,
0.10164449363946915,
0.04052809998393059,
0.11956317722797394,
-0.05896778777241707,
-0.06198786571621895,
0.022179756313562393,
0.010376954451203346,
0.22550396621227264,
0.024318279698491096,
0.14166414737701416,
0.08237335830926895,
0.17392650246620178,
0.003667596261948347,
0.05228987708687782,
-0.014873701147735119,
-0.0741359293460846,
0.0009004207677207887,
-0.04696769639849663,
-0.015564005821943283,
0.036681707948446274,
-0.07491664588451385,
0.06754772365093231,
-0.09245061874389648,
0.035553690046072006,
0.060732949525117874,
0.23005081713199615,
0.04984039068222046,
-0.3050118088722229,
-0.09850244224071503,
0.008277093060314655,
-0.023078804835677147,
-0.010468701831996441,
0.02570117637515068,
0.14421935379505157,
-0.04883025214076042,
-0.005938160698860884,
-0.07905634492635727,
0.0772043988108635,
-0.014184040948748589,
0.03711564466357231,
0.049018990248441696,
0.10205541551113129,
-0.01927165687084198,
0.06137849763035774,
-0.2536279559135437,
0.2883972227573395,
0.017515089362859726,
0.08718518912792206,
-0.04124338924884796,
-0.023794008418917656,
0.00909348577260971,
0.047087546437978745,
0.10026993602514267,
-0.031085558235645294,
-0.08324795961380005,
-0.18394076824188232,
-0.044508326798677444,
0.038933947682380676,
0.11865761876106262,
-0.02668854221701622,
0.11736096441745758,
-0.01930874027311802,
0.010259031318128109,
0.08300147205591202,
-0.002871850738301873,
-0.07658284157514572,
-0.06527853012084961,
-0.023767711594700813,
-0.00317904120311141,
-0.05003650486469269,
-0.08436165004968643,
-0.09431546181440353,
-0.1170540302991867,
0.14747874438762665,
-0.048386100679636,
-0.0047150589525699615,
-0.09951823949813843,
0.0948508009314537,
0.06834615767002106,
-0.07971173524856567,
0.05084030330181122,
0.02050168812274933,
0.06597712635993958,
0.03513221815228462,
-0.03897490352392197,
0.13041545450687408,
-0.07020846754312515,
-0.16196945309638977,
-0.061184998601675034,
0.11291518807411194,
0.026480626314878464,
0.05080617591738701,
0.003018765477463603,
0.011775215156376362,
-0.01654846966266632,
-0.08250277489423752,
0.042851854115724564,
-0.04596510902047157,
0.06136138737201691,
0.005925870034843683,
-0.05239405483007431,
0.047949645668268204,
-0.047105737030506134,
-0.013941122218966484,
0.17488808929920197,
0.30234071612358093,
-0.09148949384689331,
-0.015048197470605373,
0.042997751384973526,
-0.04474753886461258,
-0.19254791736602783,
0.08460064232349396,
0.036454327404499054,
0.010332290083169937,
0.06026746705174446,
-0.13521067798137665,
0.1191609799861908,
0.10614290088415146,
-0.020496873185038567,
0.10285677760839462,
-0.2989656627178192,
-0.1255846619606018,
0.10438095033168793,
0.17584015429019928,
0.12478487193584442,
-0.1671873778104782,
-0.029667431488633156,
-0.0035746132489293814,
-0.13733987510204315,
0.0791931226849556,
-0.13454104959964752,
0.1107666939496994,
-0.010423568077385426,
0.06439238786697388,
0.007193027064204216,
-0.0686078816652298,
0.11967702955007553,
-0.027918381616473198,
0.13131925463676453,
-0.054932139813899994,
-0.033307284116744995,
0.08214929699897766,
-0.04519845172762871,
0.013750579208135605,
-0.06444784998893738,
0.038136065006256104,
-0.04836742952466011,
-0.030342847108840942,
-0.06109356880187988,
0.027807362377643585,
-0.048436250537633896,
-0.061576977372169495,
-0.053196828812360764,
0.04046739637851715,
0.02022908255457878,
-0.011333865113556385,
0.14679835736751556,
-0.0018636557506397367,
0.17131741344928741,
0.0994676798582077,
0.09420555084943771,
-0.027462884783744812,
-0.047658078372478485,
0.020496303215622902,
-0.029590435326099396,
0.0603058896958828,
-0.16294518113136292,
0.03264710307121277,
0.1265038698911667,
0.03093215823173523,
0.1314626932144165,
0.06835092604160309,
-0.051065899431705475,
0.028935587033629417,
0.06932064890861511,
-0.15693305432796478,
-0.15503065288066864,
0.014921270310878754,
-0.05502431467175484,
-0.13363192975521088,
0.07715830206871033,
0.10758445411920547,
-0.058128148317337036,
0.0046220324002206326,
-0.0006446594488807023,
-0.0038936410564929247,
-0.051556531339883804,
0.1732037514448166,
0.09258836507797241,
0.050175741314888,
-0.06641948968172073,
0.06419195979833603,
0.020726004615426064,
-0.06442350149154663,
0.014379954896867275,
0.03784018009901047,
-0.0636243000626564,
-0.040168389678001404,
0.05065514147281647,
0.1849796622991562,
-0.03007240779697895,
-0.0332011878490448,
-0.16527439653873444,
-0.09869219362735748,
0.04421407729387283,
0.21457959711551666,
0.09156189858913422,
-0.008063919842243195,
-0.008266567252576351,
0.03552081435918808,
-0.12153292447328568,
0.11210566759109497,
0.02551807090640068,
0.07792297750711441,
-0.14251670241355896,
0.12476710975170135,
-0.015323431231081486,
0.013896546326577663,
-0.02709783986210823,
0.04755481705069542,
-0.1317434012889862,
0.008768631145358086,
-0.12902885675430298,
-0.03289489448070526,
-0.033059801906347275,
-0.006087576504796743,
0.009389965794980526,
-0.06598563492298126,
-0.08877847343683243,
0.017466163262724876,
-0.10571666806936264,
-0.0075634801760315895,
0.05097407475113869,
0.04453658685088158,
-0.1335182636976242,
-0.027640609070658684,
0.03276446461677551,
-0.058279141783714294,
0.06602917611598969,
0.022363249212503433,
0.03524571657180786,
0.04543579742312431,
-0.17844656109809875,
0.03186345472931862,
0.05470285192131996,
-0.0024813483469188213,
0.05390216037631035,
-0.09228666871786118,
-0.015412935055792332,
-0.019145911559462547,
0.054745689034461975,
0.01761670596897602,
0.0530022457242012,
-0.11944244056940079,
0.008748967200517654,
-0.043673206120729446,
-0.056808438152074814,
-0.059776898473501205,
0.012378081679344177,
0.08132541179656982,
0.012531772255897522,
0.179223895072937,
-0.0877363458275795,
0.027999576181173325,
-0.21926723420619965,
-0.003483598120510578,
0.005046413745731115,
-0.08527230471372604,
-0.0982680544257164,
-0.05209091678261757,
0.05923447757959366,
-0.0641430914402008,
0.13548511266708374,
-0.01795031689107418,
0.013372511602938175,
0.04057062044739723,
-0.05189134553074837,
0.064244844019413,
0.027664916589856148,
0.2331053614616394,
0.016369206830859184,
-0.0383574403822422,
0.0244922935962677,
0.04671701788902283,
0.09687988460063934,
0.06388624757528305,
0.19232960045337677,
0.1962188333272934,
-0.031093740835785866,
0.08577588945627213,
0.07182791084051132,
-0.043403659015893936,
-0.09355483949184418,
0.0756334587931633,
-0.023898042738437653,
0.05594637244939804,
-0.021221619099378586,
0.18180908262729645,
0.14279630780220032,
-0.15738852322101593,
0.008392008021473885,
-0.06005604937672615,
-0.0810435339808464,
-0.1100594699382782,
-0.04681941494345665,
-0.1016249731183052,
-0.15880021452903748,
0.028144869953393936,
-0.1294877678155899,
-0.005259258672595024,
0.10358814150094986,
0.019258292391896248,
-0.011268307454884052,
0.21721503138542175,
0.024039415642619133,
0.0505882203578949,
0.04543722793459892,
0.00021171712432987988,
-0.021779058501124382,
-0.07334543019533157,
-0.06827434152364731,
0.02126769907772541,
-0.052667491137981415,
0.023210866376757622,
-0.05281853675842285,
-0.037615738809108734,
0.03220003843307495,
-0.014182290993630886,
-0.10470416396856308,
0.001965763745829463,
0.04145355150103569,
0.05445123091340065,
0.0505368746817112,
0.010078701190650463,
0.013566139154136181,
-0.015173864550888538,
0.21822087466716766,
-0.06912367790937424,
-0.04669884964823723,
-0.11406037956476212,
0.18248295783996582,
0.024233784526586533,
0.019583910703659058,
0.001677983207628131,
-0.09783793240785599,
0.054035037755966187,
0.21378536522388458,
0.17693756520748138,
-0.09163034707307816,
0.00908430851995945,
0.01489353645592928,
-0.007973121479153633,
-0.05982998386025429,
0.07127915322780609,
0.10962078720331192,
0.013986937701702118,
-0.08507145941257477,
-0.07562403380870819,
-0.043220341205596924,
-0.006090342998504639,
-0.0307321697473526,
0.034966498613357544,
0.06315623223781586,
0.01719982922077179,
-0.05356749892234802,
0.07118520140647888,
-0.03597647696733475,
-0.13304473459720612,
0.08356659859418869,
-0.20270100235939026,
-0.15303044021129608,
-0.01959804818034172,
0.09864906966686249,
-0.012215033173561096,
0.06155713275074959,
-0.049397408962249756,
-0.009705391712486744,
0.04303879663348198,
-0.014063083566725254,
-0.057554423809051514,
-0.089391328394413,
0.08023885637521744,
-0.08293027430772781,
0.2190799117088318,
-0.043238669633865356,
0.05684398487210274,
0.14670860767364502,
0.024330971762537956,
-0.07501083612442017,
0.08158882707357407,
0.06537821888923645,
-0.10635500401258469,
0.005038356874138117,
0.09234359115362167,
-0.029741689562797546,
0.128964364528656,
0.0680946335196495,
-0.15175192058086395,
0.018534662202000618,
-0.07169405370950699,
-0.06325273960828781,
-0.0823025330901146,
-0.020954875275492668,
-0.06746309250593185,
0.14018824696540833,
0.19398893415927887,
-0.04095635563135147,
0.01304974127560854,
-0.04183211922645569,
0.03733384236693382,
0.09319871664047241,
0.05569887161254883,
-0.03866230323910713,
-0.2391861230134964,
0.044866837561130524,
0.07842501252889633,
-0.026161599904298782,
-0.27453887462615967,
-0.0963861495256424,
0.01911170408129692,
-0.04837758094072342,
-0.07203207910060883,
0.07487818598747253,
0.13914503157138824,
0.06928150355815887,
-0.05722475051879883,
-0.11171191185712814,
-0.07422305643558502,
0.15994814038276672,
-0.13595308363437653,
-0.0986848920583725
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | omartariq612/quran-lora-whisper-small-epoch-1 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:53:26+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |

---
# Use these presets in sillytavern!!
[Context](https://files.catbox.moe/frkt0n.json)
[Instruct](https://files.catbox.moe/4mju4f.json)
<!-- description start -->
## Description
<!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) -->
This repo contains fp16 files of Noromaid-13b-v0.4-DPO.
[FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-13B-0.4-DPO)
<!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)-->
<!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)-->
<!-- [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)-->
<!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)-->
<!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)-->
[GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Noromaid-13B-0.4-DPO-GGUF)
<!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)-->
## Ratings:
Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!
No ratings yet!
If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi".
<!-- description end -->
<!-- prompt-template start -->
## Prompt format: NsChatml
```
<|im_system|>
{sysprompt}<|im_end|>
<|im_user|>
{input}<|im_end|>
<|im_bot|>
{output}<|im_end|>
```
## Training data used:
- [no_robots dataset](https://huggingface.co/Undi95/Llama2-13B-no_robots-alpaca-lora) let the model have more human behavior, enhances the output.
- [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the [MinvervaAI Team](https://huggingface.co/MinervaAI) and, in particular, [Gryphe](https://huggingface.co/Gryphe) for letting us use it!
- [Another private Aesir dataset]
- [Another private Aesir dataset]
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
## DPO training data used:
- [Intel/orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [NobodyExistsOnTheInternet/ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [Undi95/toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
This is a full finetune.
## Others
Undi: If you want to support me, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0"} | text-generation | zaq-hack/Noromaid-13B-0.4-DPO-bpw250-h6-exl2-rpcal | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T20:57:40+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
!image/png
---
# Use these presets in sillytavern!!
Context
Instruct
## Description
This repo contains fp16 files of Noromaid-13b-v0.4-DPO.
FP16 - by IkariDev and Undi
GGUF - by IkariDev and Undi
## Ratings:
Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!
No ratings yet!
If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi".
## Prompt format: NsChatml
## Training data used:
- no_robots dataset let the model have more human behavior, enhances the output.
- [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the MinvervaAI Team and, in particular, Gryphe for letting us use it!
- [Another private Aesir dataset]
- [Another private Aesir dataset]
- limarp
## DPO training data used:
- Intel/orca_dpo_pairs
- NobodyExistsOnTheInternet/ToxicDPOqa
- Undi95/toxic-dpo-v0.1-NoWarning
This is a full finetune.
## Others
Undi: If you want to support me, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"# Use these presets in sillytavern!!\nContext\n\nInstruct",
"## Description\n\n\n\nThis repo contains fp16 files of Noromaid-13b-v0.4-DPO.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi",
"## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".",
"## Prompt format: NsChatml",
"## Training data used:\n- no_robots dataset let the model have more human behavior, enhances the output.\n- [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the MinvervaAI Team and, in particular, Gryphe for letting us use it!\n- [Another private Aesir dataset]\n- [Another private Aesir dataset]\n- limarp",
"## DPO training data used:\n- Intel/orca_dpo_pairs\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning\n\nThis is a full finetune.",
"## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Use these presets in sillytavern!!\nContext\n\nInstruct",
"## Description\n\n\n\nThis repo contains fp16 files of Noromaid-13b-v0.4-DPO.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi",
"## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".",
"## Prompt format: NsChatml",
"## Training data used:\n- no_robots dataset let the model have more human behavior, enhances the output.\n- [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the MinvervaAI Team and, in particular, Gryphe for letting us use it!\n- [Another private Aesir dataset]\n- [Another private Aesir dataset]\n- limarp",
"## DPO training data used:\n- Intel/orca_dpo_pairs\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning\n\nThis is a full finetune.",
"## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
58,
15,
45,
78,
9,
108,
56,
32
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Use these presets in sillytavern!!\nContext\n\nInstruct## Description\n\n\n\nThis repo contains fp16 files of Noromaid-13b-v0.4-DPO.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".## Prompt format: NsChatml## Training data used:\n- no_robots dataset let the model have more human behavior, enhances the output.\n- [Aesir Private RP dataset] New data from a new and never used before dataset, add fresh data, no LimaRP spam, this is 100% new. Thanks to the MinvervaAI Team and, in particular, Gryphe for letting us use it!\n- [Another private Aesir dataset]\n- [Another private Aesir dataset]\n- limarp## DPO training data used:\n- Intel/orca_dpo_pairs\n- NobodyExistsOnTheInternet/ToxicDPOqa\n- Undi95/toxic-dpo-v0.1-NoWarning\n\nThis is a full finetune.## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.030639922246336937,
0.14220690727233887,
-0.004034246783703566,
0.026808345690369606,
0.13269765675067902,
0.029795996844768524,
0.133726567029953,
0.14214538037776947,
0.07557252049446106,
0.09011188894510269,
0.024180471897125244,
0.0975753515958786,
0.07379724830389023,
0.17987564206123352,
0.03127751126885414,
-0.22676023840904236,
0.05069849640130997,
-0.07911443710327148,
0.07295450568199158,
0.07786253839731216,
0.04887432977557182,
-0.08919351547956467,
0.09456218779087067,
-0.038093604147434235,
-0.04857175424695015,
-0.04758711904287338,
-0.012743358500301838,
-0.08486692607402802,
0.11089741438627243,
0.011032898910343647,
0.013013935647904873,
0.02965296246111393,
0.020943710580468178,
-0.18641994893550873,
0.028790926560759544,
0.06781701743602753,
0.024790052324533463,
0.08769886940717697,
0.05531289801001549,
-0.009944669902324677,
0.1305529773235321,
-0.08299511671066284,
0.0002796892076730728,
0.043496884405612946,
-0.15017902851104736,
-0.14769549667835236,
-0.11537747830152512,
0.06032756343483925,
0.08794401586055756,
0.10658387839794159,
-0.04158169403672218,
0.20929008722305298,
-0.06851227581501007,
0.018255922943353653,
0.11623850464820862,
-0.14953438937664032,
-0.03920896351337433,
0.06785352528095245,
-0.008339720778167248,
0.06092441827058792,
-0.09529639780521393,
-0.011478075757622719,
0.028297530487179756,
-0.012612171471118927,
-0.02054189331829548,
-0.0013327051419764757,
0.031437139958143234,
-0.04709832742810249,
-0.07467315346002579,
-0.038376834243535995,
0.20320391654968262,
0.046653855592012405,
-0.07350868731737137,
-0.10978668928146362,
-0.0022292176727205515,
0.03879239037632942,
0.009736482985317707,
-0.033777665346860886,
-0.028447585180401802,
-0.05709449201822281,
-0.047017063945531845,
-0.040769271552562714,
-0.08992314338684082,
-0.04660520702600479,
-0.010702052153646946,
0.10526703298091888,
0.03483717516064644,
0.01390258502215147,
-0.03632234036922455,
0.09154141694307327,
-0.07919922471046448,
-0.0500781387090683,
-0.05645384266972542,
-0.06825946271419525,
-0.07028591632843018,
-0.07902605831623077,
-0.013951132073998451,
-0.10141410678625107,
0.07846062630414963,
0.17191630601882935,
-0.018444573506712914,
-0.0053133307956159115,
-0.010334338992834091,
0.014723609201610088,
0.08835959434509277,
-0.005290113855153322,
-0.09351350367069244,
0.06249421462416649,
0.0075532132759690285,
0.013205887749791145,
0.023031318560242653,
-0.018261974677443504,
0.029573222622275352,
0.010314586572349072,
-0.0014388778945431113,
0.06355184316635132,
0.07917185872793198,
0.09237787872552872,
-0.05085459724068642,
-0.05575328692793846,
0.2062811553478241,
-0.0825609341263771,
0.00804116576910019,
0.03995465114712715,
-0.05339871719479561,
-0.0055673555471003056,
-0.029398255050182343,
0.010744485072791576,
-0.04632975533604622,
0.06106656417250633,
-0.045449186116456985,
-0.0033241501078009605,
-0.08222983777523041,
-0.053742848336696625,
0.0722544714808464,
-0.0031856142450124025,
-0.04568895325064659,
-0.12921124696731567,
-0.09156160801649094,
-0.053818218410015106,
0.019486039876937866,
-0.056357093155384064,
-0.03651509806513786,
0.004500783048570156,
-0.026348687708377838,
0.003112039528787136,
-0.017730215564370155,
-0.018527474254369736,
-0.043333712965250015,
0.07704532891511917,
-0.03773289546370506,
0.10030125826597214,
0.007000066805630922,
0.02250204049050808,
-0.1562914252281189,
-0.019233006983995438,
-0.2472194880247116,
0.05479592829942703,
-0.06323562562465668,
0.017292063683271408,
-0.13236702978610992,
0.009477856568992138,
-0.06064268946647644,
-0.02157878875732422,
0.009112956933677197,
0.20287905633449554,
-0.15337657928466797,
-0.011853795498609543,
0.1580308973789215,
-0.12134528905153275,
-0.09901722520589828,
0.11562354862689972,
0.006251232698559761,
0.014386072754859924,
0.08866818994283676,
0.11453843861818314,
0.005366841796785593,
-0.09619339555501938,
-0.11309613287448883,
-0.09017182141542435,
-0.061183828860521317,
0.015692738816142082,
0.0601489432156086,
-0.030673090368509293,
0.020545272156596184,
-0.0009599808254279196,
-0.104949451982975,
0.02460329420864582,
-0.04318000003695488,
-0.04980248957872391,
0.01717764139175415,
-0.063212551176548,
0.06752406805753708,
0.021867573261260986,
0.004232604056596756,
-0.005713494028896093,
-0.059637803584337234,
-0.10223480314016342,
0.10534682869911194,
-0.02587132155895233,
-0.01477683987468481,
-0.09991458058357239,
0.06470229476690292,
0.024455662816762924,
0.04422346130013466,
-0.12469256669282913,
-0.04823560267686844,
0.03759743645787239,
-0.10963413864374161,
0.06562207639217377,
0.032437894493341446,
0.05750355124473572,
0.04332549497485161,
-0.02914111688733101,
-0.030332397669553757,
-0.005557172000408173,
-0.018230417743325233,
-0.039060670882463455,
-0.1254144161939621,
0.007205577567219734,
-0.03320173919200897,
0.17353291809558868,
-0.1516571342945099,
0.007601251360028982,
0.05298880860209465,
0.1359281688928604,
0.05645889416337013,
-0.06583432108163834,
0.051336970180273056,
0.0065385447815060616,
0.006772168446332216,
-0.007766478694975376,
0.039191365242004395,
-0.022474776953458786,
-0.05454687029123306,
0.06084594503045082,
-0.1029135137796402,
-0.15481363236904144,
0.10850109905004501,
0.04453199729323387,
-0.07267352193593979,
0.06455247104167938,
-0.02329207770526409,
-0.014532966539263725,
-0.09784968942403793,
-0.049254365265369415,
0.11714142560958862,
0.09074186533689499,
0.036490682512521744,
-0.017991166561841965,
-0.02313668467104435,
0.019224220886826515,
-0.07977568358182907,
-0.04968909174203873,
0.05168548971414566,
0.0876263827085495,
-0.0748884305357933,
0.07053262740373611,
0.01974194310605526,
-0.01832578331232071,
0.17320886254310608,
0.02398681640625,
-0.05868147313594818,
-0.03868824243545532,
0.047973837703466415,
0.052511442452669144,
0.08076296746730804,
-0.014988884329795837,
0.02165990136563778,
0.06528877466917038,
-0.02679186686873436,
-0.019990762695670128,
-0.09566676616668701,
-0.025256110355257988,
-0.028713176026940346,
-0.028444522991776466,
-0.022418582811951637,
0.03339811787009239,
-0.0016469844849780202,
0.10946310311555862,
-0.006337647791951895,
0.0514194555580616,
0.01928911730647087,
-0.007768487557768822,
-0.09677634388208389,
0.12585189938545227,
-0.03600502759218216,
-0.1857796013355255,
-0.0882888212800026,
0.013005536049604416,
-0.06697084754705429,
-0.01436839159578085,
0.02858264185488224,
-0.0899842157959938,
-0.04750121384859085,
-0.05092800781130791,
0.07276352494955063,
0.11136793345212936,
-0.08302485197782516,
0.016503365710377693,
-0.009512020274996758,
0.0605563223361969,
-0.03688341751694679,
-0.01123248040676117,
0.020763657987117767,
-0.10248313099145889,
0.14272655546665192,
0.061642639338970184,
0.11777246743440628,
0.043983664363622665,
-0.0015495438128709793,
-0.01390098873525858,
0.0004218389804009348,
0.21861037611961365,
-0.1309434026479721,
0.06761891394853592,
0.1471240073442459,
0.05561806261539459,
0.06422422081232071,
0.14494295418262482,
0.05272451043128967,
-0.061510175466537476,
0.06426036357879639,
0.08282327651977539,
-0.04010044038295746,
-0.2083875983953476,
-0.06541197746992111,
-0.009957708418369293,
0.00368896359577775,
0.058423880487680435,
0.02893010899424553,
0.10461670905351639,
0.09324461966753006,
-0.09027498960494995,
0.007761981803923845,
0.009489522315561771,
0.08049565553665161,
-0.015643317252397537,
0.042952436953783035,
0.02688734233379364,
-0.03315058350563049,
-0.05394793674349785,
0.10601764917373657,
0.007596260868012905,
0.19131718575954437,
0.0076613761484622955,
0.08962941914796829,
0.04801385477185249,
0.0625762864947319,
-0.004032227210700512,
0.05330771207809448,
0.028295546770095825,
-0.013953020796179771,
0.0012013436062261462,
-0.07649756968021393,
-0.03808893635869026,
0.030857935547828674,
0.043871719390153885,
-0.11334630101919174,
-0.05360289663076401,
-0.013727612793445587,
0.08561573922634125,
0.2176433801651001,
0.028862139210104942,
-0.22923225164413452,
-0.06385541707277298,
0.001667555421590805,
-0.006868763826787472,
-0.021937217563390732,
-0.03709607571363449,
0.08902203291654587,
-0.15408256649971008,
0.0895182266831398,
-0.08329471945762634,
0.02327624335885048,
-0.16936245560646057,
0.03738900274038315,
-0.0023087391164153814,
0.05078572407364845,
-0.020717360079288483,
0.08947572857141495,
-0.16426414251327515,
0.1377793401479721,
-0.020612282678484917,
0.10298854112625122,
-0.09233293682336807,
-0.041321706026792526,
0.03070737048983574,
-0.03533804044127464,
0.12887591123580933,
0.0119920764118433,
-0.07001475244760513,
-0.15453709661960602,
-0.10624539107084274,
0.011610266752541065,
0.04417400062084198,
-0.1073816791176796,
0.11393674463033676,
0.014063645154237747,
0.014410566538572311,
-0.07740778475999832,
0.022676177322864532,
-0.17835092544555664,
-0.09738688170909882,
0.07440400123596191,
0.019472677260637283,
0.10979725420475006,
-0.027872445061802864,
-0.016830943524837494,
-0.042044032365083694,
0.04620349407196045,
-0.04954883083701134,
-0.05604846403002739,
-0.07214239239692688,
0.01914985477924347,
0.07042442262172699,
-0.10493914037942886,
-0.06263624131679535,
-0.014766834676265717,
0.08833841234445572,
-0.035363513976335526,
-0.05867372080683708,
0.008268081583082676,
-0.07694393396377563,
-0.18537622690200806,
-0.010283365845680237,
0.043580133467912674,
0.09861630946397781,
0.04817114770412445,
0.01624300330877304,
0.028838276863098145,
0.04263452813029289,
-0.10630345344543457,
0.017959559336304665,
0.10279189795255661,
-0.008006936870515347,
0.04473969712853432,
-0.02347457967698574,
-0.08412684500217438,
-0.17221897840499878,
-0.09447325766086578,
0.13122372329235077,
0.2907571494579315,
-0.05055082589387894,
0.06846457719802856,
0.13891902565956116,
-0.050435036420822144,
-0.23717686533927917,
-0.07621400058269501,
0.00573398731648922,
-0.0222987812012434,
0.022456152364611626,
-0.2372932881116867,
0.062436848878860474,
0.14784368872642517,
-0.015581462532281876,
-0.03701429069042206,
-0.21112383902072906,
-0.1183231845498085,
0.04237338900566101,
0.08351784944534302,
0.035848766565322876,
-0.13178850710391998,
-0.052099816501140594,
-0.035166673362255096,
0.017247013747692108,
0.14009976387023926,
-0.02023824118077755,
0.09469308704137802,
-0.00895253848284483,
0.10822730511426926,
0.06445891410112381,
-0.056292466819286346,
0.14163976907730103,
-0.0012236230541020632,
0.06716874986886978,
-0.11540836840867996,
-0.05794643610715866,
0.014211727306246758,
-0.05839221179485321,
0.12938037514686584,
0.0049593583680689335,
-0.027467479929327965,
-0.07816518098115921,
0.01295403391122818,
-0.13994662463665009,
0.033179834485054016,
0.007966187782585621,
-0.03954817354679108,
-0.06863171607255936,
0.11899453401565552,
0.03412864729762077,
0.020654849708080292,
0.040238264948129654,
-0.00574642326682806,
0.0871533453464508,
0.10795759409666061,
0.13009852170944214,
0.06028604134917259,
-0.017418820410966873,
-0.02319604903459549,
-0.016059836372733116,
0.06968933343887329,
-0.05558564141392708,
0.01470467634499073,
0.11206524074077606,
0.018270721659064293,
0.10385172814130783,
-0.013023121282458305,
-0.16438570618629456,
0.04099496454000473,
0.12336476892232895,
-0.16102418303489685,
-0.25345560908317566,
0.022022085264325142,
0.07551449537277222,
-0.10364072024822235,
0.01309868972748518,
0.16087543964385986,
-0.07504958659410477,
-0.026280121877789497,
-0.013024953193962574,
0.08827972412109375,
-0.0276358462870121,
0.13264058530330658,
0.000050980244850507006,
0.0545477569103241,
-0.0838698074221611,
0.11824432015419006,
0.11714061349630356,
-0.08122838288545609,
0.028751948848366737,
0.030078891664743423,
-0.06146213784813881,
-0.09999903291463852,
0.0013617558870464563,
0.043893467634916306,
-0.04903944209218025,
-0.05035385489463806,
0.007106309290975332,
-0.05345942825078964,
0.001016832422465086,
-0.02274792641401291,
-0.011754404753446579,
0.03389232978224754,
0.07053978741168976,
0.0006539116729982197,
-0.13140438497066498,
0.05478052422404289,
0.009464284405112267,
0.026432836428284645,
-0.12591832876205444,
0.067548967897892,
-0.011216262355446815,
0.00664483942091465,
-0.002320794854313135,
-0.03041163645684719,
-0.12780730426311493,
-0.03738665580749512,
0.0018957320135086775,
-0.03989052772521973,
-0.10823342949151993,
-0.028384443372488022,
0.019376300275325775,
0.01990600861608982,
0.014520127326250076,
-0.020936105400323868,
-0.09445051848888397,
-0.041509225964546204,
-0.017590809613466263,
0.11831267923116684,
-0.1723065972328186,
-0.015569551847875118,
0.052510183304548264,
-0.04192749410867691,
0.10760042071342468,
0.07471664994955063,
-0.011394322849810123,
0.007078131195157766,
-0.13612638413906097,
0.03612430766224861,
0.004056612495332956,
0.020940594375133514,
0.03628239408135414,
-0.161145880818367,
-0.015380879864096642,
-0.02189883030951023,
0.000837113184388727,
0.06351035088300705,
0.06220832094550133,
-0.10740455240011215,
0.06740515679121017,
0.0765475332736969,
-0.049405746161937714,
-0.08589054644107819,
0.0524287149310112,
0.0718352198600769,
-0.006906087044626474,
0.1452530175447464,
-0.0790504589676857,
0.031108837574720383,
-0.1331407129764557,
0.019794192165136337,
0.008621212095022202,
-0.008391058072447777,
0.012604990974068642,
-0.004124585539102554,
0.06222829222679138,
-0.0027963100001215935,
0.022692305967211723,
-0.0023045551497489214,
0.011034561321139336,
0.011069053784012794,
-0.013328651897609234,
-0.11155735701322556,
-0.004993399139493704,
0.020730063319206238,
0.009304473176598549,
-0.030662791803479195,
-0.018010228872299194,
0.01727905310690403,
-0.053203608840703964,
0.029605384916067123,
0.15301458537578583,
0.1406470537185669,
0.07242370396852493,
-0.020549727603793144,
0.08468417078256607,
-0.05930105596780777,
-0.0552438423037529,
0.036685727536678314,
-0.06376109272241592,
0.0959867462515831,
-0.04066799581050873,
0.0907062217593193,
0.11830423027276993,
-0.13525529205799103,
0.04235909506678581,
-0.10972288995981216,
-0.05242067575454712,
-0.0414237454533577,
-0.27810269594192505,
-0.04032561182975769,
-0.1074698269367218,
0.03140221908688545,
-0.08832184225320816,
0.02042899839580059,
0.08193100988864899,
0.012263697572052479,
-0.07042323052883148,
0.14956356585025787,
-0.05899719521403313,
-0.05170868709683418,
0.04904654622077942,
-0.02601741813123226,
-0.06464825570583344,
-0.01645214855670929,
0.027593042701482773,
0.018143774941563606,
0.046236228197813034,
0.07108741998672485,
0.07500690966844559,
0.008075184188783169,
0.07165028154850006,
-0.06609577685594559,
-0.11755380034446716,
0.020366070792078972,
-0.013616260141134262,
0.025987351313233376,
0.13183940947055817,
0.08027168363332748,
0.004764682147651911,
0.0032536201179027557,
0.22992025315761566,
-0.03273312747478485,
-0.023754552006721497,
-0.18078391253948212,
0.1914801448583603,
-0.009454099461436272,
-0.028138961642980576,
0.007667540572583675,
-0.13003258407115936,
-0.017367908731102943,
0.14496862888336182,
0.1391696035861969,
-0.02124374359846115,
-0.013818487524986267,
-0.06666043400764465,
0.019358787685632706,
-0.04268905520439148,
0.11098762601613998,
0.04939572140574455,
0.12390222400426865,
-0.07145138829946518,
0.1974271982908249,
-0.03472930192947388,
0.007546416949480772,
-0.05953463539481163,
0.08974728733301163,
-0.017981356009840965,
0.0019917855970561504,
-0.07338181138038635,
0.13624438643455505,
-0.13778133690357208,
-0.1597438007593155,
-0.05780835077166557,
-0.08127118647098541,
-0.09309414774179459,
0.002043755492195487,
-0.011555446311831474,
0.027180377393960953,
0.12152162939310074,
0.004899501334875822,
0.013484920375049114,
0.1415662169456482,
0.02143479511141777,
-0.07790159434080124,
-0.0503682866692543,
0.05016088858246803,
0.022713394835591316,
0.20819945633411407,
0.003131694858893752,
0.07206076383590698,
0.08620759844779968,
-0.06110769882798195,
-0.16194479167461395,
0.08565350621938705,
0.00326478760689497,
-0.07253911346197128,
0.036703918129205704,
0.17952457070350647,
-0.002671558875590563,
0.09240519255399704,
0.09157516062259674,
-0.06901399046182632,
0.01977689564228058,
0.11265621334314346,
0.09176798164844513,
-0.08408533781766891,
0.1393779218196869,
-0.07627912610769272,
0.13173189759254456,
0.19193443655967712,
-0.041079454123973846,
0.026462402194738388,
-0.034795887768268585,
0.04330168664455414,
0.010179475881159306,
-0.028958842158317566,
-0.07520942389965057,
-0.18584758043289185,
0.008596846833825111,
-0.03893881291151047,
0.08077114075422287,
-0.12609928846359253,
-0.04444795101881027,
-0.020863419398665428,
-0.013464974239468575,
-0.014093303121626377,
0.08148560672998428,
0.056192439049482346,
-0.013196143321692944,
-0.03586956486105919,
-0.025993410497903824,
-0.02706489898264408,
0.12633687257766724,
-0.09171915799379349,
-0.07069528102874756
] |
null | null | transformers |
Thanks to @s3nh for the great quantization notebook code.
## Original model card
Buy @s3nh a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGUF Format model files for [This project](https://huggingface.co/{MODEL_ID}).
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
# Original model card

# 試製-暮光-7B
試製-暮光-7B 是用[LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing)融合以下模型生成的:
* [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B)
這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。
# shizhi-twilight-7B
shizhi-twilight-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)
* [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B)
This is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.
## 🧩 Configuration
```yaml
slices:
- sources:
- model: MediaTek-Research/Breeze-7B-Instruct-v0_1
layer_range: [0, 32]
- model: argilla/CapybaraHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: MediaTek-Research/Breeze-7B-Instruct-v0_1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "lipcut/shizhi-twilight-7B"
messages = [{"role": "user", "content": "什麼是大型語言模型?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
| {"language": ["en", "zh"], "license": "openrail", "library_name": "transformers", "pipeline_tag": "text-generation"} | text-generation | lipcut/shizhi-twilight-7B-GGUF | [
"transformers",
"gguf",
"text-generation",
"en",
"zh",
"license:openrail",
"endpoints_compatible",
"region:us"
] | 2024-02-06T20:58:19+00:00 | [] | [
"en",
"zh"
] | TAGS
#transformers #gguf #text-generation #en #zh #license-openrail #endpoints_compatible #region-us
|
Thanks to @s3nh for the great quantization notebook code.
## Original model card
Buy @s3nh a coffee if you like this project ;)
<a href="URL src="URL alt=""></a>
#### Description
GGUF Format model files for This project.
### GGUF Specs
GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:
Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.
Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.
mmap compatibility: models can be loaded using mmap for fast loading and saving.
Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.
Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.
The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.
This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for
inference or for identifying the model.
# Original model card
!image/png
# 試製-暮光-7B
試製-暮光-7B 是用LazyMergekit融合以下模型生成的:
* MediaTek-Research/Breeze-7B-Instruct-v0_1
* argilla/CapybaraHermes-2.5-Mistral-7B
這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。
# shizhi-twilight-7B
shizhi-twilight-7B is a merge of the following models using LazyMergekit:
* MediaTek-Research/Breeze-7B-Instruct-v0_1
* argilla/CapybaraHermes-2.5-Mistral-7B
This is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.
## Configuration
## Usage
| [
"## Original model card\n\nBuy @s3nh a coffee if you like this project ;)\n<a href=\"URL src=\"URL alt=\"\"></a>",
"#### Description\n\nGGUF Format model files for This project.",
"### GGUF Specs\n\nGGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:\n\nSingle-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.\nExtensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.\nmmap compatibility: models can be loaded using mmap for fast loading and saving.\nEasy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.\nFull information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.\nThe key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.\nThis allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for\ninference or for identifying the model.",
"# Original model card\n\n!image/png",
"# 試製-暮光-7B\n\n試製-暮光-7B 是用LazyMergekit融合以下模型生成的:\n* MediaTek-Research/Breeze-7B-Instruct-v0_1\n* argilla/CapybaraHermes-2.5-Mistral-7B\n\n這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。",
"# shizhi-twilight-7B\n\nshizhi-twilight-7B is a merge of the following models using LazyMergekit:\n* MediaTek-Research/Breeze-7B-Instruct-v0_1\n* argilla/CapybaraHermes-2.5-Mistral-7B\n\nThis is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #gguf #text-generation #en #zh #license-openrail #endpoints_compatible #region-us \n",
"## Original model card\n\nBuy @s3nh a coffee if you like this project ;)\n<a href=\"URL src=\"URL alt=\"\"></a>",
"#### Description\n\nGGUF Format model files for This project.",
"### GGUF Specs\n\nGGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:\n\nSingle-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.\nExtensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.\nmmap compatibility: models can be loaded using mmap for fast loading and saving.\nEasy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.\nFull information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.\nThe key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.\nThis allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for\ninference or for identifying the model.",
"# Original model card\n\n!image/png",
"# 試製-暮光-7B\n\n試製-暮光-7B 是用LazyMergekit融合以下模型生成的:\n* MediaTek-Research/Breeze-7B-Instruct-v0_1\n* argilla/CapybaraHermes-2.5-Mistral-7B\n\n這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。",
"# shizhi-twilight-7B\n\nshizhi-twilight-7B is a merge of the following models using LazyMergekit:\n* MediaTek-Research/Breeze-7B-Instruct-v0_1\n* argilla/CapybaraHermes-2.5-Mistral-7B\n\nThis is an experiment product on checking whether high quality fine-tuning on one language (English) could be transferred to another language (Mandarin) leveraging Slerp merge method.",
"## Configuration",
"## Usage"
] | [
35,
33,
13,
284,
8,
96,
106,
4,
3
] | [
"passage: TAGS\n#transformers #gguf #text-generation #en #zh #license-openrail #endpoints_compatible #region-us \n## Original model card\n\nBuy @s3nh a coffee if you like this project ;)\n<a href=\"URL src=\"URL alt=\"\"></a>#### Description\n\nGGUF Format model files for This project.### GGUF Specs\n\nGGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired:\n\nSingle-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information.\nExtensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models.\nmmap compatibility: models can be loaded using mmap for fast loading and saving.\nEasy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used.\nFull information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user.\nThe key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values.\nThis allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for\ninference or for identifying the model.# Original model card\n\n!image/png# 試製-暮光-7B\n\n試製-暮光-7B 是用LazyMergekit融合以下模型生成的:\n* MediaTek-Research/Breeze-7B-Instruct-v0_1\n* argilla/CapybaraHermes-2.5-Mistral-7B\n\n這是一個實驗模型,目的是爲了檢驗套用在不同語言上的高品質模型調教是否能夠轉移(此模型爲英文到中文)。"
] | [
-0.02068297006189823,
0.09304532408714294,
-0.004528033547103405,
0.03756970167160034,
0.08480269461870193,
0.062373656779527664,
0.05933217704296112,
0.09284966439008713,
0.034725651144981384,
0.05380326882004738,
-0.046700987964868546,
0.006550474092364311,
0.07969485968351364,
0.08207979798316956,
0.026990821585059166,
-0.2779720723628998,
0.0429258830845356,
-0.037079326808452606,
0.030312644317746162,
0.0008762211073189974,
0.11687500029802322,
-0.0506066158413887,
0.09271269291639328,
0.022260956466197968,
-0.037043288350105286,
0.016959086060523987,
-0.03197966143488884,
-0.03029685467481613,
0.04871943220496178,
0.11842192709445953,
-0.0020417261403054,
0.039201751351356506,
0.008187723346054554,
-0.1545160859823227,
0.013989887200295925,
0.04503455013036728,
-0.05283144488930702,
0.010213778354227543,
0.023253735154867172,
-0.00009797614620765671,
0.18888981640338898,
-0.0315420925617218,
-0.00809315126389265,
0.07557570189237595,
-0.0061282808892428875,
-0.19181829690933228,
-0.0548614077270031,
0.05929304286837578,
-0.020487263798713684,
0.007246421184390783,
0.015540977008640766,
-0.02803872525691986,
-0.06523507833480835,
-0.017465665936470032,
0.1766985058784485,
-0.22926963865756989,
-0.015678182244300842,
0.16219782829284668,
-0.022717323154211044,
0.12218112498521805,
-0.06797648221254349,
0.06491315364837646,
-0.012977172620594501,
-0.014126250520348549,
0.09335441887378693,
-0.024502571672201157,
0.01939535140991211,
0.04010367393493652,
-0.08843802660703659,
0.04898132011294365,
0.09704913198947906,
-0.016621623188257217,
-0.058351121842861176,
-0.17578835785388947,
-0.02275390364229679,
0.16913248598575592,
-0.06158176437020302,
-0.0468154214322567,
0.055116552859544754,
0.040338434278964996,
0.08930563181638718,
-0.1931207925081253,
-0.06557797640562057,
-0.0486229732632637,
-0.028312914073467255,
0.11950507760047913,
0.047034554183483124,
0.040051572024822235,
0.044679198414087296,
0.05459706112742424,
-0.27205201983451843,
-0.07055234909057617,
-0.16730117797851562,
-0.039858244359493256,
-0.0066987317986786366,
0.03387613594532013,
0.006124287378042936,
-0.0666203424334526,
0.03965647518634796,
0.0923968032002449,
-0.04686227813363075,
0.0682128295302391,
0.032614219933748245,
0.004803469404578209,
0.0066586886532604694,
0.1446172147989273,
-0.06579016894102097,
-0.06217896565794945,
0.06563258171081543,
-0.060934171080589294,
0.019231511279940605,
-0.029582947492599487,
-0.12264087051153183,
-0.09846632182598114,
-0.06005741283297539,
0.03572292625904083,
-0.03315746411681175,
0.016064289957284927,
0.06152539327740669,
-0.0854712426662445,
0.2673793137073517,
-0.08704431354999542,
0.024604110047221184,
0.02071457728743553,
-0.08090036362409592,
0.04794130474328995,
0.012461066246032715,
-0.030191676691174507,
-0.03264099732041359,
0.015506576746702194,
-0.060845453292131424,
0.006248192396014929,
-0.040284257382154465,
-0.0773836150765419,
-0.029020102694630623,
-0.05081353709101677,
-0.028655627742409706,
-0.11760779470205307,
-0.26042187213897705,
0.02999362349510193,
0.04250577464699745,
-0.07536295801401138,
0.046561941504478455,
0.02285950444638729,
0.02583269774913788,
-0.013975251466035843,
0.02138201706111431,
-0.0548563152551651,
-0.04172056168317795,
-0.025839712470769882,
-0.009502815082669258,
0.03592672944068909,
-0.028994031250476837,
0.022636137902736664,
-0.02064904198050499,
-0.013695701956748962,
-0.2507784366607666,
0.15018045902252197,
-0.13451331853866577,
-0.03933395817875862,
-0.057811539620161057,
-0.00332198035903275,
-0.01722922921180725,
-0.03811844065785408,
-0.061933066695928574,
0.036970727145671844,
-0.02060094103217125,
-0.08445094525814056,
0.1648578643798828,
-0.1304503232240677,
-0.016764996573328972,
0.13385482132434845,
-0.030688492581248283,
0.03436504676938057,
0.1304425150156021,
0.14124153554439545,
0.22445610165596008,
-0.10841618478298187,
-0.06077762320637703,
0.11255677789449692,
-0.018352504819631577,
0.08014784008264542,
0.07082948833703995,
0.02881176955997944,
0.0019895483274012804,
0.06431710720062256,
-0.02441822923719883,
0.0424213744699955,
0.01278588268905878,
-0.02906675823032856,
-0.021387314423918724,
-0.10985689610242844,
0.03416144475340843,
-0.020654955878853798,
0.03151441365480423,
0.020233966410160065,
-0.0658615380525589,
0.05909300595521927,
0.13858717679977417,
-0.06884218007326126,
-0.0436025895178318,
-0.09100789576768875,
0.07332413643598557,
-0.08529489487409592,
0.011429978534579277,
0.001665944466367364,
-0.06478862464427948,
0.09312576800584793,
-0.12292744219303131,
0.05619312450289726,
0.046579644083976746,
0.05548952519893646,
0.0771539956331253,
-0.07274643331766129,
0.06389454752206802,
0.0451178140938282,
-0.010848410427570343,
0.010049518197774887,
-0.013952627778053284,
-0.007935632951557636,
-0.006372768897563219,
0.09877326339483261,
-0.06897805631160736,
0.03683030977845192,
0.03251216188073158,
0.009108420461416245,
-0.00837238784879446,
-0.03707407787442207,
0.025716176256537437,
-0.10378795862197876,
-0.005963723175227642,
-0.06154244765639305,
-0.0503932423889637,
0.042588621377944946,
-0.08127100765705109,
0.14601878821849823,
-0.1166110634803772,
0.12808004021644592,
0.01921127177774906,
0.16011276841163635,
-0.040802132338285446,
-0.04793582111597061,
0.005479388404637575,
-0.022425049915909767,
-0.07977178692817688,
-0.0317176878452301,
0.217321515083313,
-0.032192666083574295,
0.12618647515773773,
-0.11907393485307693,
-0.030700815841555595,
0.037694353610277176,
0.013803074136376381,
0.029283585026860237,
0.04266086593270302,
0.018586792051792145,
-0.12310522049665451,
0.07525890320539474,
-0.0361754409968853,
0.023523686453700066,
0.2291140854358673,
0.074894018471241,
-0.05105595663189888,
-0.051484763622283936,
-0.02592022530734539,
-0.007319503929466009,
0.040719710290431976,
0.0024406828451901674,
0.0313609354197979,
0.05396853759884834,
0.03997953608632088,
0.09236641973257065,
-0.038398608565330505,
0.016377074643969536,
0.08988355100154877,
-0.10588358342647552,
0.06910792738199234,
0.006282601039856672,
-0.05329582095146179,
0.061489153653383255,
0.03460661694407463,
0.1420651227235794,
-0.017789505422115326,
0.0331602469086647,
-0.06145733594894409,
0.1233290359377861,
-0.060651715844869614,
-0.18247558176517487,
-0.08531328290700912,
0.019014103338122368,
-0.06246519833803177,
0.028927478939294815,
0.039655935019254684,
-0.05410299450159073,
-0.07030031830072403,
-0.08293398469686508,
0.016972502693533897,
-0.06421557068824768,
-0.09327437728643417,
-0.052985794842243195,
0.008972632698714733,
-0.06457915902137756,
-0.1439172625541687,
-0.01662646420300007,
0.031114844605326653,
-0.17141640186309814,
-0.018764076754450798,
-0.01019043754786253,
0.04936205968260765,
0.08842187374830246,
-0.048084355890750885,
0.01446494646370411,
0.013552538119256496,
0.1318514496088028,
-0.03412743657827377,
0.13345219194889069,
0.18376906216144562,
0.07701317965984344,
0.08317491412162781,
0.004001433961093426,
0.04454006627202034,
-0.008896944113075733,
-0.03643716126680374,
0.00000676951549394289,
-0.07652368396520615,
-0.16606728732585907,
-0.0816088393330574,
-0.055331431329250336,
0.008211469277739525,
-0.0011463589034974575,
0.08029118180274963,
0.1253885179758072,
0.12028481066226959,
-0.09848867356777191,
0.08682578802108765,
0.06021164357662201,
0.06176771596074104,
0.09522323310375214,
0.027933843433856964,
0.06254872679710388,
-0.09228211641311646,
0.025500863790512085,
0.14702095091342926,
-0.03345785662531853,
0.12041140347719193,
-0.08440544456243515,
0.18283748626708984,
-0.02962309867143631,
0.05415457487106323,
0.07028192281723022,
0.011547195725142956,
-0.10037147998809814,
-0.026843205094337463,
-0.04886660352349281,
-0.07068577408790588,
-0.014638492837548256,
0.1255490928888321,
0.004591039381921291,
-0.09429860860109329,
0.037092555314302444,
-0.0010157929500564933,
0.045311339199543,
0.01008758693933487,
-0.06144905835390091,
-0.09212078154087067,
-0.11906595528125763,
0.015492543578147888,
0.004033599980175495,
-0.05603925138711929,
-0.021308928728103638,
0.14501239359378815,
-0.1040029227733612,
0.07513780146837234,
0.030641751363873482,
0.07935886085033417,
-0.08395072817802429,
-0.009372861124575138,
-0.05835185572504997,
0.14989997446537018,
-0.013484480790793896,
0.15515951812267303,
-0.11151757836341858,
-0.03254713863134384,
0.06378372013568878,
0.07929667830467224,
-0.11794205009937286,
0.02292615920305252,
0.08137597888708115,
0.033404190093278885,
0.08451209962368011,
0.015721693634986877,
-0.03924684226512909,
-0.033370696008205414,
-0.07398512214422226,
0.08675850182771683,
0.049933984875679016,
-0.08547917753458023,
-0.012149186804890633,
-0.047529641538858414,
-0.027716737240552902,
-0.018925214186310768,
-0.05442187562584877,
-0.18844006955623627,
-0.2212841510772705,
0.07457113265991211,
0.02589528076350689,
-0.043106693774461746,
-0.04221287742257118,
0.048452481627464294,
-0.053218815475702286,
0.17609894275665283,
0.00980983953922987,
-0.11532750725746155,
-0.14012061059474945,
-0.04634891450405121,
0.12495187669992447,
-0.11509541422128677,
0.04595695808529854,
-0.01077525969594717,
0.1850213259458542,
-0.03727195784449577,
-0.13588394224643707,
-0.029261823743581772,
-0.07879258692264557,
-0.06010383740067482,
0.03744245693087578,
-0.036509376019239426,
0.08693772554397583,
0.05582154542207718,
0.042999234050512314,
-0.003608166240155697,
-0.009782107546925545,
-0.17721502482891083,
-0.03278925269842148,
0.1879151612520218,
-0.07576479017734528,
0.09260816127061844,
-0.047020524740219116,
-0.005685842130333185,
0.004368389490991831,
-0.05182914435863495,
0.05905350670218468,
0.12015263736248016,
-0.10824540257453918,
0.1374003142118454,
0.2031640261411667,
-0.04987899959087372,
-0.1980726271867752,
-0.05783173069357872,
-0.014960730448365211,
0.01203919481486082,
-0.02662529982626438,
-0.26558688282966614,
0.06382868438959122,
0.0897895023226738,
-0.04062279686331749,
0.09944175183773041,
-0.1710277497768402,
-0.06560808420181274,
0.018270036205649376,
-0.04492546245455742,
0.0507323332130909,
-0.09499868750572205,
-0.06715930253267288,
-0.03944578021764755,
-0.10952001065015793,
0.0839344784617424,
-0.08206529170274734,
0.11237764358520508,
-0.05352875962853432,
0.014628159813582897,
0.02879520133137703,
-0.03468926623463631,
0.10444727540016174,
-0.03313266485929489,
0.037957094609737396,
-0.08606157451868057,
0.06326138228178024,
0.06765981763601303,
-0.0486452579498291,
0.20484142005443573,
-0.1042923629283905,
0.07524777948856354,
-0.009804315865039825,
-0.08461817353963852,
-0.04142990708351135,
0.061644796282052994,
0.0359581857919693,
-0.0873669981956482,
-0.14051873981952667,
0.035276416689157486,
0.042626816779375076,
0.012403949163854122,
-0.06256283074617386,
-0.00515748979523778,
0.010028701275587082,
0.11897706985473633,
0.024439096450805664,
-0.10875596851110458,
-0.057081662118434906,
-0.049076661467552185,
0.024196254089474678,
0.06294585764408112,
-0.21771204471588135,
0.06184349209070206,
0.027476973831653595,
0.02499222755432129,
0.1347484588623047,
0.01555619202554226,
-0.10397803038358688,
0.03483987972140312,
-0.012300754897296429,
-0.07817994803190231,
-0.20710565149784088,
-0.0908081978559494,
-0.032089050859212875,
0.012363987043499947,
-0.02983647771179676,
0.06653951108455658,
-0.08711253851652145,
-0.03236878290772438,
-0.04872417822480202,
0.0007420227630063891,
0.024439014494419098,
0.10704214870929718,
0.042192403227090836,
-0.02090924046933651,
-0.05599025636911392,
0.06058361753821373,
0.06509750336408615,
-0.03768487647175789,
0.06501005589962006,
0.05660508573055267,
-0.07265947759151459,
-0.07562866806983948,
-0.05864853039383888,
0.10670993477106094,
-0.09360399097204208,
-0.020003773272037506,
-0.027348997071385384,
-0.010291709564626217,
0.001812705653719604,
0.04060886427760124,
0.012958805076777935,
0.021441593766212463,
-0.023662785068154335,
0.08132268488407135,
-0.06971648335456848,
0.061421096324920654,
-0.021735195070505142,
0.06180447340011597,
-0.08959516137838364,
-0.012580814771354198,
0.02425961196422577,
0.04923418164253235,
-0.03820888325572014,
-0.009378891438245773,
-0.04043036699295044,
-0.07084017246961594,
-0.18299587070941925,
0.0661110058426857,
-0.041943252086639404,
0.001558784511871636,
-0.012183320708572865,
-0.014604881405830383,
0.0029322863556444645,
0.06844199448823929,
-0.06283452361822128,
-0.016456380486488342,
-0.049982279539108276,
0.07544572651386261,
-0.0869915559887886,
0.017241820693016052,
0.04654969274997711,
-0.028586681932210922,
0.12951411306858063,
0.046980950981378555,
-0.009465198963880539,
0.0027605723589658737,
-0.1827906221151352,
-0.0099119758233428,
-0.0478128083050251,
0.038256045430898666,
0.011915300041437149,
0.01728556677699089,
0.08343725651502609,
-0.01961238496005535,
-0.04041825234889984,
-0.028171123936772346,
0.07201635837554932,
-0.11719892919063568,
0.08055450767278671,
-0.10543197393417358,
-0.02664879709482193,
-0.0491398386657238,
0.029236523434519768,
0.06909612566232681,
0.017274869605898857,
-0.02073555439710617,
-0.033164896070957184,
0.028675928711891174,
-0.1295848935842514,
-0.05202052369713783,
0.0017580550629645586,
-0.033919043838977814,
0.04192207753658295,
-0.058056171983480453,
0.022804098203778267,
0.01075452845543623,
0.22526544332504272,
0.03430784121155739,
-0.0354062020778656,
-0.026265043765306473,
-0.018759988248348236,
0.08336411416530609,
-0.03204432129859924,
0.10311654955148697,
0.05158284679055214,
0.0008451746543869376,
0.004255775362253189,
0.03998645767569542,
0.029431145638227463,
-0.1032717302441597,
-0.01961614564061165,
0.00558383297175169,
-0.008655842393636703,
0.012071389704942703,
0.013153227977454662,
-0.09516549855470657,
-0.08446664363145828,
0.08980613201856613,
-0.06274881213903427,
0.023620624095201492,
-0.03192170336842537,
-0.03057658113539219,
0.16258206963539124,
-0.11291252821683884,
0.1334516555070877,
0.04994136095046997,
-0.039042286574840546,
-0.11652521044015884,
-0.1136268675327301,
-0.08935260772705078,
-0.13333918154239655,
0.017555968835949898,
-0.09268447011709213,
0.07743613421916962,
0.03025301918387413,
0.02642400749027729,
0.018937891349196434,
0.11284013837575912,
-0.020800217986106873,
-0.05153225362300873,
0.0630047395825386,
-0.018673015758395195,
-0.059164948761463165,
0.10120564699172974,
0.007932138629257679,
0.06960061937570572,
0.03408925235271454,
0.09696463495492935,
0.04095529019832611,
0.05971895530819893,
0.028588024899363518,
-0.013474100269377232,
-0.02961765229701996,
-0.03301401808857918,
-0.017170922830700874,
-0.03055725060403347,
0.035121213644742966,
-0.009674747474491596,
-0.06905333697795868,
-0.004995313938707113,
0.17301933467388153,
-0.028462527319788933,
-0.04688647761940956,
-0.06486298143863678,
0.15753763914108276,
0.03385034576058388,
0.03952789306640625,
0.01428501307964325,
-0.03673359379172325,
0.008252480067312717,
0.19731071591377258,
0.17658305168151855,
-0.010783026926219463,
0.007592619862407446,
0.008141526952385902,
-0.010899880900979042,
0.06393498927354813,
0.0735182836651802,
-0.03073182888329029,
0.3021380603313446,
-0.03184251859784126,
0.09556625783443451,
0.010247012600302696,
-0.03558815270662308,
-0.08426235616207123,
0.13898536562919617,
-0.05791029706597328,
0.040568288415670395,
-0.01144383754581213,
0.006928787566721439,
-0.04162721335887909,
-0.1258230358362198,
0.012823781929910183,
-0.023334158584475517,
-0.05146131291985512,
0.016511263325810432,
0.006473424378782511,
0.0007110278238542378,
0.03678223863244057,
-0.0077819242142140865,
-0.02403194271028042,
0.06993700563907623,
-0.00018638928304426372,
-0.1882053017616272,
-0.004900276195257902,
0.0400514081120491,
0.0668625682592392,
0.22784055769443512,
0.003724057460203767,
-0.008136392571032047,
0.08109069615602493,
-0.02569715492427349,
-0.08462361246347427,
0.0692267045378685,
0.0020762127824127674,
-0.11863395571708679,
0.013535398989915848,
0.1297694742679596,
-0.0502021424472332,
0.06791778653860092,
0.06199515983462334,
-0.10659771412611008,
0.035708773881196976,
0.04984372481703758,
-0.030982449650764465,
-0.052589256316423416,
0.021274732425808907,
-0.06023138761520386,
0.138856440782547,
0.11001327633857727,
0.019476883113384247,
-0.03936054930090904,
-0.08702632039785385,
0.07230278849601746,
0.05808097496628761,
0.14885030686855316,
-0.02967052534222603,
-0.05227566510438919,
-0.02686218172311783,
0.05784591659903526,
0.0889941081404686,
-0.16830891370773315,
-0.004510023631155491,
0.04053651541471481,
-0.00453172717243433,
0.015120908617973328,
0.07497008144855499,
0.1052524596452713,
0.04955185204744339,
-0.020403478294610977,
-0.19320450723171234,
-0.03803801164031029,
0.007841793820261955,
-0.10874020308256149,
-0.028516223654150963
] |
null | null | stable-baselines3 |
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FatmaYoussef -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FatmaYoussef -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FatmaYoussef
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
| {"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "465.00 +/- 141.69", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | FatmaYoussef/fatmayoussef_SpaceInvaderDQL | [
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-06T21:04:59+00:00 | [] | [] | TAGS
#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# DQN Agent playing SpaceInvadersNoFrameskip-v4
This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4
using the stable-baselines3 library
and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: URL
SB3: URL
SB3 Contrib: URL
Install the RL Zoo (with SB3 and SB3-Contrib):
If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:
## Training (with the RL Zoo)
## Hyperparameters
# Environment Arguments
| [
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] | [
"TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.",
"## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:",
"## Training (with the RL Zoo)",
"## Hyperparameters",
"# Environment Arguments"
] | [
43,
90,
73,
9,
5,
7
] | [
"passage: TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments"
] | [
0.043572068214416504,
0.2414778620004654,
-0.0026879787910729647,
0.012635791674256325,
0.05784223601222038,
0.0030472534708678722,
0.08585051447153091,
0.10650663822889328,
0.024212315678596497,
-0.001382096204906702,
0.003954293206334114,
0.17533031105995178,
0.03632635250687599,
0.13125447928905487,
-0.018073517829179764,
-0.2066594809293747,
-0.013479253277182579,
-0.06247470900416374,
-0.07153085619211197,
0.036099132150411606,
0.07206681370735168,
-0.030116932466626167,
0.036061208695173264,
-0.051406677812337875,
-0.057161085307598114,
0.036824777722358704,
-0.03157254680991173,
0.007067287806421518,
0.15158706903457642,
-0.1222257912158966,
0.12329676002264023,
0.020955175161361694,
0.1896144151687622,
-0.12332789599895477,
0.0339222252368927,
0.08982209116220474,
-0.036988191306591034,
0.013221588917076588,
0.00975361280143261,
-0.052562564611434937,
0.1590864509344101,
-0.09371145814657211,
0.07146181166172028,
0.010926910676062107,
-0.07592244446277618,
-0.1774153709411621,
-0.09356249868869781,
0.07947742193937302,
0.0617753230035305,
0.005319166928529739,
0.03726791962981224,
0.11306490749120712,
-0.020991774275898933,
0.06488905102014542,
0.11562903225421906,
-0.17549200356006622,
0.013578375801444054,
0.17859570682048798,
0.003242473118007183,
0.15767055749893188,
-0.05546637624502182,
0.019877681508660316,
0.02752300351858139,
0.04758313298225403,
0.06873945891857147,
-0.08186400681734085,
-0.1364826112985611,
-0.056155186146497726,
-0.15456219017505646,
-0.03352400287985802,
0.05195203423500061,
-0.011860138736665249,
-0.05783402919769287,
-0.010724928230047226,
-0.04010869935154915,
0.0008851495804265141,
-0.028637725859880447,
0.01805497519671917,
0.07031578570604324,
-0.01226285845041275,
0.02092539705336094,
-0.08391954004764557,
-0.0390290804207325,
-0.038563769310712814,
-0.018022390082478523,
0.12054917961359024,
0.08285853266716003,
0.0266572255641222,
-0.04135355353355408,
0.10274127870798111,
-0.07091585546731949,
-0.05454207584261894,
0.04555258899927139,
-0.03786851093173027,
-0.10615779459476471,
0.02120024710893631,
-0.05905991420149803,
0.026879185810685158,
0.09943640232086182,
0.18048083782196045,
-0.09862488508224487,
0.012620617635548115,
-0.03430783003568649,
0.08121664822101593,
-0.03196052461862564,
0.03197542577981949,
-0.0840383991599083,
-0.016251085326075554,
0.17835216224193573,
0.0030782297253608704,
0.022272996604442596,
0.002074616262689233,
-0.049819961190223694,
-0.02881433069705963,
-0.017756454646587372,
0.06631895154714584,
0.07032092660665512,
0.010587303899228573,
-0.0037596761249005795,
-0.027667716145515442,
-0.036921944469213486,
-0.05629328638315201,
-0.04952820762991905,
0.018803736194968224,
-0.04712437093257904,
-0.047942135483026505,
0.06027210131287575,
-0.005624116864055395,
0.11337806284427643,
-0.025607796385884285,
0.026316547766327858,
-0.019410157576203346,
-0.07494441419839859,
-0.13221681118011475,
-0.0304415225982666,
0.0691632330417633,
0.04371757060289383,
-0.22497159242630005,
-0.16994807124137878,
-0.008539012633264065,
0.017946386709809303,
-0.018741264939308167,
-0.11334165185689926,
0.02453240379691124,
-0.007166135590523481,
-0.049758363515138626,
-0.01601579785346985,
0.10474669933319092,
-0.020438622683286667,
0.018010856583714485,
-0.05593825876712799,
0.16603368520736694,
-0.14290283620357513,
0.031004127115011215,
-0.08706212788820267,
0.023509707301855087,
-0.21286657452583313,
0.041208744049072266,
-0.177636057138443,
0.04863585904240608,
-0.08500861376523972,
0.02327173389494419,
0.021320728585124016,
0.01968831568956375,
0.08580207824707031,
0.10143322497606277,
-0.23631145060062408,
0.05405791476368904,
0.07900930196046829,
-0.022739801555871964,
-0.04218491166830063,
0.06798892468214035,
-0.06558530032634735,
0.1382148116827011,
0.046505436301231384,
0.24831900000572205,
0.10361487418413162,
-0.2036508023738861,
0.061786454170942307,
0.0578593946993351,
-0.08880111575126648,
-0.004730981774628162,
-0.020022382959723473,
0.11598580330610275,
-0.01114928349852562,
0.03338807821273804,
-0.12186288088560104,
0.1456439197063446,
0.02738998830318451,
-0.0165485180914402,
-0.04454165697097778,
-0.1614885926246643,
0.10309953987598419,
-0.015504824928939342,
0.09532155096530914,
-0.042415786534547806,
0.0001161050095106475,
-0.011168917641043663,
0.18012429773807526,
-0.043841805309057236,
0.0007168867159634829,
0.07871408760547638,
0.10895700752735138,
0.028009075671434402,
-0.020230965688824654,
-0.20380273461341858,
-0.0423048660159111,
0.02367858961224556,
0.044489551335573196,
0.2190362960100174,
0.19936694204807281,
0.07770156860351562,
-0.022313760593533516,
-0.025487221777439117,
-0.003248062450438738,
-0.05106664076447487,
0.03467361256480217,
-0.027858436107635498,
-0.024532482028007507,
0.06065356358885765,
-0.09305168688297272,
0.02817818708717823,
-0.13112716376781464,
0.06307920068502426,
-0.17345242202281952,
0.06863926351070404,
0.021998396143317223,
-0.005436043255031109,
0.024577690288424492,
-0.011292695067822933,
-0.034188106656074524,
-0.06233125180006027,
0.07110602408647537,
0.06098933145403862,
0.014702376909554005,
0.0021991983521729708,
-0.0683600977063179,
-0.13828523457050323,
0.08231553435325623,
-0.04042381793260574,
-0.14305958151817322,
0.06392676383256912,
0.011172642931342125,
0.04875864461064339,
-0.05975872278213501,
0.016254881396889687,
0.22900153696537018,
0.05321883037686348,
0.09785865992307663,
-0.04092191904783249,
-0.022525805979967117,
-0.06617844104766846,
-0.06677833944559097,
0.09694591909646988,
0.10812206566333771,
0.060318704694509506,
-0.0030071530491113663,
0.07626225054264069,
0.10942911356687546,
-0.1035122498869896,
-0.0651884600520134,
0.03220061957836151,
-0.05973697826266289,
0.019652515649795532,
0.049140311777591705,
0.02971293032169342,
0.08619047701358795,
0.1833551675081253,
0.008245792239904404,
0.0386311337351799,
-0.025997694581747055,
0.026109617203474045,
-0.15547916293144226,
-0.03145433962345123,
0.04308181628584862,
0.00886955764144659,
-0.07408110797405243,
0.04994636029005051,
0.051439400762319565,
0.13607151806354523,
-0.08217083662748337,
-0.13170577585697174,
-0.059745315462350845,
-0.03804200142621994,
-0.04239124804735184,
0.14975430071353912,
-0.08507520705461502,
-0.19221234321594238,
-0.017164425924420357,
-0.15751953423023224,
-0.02518727444112301,
-0.005179801490157843,
0.002318724524229765,
-0.08325926214456558,
0.017780914902687073,
0.010001576505601406,
-0.03129372000694275,
-0.0684933215379715,
-0.06596160680055618,
-0.05786636844277382,
0.09124112874269485,
0.06932931393384933,
-0.12240120023488998,
-0.00961651187390089,
-0.03742414712905884,
-0.020465577021241188,
0.04516167193651199,
0.08452648669481277,
-0.007267598994076252,
0.07773483544588089,
-0.13209199905395508,
-0.06962883472442627,
0.02834828943014145,
0.2766247093677521,
0.02882981114089489,
0.004668009467422962,
0.17051753401756287,
-0.03629542142152786,
0.04912714660167694,
0.16181479394435883,
0.030781643465161324,
-0.14196757972240448,
0.07090470939874649,
-0.011341600678861141,
-0.09542687982320786,
-0.1706860214471817,
-0.10215658694505692,
-0.037867411971092224,
-0.05015881359577179,
0.05638284236192703,
0.004951419774442911,
-0.04476970434188843,
0.05910305306315422,
0.08782228082418442,
-0.017004497349262238,
-0.06151578947901726,
0.11129767447710037,
0.032263003289699554,
-0.030136963352560997,
0.08078382909297943,
-0.042354047298431396,
-0.04206389561295509,
0.0032403599470853806,
0.22643887996673584,
0.0937788337469101,
-0.01775507442653179,
-0.042567066848278046,
0.019317636266350746,
0.05095715448260307,
0.03613382205367088,
0.11312435567378998,
-0.06975842267274857,
-0.06826137751340866,
-0.035185977816581726,
0.027829548344016075,
-0.02945687249302864,
0.08205190300941467,
0.0630207508802414,
0.005563626065850258,
-0.04653681069612503,
-0.07972332090139389,
-0.04849022626876831,
0.08408913016319275,
-0.027642227709293365,
-0.10093270242214203,
0.09321888536214828,
0.048575710505247116,
0.0016974330646917224,
0.03055831417441368,
0.027994604781270027,
0.01462269201874733,
-0.07982148975133896,
-0.06775744259357452,
0.011468625627458096,
0.07076629996299744,
-0.06822766363620758,
-0.027886953204870224,
-0.19817815721035004,
0.14578363299369812,
0.010630400851368904,
0.04118429124355316,
-0.13048617541790009,
0.1209396943449974,
-0.023116756230592728,
-0.026430301368236542,
0.013811616227030754,
0.0014643745962530375,
0.08203291147947311,
-0.04806509613990784,
0.15762180089950562,
0.009528410620987415,
-0.28092408180236816,
-0.1418946087360382,
-0.08416824042797089,
-0.051183976233005524,
-0.022873088717460632,
0.014752174727618694,
0.0642135739326477,
0.01516205258667469,
0.003868846921250224,
-0.013076163828372955,
0.03185269236564636,
-0.09826882928609848,
-0.06493937969207764,
-0.04839126765727997,
-0.02250157669186592,
-0.06525848805904388,
-0.05647949501872063,
-0.0006809153710491955,
-0.17226077616214752,
0.12522587180137634,
0.11787347495555878,
-0.06451737880706787,
-0.041814323514699936,
-0.06554657220840454,
0.046191465109586716,
-0.07571537792682648,
0.0469326451420784,
0.003414976177737117,
0.019198855385184288,
-0.06806991249322891,
-0.17922484874725342,
0.016097763553261757,
-0.10899919271469116,
0.03772687539458275,
-0.05070559307932854,
0.020257100462913513,
0.08594245463609695,
0.17520126700401306,
0.05856714025139809,
0.01460097823292017,
-0.07239776104688644,
-0.07543374598026276,
-0.0017121878918260336,
-0.06344114243984222,
0.05762333422899246,
-0.009151889942586422,
-0.20333483815193176,
0.02763226442039013,
-0.11414948850870132,
0.06860900670289993,
0.3310066759586334,
0.3324824273586273,
-0.10698744654655457,
0.1177443116903305,
0.04819539934396744,
-0.042202454060316086,
-0.21051374077796936,
-0.002244179602712393,
0.012272895313799381,
0.024992236867547035,
0.13725964725017548,
-0.12924811244010925,
0.05453680083155632,
0.0794181227684021,
-0.024458877742290497,
0.01456840243190527,
-0.09078162908554077,
-0.10816970467567444,
0.20847418904304504,
0.14226987957954407,
0.04421741142868996,
-0.09421348571777344,
0.08391669392585754,
0.004295284394174814,
0.08375877887010574,
0.2107764035463333,
-0.052112679928541183,
0.10695768147706985,
0.005195184610784054,
0.19852910935878754,
0.0328996516764164,
-0.023768596351146698,
0.10834760218858719,
-0.009801650419831276,
0.07911337912082672,
0.03985166177153587,
-0.007676942739635706,
0.010487722232937813,
-0.04522453248500824,
0.014148596674203873,
-0.028376007452607155,
0.010284217074513435,
-0.2274095118045807,
0.0582297146320343,
-0.06368855386972427,
0.04604509472846985,
0.008256820961833,
-0.0999874547123909,
-0.03583388403058052,
0.06431841105222702,
0.08014573156833649,
0.01975327916443348,
0.0436067171394825,
-0.03867863491177559,
0.11051398515701294,
0.20660489797592163,
-0.009811338968575,
0.17751595377922058,
-0.0615963339805603,
0.01464168168604374,
-0.023011628538370132,
-0.04223164543509483,
-0.1462583988904953,
-0.035259708762168884,
0.03498423472046852,
0.057734888046979904,
0.015203364193439484,
0.049647457897663116,
-0.05656236410140991,
0.08498423546552658,
0.021687336266040802,
-0.041541360318660736,
0.033579520881175995,
0.08835696429014206,
0.12415177375078201,
0.010754258371889591,
-0.030121933668851852,
0.06147436052560806,
-0.08128108084201813,
-0.09446098655462265,
-0.004497923422604799,
-0.029991207644343376,
-0.1083834245800972,
0.11353230476379395,
0.16914646327495575,
0.039594944566488266,
-0.057076629251241684,
0.10688766092061996,
-0.02768099494278431,
0.10047874599695206,
0.009198128245770931,
0.06507332623004913,
-0.014091075398027897,
-0.03691792115569115,
0.10611724853515625,
-0.05442855879664421,
-0.01637818105518818,
0.07645545154809952,
-0.06522727757692337,
-0.023877469822764397,
-0.0801999643445015,
0.06034626066684723,
0.09222240000963211,
-0.16854619979858398,
-0.0639432892203331,
-0.032122284173965454,
-0.08628080040216446,
0.013965039514005184,
0.012447911314666271,
0.0710059329867363,
-0.08589600026607513,
0.06316167116165161,
-0.024337708950042725,
0.015639442950487137,
-0.03689891844987869,
0.019222697243094444,
-0.19525384902954102,
-0.002140450058504939,
-0.11280795186758041,
-0.00348020251840353,
-0.002931603929027915,
0.04463808611035347,
-0.04961875081062317,
-0.029358822852373123,
-0.0030675032176077366,
0.044366419315338135,
-0.16609135270118713,
0.002798673929646611,
-0.011639905162155628,
0.03210212290287018,
-0.0002893915225286037,
-0.0983390137553215,
0.014195028692483902,
-0.04294256120920181,
-0.04198618605732918,
0.04925514757633209,
0.009436776861548424,
0.06470516324043274,
-0.2795179784297943,
-0.14905457198619843,
0.030816160142421722,
0.0683867484331131,
0.05483196675777435,
-0.1830425262451172,
0.03568267077207565,
-0.08042316138744354,
-0.02253127470612526,
-0.037770628929138184,
0.018491698428988457,
-0.0539514496922493,
0.0018174031283706427,
-0.04225044324994087,
-0.023033907637000084,
-0.028055014088749886,
-0.07556360960006714,
0.0826747715473175,
0.12462522834539413,
0.07555580884218216,
-0.03807181864976883,
0.09595896303653717,
-0.10009756684303284,
-0.04657831788063049,
-0.04052736237645149,
-0.036951083689928055,
0.017965637147426605,
-0.0870552659034729,
0.048530060797929764,
0.05188591405749321,
0.18719671666622162,
-0.08520494401454926,
-0.058800119906663895,
-0.014255574904382229,
0.0746525228023529,
0.07849094271659851,
0.005095830652862787,
0.17779210209846497,
-0.045693784952163696,
0.05693846940994263,
0.021304311230778694,
0.046699028462171555,
0.10497613251209259,
-0.023569339886307716,
0.14490213990211487,
0.21171095967292786,
-0.037196725606918335,
-0.11048602312803268,
0.043668005615472794,
0.01745123788714409,
-0.002401199424639344,
0.05968761444091797,
0.11983796209096909,
-0.050589341670274734,
-0.10903856158256531,
0.23442286252975464,
0.054169271141290665,
-0.11218088120222092,
0.09546315670013428,
0.039532262831926346,
-0.015890996903181076,
-0.1301896870136261,
0.010444961488246918,
-0.0013640925753861666,
-0.11233190447092056,
0.03386834263801575,
-0.06087532266974449,
-0.025547027587890625,
0.11809267848730087,
0.008789865300059319,
0.03317064419388771,
-0.04139537364244461,
-0.03756232187151909,
-0.04352104663848877,
-0.04273213446140289,
-0.012549578212201595,
-0.02991986647248268,
-0.030186517164111137,
-0.07621737569570541,
-0.007770835887640715,
-0.012012424878776073,
0.030795488506555557,
-0.015285328030586243,
-0.02503054589033127,
-0.021192016080021858,
-0.06697061657905579,
-0.0026312144473195076,
-0.008178025484085083,
0.015549594536423683,
0.010121971368789673,
0.2358063906431198,
0.07042546570301056,
-0.10260069370269775,
-0.01036880537867546,
0.22197756171226501,
-0.03853277862071991,
-0.06528383493423462,
-0.07849395275115967,
0.25128230452537537,
-0.10482002794742584,
0.051095426082611084,
-0.005819917656481266,
-0.06550488620996475,
-0.07153836637735367,
0.2309868484735489,
0.13502730429172516,
-0.1677926480770111,
0.06329060345888138,
-0.0368385910987854,
-0.009490780532360077,
-0.14286863803863525,
0.16013580560684204,
0.1865294873714447,
0.09480160474777222,
-0.12259847670793533,
0.0023130534682422876,
-0.03518044203519821,
-0.018328361213207245,
-0.1660851687192917,
-0.004593863617628813,
-0.029364850372076035,
-0.0427238829433918,
-0.050771355628967285,
0.029773715883493423,
-0.15205919742584229,
-0.0927426889538765,
-0.1916799396276474,
-0.11482496559619904,
-0.12386849522590637,
-0.04549141973257065,
-0.11142764985561371,
-0.0019938007462769747,
0.02257080189883709,
-0.0641874223947525,
0.021061956882476807,
-0.0212461706250906,
-0.05887424945831299,
0.015386379323899746,
-0.08395619690418243,
0.0674985870718956,
0.06488548219203949,
0.15327942371368408,
-0.0790991559624672,
0.025424562394618988,
0.07090727984905243,
-0.057595450431108475,
-0.10164349526166916,
0.06067253649234772,
0.015708057209849358,
-0.1972588747739792,
0.007548294495791197,
0.17712996900081635,
-0.10420889407396317,
0.09745754301548004,
0.048501528799533844,
-0.012951982207596302,
0.0867827981710434,
-0.024721821770071983,
-0.016682926565408707,
-0.04852180927991867,
-0.011212974786758423,
-0.10143939405679703,
0.09892100840806961,
0.0876845121383667,
-0.0517118014395237,
0.07436849176883698,
-0.09508965909481049,
-0.04068392515182495,
0.13103286921977997,
-0.010057874955236912,
-0.08450483530759811,
-0.11667824536561966,
-0.04081142693758011,
0.09684515744447708,
-0.018041390925645828,
-0.20185889303684235,
-0.11639472097158432,
-0.11752668023109436,
-0.00014377340266946703,
-0.03563340753316879,
0.061800602823495865,
0.02430674433708191,
-0.02556120604276657,
-0.008150683715939522,
-0.17615078389644623,
-0.06614746153354645,
0.13479791581630707,
-0.10176112502813339,
-0.07456064969301224
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-bn-adapter-1.79M-snli-model1
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7158
- Accuracy: 0.748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4121 | 1.0 | 8584 | 0.3389 | 0.8761 |
| 0.3881 | 2.0 | 17168 | 0.3116 | 0.8853 |
| 0.3692 | 3.0 | 25752 | 0.3075 | 0.8871 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "t5-base", "model-index": [{"name": "t5-base-bn-adapter-1.79M-snli-model1", "results": []}]} | null | varun-v-rao/t5-base-bn-adapter-1.79M-snli-model1 | [
"tensorboard",
"generated_from_trainer",
"base_model:t5-base",
"license:apache-2.0",
"region:us"
] | 2024-02-06T21:05:19+00:00 | [] | [] | TAGS
#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us
| t5-base-bn-adapter-1.79M-snli-model1
====================================
This model is a fine-tuned version of t5-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7158
* Accuracy: 0.748
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 6
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 6\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 6\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
33,
98,
4,
33
] | [
"passage: TAGS\n#tensorboard #generated_from_trainer #base_model-t5-base #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 6\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.0856146514415741,
-0.011519385501742363,
-0.0005493364878930151,
0.11955560743808746,
0.18562814593315125,
0.036457836627960205,
0.14837683737277985,
0.07026727497577667,
-0.13453976809978485,
0.010470888577401638,
0.1002531498670578,
0.1281500607728958,
0.0007329036016017199,
0.0637117475271225,
-0.027053039520978928,
-0.23432105779647827,
-0.019649900496006012,
0.0336437001824379,
-0.13189466297626495,
0.1260935515165329,
0.08709216862916946,
-0.1374848634004593,
0.06820791214704514,
-0.006934390868991613,
-0.310872346162796,
0.05670160800218582,
0.033408988267183304,
-0.047122541815042496,
0.13584700226783752,
-0.006132494192570448,
0.1722588837146759,
-0.016954030841588974,
0.13146252930164337,
-0.13629595935344696,
0.01046210341155529,
0.08620902895927429,
0.001188090885989368,
0.07979448139667511,
0.05997162312269211,
0.02459595911204815,
0.10192032158374786,
-0.08707313984632492,
0.05891135707497597,
0.021309703588485718,
-0.12686586380004883,
-0.25077423453330994,
-0.07881958782672882,
-0.005960218142718077,
0.05578286200761795,
0.0862346664071083,
-0.0012210453860461712,
0.15366637706756592,
-0.08571496605873108,
0.09002837538719177,
0.26464852690696716,
-0.2624177932739258,
-0.08047184348106384,
0.07742830365896225,
-0.008054819889366627,
0.11132177710533142,
-0.09238646179437637,
-0.029295548796653748,
0.0725904032588005,
0.04779291898012161,
0.12749090790748596,
-0.025871997699141502,
-0.17216047644615173,
0.0486433207988739,
-0.1567453294992447,
0.017822623252868652,
0.08056067675352097,
0.025409869849681854,
-0.02072116918861866,
0.0600343756377697,
-0.09571022540330887,
-0.1331273317337036,
-0.05306943878531456,
-0.026872500777244568,
0.09586893767118454,
-0.04123755916953087,
-0.09855137765407562,
-0.031464993953704834,
-0.09768867492675781,
-0.1056511402130127,
-0.07264313101768494,
0.20163607597351074,
0.05687287822365761,
0.05321934074163437,
-0.06768770515918732,
0.11080045998096466,
-0.056624624878168106,
-0.13262370228767395,
0.050909243524074554,
0.0483853779733181,
-0.023467648774385452,
-0.04801170527935028,
-0.08707418292760849,
-0.09228868782520294,
0.017683038488030434,
0.11260870844125748,
-0.07918952405452728,
0.046763017773628235,
0.04386633634567261,
0.05522732064127922,
-0.11662856489419937,
0.17547687888145447,
-0.05680670589208603,
0.016922026872634888,
0.01941877231001854,
0.02572564035654068,
0.01619623973965645,
0.003323558485135436,
-0.11088591068983078,
0.02608497627079487,
0.07519171386957169,
-0.0009650768479332328,
-0.08603725582361221,
0.028111739084124565,
-0.03213253244757652,
-0.004065193235874176,
-0.0495687872171402,
-0.09654765576124191,
0.04070219025015831,
-0.015677521005272865,
-0.10311592370271683,
-0.009856052696704865,
0.023051002994179726,
0.017797313630580902,
0.010324622504413128,
0.114609494805336,
-0.10009268671274185,
0.07892902940511703,
-0.1424875259399414,
-0.11245554685592651,
0.005810972303152084,
-0.041029948741197586,
0.019290946424007416,
-0.07278835028409958,
-0.17019957304000854,
-0.0017439351649954915,
0.07526323199272156,
-0.04383731260895729,
-0.02238178625702858,
-0.02550414577126503,
-0.09805703163146973,
-0.009233915247023106,
-0.020564662292599678,
0.19225719571113586,
-0.05262209475040436,
0.08829054981470108,
0.06038263440132141,
0.06674456596374512,
-0.11515311896800995,
0.0429467149078846,
-0.08548814803361893,
-0.0019699689000844955,
-0.2707536220550537,
0.01247124932706356,
-0.06124591827392578,
0.0663771778345108,
-0.0723550021648407,
-0.08165447413921356,
0.016258221119642258,
-0.0004907384281978011,
0.11469896137714386,
0.0659622997045517,
-0.20863716304302216,
-0.0663091167807579,
0.12109646201133728,
-0.07094153761863708,
-0.09205680340528488,
0.09122711420059204,
-0.060195356607437134,
0.05910317972302437,
0.07172927260398865,
0.1790054440498352,
-0.04664711281657219,
-0.1002025157213211,
0.043834082782268524,
-0.016710370779037476,
0.054042261093854904,
-0.10386988520622253,
0.04177739471197128,
-0.01289830170571804,
0.0019623511470854282,
0.02850504405796528,
-0.05483277887105942,
0.07282821834087372,
-0.116535983979702,
-0.07763543725013733,
-0.0730707198381424,
-0.10623414814472198,
-0.0029835833702236414,
0.0673288106918335,
0.08598698675632477,
-0.10140132904052734,
-0.06627509742975235,
0.1709631234407425,
0.06863138824701309,
-0.054757364094257355,
0.03554446995258331,
-0.04176793247461319,
0.04905690625309944,
-0.08121150732040405,
-0.03278892859816551,
-0.19898675382137299,
-0.05154846981167793,
0.002696384210139513,
-0.004953943192958832,
0.0680181086063385,
0.009801470674574375,
0.08271665126085281,
0.06449822336435318,
-0.06922436505556107,
0.01995105855166912,
-0.07847083359956741,
-0.0061775511130690575,
-0.14306455850601196,
-0.2308998852968216,
-0.027850044891238213,
-0.005712131503969431,
0.06237643212080002,
-0.17953406274318695,
0.025181332603096962,
-0.050350647419691086,
0.07665236294269562,
0.0016877318266779184,
-0.011319761164486408,
-0.07514367997646332,
0.09657683968544006,
-0.0005125250900164247,
-0.07133480161428452,
0.0405566468834877,
-0.01417731773108244,
-0.05983714014291763,
-0.07613471895456314,
-0.0700027272105217,
0.17717207968235016,
0.14263318479061127,
-0.1574273407459259,
-0.0814892053604126,
0.060536984354257584,
-0.05999699607491493,
-0.03413963317871094,
-0.058345407247543335,
0.06708793342113495,
0.18274803459644318,
-0.020444858819246292,
0.13190333545207977,
-0.09119059890508652,
-0.04087744280695915,
-0.002476518740877509,
-0.03278582543134689,
0.08103277534246445,
0.08124649524688721,
0.1828443706035614,
-0.04392019286751747,
0.11550042778253555,
0.17214104533195496,
-0.16653427481651306,
0.09655445069074631,
-0.06775184720754623,
-0.08624140918254852,
-0.030176367610692978,
-0.02820792980492115,
-0.01955561712384224,
0.167624369263649,
-0.07700973749160767,
0.012112684547901154,
-0.006698303390294313,
0.0199578907340765,
0.04662884399294853,
-0.2549702525138855,
-0.04484963044524193,
0.004238073248416185,
-0.04143579304218292,
-0.021097006276249886,
-0.045714713633060455,
0.009304727427661419,
0.10647352039813995,
-0.03672396019101143,
-0.08300308883190155,
0.016329267993569374,
0.013474122621119022,
-0.058774929493665695,
0.2163820117712021,
-0.07988056540489197,
-0.016366327181458473,
-0.0780574157834053,
-0.04024051874876022,
-0.056760523468256,
-0.018201516941189766,
0.03788656368851662,
-0.130443274974823,
-0.0288862232118845,
-0.043679628521203995,
0.04705039784312248,
0.024035237729549408,
0.046742893755435944,
0.009985318407416344,
-0.0011611174559220672,
0.09653643518686295,
-0.13806423544883728,
0.019572895020246506,
-0.08986414968967438,
-0.09355659782886505,
0.018443752080202103,
0.08786700665950775,
0.11578699201345444,
0.1806136816740036,
-0.026299970224499702,
0.002446203725412488,
-0.005282125901430845,
0.2658761441707611,
-0.05383315309882164,
-0.03708309307694435,
0.10183649510145187,
0.0011238341685384512,
0.049046196043491364,
0.09228508174419403,
0.10810323804616928,
-0.11867258697748184,
-0.004105184692889452,
0.05680667236447334,
-0.04506120830774307,
-0.24167762696743011,
-0.013396797701716423,
-0.028993671759963036,
-0.1065220981836319,
0.05136233568191528,
0.03939121589064598,
0.015402238816022873,
0.05872122943401337,
0.07529564201831818,
0.1225208267569542,
-0.07157710939645767,
0.03379112854599953,
0.057316284626722336,
0.06209251284599304,
0.11490761488676071,
-0.05824713408946991,
-0.06326963007450104,
0.03108280710875988,
-0.020448485389351845,
0.2616192400455475,
-0.0004006898670922965,
0.10935001075267792,
0.07015147060155869,
0.19352123141288757,
-0.016691023483872414,
0.08828344941139221,
0.0018960903398692608,
-0.05817762389779091,
-0.003322015516459942,
-0.05476842075586319,
0.026424003764986992,
0.008963895961642265,
-0.10365907847881317,
0.06808999180793762,
-0.06766613572835922,
-0.005731856916099787,
0.061025120317935944,
0.2545944154262543,
-0.005983013194054365,
-0.310320645570755,
-0.03374046832323074,
-0.010949400253593922,
-0.00843444187194109,
0.001259795855730772,
0.009996943175792694,
0.12010592222213745,
-0.027404125779867172,
0.00997878983616829,
-0.05040421336889267,
0.09314268082380295,
0.01178470253944397,
0.023439209908246994,
0.0860944390296936,
0.18243224918842316,
-0.003209117567166686,
0.03896992281079292,
-0.29819610714912415,
0.2873222231864929,
0.028355946764349937,
0.1105586364865303,
-0.039237651973962784,
-0.011028287000954151,
0.029551632702350616,
0.037968575954437256,
0.000693008303642273,
-0.018874671310186386,
-0.04562995955348015,
-0.16933976113796234,
-0.04433286190032959,
0.0646371841430664,
0.12129946053028107,
0.015406351536512375,
0.07872561365365982,
-0.0012422287836670876,
0.01404588483273983,
0.11202629655599594,
-0.056241780519485474,
-0.14059527218341827,
-0.03269555792212486,
-0.06497307121753693,
0.02262789011001587,
-0.11760145425796509,
-0.06147456541657448,
-0.1141810491681099,
-0.09918627142906189,
0.10142390429973602,
0.03489233925938606,
-0.024599600583314896,
-0.11741375923156738,
0.12607815861701965,
0.10882033407688141,
-0.053340792655944824,
0.04642397165298462,
0.024180788546800613,
0.03238501399755478,
0.05612477660179138,
-0.07942986488342285,
0.1276869922876358,
-0.053706590086221695,
-0.13484244048595428,
-0.04759112000465393,
0.04021112248301506,
0.053177885711193085,
0.054653581231832504,
-0.03710276260972023,
0.01484738476574421,
-0.01699703186750412,
-0.10687096416950226,
0.009597535245120525,
-0.05404234677553177,
0.028261477127671242,
0.0255548395216465,
-0.03297420218586922,
0.033498361706733704,
-0.038742147386074066,
-0.007975544780492783,
0.11628717184066772,
0.2634029686450958,
-0.07562681287527084,
-0.024116013199090958,
0.04806293174624443,
-0.07289054244756699,
-0.16397731006145477,
0.115212082862854,
0.07408196479082108,
-0.015343716368079185,
0.06306459754705429,
-0.16956019401550293,
0.17861537635326385,
0.1354113221168518,
-0.016863588243722916,
0.11739972978830338,
-0.32645267248153687,
-0.1517130583524704,
0.09865301847457886,
0.20168478786945343,
0.15077461302280426,
-0.15847595036029816,
-0.015154835768043995,
-0.037638645619153976,
-0.09940699487924576,
0.10660703480243683,
-0.1895049661397934,
0.09404858946800232,
-0.012220727279782295,
0.09514999389648438,
-0.01643691025674343,
-0.057519201189279556,
0.1261601448059082,
0.031660959124565125,
0.14347690343856812,
-0.04108364135026932,
0.01543295569717884,
0.10299742966890335,
-0.01920446567237377,
-0.000835732847917825,
-0.0414544902741909,
0.02568727731704712,
-0.011282728053629398,
0.004502700176090002,
-0.07799822837114334,
0.033745329827070236,
-0.032653115689754486,
-0.061231400817632675,
-0.04278725013136864,
-0.009671143256127834,
-0.0016985938418656588,
-0.03356457129120827,
0.1299440711736679,
0.06575426459312439,
0.13724368810653687,
0.0891731008887291,
0.005326831713318825,
-0.08635707944631577,
-0.07350568473339081,
0.024709485471248627,
-0.007469621952623129,
0.0760224312543869,
-0.20253832638263702,
0.00036673020804300904,
0.11627493798732758,
0.03002033196389675,
0.08387313783168793,
0.09768082946538925,
-0.054404400289058685,
0.01684768684208393,
0.07045924663543701,
-0.1485293209552765,
-0.09548153728246689,
0.029105523601174355,
-0.08725875616073608,
-0.07238192111253738,
0.08048609644174576,
0.07731206715106964,
-0.08393296599388123,
0.0008491651387885213,
-0.004547596909105778,
-0.02235626056790352,
-0.0982697457075119,
0.2283397614955902,
0.10512412339448929,
0.030856875702738762,
-0.11856440454721451,
0.1065622866153717,
0.05082513019442558,
-0.030550198629498482,
-0.007211430463939905,
0.07414181530475616,
-0.05102502182126045,
0.007692050188779831,
0.17149773240089417,
0.22825007140636444,
-0.0925060585141182,
-0.04836491495370865,
-0.17635241150856018,
-0.09300285577774048,
0.05006461590528488,
0.1911950707435608,
0.11581987142562866,
-0.023863837122917175,
-0.027958981692790985,
0.03842080757021904,
-0.13079482316970825,
0.0568651519715786,
0.018297089263796806,
0.0893973708152771,
-0.12530097365379333,
0.14358998835086823,
0.03690960258245468,
0.030426062643527985,
-0.03346465155482292,
0.059004392474889755,
-0.12636567652225494,
0.03357566520571709,
-0.15198466181755066,
-0.0631372481584549,
0.02930833026766777,
-0.00853952206671238,
0.008675058372318745,
-0.07891620695590973,
-0.0922781452536583,
0.039342090487480164,
-0.14629922807216644,
-0.017614375799894333,
0.061673786491155624,
0.01884123682975769,
-0.14319871366024017,
-0.0177288930863142,
0.018077176064252853,
-0.04743034020066261,
0.032353244721889496,
0.057812001556158066,
0.024481801316142082,
0.10328324139118195,
-0.20019876956939697,
-0.016943644732236862,
0.06997774541378021,
0.001281633391045034,
0.10062672197818756,
-0.018779953941702843,
-0.02567126974463463,
-0.01705392450094223,
0.14370276033878326,
-0.0007980213267728686,
0.07672367990016937,
-0.12752565741539001,
-0.0056428564712405205,
-0.06851448118686676,
-0.08328116685152054,
-0.042212165892124176,
-0.0017942689592018723,
0.08907360583543777,
0.036457356065511703,
0.1619989275932312,
-0.06558435410261154,
0.007407594472169876,
-0.2259640395641327,
-0.0064015877433121204,
-0.01192206796258688,
-0.07923667877912521,
-0.11526378244161606,
-0.04549812152981758,
0.06801240891218185,
-0.06642622500658035,
0.15000426769256592,
0.03843291476368904,
0.06039253622293472,
0.03273196890950203,
0.01603325642645359,
0.0010264229495078325,
0.036457277834415436,
0.22470815479755402,
0.03246563300490379,
-0.004509119316935539,
0.06480276584625244,
0.0856592208147049,
0.1279631108045578,
0.06464674323797226,
0.22203247249126434,
0.15287399291992188,
-0.038889478892087936,
0.11813153326511383,
0.06774979829788208,
-0.06887336075305939,
-0.10500429570674896,
0.08897087723016739,
-0.0378398597240448,
0.07872913777828217,
-0.026102514937520027,
0.21542483568191528,
0.06875072419643402,
-0.14755241572856903,
0.03132001310586929,
-0.04265353083610535,
-0.09487209469079971,
-0.10721555352210999,
0.04431881755590439,
-0.07087404280900955,
-0.2007991522550583,
0.021852528676390648,
-0.10172325372695923,
0.015895958989858627,
0.16609783470630646,
0.00334464805200696,
0.0015040680300444365,
0.18257172405719757,
0.07588780671358109,
0.047868452966213226,
0.01800195686519146,
-0.003317686030641198,
-0.041960518807172775,
-0.09634850174188614,
-0.07742926478385925,
-0.023283857852220535,
-0.007295757997781038,
0.025430340319871902,
-0.05695316195487976,
-0.0949455127120018,
0.05095786973834038,
-0.007440757937729359,
-0.08880484849214554,
0.02663377858698368,
0.026853390038013458,
0.06612306088209152,
0.005081753712147474,
-0.0019519036868587136,
0.012578080408275127,
-0.027963459491729736,
0.22063091397285461,
-0.08232032507658005,
-0.10317552089691162,
-0.07754863798618317,
0.21455490589141846,
0.019787656143307686,
-0.008099578320980072,
0.01359549816697836,
-0.08574305474758148,
-0.027318567037582397,
0.19030073285102844,
0.1656872183084488,
-0.1316048949956894,
-0.026596445590257645,
-0.01319819875061512,
-0.027309518307447433,
-0.0916726216673851,
0.1551988422870636,
0.12431696802377701,
0.023323919624090195,
-0.12128723412752151,
-0.052653223276138306,
-0.056824758648872375,
-0.016632040962576866,
-0.05586845055222511,
0.029117530211806297,
0.048555176705121994,
0.004661584738641977,
-0.04693460837006569,
0.07481494545936584,
-0.05750741437077522,
-0.12220252305269241,
0.08118085563182831,
-0.15779022872447968,
-0.1775558739900589,
-0.012475736439228058,
0.1483251303434372,
-0.02891603671014309,
0.06243707612156868,
-0.05286348611116409,
-0.0001715702237561345,
0.04930105060338974,
-0.04890558496117592,
-0.09653880447149277,
-0.13830149173736572,
0.11471033841371536,
-0.14271803200244904,
0.2144010215997696,
-0.03473315015435219,
0.1160549595952034,
0.11069991439580917,
0.05516654625535011,
-0.07977180182933807,
0.05408656597137451,
0.025813542306423187,
-0.13702917098999023,
-0.009613562375307083,
0.0953042283654213,
-0.03939498960971832,
0.020642509683966637,
0.017579326406121254,
-0.09773099422454834,
0.020392097532749176,
-0.03874216228723526,
-0.03578057140111923,
-0.05653572827577591,
-0.10033030807971954,
-0.08721784502267838,
0.0835718959569931,
0.1863274723291397,
-0.011444595642387867,
0.05402208864688873,
-0.0887443795800209,
0.03483353927731514,
0.06919509172439575,
0.05008606240153313,
-0.0704614445567131,
-0.24064211547374725,
0.03910813108086586,
0.13093772530555725,
-0.06902414560317993,
-0.19286803901195526,
-0.0816897302865982,
0.03582010045647621,
-0.08388323336839676,
-0.08405425399541855,
0.0721951425075531,
0.13013878464698792,
0.06826674193143845,
-0.049173254519701004,
-0.1529165804386139,
-0.10210847109556198,
0.14233626425266266,
-0.15913529694080353,
-0.10340413451194763
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | RJuro/munin-neuralbeagle-OpenOrca22k-7b-lora | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:05:39+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | peft | ## Training procedure
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
| {"library_name": "peft"} | null | zzz99/deepseek-7B-instr-1.5-qlora-11k-merged | [
"peft",
"region:us"
] | 2024-02-06T21:05:49+00:00 | [] | [] | TAGS
#peft #region-us
| ## Training procedure
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
| [
"## Training procedure",
"### Framework versions\n\n- PEFT 0.4.0\n\n- PEFT 0.4.0"
] | [
"TAGS\n#peft #region-us \n",
"## Training procedure",
"### Framework versions\n\n- PEFT 0.4.0\n\n- PEFT 0.4.0"
] | [
9,
3,
17
] | [
"passage: TAGS\n#peft #region-us \n## Training procedure### Framework versions\n\n- PEFT 0.4.0\n\n- PEFT 0.4.0"
] | [
-0.11104721575975418,
0.04406203702092171,
-0.005101957358419895,
0.015021304599940777,
0.13159418106079102,
0.010345506481826305,
0.05345337465405464,
0.10091590136289597,
0.017605971544981003,
0.06305435299873352,
0.1459907591342926,
0.009234311059117317,
0.03870772570371628,
0.2308172732591629,
-0.033783890306949615,
-0.33088380098342896,
0.04282592982053757,
0.00832398608326912,
-0.01983427070081234,
0.10365994274616241,
0.05960360914468765,
-0.01643259823322296,
0.02500355988740921,
-0.0565912164747715,
-0.16779065132141113,
0.02614188939332962,
-0.01796879805624485,
-0.03356151282787323,
0.09985104203224182,
-0.02308323234319687,
0.17825207114219666,
-0.041008494794368744,
0.017926763743162155,
-0.2379666268825531,
0.002822959329932928,
0.08195295929908752,
-0.0026521971449255943,
0.07830078899860382,
0.08180489391088486,
0.03720344230532646,
0.08804711699485779,
0.03045465424656868,
0.05642733722925186,
0.04668906331062317,
-0.17881353199481964,
-0.1649126559495926,
-0.13474905490875244,
0.11521981656551361,
0.16095227003097534,
0.07984597980976105,
0.05132770538330078,
0.0901283472776413,
-0.13132570683956146,
0.008384023793041706,
0.1748044192790985,
-0.3499629497528076,
-0.10995011031627655,
0.15844592452049255,
0.053092122077941895,
0.16878044605255127,
-0.1129319965839386,
-0.03954874351620674,
0.11327450722455978,
0.04610871523618698,
-0.016574252396821976,
-0.02987302467226982,
0.07182614505290985,
-0.009715607389807701,
-0.14783218502998352,
-0.06074561923742294,
0.38721978664398193,
0.02651476114988327,
0.010603507980704308,
0.02984395995736122,
-0.05562514439225197,
-0.2566896080970764,
0.006036696955561638,
-0.04700017720460892,
-0.009778974577784538,
0.05749641731381416,
0.17285093665122986,
-0.15422175824642181,
-0.08598080277442932,
-0.12390001118183136,
-0.05170036107301712,
0.20353683829307556,
0.03596116974949837,
0.053556837141513824,
-0.10563226789236069,
0.10266917943954468,
0.01128661073744297,
0.02478288859128952,
-0.029984913766384125,
-0.10145601630210876,
0.04918546602129936,
-0.06559700518846512,
-0.02911526896059513,
0.0915723666548729,
-0.0056025804951786995,
0.1673535704612732,
-0.22010575234889984,
0.09361560642719269,
0.006826535798609257,
0.11070580780506134,
-0.10427384078502655,
0.03384838625788689,
0.057334624230861664,
0.08936606347560883,
-0.022977013140916824,
0.048324521631002426,
-0.05452293902635574,
0.017274627462029457,
-0.07181733846664429,
-0.0322265550494194,
-0.019850052893161774,
0.10644090175628662,
-0.10030832886695862,
-0.0685303658246994,
-0.06324907392263412,
-0.02932121604681015,
0.062437914311885834,
-0.09699121117591858,
-0.04103577136993408,
-0.020664189010858536,
0.0008506784215569496,
0.019962206482887268,
0.026877732947468758,
-0.00822119228541851,
-0.05045085400342941,
0.09838255494832993,
-0.09355928003787994,
0.010061368346214294,
-0.07749869674444199,
0.054357387125492096,
-0.007433448918163776,
-0.10276192426681519,
-0.013927328400313854,
-0.10684768855571747,
-0.11196665465831757,
-0.06254620850086212,
0.04680844396352768,
-0.03455118089914322,
-0.04448971524834633,
-0.019084278494119644,
-0.07019694894552231,
-0.04817020148038864,
-0.043561480939388275,
0.000049476977437734604,
-0.03527495637536049,
0.08663636445999146,
-0.10104189813137054,
0.01674412190914154,
-0.1243283599615097,
0.05292360484600067,
0.03662959486246109,
0.05476250499486923,
-0.06927835941314697,
0.012342161498963833,
-0.1280965507030487,
0.04783402755856514,
-0.09915310144424438,
-0.12209220975637436,
-0.23796536028385162,
0.006926492787897587,
-0.0022172247990965843,
0.1686433106660843,
-0.052879247814416885,
-0.03266730532050133,
0.24832461774349213,
-0.0965745747089386,
-0.10806258022785187,
0.0024099713191390038,
0.024235302582383156,
0.08516570925712585,
-0.0024870564229786396,
0.24232256412506104,
0.07407192885875702,
-0.25007086992263794,
0.18478456139564514,
0.12216343730688095,
0.03179585933685303,
-0.11265981942415237,
0.06464177370071411,
-0.16728699207305908,
-0.1442716121673584,
0.0043451860547065735,
-0.11406107246875763,
0.027411675080657005,
-0.06827234476804733,
-0.04247060418128967,
-0.0054342495277523994,
-0.04910297691822052,
0.08873400092124939,
0.01586470752954483,
0.1183781623840332,
-0.05464205890893936,
0.040972281247377396,
0.16919732093811035,
0.10080264508724213,
0.0904565155506134,
-0.0005321481730788946,
-0.008715116418898106,
0.023847388103604317,
-0.024080326780676842,
-0.059691764414310455,
-0.12278784811496735,
-0.11805285513401031,
0.0009580506011843681,
0.07124995440244675,
-0.06829343736171722,
0.11398367583751678,
0.09027506411075592,
0.01861751265823841,
-0.048910316079854965,
-0.044377364218235016,
-0.1680772453546524,
0.005362258292734623,
-0.06012073904275894,
0.0071152616292238235,
-0.025684092193841934,
-0.03624972701072693,
0.10513412952423096,
-0.16449961066246033,
0.06083033233880997,
0.061895307153463364,
0.08939322829246521,
0.09068912267684937,
-0.0755917951464653,
-0.009673026390373707,
0.11074917018413544,
0.04537095129489899,
-0.06278161704540253,
0.11313866078853607,
0.06299097836017609,
0.07058770209550858,
-0.06489341706037521,
-0.02306085266172886,
0.2414027452468872,
0.10630865395069122,
-0.013284514658153057,
-0.05852140858769417,
-0.10838206112384796,
-0.11706727743148804,
0.01746247336268425,
-0.015731479972600937,
-0.0010491888970136642,
0.09355821460485458,
0.0010276706889271736,
0.1463138908147812,
-0.06920495629310608,
-0.060140106827020645,
0.011241535656154156,
-0.04991196468472481,
-0.007449010387063026,
0.0024846792221069336,
0.10832740366458893,
0.039761096239089966,
0.12966954708099365,
0.12718278169631958,
-0.03316963464021683,
0.20387959480285645,
-0.050560690462589264,
-0.0982537642121315,
0.02916814014315605,
0.1789965033531189,
-0.016973130404949188,
0.12231539189815521,
-0.08698508143424988,
-0.0004627201706171036,
0.0026472359895706177,
0.10076615959405899,
0.14528334140777588,
-0.19990628957748413,
-0.08192211389541626,
-0.05331745743751526,
-0.06477277725934982,
-0.05640071630477905,
0.05975419282913208,
0.014846856705844402,
0.0807323157787323,
0.07270433008670807,
0.010783501900732517,
0.07622160762548447,
0.01460915245115757,
-0.09170670807361603,
0.11015768349170685,
-0.18667052686214447,
-0.21264490485191345,
-0.22975373268127441,
0.08668150007724762,
-0.037325844168663025,
0.024935957044363022,
0.026552066206932068,
-0.14390531182289124,
0.01332378014922142,
0.04337780922651291,
0.015895115211606026,
-0.15377387404441833,
-0.05935906618833542,
0.07134503126144409,
0.076891228556633,
0.033263541758060455,
-0.07719481736421585,
-0.041057176887989044,
-0.025264259427785873,
-0.08189093321561813,
0.005433693062514067,
-0.1434135138988495,
0.02887405827641487,
0.11210203170776367,
0.046865664422512054,
0.12827694416046143,
-0.046151742339134216,
0.1978796124458313,
-0.11673884838819504,
-0.04010940343141556,
0.13991060853004456,
-0.006803350523114204,
0.025189831852912903,
0.01522904820740223,
0.02348322421312332,
-0.17830339074134827,
0.018396692350506783,
0.044965438544750214,
-0.07802369445562363,
-0.2658916711807251,
-0.09693475812673569,
-0.1079641655087471,
-0.035416170954704285,
0.0907469093799591,
0.11372554302215576,
0.10829336941242218,
0.010358727537095547,
0.01922430284321308,
-0.04622542858123779,
0.01039925403892994,
0.040294352918863297,
0.06910325586795807,
-0.05403795465826988,
0.020911242812871933,
-0.08748716115951538,
0.03673640266060829,
0.11197985708713531,
0.10088542103767395,
0.2845122814178467,
0.15051932632923126,
-0.15338990092277527,
0.0837586522102356,
0.1757160723209381,
0.07248541712760925,
0.10084092617034912,
0.07192783057689667,
-0.02447792887687683,
0.008753359317779541,
-0.0000326475128531456,
-0.10359411686658859,
0.07266857475042343,
-0.04539036750793457,
-0.009817754849791527,
-0.08228567987680435,
-0.183166041970253,
0.0339907631278038,
0.3827003836631775,
0.005341838113963604,
-0.20359405875205994,
-0.048745278269052505,
0.015658849850296974,
0.03427281230688095,
-0.1338861882686615,
0.15673236548900604,
0.1296803057193756,
-0.17087578773498535,
0.061060987412929535,
-0.043715085834264755,
0.086096853017807,
-0.013874098658561707,
-0.020368345081806183,
0.07728162407875061,
-0.03306817635893822,
0.022246628999710083,
0.02491389960050583,
-0.19041943550109863,
0.2992745637893677,
-0.007200833410024643,
0.05820415914058685,
0.04638347029685974,
-0.006588613614439964,
0.050354961305856705,
0.17751005291938782,
0.1499262899160385,
0.06874069571495056,
-0.0036059299018234015,
-0.18321117758750916,
-0.02848048321902752,
-0.013507762923836708,
0.14597469568252563,
-0.09848544746637344,
-0.06147049367427826,
-0.06677529215812683,
0.07953810691833496,
-0.04345215484499931,
-0.13506872951984406,
-0.08948342502117157,
-0.042551860213279724,
-0.0053849415853619576,
0.0022125747054815292,
0.06159847974777222,
-0.11096294224262238,
-0.027299635112285614,
-0.01606043614447117,
0.0649687871336937,
-0.13140258193016052,
-0.04542207345366478,
-0.1148441955447197,
-0.15443843603134155,
0.034139420837163925,
0.006920602172613144,
0.06226359307765961,
-0.009127425961196423,
0.013883726671338081,
-0.02254347875714302,
-0.08254696428775787,
0.07376840710639954,
-0.09886695444583893,
-0.023993946611881256,
0.02227458916604519,
0.22278837859630585,
-0.026097601279616356,
0.0027273991145193577,
-0.04656600207090378,
0.01885763555765152,
0.053401701152324677,
-0.11371389031410217,
0.03740336373448372,
0.12094948440790176,
-0.007628312334418297,
0.014422629959881306,
-0.17508861422538757,
0.2042449414730072,
-0.021065697073936462,
-0.006811925210058689,
0.1869215965270996,
0.1743355393409729,
-0.08453792333602905,
0.07940706610679626,
-0.020127784460783005,
-0.08692184835672379,
-0.21810457110404968,
0.05989117920398712,
0.07799756526947021,
-0.04718931019306183,
-0.04262016713619232,
-0.26155731081962585,
-0.007993481121957302,
0.24524542689323425,
-0.04638884961605072,
0.218440443277359,
-0.306499183177948,
-0.019031789153814316,
0.0672740489244461,
0.028291817754507065,
0.20294135808944702,
-0.16378358006477356,
-0.10746309161186218,
0.07292262464761734,
-0.0910080149769783,
-0.004424756392836571,
-0.081694595515728,
0.05278877168893814,
-0.026566624641418457,
-0.05092017725110054,
-0.011109762825071812,
0.012100988067686558,
0.22985371947288513,
-0.010262220166623592,
0.05187107250094414,
-0.03474977985024452,
0.019268063828349113,
-0.08216577023267746,
-0.05187981575727463,
0.03274186700582504,
0.144712895154953,
0.021167024970054626,
-0.2784508168697357,
0.006891119293868542,
-0.07411548495292664,
0.05655810236930847,
-0.03216715157032013,
-0.04229796677827835,
-0.016146615147590637,
0.007639157120138407,
-0.05349075794219971,
0.03660282492637634,
0.1382075548171997,
-0.05691827833652496,
0.31664395332336426,
0.11973687261343002,
0.01337435282766819,
-0.10650409758090973,
-0.1459580957889557,
-0.021262777969241142,
-0.06575468182563782,
0.1184479370713234,
-0.17203743755817413,
-0.04262993112206459,
0.09400586783885956,
0.012412196956574917,
0.11107106506824493,
0.05924387648701668,
-0.01989768072962761,
-0.015519555658102036,
0.09070645272731781,
-0.16233161091804504,
-0.13998185098171234,
-0.08213205635547638,
0.021562661975622177,
0.04168035835027695,
0.05010398104786873,
0.12929277122020721,
-0.019997883588075638,
0.008455661125481129,
-0.02480914071202278,
-0.0029805887024849653,
-0.12658268213272095,
0.04731406271457672,
0.087157242000103,
0.04812087491154671,
-0.04807431995868683,
0.10523687303066254,
0.019483327865600586,
-0.07525325566530228,
0.016933204606175423,
0.1268652230501175,
-0.0970400869846344,
-0.03992521017789841,
-0.05714444816112518,
0.03593018651008606,
0.0752716213464737,
-0.07832957804203033,
0.011292938143014908,
-0.10669390112161636,
0.08114945888519287,
0.04837137460708618,
0.058471083641052246,
0.02416972815990448,
0.006607809569686651,
0.04895303398370743,
-0.0002262336201965809,
-0.07447905093431473,
-0.07696809619665146,
0.046938419342041016,
-0.16363173723220825,
0.02751903422176838,
0.03183400258421898,
0.04685020446777344,
-0.05109710246324539,
-0.055392131209373474,
-0.12404726445674896,
0.06614896655082703,
0.002207172103226185,
-0.0587540864944458,
-0.004363482818007469,
0.00344659760594368,
-0.004944769665598869,
-0.06970842182636261,
-0.08327703922986984,
0.02675747126340866,
-0.14203688502311707,
0.027261383831501007,
-0.018413621932268143,
0.06519296765327454,
0.0020341253839433193,
0.058940090239048004,
0.07764897495508194,
-0.09354516863822937,
0.07182464003562927,
0.06986013054847717,
-0.01523527130484581,
0.1317804604768753,
0.06890880316495895,
0.02683473378419876,
0.12510623037815094,
-0.028686609119176865,
0.060973651707172394,
0.014672819525003433,
-0.007603336591273546,
-0.012231333181262016,
0.05193191394209862,
0.08559972047805786,
0.046103041619062424,
-0.11016316711902618,
-0.07420235872268677,
-0.037051111459732056,
-0.11490757763385773,
-0.04903343319892883,
-0.06114008277654648,
0.1869615763425827,
0.09654796868562698,
0.05574507266283035,
-0.06598494946956635,
0.020951105281710625,
-0.0862962082028389,
-0.011886674910783768,
-0.022598959505558014,
0.008100535720586777,
0.05143814533948898,
-0.011831150390207767,
0.03609289601445198,
0.019603002816438675,
0.15416575968265533,
-0.03670091554522514,
0.015384428203105927,
0.05560506135225296,
-0.12327396124601364,
-0.1082824170589447,
-0.0009400015696883202,
0.1975099742412567,
0.13282322883605957,
-0.03612928465008736,
-0.0266342181712389,
0.031135879456996918,
-0.022584963589906693,
-0.07171513885259628,
0.20855985581874847,
0.1370154619216919,
-0.12742175161838531,
0.07489487528800964,
0.012634105049073696,
-0.06780563294887543,
-0.07272468507289886,
0.030498066917061806,
0.07761882990598679,
-0.002427147701382637,
-0.029167428612709045,
0.06908616423606873,
0.2130114734172821,
-0.1784476637840271,
0.038041360676288605,
0.0031139981001615524,
-0.05194149166345596,
-0.1790294349193573,
0.11213956773281097,
-0.02563164010643959,
-0.213385209441185,
0.016565369442105293,
-0.08667158335447311,
-0.014133295975625515,
0.2079286128282547,
0.0175448227673769,
0.04608024284243584,
0.2274324893951416,
-0.07102394849061966,
-0.06619016826152802,
0.08486661314964294,
-0.0029472913593053818,
0.06031409651041031,
-0.2492499053478241,
-0.15587317943572998,
0.014813914895057678,
-0.0943736732006073,
0.024917393922805786,
-0.015046621672809124,
-0.0935092568397522,
-0.037279196083545685,
-0.0672597885131836,
-0.0048200106248259544,
-0.005090642720460892,
0.09474597871303558,
-0.10059453547000885,
0.15138356387615204,
0.041447147727012634,
-0.07366429269313812,
-0.019460506737232208,
0.19689646363258362,
-0.0977424755692482,
-0.004561599809676409,
-0.1848166286945343,
0.2574528455734253,
0.061555080115795135,
0.10978352278470993,
-0.030882475897669792,
-0.005739400163292885,
-0.07694317400455475,
0.21840506792068481,
0.14802765846252441,
0.004717016592621803,
0.007447863928973675,
0.0842767059803009,
0.032752104103565216,
0.019170306622982025,
0.21864962577819824,
0.15127670764923096,
0.07637829333543777,
-0.016139796003699303,
-0.05268429219722748,
-0.03075895458459854,
0.05202881246805191,
-0.07581032812595367,
0.04554168879985809,
0.036623720079660416,
-0.037323497235774994,
-0.100369893014431,
0.1708909571170807,
-0.07789500057697296,
0.052189864218235016,
0.11581149697303772,
-0.14429976046085358,
-0.14118894934654236,
-0.019024739041924477,
-0.02200685441493988,
-0.10168057680130005,
0.08955244719982147,
-0.03218456357717514,
-0.10326140373945236,
0.15119265019893646,
-0.005244724452495575,
-0.08399831503629684,
-0.24549640715122223,
0.08463159948587418,
-0.07534094154834747,
0.1529272347688675,
-0.013388755731284618,
-0.020026933401823044,
0.027815528213977814,
-0.016869738698005676,
-0.054596833884716034,
0.07620272040367126,
0.04593599587678909,
0.04688679799437523,
-0.1409473717212677,
0.03827434033155441,
-0.06405267864465714,
0.021071309223771095,
0.03657471388578415,
-0.1968705952167511,
-0.05984589457511902,
-0.008492251858115196,
-0.07003483176231384,
-0.057543180882930756,
0.06167587637901306,
-0.09700380265712738,
0.0886802226305008,
0.15947648882865906,
-0.0008248379454016685,
0.0009408742189407349,
-0.053096018731594086,
0.10791577398777008,
0.05154571682214737,
-0.02009044773876667,
-0.036514803767204285,
-0.10167735815048218,
-0.06509131193161011,
-0.06976325809955597,
-0.07933792471885681,
-0.13714748620986938,
-0.01604519411921501,
-0.04934488981962204,
0.03764677047729492,
-0.07332365214824677,
0.07724127173423767,
-0.05340738967061043,
0.01512753963470459,
0.005366327241063118,
-0.17783527076244354,
0.008124982006847858,
0.11311851441860199,
-0.032636307179927826,
-0.004641887731850147
] |
null | null | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "239.11 +/- 10.81", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Militeee/ppo-LunarLander-v2 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-06T21:08:44+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
39,
41,
17
] | [
"passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.03942384943366051,
0.04900386184453964,
-0.005304091144353151,
0.026427261531352997,
0.107408307492733,
-0.026511888951063156,
0.11188238859176636,
0.0814051404595375,
0.10722193866968155,
0.04762078449130058,
0.08338645845651627,
0.06030960753560066,
0.05080918222665787,
0.2571701407432556,
0.04754156619310379,
-0.22987541556358337,
0.036159250885248184,
-0.04869936779141426,
0.12395193427801132,
0.07178173214197159,
-0.0038484656251966953,
-0.06485428661108017,
0.020415637642145157,
-0.013290755450725555,
0.05367108806967735,
0.04282612353563309,
-0.01716216839849949,
-0.08207534998655319,
0.07169748842716217,
-0.06345846503973007,
0.06986866891384125,
0.07677983492612839,
0.13218913972377777,
-0.17832116782665253,
0.029566360637545586,
0.02571309357881546,
-0.07189024239778519,
0.01342033501714468,
0.008019951172173023,
0.05120139941573143,
0.17303818464279175,
0.019879888743162155,
0.07844575494527817,
-0.0025605305563658476,
-0.15412317216396332,
-0.018950799480080605,
0.0436202734708786,
0.12546207010746002,
0.08808347582817078,
0.04605821147561073,
0.01970590092241764,
0.17503218352794647,
-0.054352790117263794,
-0.028833400458097458,
0.21759237349033356,
-0.2881564497947693,
-0.031460098922252655,
0.321048766374588,
0.06997483223676682,
0.09725230932235718,
-0.07540661096572876,
-0.03619609400629997,
0.007783263456076384,
-0.013137873262166977,
-0.028666524216532707,
-0.07447073608636856,
0.17313385009765625,
0.05152064561843872,
-0.05057951435446739,
-0.09541505575180054,
0.16948209702968597,
0.006921638268977404,
0.0018855923553928733,
-0.019282981753349304,
0.009060598909854889,
0.07402525842189789,
-0.016097044572234154,
-0.07255112379789352,
0.057438433170318604,
0.05330665782094002,
0.019649166613817215,
-0.1435653269290924,
-0.10762494057416916,
-0.022740179672837257,
-0.008012006990611553,
0.17786912620067596,
-0.009255532175302505,
0.042902372777462006,
0.003065188182517886,
0.10384012013673782,
-0.12480384111404419,
-0.03354184702038765,
-0.0454259067773819,
-0.07565800100564957,
-0.0223417766392231,
-0.02058211714029312,
-0.03580251708626747,
0.07184842973947525,
0.11971849203109741,
0.027368178591132164,
0.09350208193063736,
0.047715865075588226,
-0.03206788748502731,
0.06343851238489151,
0.05555703118443489,
0.14222665131092072,
0.05807621404528618,
0.012854371219873428,
0.13179877400398254,
0.055213116109371185,
0.033023182302713394,
-0.0613492950797081,
-0.18252409994602203,
0.07489913702011108,
-0.07031869143247604,
0.007941240444779396,
0.12051256000995636,
-0.04480670019984245,
-0.1183447614312172,
-0.037500523030757904,
-0.017392054200172424,
-0.06224250793457031,
-0.025395862758159637,
0.0547584593296051,
-0.02883218228816986,
-0.03973718360066414,
0.0011496668448671699,
0.09384800493717194,
0.00953749567270279,
-0.1752052903175354,
0.03303423151373863,
-0.025042934343218803,
-0.10782608389854431,
0.009975161403417587,
0.0022444494534283876,
0.03394931182265282,
0.04408763721585274,
-0.11822668462991714,
-0.30899152159690857,
-0.07652641832828522,
0.05490870401263237,
-0.06516939401626587,
-0.18425025045871735,
-0.13193942606449127,
0.02454492449760437,
-0.09037084132432938,
-0.044885024428367615,
-0.12759265303611755,
-0.028549788519740105,
0.01743689924478531,
0.011519349180161953,
0.10758619755506516,
-0.0106219332665205,
-0.012188062071800232,
-0.1571401208639145,
0.008273907005786896,
-0.20951123535633087,
0.0890483483672142,
-0.019150104373693466,
0.037884220480918884,
-0.032381169497966766,
-0.07404014468193054,
0.030707746744155884,
0.052499737590551376,
-0.01474119070917368,
0.13510210812091827,
-0.15592676401138306,
-0.03691192343831062,
-0.007996266707777977,
-0.13611900806427002,
-0.04786273464560509,
-0.10358831286430359,
-0.04357128217816353,
0.13354332745075226,
0.018664736300706863,
0.15356586873531342,
-0.08709818124771118,
-0.0722038671374321,
0.20489206910133362,
-0.010411538183689117,
-0.12820468842983246,
-0.076752208173275,
0.10165707021951675,
0.021510310471057892,
-0.056606587022542953,
-0.02523270808160305,
-0.1839766949415207,
-0.0152357779443264,
-0.04550420492887497,
-0.047039128839969635,
0.01796751655638218,
-0.010888241231441498,
0.13837894797325134,
0.08494598418474197,
0.05018039792776108,
-0.06086122244596481,
-0.006730288732796907,
0.10779471695423126,
0.08823856711387634,
0.008680110797286034,
0.023406028747558594,
-0.05774238705635071,
0.09552932530641556,
-0.04003755748271942,
-0.0142367510125041,
-0.08283266425132751,
-0.036246106028556824,
-0.026256313547492027,
0.17507147789001465,
0.09440762549638748,
0.2257927656173706,
0.09567736834287643,
0.039160262793302536,
0.031270865350961685,
-0.13181598484516144,
-0.1425403207540512,
-0.0017254541162401438,
0.09020978957414627,
-0.14270411431789398,
-0.04119925573468208,
-0.08974775671958923,
-0.17768175899982452,
-0.12202505767345428,
0.0006432619411498308,
-0.17960017919540405,
0.06390921026468277,
0.05408334732055664,
-0.035177867859601974,
0.03272094577550888,
0.13032332062721252,
-0.011533179320394993,
-0.03967514634132385,
0.0831870287656784,
0.0379033200442791,
-0.041234664618968964,
-0.021742934361100197,
0.11885567009449005,
0.15673065185546875,
0.13124459981918335,
-0.03511447086930275,
0.004914294462651014,
0.07076404243707657,
-0.02309088408946991,
0.06539414077997208,
0.0558244064450264,
0.20973342657089233,
0.188301220536232,
0.038996949791908264,
0.008822928182780743,
-0.07048165798187256,
0.0855446457862854,
-0.0742373839020729,
-0.14302679896354675,
-0.05579735338687897,
0.08729292452335358,
0.016605578362941742,
0.023469142615795135,
0.08711627870798111,
0.024545932188630104,
0.09132762253284454,
0.15968108177185059,
0.01990218088030815,
-0.09659269452095032,
-0.050218869000673294,
0.01175848301500082,
0.027713103219866753,
0.04794301092624664,
-0.04514073207974434,
-0.00937939714640379,
0.017020760104060173,
-0.10303554683923721,
0.031789086759090424,
-0.1413339376449585,
-0.1358717679977417,
0.044326696544885635,
0.003906996920704842,
0.010907664895057678,
0.02786896750330925,
-0.0038291432429105043,
0.019039705395698547,
0.04351753741502762,
-0.06975466758012772,
0.047416772693395615,
-0.024745507165789604,
-0.020031947642564774,
0.03340689837932587,
-0.057257164269685745,
-0.205775648355484,
-0.17696654796600342,
0.00013708483311347663,
-0.09910997003316879,
0.10194740444421768,
0.018308809027075768,
-0.12373185902833939,
0.047737859189510345,
-0.05822649225592613,
0.027574289590120316,
-0.01875593699514866,
-0.049130141735076904,
0.10507171601057053,
0.1525275856256485,
-0.016146350651979446,
0.018018173053860664,
-0.04865182936191559,
-0.10157987475395203,
-0.19632206857204437,
0.0691583976149559,
0.04680244252085686,
0.014610917307436466,
0.10669491440057755,
0.018072687089443207,
0.02367905154824257,
-0.007674071006476879,
-0.016521066427230835,
-0.011659215204417706,
-0.08781040459871292,
0.31909599900245667,
0.04510033503174782,
-0.025173069909214973,
0.02041010931134224,
-0.0043001663871109486,
-0.028083480894565582,
0.03263787180185318,
-0.0985708013176918,
-0.07548979669809341,
-0.08774089068174362,
-0.04367410019040108,
-0.09784720093011856,
0.053299110382795334,
0.05916472524404526,
0.003188040340319276,
-0.07727594673633575,
0.04221395403146744,
0.11369874328374863,
-0.0923808291554451,
-0.07137343287467957,
0.07477962225675583,
0.0972946360707283,
-0.07331304252147675,
0.00012658814375754446,
0.00874367356300354,
0.023951783776283264,
0.037102166563272476,
0.06778035312891006,
-0.03966575115919113,
0.08589404821395874,
-0.19917890429496765,
0.0372927263379097,
0.106058269739151,
0.023754918947815895,
0.0638108178973198,
0.07643651217222214,
-0.1058402881026268,
-0.008500572293996811,
-0.032518330961465836,
-0.21341575682163239,
0.1668180525302887,
0.1355515867471695,
0.06788124144077301,
-0.025637222453951836,
-0.00461410591378808,
-0.0649740919470787,
0.05773647129535675,
0.02723747305572033,
-0.14758841693401337,
0.004883295856416225,
0.06064270809292793,
0.026899009943008423,
0.01614922471344471,
0.07971042394638062,
0.014697225764393806,
-0.1801026314496994,
-0.014406266622245312,
0.10730406641960144,
0.002390873385593295,
0.0053148469887673855,
-0.03175045922398567,
-0.1755964607000351,
0.0751047357916832,
0.004285442177206278,
0.07233936339616776,
-0.1676585078239441,
0.14297930896282196,
-0.10089799761772156,
0.07726949453353882,
-0.004285062663257122,
-0.021311495453119278,
0.02507244050502777,
-0.0541163794696331,
0.15163759887218475,
0.01058570109307766,
-0.021810131147503853,
-0.1200498715043068,
-0.1717042326927185,
-0.019227758049964905,
-0.11788936704397202,
-0.11679866164922714,
0.050424277782440186,
0.062185097485780716,
0.04923136904835701,
-0.061147067695856094,
0.1518532931804657,
-0.047422297298908234,
0.060713399201631546,
-0.06893875449895859,
-0.06755045056343079,
0.03764858841896057,
-0.12588608264923096,
-0.08176055550575256,
0.05573027580976486,
0.19166934490203857,
0.15833087265491486,
-0.02816431224346161,
-0.03472423925995827,
-0.047419581562280655,
-0.006212298292666674,
-0.007802055217325687,
0.0275666993111372,
0.023223137483000755,
0.07315318286418915,
-0.07681374251842499,
-0.11649256944656372,
0.033787861466407776,
-0.06713802367448807,
-0.055589709430933,
-0.015439179725944996,
0.1513158082962036,
0.04671623185276985,
0.07720734924077988,
-0.018946662545204163,
0.03887668624520302,
-0.001724981120787561,
-0.056474871933460236,
0.16197094321250916,
0.03885216265916824,
-0.05193585529923439,
0.06837689876556396,
0.053174007683992386,
0.043745119124650955,
0.03011113777756691,
-0.026783017441630363,
0.206032395362854,
0.1980147808790207,
0.014206883497536182,
0.2175983190536499,
0.03177616000175476,
-0.03772832080721855,
-0.1300560086965561,
-0.065880686044693,
-0.006372632458806038,
0.03559038043022156,
0.08070417493581772,
-0.18207235634326935,
-0.015011128038167953,
-0.05689644813537598,
-0.034518610686063766,
-0.15059494972229004,
-0.28553900122642517,
-0.05957856774330139,
0.20075850188732147,
0.14706264436244965,
0.27519428730010986,
-0.10432573407888412,
0.035197313874959946,
0.02663275972008705,
-0.04912831634283066,
-0.006501141935586929,
0.00018665487004909664,
0.10268618166446686,
-0.15421873331069946,
0.1176437959074974,
0.08486983180046082,
-0.019002694636583328,
0.01058861706405878,
-0.1619086116552353,
0.00936629343777895,
-0.12191236019134521,
0.05354422330856323,
0.1400289237499237,
-0.048128653317689896,
-0.054873593151569366,
0.14033560454845428,
-0.024562934413552284,
-0.22685599327087402,
-0.04648222774267197,
-0.043600670993328094,
-0.010640020482242107,
0.026607351377606392,
-0.1013401448726654,
0.04101909324526787,
0.1330099105834961,
0.009380043484270573,
0.1147187277674675,
0.11749245226383209,
-0.052566803991794586,
0.10792597383260727,
0.2257719188928604,
-0.018785694614052773,
0.04689010605216026,
-0.12743118405342102,
-0.0012336712097749114,
-0.028270328417420387,
0.013657891191542149,
-0.09504974633455276,
-0.09938385337591171,
0.02366873063147068,
0.02872389927506447,
0.009118586778640747,
0.0921793207526207,
-0.029922157526016235,
0.0759170651435852,
0.06817561388015747,
-0.13014446198940277,
-0.16288450360298157,
0.015828335657715797,
-0.007344507612287998,
0.08354310691356659,
0.00027861111448146403,
0.08878035843372345,
-0.11932205408811569,
-0.018093237653374672,
-0.03153328225016594,
-0.03319635987281799,
-0.130486860871315,
-0.07138993591070175,
0.06156524643301964,
0.028095467016100883,
-0.06602972000837326,
0.1398407518863678,
0.026440169662237167,
0.15942534804344177,
0.049197953194379807,
0.012499804608523846,
0.07227300107479095,
-0.05345509201288223,
0.1283530443906784,
0.13818155229091644,
-0.00868943240493536,
-0.05460423603653908,
-0.1013643890619278,
-0.10236792266368866,
0.08925779908895493,
-0.05773641914129257,
0.07476430386304855,
-0.14885357022285461,
-0.06675903499126434,
0.015772046521306038,
0.016141414642333984,
-0.09562095999717712,
0.02571965754032135,
-0.01625603251159191,
-0.18119946122169495,
0.056570518761873245,
-0.048285093158483505,
0.0440407395362854,
-0.06347788125276566,
-0.1110161691904068,
-0.17226378619670868,
0.06091433763504028,
0.08593481779098511,
-0.053876690566539764,
-0.12229149043560028,
0.011023230850696564,
-0.00012518465518951416,
-0.06341652572154999,
-0.05023367330431938,
0.09722746908664703,
-0.11020902544260025,
0.031452205032110214,
-0.012567701749503613,
0.08853451162576675,
-0.03510405123233795,
-0.011538895778357983,
0.044220831245183945,
-0.08039166033267975,
-0.009481523185968399,
0.03534642979502678,
-0.026372017338871956,
-0.04127239063382149,
-0.2689029574394226,
0.0036654395516961813,
0.0341104120016098,
0.02497158572077751,
0.07856601476669312,
0.011906822212040424,
0.021174922585487366,
0.03993808850646019,
-0.15396519005298615,
-0.013395369984209538,
0.14574195444583893,
-0.07689505815505981,
-0.022186370566487312,
0.05703273415565491,
-0.09054436534643173,
0.013882770203053951,
-0.030287226662039757,
0.1345842480659485,
0.023923413828015327,
0.06404478847980499,
-0.0851147472858429,
0.10106813907623291,
-0.1451139897108078,
-0.04998219385743141,
-0.01244612317532301,
0.09761348366737366,
0.07019034773111343,
-0.10272270441055298,
0.014697125181555748,
0.04210108891129494,
0.19416837394237518,
0.016384804621338844,
-0.0356343574821949,
-0.03396720811724663,
0.004015897400677204,
0.22076453268527985,
0.03044266067445278,
0.10457023978233337,
0.07281364500522614,
-0.026583973318338394,
0.12624378502368927,
0.09929762035608292,
0.11280370503664017,
-0.055645186454057693,
0.13904185593128204,
0.04667386785149574,
0.038641396909952164,
0.0614289753139019,
0.06836545467376709,
0.09098632633686066,
-0.0008288522367365658,
0.1138714924454689,
0.013811973854899406,
-0.02422109805047512,
-0.021335409954190254,
0.17759373784065247,
0.10501719266176224,
-0.14769648015499115,
0.029047364369034767,
-0.01258957851678133,
0.039933037012815475,
-0.014194529503583908,
-0.15634691715240479,
-0.07240267097949982,
-0.3315149247646332,
0.1226184144616127,
-0.07119352370500565,
0.019930170848965645,
0.007913772016763687,
-0.037425633519887924,
-0.03296699747443199,
-0.04477746784687042,
0.13151589035987854,
-0.013641550205647945,
-0.006079165264964104,
-0.04815853759646416,
-0.015360191464424133,
-0.11607866734266281,
-0.11200575530529022,
-0.013207737356424332,
-0.13671602308750153,
-0.010119039565324783,
0.05595948174595833,
0.003977729007601738,
0.01821410097181797,
-0.03142618387937546,
0.0024383175186812878,
0.06541839241981506,
-0.05751744285225868,
0.056182678788900375,
0.12097269296646118,
0.08766137808561325,
-0.1058853268623352,
0.031048951670527458,
0.2011747509241104,
0.04359564557671547,
-0.12483977526426315,
0.01449228823184967,
0.1819491684436798,
0.004885740112513304,
0.017068125307559967,
-0.006097703706473112,
-0.0540788508951664,
-0.07554277032613754,
0.1251034289598465,
0.08296554535627365,
-0.09985227137804031,
0.015833314508199692,
-0.0726347416639328,
-0.01594804972410202,
-0.06374675035476685,
0.10130585730075836,
0.09538925439119339,
0.04440245032310486,
-0.10621760785579681,
-0.08487539738416672,
-0.10891728103160858,
0.040588874369859695,
-0.08629853278398514,
-0.07311757653951645,
0.09629398584365845,
-0.07057105004787445,
-0.07029950618743896,
0.025521177798509598,
-0.17978744208812714,
-0.009467960335314274,
0.1711762249469757,
-0.24654000997543335,
-0.0916430801153183,
-0.10857923328876495,
0.14477859437465668,
0.016497576609253883,
0.1013975441455841,
-0.006207061931490898,
-0.007889035157859325,
-0.20577777922153473,
0.024890204891562462,
-0.05293011665344238,
-0.02073732763528824,
0.07814782857894897,
-0.09476397186517715,
0.22629831731319427,
-0.08276885002851486,
0.020940175279974937,
0.012659613974392414,
0.0870661810040474,
-0.030675338581204414,
0.09283176809549332,
-0.03660329803824425,
-0.12576518952846527,
-0.03620953485369682,
0.03001813031733036,
0.013904244638979435,
0.10071761906147003,
0.09772487729787827,
-0.03414725139737129,
0.03389119729399681,
0.09747414290904999,
0.04172342270612717,
-0.023843804374337196,
0.0360250361263752,
-0.17077107727527618,
0.02182629331946373,
-0.018498148769140244,
-0.06935930997133255,
0.03687669709324837,
-0.06603235751390457,
0.1639697551727295,
0.04022442549467087,
0.0670473501086235,
-0.036152735352516174,
0.0073931049555540085,
-0.014454689808189869,
-0.013775371946394444,
-0.026180334389209747,
-0.17259705066680908,
-0.10422050207853317,
-0.1347656100988388,
-0.012701659463346004,
-0.034971047192811966,
0.04591470584273338,
0.023234914988279343,
-0.0003200018545612693,
-0.014577031135559082,
-0.12090865522623062,
0.04360328987240791,
0.11146783083677292,
-0.04631396010518074,
-0.026193076744675636
] |
null | null | transformers | # DarkSapling-7B-v1.1

## Model Details
- A result of 4 models merge.
- models used for merge:
[cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
[KoboldAI/Mistral-7B-Holodeck-1](https://huggingface.co/KoboldAI/Mistral-7B-Holodeck-1)
[KoboldAI/Mistral-7B-Erebus-v3](https://huggingface.co/KoboldAI/Mistral-7B-Erebus-v3)
[cognitivecomputations/samantha-mistral-7b](https://huggingface.co/cognitivecomputations/samantha-mistral-7b)
- See [mergekit-config.yml](https://huggingface.co/TeeZee/DarkSapling-7B-v1.1/resolve/main/mergekit-config.yml) for details on the merge method used.
**Warning: This model can produce NSFW content!**
## Results
- a little different than version v1.0, more romantic and empathetic.
- best for one-on-one ERP.
- produces SFW nad NSFW content without issues, switches context seamlessly.
- sticks to character card
- pretty smart due to mistral, empathetic after Samantha and sometimes produces dark scenarions - Erebus.
- storytelling is satisfactory due to Holodeck
- good at following instructions
All comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:
<a href="https://www.buymeacoffee.com/TeeZee" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
| {"language": ["en"], "license": "apache-2.0", "tags": ["mistral", "not-for-all-audiences", "merge"], "pipeline_tag": "text-generation", "inference": false} | text-generation | TeeZee/DarkSapling-7B-v1.1 | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"not-for-all-audiences",
"merge",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T21:10:42+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #mistral #text-generation #not-for-all-audiences #merge #en #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us
| # DarkSapling-7B-v1.1
!image/png
## Model Details
- A result of 4 models merge.
- models used for merge:
cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
KoboldAI/Mistral-7B-Holodeck-1
KoboldAI/Mistral-7B-Erebus-v3
cognitivecomputations/samantha-mistral-7b
- See URL for details on the merge method used.
Warning: This model can produce NSFW content!
## Results
- a little different than version v1.0, more romantic and empathetic.
- best for one-on-one ERP.
- produces SFW nad NSFW content without issues, switches context seamlessly.
- sticks to character card
- pretty smart due to mistral, empathetic after Samantha and sometimes produces dark scenarions - Erebus.
- storytelling is satisfactory due to Holodeck
- good at following instructions
All comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:
<a href="URL target="_blank"><img src="URL alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>
| [
"# DarkSapling-7B-v1.1\n\n!image/png",
"## Model Details\n\n- A result of 4 models merge.\n- models used for merge:\n cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser\n KoboldAI/Mistral-7B-Holodeck-1\n KoboldAI/Mistral-7B-Erebus-v3\n cognitivecomputations/samantha-mistral-7b\n- See URL for details on the merge method used.\n\nWarning: This model can produce NSFW content!",
"## Results\n\n- a little different than version v1.0, more romantic and empathetic.\n- best for one-on-one ERP.\n- produces SFW nad NSFW content without issues, switches context seamlessly.\n- sticks to character card\n- pretty smart due to mistral, empathetic after Samantha and sometimes produces dark scenarions - Erebus.\n- storytelling is satisfactory due to Holodeck\n- good at following instructions\n\n\nAll comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 60px !important;width: 217px !important;\" ></a>"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #not-for-all-audiences #merge #en #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n",
"# DarkSapling-7B-v1.1\n\n!image/png",
"## Model Details\n\n- A result of 4 models merge.\n- models used for merge:\n cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser\n KoboldAI/Mistral-7B-Holodeck-1\n KoboldAI/Mistral-7B-Erebus-v3\n cognitivecomputations/samantha-mistral-7b\n- See URL for details on the merge method used.\n\nWarning: This model can produce NSFW content!",
"## Results\n\n- a little different than version v1.0, more romantic and empathetic.\n- best for one-on-one ERP.\n- produces SFW nad NSFW content without issues, switches context seamlessly.\n- sticks to character card\n- pretty smart due to mistral, empathetic after Samantha and sometimes produces dark scenarions - Erebus.\n- storytelling is satisfactory due to Holodeck\n- good at following instructions\n\n\nAll comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 60px !important;width: 217px !important;\" ></a>"
] | [
61,
14,
100,
168
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #not-for-all-audiences #merge #en #license-apache-2.0 #autotrain_compatible #text-generation-inference #region-us \n# DarkSapling-7B-v1.1\n\n!image/png## Model Details\n\n- A result of 4 models merge.\n- models used for merge:\n cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser\n KoboldAI/Mistral-7B-Holodeck-1\n KoboldAI/Mistral-7B-Erebus-v3\n cognitivecomputations/samantha-mistral-7b\n- See URL for details on the merge method used.\n\nWarning: This model can produce NSFW content!## Results\n\n- a little different than version v1.0, more romantic and empathetic.\n- best for one-on-one ERP.\n- produces SFW nad NSFW content without issues, switches context seamlessly.\n- sticks to character card\n- pretty smart due to mistral, empathetic after Samantha and sometimes produces dark scenarions - Erebus.\n- storytelling is satisfactory due to Holodeck\n- good at following instructions\n\n\nAll comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:\n<a href=\"URL target=\"_blank\"><img src=\"URL alt=\"Buy Me A Coffee\" style=\"height: 60px !important;width: 217px !important;\" ></a>"
] | [
-0.04110234975814819,
-0.002242238726466894,
-0.0033768743742257357,
0.045375529676675797,
0.1022244542837143,
0.04879596829414368,
0.10577713698148727,
0.10559505969285965,
0.10341557115316391,
0.05164802819490433,
-0.021316200494766235,
0.045779094099998474,
0.06609950959682465,
0.13441349565982819,
0.016172556206583977,
-0.12551307678222656,
0.11688284575939178,
-0.08988824486732483,
0.14028261601924896,
0.10968843847513199,
0.09134462475776672,
-0.07751578837633133,
0.09517070651054382,
-0.03840252012014389,
-0.06732301414012909,
-0.012060333043336868,
-0.024949952960014343,
-0.015627382323145866,
0.08895985782146454,
0.003791923401877284,
0.05557914450764656,
0.0708741694688797,
-0.049451734870672226,
-0.24724584817886353,
0.05779280513525009,
0.039514753967523575,
-0.027584729716181755,
0.044187281280756,
0.022648021578788757,
-0.019341882318258286,
0.06300961971282959,
-0.05020637810230255,
0.07972720265388489,
0.09625295549631119,
-0.08365029096603394,
-0.08418945223093033,
-0.10131487995386124,
0.09010595083236694,
0.07104022055864334,
0.025004783645272255,
-0.048970844596624374,
0.14184775948524475,
-0.10425644367933273,
0.053279805928468704,
0.24447762966156006,
-0.1411597728729248,
-0.001570589025504887,
0.036025021225214005,
-0.03732107952237129,
0.05878527835011482,
-0.09807755053043365,
0.027292413637042046,
0.02264467068016529,
-0.033278338611125946,
0.038515180349349976,
-0.005370704922825098,
0.09537560492753983,
-0.03748384490609169,
-0.051861006766557693,
0.005792992189526558,
0.1961326003074646,
0.07863232493400574,
-0.06301331520080566,
-0.18273627758026123,
-0.06087543070316315,
-0.02298598363995552,
-0.04849737137556076,
-0.028092944994568825,
0.015047073364257812,
-0.02137676626443863,
0.07697169482707977,
-0.042663902044296265,
-0.07671219855546951,
-0.014205667190253735,
-0.0341603122651577,
0.15116576850414276,
0.013353472575545311,
0.0035744057968258858,
0.045365139842033386,
0.10781766474246979,
-0.1214139461517334,
-0.1219952404499054,
-0.11651737987995148,
-0.08192241191864014,
-0.12368474155664444,
-0.04502669721841812,
0.019334040582180023,
0.04706428572535515,
0.0728597342967987,
0.14049562811851501,
0.06546355783939362,
0.08628637343645096,
-0.02106393873691559,
0.010579317808151245,
0.008022029884159565,
0.06221858784556389,
0.025770410895347595,
-0.10933922231197357,
0.05640336871147156,
0.06872379779815674,
0.09896888583898544,
-0.02216159924864769,
-0.04434146359562874,
-0.00009477412095293403,
-0.01218896172940731,
0.06716220825910568,
0.014669672586023808,
0.05667417496442795,
-0.10535226762294769,
-0.024882838129997253,
0.21551944315433502,
-0.10676483809947968,
0.02039729803800583,
0.08591891825199127,
-0.019010726362466812,
0.06862665712833405,
0.045622535049915314,
0.009099466726183891,
-0.029952820390462875,
0.09843657165765762,
-0.06452885270118713,
-0.0071761771105229855,
-0.08916254341602325,
-0.02584107592701912,
0.07956121116876602,
0.12875567376613617,
-0.08800069242715836,
-0.12980443239212036,
-0.2383522093296051,
0.0020559756085276604,
-0.009975988417863846,
-0.046401213854551315,
-0.0069315009750425816,
-0.0006345411529764533,
-0.024454832077026367,
0.034151289612054825,
0.009508609771728516,
0.033164653927087784,
-0.06202937290072441,
0.03207409381866455,
0.025907980278134346,
0.033095113933086395,
0.017977742478251457,
0.0205213762819767,
-0.11838721483945847,
0.0019106540130451322,
-0.26523086428642273,
0.07601381838321686,
-0.1042727530002594,
0.0015156554291024804,
-0.08801625669002533,
-0.030521666631102562,
-0.0980747863650322,
0.0017387467669323087,
-0.033624157309532166,
0.16852404177188873,
-0.1349584311246872,
-0.05900880694389343,
0.156355619430542,
-0.17869049310684204,
-0.12843838334083557,
0.12297376245260239,
-0.013621398247778416,
0.030920812860131264,
0.10417330265045166,
0.08645205944776535,
0.11055998504161835,
-0.12143637239933014,
-0.01665802113711834,
-0.021303949877619743,
-0.009325276128947735,
0.0823771208524704,
0.06132911145687103,
-0.026670385152101517,
-0.0008406037813983858,
0.06158827617764473,
-0.0595279261469841,
-0.03023909404873848,
0.032371990382671356,
-0.02609158121049404,
-0.06034970283508301,
-0.017671585083007812,
0.010525897145271301,
-0.03019510768353939,
-0.08658137172460556,
-0.11014879494905472,
-0.13013216853141785,
-0.036209605634212494,
0.12186100333929062,
-0.04411836341023445,
0.01957916095852852,
-0.047291383147239685,
0.07304415851831436,
0.03602425381541252,
0.026000987738370895,
-0.07123606652021408,
-0.1520226001739502,
0.07159315794706345,
-0.16130049526691437,
-0.010142666287720203,
0.021131645888090134,
0.029582779854536057,
0.04482249170541763,
-0.0813031941652298,
-0.04498636722564697,
-0.03216351196169853,
0.005480592139065266,
0.007202175911515951,
-0.15837398171424866,
0.03995204344391823,
-0.03253846988081932,
0.205060213804245,
-0.04550924897193909,
0.03719814866781235,
0.1149212121963501,
0.1465129405260086,
0.011663240380585194,
-0.05887364223599434,
0.02389286458492279,
-0.06504978239536285,
0.000060957620007684454,
-0.0423433855175972,
0.015886874869465828,
-0.02485547959804535,
-0.05802832171320915,
0.1389314979314804,
-0.23826827108860016,
0.004212548024952412,
0.13078318536281586,
0.050451043993234634,
-0.06637521833181381,
-0.008039530366659164,
-0.006881386507302523,
-0.05868885666131973,
-0.1355840116739273,
-0.12586572766304016,
0.05809079483151436,
0.06508274376392365,
0.07662680745124817,
-0.06904735416173935,
-0.04875043034553528,
-0.007264856714755297,
0.025857221335172653,
-0.017258241772651672,
0.0636846050620079,
-0.005138121545314789,
-0.12134053558111191,
0.07971573621034622,
0.04984729364514351,
0.03068692795932293,
0.08980680257081985,
0.019063640385866165,
-0.04808073863387108,
-0.036829624325037,
0.024563344195485115,
-0.02199481427669525,
0.1128944456577301,
-0.06403468549251556,
0.02958126738667488,
0.07664144784212112,
-0.01546409446746111,
0.016853267326951027,
-0.08084466308355331,
0.010489900596439838,
0.017293063923716545,
-0.05278894305229187,
0.06306897848844528,
0.06526369601488113,
0.017815936356782913,
0.06779090315103531,
-0.004522478207945824,
0.0266766045242548,
0.002019647043198347,
-0.03943978250026703,
-0.11644165217876434,
0.12558215856552124,
-0.06822822988033295,
-0.23024119436740875,
-0.15966136753559113,
0.10167654603719711,
-0.03878268972039223,
-0.018076850101351738,
0.09916643053293228,
-0.05777138099074364,
-0.13303089141845703,
-0.14201760292053223,
-0.0023368368856608868,
0.07580876350402832,
-0.05733120068907738,
-0.043081626296043396,
-0.013360191136598587,
-0.0014868041034787893,
-0.11802647262811661,
-0.04889753460884094,
0.06989625841379166,
0.00045772542944177985,
0.011630790308117867,
0.012341522611677647,
0.08651202917098999,
0.0999319925904274,
0.0392305888235569,
-0.004078986123204231,
-0.02000657096505165,
0.14287376403808594,
-0.0882880762219429,
0.09629127383232117,
0.15173973143100739,
0.04266040027141571,
0.09241000562906265,
0.1593058556318283,
0.004880999680608511,
-0.03517071530222893,
0.07452892512083054,
0.05680960789322853,
-0.027767173945903778,
-0.20630857348442078,
-0.061631228774785995,
-0.05902400240302086,
-0.011678420938551426,
0.0011833629105240107,
0.04225220903754234,
0.0347214937210083,
0.06715734302997589,
-0.14234167337417603,
-0.09345205873250961,
0.09539865702390671,
0.14779923856258392,
0.182155579328537,
0.026431657373905182,
0.09225751459598541,
-0.07383259385824203,
0.006059546954929829,
0.09779912978410721,
-0.05264066904783249,
0.09618829190731049,
-0.013385746628046036,
0.2849836051464081,
0.0364544615149498,
0.03154619410634041,
0.022319473326206207,
0.026698686182498932,
0.07318468391895294,
-0.0019981716759502888,
-0.025626737624406815,
-0.09780845791101456,
-0.03354338929057121,
0.05933500826358795,
0.008121412247419357,
0.05432595685124397,
-0.020275495946407318,
0.039110951125621796,
0.128432959318161,
0.15681159496307373,
-0.02288472093641758,
-0.14687325060367584,
-0.04576219990849495,
0.06631005555391312,
-0.037290386855602264,
-0.006570098921656609,
-0.026691365987062454,
0.02444714680314064,
-0.16073527932167053,
0.07739672809839249,
0.010155553929507732,
0.08828451484441757,
-0.08559364080429077,
0.0013336763950064778,
-0.034438636153936386,
0.08784632384777069,
-0.03748106583952904,
0.09248431771993637,
-0.20914898812770844,
0.04156498983502388,
0.0038587076123803854,
0.05368589237332344,
-0.049039170145988464,
-0.011740544810891151,
0.04370419308543205,
0.04238639771938324,
0.054692529141902924,
0.00048219901509582996,
-0.058173056691884995,
-0.020998649299144745,
-0.06629088521003723,
0.01682506874203682,
0.05387953668832779,
-0.08294596523046494,
0.04671730101108551,
-0.0556333027780056,
-0.02163204923272133,
-0.02669588476419449,
0.1308220773935318,
-0.18964606523513794,
-0.13072547316551208,
0.09014131873846054,
0.0037182362284511328,
0.020600756630301476,
-0.08824915438890457,
-0.07824917882680893,
-0.10795516520738602,
0.19338326156139374,
-0.10832817852497101,
-0.09595903009176254,
-0.12765052914619446,
-0.10169067233800888,
0.08414638787508011,
-0.07308255136013031,
-0.01862896792590618,
-0.05002572014927864,
0.18712614476680756,
-0.06532566994428635,
-0.06204845756292343,
0.02838881127536297,
-0.07735522836446762,
-0.20617400109767914,
-0.03618522360920906,
0.17944298684597015,
0.01140533946454525,
0.04194788634777069,
0.017004193738102913,
-0.018195590004324913,
-0.011179007589817047,
-0.11646773666143417,
-0.015484175644814968,
0.14839325845241547,
0.017866088077425957,
0.12033200263977051,
0.0023667295463383198,
-0.06779801100492477,
-0.07657244056463242,
-0.04626902565360069,
0.034973062574863434,
0.26585128903388977,
-0.02394731342792511,
0.09090521186590195,
0.12022694945335388,
-0.048201438039541245,
-0.13577423989772797,
-0.010600329376757145,
-0.01482605841010809,
-0.046114061027765274,
0.022998914122581482,
-0.04725991189479828,
0.13281704485416412,
0.1028391644358635,
-0.03991929814219475,
0.06969402730464935,
-0.16730500757694244,
-0.15634435415267944,
0.036835942417383194,
0.06682008504867554,
0.12166604399681091,
-0.11186660081148148,
-0.05258850380778313,
-0.0924694836139679,
-0.26661452651023865,
0.10661496222019196,
-0.13900452852249146,
0.0830746442079544,
0.0049631367437541485,
0.10932452231645584,
0.02220194786787033,
-0.06675798445940018,
0.17463788390159607,
0.02442331798374653,
0.062380820512771606,
-0.08197856694459915,
0.0276442039757967,
0.07156269252300262,
-0.09050600230693817,
0.11229457706212997,
-0.09204412251710892,
-0.012668948620557785,
-0.00814210344105959,
-0.03179192915558815,
-0.0773758664727211,
0.09772395342588425,
-0.07987936586141586,
-0.041067615151405334,
-0.06363434344530106,
0.05082949623465538,
0.10502862930297852,
-0.020146287977695465,
0.07238539308309555,
-0.049860574305057526,
0.0029928896110504866,
0.14247871935367584,
0.11258739978075027,
0.03333538770675659,
-0.15802252292633057,
-0.03498855233192444,
-0.04781472310423851,
0.04352007806301117,
-0.11721254885196686,
0.09870683401823044,
0.0334644690155983,
-0.031519606709480286,
0.16503839194774628,
-0.006224746350198984,
-0.16166822612285614,
-0.029199576005339622,
0.07514512538909912,
-0.1048578992486,
-0.17375418543815613,
0.017025073990225792,
0.04934357851743698,
-0.0663900375366211,
-0.05667783319950104,
0.11459614336490631,
-0.02405506558716297,
-0.014697072096168995,
0.04573030769824982,
0.06247520074248314,
0.010379822924733162,
0.10285982489585876,
0.011310596950352192,
0.088638536632061,
-0.10988668352365494,
0.12557417154312134,
0.00898908544331789,
-0.16981738805770874,
-0.009933187626302242,
0.07868270576000214,
-0.12532015144824982,
-0.07720974832773209,
0.02794945426285267,
0.08224625885486603,
-0.018333997577428818,
-0.0665835440158844,
-0.06461388617753983,
-0.08031493425369263,
-0.009466538205742836,
0.0745454952120781,
0.06781358271837234,
0.07581368833780289,
0.07859773188829422,
0.04682713747024536,
-0.03370645269751549,
0.10660836845636368,
0.025357918813824654,
0.09736359119415283,
-0.09018365293741226,
-0.014621486887335777,
0.020635554566979408,
-0.04767401143908501,
-0.022571366280317307,
-0.0008296922314912081,
-0.05533239245414734,
-0.05016452446579933,
-0.1276007741689682,
0.058041613548994064,
-0.0931946188211441,
-0.006506612524390221,
0.01057526282966137,
-0.013140780851244926,
-0.006204414647072554,
0.04045238345861435,
-0.05556606501340866,
-0.06141187623143196,
0.0067390864714980125,
0.08542672544717789,
-0.1607821136713028,
0.01628107950091362,
0.09525012969970703,
-0.09198658168315887,
0.09023907035589218,
0.048115141689777374,
-0.04103992134332657,
-0.009764771908521652,
-0.17122164368629456,
0.03341227397322655,
0.016158539801836014,
0.032232318073511124,
0.008496308699250221,
-0.13007020950317383,
0.008683225139975548,
-0.023673398420214653,
0.0017451000167056918,
0.02328706532716751,
0.12033381313085556,
-0.14489513635635376,
0.014216141775250435,
-0.021795280277729034,
-0.09172771871089935,
-0.04836626723408699,
-0.019262075424194336,
0.0456991121172905,
-0.00023112597409635782,
0.16187253594398499,
-0.059826478362083435,
0.018805578351020813,
-0.10195820033550262,
-0.015924369916319847,
0.04561758041381836,
-0.005213974975049496,
0.004786371253430843,
-0.048084806650877,
0.039829451590776443,
-0.022887378931045532,
0.15045824646949768,
-0.05284218117594719,
0.026292812079191208,
0.08289395272731781,
0.01299103070050478,
-0.005647387355566025,
0.008614051155745983,
0.08567395061254501,
-0.04216117411851883,
-0.006131148897111416,
0.05576902627944946,
-0.04718325287103653,
0.04379815235733986,
-0.11030504107475281,
0.1537122279405594,
0.18652455508708954,
0.05398387461900711,
0.04637651890516281,
0.01726050302386284,
-0.0358041487634182,
0.016367416828870773,
0.005944904871284962,
-0.04560815542936325,
0.040333446115255356,
-0.06570600718259811,
0.09552593529224396,
0.136088564991951,
-0.127176895737648,
0.0687156468629837,
-0.015320653095841408,
-0.03070707991719246,
-0.09071146696805954,
-0.1641380488872528,
-0.09979381412267685,
-0.08397127687931061,
0.029741620644927025,
-0.0865163579583168,
-0.0057173059321939945,
0.0849287286400795,
0.027987487614154816,
-0.05838662013411522,
0.15189842879772186,
-0.013677495531737804,
-0.07933009415864944,
0.05653037503361702,
0.02689768746495247,
-0.047539204359054565,
0.07099183648824692,
-0.020934367552399635,
0.02512318640947342,
0.015688177198171616,
0.051568083465099335,
0.08015550673007965,
0.021172430366277695,
-0.0060880291275680065,
-0.05218496173620224,
-0.09585437178611755,
0.011901449412107468,
0.013272056356072426,
-0.020858291536569595,
0.10584960877895355,
0.04594767466187477,
-0.005669649690389633,
-0.018866170197725296,
0.19871319830417633,
-0.04267750680446625,
-0.038053710013628006,
-0.1058250367641449,
0.03608894720673561,
-0.017236167564988136,
0.04882552847266197,
0.012953536584973335,
-0.1308295726776123,
-0.00895598717033863,
0.1405899077653885,
0.12970392405986786,
-0.025111829861998558,
0.018120599910616875,
-0.011957097798585892,
-0.005258567165583372,
0.008046993054449558,
0.03902827203273773,
0.03788755089044571,
0.022426096722483635,
-0.01285533420741558,
0.18603336811065674,
0.004081943538039923,
-0.08977025747299194,
-0.07238399982452393,
0.0928487777709961,
-0.0761508047580719,
0.0032944746781140566,
-0.070941261947155,
0.06011531129479408,
-0.029419321566820145,
-0.2778945565223694,
0.02483593113720417,
-0.02970666065812111,
-0.06074985861778259,
-0.02100585214793682,
0.08204319328069687,
0.027818679809570312,
0.0208126213401556,
-0.00185517524369061,
-0.03852218762040138,
0.15052862465381622,
-0.0064096408896148205,
-0.1312435120344162,
-0.07077159732580185,
-0.0011516696540638804,
-0.1658901572227478,
0.1486857831478119,
0.001002091565169394,
0.12840712070465088,
0.12233190983533859,
-0.03591729328036308,
-0.09771118313074112,
0.09690522402524948,
0.07282352447509766,
-0.13723507523536682,
0.030710332095623016,
0.18918900191783905,
-0.008453474380075932,
0.052112217992544174,
0.09021899104118347,
-0.12870588898658752,
0.006766689009964466,
0.069860078394413,
-0.01804504543542862,
-0.1287161260843277,
0.07553659379482269,
-0.10452956706285477,
0.10476632416248322,
0.1258563995361328,
-0.05109575018286705,
-0.003126091556623578,
-0.03954364359378815,
0.012803186662495136,
0.029883069917559624,
0.08505971729755402,
0.001941132009960711,
-0.15984193980693817,
0.025520814582705498,
0.07722077518701553,
0.0973118469119072,
-0.25638777017593384,
-0.07328829169273376,
-0.049282774329185486,
-0.01213774923235178,
-0.0216914564371109,
0.11374298483133316,
0.03549953177571297,
0.026995981112122536,
-0.02851421758532524,
-0.2723778784275055,
-0.013243945315480232,
0.13974922895431519,
-0.11216777563095093,
-0.05811038240790367
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-large-bn-adapter-6.34M-snli-model1
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6034
- Accuracy: 0.8005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3118 | 1.0 | 17168 | 0.2381 | 0.9150 |
| 0.2742 | 2.0 | 34336 | 0.2299 | 0.9171 |
| 0.2725 | 3.0 | 51504 | 0.2277 | 0.9197 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "t5-large", "model-index": [{"name": "t5-large-bn-adapter-6.34M-snli-model1", "results": []}]} | null | varun-v-rao/t5-large-bn-adapter-6.34M-snli-model1 | [
"tensorboard",
"generated_from_trainer",
"base_model:t5-large",
"license:apache-2.0",
"region:us"
] | 2024-02-06T21:11:35+00:00 | [] | [] | TAGS
#tensorboard #generated_from_trainer #base_model-t5-large #license-apache-2.0 #region-us
| t5-large-bn-adapter-6.34M-snli-model1
=====================================
This model is a fine-tuned version of t5-large on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6034
* Accuracy: 0.8005
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 40
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 40\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#tensorboard #generated_from_trainer #base_model-t5-large #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 40\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
34,
98,
4,
33
] | [
"passage: TAGS\n#tensorboard #generated_from_trainer #base_model-t5-large #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 40\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.08582739531993866,
-0.010710512287914753,
-0.00042694760486483574,
0.11808330565690994,
0.17890924215316772,
0.038515157997608185,
0.14213036000728607,
0.07802030444145203,
-0.1367533653974533,
0.014633489772677422,
0.09747177362442017,
0.12109462916851044,
0.0019413555273786187,
0.07290663570165634,
-0.025443069636821747,
-0.24931882321834564,
-0.0243691373616457,
0.03815942630171776,
-0.13613969087600708,
0.12522853910923004,
0.09258256107568741,
-0.14014756679534912,
0.06759897619485855,
-0.0024097918067127466,
-0.2988945543766022,
0.051642775535583496,
0.02922804094851017,
-0.04932320863008499,
0.13297712802886963,
-0.001265007653273642,
0.16291899979114532,
-0.013440812937915325,
0.1343872845172882,
-0.13112139701843262,
0.011108553037047386,
0.08361908793449402,
0.0027535557746887207,
0.08089166134595871,
0.06621497869491577,
0.03947649523615837,
0.12715846300125122,
-0.09939653426408768,
0.052579116076231,
0.01995129883289337,
-0.11666283756494522,
-0.25635480880737305,
-0.07480774819850922,
0.008264142088592052,
0.05215904116630554,
0.08505189418792725,
0.0002677541633602232,
0.15373365581035614,
-0.08948390185832977,
0.08489454537630081,
0.26028430461883545,
-0.2751399874687195,
-0.08180631697177887,
0.08175072818994522,
-0.0015469372738152742,
0.10977787524461746,
-0.09562252461910248,
-0.030646631494164467,
0.07334358990192413,
0.05271857604384422,
0.12955433130264282,
-0.027605924755334854,
-0.17616771161556244,
0.043207716196775436,
-0.15388233959674835,
0.016051921993494034,
0.09352253377437592,
0.0353458970785141,
-0.018086399883031845,
0.03849588334560394,
-0.08932194858789444,
-0.12356697767972946,
-0.05092783644795418,
-0.027941245585680008,
0.09263594448566437,
-0.04539523273706436,
-0.09985025972127914,
-0.0397011898458004,
-0.10296552628278732,
-0.10209675878286362,
-0.07030168920755386,
0.18297433853149414,
0.055588025599718094,
0.05061005800962448,
-0.07110319286584854,
0.10410626977682114,
-0.06045198068022728,
-0.1288173496723175,
0.052468493580818176,
0.04586188867688179,
-0.012606441974639893,
-0.04893127828836441,
-0.08263324946165085,
-0.1052442193031311,
0.019311435520648956,
0.09850092977285385,
-0.08326195180416107,
0.03920925036072731,
0.04788150638341904,
0.057773083448410034,
-0.1190086379647255,
0.17689824104309082,
-0.06851718574762344,
0.016769712790846825,
0.014113367535173893,
0.03986839950084686,
0.013868923299014568,
0.006433738395571709,
-0.11356537789106369,
0.015371215529739857,
0.0730559453368187,
-0.0013573801843449473,
-0.08964679390192032,
0.031204011291265488,
-0.022801406681537628,
-0.007651601452380419,
-0.040625542402267456,
-0.09352758526802063,
0.03941958025097847,
-0.01668430119752884,
-0.1025986447930336,
0.0010551210725679994,
0.021458441391587257,
0.013735409826040268,
0.010105408728122711,
0.12128915637731552,
-0.09962236881256104,
0.07310424745082855,
-0.14030347764492035,
-0.10833965241909027,
0.012204514816403389,
-0.027937225997447968,
0.02037782222032547,
-0.07465614378452301,
-0.15946996212005615,
0.0012107319198548794,
0.07487506419420242,
-0.04250060021877289,
-0.03298921883106232,
-0.019593752920627594,
-0.09541209042072296,
-0.01482272520661354,
-0.019862158223986626,
0.20433039963245392,
-0.04903774335980415,
0.09445250779390335,
0.04824381694197655,
0.0687403678894043,
-0.11312314122915268,
0.042453911155462265,
-0.08586576581001282,
-0.003125321352854371,
-0.2589240074157715,
0.003201593877747655,
-0.05075793340802193,
0.06354373693466187,
-0.07574477046728134,
-0.09607076644897461,
0.010008430108428001,
0.00013553355529438704,
0.10541719943284988,
0.05529331788420677,
-0.21949565410614014,
-0.06254645437002182,
0.13206259906291962,
-0.06781910359859467,
-0.09297342598438263,
0.09725458174943924,
-0.05339162424206734,
0.060048364102840424,
0.06889938563108444,
0.17431877553462982,
-0.03703908249735832,
-0.09809960424900055,
0.037348560988903046,
-0.009691916406154633,
0.052881091833114624,
-0.11489212512969971,
0.05023030564188957,
-0.018844440579414368,
0.008071638643741608,
0.0280381478369236,
-0.045157503336668015,
0.0679716169834137,
-0.1138598695397377,
-0.07756803929805756,
-0.07320626825094223,
-0.11297524720430374,
-0.007148972246795893,
0.07007110118865967,
0.0877976194024086,
-0.10309299826622009,
-0.06979306787252426,
0.16227370500564575,
0.07483029365539551,
-0.05439060553908348,
0.030721820890903473,
-0.04041954502463341,
0.05260515585541725,
-0.0756181925535202,
-0.03361994028091431,
-0.19585952162742615,
-0.04460158944129944,
0.0027123382315039635,
-0.008440051227807999,
0.06625987589359283,
0.02611253224313259,
0.08496890962123871,
0.06284527480602264,
-0.07508203387260437,
0.02354774996638298,
-0.08153936266899109,
-0.008644548244774342,
-0.13691814243793488,
-0.2167341411113739,
-0.03443394601345062,
-0.0027185746002942324,
0.05297970771789551,
-0.18749479949474335,
0.02280518040060997,
-0.04909147322177887,
0.0793462023139,
0.0037440278101712465,
-0.008103420957922935,
-0.07222610712051392,
0.08925525844097137,
-0.001257165684364736,
-0.0707908347249031,
0.04200338199734688,
-0.0145606379956007,
-0.05898332968354225,
-0.07883916050195694,
-0.06790996342897415,
0.1645125448703766,
0.14160437881946564,
-0.13887996971607208,
-0.07932604849338531,
0.0495242178440094,
-0.06744801253080368,
-0.03136685863137245,
-0.056606829166412354,
0.06527784466743469,
0.16561847925186157,
-0.02191213332116604,
0.13603483140468597,
-0.09788398444652557,
-0.04264819994568825,
0.00031247473089024425,
-0.0272806566208601,
0.0768660381436348,
0.07812104374170303,
0.19034607708454132,
-0.04766188561916351,
0.11058717221021652,
0.17624272406101227,
-0.17015215754508972,
0.10932314395904541,
-0.0705946758389473,
-0.09694600105285645,
-0.026041986420750618,
-0.02482888102531433,
-0.01689944416284561,
0.1658060997724533,
-0.05937061086297035,
0.019101876765489578,
0.0039076716639101505,
0.01841445080935955,
0.04715351015329361,
-0.25028666853904724,
-0.046599213033914566,
0.0025027140509337187,
-0.04073653742671013,
-0.015653546899557114,
-0.032243382185697556,
0.015772441402077675,
0.11070061475038528,
-0.03813844919204712,
-0.08300601691007614,
0.017133507877588272,
0.013611983507871628,
-0.05382312461733818,
0.2110276073217392,
-0.0730445459485054,
-0.029178915545344353,
-0.08539967238903046,
-0.018642334267497063,
-0.05890269577503204,
-0.026292745023965836,
0.03290070593357086,
-0.12297399342060089,
-0.026059657335281372,
-0.04570126533508301,
0.05104726552963257,
0.025595402345061302,
0.04714127629995346,
0.009513746947050095,
0.008311373181641102,
0.10077274590730667,
-0.13752983510494232,
0.020846860483288765,
-0.08453679829835892,
-0.09718279540538788,
0.016283610835671425,
0.08788519352674484,
0.11324126273393631,
0.17562603950500488,
-0.03682093322277069,
0.0033811030443757772,
-0.008186688646674156,
0.25807318091392517,
-0.05386132746934891,
-0.028939194977283478,
0.11478856950998306,
0.008777952753007412,
0.05025792866945267,
0.09441018849611282,
0.11033692955970764,
-0.11217180639505386,
-0.005147792398929596,
0.05738857761025429,
-0.04046563804149628,
-0.23415492475032806,
-0.017598431557416916,
-0.03227794170379639,
-0.09330136328935623,
0.06406443566083908,
0.039613790810108185,
0.018505709245800972,
0.05937065929174423,
0.06933456659317017,
0.12313579767942429,
-0.07243039458990097,
0.036008816212415695,
0.055796049535274506,
0.06284117698669434,
0.1117805540561676,
-0.058445390313863754,
-0.0682038813829422,
0.03633265569806099,
-0.020870821550488472,
0.2571769654750824,
-0.0054033310152590275,
0.10767953097820282,
0.06853780150413513,
0.18749944865703583,
-0.01857663504779339,
0.09689757972955704,
-0.009994730353355408,
-0.060147788375616074,
-0.007416982203722,
-0.05904216691851616,
0.03080608695745468,
0.011865371838212013,
-0.08949575573205948,
0.07416233420372009,
-0.07334032654762268,
-0.0009489498916082084,
0.06024354696273804,
0.25896480679512024,
0.0031083773355931044,
-0.307816743850708,
-0.035949379205703735,
-0.015309633687138557,
-0.010574132204055786,
-0.004671801812946796,
0.017122553661465645,
0.13429078459739685,
-0.027843300253152847,
0.011207576841115952,
-0.05530370771884918,
0.0877845361828804,
0.019328055903315544,
0.024207355454564095,
0.08872515708208084,
0.1898581087589264,
0.0017344345105811954,
0.05225002393126488,
-0.2961760461330414,
0.2872304320335388,
0.026721764355897903,
0.10670071840286255,
-0.04994478449225426,
-0.01142619363963604,
0.030020028352737427,
0.032209236174821854,
0.012047077529132366,
-0.019938962534070015,
-0.03060024045407772,
-0.15706007182598114,
-0.047584518790245056,
0.060320425778627396,
0.11935281753540039,
0.01657276414334774,
0.08011433482170105,
-0.005993659142404795,
0.01213197223842144,
0.10742827504873276,
-0.05550805479288101,
-0.13542023301124573,
-0.04115965962409973,
-0.06413093209266663,
0.030115796253085136,
-0.12253911048173904,
-0.06650834530591965,
-0.11741417646408081,
-0.10390111058950424,
0.1054474338889122,
0.05154222622513771,
-0.02445216476917267,
-0.11142277717590332,
0.12348559498786926,
0.11462362110614777,
-0.05169391632080078,
0.04464130103588104,
0.022150874137878418,
0.04250468313694,
0.045805495232343674,
-0.07561225444078445,
0.11862103641033173,
-0.053681183606386185,
-0.1388949453830719,
-0.042883846908807755,
0.05231486260890961,
0.03810775652527809,
0.054543666541576385,
-0.03405848890542984,
0.00781656801700592,
-0.015576181001961231,
-0.1056394875049591,
-0.0007105397526174784,
-0.052656978368759155,
0.039481356739997864,
0.012828764505684376,
-0.03971114754676819,
0.038530390709638596,
-0.03314972296357155,
-0.010558591224253178,
0.1271277368068695,
0.256432443857193,
-0.08283159881830215,
-0.028503086417913437,
0.03647038713097572,
-0.05806272104382515,
-0.16226132214069366,
0.10185566544532776,
0.07298541814088821,
-0.013195452280342579,
0.07487265765666962,
-0.1607915312051773,
0.17294886708259583,
0.13522033393383026,
-0.011896660551428795,
0.11882112920284271,
-0.33080896735191345,
-0.14795531332492828,
0.09280633926391602,
0.1947479248046875,
0.132212832570076,
-0.15681572258472443,
-0.0136356670409441,
-0.03334852680563927,
-0.09486649185419083,
0.11575285345315933,
-0.17677253484725952,
0.09630338102579117,
-0.01471772976219654,
0.1039850115776062,
-0.012610486708581448,
-0.060654640197753906,
0.12583373486995697,
0.019898874685168266,
0.13616815209388733,
-0.04409126192331314,
0.00926518626511097,
0.10131876170635223,
-0.019750192761421204,
0.010643836110830307,
-0.05738155171275139,
0.023812539875507355,
-0.0158876683562994,
-0.0010129929287359118,
-0.0870170071721077,
0.0343051515519619,
-0.03427690267562866,
-0.062466759234666824,
-0.04789964109659195,
0.0061013950034976006,
-0.0033217626623809338,
-0.03453787788748741,
0.12143480032682419,
0.06539136916399002,
0.13298605382442474,
0.08754684776067734,
0.01695709116756916,
-0.08136063069105148,
-0.08285148441791534,
0.022432604804635048,
-0.008732284419238567,
0.07723389565944672,
-0.20155753195285797,
-0.002366545144468546,
0.1202097237110138,
0.02891087904572487,
0.08761229366064072,
0.09065257757902145,
-0.054534438997507095,
0.009838118217885494,
0.07684631645679474,
-0.14706197381019592,
-0.10941309481859207,
0.019765838980674744,
-0.06663107126951218,
-0.0847710445523262,
0.06814903020858765,
0.06566057354211807,
-0.08852655440568924,
-0.0013001991901546717,
-0.0033563515171408653,
-0.025735579431056976,
-0.09765847027301788,
0.21631371974945068,
0.10639606416225433,
0.03416691720485687,
-0.11282848566770554,
0.10047025978565216,
0.05429006740450859,
-0.03165080025792122,
-0.010155832394957542,
0.07628442347049713,
-0.047027844935655594,
0.00865647941827774,
0.17769978940486908,
0.21178434789180756,
-0.07596958428621292,
-0.05308706685900688,
-0.1687886118888855,
-0.09358970820903778,
0.051760394126176834,
0.17669183015823364,
0.11346453428268433,
-0.028679395094513893,
-0.02895810641348362,
0.03312915563583374,
-0.1368120163679123,
0.06171620637178421,
0.015695391222834587,
0.08422582596540451,
-0.13143041729927063,
0.1565171331167221,
0.03401859477162361,
0.033835358917713165,
-0.02783968485891819,
0.06570178270339966,
-0.11606892198324203,
0.023877540603280067,
-0.15112535655498505,
-0.06252003461122513,
0.026504935696721077,
-0.007400623057037592,
0.004572881385684013,
-0.07107555121183395,
-0.08910015970468521,
0.034704312682151794,
-0.1453123241662979,
-0.02066080830991268,
0.05999274179339409,
0.026474105194211006,
-0.1394728124141693,
-0.019293826073408127,
0.00997885037213564,
-0.042002543807029724,
0.027723541483283043,
0.039599522948265076,
0.028774788603186607,
0.10206638276576996,
-0.18367254734039307,
-0.019094374030828476,
0.06572920083999634,
0.008296843618154526,
0.10245271027088165,
-0.013678468763828278,
-0.025221167132258415,
-0.015933653339743614,
0.14093679189682007,
-0.0029290642123669386,
0.05549304932355881,
-0.1310499906539917,
-0.0076386770233511925,
-0.0625334233045578,
-0.08047489821910858,
-0.043367885053157806,
-0.0014798438642174006,
0.07836657762527466,
0.03403826057910919,
0.17163890600204468,
-0.06382680684328079,
0.008360828272998333,
-0.23441681265830994,
-0.004817150998860598,
-0.016785873100161552,
-0.07488249242305756,
-0.11600622534751892,
-0.04413590952754021,
0.06599074602127075,
-0.0640958622097969,
0.13968528807163239,
0.04304580017924309,
0.05147050693631172,
0.03305719047784805,
0.010432448238134384,
-0.0037680056411772966,
0.028870735317468643,
0.2334132045507431,
0.024365954101085663,
-0.0007595524657517672,
0.06114327162504196,
0.07711078226566315,
0.1268046349287033,
0.08171338587999344,
0.23216675221920013,
0.15784205496311188,
-0.04800507053732872,
0.10832633823156357,
0.07131893932819366,
-0.07064581662416458,
-0.1082981526851654,
0.08864791691303253,
-0.027618397027254105,
0.08118965476751328,
-0.031271740794181824,
0.21668274700641632,
0.07060576230287552,
-0.15287858247756958,
0.03368894010782242,
-0.04414886236190796,
-0.09170181304216385,
-0.10485512018203735,
0.03059612214565277,
-0.07460404187440872,
-0.18954338133335114,
0.022648658603429794,
-0.10328837484121323,
0.015576517209410667,
0.15825508534908295,
0.0020880515221506357,
-0.004915211349725723,
0.18583182990550995,
0.05328572168946266,
0.04636937007308006,
0.022759338840842247,
-0.0022463721688836813,
-0.03673105686903,
-0.10063844174146652,
-0.07417498528957367,
-0.023384569212794304,
-0.011622832156717777,
0.026614075526595116,
-0.06362342089414597,
-0.09173190593719482,
0.041405338793992996,
-0.002774087944999337,
-0.08115927129983902,
0.02277657762169838,
0.020300542935729027,
0.07599572837352753,
0.006752433255314827,
-0.000298806291539222,
0.013595720753073692,
-0.032411281019449234,
0.209895059466362,
-0.0811772271990776,
-0.11646125465631485,
-0.07889449596405029,
0.2183241993188858,
0.01595669984817505,
-0.0139319421723485,
0.019078535959124565,
-0.08553322404623032,
-0.028601067140698433,
0.19946154952049255,
0.17053797841072083,
-0.13167531788349152,
-0.02553628385066986,
-0.014629322104156017,
-0.02522687427699566,
-0.09563563019037247,
0.15131889283657074,
0.1306096762418747,
0.024710625410079956,
-0.11621032655239105,
-0.04798495024442673,
-0.05754515901207924,
-0.0048261238262057304,
-0.057611510157585144,
0.037195853888988495,
0.05103114992380142,
0.001606440870091319,
-0.04091474041342735,
0.07019763439893723,
-0.04448595643043518,
-0.1144782081246376,
0.07437503337860107,
-0.164936825633049,
-0.18252573907375336,
-0.013359920121729374,
0.14788036048412323,
-0.029141627252101898,
0.060769520699977875,
-0.05679957568645477,
0.0028141813818365335,
0.04399579390883446,
-0.047813426703214645,
-0.10108248144388199,
-0.12665221095085144,
0.1174955740571022,
-0.1373620629310608,
0.21974918246269226,
-0.03307740017771721,
0.11748000234365463,
0.10922214388847351,
0.048264279961586,
-0.07873734831809998,
0.05709516629576683,
0.030039971694350243,
-0.12653197348117828,
-0.0063428920693695545,
0.09889998286962509,
-0.04218357801437378,
0.016983579844236374,
0.015525834634900093,
-0.10993625968694687,
0.012930494733154774,
-0.03442508354783058,
-0.036181237548589706,
-0.05891380086541176,
-0.08522707223892212,
-0.08515291661024094,
0.0907985270023346,
0.1974811851978302,
-0.01416746061295271,
0.044540856033563614,
-0.09167282283306122,
0.03979000076651573,
0.07346518337726593,
0.048924289643764496,
-0.07125673443078995,
-0.22477775812149048,
0.0307832770049572,
0.1035681813955307,
-0.06486334651708603,
-0.20153018832206726,
-0.07895741611719131,
0.03052533231675625,
-0.08309757709503174,
-0.088766910135746,
0.07334388792514801,
0.13375045359134674,
0.06617478281259537,
-0.04730962589383125,
-0.12931479513645172,
-0.1053672507405281,
0.13438032567501068,
-0.16640686988830566,
-0.09723149240016937
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6588
- Accuracy: 0.8431
- F1: 0.8900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 459 | 0.4186 | 0.8088 | 0.8561 |
| 0.5374 | 2.0 | 918 | 0.6474 | 0.8260 | 0.8846 |
| 0.3279 | 3.0 | 1377 | 0.6588 | 0.8431 | 0.8900 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-finetuned-mrpc", "results": []}]} | text-classification | jkassemi/bert-finetuned-mrpc | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:12:57+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-finetuned-mrpc
===================
This model is a fine-tuned version of bert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6588
* Accuracy: 0.8431
* F1: 0.8900
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
68,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.08784706890583038,
0.09854064881801605,
-0.002180995186790824,
0.10710368305444717,
0.1459856778383255,
0.026062412187457085,
0.15676608681678772,
0.11278686672449112,
-0.06757870316505432,
0.04500780254602432,
0.12540288269519806,
0.13166548311710358,
0.01072454359382391,
0.12056536972522736,
-0.06930390000343323,
-0.22546280920505524,
0.00968259759247303,
0.030395882204174995,
-0.05606561899185181,
0.11272161453962326,
0.09209991991519928,
-0.12360972911119461,
0.08954370021820068,
-0.00965090747922659,
-0.17715498805046082,
0.011384173296391964,
0.01643003523349762,
-0.05260106548666954,
0.13041602075099945,
0.03377378359436989,
0.13450442254543304,
0.021699663251638412,
0.0912192091345787,
-0.20598304271697998,
0.009327658452093601,
0.0596332922577858,
-0.008274935185909271,
0.08249013870954514,
0.033838145434856415,
0.01148607861250639,
0.08079615235328674,
-0.08049691468477249,
0.06659436225891113,
0.021426109597086906,
-0.11513278633356094,
-0.20140396058559418,
-0.07897982746362686,
0.04344768822193146,
0.08959586173295975,
0.07757115364074707,
-0.009917940013110638,
0.12063852697610855,
-0.0605650395154953,
0.08888109028339386,
0.2154252827167511,
-0.32016390562057495,
-0.06367744505405426,
0.05598358437418938,
0.03191289305686951,
0.08169584721326828,
-0.10496293008327484,
-0.02114243619143963,
0.06952544301748276,
0.025831906124949455,
0.12686540186405182,
-0.025351662188768387,
-0.07448071241378784,
0.009376945905387402,
-0.14947032928466797,
-0.016089508309960365,
0.15249048173427582,
0.05015463009476662,
-0.04251269996166229,
-0.05041833594441414,
-0.06301601976156235,
-0.15160760283470154,
-0.03748266026377678,
-0.021682539954781532,
0.051053255796432495,
-0.023016227409243584,
-0.06026227027177811,
-0.01304913405328989,
-0.10489886999130249,
-0.08030815422534943,
-0.06112303212285042,
0.14504945278167725,
0.04034522920846939,
0.002170637948438525,
-0.01338177639991045,
0.10156646370887756,
-0.03937438875436783,
-0.12792018055915833,
0.017170356586575508,
0.02206980623304844,
0.009720781818032265,
-0.057428035885095596,
-0.055146194994449615,
-0.06979946047067642,
0.025152064859867096,
0.15116198360919952,
-0.04371272772550583,
0.05002210661768913,
0.00550445169210434,
0.049320898950099945,
-0.09665580093860626,
0.16554786264896393,
-0.03708120435476303,
-0.024321820586919785,
0.014845838770270348,
0.07701557129621506,
0.041291214525699615,
-0.006719775497913361,
-0.12777332961559296,
0.029954761266708374,
0.10652703046798706,
0.017370251938700676,
-0.07284698635339737,
0.08063029497861862,
-0.048776011914014816,
-0.004315092694014311,
0.015522981062531471,
-0.0890207439661026,
0.03090294823050499,
0.007052732165902853,
-0.050130512565374374,
-0.060124363750219345,
0.032673850655555725,
0.019183935597538948,
0.004682681057602167,
0.11031529307365417,
-0.08810747414827347,
0.0077593144960701466,
-0.08934730291366577,
-0.12068915367126465,
0.022427421063184738,
-0.08494929224252701,
0.023076748475432396,
-0.11010047793388367,
-0.16450051963329315,
-0.007042560260742903,
0.05956846848130226,
-0.026910660788416862,
-0.029859643429517746,
-0.057588089257478714,
-0.07144882529973984,
0.016462039202451706,
-0.020171379670500755,
0.0834563747048378,
-0.06534043699502945,
0.09324058890342712,
0.03688966855406761,
0.06524515151977539,
-0.052097588777542114,
0.04029206931591034,
-0.09469887614250183,
0.024523558095097542,
-0.17380622029304504,
0.014363765716552734,
-0.07583048939704895,
0.05974489822983742,
-0.08168437331914902,
-0.0748717412352562,
-0.000004133073161938228,
0.011502368375658989,
0.0698215588927269,
0.08921420574188232,
-0.15864863991737366,
-0.06506296247243881,
0.16943803429603577,
-0.09310798346996307,
-0.14180180430412292,
0.12611471116542816,
-0.05584533140063286,
0.0555398166179657,
0.058942120522260666,
0.17853237688541412,
0.06003658100962639,
-0.09818615019321442,
-0.001463672611862421,
0.00351512199267745,
0.0649673342704773,
-0.03949715197086334,
0.06263992190361023,
-0.0007114754989743233,
-0.004425425548106432,
0.01934179849922657,
-0.05047314241528511,
0.04746171087026596,
-0.08000597357749939,
-0.08683177083730698,
-0.04224540293216705,
-0.1006363183259964,
0.05183641240000725,
0.05234555900096893,
0.06931693106889725,
-0.10680317133665085,
-0.08989600092172623,
0.07351760566234589,
0.07259003072977066,
-0.07594220340251923,
0.020570380613207817,
-0.06959051638841629,
0.08437129110097885,
-0.05869279429316521,
-0.015760404989123344,
-0.15344549715518951,
-0.052877094596624374,
0.019241947680711746,
-0.009022126905620098,
0.01588904857635498,
0.005483023356646299,
0.06901285797357559,
0.07649989426136017,
-0.0692303329706192,
-0.02178577519953251,
-0.018453283235430717,
0.018268192186951637,
-0.1275283843278885,
-0.20761486887931824,
-0.01818098872900009,
-0.03313454985618591,
0.12553946673870087,
-0.2320229560136795,
0.05334978178143501,
0.0015627035172656178,
0.08556271344423294,
0.0334836021065712,
-0.007331916596740484,
-0.04744335636496544,
0.07365252822637558,
-0.046356167644262314,
-0.05583057925105095,
0.06213143467903137,
0.008903753012418747,
-0.09079267084598541,
-0.04462011530995369,
-0.14040446281433105,
0.18745721876621246,
0.13632455468177795,
-0.09229017049074173,
-0.08125054836273193,
-0.009812762960791588,
-0.042814139276742935,
-0.02961130440235138,
-0.04777850583195686,
0.0037359350826591253,
0.1420140564441681,
-0.015429330058395863,
0.15229226648807526,
-0.08171392977237701,
-0.03674234822392464,
0.024365754798054695,
-0.043074604123830795,
0.008340016007423401,
0.10350672155618668,
0.12290824949741364,
-0.10805269330739975,
0.15306469798088074,
0.17741811275482178,
-0.10082761198282242,
0.13578543066978455,
-0.042520347982645035,
-0.05775783210992813,
-0.01913689635694027,
0.003000677563250065,
0.007301853969693184,
0.11340462416410446,
-0.14293402433395386,
-0.0036246345844119787,
0.006194054149091244,
0.015818729996681213,
0.019278936088085175,
-0.21875597536563873,
-0.026550384238362312,
0.03555465117096901,
-0.04854128882288933,
0.003780728904530406,
-0.023016851395368576,
-0.011941148899495602,
0.09795024245977402,
-0.000955864554271102,
-0.0879167690873146,
0.044501569122076035,
-0.00456590298563242,
-0.08777938783168793,
0.21000422537326813,
-0.08334633708000183,
-0.1268967241048813,
-0.13366974890232086,
-0.07629481703042984,
-0.04460952430963516,
0.021304309368133545,
0.06789945811033249,
-0.07641426473855972,
-0.04279889538884163,
-0.10368161648511887,
0.0007034260779619217,
0.03405991941690445,
0.03323831409215927,
0.020683247596025467,
0.0026418177876621485,
0.07858757674694061,
-0.1058635413646698,
-0.010934681631624699,
-0.05066525936126709,
-0.06603868305683136,
0.027612434700131416,
0.027826346457004547,
0.11436406522989273,
0.14804977178573608,
-0.02347536012530327,
-0.001166541245765984,
-0.03355177119374275,
0.2164597511291504,
-0.05641183257102966,
-0.02470024675130844,
0.11726337671279907,
-0.03465045988559723,
0.045651718974113464,
0.13786250352859497,
0.06868081539869308,
-0.09390172362327576,
0.019322365522384644,
0.04037674516439438,
-0.027211135253310204,
-0.2203081101179123,
-0.03570649400353432,
-0.038141414523124695,
0.010138430632650852,
0.0996047779917717,
0.03582726791501045,
0.029619572684168816,
0.06531946361064911,
0.032747216522693634,
0.07914955914020538,
-0.011533704586327076,
0.07540366798639297,
0.11783389002084732,
0.03788912668824196,
0.12584663927555084,
-0.0453619509935379,
-0.0528888925909996,
0.0362396240234375,
0.0019377059070393443,
0.20833559334278107,
0.027920709922909737,
0.13269035518169403,
0.06090443208813667,
0.15306688845157623,
0.0012295349733904004,
0.06770297139883041,
-0.015733802691102028,
-0.04564974084496498,
-0.011627312749624252,
-0.050178252160549164,
-0.024074124172329903,
0.041434396058321,
-0.09369906783103943,
0.05600614473223686,
-0.11192669719457626,
0.006891124881803989,
0.060398999601602554,
0.24043892323970795,
0.04818163067102432,
-0.31544971466064453,
-0.08775714039802551,
0.022760652005672455,
-0.029636941850185394,
-0.01961061730980873,
0.03464866802096367,
0.12241196632385254,
-0.05144115164875984,
0.03128226101398468,
-0.0701458528637886,
0.08105672150850296,
-0.038328222930431366,
0.04634176194667816,
0.0720197856426239,
0.08507365733385086,
-0.007998705841600895,
0.0702240914106369,
-0.2738392949104309,
0.27387735247612,
0.01180936023592949,
0.07148294895887375,
-0.05126172676682472,
0.0022003157064318657,
0.033665310591459274,
0.08999782800674438,
0.07487272471189499,
-0.024151187390089035,
-0.058134522289037704,
-0.19365152716636658,
-0.056268978863954544,
0.030445117503404617,
0.09492897987365723,
-0.03173808380961418,
0.09736520051956177,
-0.035778578370809555,
0.0028679275419563055,
0.08979655802249908,
-0.00794987753033638,
-0.08217638731002808,
-0.09968932718038559,
-0.012669475749135017,
0.03633168712258339,
-0.02778671495616436,
-0.08012011647224426,
-0.10524418205022812,
-0.13881704211235046,
0.16451598703861237,
-0.06597744673490524,
-0.022359110414981842,
-0.09523233771324158,
0.06235920637845993,
0.04988442361354828,
-0.07530300319194794,
0.05102472007274628,
0.009079903364181519,
0.08771048486232758,
0.021977100521326065,
-0.06286696344614029,
0.12620186805725098,
-0.07611902803182602,
-0.17189820110797882,
-0.07845363765954971,
0.09566009044647217,
0.02220688946545124,
0.04535563290119171,
-0.0013234420912340283,
0.003893834538757801,
-0.011319926008582115,
-0.08134318888187408,
0.02098134346306324,
0.006355741526931524,
0.06352665275335312,
0.013693188317120075,
-0.08535373955965042,
-0.010446849279105663,
-0.052324987947940826,
-0.03597188740968704,
0.16543513536453247,
0.2695823311805725,
-0.0917055755853653,
0.005491383373737335,
0.06413812935352325,
-0.07365250587463379,
-0.21007482707500458,
0.03590619936585426,
0.0359189510345459,
-0.0001339161244686693,
0.04045072942972183,
-0.14833605289459229,
0.11990655213594437,
0.10493720322847366,
-0.02684585005044937,
0.10595321655273438,
-0.2803758680820465,
-0.13523641228675842,
0.13860860466957092,
0.15376923978328705,
0.11547115445137024,
-0.1591225564479828,
-0.034561771899461746,
-0.03140045702457428,
-0.11268316209316254,
0.11255669593811035,
-0.12468350678682327,
0.11358307301998138,
-0.009240292012691498,
0.052687350660562515,
0.00182241084985435,
-0.057536568492650986,
0.12352989614009857,
-0.006202005781233311,
0.10888464748859406,
-0.06189519539475441,
-0.029632775112986565,
0.03816146403551102,
-0.054308682680130005,
0.02103395015001297,
-0.11161500960588455,
0.030070068314671516,
-0.05214017629623413,
-0.03178755193948746,
-0.04417014867067337,
0.03568408265709877,
-0.039044152945280075,
-0.06498855352401733,
-0.038199711591005325,
0.025324374437332153,
0.04046434909105301,
-0.012956884689629078,
0.15261416137218475,
0.0092058926820755,
0.15794405341148376,
0.14096397161483765,
0.0820474848151207,
-0.06858061999082565,
-0.026038864627480507,
-0.0038312075193971395,
-0.03986632823944092,
0.06692898273468018,
-0.15274237096309662,
0.03790406137704849,
0.12128718942403793,
0.009253991767764091,
0.15266329050064087,
0.07919330149888992,
-0.027083229273557663,
0.00951102003455162,
0.06873718649148941,
-0.1596478968858719,
-0.09210033714771271,
-0.0011119542177766562,
-0.03423856943845749,
-0.12284631282091141,
0.06944715976715088,
0.11589077860116959,
-0.07377795875072479,
0.00872659869492054,
-0.004956341814249754,
0.01313336193561554,
-0.04190608859062195,
0.17556890845298767,
0.0642353817820549,
0.046817369759082794,
-0.07582981884479523,
0.08123798668384552,
0.042773958295583725,
-0.07035970687866211,
0.016446765512228012,
0.03909597545862198,
-0.08515702188014984,
-0.047083158046007156,
0.05252785608172417,
0.19622673094272614,
-0.029885543510317802,
-0.05519695207476616,
-0.14341279864311218,
-0.11735847592353821,
0.05858684331178665,
0.19517609477043152,
0.10166957229375839,
0.010998348705470562,
-0.03769512102007866,
0.023995790630578995,
-0.1129431501030922,
0.1112772598862648,
0.025422338396310806,
0.08443386852741241,
-0.1519159972667694,
0.11625414341688156,
0.002050486858934164,
0.004356494173407555,
-0.026148971170186996,
0.04886779189109802,
-0.12804703414440155,
-0.00851762481033802,
-0.13144172728061676,
-0.007702352479100227,
-0.02362530678510666,
0.008853042498230934,
0.009895477443933487,
-0.05552205815911293,
-0.06332246959209442,
0.012375274673104286,
-0.10000992566347122,
-0.016677942126989365,
0.04045220836997032,
0.06322957575321198,
-0.12476041913032532,
-0.035320866852998734,
0.023706620559096336,
-0.0686274841427803,
0.06661257147789001,
0.019929826259613037,
0.023931587114930153,
0.057273589074611664,
-0.1914469599723816,
0.03139811381697655,
0.06840888410806656,
0.012458271346986294,
0.045276742428541183,
-0.08565260469913483,
-0.01450047455728054,
-0.004776981193572283,
0.04454382508993149,
0.023267248645424843,
0.08853965997695923,
-0.1272834986448288,
0.006155775859951973,
-0.026950370520353317,
-0.06262610852718353,
-0.05057889595627785,
0.022160517051815987,
0.0909571424126625,
-0.000739782175514847,
0.19927935302257538,
-0.09838563948869705,
0.015772759914398193,
-0.20067960023880005,
0.011534408666193485,
0.0025365555193275213,
-0.10693364590406418,
-0.11763781309127808,
-0.058391980826854706,
0.04487045109272003,
-0.06232756748795509,
0.1562865674495697,
0.012044238857924938,
0.017469290643930435,
0.03631611540913582,
-0.042677972465753555,
0.032479509711265564,
0.029980354011058807,
0.2262481302022934,
0.03252559155225754,
-0.03764268010854721,
0.012609140016138554,
0.033762432634830475,
0.11018592864274979,
0.06950598955154419,
0.17490528523921967,
0.15779747068881989,
-0.053786199539899826,
0.10368037968873978,
0.05141952633857727,
-0.06210796907544136,
-0.13497699797153473,
0.06912524253129959,
-0.041763756424188614,
0.10464689880609512,
-0.026443593204021454,
0.2084696888923645,
0.08908694982528687,
-0.1574050784111023,
0.011032512411475182,
-0.0554787740111351,
-0.08135665208101273,
-0.11721386015415192,
-0.04895228520035744,
-0.0967409536242485,
-0.15482670068740845,
0.004220207687467337,
-0.11404313147068024,
0.005042367614805698,
0.09325700998306274,
0.0071156928315758705,
-0.011108960025012493,
0.16714626550674438,
-0.00021217617904767394,
0.038366105407476425,
0.057336192578077316,
0.004119986202567816,
-0.040231719613075256,
-0.10491413623094559,
-0.08620774000883102,
-0.0026054701302200556,
-0.018482476472854614,
0.019502811133861542,
-0.0501590222120285,
-0.024963416159152985,
0.041447024792432785,
-0.004350895062088966,
-0.09778602421283722,
0.010941855609416962,
0.021377641707658768,
0.048864830285310745,
0.04735296219587326,
0.0028820240404456854,
0.009160189889371395,
0.0026661858428269625,
0.20841935276985168,
-0.07736453413963318,
-0.06141385808587074,
-0.10219874233007431,
0.2167302966117859,
0.029899707064032555,
0.020036114379763603,
0.010054354555904865,
-0.08788568526506424,
0.023396361619234085,
0.2304612696170807,
0.1873718649148941,
-0.076533243060112,
0.002993532456457615,
0.004975681658834219,
-0.010587796568870544,
-0.03613898903131485,
0.09508751332759857,
0.11874973028898239,
0.027118273079395294,
-0.0742836445569992,
-0.052736490964889526,
-0.028026960790157318,
-0.0031147326808422804,
-0.03781287372112274,
0.05283176898956299,
0.03976277634501457,
0.010273619554936886,
-0.05167236924171448,
0.04885568842291832,
-0.03585229441523552,
-0.105279840528965,
0.058369528502225876,
-0.1972789168357849,
-0.1491396427154541,
-0.00945128221064806,
0.1225917637348175,
-0.01967017725110054,
0.04810929670929909,
-0.03054877556860447,
-0.008123121224343777,
0.07736877351999283,
-0.02671702951192856,
-0.07002393156290054,
-0.0762985497713089,
0.05781273543834686,
-0.08946159482002258,
0.2406395822763443,
-0.036357566714286804,
0.05196317657828331,
0.12936118245124817,
0.04485693201422691,
-0.06572716683149338,
0.08007389307022095,
0.04522661492228508,
-0.0788445919752121,
0.024793948978185654,
0.06959312409162521,
-0.04656413942575455,
0.12502193450927734,
0.05187874287366867,
-0.13550692796707153,
0.02046302519738674,
-0.05834845080971718,
-0.09606100618839264,
-0.05282845348119736,
-0.03366868197917938,
-0.06311556696891785,
0.1371687799692154,
0.19172720611095428,
-0.03142043203115463,
0.0014235337730497122,
-0.04675306752324104,
0.030926240608096123,
0.06285416334867477,
0.03805198147892952,
-0.0333375409245491,
-0.23248213529586792,
0.03177370876073837,
0.07370245456695557,
-0.006283860187977552,
-0.28043732047080994,
-0.09040767699480057,
0.00473445700481534,
-0.04613685607910156,
-0.10296913981437683,
0.07453091442584991,
0.12427075207233429,
0.055061932653188705,
-0.06662919372320175,
-0.10585347563028336,
-0.0719713345170021,
0.14991328120231628,
-0.13421927392482758,
-0.10250948369503021
] |
null | null | transformers |
# Uploaded model
- **Developed by:** RJuro
- **License:** apache-2.0
- **Finetuned from model :** RJuro/munin-neuralbeagle-7b
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "RJuro/munin-neuralbeagle-7b"} | null | RJuro/munin-neuralbeagle-OpenOrca22k-7b | [
"transformers",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:RJuro/munin-neuralbeagle-7b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:14:10+00:00 | [] | [
"en"
] | TAGS
#transformers #text-generation-inference #unsloth #mistral #trl #en #base_model-RJuro/munin-neuralbeagle-7b #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: RJuro
- License: apache-2.0
- Finetuned from model : RJuro/munin-neuralbeagle-7b
This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #text-generation-inference #unsloth #mistral #trl #en #base_model-RJuro/munin-neuralbeagle-7b #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
64,
80
] | [
"passage: TAGS\n#transformers #text-generation-inference #unsloth #mistral #trl #en #base_model-RJuro/munin-neuralbeagle-7b #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
-0.0320153571665287,
0.10587725788354874,
-0.0026043104007840157,
0.07062403857707977,
0.07703358680009842,
0.03397635370492935,
0.06459429860115051,
0.13679319620132446,
-0.009770269505679607,
-0.028102070093154907,
0.1115041971206665,
0.16502279043197632,
0.007038287352770567,
-0.028256623074412346,
-0.017787206918001175,
-0.24102355539798737,
0.1022178903222084,
-0.034857332706451416,
-0.07187122851610184,
0.06487009674310684,
0.06331852823495865,
0.0053018140606582165,
0.07496526092290878,
-0.03637455031275749,
-0.13018736243247986,
0.00966084934771061,
-0.019048815593123436,
-0.02647683396935463,
0.02398117072880268,
0.06253356486558914,
-0.011958864517509937,
0.0477198027074337,
0.06954901665449142,
-0.09419743716716766,
0.047121770679950714,
0.07024163007736206,
0.0037680582609027624,
0.12317001819610596,
-0.002616453915834427,
0.05095607042312622,
0.17432847619056702,
-0.018299203366041183,
-0.05742361769080162,
0.0647040605545044,
-0.0491621159017086,
-0.1265844851732254,
-0.04134834185242653,
0.12958776950836182,
0.003657388500869274,
0.06603553146123886,
0.01770642213523388,
0.11691919714212418,
-0.057531896978616714,
0.06821480393409729,
0.2133798450231552,
-0.24211205542087555,
-0.06002799794077873,
0.13818271458148956,
0.009565263986587524,
0.02316565439105034,
-0.043535374104976654,
0.003037563990801573,
0.06263735145330429,
-0.007429621648043394,
0.013839254155755043,
-0.04855520278215408,
-0.08217617869377136,
0.03591924160718918,
-0.1070866510272026,
0.008335201069712639,
0.1602940708398819,
0.08518810570240021,
-0.028792589902877808,
0.07142852246761322,
-0.17842519283294678,
0.09525751322507858,
-0.06730914860963821,
0.03902186080813408,
0.01835840567946434,
0.06435160338878632,
-0.03131037950515747,
-0.09398815035820007,
-0.024532586336135864,
-0.06937406212091446,
-0.08601715415716171,
0.13952071964740753,
0.07120702415704727,
0.1056661382317543,
-0.0393194817006588,
0.06317167729139328,
-0.021840475499629974,
-0.1255473643541336,
-0.04687454178929329,
-0.08719787001609802,
0.042006269097328186,
0.06085719168186188,
-0.06318242102861404,
-0.016620952636003494,
0.09547559171915054,
0.18367476761341095,
0.10967645049095154,
0.017244119197130203,
0.05361715704202652,
0.05623067542910576,
-0.07318158447742462,
0.0779014527797699,
-0.18955591320991516,
-0.025623029097914696,
0.1526654213666916,
0.005135059356689453,
0.025051956996321678,
-0.008167857304215431,
-0.082811638712883,
-0.07539147138595581,
-0.026366010308265686,
-0.0005243243649601936,
0.019715148955583572,
0.1323796808719635,
0.03717702627182007,
-0.08625993132591248,
0.12249810993671417,
-0.046597838401794434,
-0.04860705882310867,
0.03231819346547127,
-0.10521341860294342,
0.15894904732704163,
0.1078711450099945,
-0.03019178844988346,
-0.046442434191703796,
-0.07789754867553711,
-0.042006999254226685,
0.018975168466567993,
-0.05690605565905571,
-0.07236459851264954,
0.03680769354104996,
0.011490794830024242,
0.0175823625177145,
-0.13999244570732117,
-0.25990813970565796,
0.0022610274609178305,
0.1304354965686798,
-0.04625852033495903,
-0.0400652177631855,
-0.06501501798629761,
-0.07102926075458527,
0.03803326189517975,
-0.040888238698244095,
-0.02471468783915043,
-0.07012119144201279,
0.03997432067990303,
-0.06483662873506546,
0.08756614476442337,
-0.16019846498966217,
0.04190158098936081,
-0.08946443349123001,
-0.00040937517769634724,
-0.09518930315971375,
0.10573631525039673,
-0.06863748282194138,
0.13902215659618378,
-0.1304120570421219,
-0.00980320479720831,
-0.0705999806523323,
-0.012332901358604431,
0.04099258780479431,
0.1400645524263382,
-0.16471146047115326,
-0.0034025870263576508,
0.14274226129055023,
-0.014711830765008926,
-0.06443485617637634,
0.1607617735862732,
-0.029823409393429756,
0.07996834069490433,
0.08411706238985062,
0.13053388893604279,
0.11342834681272507,
-0.07606896758079529,
0.07918784767389297,
0.08754364401102066,
-0.08944447338581085,
-0.07594821602106094,
0.07381526380777359,
0.08321558684110641,
-0.15284870564937592,
0.08948753029108047,
-0.054310429841279984,
0.13549993932247162,
-0.0065252529457211494,
-0.03338285908102989,
-0.11642337590456009,
-0.07444141060113907,
-0.0015099139418452978,
0.002027452690526843,
0.034804027527570724,
0.000453139073215425,
-0.04494326561689377,
0.019949715584516525,
0.16886810958385468,
-0.08374341577291489,
0.010896831750869751,
-0.028716405853629112,
-0.005365247372537851,
-0.109599269926548,
0.09729021787643433,
-0.10077247768640518,
0.022581325843930244,
-0.00964715052396059,
-0.01835341565310955,
0.13285870850086212,
0.11098960787057877,
0.06530816853046417,
-0.027502059936523438,
-0.005735901650041342,
-0.009996918961405754,
0.06711413711309433,
-0.0179855078458786,
-0.018907779827713966,
-0.109989233314991,
0.034143928438425064,
-0.029266299679875374,
0.08660896122455597,
-0.0816648080945015,
0.06089119613170624,
-0.13897699117660522,
0.08890348672866821,
-0.03298081085085869,
0.07355377823114395,
0.052365150302648544,
-0.1314222514629364,
-0.01420675404369831,
-0.08907453715801239,
0.09022045880556107,
0.0490264818072319,
-0.04332589730620384,
0.12856963276863098,
-0.008265042677521706,
0.07666440308094025,
0.12451981008052826,
0.01687971130013466,
0.04516516625881195,
0.1058545783162117,
-0.0582587830722332,
0.0014084462309256196,
0.029124801978468895,
0.046949129551649094,
0.04747524857521057,
0.01821872591972351,
0.12577925622463226,
-0.1031356230378151,
-0.03211464732885361,
0.01054362952709198,
-0.07707906514406204,
0.050178010016679764,
0.06725485622882843,
0.07674647122621536,
-0.24713674187660217,
0.038762547075748444,
0.1607130616903305,
-0.10507555305957794,
0.12207160145044327,
-0.007442902773618698,
-0.07875082641839981,
0.007032908499240875,
0.002222874201834202,
-0.005274185445159674,
0.0020465985871851444,
-0.013417110778391361,
0.04256497696042061,
0.05495327711105347,
-0.00911333505064249,
0.058406051248311996,
-0.10885192453861237,
0.0031009672675281763,
-0.033627431839704514,
-0.05980531498789787,
-0.03776458278298378,
0.08151648193597794,
-0.03200439363718033,
0.07378224283456802,
-0.04194111377000809,
-0.08903568238019943,
0.015052402392029762,
0.011360176838934422,
-0.04689117148518562,
0.14416028559207916,
-0.07750042527914047,
-0.11880985647439957,
-0.16442008316516876,
-0.043777983635663986,
-0.11953631043434143,
-0.002922114683315158,
0.05997789278626442,
-0.07151279598474503,
-0.07702410221099854,
-0.07660552859306335,
0.017696168273687363,
0.0507124699652195,
0.02237415872514248,
0.03654882684350014,
0.056777823716402054,
0.06628807634115219,
-0.10713336616754532,
0.012784171849489212,
-0.02661946415901184,
-0.040678299963474274,
-0.006237364839762449,
-0.13291369378566742,
0.0834091454744339,
0.15072870254516602,
-0.014368990436196327,
-0.00445803627371788,
0.07330325245857239,
0.19867099821567535,
0.02662534825503826,
0.0633649230003357,
0.1555609256029129,
0.020676087588071823,
0.06127318739891052,
0.15743745863437653,
-0.009424468502402306,
-0.04736388847231865,
0.0372239351272583,
-0.011153021827340126,
-0.01975131593644619,
-0.24427802860736847,
-0.012479769997298717,
-0.0955732986330986,
0.058846455067396164,
0.10337326675653458,
0.07003092765808105,
0.007912322878837585,
0.12855222821235657,
-0.07286117225885391,
0.09691145271062851,
0.05266013741493225,
0.09995641559362411,
0.09114254266023636,
0.03551115095615387,
0.06406445056200027,
-0.1321093589067459,
-0.02726108394563198,
0.11114833503961563,
0.08037783950567245,
0.15852785110473633,
-0.03508831933140755,
0.10178530216217041,
0.03519926965236664,
0.15468139946460724,
0.051625557243824005,
0.11455027759075165,
-0.030860552564263344,
-0.00758433248847723,
-0.09551404416561127,
-0.03859489783644676,
-0.07386360317468643,
0.051249176263809204,
-0.09994427859783173,
-0.007007872685790062,
0.03102768026292324,
0.10551648586988449,
0.07231295108795166,
0.18569689989089966,
0.0516212098300457,
-0.28732386231422424,
-0.0940660610795021,
0.04019363597035408,
0.007822444662451744,
-0.014009365811944008,
0.07387586683034897,
0.037977587431669235,
0.0027963833417743444,
0.03086051344871521,
-0.06607089191675186,
0.1502063125371933,
0.040851980447769165,
0.029179537668824196,
0.0037483915220946074,
0.18406984210014343,
0.050098538398742676,
0.1126653179526329,
-0.1262318640947342,
0.07886267453432083,
-0.0006287464639171958,
0.03212564066052437,
-0.01631956361234188,
-0.03585167974233627,
0.13678298890590668,
0.15134692192077637,
0.05329744517803192,
0.0007189026800915599,
-0.149833545088768,
0.03010447695851326,
-0.13844184577465057,
0.05776512250304222,
-0.005655062850564718,
0.042445115745067596,
0.07069620490074158,
-0.09683960676193237,
-0.05557708442211151,
0.019873207435011864,
0.10125741362571716,
-0.12857697904109955,
-0.12014657258987427,
-0.02642907202243805,
0.09179259836673737,
-0.048341333866119385,
-0.02472531981766224,
0.007177299819886684,
-0.03726239129900932,
0.15568356215953827,
0.11763229966163635,
-0.011953121982514858,
-0.10115549713373184,
0.04656998813152313,
0.14072971045970917,
-0.11331693828105927,
-0.027194399386644363,
-0.10606911033391953,
0.04304639995098114,
0.02096887119114399,
-0.24320316314697266,
0.05999205633997917,
-0.10520830005407333,
-0.006468900945037603,
-0.00775828305631876,
0.012237023562192917,
-0.07318790256977081,
0.01941099762916565,
0.022710997611284256,
-0.04849880933761597,
-0.10337348282337189,
-0.10885410010814667,
-0.0755995512008667,
0.11841347068548203,
-0.06841389834880829,
-0.00009704924741527066,
-0.11808909475803375,
-0.05416175350546837,
-0.05093672126531601,
0.05171414464712143,
0.07426312565803528,
0.14215834438800812,
-0.0460977628827095,
0.06853751838207245,
0.20511268079280853,
-0.032514538615942,
-0.28138524293899536,
-0.09102851897478104,
-0.04079695791006088,
-0.039874233305454254,
-0.08963266015052795,
-0.07431773841381073,
0.1351124495267868,
0.04461340606212616,
-0.010502257384359837,
0.01820053905248642,
-0.23621056973934174,
-0.08917644619941711,
0.11210650205612183,
0.05776822939515114,
0.3404550552368164,
-0.09027159959077835,
-0.03407542407512665,
-0.14133337140083313,
-0.26254358887672424,
0.10227601230144501,
-0.24820518493652344,
0.12726914882659912,
-0.03023301251232624,
0.062356382608413696,
-0.016303222626447678,
-0.0336202010512352,
0.07164353132247925,
0.018395692110061646,
0.07017195224761963,
-0.07879042625427246,
0.08551542460918427,
0.1098513975739479,
-0.07454473525285721,
0.2000419944524765,
-0.07253570854663849,
0.11359212547540665,
-0.014780424535274506,
-0.034766294062137604,
-0.054704420268535614,
-0.019576314836740494,
0.038481082767248154,
-0.02331637777388096,
-0.07480833679437637,
0.006345987319946289,
0.11183804273605347,
0.025512052699923515,
0.14757388830184937,
0.04875071719288826,
-0.05474657565355301,
0.12162511050701141,
-0.04418449476361275,
-0.11840760707855225,
0.038778893649578094,
-0.05227212980389595,
-0.01672646962106228,
0.08678516000509262,
-0.2740897238254547,
0.05220687761902809,
0.06599082797765732,
-0.056738536804914474,
0.07064297795295715,
0.027287214994430542,
0.008011938072741032,
-0.02399536967277527,
0.021808864548802376,
-0.10370207577943802,
-0.10633362084627151,
-0.02490008808672428,
0.05531959980726242,
-0.028249012306332588,
0.09473555535078049,
0.1495758444070816,
-0.10872805863618851,
-0.01510803122073412,
0.011704817414283752,
-0.005725916475057602,
-0.062334880232810974,
0.07111209630966187,
0.09209124743938446,
-0.005923131946474314,
-0.11949799209833145,
0.14272169768810272,
-0.004044259432703257,
-0.00552057009190321,
-0.03688768669962883,
0.09338290244340897,
-0.16595205664634705,
-0.08827143162488937,
0.04651063680648804,
0.11670286953449249,
-0.16892525553703308,
-0.017468800768256187,
-0.12073802947998047,
-0.017933538183569908,
0.06753403693437576,
0.012611499056220055,
0.06795398890972137,
-0.011546710506081581,
-0.07571160048246384,
-0.03984034061431885,
-0.06927983462810516,
0.0567425899207592,
0.05316611006855965,
0.0332888700067997,
-0.1295684278011322,
-0.062460705637931824,
-0.0226498544216156,
0.05345401167869568,
-0.05711899697780609,
0.017433617264032364,
-0.10242905467748642,
-0.006983916275203228,
-0.2552816867828369,
0.050951264798641205,
-0.058505844324827194,
0.037167537957429886,
-0.00732381921261549,
-0.046456608921289444,
-0.07937082648277283,
0.06345236301422119,
-0.1100127249956131,
-0.045685745775699615,
-0.027887679636478424,
0.01510772667825222,
-0.06647361814975739,
-0.034472547471523285,
0.00854625552892685,
-0.05700577795505524,
0.02868840843439102,
0.10187844932079315,
-0.10062941908836365,
0.056989941745996475,
-0.16499391198158264,
-0.14319506287574768,
0.034752149134874344,
0.05233752354979515,
0.03211718797683716,
0.01623368076980114,
0.04277762770652771,
0.033808786422014236,
0.054774072021245956,
-0.06401631981134415,
-0.006395510397851467,
-0.04015140235424042,
-0.048404984176158905,
-0.12167155742645264,
-0.01075841300189495,
-0.08239706605672836,
-0.04388270527124405,
0.030341776087880135,
0.12356835603713989,
0.18013262748718262,
-0.04615892097353935,
0.005757985170930624,
-0.14842525124549866,
-0.012875336222350597,
0.04203782230615616,
-0.14668168127536774,
-0.11966307461261749,
-0.09302474558353424,
0.014151128940284252,
-0.005571429617702961,
0.07898928970098495,
-0.029062682762742043,
-0.06714964658021927,
-0.018110206350684166,
0.039097439497709274,
-0.047272343188524246,
-0.04257768392562866,
0.2387150377035141,
0.06310638785362244,
0.03472522646188736,
-0.02062927931547165,
0.02004833333194256,
0.12326665967702866,
0.07736332714557648,
0.05046577379107475,
0.11306248605251312,
0.1176978349685669,
0.15794020891189575,
0.011316104792058468,
0.10465512424707413,
0.02614522911608219,
0.18154320120811462,
0.001882105483673513,
0.07042206823825836,
-0.021668333560228348,
0.1032167598605156,
0.22727440297603607,
-0.048612747341394424,
0.00036144559271633625,
-0.019025398418307304,
-0.028529692441225052,
-0.15235815942287445,
-0.18693172931671143,
-0.13729412853717804,
-0.23701071739196777,
0.02704928070306778,
-0.08163503557443619,
0.014321258291602135,
0.017042234539985657,
0.023987365886569023,
0.02833818830549717,
0.0007010292611084878,
0.007490610703825951,
-0.08580324798822403,
0.048825353384017944,
-0.055503323674201965,
-0.11986076831817627,
0.09277846664190292,
-0.009078454226255417,
0.0873870849609375,
-0.029207546263933182,
0.036660920828580856,
0.01759975403547287,
0.0929238498210907,
0.06581348180770874,
-0.07937314361333847,
-0.07285437732934952,
-0.04084346443414688,
0.07762960344552994,
0.006303345784544945,
0.07753100246191025,
0.07017152011394501,
-0.057394061237573624,
0.039519134908914566,
0.20137783885002136,
-0.06833171844482422,
-0.15585505962371826,
-0.1828533113002777,
0.06532309204339981,
-0.013386810198426247,
0.04382584989070892,
-0.009076541289687157,
-0.031110821291804314,
-0.027347559109330177,
0.25028958916664124,
0.15341781079769135,
-0.11895739287137985,
-0.04605842009186745,
0.0013139331713318825,
0.0013743196614086628,
-0.047474123537540436,
0.12969203293323517,
0.14610344171524048,
0.007923734374344349,
-0.0517602264881134,
-0.09307911247015,
-0.0016456878511235118,
-0.04608389362692833,
-0.079752117395401,
-0.001983977621421218,
-0.07372449338436127,
-0.04526766762137413,
-0.022932086139917374,
0.033587850630283356,
-0.1460479199886322,
-0.08066084235906601,
-0.08655820786952972,
0.00857151485979557,
-0.0411175899207592,
-0.10741770267486572,
0.03270167484879494,
0.06912782788276672,
0.049072373658418655,
-0.10978417843580246,
0.03957526385784149,
0.1865181028842926,
-0.06585334986448288,
-0.1629108190536499,
-0.038712937384843826,
0.04687420278787613,
0.03380121663212776,
0.10963690280914307,
0.021734382957220078,
0.0038917369674891233,
0.08154205977916718,
-0.0578988641500473,
-0.17924048006534576,
0.05713210999965668,
-0.04518692567944527,
-0.04373371973633766,
0.01918632723391056,
0.056454580277204514,
-0.06308920681476593,
0.011860515922307968,
0.048006169497966766,
-0.05012964829802513,
-0.036129891872406006,
0.046353425830602646,
-0.01498124748468399,
-0.09666979312896729,
0.01949908584356308,
-0.06827352195978165,
0.1022488921880722,
0.10593281686306,
-0.0475865975022316,
-0.015418635681271553,
-0.10952949523925781,
0.044350288808345795,
0.04691275209188461,
-0.06647543609142303,
0.001880362629890442,
0.0012214470189064741,
-0.060136184096336365,
-0.02269941009581089,
0.0407911092042923,
-0.16042611002922058,
-0.0524328388273716,
-0.0882410854101181,
-0.04965478926897049,
-0.057446349412202835,
0.12152544409036636,
0.0922871008515358,
0.050913456827402115,
-0.0036350134760141373,
-0.2284359484910965,
-0.027486342936754227,
0.04910906404256821,
-0.06306279450654984,
-0.11764957755804062
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# code-llama-7b-text-to-sql
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | {"license": "llama2", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "codellama/CodeLlama-7b-hf", "model-index": [{"name": "code-llama-7b-text-to-sql", "results": []}]} | null | tmeharizghi/code-llama-7b-text-to-sql | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | 2024-02-06T21:14:13+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us
|
# code-llama-7b-text-to-sql
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | [
"# code-llama-7b-text-to-sql\n\nThis model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us \n",
"# code-llama-7b-text-to-sql\n\nThis model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
61,
42,
6,
12,
8,
3,
128,
42
] | [
"passage: TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us \n# code-llama-7b-text-to-sql\n\nThis model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
-0.10599642992019653,
0.12835176289081573,
-0.004090385045856237,
0.08858191221952438,
0.13743947446346283,
0.023815223947167397,
0.10437435656785965,
0.11901937425136566,
-0.10981857031583786,
0.07936609536409378,
0.034587837755680084,
0.05842282995581627,
0.06198801472783089,
0.12320610135793686,
-0.050188906490802765,
-0.18933726847171783,
0.0030417442321777344,
-0.010158354416489601,
-0.06531088054180145,
0.10649195313453674,
0.1024453192949295,
-0.09665749222040176,
0.05586977303028107,
0.01631670817732811,
-0.14214108884334564,
0.019115665927529335,
-0.015128119848668575,
-0.02999596856534481,
0.1123199611902237,
-0.012142380699515343,
0.14435793459415436,
0.021796898916363716,
0.1540110558271408,
-0.2174602597951889,
-0.0029196212999522686,
0.11568062007427216,
0.029574094340205193,
0.08338724076747894,
0.07945675402879715,
0.012343128211796284,
0.08091142773628235,
-0.11502106487751007,
0.09153765439987183,
0.025079604238271713,
-0.09754745662212372,
-0.1679507941007614,
-0.1024048924446106,
0.03272004425525665,
0.13373012840747833,
0.08848642557859421,
0.012003853917121887,
0.1411663442850113,
-0.057901035994291306,
0.07532399892807007,
0.2014257162809372,
-0.2590210437774658,
-0.06724902242422104,
0.10020577907562256,
0.05773862078785896,
0.05611557886004448,
-0.08744992315769196,
-0.025571582838892937,
0.053501371294260025,
0.029014427214860916,
0.10279079526662827,
-0.005863743368536234,
-0.07566244900226593,
-0.021513136103749275,
-0.12493542581796646,
-0.02610664628446102,
0.079310841858387,
0.022623471915721893,
-0.03779521584510803,
-0.056945428252220154,
-0.09970301389694214,
-0.14094960689544678,
-0.01260838657617569,
-0.048628393560647964,
0.04416258633136749,
-0.025518476963043213,
-0.015621956437826157,
-0.04179897904396057,
-0.0771823450922966,
-0.07756359130144119,
0.020329220220446587,
0.11072057485580444,
0.036641303449869156,
0.018911493942141533,
-0.0603969544172287,
0.12965179979801178,
0.0261395126581192,
-0.1413872390985489,
0.004009375814348459,
0.01967713050544262,
-0.07999212294816971,
-0.06305615603923798,
-0.04412151128053665,
-0.0358307808637619,
-0.010426225140690804,
0.1475016325712204,
-0.09036500751972198,
0.08123129606246948,
-0.004099220037460327,
-0.005960273090749979,
-0.06057004630565643,
0.1373678743839264,
-0.0356873944401741,
-0.03146161511540413,
0.01090793777257204,
0.12042215466499329,
0.03436654806137085,
-0.008961345069110394,
-0.08410900831222534,
-0.02472747676074505,
0.08772426098585129,
0.06457562744617462,
-0.054110825061798096,
0.012838320806622505,
-0.05104043707251549,
-0.014126325957477093,
0.05388752371072769,
-0.1421125829219818,
0.05381760001182556,
0.013230690732598305,
-0.061593811959028244,
-0.04617389664053917,
0.019930077716708183,
0.02139766328036785,
-0.029570486396551132,
0.10349597036838531,
-0.0694846510887146,
0.013614806346595287,
-0.10098503530025482,
-0.06099851429462433,
0.01005800161510706,
-0.08868049830198288,
-0.026095885783433914,
-0.0532943494617939,
-0.1913921982049942,
-0.038683366030454636,
0.054993920028209686,
-0.06685838848352432,
-0.012135975994169712,
-0.027874723076820374,
-0.10353124141693115,
0.0128746023401618,
-0.005181188229471445,
0.11455423384904861,
-0.04423347860574722,
0.0834483951330185,
0.012323444709181786,
0.029409795999526978,
0.02003239467740059,
0.01609799452126026,
-0.07433613389730453,
0.03884544223546982,
-0.17002034187316895,
0.050837911665439606,
-0.05638576298952103,
-0.004703857935965061,
-0.11759806424379349,
-0.08512791991233826,
0.0015883608721196651,
-0.015140488743782043,
0.08145476132631302,
0.10802504420280457,
-0.22107180953025818,
-0.0014807140687480569,
0.1566978245973587,
-0.09165133535861969,
-0.06495703756809235,
0.08144993335008621,
-0.04805268719792366,
0.02756493352353573,
0.040553029626607895,
0.13231058418750763,
0.07693469524383545,
-0.16448427736759186,
0.00526020722463727,
-0.007097442634403706,
0.07208987325429916,
0.01700218766927719,
0.05291647091507912,
-0.026736605912446976,
0.0732550323009491,
-0.014623929746448994,
-0.069991834461689,
-0.037017371505498886,
-0.058394655585289,
-0.07796906679868698,
-0.0576840303838253,
-0.07615762203931808,
0.02661077119410038,
0.039700254797935486,
0.01362869143486023,
-0.06638672947883606,
-0.12444290518760681,
0.10870666056871414,
0.1336294710636139,
-0.06316403299570084,
0.02679598703980446,
-0.07950574904680252,
0.04267976060509682,
-0.029356427490711212,
-0.05491795018315315,
-0.1908845454454422,
-0.09365072101354599,
0.026996532455086708,
-0.07210236042737961,
-0.019695205613970757,
0.01967780478298664,
0.06920687854290009,
0.08213526010513306,
-0.04861075431108475,
-0.019080396741628647,
-0.10671550035476685,
0.0038386506494134665,
-0.09469643235206604,
-0.181685671210289,
-0.06713245809078217,
-0.022598398849368095,
0.19011381268501282,
-0.2334108203649521,
0.026849817484617233,
0.01623704470694065,
0.1635025143623352,
0.027761097997426987,
-0.06141715869307518,
-0.027913808822631836,
0.03865569084882736,
-0.01240653358399868,
-0.10025174170732498,
0.03374360501766205,
0.0021382165141403675,
-0.04128969460725784,
-0.08868253976106644,
-0.15677352249622345,
0.042272716760635376,
0.08978434652090073,
0.052852921187877655,
-0.0883009135723114,
0.02018883265554905,
-0.047840796411037445,
-0.02675117366015911,
-0.0789799839258194,
-0.01752728968858719,
0.17040744423866272,
0.027052028104662895,
0.1394723504781723,
-0.09410214424133301,
-0.07349161058664322,
0.0015665425453335047,
-0.00476473942399025,
0.017151087522506714,
0.06077507510781288,
0.09914418309926987,
-0.0653592050075531,
0.0839642733335495,
0.1090657114982605,
-0.059165049344301224,
0.11618416011333466,
-0.054965320974588394,
-0.07013867050409317,
-0.024662261828780174,
0.01813548617064953,
-0.004482081159949303,
0.12370031327009201,
-0.023395881056785583,
0.03446409851312637,
0.009288949891924858,
0.016823915764689445,
0.034321460872888565,
-0.2168523669242859,
-0.0048814075998961926,
0.028614146634936333,
-0.049610041081905365,
-0.01961258053779602,
-0.040666140615940094,
0.03590437024831772,
0.0826169028878212,
-0.0017202268354594707,
-0.06751718372106552,
0.01976911351084709,
-0.015636365860700607,
-0.08030640333890915,
0.180782288312912,
-0.10502274334430695,
-0.10168623924255371,
-0.1241738423705101,
0.07662180811166763,
-0.030759494751691818,
-0.02333805337548256,
-0.005400647409260273,
-0.08439414203166962,
-0.05206280201673508,
-0.11194676160812378,
-0.0328846238553524,
-0.010626235976815224,
-0.0338900089263916,
0.08804091811180115,
0.017927227541804314,
0.10092946141958237,
-0.144235759973526,
0.010595547035336494,
-0.003954997286200523,
-0.10140488296747208,
-0.009985185228288174,
0.0711766704916954,
0.07917622476816177,
0.1591731458902359,
-0.031692665070295334,
0.012890665791928768,
-0.012802130542695522,
0.22192184627056122,
-0.09549079835414886,
0.03068625181913376,
0.15198612213134766,
-0.02606511488556862,
0.06720707565546036,
0.1379987895488739,
0.0447065532207489,
-0.1023821085691452,
0.01485375501215458,
0.06895695626735687,
-0.01817473955452442,
-0.24095194041728973,
-0.036519311368465424,
-0.0068994187749922276,
-0.0837186872959137,
0.06131289154291153,
0.03353377431631088,
0.0022575496695935726,
0.02540300227701664,
-0.012417804449796677,
0.017936715856194496,
0.0031535562593489885,
0.07164411246776581,
0.04643222317099571,
0.05997849255800247,
0.09201231598854065,
-0.030408143997192383,
-0.02618071250617504,
0.03981774300336838,
0.03269733861088753,
0.18306241929531097,
-0.03877419978380203,
0.09024568647146225,
0.030107418075203896,
0.12860289216041565,
-0.034047920256853104,
0.04591725394129753,
-0.010222739540040493,
-0.010587891563773155,
0.005318182986229658,
-0.0655537024140358,
-0.024487435817718506,
0.011217058636248112,
-0.07713915407657623,
0.04976401850581169,
-0.06278219819068909,
0.04456379637122154,
0.02724093198776245,
0.25519421696662903,
0.06987254321575165,
-0.2956509292125702,
-0.04045857861638069,
0.015326726250350475,
-0.01325980294495821,
-0.06258856505155563,
0.004381956998258829,
0.13087129592895508,
-0.10147173702716827,
0.06373216211795807,
-0.07126924395561218,
0.07428686320781708,
-0.02511489950120449,
0.014549112878739834,
0.08977488428354263,
0.12842559814453125,
0.004004418849945068,
0.05721496045589447,
-0.19097398221492767,
0.20481042563915253,
0.03362937271595001,
0.13691385090351105,
-0.05328958109021187,
0.04638803005218506,
-0.00037031067768111825,
0.05831652879714966,
0.06715270131826401,
-0.013013514690101147,
-0.02342686988413334,
-0.18911616504192352,
-0.07690376788377762,
0.03595712408423424,
0.13093329966068268,
-0.03771558403968811,
0.09806293994188309,
-0.044493697583675385,
-0.001036793808452785,
0.04874897748231888,
-0.08311086148023605,
-0.14769749343395233,
-0.08924269676208496,
0.02720251865684986,
-0.0004004871007055044,
-0.04896081984043121,
-0.08200240880250931,
-0.08826512098312378,
-0.06260045617818832,
0.13584889471530914,
-0.025790192186832428,
-0.05407768115401268,
-0.12885811924934387,
0.024571791291236877,
0.1281457096338272,
-0.04597556218504906,
0.03680849447846413,
0.03270241245627403,
0.11767233908176422,
0.021003490313887596,
-0.06852182745933533,
0.06203087791800499,
-0.0663222074508667,
-0.1958862841129303,
-0.059981539845466614,
0.1429058164358139,
0.042408641427755356,
0.028399566188454628,
0.011013966985046864,
0.03704921901226044,
0.03673075884580612,
-0.08166864514350891,
0.008100969716906548,
0.05646246299147606,
0.09235961735248566,
0.01870175264775753,
-0.05585238337516785,
0.015790535137057304,
-0.02387540601193905,
-0.017670972272753716,
0.062337059527635574,
0.24819423258304596,
-0.08049532771110535,
0.046953752636909485,
0.05217127501964569,
-0.07746642827987671,
-0.1704186350107193,
0.05917419120669365,
0.11347094178199768,
0.00446039903908968,
0.07064711302518845,
-0.1659429520368576,
0.11114474385976791,
0.12109088897705078,
-0.03882419690489769,
0.06350526958703995,
-0.35371145606040955,
-0.13424965739250183,
0.03561464697122574,
0.11614838987588882,
-0.020886003971099854,
-0.14790481328964233,
-0.038781337440013885,
-0.03785574063658714,
-0.2147514522075653,
0.10777759552001953,
-0.15559618175029755,
0.08054851740598679,
0.010009813122451305,
0.061464011669158936,
0.023694073781371117,
-0.049987491220235825,
0.1512293964624405,
0.030621562153100967,
0.09582789242267609,
-0.04040088132023811,
0.023478522896766663,
0.08884744346141815,
-0.06865331530570984,
0.03299408406019211,
-0.031824562698602676,
0.06986811757087708,
-0.1293165236711502,
-0.002719150623306632,
-0.0744471475481987,
0.03593491390347481,
-0.08083169162273407,
-0.0520578995347023,
-0.036824654787778854,
0.03540866822004318,
0.05208619311451912,
-0.043504368513822556,
0.0666474923491478,
0.03318702429533005,
0.12264863401651382,
0.15771150588989258,
0.09747027605772018,
-0.011934393085539341,
-0.07186257094144821,
0.016570229083299637,
-0.009456567466259003,
0.053273193538188934,
-0.11827629804611206,
0.048218317329883575,
0.1157333180308342,
0.04139482229948044,
0.11048582196235657,
0.0366748571395874,
-0.06479709595441818,
-0.007089212536811829,
0.036009375005960464,
-0.10692747682332993,
-0.1254018396139145,
0.01907217502593994,
-0.012981531210243702,
-0.10762684047222137,
0.047908518463373184,
0.13149911165237427,
-0.036266181617975235,
-0.013669153675436974,
0.00026589282788336277,
0.03343656659126282,
-0.014162566512823105,
0.19236411154270172,
0.04610350355505943,
0.07344815135002136,
-0.07979840785264969,
0.11308836936950684,
0.06783931702375412,
-0.035114023834466934,
0.04232223331928253,
0.05396897345781326,
-0.089265838265419,
-0.004274963401257992,
0.09411343932151794,
0.1484420746564865,
-0.028628014028072357,
-0.049599796533584595,
-0.11678759008646011,
-0.09013809263706207,
0.025209108367562294,
0.14235897362232208,
0.04599502310156822,
0.0030012130737304688,
-0.016938770189881325,
0.029543183743953705,
-0.14947256445884705,
0.08552368730306625,
0.04192876070737839,
0.08627042174339294,
-0.14218054711818695,
0.1696605384349823,
0.012454801239073277,
0.003227233188226819,
-0.010295572690665722,
0.05568598955869675,
-0.08246786147356033,
-0.00924843642860651,
-0.13473530113697052,
-0.006555154919624329,
-0.00018770141468849033,
-0.0015430201310664415,
-0.012833008542656898,
-0.02877374365925789,
-0.03724350780248642,
0.047282613813877106,
-0.07379452139139175,
-0.059317562729120255,
-0.0010137292556464672,
0.018521126359701157,
-0.15328185260295868,
0.0013025504304096103,
0.024014953523874283,
-0.10261520743370056,
0.0648401528596878,
0.01365154329687357,
0.03477466478943825,
0.04467213153839111,
-0.13915102183818817,
-0.011336146853864193,
0.026290301233530045,
0.019391348585486412,
0.05817863717675209,
-0.0816798135638237,
-0.008770165964961052,
-0.02593867853283882,
0.042115163058042526,
0.00885779969394207,
0.0740424245595932,
-0.11804471909999847,
0.0032536713406443596,
-0.04535406455397606,
-0.053514983505010605,
-0.03700456768274307,
0.040829967707395554,
0.11532334983348846,
0.017004085704684258,
0.1770867556333542,
-0.06959880143404007,
0.04327644035220146,
-0.218458354473114,
-0.039623141288757324,
-0.0013749293284490705,
-0.010547771118581295,
-0.09358488768339157,
-0.02128836326301098,
0.08104677498340607,
-0.07386155426502228,
0.06794261932373047,
0.013201802968978882,
0.10347335040569305,
0.03584931045770645,
-0.04916946962475777,
-0.029114481061697006,
0.022966869175434113,
0.1527852714061737,
0.04569364711642265,
0.0004243997682351619,
0.08267070353031158,
-0.03038002923130989,
0.059473779052495956,
0.037621043622493744,
0.20018289983272552,
0.15253275632858276,
-0.041960444301366806,
0.07093030959367752,
0.057051025331020355,
-0.13305075466632843,
-0.141850084066391,
0.10262804478406906,
-0.061324819922447205,
0.10077876597642899,
-0.057700980454683304,
0.15360014140605927,
0.09811442345380783,
-0.1765548586845398,
0.030917849391698837,
-0.06344806402921677,
-0.10243973135948181,
-0.13582079112529755,
-0.0016257473034784198,
-0.08122798055410385,
-0.09866885840892792,
0.019195282831788063,
-0.1082688719034195,
0.050448235124349594,
0.14038468897342682,
-0.0022785491310060024,
0.008856759406626225,
0.16379469633102417,
-0.00030491259531117976,
0.011315027251839638,
0.028648104518651962,
0.03899810090661049,
0.01959458738565445,
-0.027809450402855873,
-0.07079019397497177,
0.03916092962026596,
0.017581330612301826,
0.08213566243648529,
-0.05200805887579918,
-0.0037785025779157877,
0.020279277116060257,
-0.0011095585068687797,
-0.0673215314745903,
0.03897609934210777,
0.01129080168902874,
0.043187275528907776,
0.04187491536140442,
0.05150511860847473,
0.02819022908806801,
-0.04359903931617737,
0.26043811440467834,
-0.07246749103069305,
-0.09081395715475082,
-0.12379850447177887,
0.22926147282123566,
0.03194516524672508,
0.009644084610044956,
0.07117149978876114,
-0.14286041259765625,
-0.015391319990158081,
0.1362626552581787,
0.1169404610991478,
-0.09470490366220474,
-0.013585520908236504,
-0.011426224373281002,
-0.010337652638554573,
-0.051137667149305344,
0.13161668181419373,
0.0970071330666542,
0.04104868322610855,
-0.0559161975979805,
-0.015889562666416168,
-0.007933622226119041,
-0.030163297429680824,
-0.07540330290794373,
0.06433495879173279,
-0.02366454526782036,
0.011264368891716003,
-0.017976757138967514,
0.06864707171916962,
0.04570523276925087,
-0.2132948338985443,
0.05635503679513931,
-0.17468120157718658,
-0.18648593127727509,
0.004938564263284206,
0.10889533907175064,
-0.045750804245471954,
0.05562914162874222,
-0.010717893950641155,
-0.0163109190762043,
0.15205267071723938,
-0.024727748706936836,
-0.013952893204987049,
-0.09232806414365768,
0.06033137068152428,
-0.16478289663791656,
0.24347473680973053,
-0.005219968967139721,
0.0790853276848793,
0.10337947309017181,
0.008898350410163403,
-0.1153581514954567,
0.0605422742664814,
0.07649075984954834,
-0.06451752781867981,
0.015608546324074268,
0.14269104599952698,
-0.053158584982156754,
0.06602812558412552,
0.05525350570678711,
-0.13952119648456573,
-0.006813871208578348,
-0.0008154251845553517,
-0.04322505742311478,
-0.08386697620153427,
-0.020935585722327232,
-0.0688801184296608,
0.14175015687942505,
0.20056556165218353,
-0.030281366780400276,
0.045653775334358215,
-0.06001250073313713,
0.036525268107652664,
0.0334506630897522,
0.09283951669931412,
-0.01963946782052517,
-0.2227192372083664,
0.04945306107401848,
0.012818770483136177,
0.01714569330215454,
-0.19335660338401794,
-0.06289535015821457,
0.05005888640880585,
-0.06805313378572464,
-0.09035784751176834,
0.09453915059566498,
0.054012082517147064,
0.05024341866374016,
-0.031798165291547775,
-0.08278626948595047,
-0.05992453545331955,
0.15504856407642365,
-0.15619616210460663,
-0.05494699999690056
] |
null | null | transformers |
# Uploaded model
- **Developed by:** RJuro
- **License:** apache-2.0
- **Finetuned from model :** RJuro/munin-neuralbeagle-7b
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) | {"language": ["en"], "license": "cc-by-nc-4.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "RJuro/munin-neuralbeagle-7b"} | text-generation | RJuro/munin-neuralbeagle-SkoleGPTOpenOrca-7b | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:RJuro/munin-neuralbeagle-7b",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:18:19+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-RJuro/munin-neuralbeagle-7b #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: RJuro
- License: apache-2.0
- Finetuned from model : RJuro/munin-neuralbeagle-7b
This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/> | [
"# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-RJuro/munin-neuralbeagle-7b #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
89,
80
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-RJuro/munin-neuralbeagle-7b #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: RJuro\n- License: apache-2.0\n- Finetuned from model : RJuro/munin-neuralbeagle-7b\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
-0.03048126772046089,
0.08332888036966324,
-0.0027248773258179426,
0.10044298321008682,
0.08429623395204544,
0.031985826790332794,
0.09132923930883408,
0.1077350452542305,
-0.0366644524037838,
-0.007831087335944176,
0.09968918561935425,
0.1702103465795517,
-0.0021936476696282625,
0.03626444935798645,
-0.06241369992494583,
-0.19719690084457397,
0.08540235459804535,
-0.06632526963949203,
-0.0035635230597108603,
0.07792675495147705,
0.08112594485282898,
0.003278953256085515,
0.0674290880560875,
-0.07285188883543015,
-0.14890380203723907,
-0.004274655133485794,
0.02285020239651203,
-0.03088277392089367,
0.056026581674814224,
0.07532139122486115,
0.04000344127416611,
0.09537307918071747,
0.06419602781534195,
-0.07701895385980606,
0.06440212577581406,
0.07804497331380844,
-0.005687135271728039,
0.11264345794916153,
0.0015921496087685227,
0.025296637788414955,
0.12132111936807632,
-0.002011379459872842,
-0.0291314534842968,
0.061963267624378204,
-0.06457007676362991,
-0.06096349284052849,
-0.0524817518889904,
0.12256373465061188,
-0.021070308983325958,
0.04024733975529671,
0.005072097759693861,
0.1560712605714798,
-0.04780864343047142,
0.10448134690523148,
0.18840637803077698,
-0.2588893175125122,
-0.07229931652545929,
0.16588984429836273,
0.011302194558084011,
0.043582309037446976,
-0.07324168086051941,
0.0077304476872086525,
0.06265407055616379,
-0.015994029119610786,
0.025590958073735237,
-0.05378217250108719,
-0.13543373346328735,
-0.0030243159271776676,
-0.11594567447900772,
0.043286196887493134,
0.13236242532730103,
0.04459294676780701,
-0.04282611608505249,
0.02782626822590828,
-0.16750800609588623,
0.06688063591718674,
-0.043161727488040924,
0.0003060942399315536,
-0.018447784706950188,
0.03711411729454994,
-0.0722181648015976,
-0.0745476707816124,
-0.03959287703037262,
-0.054741304367780685,
-0.09082025289535522,
0.1745212823152542,
0.06440061330795288,
0.07321874052286148,
-0.00024058364215306938,
0.06117137148976326,
-0.008271846920251846,
-0.10288281738758087,
-0.03617662191390991,
-0.09953654557466507,
0.0058847819454967976,
0.011655735783278942,
-0.049203503876924515,
-0.00643893051892519,
0.09343184530735016,
0.15513582527637482,
0.00746071757748723,
0.011193356476724148,
-0.0029727586079388857,
0.04660094156861305,
-0.08197880536317825,
0.029690943658351898,
-0.16026127338409424,
0.00019365790649317205,
0.15013858675956726,
0.05636250972747803,
0.05039404705166817,
-0.011484685353934765,
-0.08797957003116608,
-0.04749767854809761,
0.0030441225972026587,
0.029503755271434784,
-0.0035381214693188667,
0.14870773255825043,
0.008018610067665577,
-0.06972441077232361,
0.11841519176959991,
-0.0566723495721817,
-0.033085454255342484,
0.04261652007699013,
-0.08721610903739929,
0.07931526005268097,
0.07417164742946625,
-0.03142312914133072,
-0.00932254083454609,
-0.061539359390735626,
-0.059900183230638504,
0.0029945552814751863,
-0.04753977805376053,
-0.1287539303302765,
0.02112453803420067,
0.04055950790643692,
-0.01104178186506033,
-0.18940800428390503,
-0.25278204679489136,
0.006141125690191984,
0.0772554874420166,
-0.041784677654504776,
-0.005047559272497892,
-0.09167803823947906,
-0.08387056738138199,
0.020570650696754456,
-0.024730227887630463,
-0.07980591803789139,
-0.05236884206533432,
0.061404261738061905,
-0.04766964912414551,
0.09762407094240189,
-0.12589587271213531,
0.015537300147116184,
-0.10817760229110718,
-0.0010671772761270404,
-0.055838458240032196,
0.09826459735631943,
-0.06236429885029793,
0.08771740645170212,
-0.06991710513830185,
-0.006275116931647062,
-0.08398605138063431,
-0.002503227209672332,
0.03686877712607384,
0.15582481026649475,
-0.18964996933937073,
-0.018526678904891014,
0.18751296401023865,
-0.061782047152519226,
-0.05648611858487129,
0.18770742416381836,
-0.03918248414993286,
0.07418063282966614,
0.07932795584201813,
0.11804844439029694,
0.11750900745391846,
-0.07418235391378403,
0.04190385714173317,
0.0405561625957489,
-0.12331119924783707,
0.01916135475039482,
0.03999154642224312,
0.12431216239929199,
-0.20705975592136383,
0.07330290228128433,
0.0038885895628482103,
0.1207132413983345,
-0.03872557729482651,
-0.027350226417183876,
-0.08692914992570877,
-0.07428627461194992,
0.08959165215492249,
-0.007947172969579697,
0.02260592207312584,
-0.05216055363416672,
-0.04364414140582085,
-0.00829955842345953,
0.16566577553749084,
-0.07439989596605301,
-0.028684282675385475,
-0.050031017512083054,
0.019902247935533524,
-0.08767886459827423,
0.07865644246339798,
-0.09351222962141037,
-0.06918016076087952,
0.019349386915564537,
0.0012248802231624722,
0.11771964281797409,
0.11435972899198532,
0.07289756089448929,
0.04499972239136696,
-0.020695751532912254,
-0.012969080358743668,
0.08366400748491287,
-0.01223178580403328,
-0.017831582576036453,
-0.11302606016397476,
0.06814766675233841,
-0.04910416528582573,
0.16347111761569977,
-0.16243161261081696,
0.06615448743104935,
-0.12106534838676453,
0.10098293423652649,
-0.005698067601770163,
0.05648475140333176,
0.04253286495804787,
-0.0766042023897171,
-0.037111520767211914,
-0.0830678641796112,
0.09301464259624481,
0.052745796740055084,
-0.011714653111994267,
0.13212080299854279,
-0.13812565803527832,
0.07713547348976135,
0.11324724555015564,
0.050637323409318924,
-0.04840300604701042,
0.06199396401643753,
-0.04191083088517189,
0.0017807745607569814,
-0.01030465867370367,
0.033714935183525085,
0.016886327415704727,
-0.002207867568358779,
0.15539027750492096,
-0.09842932969331741,
-0.036439307034015656,
0.021341729909181595,
-0.07822281867265701,
0.03191531077027321,
0.08404222130775452,
-0.008487747982144356,
-0.2611079514026642,
0.053008414804935455,
0.09905104339122772,
-0.11700271815061569,
0.15751133859157562,
0.04416925087571144,
-0.029929906129837036,
-0.01589879021048546,
0.04336385801434517,
0.02547619305551052,
-0.0029866667464375496,
0.06637391448020935,
0.04142526909708977,
0.04250054061412811,
-0.03969985619187355,
0.04538333788514137,
-0.12142595648765564,
-0.007793600205332041,
-0.028997087851166725,
-0.06012297049164772,
-0.005191219970583916,
0.10509318858385086,
-0.007922247983515263,
0.1064750999212265,
-0.06360846012830734,
-0.12278623878955841,
0.011698180809617043,
0.015612193383276463,
-0.047945309430360794,
0.14239712059497833,
-0.08680164068937302,
-0.20919936895370483,
-0.1460542380809784,
-0.05231230705976486,
-0.1432638168334961,
0.017102481797337532,
0.0534086599946022,
-0.04776535555720329,
-0.059851083904504776,
-0.10217555612325668,
-0.0052323355339467525,
0.052800025790929794,
0.0071986960247159,
0.01429620198905468,
0.055332377552986145,
0.04961230978369713,
-0.10309415310621262,
0.01901002787053585,
-0.019430968910455704,
-0.07956577837467194,
0.06662952899932861,
-0.10660728067159653,
0.08298124372959137,
0.15228486061096191,
-0.054847024381160736,
-0.018051564693450928,
0.027217784896492958,
0.144821897149086,
0.04500148817896843,
0.05358541011810303,
0.12695831060409546,
0.005475581157952547,
0.07216064631938934,
0.16982784867286682,
-0.02196197398006916,
-0.040271785110235214,
0.06882914155721664,
-0.016851067543029785,
-0.03172777220606804,
-0.2027435153722763,
-0.04097854718565941,
-0.07828404009342194,
0.09492336958646774,
0.08706140518188477,
0.06758701056241989,
0.06400681287050247,
0.10847631841897964,
-0.06967708468437195,
0.07349245250225067,
0.10616651177406311,
0.12170784175395966,
0.09444832056760788,
0.014713937416672707,
0.09573626518249512,
-0.09095023572444916,
-0.060439832508563995,
0.10295841097831726,
0.037033047527074814,
0.12247021496295929,
-0.05707157403230667,
0.06107271835207939,
0.011730573140084743,
0.16138380765914917,
0.08598532527685165,
0.1008356586098671,
-0.01488578412681818,
-0.025803541764616966,
-0.07064706087112427,
-0.04502376168966293,
-0.07180055230855942,
0.03508355841040611,
-0.08224213123321533,
0.02342144399881363,
0.0324116051197052,
0.13389423489570618,
0.07732722908258438,
0.14625605940818787,
0.06592567265033722,
-0.32125818729400635,
-0.10092277824878693,
0.01153178047388792,
0.043248340487480164,
-0.027701055631041527,
0.05816145986318588,
0.09770997613668442,
0.016400348395109177,
0.009323468431830406,
-0.06781315058469772,
0.10630157589912415,
0.018321990966796875,
0.027808142825961113,
-0.035457413643598557,
0.2219783365726471,
0.013348763808608055,
0.0984443724155426,
-0.13369448482990265,
0.06811575591564178,
0.011154716834425926,
0.030157165601849556,
0.005018520634621382,
-0.05332963168621063,
0.12218984961509705,
0.12450583279132843,
0.05080273747444153,
-0.008294383995234966,
-0.09318645298480988,
-0.06623358279466629,
-0.11977069824934006,
0.014806547202169895,
0.04865902662277222,
0.043672651052474976,
0.08607842773199081,
-0.11237563192844391,
-0.06455323100090027,
0.022809458896517754,
0.06460481882095337,
-0.1487354040145874,
-0.11052216589450836,
-0.008984813466668129,
0.13082095980644226,
-0.03519086167216301,
-0.03381848707795143,
-0.02375182881951332,
-0.06483826786279678,
0.1824846714735031,
0.07195805758237839,
-0.0019817969296127558,
-0.097164586186409,
0.03472336754202843,
0.10654357075691223,
-0.09470726549625397,
-0.03483948856592178,
-0.10025586932897568,
0.09991420060396194,
-0.008154391311109066,
-0.21420292556285858,
0.05244159698486328,
-0.11422564089298248,
-0.06009391322731972,
-0.025391068309545517,
0.04134957864880562,
-0.06932636350393295,
0.017287326976656914,
0.030074113979935646,
-0.037314098328351974,
-0.06395656615495682,
-0.0813654288649559,
-0.07379448413848877,
0.12014026194810867,
-0.06892945617437363,
0.0428660549223423,
-0.1393519937992096,
-0.09525910764932632,
-0.06729011237621307,
0.03937312588095665,
0.09689733386039734,
0.22987549006938934,
-0.0661807656288147,
0.08471648395061493,
0.202293261885643,
-0.02104700170457363,
-0.30128058791160583,
-0.08310863375663757,
-0.041293200105428696,
-0.029359178617596626,
-0.06496880203485489,
-0.022661589086055756,
0.054497625678777695,
0.05173812061548233,
-0.011276841163635254,
0.04237544164061546,
-0.1911466121673584,
-0.10426642745733261,
0.09850509464740753,
0.07088286429643631,
0.3178529143333435,
-0.08983363211154938,
-0.027969319373369217,
-0.11874159425497055,
-0.15728260576725006,
0.1411912888288498,
-0.25383421778678894,
0.13501018285751343,
-0.013807270675897598,
0.05601785331964493,
0.0005348700215108693,
-0.030496016144752502,
0.048014041036367416,
-0.039334338158369064,
0.08243132382631302,
-0.08185362070798874,
0.04704136773943901,
0.10015615820884705,
-0.06372124701738358,
0.16589000821113586,
-0.0378556028008461,
0.11890464276075363,
0.0419822596013546,
-0.026577359065413475,
-0.06403752416372299,
-0.00403699092566967,
0.03547241911292076,
-0.03240519389510155,
-0.06750671565532684,
0.027629289776086807,
0.0895819440484047,
-0.0006581027992069721,
0.08016616106033325,
0.013915960676968098,
0.046660397201776505,
0.1757936179637909,
-0.008587083779275417,
-0.061463095247745514,
0.10031548887491226,
-0.036525990813970566,
-0.03789069131016731,
0.070782870054245,
-0.15788039565086365,
0.05694866180419922,
0.05977587774395943,
-0.050593603402376175,
0.1228150799870491,
0.046934839338064194,
0.017833592370152473,
-0.005549026653170586,
0.04004620760679245,
-0.1379888504743576,
-0.0973287895321846,
-0.02517526037991047,
0.06662452220916748,
-0.030469149351119995,
0.07563098520040512,
0.1834534853696823,
-0.12048312276601791,
-0.008044946938753128,
0.007633983623236418,
-0.0020369391422718763,
-0.017383990809321404,
0.07621440291404724,
0.08231134712696075,
0.00915465783327818,
-0.10486535727977753,
0.1256496161222458,
0.0006967781810089946,
0.0025020206812769175,
-0.04376846179366112,
0.08709371089935303,
-0.16263386607170105,
-0.09082532674074173,
0.008275667205452919,
0.12718653678894043,
-0.16046583652496338,
-0.003973813261836767,
-0.1241053119301796,
-0.02151261642575264,
0.027034329250454903,
0.06890924274921417,
0.043063901364803314,
0.017556222155690193,
-0.052998725324869156,
-0.012465626932680607,
-0.1127590760588646,
0.08288119733333588,
0.07113508135080338,
0.053280074149370193,
-0.1466875523328781,
0.015303053893148899,
-0.03504887595772743,
0.03174950182437897,
-0.07346667349338531,
0.008090076968073845,
-0.13701242208480835,
-0.0324796661734581,
-0.1941624879837036,
0.07710979133844376,
-0.04813801869750023,
0.03409212827682495,
0.0075570689514279366,
-0.02453700080513954,
-0.05559390410780907,
0.03905615210533142,
-0.08100651949644089,
-0.015805302187800407,
-0.01578063704073429,
0.004525135736912489,
-0.06924477964639664,
-0.057704512029886246,
-0.014811987057328224,
-0.05353537201881409,
0.039017777889966965,
0.08826929330825806,
-0.1025824025273323,
0.04311206564307213,
-0.23922036588191986,
-0.11133299767971039,
0.04047795757651329,
0.03985969349741936,
0.026507427915930748,
-0.007142467889934778,
0.039724864065647125,
0.0335441492497921,
0.03651369363069534,
-0.03028344362974167,
0.030714234337210655,
-0.021003592759370804,
-0.012789626605808735,
-0.1272864192724228,
-0.00552833266556263,
-0.0803997665643692,
-0.039768580347299576,
0.008233371190726757,
0.10899019986391068,
0.17631182074546814,
-0.10537953674793243,
0.009869810193777084,
-0.14843882620334625,
-0.03205563873052597,
0.043542783707380295,
-0.1607101559638977,
-0.10025389492511749,
-0.07299928367137909,
0.04199887439608574,
0.006469173822551966,
0.06781340390443802,
-0.008288545534014702,
-0.05642469599843025,
-0.019701045006513596,
-0.006959958467632532,
-0.05459088832139969,
-0.04187062755227089,
0.17377248406410217,
0.05907941982150078,
0.012658287771046162,
-0.07581572979688644,
0.010062756948173046,
0.12784472107887268,
-0.0028974313754588366,
0.05413708835840225,
0.09348299354314804,
0.0383458286523819,
0.10302078723907471,
0.039482977241277695,
0.06702475994825363,
0.06544991582632065,
0.1494297981262207,
-0.05525549128651619,
0.04028793424367905,
-0.04193108156323433,
0.07549382001161575,
0.23074446618556976,
-0.03229403868317604,
-0.007494342979043722,
-0.04854762181639671,
-0.037993744015693665,
-0.1573875993490219,
-0.14933088421821594,
-0.15884283185005188,
-0.204197496175766,
0.015934327617287636,
-0.08631452918052673,
0.014799434691667557,
-0.011126797646284103,
0.03286321088671684,
0.05504824221134186,
0.02785349451005459,
-0.01580563560128212,
-0.06311343610286713,
0.05096079409122467,
-0.057286571711301804,
-0.07618838548660278,
0.08142336457967758,
-0.0433528833091259,
0.09038576483726501,
-0.030419131740927696,
0.05237055569887161,
0.017130421474575996,
0.11023454368114471,
0.052363719791173935,
-0.07529722154140472,
-0.09245341271162033,
-0.017087014392018318,
0.07448748499155045,
0.0036680707708001137,
0.0485953614115715,
0.07873678207397461,
-0.046126317232847214,
0.02936224266886711,
0.21201273798942566,
-0.057545099407434464,
-0.13882818818092346,
-0.1722469925880432,
0.1064884215593338,
-0.03601652383804321,
0.07542520761489868,
-0.009210333228111267,
-0.042862504720687866,
0.0025928961113095284,
0.21762318909168243,
0.19497455656528473,
-0.11387328803539276,
-0.010994793847203255,
-0.013688666746020317,
0.006341621279716492,
-0.051417768001556396,
0.12556591629981995,
0.11823976039886475,
0.04656744748353958,
-0.03851260244846344,
-0.05959634110331535,
0.0049791038036346436,
-0.018189458176493645,
-0.0626104399561882,
-0.01917342096567154,
-0.08196106553077698,
0.0022954524029046297,
-0.05036972463130951,
0.018498385325074196,
-0.11205118894577026,
-0.0832391083240509,
-0.08297643810510635,
-0.020719723775982857,
-0.03894352167844772,
-0.0925363302230835,
0.042687784880399704,
0.024144247174263,
0.05465352535247803,
-0.10330505669116974,
0.03479105234146118,
0.12975044548511505,
-0.08024617284536362,
-0.13198381662368774,
-0.01052638329565525,
0.008152160793542862,
0.05141475051641464,
0.09286095201969147,
-0.0045485831797122955,
0.052063874900341034,
0.08961573988199234,
-0.07949253916740417,
-0.14379873871803284,
0.0946849063038826,
-0.035608936101198196,
-0.07709997147321701,
0.03713225945830345,
0.1245744526386261,
-0.05174721032381058,
0.045740898698568344,
0.056228600442409515,
-0.0837317481637001,
-0.014894303865730762,
0.04944228008389473,
-0.03608926758170128,
-0.08019241690635681,
0.044484928250312805,
-0.029455875977873802,
0.11817897111177444,
0.11715112626552582,
-0.031018372625112534,
0.023805107921361923,
-0.08572933077812195,
0.02188725955784321,
0.05383617803454399,
-0.018764451146125793,
0.030839603394269943,
-0.06880667060613632,
-0.05257765203714371,
-0.012914746068418026,
0.05583931878209114,
-0.25282683968544006,
-0.046466123312711716,
-0.11514896154403687,
-0.03980797156691551,
-0.08187780529260635,
0.13816863298416138,
0.09899672865867615,
0.06908561289310455,
-0.008435428142547607,
-0.20946888625621796,
-0.02212395891547203,
0.06685197353363037,
-0.049050621688365936,
-0.11756031215190887
] |
null | null | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "231.52 +/- 19.87", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Koops0/ppo-LunarLander-v2 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-06T21:20:36+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
39,
41,
17
] | [
"passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.03942384943366051,
0.04900386184453964,
-0.005304091144353151,
0.026427261531352997,
0.107408307492733,
-0.026511888951063156,
0.11188238859176636,
0.0814051404595375,
0.10722193866968155,
0.04762078449130058,
0.08338645845651627,
0.06030960753560066,
0.05080918222665787,
0.2571701407432556,
0.04754156619310379,
-0.22987541556358337,
0.036159250885248184,
-0.04869936779141426,
0.12395193427801132,
0.07178173214197159,
-0.0038484656251966953,
-0.06485428661108017,
0.020415637642145157,
-0.013290755450725555,
0.05367108806967735,
0.04282612353563309,
-0.01716216839849949,
-0.08207534998655319,
0.07169748842716217,
-0.06345846503973007,
0.06986866891384125,
0.07677983492612839,
0.13218913972377777,
-0.17832116782665253,
0.029566360637545586,
0.02571309357881546,
-0.07189024239778519,
0.01342033501714468,
0.008019951172173023,
0.05120139941573143,
0.17303818464279175,
0.019879888743162155,
0.07844575494527817,
-0.0025605305563658476,
-0.15412317216396332,
-0.018950799480080605,
0.0436202734708786,
0.12546207010746002,
0.08808347582817078,
0.04605821147561073,
0.01970590092241764,
0.17503218352794647,
-0.054352790117263794,
-0.028833400458097458,
0.21759237349033356,
-0.2881564497947693,
-0.031460098922252655,
0.321048766374588,
0.06997483223676682,
0.09725230932235718,
-0.07540661096572876,
-0.03619609400629997,
0.007783263456076384,
-0.013137873262166977,
-0.028666524216532707,
-0.07447073608636856,
0.17313385009765625,
0.05152064561843872,
-0.05057951435446739,
-0.09541505575180054,
0.16948209702968597,
0.006921638268977404,
0.0018855923553928733,
-0.019282981753349304,
0.009060598909854889,
0.07402525842189789,
-0.016097044572234154,
-0.07255112379789352,
0.057438433170318604,
0.05330665782094002,
0.019649166613817215,
-0.1435653269290924,
-0.10762494057416916,
-0.022740179672837257,
-0.008012006990611553,
0.17786912620067596,
-0.009255532175302505,
0.042902372777462006,
0.003065188182517886,
0.10384012013673782,
-0.12480384111404419,
-0.03354184702038765,
-0.0454259067773819,
-0.07565800100564957,
-0.0223417766392231,
-0.02058211714029312,
-0.03580251708626747,
0.07184842973947525,
0.11971849203109741,
0.027368178591132164,
0.09350208193063736,
0.047715865075588226,
-0.03206788748502731,
0.06343851238489151,
0.05555703118443489,
0.14222665131092072,
0.05807621404528618,
0.012854371219873428,
0.13179877400398254,
0.055213116109371185,
0.033023182302713394,
-0.0613492950797081,
-0.18252409994602203,
0.07489913702011108,
-0.07031869143247604,
0.007941240444779396,
0.12051256000995636,
-0.04480670019984245,
-0.1183447614312172,
-0.037500523030757904,
-0.017392054200172424,
-0.06224250793457031,
-0.025395862758159637,
0.0547584593296051,
-0.02883218228816986,
-0.03973718360066414,
0.0011496668448671699,
0.09384800493717194,
0.00953749567270279,
-0.1752052903175354,
0.03303423151373863,
-0.025042934343218803,
-0.10782608389854431,
0.009975161403417587,
0.0022444494534283876,
0.03394931182265282,
0.04408763721585274,
-0.11822668462991714,
-0.30899152159690857,
-0.07652641832828522,
0.05490870401263237,
-0.06516939401626587,
-0.18425025045871735,
-0.13193942606449127,
0.02454492449760437,
-0.09037084132432938,
-0.044885024428367615,
-0.12759265303611755,
-0.028549788519740105,
0.01743689924478531,
0.011519349180161953,
0.10758619755506516,
-0.0106219332665205,
-0.012188062071800232,
-0.1571401208639145,
0.008273907005786896,
-0.20951123535633087,
0.0890483483672142,
-0.019150104373693466,
0.037884220480918884,
-0.032381169497966766,
-0.07404014468193054,
0.030707746744155884,
0.052499737590551376,
-0.01474119070917368,
0.13510210812091827,
-0.15592676401138306,
-0.03691192343831062,
-0.007996266707777977,
-0.13611900806427002,
-0.04786273464560509,
-0.10358831286430359,
-0.04357128217816353,
0.13354332745075226,
0.018664736300706863,
0.15356586873531342,
-0.08709818124771118,
-0.0722038671374321,
0.20489206910133362,
-0.010411538183689117,
-0.12820468842983246,
-0.076752208173275,
0.10165707021951675,
0.021510310471057892,
-0.056606587022542953,
-0.02523270808160305,
-0.1839766949415207,
-0.0152357779443264,
-0.04550420492887497,
-0.047039128839969635,
0.01796751655638218,
-0.010888241231441498,
0.13837894797325134,
0.08494598418474197,
0.05018039792776108,
-0.06086122244596481,
-0.006730288732796907,
0.10779471695423126,
0.08823856711387634,
0.008680110797286034,
0.023406028747558594,
-0.05774238705635071,
0.09552932530641556,
-0.04003755748271942,
-0.0142367510125041,
-0.08283266425132751,
-0.036246106028556824,
-0.026256313547492027,
0.17507147789001465,
0.09440762549638748,
0.2257927656173706,
0.09567736834287643,
0.039160262793302536,
0.031270865350961685,
-0.13181598484516144,
-0.1425403207540512,
-0.0017254541162401438,
0.09020978957414627,
-0.14270411431789398,
-0.04119925573468208,
-0.08974775671958923,
-0.17768175899982452,
-0.12202505767345428,
0.0006432619411498308,
-0.17960017919540405,
0.06390921026468277,
0.05408334732055664,
-0.035177867859601974,
0.03272094577550888,
0.13032332062721252,
-0.011533179320394993,
-0.03967514634132385,
0.0831870287656784,
0.0379033200442791,
-0.041234664618968964,
-0.021742934361100197,
0.11885567009449005,
0.15673065185546875,
0.13124459981918335,
-0.03511447086930275,
0.004914294462651014,
0.07076404243707657,
-0.02309088408946991,
0.06539414077997208,
0.0558244064450264,
0.20973342657089233,
0.188301220536232,
0.038996949791908264,
0.008822928182780743,
-0.07048165798187256,
0.0855446457862854,
-0.0742373839020729,
-0.14302679896354675,
-0.05579735338687897,
0.08729292452335358,
0.016605578362941742,
0.023469142615795135,
0.08711627870798111,
0.024545932188630104,
0.09132762253284454,
0.15968108177185059,
0.01990218088030815,
-0.09659269452095032,
-0.050218869000673294,
0.01175848301500082,
0.027713103219866753,
0.04794301092624664,
-0.04514073207974434,
-0.00937939714640379,
0.017020760104060173,
-0.10303554683923721,
0.031789086759090424,
-0.1413339376449585,
-0.1358717679977417,
0.044326696544885635,
0.003906996920704842,
0.010907664895057678,
0.02786896750330925,
-0.0038291432429105043,
0.019039705395698547,
0.04351753741502762,
-0.06975466758012772,
0.047416772693395615,
-0.024745507165789604,
-0.020031947642564774,
0.03340689837932587,
-0.057257164269685745,
-0.205775648355484,
-0.17696654796600342,
0.00013708483311347663,
-0.09910997003316879,
0.10194740444421768,
0.018308809027075768,
-0.12373185902833939,
0.047737859189510345,
-0.05822649225592613,
0.027574289590120316,
-0.01875593699514866,
-0.049130141735076904,
0.10507171601057053,
0.1525275856256485,
-0.016146350651979446,
0.018018173053860664,
-0.04865182936191559,
-0.10157987475395203,
-0.19632206857204437,
0.0691583976149559,
0.04680244252085686,
0.014610917307436466,
0.10669491440057755,
0.018072687089443207,
0.02367905154824257,
-0.007674071006476879,
-0.016521066427230835,
-0.011659215204417706,
-0.08781040459871292,
0.31909599900245667,
0.04510033503174782,
-0.025173069909214973,
0.02041010931134224,
-0.0043001663871109486,
-0.028083480894565582,
0.03263787180185318,
-0.0985708013176918,
-0.07548979669809341,
-0.08774089068174362,
-0.04367410019040108,
-0.09784720093011856,
0.053299110382795334,
0.05916472524404526,
0.003188040340319276,
-0.07727594673633575,
0.04221395403146744,
0.11369874328374863,
-0.0923808291554451,
-0.07137343287467957,
0.07477962225675583,
0.0972946360707283,
-0.07331304252147675,
0.00012658814375754446,
0.00874367356300354,
0.023951783776283264,
0.037102166563272476,
0.06778035312891006,
-0.03966575115919113,
0.08589404821395874,
-0.19917890429496765,
0.0372927263379097,
0.106058269739151,
0.023754918947815895,
0.0638108178973198,
0.07643651217222214,
-0.1058402881026268,
-0.008500572293996811,
-0.032518330961465836,
-0.21341575682163239,
0.1668180525302887,
0.1355515867471695,
0.06788124144077301,
-0.025637222453951836,
-0.00461410591378808,
-0.0649740919470787,
0.05773647129535675,
0.02723747305572033,
-0.14758841693401337,
0.004883295856416225,
0.06064270809292793,
0.026899009943008423,
0.01614922471344471,
0.07971042394638062,
0.014697225764393806,
-0.1801026314496994,
-0.014406266622245312,
0.10730406641960144,
0.002390873385593295,
0.0053148469887673855,
-0.03175045922398567,
-0.1755964607000351,
0.0751047357916832,
0.004285442177206278,
0.07233936339616776,
-0.1676585078239441,
0.14297930896282196,
-0.10089799761772156,
0.07726949453353882,
-0.004285062663257122,
-0.021311495453119278,
0.02507244050502777,
-0.0541163794696331,
0.15163759887218475,
0.01058570109307766,
-0.021810131147503853,
-0.1200498715043068,
-0.1717042326927185,
-0.019227758049964905,
-0.11788936704397202,
-0.11679866164922714,
0.050424277782440186,
0.062185097485780716,
0.04923136904835701,
-0.061147067695856094,
0.1518532931804657,
-0.047422297298908234,
0.060713399201631546,
-0.06893875449895859,
-0.06755045056343079,
0.03764858841896057,
-0.12588608264923096,
-0.08176055550575256,
0.05573027580976486,
0.19166934490203857,
0.15833087265491486,
-0.02816431224346161,
-0.03472423925995827,
-0.047419581562280655,
-0.006212298292666674,
-0.007802055217325687,
0.0275666993111372,
0.023223137483000755,
0.07315318286418915,
-0.07681374251842499,
-0.11649256944656372,
0.033787861466407776,
-0.06713802367448807,
-0.055589709430933,
-0.015439179725944996,
0.1513158082962036,
0.04671623185276985,
0.07720734924077988,
-0.018946662545204163,
0.03887668624520302,
-0.001724981120787561,
-0.056474871933460236,
0.16197094321250916,
0.03885216265916824,
-0.05193585529923439,
0.06837689876556396,
0.053174007683992386,
0.043745119124650955,
0.03011113777756691,
-0.026783017441630363,
0.206032395362854,
0.1980147808790207,
0.014206883497536182,
0.2175983190536499,
0.03177616000175476,
-0.03772832080721855,
-0.1300560086965561,
-0.065880686044693,
-0.006372632458806038,
0.03559038043022156,
0.08070417493581772,
-0.18207235634326935,
-0.015011128038167953,
-0.05689644813537598,
-0.034518610686063766,
-0.15059494972229004,
-0.28553900122642517,
-0.05957856774330139,
0.20075850188732147,
0.14706264436244965,
0.27519428730010986,
-0.10432573407888412,
0.035197313874959946,
0.02663275972008705,
-0.04912831634283066,
-0.006501141935586929,
0.00018665487004909664,
0.10268618166446686,
-0.15421873331069946,
0.1176437959074974,
0.08486983180046082,
-0.019002694636583328,
0.01058861706405878,
-0.1619086116552353,
0.00936629343777895,
-0.12191236019134521,
0.05354422330856323,
0.1400289237499237,
-0.048128653317689896,
-0.054873593151569366,
0.14033560454845428,
-0.024562934413552284,
-0.22685599327087402,
-0.04648222774267197,
-0.043600670993328094,
-0.010640020482242107,
0.026607351377606392,
-0.1013401448726654,
0.04101909324526787,
0.1330099105834961,
0.009380043484270573,
0.1147187277674675,
0.11749245226383209,
-0.052566803991794586,
0.10792597383260727,
0.2257719188928604,
-0.018785694614052773,
0.04689010605216026,
-0.12743118405342102,
-0.0012336712097749114,
-0.028270328417420387,
0.013657891191542149,
-0.09504974633455276,
-0.09938385337591171,
0.02366873063147068,
0.02872389927506447,
0.009118586778640747,
0.0921793207526207,
-0.029922157526016235,
0.0759170651435852,
0.06817561388015747,
-0.13014446198940277,
-0.16288450360298157,
0.015828335657715797,
-0.007344507612287998,
0.08354310691356659,
0.00027861111448146403,
0.08878035843372345,
-0.11932205408811569,
-0.018093237653374672,
-0.03153328225016594,
-0.03319635987281799,
-0.130486860871315,
-0.07138993591070175,
0.06156524643301964,
0.028095467016100883,
-0.06602972000837326,
0.1398407518863678,
0.026440169662237167,
0.15942534804344177,
0.049197953194379807,
0.012499804608523846,
0.07227300107479095,
-0.05345509201288223,
0.1283530443906784,
0.13818155229091644,
-0.00868943240493536,
-0.05460423603653908,
-0.1013643890619278,
-0.10236792266368866,
0.08925779908895493,
-0.05773641914129257,
0.07476430386304855,
-0.14885357022285461,
-0.06675903499126434,
0.015772046521306038,
0.016141414642333984,
-0.09562095999717712,
0.02571965754032135,
-0.01625603251159191,
-0.18119946122169495,
0.056570518761873245,
-0.048285093158483505,
0.0440407395362854,
-0.06347788125276566,
-0.1110161691904068,
-0.17226378619670868,
0.06091433763504028,
0.08593481779098511,
-0.053876690566539764,
-0.12229149043560028,
0.011023230850696564,
-0.00012518465518951416,
-0.06341652572154999,
-0.05023367330431938,
0.09722746908664703,
-0.11020902544260025,
0.031452205032110214,
-0.012567701749503613,
0.08853451162576675,
-0.03510405123233795,
-0.011538895778357983,
0.044220831245183945,
-0.08039166033267975,
-0.009481523185968399,
0.03534642979502678,
-0.026372017338871956,
-0.04127239063382149,
-0.2689029574394226,
0.0036654395516961813,
0.0341104120016098,
0.02497158572077751,
0.07856601476669312,
0.011906822212040424,
0.021174922585487366,
0.03993808850646019,
-0.15396519005298615,
-0.013395369984209538,
0.14574195444583893,
-0.07689505815505981,
-0.022186370566487312,
0.05703273415565491,
-0.09054436534643173,
0.013882770203053951,
-0.030287226662039757,
0.1345842480659485,
0.023923413828015327,
0.06404478847980499,
-0.0851147472858429,
0.10106813907623291,
-0.1451139897108078,
-0.04998219385743141,
-0.01244612317532301,
0.09761348366737366,
0.07019034773111343,
-0.10272270441055298,
0.014697125181555748,
0.04210108891129494,
0.19416837394237518,
0.016384804621338844,
-0.0356343574821949,
-0.03396720811724663,
0.004015897400677204,
0.22076453268527985,
0.03044266067445278,
0.10457023978233337,
0.07281364500522614,
-0.026583973318338394,
0.12624378502368927,
0.09929762035608292,
0.11280370503664017,
-0.055645186454057693,
0.13904185593128204,
0.04667386785149574,
0.038641396909952164,
0.0614289753139019,
0.06836545467376709,
0.09098632633686066,
-0.0008288522367365658,
0.1138714924454689,
0.013811973854899406,
-0.02422109805047512,
-0.021335409954190254,
0.17759373784065247,
0.10501719266176224,
-0.14769648015499115,
0.029047364369034767,
-0.01258957851678133,
0.039933037012815475,
-0.014194529503583908,
-0.15634691715240479,
-0.07240267097949982,
-0.3315149247646332,
0.1226184144616127,
-0.07119352370500565,
0.019930170848965645,
0.007913772016763687,
-0.037425633519887924,
-0.03296699747443199,
-0.04477746784687042,
0.13151589035987854,
-0.013641550205647945,
-0.006079165264964104,
-0.04815853759646416,
-0.015360191464424133,
-0.11607866734266281,
-0.11200575530529022,
-0.013207737356424332,
-0.13671602308750153,
-0.010119039565324783,
0.05595948174595833,
0.003977729007601738,
0.01821410097181797,
-0.03142618387937546,
0.0024383175186812878,
0.06541839241981506,
-0.05751744285225868,
0.056182678788900375,
0.12097269296646118,
0.08766137808561325,
-0.1058853268623352,
0.031048951670527458,
0.2011747509241104,
0.04359564557671547,
-0.12483977526426315,
0.01449228823184967,
0.1819491684436798,
0.004885740112513304,
0.017068125307559967,
-0.006097703706473112,
-0.0540788508951664,
-0.07554277032613754,
0.1251034289598465,
0.08296554535627365,
-0.09985227137804031,
0.015833314508199692,
-0.0726347416639328,
-0.01594804972410202,
-0.06374675035476685,
0.10130585730075836,
0.09538925439119339,
0.04440245032310486,
-0.10621760785579681,
-0.08487539738416672,
-0.10891728103160858,
0.040588874369859695,
-0.08629853278398514,
-0.07311757653951645,
0.09629398584365845,
-0.07057105004787445,
-0.07029950618743896,
0.025521177798509598,
-0.17978744208812714,
-0.009467960335314274,
0.1711762249469757,
-0.24654000997543335,
-0.0916430801153183,
-0.10857923328876495,
0.14477859437465668,
0.016497576609253883,
0.1013975441455841,
-0.006207061931490898,
-0.007889035157859325,
-0.20577777922153473,
0.024890204891562462,
-0.05293011665344238,
-0.02073732763528824,
0.07814782857894897,
-0.09476397186517715,
0.22629831731319427,
-0.08276885002851486,
0.020940175279974937,
0.012659613974392414,
0.0870661810040474,
-0.030675338581204414,
0.09283176809549332,
-0.03660329803824425,
-0.12576518952846527,
-0.03620953485369682,
0.03001813031733036,
0.013904244638979435,
0.10071761906147003,
0.09772487729787827,
-0.03414725139737129,
0.03389119729399681,
0.09747414290904999,
0.04172342270612717,
-0.023843804374337196,
0.0360250361263752,
-0.17077107727527618,
0.02182629331946373,
-0.018498148769140244,
-0.06935930997133255,
0.03687669709324837,
-0.06603235751390457,
0.1639697551727295,
0.04022442549467087,
0.0670473501086235,
-0.036152735352516174,
0.0073931049555540085,
-0.014454689808189869,
-0.013775371946394444,
-0.026180334389209747,
-0.17259705066680908,
-0.10422050207853317,
-0.1347656100988388,
-0.012701659463346004,
-0.034971047192811966,
0.04591470584273338,
0.023234914988279343,
-0.0003200018545612693,
-0.014577031135559082,
-0.12090865522623062,
0.04360328987240791,
0.11146783083677292,
-0.04631396010518074,
-0.026193076744675636
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best
This model is a fine-tuned version of [00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000](https://huggingface.co/00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000) on the ALLNLI dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2600
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0
- Datasets 2.14.6
- Tokenizers 0.15.0
| {"tags": ["generated_from_trainer"], "datasets": ["allnli"], "model-index": [{"name": "00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best", "results": []}]} | text-classification | gowitheflow/p9-iter3 | [
"transformers",
"pytorch",
"pixel",
"text-classification",
"generated_from_trainer",
"dataset:allnli",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:23:18+00:00 | [] | [] | TAGS
#transformers #pytorch #pixel #text-classification #generated_from_trainer #dataset-allnli #autotrain_compatible #endpoints_compatible #region-us
|
# 00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best
This model is a fine-tuned version of 00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000 on the ALLNLI dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2600
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0
- Datasets 2.14.6
- Tokenizers 0.15.0
| [
"# 00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best\n\nThis model is a fine-tuned version of 00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000 on the ALLNLI dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 128\n- eval_batch_size: 16\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- training_steps: 2600",
"### Training results",
"### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0\n- Datasets 2.14.6\n- Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #pytorch #pixel #text-classification #generated_from_trainer #dataset-allnli #autotrain_compatible #endpoints_compatible #region-us \n",
"# 00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best\n\nThis model is a fine-tuned version of 00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000 on the ALLNLI dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 128\n- eval_batch_size: 16\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- training_steps: 2600",
"### Training results",
"### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0\n- Datasets 2.14.6\n- Tokenizers 0.15.0"
] | [
51,
80,
6,
12,
8,
3,
104,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #pixel #text-classification #generated_from_trainer #dataset-allnli #autotrain_compatible #endpoints_compatible #region-us \n# 00-allnli-p9-allnli-p9-allnli-p9-allnli-old-best\n\nThis model is a fine-tuned version of 00-p9-allnli-p9-allnli-p9-allnli-old-best/checkpoint-26000 on the ALLNLI dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 3e-05\n- train_batch_size: 128\n- eval_batch_size: 16\n- seed: 1\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 200\n- training_steps: 2600### Training results### Framework versions\n\n- Transformers 4.17.0\n- Pytorch 1.11.0\n- Datasets 2.14.6\n- Tokenizers 0.15.0"
] | [
-0.11423923075199127,
0.1833248883485794,
-0.0018970136297866702,
0.09302296489477158,
0.11566176265478134,
0.014690609648823738,
0.07713717967271805,
0.17502787709236145,
-0.09094696491956711,
0.048286840319633484,
0.08103813230991364,
0.03194065019488335,
0.06767076253890991,
0.1293666809797287,
-0.0038307078648358583,
-0.22885383665561676,
-0.01393772941082716,
0.041939299553632736,
-0.048176079988479614,
0.11822082847356796,
0.11175774782896042,
-0.07742542773485184,
0.06747252494096756,
0.02915889210999012,
-0.12942460179328918,
-0.0007307232590392232,
-0.06336585432291031,
-0.054310839623212814,
0.08090949058532715,
-0.014539949595928192,
0.06962532550096512,
0.0026917587965726852,
0.09135731309652328,
-0.21261049807071686,
-0.010071535594761372,
0.07431481778621674,
0.031264904886484146,
0.09983359277248383,
0.04458032175898552,
-0.011621491052210331,
0.08751953393220901,
-0.11371548473834991,
0.10231208801269531,
0.022580327466130257,
-0.0891316682100296,
-0.17392830550670624,
-0.08142874389886856,
0.08306208997964859,
0.10316339880228043,
0.0977545827627182,
0.0016846753424033523,
0.17407368123531342,
-0.01481473259627819,
0.08425050228834152,
0.13471384346485138,
-0.25169435143470764,
-0.0716162845492363,
-0.005319003015756607,
0.08909612149000168,
0.017105400562286377,
-0.10784579813480377,
0.010202483274042606,
0.03351806104183197,
0.03235526382923126,
0.089983731508255,
-0.008499832823872566,
-0.039579443633556366,
-0.04058602452278137,
-0.12062788009643555,
-0.01860060915350914,
0.1846887767314911,
0.06400124728679657,
-0.06647300720214844,
-0.13174551725387573,
-0.014085892587900162,
-0.14628726243972778,
-0.04467422515153885,
-0.04600520431995392,
0.026386557146906853,
-0.06264916062355042,
-0.06480278074741364,
-0.07666533440351486,
-0.0895799770951271,
-0.05651189386844635,
0.026539620012044907,
0.15472015738487244,
0.019883515313267708,
0.01442426722496748,
-0.016839096322655678,
0.12233497202396393,
0.0014822006924077868,
-0.13898572325706482,
-0.03781478479504585,
-0.01166194025427103,
-0.06904564797878265,
-0.08997330069541931,
-0.04134524241089821,
-0.021407993510365486,
-0.028042418882250786,
0.14702223241329193,
-0.022523127496242523,
0.05670783668756485,
0.021873200312256813,
-0.010775239206850529,
-0.016988370567560196,
0.12906505167484283,
-0.018802523612976074,
-0.060706980526447296,
0.0046462113969028,
0.12519434094429016,
0.025818124413490295,
-0.03230775520205498,
-0.07150603085756302,
-0.03061676025390625,
0.07468774169683456,
0.04707539826631546,
0.026638738811016083,
0.014399221166968346,
-0.0437527671456337,
-0.06269123405218124,
0.11398036032915115,
-0.12497106939554214,
0.030797624960541725,
-0.023237617686390877,
-0.10589747130870819,
-0.06567148119211197,
0.017850304022431374,
0.017756447196006775,
-0.057551708072423935,
0.04770338907837868,
-0.0900576114654541,
-0.007546524982899427,
-0.08225113898515701,
-0.028964662924408913,
0.029400140047073364,
-0.05074506625533104,
-0.004666623659431934,
-0.058222025632858276,
-0.23474285006523132,
-0.031981661915779114,
0.03632773086428642,
-0.07795460522174835,
-0.03272023797035217,
-0.017673803493380547,
-0.034772839397192,
0.014466943219304085,
-0.0005205023335292935,
0.16575147211551666,
-0.04591638967394829,
0.06710182130336761,
0.05782747268676758,
0.008765601553022861,
0.04281909018754959,
0.03755038231611252,
-0.08378468453884125,
0.032060179859399796,
-0.06164995953440666,
0.0968240424990654,
-0.08079914003610611,
0.03075648471713066,
-0.1296602189540863,
-0.10165158659219742,
-0.0215513464063406,
-0.012455415911972523,
0.06716514378786087,
0.1808416247367859,
-0.12294168770313263,
-0.016147321090102196,
0.13029305636882782,
-0.07665999978780746,
-0.15033060312271118,
0.05426919832825661,
-0.02722829021513462,
0.04853035509586334,
0.051529742777347565,
0.10114855319261551,
0.18630515038967133,
-0.1282627433538437,
-0.04199082776904106,
0.016139214858412743,
0.09996385127305984,
-0.009180545806884766,
0.08571326732635498,
0.007116437423974276,
0.06530195474624634,
0.02337334118783474,
-0.09268874675035477,
-0.0023880028165876865,
-0.06382523477077484,
-0.09511573612689972,
-0.044034238904714584,
-0.11068199574947357,
0.06320513039827347,
0.049232836812734604,
0.06925247609615326,
-0.05274002626538277,
-0.13127075135707855,
0.06213974580168724,
0.1525701880455017,
-0.042026299983263016,
0.007419277913868427,
-0.096591517329216,
0.043402936309576035,
-0.07325815409421921,
-0.021296579390764236,
-0.19014230370521545,
-0.11727899312973022,
0.03346993401646614,
-0.02688322588801384,
0.013456461019814014,
-0.07415875047445297,
0.0965048298239708,
0.06873072683811188,
-0.09272143244743347,
-0.04187137633562088,
-0.09908244013786316,
-0.0037339082919061184,
-0.06450715661048889,
-0.1546853631734848,
-0.09924709051847458,
-0.04967545345425606,
0.21137258410453796,
-0.22264990210533142,
0.018560437485575676,
0.015251707285642624,
0.14804965257644653,
0.033357661217451096,
-0.08678782731294632,
0.012697138823568821,
0.02040186896920204,
-0.00780126778408885,
-0.08905190229415894,
0.037633366882801056,
0.014389998279511929,
-0.13537955284118652,
-0.047602858394384384,
-0.13722556829452515,
0.07890550792217255,
0.0871841162443161,
0.06600479781627655,
-0.09769656509160995,
-0.04418371617794037,
-0.05113128200173378,
-0.050964053720235825,
-0.06096579134464264,
0.006215451750904322,
0.14479106664657593,
0.05787532776594162,
0.11561030894517899,
-0.048551131039857864,
-0.09061923623085022,
0.018760735169053078,
0.023980244994163513,
-0.025242015719413757,
0.06361083686351776,
-0.011165490373969078,
-0.14118199050426483,
0.08547241240739822,
0.08214589953422546,
-0.045922596007585526,
0.13444238901138306,
-0.053685739636421204,
-0.09841431677341461,
-0.0429447665810585,
0.02267393097281456,
0.007949262857437134,
0.14340172708034515,
-0.07166720926761627,
-0.004802334122359753,
0.04385142773389816,
-0.022841796278953552,
0.017222845926880836,
-0.152138814330101,
-0.012274970300495625,
0.04187333211302757,
-0.027217591181397438,
-0.05576373636722565,
-0.04510657489299774,
-0.01644330844283104,
0.07474953681230545,
0.023362530395388603,
0.007965865544974804,
0.014122625812888145,
-0.015437422320246696,
-0.08343470096588135,
0.1737421303987503,
-0.07257197052240372,
-0.18676501512527466,
-0.14757581055164337,
0.039915233850479126,
-0.07988983392715454,
-0.00732635660097003,
-0.019414929673075676,
-0.0650390014052391,
-0.03270835801959038,
-0.09226637333631516,
-0.084691621363163,
-0.028303323313593864,
-0.03833753615617752,
0.03707132115960121,
0.016382889822125435,
0.1034945473074913,
-0.12198454886674881,
0.03229155391454697,
0.011367031373083591,
-0.024803554639220238,
-0.017471184954047203,
0.058308202773332596,
0.08447834849357605,
0.10331056267023087,
0.007713553961366415,
0.022739602252840996,
-0.04889687895774841,
0.19639301300048828,
-0.14807291328907013,
-0.002776949666440487,
0.14697803556919098,
-0.0004945846158079803,
0.051708951592445374,
0.06121616065502167,
0.03940645977854729,
-0.07406000792980194,
0.020030098035931587,
0.03527042269706726,
-0.016431724652647972,
-0.20496247708797455,
-0.03989991545677185,
-0.03919603303074837,
-0.06623181700706482,
0.1390427201986313,
0.044250473380088806,
0.006615309044718742,
0.0650765523314476,
-0.05080015957355499,
0.008699992671608925,
-0.0004563357215374708,
0.10492629557847977,
0.06401816755533218,
0.03959835320711136,
0.1331796497106552,
-0.036891188472509384,
-0.04225589334964752,
0.05315692350268364,
0.05993253365159035,
0.19542498886585236,
-0.06805600225925446,
0.127496600151062,
-0.010965841822326183,
0.1384342610836029,
-0.04303543269634247,
0.05473390594124794,
0.029701506718993187,
-0.0014467955334112048,
0.027703961357474327,
-0.07316949218511581,
-0.060175955295562744,
0.05198495462536812,
0.007206309121102095,
0.01794269308447838,
-0.08403319865465164,
-0.012676621787250042,
-0.0033441325649619102,
0.25632941722869873,
0.06403888761997223,
-0.3175652325153351,
-0.10305844992399216,
0.024478260427713394,
-0.0024098744615912437,
-0.07979511469602585,
-0.027191782370209694,
0.07667174190282822,
-0.13218672573566437,
0.13777334988117218,
-0.0728696808218956,
0.08237780630588531,
-0.0632106140255928,
-0.021480465307831764,
0.07234729826450348,
0.040919557213783264,
0.0025108966510742903,
0.08435019850730896,
-0.17898428440093994,
0.18353679776191711,
0.022478749975562096,
0.11942276358604431,
-0.06576160341501236,
0.05918865278363228,
0.022783974185585976,
0.07872534543275833,
0.12708182632923126,
0.004691736306995153,
-0.01662200130522251,
-0.16542015969753265,
-0.0875929743051529,
0.012156467884778976,
0.08455781638622284,
-0.08095359057188034,
0.0634353831410408,
-0.02979925647377968,
-0.002391252899542451,
0.035920754075050354,
-0.04810939356684685,
-0.08326815813779831,
-0.14922037720680237,
0.08127985894680023,
-0.03965766355395317,
0.013732796534895897,
-0.058181267231702805,
-0.11937841773033142,
-0.023929202929139137,
0.17586562037467957,
0.06923376023769379,
-0.057578932493925095,
-0.14110548794269562,
0.0400099940598011,
0.1399853378534317,
-0.05878634750843048,
0.03438456729054451,
0.033624302595853806,
0.14643673598766327,
0.04346640780568123,
-0.053775716572999954,
0.03403269127011299,
-0.0604557991027832,
-0.14702223241329193,
-0.02879873849451542,
0.1444101333618164,
0.015880651772022247,
0.03446241095662117,
0.02686448208987713,
0.03439480811357498,
0.0015485347248613834,
-0.07572329789400101,
0.06360577791929245,
-0.005667741410434246,
0.10149142891168594,
0.025635655969381332,
-0.04042768478393555,
0.06115751713514328,
-0.060061387717723846,
-0.008623919449746609,
0.1100587397813797,
0.25724443793296814,
-0.06623269617557526,
0.04681330919265747,
0.04325215891003609,
-0.08101212978363037,
-0.1501021385192871,
0.027461238205432892,
0.10528402030467987,
0.0076319873332977295,
0.057081542909145355,
-0.1781449019908905,
0.09000276774168015,
0.1048266813158989,
-0.04637419059872627,
0.11293137073516846,
-0.2540685832500458,
-0.13350845873355865,
0.10238215327262878,
0.10294214636087418,
-0.0022935238666832447,
-0.1326656937599182,
-0.05704430490732193,
-0.014293652027845383,
-0.14105114340782166,
0.1257009655237198,
-0.025395113974809647,
0.08515899628400803,
-0.01706850342452526,
0.07175707072019577,
0.04415014758706093,
-0.04104267805814743,
0.15398527681827545,
-0.0003178135375492275,
0.05681217461824417,
-0.044026684015989304,
0.06030425801873207,
0.0842190608382225,
-0.08552781492471695,
0.09184436500072479,
-0.04169854521751404,
0.06477124243974686,
-0.17908692359924316,
-0.0030512502416968346,
-0.08143743872642517,
0.07791497558355331,
-0.05406336858868599,
-0.0660271942615509,
0.004602767992764711,
0.08041708171367645,
0.05074787512421608,
-0.026442289352416992,
0.10305242240428925,
0.026911506429314613,
0.11186059564352036,
0.1344970464706421,
0.08803348988294601,
-0.013595202937722206,
-0.12462203949689865,
-0.019168037921190262,
-0.0330660454928875,
0.06273844093084335,
-0.07662580162286758,
0.03502273932099342,
0.1115686297416687,
0.0822722464799881,
0.11064913123846054,
0.0182473286986351,
-0.04775279015302658,
-0.02377798967063427,
0.0625942125916481,
-0.09355660527944565,
-0.12125527858734131,
-0.05133442580699921,
-0.022140594199299812,
-0.16385972499847412,
0.03630584105849266,
0.13513430953025818,
-0.03832250088453293,
-0.027421612292528152,
0.01726352609694004,
0.026336831972002983,
0.0027183406054973602,
0.17908193171024323,
0.03704102709889412,
0.07033905386924744,
-0.0831114873290062,
0.09640325605869293,
0.09216468781232834,
-0.10025399923324585,
0.05595805123448372,
0.024461034685373306,
-0.06882715225219727,
-0.04121549054980278,
0.030739765614271164,
0.057536255568265915,
-0.04602935165166855,
-0.03136776015162468,
-0.06940782815217972,
-0.061516694724559784,
0.024400893598794937,
0.03166089579463005,
0.042744506150484085,
0.0010234121000394225,
-0.02280033938586712,
0.040364671498537064,
-0.1462654322385788,
0.12297240644693375,
0.06549688428640366,
0.0919015109539032,
-0.15367121994495392,
0.0850527286529541,
0.006010230164974928,
0.021400734782218933,
-0.022837920114398003,
-0.005722096189856529,
-0.04960249364376068,
-0.007146258372813463,
-0.1065853089094162,
-0.024200979620218277,
-0.04337550699710846,
0.017497321590781212,
-0.040189504623413086,
-0.0506778359413147,
-0.04658179730176926,
0.027263937518000603,
-0.06489498168230057,
-0.06857606023550034,
0.029867514967918396,
0.017640313133597374,
-0.1633947193622589,
-0.025961989536881447,
0.035846929997205734,
-0.10773396492004395,
0.057606298476457596,
0.06700312346220016,
0.0344635471701622,
0.014157797209918499,
0.054839733988046646,
0.03592200577259064,
0.02426852285861969,
0.022726410999894142,
0.029298828914761543,
-0.1312766969203949,
0.0232114028185606,
-0.011214726604521275,
0.00309392879717052,
0.03169532120227814,
0.08435717225074768,
-0.14194710552692413,
-0.07313211262226105,
-0.012634536251425743,
-0.03700229153037071,
-0.07426616549491882,
0.07975368946790695,
0.0906272828578949,
0.031834375113248825,
0.17816831171512604,
-0.04264375939965248,
0.04758173227310181,
-0.20535720884799957,
-0.02804536558687687,
0.0035891099832952023,
-0.05141935497522354,
-0.03963031992316246,
-0.010041509754955769,
0.06915155053138733,
-0.08300852030515671,
0.10492733120918274,
-0.05246565118432045,
0.14033633470535278,
0.04378717765212059,
-0.00953700952231884,
-0.010269731283187866,
0.02037576399743557,
0.19367556273937225,
0.05713936313986778,
-0.022762060165405273,
0.10602281242609024,
0.010586599819362164,
0.037034038454294205,
0.02982466295361519,
0.09643475711345673,
0.10184229165315628,
-0.042197540402412415,
0.07842811197042465,
0.05417504161596298,
-0.08248249441385269,
-0.15389102697372437,
0.04987689107656479,
-0.03208186477422714,
0.10734213143587112,
-0.03526867926120758,
0.12001818418502808,
0.07418569177389145,
-0.1964629590511322,
0.07210874557495117,
-0.06299453228712082,
-0.10738372802734375,
-0.07840040326118469,
-0.1033610999584198,
-0.059182919561862946,
-0.09720809012651443,
0.036885377019643784,
-0.11602980643510818,
0.004570593126118183,
0.08421876281499863,
-0.0067762634716928005,
-0.020626479759812355,
0.1725240796804428,
-0.05546266958117485,
-0.0047756219282746315,
0.08384914696216583,
0.02130349911749363,
0.008526293560862541,
-0.04005759209394455,
-0.0424480065703392,
0.036212753504514694,
0.04685218259692192,
0.09185699373483658,
-0.06488583981990814,
-0.01143644843250513,
0.03610547259449959,
0.019371746107935905,
-0.0924636721611023,
0.009304463863372803,
0.01192731224000454,
0.07009893655776978,
0.046488020569086075,
0.02590271644294262,
0.028108734637498856,
-0.049567271023988724,
0.3198179304599762,
-0.0890841856598854,
-0.047562774270772934,
-0.136295348405838,
0.19172942638397217,
0.03763269633054733,
-0.04481242597103119,
0.0711260661482811,
-0.11645901948213577,
-0.008343267254531384,
0.12385593354701996,
0.1721751093864441,
-0.03396644443273544,
-0.026692455634474754,
0.00942530483007431,
-0.015325423330068588,
-0.01867896318435669,
0.08351735770702362,
0.07153074443340302,
-0.012830361723899841,
-0.0719555988907814,
0.015874970704317093,
0.025135286152362823,
-0.038801975548267365,
-0.03789997473359108,
0.15115368366241455,
0.012710749171674252,
0.017590636387467384,
-0.051893725991249084,
0.07791098952293396,
-0.002509601879864931,
-0.17429907619953156,
0.012397686019539833,
-0.17502911388874054,
-0.2121913582086563,
-0.017968684434890747,
0.04850781708955765,
-0.0359199158847332,
0.05045371130108833,
0.03691872954368591,
-0.0027478013653308153,
0.09628153592348099,
0.00022724595328327268,
-0.028278108686208725,
-0.1352173388004303,
0.10949314385652542,
-0.058408599346876144,
0.21345703303813934,
-0.01347288116812706,
0.0635138675570488,
0.09119165688753128,
0.0018684148089960217,
-0.1408184915781021,
-0.012827698141336441,
0.07328040152788162,
-0.04797050356864929,
0.06486042588949203,
0.19436542689800262,
-0.03341925889253616,
0.10002455115318298,
0.04085748642683029,
-0.10508811473846436,
-0.047872938215732574,
-0.06115204095840454,
0.01386383268982172,
-0.07111508399248123,
0.015565003268420696,
-0.05231618881225586,
0.17513303458690643,
0.19123244285583496,
-0.046472255140542984,
-0.026123370975255966,
-0.07979544252157211,
0.03944526985287666,
0.065747931599617,
0.06917974352836609,
-0.023169204592704773,
-0.20020045340061188,
-0.0033311627339571714,
0.024351023137569427,
0.022239936515688896,
-0.26973772048950195,
-0.09814892709255219,
0.09413491189479828,
-0.07758531719446182,
-0.021628689020872116,
0.1155499741435051,
0.0680319145321846,
0.02612406015396118,
-0.05255347117781639,
-0.06252781301736832,
-0.04149599373340607,
0.09280218183994293,
-0.16643564403057098,
-0.05257660150527954
] |
null | null | transformers |
# Bangla LLaMA 7B Instruct v0.1
Welcome to the inaugural release of the Bangla LLaMA 7B instruct model – an important step in advancing LLMs for the Bangla language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks.
## Model description
The Bangla LLaMA models have been enhanced and tailored specifically with an extensive Bangla vocabulary of 16,000 tokens, building upon the foundation set by the original LLaMA-2.
- **Model type:** A 7B parameter GPT-like model fine-tuned on [Bangla-Alpaca-Orca](https://huggingface.co/datasets/BanglaLLM/Bangla-alpaca-orca) - a mix of Bangla-translated [Stanford-Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca) and a subset of [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca) datasets.
- **Language(s):** Bangla and English
- **License:** GNU General Public License v3.0
- **Finetuned from model:** [BanglaLLM/Bangla-llama-7b-base-v0.1](https://huggingface.co/BanglaLLM/Bangla-llama-7b-base-v0.1)
- **Training Precision:** `float16`
- **Code:** [GitHub](https://github.com/BanglaLLM/Bangla-llama)
## Prompting Format
**Prompt Template Without Input**
```
{system_prompt}
### Instruction:
{instruction or query}
### Response:
{response}
```
**Prompt Template With Input**
```
{system_prompt}
### Instruction:
{instruction or query}
### Input:
{input}
### Response:
{response}
```
## Related Models
| Model | Type | Data | Base Model | # Params | Download Links |
|--------------------------|-----------------------------|-------------------|----------------------|------|------------------------------------------------------------------------|
| Bangla LLaMA 7B Base | Base model | 12GB | LLaMA 7B | 7B | [HF Hub](https://huggingface.co/BanglaLLM/Bangla-llama-7b-base-v0.1) |
| Bangla LLaMA 13B Base | Base model | 4GB | LLaMA 13B | 13B | [HF Hub](https://huggingface.co/BanglaLLM/Bangla-llama-13b-base-v0.1) |
| Bangla LLaMA 7B Instruct | Instruction following model | 145k instructions | Bangla LLaMA 7B Base | 7B | [HF Hub](https://huggingface.co/BanglaLLM/Bangla-llama-7b-instruct-v0.1) |
| Bangla LLaMA 13B Instruct | Instruction following model | 145k instructions | Bangla LLaMA 13B Base | 13B | [HF Hub](BanglaLLM/Bangla-llama-13b-instruct-v0.1) |
## Usage Note
It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications.
## Meet the Developers
Get to know the creators behind this innovative model and follow their contributions to the field:
- [Abdullah Khan Zehady](https://www.linkedin.com/in/abdullah-khan-zehady-915ba024/)
## Citation
We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Bangla language. | {"language": ["bn", "en"], "license": "llama2"} | text-generation | BanglaLLM/bangla-llama-7b-instruct-v0.1 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"bn",
"en",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T21:27:43+00:00 | [] | [
"bn",
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #bn #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Bangla LLaMA 7B Instruct v0.1
=============================
Welcome to the inaugural release of the Bangla LLaMA 7B instruct model – an important step in advancing LLMs for the Bangla language. This model is ready for immediate inference and is also primed for further fine-tuning to cater to your specific NLP tasks.
Model description
-----------------
The Bangla LLaMA models have been enhanced and tailored specifically with an extensive Bangla vocabulary of 16,000 tokens, building upon the foundation set by the original LLaMA-2.
* Model type: A 7B parameter GPT-like model fine-tuned on Bangla-Alpaca-Orca - a mix of Bangla-translated Stanford-Alpaca and a subset of OpenOrca datasets.
* Language(s): Bangla and English
* License: GNU General Public License v3.0
* Finetuned from model: BanglaLLM/Bangla-llama-7b-base-v0.1
* Training Precision: 'float16'
* Code: GitHub
Prompting Format
----------------
Prompt Template Without Input
Prompt Template With Input
Related Models
--------------
Usage Note
----------
It's important to note that the models have not undergone detoxification. Therefore, while they possess impressive linguistic capabilities, there is a possibility for them to generate content that could be deemed harmful or offensive. We urge users to exercise discretion and supervise the model's outputs closely, especially in public or sensitive applications.
Meet the Developers
-------------------
Get to know the creators behind this innovative model and follow their contributions to the field:
* Abdullah Khan Zehady
We hope this model serves as a valuable tool in your NLP toolkit and look forward to seeing the advancements it will enable in the understanding and generation of the Bangla language.
| [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #bn #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
57
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #bn #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
0.00039963179733604193,
0.03100491687655449,
-0.007689902558922768,
0.0236776452511549,
0.1258000135421753,
0.01841018721461296,
0.1510808914899826,
0.11516890674829483,
0.008001531474292278,
-0.03450804203748703,
0.14374718070030212,
0.21446096897125244,
-0.01299569383263588,
0.005974415689706802,
-0.07826937735080719,
-0.243387833237648,
0.033496931195259094,
0.062039460986852646,
0.028200756758451462,
0.1104864850640297,
0.0843810886144638,
-0.07109877467155457,
0.07808190584182739,
-0.02887132577598095,
-0.13169366121292114,
0.03530477359890938,
0.027938170358538628,
-0.10670400410890579,
0.1096852570772171,
0.07201817631721497,
0.08726633340120316,
0.04146689176559448,
-0.040089502930641174,
-0.19912168383598328,
0.027764474973082542,
-0.03002116084098816,
-0.07767846435308456,
0.05437033623456955,
0.06572148203849792,
-0.06171515956521034,
0.12834538519382477,
0.09635129570960999,
-0.031747713685035706,
0.054592665284872055,
-0.13066156208515167,
-0.029740307480096817,
-0.0346870981156826,
0.04474359378218651,
0.06027894839644432,
0.07389005273580551,
0.007491770666092634,
0.090741828083992,
-0.09369948506355286,
0.08351615071296692,
0.15510603785514832,
-0.3430435359477997,
0.014169045723974705,
0.09794238209724426,
0.08391988277435303,
0.03857037425041199,
-0.044311728328466415,
0.08596581220626831,
0.04933265596628189,
-0.001197698642499745,
0.0338626466691494,
-0.08480820804834366,
-0.059534136205911636,
0.06436925381422043,
-0.07172621786594391,
-0.05111704394221306,
0.2219865471124649,
-0.04604332894086838,
0.05342669039964676,
-0.02978081814944744,
-0.06475381553173065,
-0.04335566982626915,
-0.00979163683950901,
0.03352437540888786,
-0.017983121797442436,
0.07701990008354187,
0.054583579301834106,
-0.0528685599565506,
-0.1293538510799408,
-0.008890986442565918,
-0.20501655340194702,
0.14181284606456757,
0.015383665449917316,
0.043161239475011826,
-0.17773957550525665,
0.09239122271537781,
0.053518809378147125,
-0.10387299209833145,
0.007060840260237455,
-0.05644809082150459,
0.09187544882297516,
0.0212559811770916,
-0.05222187936306,
-0.019018951803445816,
0.09104157239198685,
0.12702420353889465,
0.04100329801440239,
-0.009672271087765694,
-0.08290392905473709,
0.12921437621116638,
0.012458717450499535,
0.05748553201556206,
0.007262629456818104,
-0.036011748015880585,
0.05796250328421593,
-0.09432518482208252,
0.03589311242103577,
-0.03703644499182701,
-0.17928047478199005,
-0.034440070390701294,
0.014073411002755165,
0.10480373352766037,
0.006072054151445627,
0.0699680745601654,
-0.051366399973630905,
-0.008546954020857811,
0.018316250294446945,
-0.07984145730733871,
-0.008999865502119064,
-0.000935689895413816,
0.001041586510837078,
0.08508473634719849,
0.024133743718266487,
0.01347039919346571,
-0.08499184250831604,
0.0809287279844284,
-0.07874024659395218,
-0.013879086822271347,
-0.05372854322195053,
-0.04411569982767105,
0.05348232015967369,
-0.10544142872095108,
0.043818648904561996,
-0.1459655463695526,
-0.1950463503599167,
0.030450081452727318,
0.01354280300438404,
-0.038217708468437195,
-0.04624710604548454,
-0.028230538591742516,
-0.03482498973608017,
0.011380515992641449,
-0.09090231359004974,
0.02202509343624115,
-0.07254661619663239,
0.11759715527296066,
-0.03644835203886032,
0.05348995700478554,
-0.15396854281425476,
0.06720874458551407,
-0.09738647192716599,
0.012428635731339455,
-0.022840695455670357,
0.034559376537799835,
-0.01869348995387554,
0.10808514058589935,
-0.013729255646467209,
-0.01306686457246542,
-0.05574223771691322,
0.055200137197971344,
-0.03884982317686081,
0.1699940711259842,
-0.1131235882639885,
-0.10601221770048141,
0.1754467487335205,
-0.07498863339424133,
-0.17364627122879028,
0.07280892878770828,
-0.005117499735206366,
0.07820719480514526,
0.08614000678062439,
0.18422594666481018,
0.017513474449515343,
-0.03602069616317749,
0.06161961331963539,
0.0902368500828743,
-0.054031144827604294,
-0.14957118034362793,
0.03188066557049751,
-0.005349782761186361,
-0.08195944130420685,
0.05082157254219055,
0.065046526491642,
0.06953375786542892,
-0.0414699949324131,
-0.06104915961623192,
-0.030839843675494194,
-0.02422269806265831,
0.004263648763298988,
0.00394799979403615,
0.09564094245433807,
-0.04644758626818657,
-0.005914347246289253,
0.07772733271121979,
0.0067346165888011456,
0.008949050679802895,
0.043241363018751144,
-0.0529877170920372,
0.1312638223171234,
-0.026734910905361176,
0.036227595061063766,
-0.15185783803462982,
-0.03369409963488579,
-0.024943390861153603,
0.07869657874107361,
0.038206689059734344,
0.07918420433998108,
0.030362272635102272,
-0.023256491869688034,
-0.0336247980594635,
0.02075224742293358,
0.14126934111118317,
0.00003593964720494114,
-0.05773024633526802,
-0.10274713486433029,
0.05236048623919487,
-0.045151639729738235,
-0.022559907287359238,
-0.07138907164335251,
0.015229917131364346,
0.03482264280319214,
0.09614717960357666,
-0.01369383279234171,
0.0682544857263565,
-0.02554209530353546,
0.026217713952064514,
-0.08818408101797104,
0.04260149225592613,
0.11946795135736465,
-0.01610274240374565,
-0.09507033973932266,
0.18824899196624756,
-0.1462714821100235,
0.2621750831604004,
0.2076086550951004,
-0.23637942969799042,
0.05158565193414688,
-0.09068156033754349,
-0.03184454143047333,
0.00011081383127020672,
0.04597749188542366,
-0.03011121228337288,
0.06895357370376587,
0.008235706016421318,
0.18362103402614594,
-0.07548843324184418,
-0.0601915642619133,
-0.015899714082479477,
-0.04350297898054123,
-0.030198469758033752,
0.09503760188817978,
0.1815510094165802,
-0.13465790450572968,
0.18086834251880646,
0.2497747838497162,
0.019733255729079247,
0.20077042281627655,
-0.027697140350937843,
-0.02211826667189598,
0.037999480962753296,
-0.023809025064110756,
-0.03180379420518875,
-0.012925046496093273,
-0.14915169775485992,
-0.004467676859349012,
0.0744965523481369,
0.008714205585420132,
0.08870827406644821,
-0.14132380485534668,
-0.07709675282239914,
-0.02971075475215912,
-0.019772343337535858,
0.0013503945665434003,
0.09013306349515915,
0.027144264429807663,
0.12263942509889603,
-0.03793177381157875,
-0.05973798781633377,
0.09827511012554169,
-0.0037013404071331024,
-0.07750886678695679,
0.17771822214126587,
-0.11437850445508957,
-0.2618994116783142,
-0.17897330224514008,
-0.1673201471567154,
-0.05946248024702072,
0.022734642028808594,
0.10482608526945114,
-0.04227307438850403,
-0.02192295528948307,
-0.009026127867400646,
0.06655540317296982,
-0.0793808326125145,
-0.0013066905084997416,
-0.05718133971095085,
0.059615105390548706,
-0.08615455776453018,
-0.11097824573516846,
-0.06279086321592331,
-0.021967973560094833,
-0.04083240404725075,
0.1102355569601059,
-0.09565897285938263,
0.06649607419967651,
0.16439330577850342,
0.03116457536816597,
0.03239762410521507,
-0.03801896795630455,
0.17329491674900055,
-0.05954023823142052,
-0.006490441504865885,
0.193914532661438,
-0.038687895983457565,
0.06656859070062637,
0.1551823914051056,
0.04660075902938843,
-0.095100998878479,
0.01335546001791954,
-0.017504315823316574,
-0.08511221408843994,
-0.2463100403547287,
-0.10829798132181168,
-0.11480458825826645,
0.06610159575939178,
0.019025769084692,
0.06686916947364807,
0.1354481279850006,
0.06429518759250641,
-0.00926440954208374,
0.0030091649387031794,
0.009165347553789616,
0.08137744665145874,
0.2956153452396393,
-0.031813692301511765,
0.1312772035598755,
-0.06961861252784729,
-0.10502154380083084,
0.07673409581184387,
0.1002812534570694,
0.13174669444561005,
0.11253007501363754,
0.07132120430469513,
0.061690736562013626,
0.0599687285721302,
0.12253932654857635,
0.10508326441049576,
0.003159754676744342,
-0.011339602060616016,
-0.03999870643019676,
-0.043708622455596924,
-0.02142428234219551,
0.047607824206352234,
-0.0050253127701580524,
-0.1028086245059967,
-0.031894609332084656,
-0.13346843421459198,
0.047399844974279404,
0.09125497192144394,
0.03790725767612457,
-0.18087363243103027,
0.04328330233693123,
0.10798877477645874,
-0.03998284786939621,
-0.08407087624073029,
0.09623529762029648,
-0.031238799914717674,
-0.09580818563699722,
0.05858447030186653,
-0.026253830641508102,
0.1276492029428482,
-0.051987141370773315,
0.08364824205636978,
-0.060172196477651596,
-0.10380727797746658,
0.03713517263531685,
0.11134345829486847,
-0.323539137840271,
0.23269937932491302,
0.009172078222036362,
-0.05310484394431114,
-0.07432928681373596,
-0.01306238304823637,
0.00023747466912027448,
0.1315969079732895,
0.11559757590293884,
-0.014860003255307674,
0.00027950279763899744,
-0.07618142664432526,
-0.014188428409397602,
0.025274712592363358,
0.09500951319932938,
-0.04732028767466545,
0.008736209012567997,
-0.04101960361003876,
0.007046594750136137,
-0.011481297202408314,
0.024814195930957794,
0.00499182753264904,
-0.16421374678611755,
0.06389656662940979,
0.0604083351790905,
0.06887499988079071,
-0.00031052669510245323,
-0.03977123647928238,
-0.11082306504249573,
0.17105212807655334,
-0.13845892250537872,
-0.09025376290082932,
-0.0942036584019661,
-0.09851621836423874,
0.059110887348651886,
-0.05723205581307411,
0.03574329987168312,
-0.0750390961766243,
-0.006368307396769524,
-0.08507581800222397,
-0.1988401859998703,
0.10183899104595184,
-0.07478971779346466,
-0.03388943895697594,
-0.04795410856604576,
0.18294352293014526,
-0.0889466181397438,
0.024605775251984596,
0.02199610322713852,
0.01699426956474781,
-0.09087175130844116,
-0.09714306145906448,
-0.005901865195482969,
0.009568894281983376,
0.04527965188026428,
-0.021556010469794273,
-0.15255442261695862,
0.011052114889025688,
-0.01483594998717308,
-0.06511756777763367,
0.2675971984863281,
0.2270585000514984,
-0.046767108142375946,
0.1808474063873291,
0.15788178145885468,
-0.13351255655288696,
-0.3002731502056122,
-0.1326807141304016,
-0.14033588767051697,
-0.030965834856033325,
-0.01453777402639389,
-0.18689578771591187,
0.08598260581493378,
0.04600173979997635,
-0.03159858658909798,
0.14793355762958527,
-0.2820972204208374,
-0.1049380823969841,
0.1565587967634201,
0.007156871259212494,
0.3669073283672333,
-0.16150420904159546,
-0.10656687617301941,
-0.0712006613612175,
-0.1384093016386032,
0.16844354569911957,
0.0010301837464794517,
0.12082559615373611,
-0.05104940012097359,
0.10170739144086838,
0.022365858778357506,
-0.033418554812669754,
0.10652504861354828,
0.01579093374311924,
0.03189196065068245,
-0.10415566712617874,
-0.04816662520170212,
0.05155651643872261,
0.008032895624637604,
0.019926514476537704,
-0.1270199865102768,
0.003662294941022992,
-0.15354059636592865,
-0.04203014075756073,
-0.05461868643760681,
0.07425397634506226,
0.0013892152346670628,
-0.07348562777042389,
-0.022757483646273613,
-0.030256150290369987,
-0.003895790781825781,
-0.005072197411209345,
0.21954123675823212,
-0.06302928924560547,
0.1299687922000885,
0.163323774933815,
0.12175735831260681,
-0.11522255837917328,
0.02555488795042038,
-0.0877765342593193,
-0.0668373554944992,
0.0727396309375763,
-0.10998402535915375,
0.02069256454706192,
0.14341183006763458,
-0.026782136410474777,
0.06981410086154938,
0.08857400715351105,
0.004234542604535818,
-0.009626478888094425,
0.1428283452987671,
-0.20185548067092896,
-0.03375408425927162,
-0.038435522466897964,
-0.0005451614269986749,
0.09166592359542847,
0.03876584768295288,
0.1452634632587433,
-0.005026735365390778,
-0.014114901423454285,
0.024004202336072922,
0.008838124573230743,
-0.05498720332980156,
0.06101951375603676,
0.02293020859360695,
0.019846251234412193,
-0.12817628681659698,
0.0873248279094696,
0.022012460976839066,
-0.092504121363163,
-0.003958105109632015,
0.14066749811172485,
-0.10385801643133163,
-0.11143277585506439,
-0.07067035138607025,
0.10489288717508316,
-0.1946348249912262,
-0.03520084545016289,
-0.04835576191544533,
-0.16183321177959442,
0.0873117744922638,
0.2202673703432083,
0.07331735640764236,
0.08791062235832214,
-0.04319976270198822,
-0.047330982983112335,
-0.005841527134180069,
0.030677368864417076,
-0.04429720714688301,
0.01982804201543331,
-0.07101590931415558,
0.0031806963961571455,
-0.010355575941503048,
0.11982230097055435,
-0.07662578672170639,
-0.05004839971661568,
-0.14686159789562225,
0.05061836540699005,
-0.1810462921857834,
-0.04521346464753151,
-0.06777427345514297,
-0.03953879699110985,
-0.009646476246416569,
-0.03344302624464035,
-0.06548214703798294,
-0.05619901791214943,
-0.11827033758163452,
0.017969006672501564,
-0.025751644745469093,
0.07484845817089081,
-0.08728618174791336,
-0.026478281244635582,
0.08515587449073792,
-0.021757252514362335,
0.10917794704437256,
0.07510827481746674,
-0.0677291676402092,
0.10833549499511719,
-0.12784937024116516,
-0.053884461522102356,
0.10447347164154053,
0.032765574753284454,
0.027659205719828606,
0.05324752256274223,
0.01077474094927311,
0.09132832288742065,
0.01855727843940258,
0.06156758964061737,
-0.015499837696552277,
-0.1436333805322647,
-0.006365438457578421,
-0.02490742690861225,
-0.13857991993427277,
-0.03356311842799187,
-0.05689767003059387,
0.05345777049660683,
0.010894627310335636,
0.14100684225559235,
-0.034903667867183685,
0.0644727274775505,
-0.056309767067432404,
0.03869614377617836,
0.0024324399419128895,
-0.17695015668869019,
-0.07833526283502579,
-0.1029946357011795,
-0.015617404133081436,
-0.00394660048186779,
0.28781893849372864,
0.0353301465511322,
-0.07416320592164993,
0.043365247547626495,
0.0789460837841034,
-0.005395420361310244,
0.0038961386308073997,
0.2684534788131714,
0.1066509336233139,
-0.019473470747470856,
-0.1135689914226532,
0.05608801916241646,
-0.002037764061242342,
0.013041957281529903,
0.11043490469455719,
0.0913643166422844,
-0.01205997820943594,
0.08614636957645416,
0.06347724795341492,
0.023758916184306145,
-0.051706746220588684,
-0.08634679764509201,
0.03522501513361931,
0.06731830537319183,
-0.028662238270044327,
0.1422596126794815,
0.17377819120883942,
-0.040702756494283676,
0.04073568806052208,
-0.017139503732323647,
-0.021096577867865562,
-0.17280647158622742,
-0.15286466479301453,
-0.06190706044435501,
-0.07691023498773575,
0.024390071630477905,
-0.08636157214641571,
0.047756582498550415,
0.07257653772830963,
0.06518800556659698,
-0.06770561635494232,
0.04017225652933121,
0.017153406515717506,
-0.08305252343416214,
0.04920182377099991,
-0.024762101471424103,
0.04117054119706154,
-0.09521535784006119,
0.0036345170810818672,
-0.07936947047710419,
-0.032129742205142975,
-0.05019708722829819,
0.06486977636814117,
-0.022846577689051628,
0.0010149532463401556,
-0.15020166337490082,
-0.08207627385854721,
-0.04885214567184448,
0.0546828992664814,
0.005891055334359407,
0.15040379762649536,
-0.012516397051513195,
-0.022556748241186142,
0.04558714106678963,
0.177068829536438,
-0.04757624492049217,
-0.09768015146255493,
0.021664775907993317,
0.1974608153104782,
0.03539074584841728,
0.09825435280799866,
-0.02498006820678711,
0.016936950385570526,
-0.06865201145410538,
0.3563738465309143,
0.30281028151512146,
-0.08957317471504211,
0.01871534436941147,
0.02771264873445034,
0.04449569061398506,
0.10652880370616913,
0.10991809517145157,
0.09204764664173126,
0.2870418429374695,
-0.07128086686134338,
-0.02773047238588333,
-0.05588487535715103,
0.0006315141217783093,
-0.09961120784282684,
0.1186366006731987,
0.03509176895022392,
-0.08305145800113678,
-0.04625101014971733,
0.0734371766448021,
-0.2277628630399704,
0.10613082349300385,
-0.047711215913295746,
-0.15855270624160767,
-0.04416690394282341,
-0.01734999567270279,
0.13248442113399506,
-0.000570899632293731,
0.043321844190359116,
-0.038000669330358505,
-0.081830233335495,
0.027866769582033157,
0.012120101600885391,
-0.24073727428913116,
-0.00042014484643004835,
0.0712294653058052,
0.002631555777043104,
0.016302291303873062,
-0.018516026437282562,
0.05879293382167816,
0.05746180936694145,
0.048405468463897705,
-0.03885558620095253,
0.08551619201898575,
0.03259602561593056,
-0.056688763201236725,
0.022426128387451172,
-0.0017793134320527315,
0.02331581711769104,
-0.05117538943886757,
0.04963437840342522,
-0.03932167589664459,
0.05729499086737633,
-0.03497404232621193,
-0.08841677010059357,
-0.013087786734104156,
0.023441670462489128,
-0.06566902250051498,
0.05974689871072769,
0.06132481247186661,
-0.0057695587165653706,
-0.029465172439813614,
-0.08071205765008926,
-0.006587418261915445,
0.014502249658107758,
-0.13234500586986542,
-0.06485714018344879,
-0.07300214469432831,
-0.07915813475847244,
0.09436783939599991,
-0.003475506789982319,
-0.24987107515335083,
-0.002151616383343935,
-0.09002591669559479,
0.04427620768547058,
-0.18205176293849945,
0.06975547969341278,
0.1406642198562622,
0.013302133418619633,
-0.00869064312428236,
-0.14345841109752655,
0.053318049758672714,
0.03474859893321991,
-0.11295264959335327,
-0.08103921264410019
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | vaicai/kaifa-support-chat-adapters-v6 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:28:19+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers | # BigWeave v16 103b
<img src="https://cdn-uploads.huggingface.co/production/uploads/65a6db055c58475cf9e6def1/4CbbAN-X7ZWj702JrcCGH.png" width=600>
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
# Prompting Format
Mistral, Vicuna and Alpaca.
# Merge process
This is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).
Merge configuration:
```
slices:
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [0,11]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [9,13]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [11,15]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [13,17]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [15,23]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [21,25]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [23,49]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [47,51]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [49,53]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [51,55]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [53,57]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [55,59]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [57,61]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [59,63]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [61,65]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [63,67]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [65,69]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [67,71]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [69,73]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [71,75]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [73,80]
merge_method: passthrough
dtype: float16
``` | {"language": ["en"], "license": "unknown", "tags": ["frankenmerge", "103b"], "pipeline_tag": "conversational"} | text-generation | llmixer/BigWeave-v16-103b | [
"transformers",
"safetensors",
"llama",
"text-generation",
"frankenmerge",
"103b",
"conversational",
"en",
"license:unknown",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T21:31:33+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #frankenmerge #103b #conversational #en #license-unknown #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # BigWeave v16 103b
<img src="URL width=600>
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
# Prompting Format
Mistral, Vicuna and Alpaca.
# Merge process
This is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).
Merge configuration:
| [
"# BigWeave v16 103b\n\n<img src=\"URL width=600>\n\nThe BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.",
"# Prompting Format\nMistral, Vicuna and Alpaca.",
"# Merge process\nThis is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).\n\nMerge configuration:"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #frankenmerge #103b #conversational #en #license-unknown #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# BigWeave v16 103b\n\n<img src=\"URL width=600>\n\nThe BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.",
"# Prompting Format\nMistral, Vicuna and Alpaca.",
"# Merge process\nThis is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).\n\nMerge configuration:"
] | [
68,
68,
14,
83
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #frankenmerge #103b #conversational #en #license-unknown #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# BigWeave v16 103b\n\n<img src=\"URL width=600>\n\nThe BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.# Prompting Format\nMistral, Vicuna and Alpaca.# Merge process\nThis is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).\n\nMerge configuration:"
] | [
-0.07715773582458496,
-0.17462724447250366,
-0.003285014070570469,
0.09219557046890259,
0.03862214833498001,
0.02202368713915348,
0.15449514985084534,
0.07369052618741989,
0.01859489269554615,
0.08589854836463928,
0.013218404725193977,
0.0016761468723416328,
0.05426916107535362,
0.129720076918602,
-0.04067983105778694,
-0.17308878898620605,
0.04220687970519066,
-0.004518609959632158,
-0.1004703938961029,
0.031109390780329704,
0.11650314182043076,
-0.09241072833538055,
0.07258660346269608,
0.0049956319853663445,
-0.12380184978246689,
0.06727549433708191,
-0.007503088563680649,
-0.007007610518485308,
0.1355380117893219,
0.13706204295158386,
0.05781421810388565,
0.016518794000148773,
-0.017010049894452095,
-0.019668232649564743,
0.03008878231048584,
0.025219863280653954,
0.03387231007218361,
0.06674934923648834,
0.12104660272598267,
0.08031763136386871,
-0.03153139352798462,
-0.05084683746099472,
-0.015131756663322449,
0.05987638235092163,
-0.04996079206466675,
-0.10826614499092102,
-0.11660228669643402,
0.043845225125551224,
0.03433939069509506,
-0.06990913301706314,
0.015767091885209084,
0.12090126425027847,
-0.0071272109635174274,
0.05198873206973076,
0.10560812801122665,
-0.35549214482307434,
-0.012309764511883259,
0.19138506054878235,
0.1038830354809761,
-0.010673354379832745,
0.014957287348806858,
0.01900641992688179,
0.04570445045828819,
0.019108368083834648,
0.04044688493013382,
-0.019873015582561493,
0.022084075957536697,
-0.04353240877389908,
-0.0978902205824852,
0.051634740084409714,
0.1505441963672638,
0.040426068007946014,
-0.03013569861650467,
-0.16298918426036835,
-0.18398985266685486,
0.12923116981983185,
0.021205002442002296,
-0.03142160922288895,
0.05058836564421654,
-0.0006199499475769699,
0.10382822155952454,
0.02188234031200409,
-0.04827561601996422,
0.017867503687739372,
-0.21335041522979736,
0.035362113267183304,
0.05994465574622154,
0.05792802572250366,
-0.04243664816021919,
0.01882992871105671,
-0.08418983221054077,
-0.10796326398849487,
-0.015424010343849659,
-0.07672359049320221,
-0.0864901915192604,
0.0209248885512352,
-0.0662635862827301,
-0.13730496168136597,
0.07281872630119324,
0.1794813573360443,
0.04795439913868904,
0.03807542473077774,
-0.005539029836654663,
0.0765601322054863,
0.027867408469319344,
0.024622004479169846,
-0.13189838826656342,
-0.06800621747970581,
0.07353316247463226,
-0.03239903971552849,
0.07685639709234238,
-0.022199219092726707,
-0.11505348235368729,
-0.11347994953393936,
-0.04729747399687767,
-0.007775459438562393,
-0.006925192661583424,
0.041371941566467285,
-0.042807579040527344,
-0.022273240610957146,
0.024952707812190056,
-0.12307432293891907,
0.04088621959090233,
-0.048662398010492325,
0.006285627838224173,
0.10527677088975906,
0.029174698516726494,
0.0012025577016174793,
-0.021563144400715828,
0.044749341905117035,
-0.04763541370630264,
-0.07067687064409256,
-0.050621211528778076,
-0.10802322626113892,
0.04699184373021126,
-0.07282094657421112,
-0.04144769534468651,
-0.10949970036745071,
-0.09306264668703079,
-0.01046016626060009,
0.020727286115288734,
-0.03640463203191757,
-0.012261432595551014,
0.029395289719104767,
0.10253144800662994,
-0.026439914479851723,
-0.04840637743473053,
0.05529666319489479,
-0.017534105107188225,
-0.027111226692795753,
0.012962919659912586,
0.1597185879945755,
-0.09104195982217789,
-0.00015347718726843596,
-0.028543749824166298,
0.08599188923835754,
-0.08556467294692993,
0.044387977570295334,
0.032981887459754944,
-0.026995260268449783,
-0.07520011812448502,
0.020749961957335472,
-0.01237388327717781,
0.05042493715882301,
0.03614793345332146,
0.03496532514691353,
-0.15934842824935913,
-0.04955935850739479,
0.16208569705486298,
-0.07728844881057739,
-0.11234232038259506,
0.17625533044338226,
-0.007359749171882868,
-0.041646022349596024,
0.079905204474926,
0.06414340436458588,
0.039658818393945694,
-0.02256712317466736,
-0.06540479511022568,
0.0350075401365757,
-0.05238868296146393,
-0.022764936089515686,
0.11293324828147888,
0.06074078008532524,
0.02012760564684868,
0.04432057961821556,
0.11326704919338226,
0.03842896968126297,
-0.034574974328279495,
-0.011595012620091438,
-0.10994497686624527,
0.009255481883883476,
-0.03499298542737961,
-0.09236539155244827,
0.022763097658753395,
-0.08345238119363785,
-0.05137624591588974,
-0.006909636780619621,
0.051177967339754105,
-0.06130070984363556,
0.01634535938501358,
-0.042178645730018616,
0.15304937958717346,
-0.12987585365772247,
0.029552850872278214,
-0.08849948644638062,
-0.07962877303361893,
0.030711866915225983,
-0.04436345770955086,
0.0003165554953739047,
0.1978043019771576,
0.01875738799571991,
0.05800184980034828,
-0.032109733670949936,
0.06925075501203537,
0.09896466135978699,
-0.0764278993010521,
-0.054904304444789886,
-0.09123379737138748,
-0.07998723536729813,
-0.04119175672531128,
0.011580527760088444,
-0.007758584339171648,
0.031489428132772446,
-0.031150784343481064,
0.19031484425067902,
-0.033846233040094376,
0.04563421383500099,
-0.00175370997749269,
-0.003299881238490343,
-0.10512576997280121,
-0.01892286166548729,
0.04615291580557823,
-0.029279928654432297,
-0.16134712100028992,
0.1683741807937622,
-0.14858709275722504,
0.10888934880495071,
0.05599554628133774,
0.02172931283712387,
0.03694156929850578,
-0.1029425859451294,
-0.048811279237270355,
-0.041414059698581696,
-0.08254960924386978,
-0.08662757277488708,
0.11931400746107101,
0.015698233619332314,
0.170639306306839,
-0.0922752097249031,
-0.039651475846767426,
0.0074080354534089565,
-0.011655423790216446,
-0.05507715418934822,
0.001241174410097301,
0.012170502915978432,
-0.09746421128511429,
0.06784329563379288,
0.16415782272815704,
0.07168137282133102,
0.11317834258079529,
-0.01375451497733593,
-0.028296735137701035,
-0.021237844601273537,
0.00019372912356629968,
-0.0017150439089164138,
-0.08563988655805588,
0.009153010323643684,
0.08026974648237228,
0.10799355059862137,
0.09153633564710617,
0.023458147421479225,
-0.06175798177719116,
0.06942963600158691,
0.07109720259904861,
0.019009331241250038,
0.008820237591862679,
0.07037363201379776,
0.05423812195658684,
0.09154532104730606,
0.02185594104230404,
-0.027235347777605057,
0.002381425816565752,
-0.02203766256570816,
-0.05061564967036247,
0.14000096917152405,
-0.05377150699496269,
-0.2544792890548706,
-0.24355363845825195,
-0.12600815296173096,
-0.13280074298381805,
0.01285215001553297,
0.03231021761894226,
0.024319833144545555,
-0.08347976952791214,
-0.08008478581905365,
0.18448381125926971,
0.058442723006010056,
0.06478231400251389,
0.019588064402341843,
0.018612777814269066,
0.023918258026242256,
-0.17631983757019043,
-0.006569618824869394,
0.011253835633397102,
-0.02918079122900963,
0.048395611345767975,
0.013972657732665539,
0.06546931713819504,
0.05355976149439812,
-0.06045247241854668,
-0.07807718217372894,
-0.003298236057162285,
0.10319048911333084,
-0.01202497910708189,
0.08892301470041275,
0.2542975842952728,
-0.10787801444530487,
0.05101696029305458,
0.13131597638130188,
0.02112177573144436,
-0.055563781410455704,
0.0038104893174022436,
-0.02516450546681881,
-0.08342061936855316,
-0.194229856133461,
-0.048045217990875244,
-0.11682356148958206,
0.03925006836652756,
0.03547081723809242,
0.016666743904352188,
-0.14136137068271637,
0.04838242381811142,
-0.07685202360153198,
0.13412271440029144,
0.011517111212015152,
0.015714580193161964,
0.18631505966186523,
-0.027361247688531876,
0.1468324065208435,
-0.0529312938451767,
-0.07118991017341614,
0.10086574405431747,
0.08895614743232727,
0.16405680775642395,
-0.00404685502871871,
0.08391113579273224,
0.059962913393974304,
-0.02895156666636467,
0.08236117660999298,
0.15020295977592468,
-0.07458437234163284,
0.006231269333511591,
-0.08519818633794785,
-0.06002966687083244,
0.1012498065829277,
0.007445767521858215,
-0.059678688645362854,
0.051952607929706573,
-0.08255388587713242,
0.03158216550946236,
0.050213709473609924,
0.16814354062080383,
0.1277109533548355,
-0.2827683985233307,
-0.07025282829999924,
0.08531492203474045,
-0.059109993278980255,
-0.056533560156822205,
-0.02182888425886631,
0.1867067664861679,
-0.040862757712602615,
0.18906119465827942,
-0.0036275633610785007,
0.11400052905082703,
-0.012035027146339417,
0.026311295107007027,
-0.07658728212118149,
0.11566708236932755,
0.03174636885523796,
0.05643178150057793,
-0.08688302338123322,
0.08256059885025024,
0.050264060497283936,
-0.04412999376654625,
-0.06680557876825333,
0.10190130770206451,
-0.02884187176823616,
0.06652762740850449,
-0.02112545073032379,
-0.03338120877742767,
-0.044065218418836594,
0.04691212996840477,
-0.12827453017234802,
0.0422891303896904,
-0.001308842096477747,
0.03540552034974098,
0.07299530506134033,
-0.0652693584561348,
-0.027278825640678406,
-0.004352965857833624,
0.08521924167871475,
-0.038746967911720276,
-0.16695791482925415,
0.03120868094265461,
0.1238437071442604,
-0.07562302052974701,
-0.06134195253252983,
-0.04238596931099892,
-0.12832559645175934,
0.2768489122390747,
-0.08551677316427231,
-0.023992331698536873,
-0.07575388997793198,
0.08445879817008972,
0.15033012628555298,
-0.03325701877474785,
0.021850619465112686,
-0.08017554134130478,
0.15840506553649902,
-0.07246850430965424,
-0.17489029467105865,
0.07583414763212204,
-0.06797722727060318,
-0.09735848009586334,
-0.05928146466612816,
0.1258200854063034,
-0.13103431463241577,
0.03564828261733055,
0.016401272267103195,
0.014824955724179745,
-0.06930005550384521,
-0.020404456183314323,
-0.014445807784795761,
0.20583069324493408,
0.03123718686401844,
0.140411838889122,
-0.07568129897117615,
-0.09876211732625961,
0.10178223252296448,
0.009537199512124062,
0.1614321619272232,
0.2780579626560211,
-0.08014531433582306,
0.09650371223688126,
0.10373619198799133,
-0.04797835275530815,
-0.2414865344762802,
-0.04944019392132759,
-0.026047103106975555,
0.13368631899356842,
-0.0012245659017935395,
0.0423307865858078,
0.12205401808023453,
0.17214028537273407,
0.033922117203474045,
0.06551750004291534,
-0.28606006503105164,
-0.15380261838436127,
-0.037699345499277115,
-0.05247581750154495,
0.3296610116958618,
0.009702222421765327,
-0.011603512801229954,
-0.12369173765182495,
-0.09137686342000961,
-0.03329504281282425,
-0.05673430114984512,
0.1116824597120285,
-0.06062834709882736,
-0.07474106550216675,
0.020628638565540314,
-0.0325978584587574,
0.13813281059265137,
-0.01192252803593874,
0.0416535958647728,
-0.0918300449848175,
0.09547846019268036,
0.04168281704187393,
-0.045261163264513016,
0.11537512391805649,
-0.12203890830278397,
-0.002320675877854228,
0.04395810887217522,
-0.06344928592443466,
0.031151728704571724,
0.07218117266893387,
0.01929272711277008,
-0.0116796949878335,
-0.09154786169528961,
-0.05716406926512718,
0.001394886989146471,
-0.0014863465912640095,
0.1541515290737152,
-0.011637800373136997,
0.06427255272865295,
0.13271567225456238,
0.10340731590986252,
-0.273117333650589,
-0.08729049563407898,
-0.0031205597333610058,
0.005654373671859503,
0.08425483852624893,
-0.09877496212720871,
0.07203804701566696,
0.15482676029205322,
-0.08594626188278198,
0.007344723213464022,
0.11856802552938461,
-0.029599284753203392,
0.010959070175886154,
0.14040955901145935,
-0.08769585937261581,
-0.1874038428068161,
0.034441981464624405,
-0.04750415310263634,
-0.07904880493879318,
0.0020987223833799362,
0.195523202419281,
-0.02106950618326664,
-0.010164673440158367,
0.045640092343091965,
0.004794629756361246,
-0.03943558409810066,
0.136796772480011,
-0.029707076027989388,
0.030900463461875916,
-0.06791681051254272,
0.11120966076850891,
0.0618806928396225,
-0.12126079201698303,
-0.06406857073307037,
0.06201058253645897,
-0.06870439648628235,
-0.04603810980916023,
0.012788743712008,
0.12974490225315094,
0.019554344937205315,
-0.02595273032784462,
-0.12738573551177979,
-0.1395888477563858,
0.08320682495832443,
0.0381227470934391,
0.059748612344264984,
0.06953639537096024,
-0.03468633070588112,
-0.055464908480644226,
-0.048420608043670654,
0.0733935609459877,
0.025700965896248817,
0.15119069814682007,
-0.14726541936397552,
0.08971057832241058,
-0.08678591251373291,
0.06378282606601715,
-0.04872411489486694,
-0.011035395786166191,
-0.09340739995241165,
-0.05106835439801216,
-0.15012657642364502,
-0.03774870187044144,
-0.037879545241594315,
-0.0302922073751688,
0.0014086381997913122,
0.03972300514578819,
-0.01352202519774437,
0.0075498963706195354,
-0.00928314309567213,
-0.04221204295754433,
-0.07700435817241669,
0.04493109509348869,
-0.054551512002944946,
-0.0312766432762146,
0.029831279069185257,
-0.08477167785167694,
0.10509894788265228,
-0.08383696526288986,
-0.08432216942310333,
-0.09863384813070297,
-0.14593693614006042,
-0.1220385730266571,
0.089621402323246,
0.08821958303451538,
0.024889374151825905,
-0.05787466838955879,
0.06702852994203568,
0.015505756251513958,
0.013806884177029133,
-0.007586791180074215,
0.000013493787264451385,
-0.07823091745376587,
0.01864052750170231,
-0.08305808156728745,
-0.04634987562894821,
-0.06506161391735077,
-0.05789296329021454,
0.03437598794698715,
0.14633223414421082,
0.12285928428173065,
-0.022713743150234222,
-0.00004275036189937964,
-0.1777854859828949,
-0.015110849402844906,
-0.013026285916566849,
-0.16969671845436096,
0.006581994704902172,
-0.06679332256317139,
0.04346553608775139,
-0.005461886990815401,
0.20482981204986572,
0.05143077298998833,
-0.05739608779549599,
0.022200776264071465,
0.04663548618555069,
-0.01958988979458809,
0.034509412944316864,
0.10874822735786438,
0.03216560557484627,
0.016303883865475655,
-0.053783681243658066,
0.027535248547792435,
0.07780824601650238,
0.008108343929052353,
0.09405624866485596,
0.0874326303601265,
-0.03446362912654877,
0.090061254799366,
0.11581192165613174,
-0.04451729357242584,
-0.11449627578258514,
-0.09881527721881866,
-0.001990401651710272,
0.114503413438797,
-0.010911780409514904,
-0.03251394256949425,
0.059654369950294495,
-0.0972115769982338,
0.052093636244535446,
-0.03912967070937157,
-0.004930783063173294,
-0.1431594043970108,
0.02859295718371868,
-0.10131268203258514,
-0.05906369909644127,
-0.05554662644863129,
-0.08884874731302261,
-0.017745034769177437,
0.07647296041250229,
0.01341452356427908,
0.023691266775131226,
0.05822020396590233,
-0.1331043541431427,
-0.057263314723968506,
-0.025205418467521667,
0.004259682260453701,
0.03588968142867088,
0.10368027538061142,
-0.04453407973051071,
-0.016043158248066902,
0.04540019482374191,
0.008963920176029205,
0.04548043757677078,
0.16098515689373016,
0.006844277959316969,
-0.11551692336797714,
-0.05051441863179207,
-0.0481426827609539,
-0.02661547064781189,
0.0025564490351825953,
-0.05191563442349434,
0.04509139806032181,
-0.05303622782230377,
-0.017785154283046722,
0.09185504168272018,
-0.034703176468610764,
-0.07671921700239182,
-0.0679352730512619,
0.11480893194675446,
-0.016029836609959602,
0.06630570441484451,
0.01370164193212986,
-0.030264323577284813,
-0.10868959128856659,
0.1365344524383545,
0.23433555662631989,
0.011801988817751408,
-0.046376097947359085,
0.013346315361559391,
0.009214876219630241,
0.024183709174394608,
0.17491431534290314,
0.0717402771115303,
0.26134610176086426,
0.0003536104632075876,
0.10905399173498154,
0.01567360758781433,
0.019324898719787598,
-0.14035402238368988,
0.09480640292167664,
-0.0629485547542572,
0.025790739804506302,
0.04430216923356056,
0.0208185613155365,
0.0804423987865448,
-0.04263854771852493,
0.023285066708922386,
-0.12321684509515762,
-0.10709333419799805,
-0.05829155817627907,
0.07255415618419647,
-0.07593905180692673,
0.08522436767816544,
-0.07880578935146332,
-0.019222840666770935,
0.12672102451324463,
-0.01886034943163395,
-0.12343139946460724,
-0.04100962355732918,
0.03026098571717739,
-0.01882243901491165,
0.021664051339030266,
0.031176183372735977,
0.07912702858448029,
0.08296334743499756,
-0.00917040929198265,
-0.11328548192977905,
-0.06538132578134537,
-0.023506442084908485,
0.04314913973212242,
0.05467002093791962,
0.0068822032772004604,
-0.042889777570962906,
0.028625067323446274,
0.04087822884321213,
-0.1761714667081833,
-0.01277090609073639,
-0.017357556149363518,
-0.04528031125664711,
-0.044325776398181915,
0.04703688248991966,
-0.017353098839521408,
0.0916047915816307,
0.17394079267978668,
-0.030998587608337402,
-0.04649629071354866,
-0.04471999406814575,
0.030972808599472046,
0.03701967000961304,
0.0707428827881813,
-0.009263349696993828,
-0.1505531370639801,
0.00035460450453683734,
0.025783691555261612,
0.010266328230500221,
-0.21043580770492554,
-0.13456739485263824,
-0.06412280350923538,
-0.03154204040765762,
-0.06924111396074295,
0.07185634225606918,
0.13277095556259155,
0.02013101428747177,
-0.02762375771999359,
-0.2800936996936798,
0.015943344682455063,
-0.008173237554728985,
-0.04440778121352196,
-0.06938845664262772
] |
null | null | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "273.53 +/- 17.16", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | apry/ppo-LunarLander-v2 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-06T21:32:03+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
39,
41,
17
] | [
"passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.03942384943366051,
0.04900386184453964,
-0.005304091144353151,
0.026427261531352997,
0.107408307492733,
-0.026511888951063156,
0.11188238859176636,
0.0814051404595375,
0.10722193866968155,
0.04762078449130058,
0.08338645845651627,
0.06030960753560066,
0.05080918222665787,
0.2571701407432556,
0.04754156619310379,
-0.22987541556358337,
0.036159250885248184,
-0.04869936779141426,
0.12395193427801132,
0.07178173214197159,
-0.0038484656251966953,
-0.06485428661108017,
0.020415637642145157,
-0.013290755450725555,
0.05367108806967735,
0.04282612353563309,
-0.01716216839849949,
-0.08207534998655319,
0.07169748842716217,
-0.06345846503973007,
0.06986866891384125,
0.07677983492612839,
0.13218913972377777,
-0.17832116782665253,
0.029566360637545586,
0.02571309357881546,
-0.07189024239778519,
0.01342033501714468,
0.008019951172173023,
0.05120139941573143,
0.17303818464279175,
0.019879888743162155,
0.07844575494527817,
-0.0025605305563658476,
-0.15412317216396332,
-0.018950799480080605,
0.0436202734708786,
0.12546207010746002,
0.08808347582817078,
0.04605821147561073,
0.01970590092241764,
0.17503218352794647,
-0.054352790117263794,
-0.028833400458097458,
0.21759237349033356,
-0.2881564497947693,
-0.031460098922252655,
0.321048766374588,
0.06997483223676682,
0.09725230932235718,
-0.07540661096572876,
-0.03619609400629997,
0.007783263456076384,
-0.013137873262166977,
-0.028666524216532707,
-0.07447073608636856,
0.17313385009765625,
0.05152064561843872,
-0.05057951435446739,
-0.09541505575180054,
0.16948209702968597,
0.006921638268977404,
0.0018855923553928733,
-0.019282981753349304,
0.009060598909854889,
0.07402525842189789,
-0.016097044572234154,
-0.07255112379789352,
0.057438433170318604,
0.05330665782094002,
0.019649166613817215,
-0.1435653269290924,
-0.10762494057416916,
-0.022740179672837257,
-0.008012006990611553,
0.17786912620067596,
-0.009255532175302505,
0.042902372777462006,
0.003065188182517886,
0.10384012013673782,
-0.12480384111404419,
-0.03354184702038765,
-0.0454259067773819,
-0.07565800100564957,
-0.0223417766392231,
-0.02058211714029312,
-0.03580251708626747,
0.07184842973947525,
0.11971849203109741,
0.027368178591132164,
0.09350208193063736,
0.047715865075588226,
-0.03206788748502731,
0.06343851238489151,
0.05555703118443489,
0.14222665131092072,
0.05807621404528618,
0.012854371219873428,
0.13179877400398254,
0.055213116109371185,
0.033023182302713394,
-0.0613492950797081,
-0.18252409994602203,
0.07489913702011108,
-0.07031869143247604,
0.007941240444779396,
0.12051256000995636,
-0.04480670019984245,
-0.1183447614312172,
-0.037500523030757904,
-0.017392054200172424,
-0.06224250793457031,
-0.025395862758159637,
0.0547584593296051,
-0.02883218228816986,
-0.03973718360066414,
0.0011496668448671699,
0.09384800493717194,
0.00953749567270279,
-0.1752052903175354,
0.03303423151373863,
-0.025042934343218803,
-0.10782608389854431,
0.009975161403417587,
0.0022444494534283876,
0.03394931182265282,
0.04408763721585274,
-0.11822668462991714,
-0.30899152159690857,
-0.07652641832828522,
0.05490870401263237,
-0.06516939401626587,
-0.18425025045871735,
-0.13193942606449127,
0.02454492449760437,
-0.09037084132432938,
-0.044885024428367615,
-0.12759265303611755,
-0.028549788519740105,
0.01743689924478531,
0.011519349180161953,
0.10758619755506516,
-0.0106219332665205,
-0.012188062071800232,
-0.1571401208639145,
0.008273907005786896,
-0.20951123535633087,
0.0890483483672142,
-0.019150104373693466,
0.037884220480918884,
-0.032381169497966766,
-0.07404014468193054,
0.030707746744155884,
0.052499737590551376,
-0.01474119070917368,
0.13510210812091827,
-0.15592676401138306,
-0.03691192343831062,
-0.007996266707777977,
-0.13611900806427002,
-0.04786273464560509,
-0.10358831286430359,
-0.04357128217816353,
0.13354332745075226,
0.018664736300706863,
0.15356586873531342,
-0.08709818124771118,
-0.0722038671374321,
0.20489206910133362,
-0.010411538183689117,
-0.12820468842983246,
-0.076752208173275,
0.10165707021951675,
0.021510310471057892,
-0.056606587022542953,
-0.02523270808160305,
-0.1839766949415207,
-0.0152357779443264,
-0.04550420492887497,
-0.047039128839969635,
0.01796751655638218,
-0.010888241231441498,
0.13837894797325134,
0.08494598418474197,
0.05018039792776108,
-0.06086122244596481,
-0.006730288732796907,
0.10779471695423126,
0.08823856711387634,
0.008680110797286034,
0.023406028747558594,
-0.05774238705635071,
0.09552932530641556,
-0.04003755748271942,
-0.0142367510125041,
-0.08283266425132751,
-0.036246106028556824,
-0.026256313547492027,
0.17507147789001465,
0.09440762549638748,
0.2257927656173706,
0.09567736834287643,
0.039160262793302536,
0.031270865350961685,
-0.13181598484516144,
-0.1425403207540512,
-0.0017254541162401438,
0.09020978957414627,
-0.14270411431789398,
-0.04119925573468208,
-0.08974775671958923,
-0.17768175899982452,
-0.12202505767345428,
0.0006432619411498308,
-0.17960017919540405,
0.06390921026468277,
0.05408334732055664,
-0.035177867859601974,
0.03272094577550888,
0.13032332062721252,
-0.011533179320394993,
-0.03967514634132385,
0.0831870287656784,
0.0379033200442791,
-0.041234664618968964,
-0.021742934361100197,
0.11885567009449005,
0.15673065185546875,
0.13124459981918335,
-0.03511447086930275,
0.004914294462651014,
0.07076404243707657,
-0.02309088408946991,
0.06539414077997208,
0.0558244064450264,
0.20973342657089233,
0.188301220536232,
0.038996949791908264,
0.008822928182780743,
-0.07048165798187256,
0.0855446457862854,
-0.0742373839020729,
-0.14302679896354675,
-0.05579735338687897,
0.08729292452335358,
0.016605578362941742,
0.023469142615795135,
0.08711627870798111,
0.024545932188630104,
0.09132762253284454,
0.15968108177185059,
0.01990218088030815,
-0.09659269452095032,
-0.050218869000673294,
0.01175848301500082,
0.027713103219866753,
0.04794301092624664,
-0.04514073207974434,
-0.00937939714640379,
0.017020760104060173,
-0.10303554683923721,
0.031789086759090424,
-0.1413339376449585,
-0.1358717679977417,
0.044326696544885635,
0.003906996920704842,
0.010907664895057678,
0.02786896750330925,
-0.0038291432429105043,
0.019039705395698547,
0.04351753741502762,
-0.06975466758012772,
0.047416772693395615,
-0.024745507165789604,
-0.020031947642564774,
0.03340689837932587,
-0.057257164269685745,
-0.205775648355484,
-0.17696654796600342,
0.00013708483311347663,
-0.09910997003316879,
0.10194740444421768,
0.018308809027075768,
-0.12373185902833939,
0.047737859189510345,
-0.05822649225592613,
0.027574289590120316,
-0.01875593699514866,
-0.049130141735076904,
0.10507171601057053,
0.1525275856256485,
-0.016146350651979446,
0.018018173053860664,
-0.04865182936191559,
-0.10157987475395203,
-0.19632206857204437,
0.0691583976149559,
0.04680244252085686,
0.014610917307436466,
0.10669491440057755,
0.018072687089443207,
0.02367905154824257,
-0.007674071006476879,
-0.016521066427230835,
-0.011659215204417706,
-0.08781040459871292,
0.31909599900245667,
0.04510033503174782,
-0.025173069909214973,
0.02041010931134224,
-0.0043001663871109486,
-0.028083480894565582,
0.03263787180185318,
-0.0985708013176918,
-0.07548979669809341,
-0.08774089068174362,
-0.04367410019040108,
-0.09784720093011856,
0.053299110382795334,
0.05916472524404526,
0.003188040340319276,
-0.07727594673633575,
0.04221395403146744,
0.11369874328374863,
-0.0923808291554451,
-0.07137343287467957,
0.07477962225675583,
0.0972946360707283,
-0.07331304252147675,
0.00012658814375754446,
0.00874367356300354,
0.023951783776283264,
0.037102166563272476,
0.06778035312891006,
-0.03966575115919113,
0.08589404821395874,
-0.19917890429496765,
0.0372927263379097,
0.106058269739151,
0.023754918947815895,
0.0638108178973198,
0.07643651217222214,
-0.1058402881026268,
-0.008500572293996811,
-0.032518330961465836,
-0.21341575682163239,
0.1668180525302887,
0.1355515867471695,
0.06788124144077301,
-0.025637222453951836,
-0.00461410591378808,
-0.0649740919470787,
0.05773647129535675,
0.02723747305572033,
-0.14758841693401337,
0.004883295856416225,
0.06064270809292793,
0.026899009943008423,
0.01614922471344471,
0.07971042394638062,
0.014697225764393806,
-0.1801026314496994,
-0.014406266622245312,
0.10730406641960144,
0.002390873385593295,
0.0053148469887673855,
-0.03175045922398567,
-0.1755964607000351,
0.0751047357916832,
0.004285442177206278,
0.07233936339616776,
-0.1676585078239441,
0.14297930896282196,
-0.10089799761772156,
0.07726949453353882,
-0.004285062663257122,
-0.021311495453119278,
0.02507244050502777,
-0.0541163794696331,
0.15163759887218475,
0.01058570109307766,
-0.021810131147503853,
-0.1200498715043068,
-0.1717042326927185,
-0.019227758049964905,
-0.11788936704397202,
-0.11679866164922714,
0.050424277782440186,
0.062185097485780716,
0.04923136904835701,
-0.061147067695856094,
0.1518532931804657,
-0.047422297298908234,
0.060713399201631546,
-0.06893875449895859,
-0.06755045056343079,
0.03764858841896057,
-0.12588608264923096,
-0.08176055550575256,
0.05573027580976486,
0.19166934490203857,
0.15833087265491486,
-0.02816431224346161,
-0.03472423925995827,
-0.047419581562280655,
-0.006212298292666674,
-0.007802055217325687,
0.0275666993111372,
0.023223137483000755,
0.07315318286418915,
-0.07681374251842499,
-0.11649256944656372,
0.033787861466407776,
-0.06713802367448807,
-0.055589709430933,
-0.015439179725944996,
0.1513158082962036,
0.04671623185276985,
0.07720734924077988,
-0.018946662545204163,
0.03887668624520302,
-0.001724981120787561,
-0.056474871933460236,
0.16197094321250916,
0.03885216265916824,
-0.05193585529923439,
0.06837689876556396,
0.053174007683992386,
0.043745119124650955,
0.03011113777756691,
-0.026783017441630363,
0.206032395362854,
0.1980147808790207,
0.014206883497536182,
0.2175983190536499,
0.03177616000175476,
-0.03772832080721855,
-0.1300560086965561,
-0.065880686044693,
-0.006372632458806038,
0.03559038043022156,
0.08070417493581772,
-0.18207235634326935,
-0.015011128038167953,
-0.05689644813537598,
-0.034518610686063766,
-0.15059494972229004,
-0.28553900122642517,
-0.05957856774330139,
0.20075850188732147,
0.14706264436244965,
0.27519428730010986,
-0.10432573407888412,
0.035197313874959946,
0.02663275972008705,
-0.04912831634283066,
-0.006501141935586929,
0.00018665487004909664,
0.10268618166446686,
-0.15421873331069946,
0.1176437959074974,
0.08486983180046082,
-0.019002694636583328,
0.01058861706405878,
-0.1619086116552353,
0.00936629343777895,
-0.12191236019134521,
0.05354422330856323,
0.1400289237499237,
-0.048128653317689896,
-0.054873593151569366,
0.14033560454845428,
-0.024562934413552284,
-0.22685599327087402,
-0.04648222774267197,
-0.043600670993328094,
-0.010640020482242107,
0.026607351377606392,
-0.1013401448726654,
0.04101909324526787,
0.1330099105834961,
0.009380043484270573,
0.1147187277674675,
0.11749245226383209,
-0.052566803991794586,
0.10792597383260727,
0.2257719188928604,
-0.018785694614052773,
0.04689010605216026,
-0.12743118405342102,
-0.0012336712097749114,
-0.028270328417420387,
0.013657891191542149,
-0.09504974633455276,
-0.09938385337591171,
0.02366873063147068,
0.02872389927506447,
0.009118586778640747,
0.0921793207526207,
-0.029922157526016235,
0.0759170651435852,
0.06817561388015747,
-0.13014446198940277,
-0.16288450360298157,
0.015828335657715797,
-0.007344507612287998,
0.08354310691356659,
0.00027861111448146403,
0.08878035843372345,
-0.11932205408811569,
-0.018093237653374672,
-0.03153328225016594,
-0.03319635987281799,
-0.130486860871315,
-0.07138993591070175,
0.06156524643301964,
0.028095467016100883,
-0.06602972000837326,
0.1398407518863678,
0.026440169662237167,
0.15942534804344177,
0.049197953194379807,
0.012499804608523846,
0.07227300107479095,
-0.05345509201288223,
0.1283530443906784,
0.13818155229091644,
-0.00868943240493536,
-0.05460423603653908,
-0.1013643890619278,
-0.10236792266368866,
0.08925779908895493,
-0.05773641914129257,
0.07476430386304855,
-0.14885357022285461,
-0.06675903499126434,
0.015772046521306038,
0.016141414642333984,
-0.09562095999717712,
0.02571965754032135,
-0.01625603251159191,
-0.18119946122169495,
0.056570518761873245,
-0.048285093158483505,
0.0440407395362854,
-0.06347788125276566,
-0.1110161691904068,
-0.17226378619670868,
0.06091433763504028,
0.08593481779098511,
-0.053876690566539764,
-0.12229149043560028,
0.011023230850696564,
-0.00012518465518951416,
-0.06341652572154999,
-0.05023367330431938,
0.09722746908664703,
-0.11020902544260025,
0.031452205032110214,
-0.012567701749503613,
0.08853451162576675,
-0.03510405123233795,
-0.011538895778357983,
0.044220831245183945,
-0.08039166033267975,
-0.009481523185968399,
0.03534642979502678,
-0.026372017338871956,
-0.04127239063382149,
-0.2689029574394226,
0.0036654395516961813,
0.0341104120016098,
0.02497158572077751,
0.07856601476669312,
0.011906822212040424,
0.021174922585487366,
0.03993808850646019,
-0.15396519005298615,
-0.013395369984209538,
0.14574195444583893,
-0.07689505815505981,
-0.022186370566487312,
0.05703273415565491,
-0.09054436534643173,
0.013882770203053951,
-0.030287226662039757,
0.1345842480659485,
0.023923413828015327,
0.06404478847980499,
-0.0851147472858429,
0.10106813907623291,
-0.1451139897108078,
-0.04998219385743141,
-0.01244612317532301,
0.09761348366737366,
0.07019034773111343,
-0.10272270441055298,
0.014697125181555748,
0.04210108891129494,
0.19416837394237518,
0.016384804621338844,
-0.0356343574821949,
-0.03396720811724663,
0.004015897400677204,
0.22076453268527985,
0.03044266067445278,
0.10457023978233337,
0.07281364500522614,
-0.026583973318338394,
0.12624378502368927,
0.09929762035608292,
0.11280370503664017,
-0.055645186454057693,
0.13904185593128204,
0.04667386785149574,
0.038641396909952164,
0.0614289753139019,
0.06836545467376709,
0.09098632633686066,
-0.0008288522367365658,
0.1138714924454689,
0.013811973854899406,
-0.02422109805047512,
-0.021335409954190254,
0.17759373784065247,
0.10501719266176224,
-0.14769648015499115,
0.029047364369034767,
-0.01258957851678133,
0.039933037012815475,
-0.014194529503583908,
-0.15634691715240479,
-0.07240267097949982,
-0.3315149247646332,
0.1226184144616127,
-0.07119352370500565,
0.019930170848965645,
0.007913772016763687,
-0.037425633519887924,
-0.03296699747443199,
-0.04477746784687042,
0.13151589035987854,
-0.013641550205647945,
-0.006079165264964104,
-0.04815853759646416,
-0.015360191464424133,
-0.11607866734266281,
-0.11200575530529022,
-0.013207737356424332,
-0.13671602308750153,
-0.010119039565324783,
0.05595948174595833,
0.003977729007601738,
0.01821410097181797,
-0.03142618387937546,
0.0024383175186812878,
0.06541839241981506,
-0.05751744285225868,
0.056182678788900375,
0.12097269296646118,
0.08766137808561325,
-0.1058853268623352,
0.031048951670527458,
0.2011747509241104,
0.04359564557671547,
-0.12483977526426315,
0.01449228823184967,
0.1819491684436798,
0.004885740112513304,
0.017068125307559967,
-0.006097703706473112,
-0.0540788508951664,
-0.07554277032613754,
0.1251034289598465,
0.08296554535627365,
-0.09985227137804031,
0.015833314508199692,
-0.0726347416639328,
-0.01594804972410202,
-0.06374675035476685,
0.10130585730075836,
0.09538925439119339,
0.04440245032310486,
-0.10621760785579681,
-0.08487539738416672,
-0.10891728103160858,
0.040588874369859695,
-0.08629853278398514,
-0.07311757653951645,
0.09629398584365845,
-0.07057105004787445,
-0.07029950618743896,
0.025521177798509598,
-0.17978744208812714,
-0.009467960335314274,
0.1711762249469757,
-0.24654000997543335,
-0.0916430801153183,
-0.10857923328876495,
0.14477859437465668,
0.016497576609253883,
0.1013975441455841,
-0.006207061931490898,
-0.007889035157859325,
-0.20577777922153473,
0.024890204891562462,
-0.05293011665344238,
-0.02073732763528824,
0.07814782857894897,
-0.09476397186517715,
0.22629831731319427,
-0.08276885002851486,
0.020940175279974937,
0.012659613974392414,
0.0870661810040474,
-0.030675338581204414,
0.09283176809549332,
-0.03660329803824425,
-0.12576518952846527,
-0.03620953485369682,
0.03001813031733036,
0.013904244638979435,
0.10071761906147003,
0.09772487729787827,
-0.03414725139737129,
0.03389119729399681,
0.09747414290904999,
0.04172342270612717,
-0.023843804374337196,
0.0360250361263752,
-0.17077107727527618,
0.02182629331946373,
-0.018498148769140244,
-0.06935930997133255,
0.03687669709324837,
-0.06603235751390457,
0.1639697551727295,
0.04022442549467087,
0.0670473501086235,
-0.036152735352516174,
0.0073931049555540085,
-0.014454689808189869,
-0.013775371946394444,
-0.026180334389209747,
-0.17259705066680908,
-0.10422050207853317,
-0.1347656100988388,
-0.012701659463346004,
-0.034971047192811966,
0.04591470584273338,
0.023234914988279343,
-0.0003200018545612693,
-0.014577031135559082,
-0.12090865522623062,
0.04360328987240791,
0.11146783083677292,
-0.04631396010518074,
-0.026193076744675636
] |
null | null | transformers |
# Model Card for Alpaca Dragon 72B V1
Fine tune of [Smaug 72b v0.1](https://huggingface.co/abacusai/Smaug-72B-v0.1) using an alpaca data set I have handy. The data is of planning and reasoning, which I use to help allow a model to break down a set of asks into a logical plan. For some odd reason it bumps the mmlu and winogrande? I would have expected the ARC to go up over those two, but this is often more of an artform than a science at times. All thanks to [Abacus.AI](https://huggingface.co/abacusai) for sharing their work.
I used the same dataset in training one of my owl series [Strix Rufipes 70B](https://huggingface.co/ibivibiv/strix-rufipes-70b), which has worked well for planning out development tasks and other technical work.

# LICENSE
Note the license points back to SMAUG base license as it is a fine tune of their model only. Respect and abide by their conditions. Again, many thanks to Abacus for making their work open and use that as inspiration to keep your work open and respect their license agreements.
[License Link](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT)
## How to Get Started with the Model
Use the code below to get started with the model.
```
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")
model = AutoModelForCausalLM.from_pretrained("ibivibiv/alpaca-dragon-72b-v1")
inputs = tokenizer("### Instruction: Create a plan for developing the game of snake in python using pygame.\n### Response:\n", return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
## Evaluation
| Test Name | Accuracy (%) |
|---------------------------------|--------------|
| All | 77.31 |
| arc:challenge | 70.82 |
| hellaswag | 69.84 |
| hendrycksTest-abstract_algebra | 42.00 |
| hendrycksTest-anatomy | 71.85 |
| hendrycksTest-astronomy | 86.84 |
| hendrycksTest-business_ethics | 82.00 |
| hendrycksTest-clinical_knowledge| 84.53 |
| hendrycksTest-college_biology | 93.06 |
| hendrycksTest-college_chemistry | 54.00 |
| hendrycksTest-college_computer_science | 65.00 |
| hendrycksTest-college_mathematics | 52.00 |
| hendrycksTest-college_medicine | 75.14 |
| hendrycksTest-college_physics | 55.88 |
| hendrycksTest-computer_security | 82.00 |
| hendrycksTest-conceptual_physics| 80.43 |
| hendrycksTest-econometrics | 60.53 |
| hendrycksTest-electrical_engineering | 79.31 |
| hendrycksTest-elementary_mathematics | 70.37 |
| hendrycksTest-formal_logic | 58.73 |
| hendrycksTest-global_facts | 54.00 |
| hendrycksTest-high_school_biology | 88.39 |
| hendrycksTest-high_school_chemistry | 66.01 |
| hendrycksTest-high_school_computer_science | 82.00 |
| hendrycksTest-high_school_european_history | 84.24 |
| hendrycksTest-high_school_geography | 94.44 |
| hendrycksTest-high_school_government_and_politics | 98.96 |
| hendrycksTest-high_school_macroeconomics | 82.05 |
| hendrycksTest-high_school_mathematics | 45.93 |
| hendrycksTest-high_school_microeconomics | 86.13 |
| hendrycksTest-high_school_physics | 54.97 |
| hendrycksTest-high_school_psychology | 92.84 |
| hendrycksTest-high_school_statistics | 68.98 |
| hendrycksTest-high_school_us_history | 91.67 |
| hendrycksTest-high_school_world_history | 89.87 |
| hendrycksTest-human_aging | 78.03 |
| hendrycksTest-human_sexuality | 89.31 |
| hendrycksTest-international_law | 90.91 |
| hendrycksTest-jurisprudence | 87.96 |
| hendrycksTest-logical_fallacies | 84.05 |
| hendrycksTest-machine_learning | 58.93 |
| hendrycksTest-management | 87.38 |
| hendrycksTest-marketing | 95.30 |
| hendrycksTest-medical_genetics | 86.00 |
| hendrycksTest-miscellaneous | 92.21 |
| hendrycksTest-moral_disputes | 83.53 |
| hendrycksTest-moral_scenarios | 69.72 |
| hendrycksTest-nutrition | 85.62 |
| hendrycksTest-philosophy | 83.60 |
| hendrycksTest-prehistory | 87.04 |
| hendrycksTest-professional_accounting | 65.96 |
| hendrycksTest-professional_law | 60.69 |
| hendrycksTest-professional_medicine | 82.72 |
| hendrycksTest-professional_psychology | 81.86 |
| hendrycksTest-public_relations | 75.45 |
| hendrycksTest-security_studies | 82.04 |
| hendrycksTest-sociology | 88.56 |
| hendrycksTest-us_foreign_policy | 94.00 |
| hendrycksTest-virology | 57.23 |
| hendrycksTest-world_religions | 89.47 |
| truthfulqa:mc | 72.6 |
| winogrande | 86.03 |
| gsm8k | 77.63 |
## Environmental Impact
- **Hardware Type:** [A100's..... more than I wanted to use since its all on my $$$]
- **Hours used:** [8]
- **Cloud Provider:** [runpod.io]
- **Compute Region:** [US]
- **Carbon Emitted:** [?] | {"language": ["en"], "license": "other", "library_name": "transformers"} | text-generation | ibivibiv/alpaca-dragon-72b-v1 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T21:41:16+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Model Card for Alpaca Dragon 72B V1
===================================
Fine tune of Smaug 72b v0.1 using an alpaca data set I have handy. The data is of planning and reasoning, which I use to help allow a model to break down a set of asks into a logical plan. For some odd reason it bumps the mmlu and winogrande? I would have expected the ARC to go up over those two, but this is often more of an artform than a science at times. All thanks to Abacus.AI for sharing their work.
I used the same dataset in training one of my owl series Strix Rufipes 70B, which has worked well for planning out development tasks and other technical work.
!img
LICENSE
=======
Note the license points back to SMAUG base license as it is a fine tune of their model only. Respect and abide by their conditions. Again, many thanks to Abacus for making their work open and use that as inspiration to keep your work open and respect their license agreements.
License Link
How to Get Started with the Model
---------------------------------
Use the code below to get started with the model.
Evaluation
----------
Environmental Impact
--------------------
* Hardware Type: [A100's..... more than I wanted to use since its all on my $$$]
* Hours used: [8]
* Cloud Provider: [URL]
* Compute Region: [US]
* Carbon Emitted: [?]
| [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
54
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #en #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.0013202495174482465,
0.03140603005886078,
-0.00538754602894187,
-0.001021703821606934,
0.12787993252277374,
-0.007575830444693565,
0.21155177056789398,
0.09407342225313187,
-0.010149005800485611,
-0.023015590384602547,
0.14765393733978271,
0.20792239904403687,
-0.029285365715622902,
0.05510586127638817,
-0.11327515542507172,
-0.18289698660373688,
0.07981094717979431,
-0.00550314923748374,
0.04655349999666214,
0.07831312716007233,
0.09768424183130264,
-0.05911431089043617,
0.09055885672569275,
-0.045811884105205536,
-0.09416691958904266,
0.04185808449983597,
0.06606967002153397,
-0.1424187570810318,
0.11124833673238754,
0.07524771243333817,
0.10535003989934921,
0.05923944339156151,
-0.010941394604742527,
-0.225552037358284,
0.018852299079298973,
-0.0050604455173015594,
-0.07524678111076355,
0.021572746336460114,
0.07103622704744339,
-0.0704038068652153,
0.05537426099181175,
0.06877567619085312,
-0.009096939116716385,
0.0766528993844986,
-0.12911812961101532,
-0.024201326072216034,
-0.04918285831809044,
-0.03078450821340084,
0.1035689041018486,
0.08983395248651505,
0.0055192625150084496,
0.12594209611415863,
-0.04870230332016945,
0.09413570165634155,
0.10688469558954239,
-0.35217294096946716,
0.03226137533783913,
0.1239834800362587,
0.0856194719672203,
0.025908730924129486,
-0.04861912131309509,
0.11109055578708649,
0.08262701332569122,
-0.024123989045619965,
0.045061398297548294,
-0.06487222015857697,
-0.06836321204900742,
0.04904122278094292,
-0.05533171445131302,
-0.03728644922375679,
0.22784331440925598,
-0.04909031093120575,
0.017416076734662056,
-0.07807741314172745,
-0.07081280648708344,
-0.006833077874034643,
-0.012486128136515617,
0.03949755057692528,
-0.006707479711622,
0.10157816112041473,
0.046533770859241486,
-0.023473715409636497,
-0.14729978144168854,
-0.013686058111488819,
-0.1845533698797226,
0.15776914358139038,
0.004713429603725672,
0.033083971589803696,
-0.15676972270011902,
0.05815630406141281,
0.024796931073069572,
-0.10189110785722733,
-0.003351954510435462,
-0.07303192466497421,
0.07581458985805511,
-0.023265469819307327,
-0.048481907695531845,
-0.08770720660686493,
0.13882382214069366,
0.1623401641845703,
0.020485825836658478,
0.004296391736716032,
-0.1260416954755783,
0.0933789312839508,
0.0070587219670414925,
0.035265807062387466,
0.04329930618405342,
-0.02414328046143055,
0.07649914920330048,
-0.10345359146595001,
0.0771850049495697,
-0.04496089741587639,
-0.1610659509897232,
0.0065914043225348,
0.010997447185218334,
0.14662574231624603,
-0.008741205558180809,
0.09370303153991699,
-0.04714961349964142,
0.06127581745386124,
0.0683782696723938,
-0.08638279885053635,
-0.007603938691318035,
-0.01194774266332388,
0.06516003608703613,
0.014915778301656246,
0.014491095207631588,
0.04067270830273628,
-0.05159608647227287,
0.07534734904766083,
-0.06649518013000488,
-0.037523917853832245,
-0.04798201844096184,
-0.0666777566075325,
0.06438814103603363,
-0.058934517204761505,
0.046363141387701035,
-0.18294717371463776,
-0.21342068910598755,
0.024842558428645134,
0.01126860547810793,
-0.01881493255496025,
0.0008375336183235049,
-0.03942215442657471,
-0.039018645882606506,
0.023991115391254425,
-0.08639300614595413,
-0.05862441286444664,
-0.09230055660009384,
0.08335341513156891,
-0.026842117309570312,
0.03139417991042137,
-0.15914775431156158,
0.03862103819847107,
-0.12089012563228607,
0.015604497864842415,
-0.030041899532079697,
0.023841187357902527,
-0.05185621231794357,
0.171051487326622,
-0.009297800250351429,
0.03271915763616562,
-0.055178601294755936,
0.08246368169784546,
-0.040315814316272736,
0.17930616438388824,
-0.13687461614608765,
-0.04956525191664696,
0.20034106075763702,
-0.13269038498401642,
-0.21665556728839874,
0.08583777397871017,
-0.01437817607074976,
0.08588823676109314,
0.10421586036682129,
0.1958928257226944,
0.010104267857968807,
-0.08352703601121902,
0.04471582546830177,
0.09131558984518051,
-0.08933105319738388,
-0.12428729236125946,
0.0009407806792296469,
-0.02613113261759281,
-0.13395634293556213,
0.0435917004942894,
0.08429403603076935,
0.051785655319690704,
-0.014764317311346531,
-0.05401741340756416,
-0.056823521852493286,
-0.0354149229824543,
-0.012193947099149227,
-0.03537303954362869,
0.06480798125267029,
-0.09694033116102219,
0.0037797135300934315,
0.028792673721909523,
-0.017161794006824493,
-0.005626099184155464,
0.01697089523077011,
-0.08054232597351074,
0.07297532260417938,
-0.016679994761943817,
0.04443155601620674,
-0.11610683798789978,
-0.12032923847436905,
-0.007711951155215502,
0.08103280514478683,
0.009268647991120815,
0.03767503425478935,
0.030586479231715202,
0.01286036055535078,
-0.014331328682601452,
0.003935957793146372,
0.21213337779045105,
0.03587406128644943,
-0.056622039526700974,
-0.0857960432767868,
0.09202493727207184,
-0.06757011264562607,
-0.02162470482289791,
-0.11680983752012253,
0.022372789680957794,
0.04353015869855881,
0.0888190045952797,
0.013746915385127068,
0.0724848136305809,
-0.020304575562477112,
0.012320214882493019,
-0.11630944907665253,
0.006615821737796068,
0.08141762018203735,
0.0016421418404206634,
-0.0953003391623497,
0.21712732315063477,
-0.22628211975097656,
0.3013753294944763,
0.20742738246917725,
-0.19281405210494995,
0.020712541416287422,
-0.09353956580162048,
0.009173541329801083,
0.014361990615725517,
-0.0005163720343261957,
-0.034287746995687485,
-0.01793723925948143,
-0.006476019509136677,
0.18327026069164276,
-0.07153619825839996,
-0.024360114708542824,
-0.004245660733431578,
-0.06753460317850113,
-0.05283920094370842,
0.057836975902318954,
0.1233106404542923,
-0.1731460839509964,
0.18797093629837036,
0.268662691116333,
0.04398440569639206,
0.15380187332630157,
-0.048488494008779526,
0.009904691018164158,
0.04300864413380623,
0.033019840717315674,
0.014890662394464016,
-0.043564993888139725,
-0.062226973474025726,
0.002193702617660165,
0.06282652169466019,
0.027339862659573555,
0.06183551996946335,
-0.14204584062099457,
-0.07213105261325836,
-0.0016889071557670832,
-0.03500598296523094,
0.012609899044036865,
0.08499269187450409,
0.00771736167371273,
0.11218009889125824,
-0.06960191577672958,
-0.05169049650430679,
0.12217611819505692,
-0.011747442185878754,
-0.09228216111660004,
0.18587054312229156,
-0.12707804143428802,
-0.25454604625701904,
-0.21261534094810486,
-0.1733274906873703,
-0.05292627960443497,
0.0704895630478859,
0.1325237900018692,
-0.03858144208788872,
-0.07695982605218887,
-0.07825005799531937,
0.01349393930286169,
-0.014022298157215118,
0.00873433519154787,
-0.057240553200244904,
0.08515294641256332,
-0.053949348628520966,
-0.11329307407140732,
-0.05628760904073715,
0.02875538356602192,
-0.04292132705450058,
0.11784879863262177,
-0.0762532651424408,
0.10297716408967972,
0.12161906808614731,
0.013161635026335716,
0.0014466155553236604,
-0.06097101792693138,
0.13497796654701233,
-0.05485651269555092,
-0.015953276306390762,
0.19560135900974274,
-0.05844530090689659,
0.05751601606607437,
0.18284110724925995,
0.018615489825606346,
-0.1302868127822876,
0.06139523163437843,
-0.029601097106933594,
-0.09870973974466324,
-0.23420080542564392,
-0.10286956280469894,
-0.08388783037662506,
0.08579889684915543,
0.029833994805812836,
0.08375944197177887,
0.14266030490398407,
0.07705556601285934,
-0.019506482407450676,
0.004896130878478289,
0.06480905413627625,
0.09920106828212738,
0.27151891589164734,
-0.02041216939687729,
0.13499954342842102,
-0.11290548741817474,
-0.11846932023763657,
0.07850088179111481,
0.0790720283985138,
0.10597287118434906,
0.14017651975154877,
0.0671437531709671,
0.057390980422496796,
0.04455535486340523,
0.12787143886089325,
0.13139262795448303,
0.050783660262823105,
-0.034724678844213486,
-0.023571375757455826,
-0.04407949000597,
-0.01763651706278324,
0.06464632600545883,
-0.09498704224824905,
-0.12947505712509155,
-0.03360700607299805,
-0.07949075847864151,
0.06218348816037178,
0.09405605494976044,
0.03531885892152786,
-0.2210603952407837,
0.05833086371421814,
0.12833021581172943,
-0.02788744866847992,
-0.08587455004453659,
0.12086044996976852,
0.0027510132640600204,
-0.0458778515458107,
0.10458751022815704,
-0.03515082970261574,
0.10778672993183136,
-0.014073830097913742,
0.08307933807373047,
-0.08610953390598297,
-0.08673487603664398,
-0.000048414385673822835,
0.1160368099808693,
-0.30609023571014404,
0.21793948113918304,
0.015180008485913277,
0.0008749761618673801,
-0.07436774671077728,
0.0014506732113659382,
0.014479659497737885,
0.1798510104417801,
0.14599117636680603,
-0.04654521495103836,
-0.1642661988735199,
-0.08304715901613235,
-0.014790703542530537,
0.025144396349787712,
0.11126544326543808,
-0.005777333397418261,
0.02737315185368061,
-0.0697510689496994,
0.0009202433284372091,
0.011899047531187534,
-0.018896127119660378,
-0.04942227527499199,
-0.18458455801010132,
0.02032654918730259,
0.1150081604719162,
0.11154652386903763,
-0.03653847798705101,
0.013332727365195751,
-0.15688754618167877,
0.15232162177562714,
-0.11241574585437775,
-0.053970225155353546,
-0.11590419709682465,
-0.14368179440498352,
0.022691980004310608,
-0.02410433627665043,
0.04739319160580635,
-0.06189677119255066,
0.04495567828416824,
-0.09264220297336578,
-0.19281341135501862,
0.10905676335096359,
-0.10363849252462387,
-0.04465632885694504,
-0.049477700144052505,
0.13303598761558533,
-0.12327682226896286,
-0.03544742614030838,
0.05652696266770363,
0.03308270871639252,
-0.05365762859582901,
-0.10516943037509918,
-0.01415409054607153,
0.019326960667967796,
0.041458860039711,
-0.00923758652061224,
-0.1495697796344757,
-0.08151108026504517,
0.008956783451139927,
-0.08097731322050095,
0.22979769110679626,
0.2861918807029724,
-0.03611186519265175,
0.15464413166046143,
0.18098586797714233,
-0.12992209196090698,
-0.34899482131004333,
-0.1261942833662033,
-0.2072986513376236,
-0.04806673899292946,
0.05092807486653328,
-0.09922806918621063,
0.09219005703926086,
0.04729001969099045,
-0.052431173622608185,
0.11501826345920563,
-0.1901177018880844,
-0.11424018442630768,
0.16949176788330078,
0.03228617459535599,
0.34628674387931824,
-0.18968912959098816,
-0.10582657158374786,
-0.1317894011735916,
-0.09068328887224197,
0.1473618745803833,
-0.07678300142288208,
0.09354694932699203,
0.015132487751543522,
0.035938747227191925,
0.021275373175740242,
-0.04540315270423889,
0.10255566984415054,
-0.050165556371212006,
0.09886252135038376,
-0.14018112421035767,
0.02619510516524315,
0.0689411610364914,
-0.019473372027277946,
0.07226800918579102,
-0.17419160902500153,
0.01771644502878189,
-0.03297273814678192,
-0.05712786316871643,
0.002653583651408553,
0.09558220207691193,
0.015158949419856071,
-0.06478750705718994,
-0.02687293477356434,
-0.0610860176384449,
0.002736650174483657,
-0.028101006522774696,
0.2732011377811432,
-0.06111093983054161,
0.15023250877857208,
0.16864944994449615,
0.15369127690792084,
-0.11612501740455627,
0.12023472785949707,
-0.03974175453186035,
-0.09898580610752106,
0.06459221988916397,
-0.11946301907300949,
0.0611017644405365,
0.08522310107946396,
-0.061529070138931274,
0.0787096694111824,
0.0869055688381195,
0.026384854689240456,
-0.004271380137652159,
0.168186753988266,
-0.18993434309959412,
-0.07082411646842957,
-0.03216858208179474,
0.05306823551654816,
0.07868029922246933,
0.0690452829003334,
0.1699901819229126,
-0.010480660013854504,
0.022885050624608994,
-0.001433030003681779,
0.026373401284217834,
-0.024820920079946518,
0.040142495185136795,
0.002519375877454877,
0.010174133814871311,
-0.11939112842082977,
0.11270149797201157,
0.012929627671837807,
-0.10301408916711807,
0.025159496814012527,
0.09022054821252823,
-0.1327512413263321,
-0.12321650236845016,
-0.04379512369632721,
0.15224666893482208,
-0.17544835805892944,
-0.08326291292905807,
-0.05837268754839897,
-0.17397834360599518,
0.041503679007291794,
0.22970755398273468,
0.05536012351512909,
0.10204770416021347,
0.006995329633355141,
-0.050849102437496185,
-0.039217084646224976,
0.04030860215425491,
-0.05840834602713585,
0.0488097220659256,
-0.124858558177948,
-0.01640191487967968,
-0.04108867049217224,
0.04616609215736389,
-0.08718212693929672,
-0.012373365461826324,
-0.15609392523765564,
0.027055542916059494,
-0.17652936279773712,
-0.005494523793458939,
-0.08820024132728577,
-0.02048126794397831,
0.02099120244383812,
-0.013393553905189037,
-0.05144520103931427,
-0.05219132825732231,
-0.10116583853960037,
0.012521120719611645,
-0.029177093878388405,
0.07761289179325104,
-0.10565168410539627,
-0.043175648897886276,
0.06032736599445343,
-0.028549477458000183,
0.09382250905036926,
0.0331704244017601,
-0.0891982689499855,
0.10346602648496628,
-0.23749946057796478,
-0.04749312624335289,
0.1347571611404419,
0.010558352805674076,
0.013180030509829521,
0.07756376266479492,
-0.0029049597214907408,
0.13364267349243164,
0.011599026620388031,
0.05561136454343796,
-0.042818713933229446,
-0.12620332837104797,
0.002858666470274329,
-0.0164211206138134,
-0.12227903306484222,
-0.0077793532982468605,
-0.086807981133461,
0.08964458107948303,
-0.036403365433216095,
0.19980716705322266,
-0.07763989269733429,
0.03693049028515816,
-0.023476148024201393,
0.031107427552342415,
-0.00042195580317638814,
-0.18677669763565063,
-0.1209961324930191,
-0.09125595539808273,
-0.021207762882113457,
-0.004260356537997723,
0.3137936294078827,
0.04045761004090309,
-0.0539013110101223,
0.07041347771883011,
0.0421280600130558,
0.05066888406872749,
0.036984387785196304,
0.3095110058784485,
0.09132518619298935,
-0.019234858453273773,
-0.15255576372146606,
0.026521723717451096,
0.029911896213889122,
-0.09959543496370316,
0.057635772973299026,
0.10460302978754044,
-0.11499794572591782,
0.10396023094654083,
0.055500324815511703,
-0.0009620169294066727,
-0.027956131845712662,
-0.09868203848600388,
-0.024981610476970673,
0.05891028791666031,
-0.013476856984198093,
0.05877765640616417,
0.19896255433559418,
-0.01731426641345024,
0.004952661227434874,
-0.04185139760375023,
-0.024191441014409065,
-0.19546939432621002,
-0.15094026923179626,
-0.10603439062833786,
-0.09093385189771652,
0.035713955760002136,
-0.06977637857198715,
0.05893610790371895,
0.07004767656326294,
0.06404118984937668,
-0.03960784152150154,
0.08866246044635773,
-0.022547677159309387,
-0.04730096831917763,
0.016170796006917953,
-0.03747643530368805,
0.032847896218299866,
-0.03948057442903519,
-0.05508698523044586,
-0.07036004960536957,
-0.04796657711267471,
-0.06054217740893364,
0.06904355436563492,
0.015970798209309578,
0.056557849049568176,
-0.16270436346530914,
-0.06482600420713425,
-0.031789928674697876,
0.07833247631788254,
-0.026275034993886948,
0.12523747980594635,
0.016917698085308075,
-0.042902614921331406,
0.08363054692745209,
0.19897308945655823,
-0.05505882576107979,
-0.1370638757944107,
-0.018492652103304863,
0.19800232350826263,
0.032428812235593796,
0.13837125897407532,
-0.06017754226922989,
0.0027195096481591463,
-0.01815909519791603,
0.3271080553531647,
0.2753077745437622,
-0.053279682993888855,
0.026888197287917137,
-0.05647670850157738,
0.03407041355967522,
0.06618072837591171,
0.1227780133485794,
0.06166207417845726,
0.2283918559551239,
-0.0390365831553936,
-0.007447537500411272,
-0.013797247782349586,
0.014119586907327175,
-0.14584703743457794,
0.11927979439496994,
-0.016464101150631905,
-0.05702272430062294,
-0.02932332642376423,
0.10967274010181427,
-0.16002610325813293,
0.1108296811580658,
-0.05687025561928749,
-0.0832541286945343,
-0.0015910019865259528,
0.005937730427831411,
0.1629958152770996,
-0.029118670150637627,
0.02050640992820263,
-0.03770354017615318,
-0.07291751354932785,
0.0033600174356251955,
-0.008946124464273453,
-0.19945599138736725,
0.023538459092378616,
0.004092738498002291,
0.013589303940534592,
0.08355601876974106,
0.007792923133820295,
0.027356591075658798,
0.06939844787120819,
0.023004071786999702,
-0.05841244012117386,
0.1552589237689972,
0.018078256398439407,
-0.06543822586536407,
0.06702674180269241,
-0.06040937453508377,
-0.00537635013461113,
0.005258308257907629,
0.04011598229408264,
-0.08499725908041,
0.07157503813505173,
-0.024521810933947563,
-0.11451850831508636,
-0.02398257702589035,
0.013877167366445065,
-0.07216598093509674,
0.0767979770898819,
0.017387105152010918,
-0.0061112139374017715,
0.012777265161275864,
-0.031022733077406883,
0.03871345892548561,
-0.0008685396169312298,
-0.16493332386016846,
-0.02857980690896511,
-0.11066748946905136,
-0.06709692627191544,
0.16502267122268677,
0.013975785113871098,
-0.28218212723731995,
0.00491294777020812,
-0.10275176167488098,
0.05218784883618355,
-0.19165420532226562,
0.06232813373208046,
0.21838854253292084,
0.011362813413143158,
-0.025924405083060265,
-0.18401719629764557,
0.05614671856164932,
0.05815497785806656,
-0.04569508880376816,
-0.10799887776374817
] |
null | null | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="frntcx/q-learning", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-learning", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | frntcx/q-learning-frozenLake | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T21:42:16+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
40,
39
] | [
"passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
0.04578453302383423,
-0.08074592798948288,
-0.00430759321898222,
0.10720831900835037,
0.05034215748310089,
-0.040469273924827576,
0.11997015029191971,
0.018999949097633362,
0.20601962506771088,
-0.010012076236307621,
0.1455274522304535,
0.007022971753031015,
-0.006192410364747047,
0.1867983490228653,
0.04572829231619835,
-0.26324528455734253,
0.01831899583339691,
-0.09495259821414948,
-0.07281816750764847,
0.11870454251766205,
0.05470194295048714,
-0.01901467889547348,
-0.0007633853238075972,
0.056141503155231476,
-0.0673527717590332,
0.0007737681735306978,
0.031996939331293106,
-0.012976245954632759,
0.19804789125919342,
-0.02254498563706875,
0.06641989201307297,
0.054705578833818436,
0.0758768692612648,
-0.1998077929019928,
0.0358855277299881,
-0.04215473681688309,
-0.09439758956432343,
-0.03934839740395546,
-0.018780618906021118,
0.05878105387091637,
0.053356342017650604,
0.03858819976449013,
0.058354366570711136,
0.09384993463754654,
-0.0773480236530304,
0.04328357055783272,
0.04280758649110794,
0.024811049923300743,
0.04589218273758888,
-0.0237203948199749,
-0.027002155780792236,
0.08246652781963348,
-0.22182892262935638,
0.10318073630332947,
-0.010159241035580635,
-0.5270710587501526,
-0.00633762264624238,
0.24088262021541595,
0.11517096310853958,
0.05707438662648201,
-0.06903956830501556,
0.10566288232803345,
0.03913382440805435,
-0.007209456991404295,
0.03210983797907829,
0.02150118350982666,
0.12817370891571045,
0.06009242683649063,
-0.09581366181373596,
0.040699947625398636,
0.13722525537014008,
0.012822695076465607,
0.020306183025240898,
-0.08888901025056839,
0.0410032719373703,
-0.03461858257651329,
-0.007679527159780264,
-0.09758518636226654,
0.05478060990571976,
0.012466507963836193,
-0.0934976264834404,
-0.09247440844774246,
-0.04236573353409767,
-0.06708304584026337,
0.11252415925264359,
0.046419668942689896,
-0.0874939113855362,
0.03884070739150047,
-0.06760413944721222,
0.05918780341744423,
-0.16863860189914703,
0.02074250765144825,
-0.06627868115901947,
-0.09376336634159088,
-0.11799788475036621,
-0.01683047041296959,
-0.07946427166461945,
0.009092256426811218,
0.056664444506168365,
0.1447116881608963,
0.22076484560966492,
0.06690320372581482,
0.09728849679231644,
0.07456006109714508,
0.06531001627445221,
0.1538129299879074,
0.10918238013982773,
0.019075315445661545,
-0.015266558155417442,
0.0948706716299057,
-0.06445580720901489,
-0.1351388692855835,
-0.15579092502593994,
0.005488025024533272,
0.0983937531709671,
0.08871900290250778,
-0.044080477207899094,
-0.006702381651848555,
-0.024641724303364754,
0.08566431701183319,
-0.11314457654953003,
-0.024612564593553543,
-0.002267979085445404,
0.06882024556398392,
-0.024801667779684067,
0.020378148183226585,
-0.06242705136537552,
0.12715265154838562,
0.04222423583269119,
-0.059924717992544174,
-0.055308472365140915,
-0.03053177334368229,
-0.014276440255343914,
-0.027539284899830818,
0.02446848154067993,
-0.07659092545509338,
0.04767750948667526,
-0.16766095161437988,
-0.042871296405792236,
-0.04784649610519409,
0.025697942823171616,
-0.03907240927219391,
-0.13557587563991547,
-0.17699143290519714,
-0.048906855285167694,
-0.022438718006014824,
0.03549358621239662,
-0.038111843168735504,
0.006551501806825399,
-0.006318534724414349,
-0.1583600640296936,
0.09783563017845154,
0.09784027189016342,
-0.03643378987908363,
-0.02749447710812092,
0.056263517588377,
-0.07194498926401138,
0.1561182290315628,
-0.21054518222808838,
-0.054014235734939575,
-0.044764336198568344,
-0.06595750898122787,
0.19673264026641846,
0.012690845876932144,
-0.01202624011784792,
0.19873127341270447,
-0.29073721170425415,
-0.06078760325908661,
0.12533614039421082,
-0.07834373414516449,
-0.0936407670378685,
0.06941844522953033,
-0.04206686094403267,
0.023345354944467545,
0.046047765761613846,
0.36345911026000977,
-0.02069227211177349,
-0.16197136044502258,
-0.021782705560326576,
0.13971707224845886,
-0.1184760183095932,
0.059895481914281845,
0.04240793362259865,
0.12543781101703644,
-0.04250509291887283,
-0.018672896549105644,
-0.09023164212703705,
0.05999075248837471,
-0.05241934582591057,
-0.09016361832618713,
-0.03393383324146271,
-0.07645075023174286,
0.13294468820095062,
-0.0629684180021286,
0.05601520463824272,
-0.03255095332860947,
-0.07133250683546066,
-0.050324998795986176,
-0.016492370516061783,
0.04460815340280533,
0.05951254442334175,
-0.12794871628284454,
0.11029167473316193,
0.13025271892547607,
-0.0006193425506353378,
-0.07498852163553238,
-0.17872096598148346,
0.003240168560296297,
0.009576505981385708,
0.039837226271629333,
0.17141658067703247,
0.12209978699684143,
0.033295199275016785,
0.008770671673119068,
-0.06389404833316803,
-0.18276847898960114,
0.058129217475652695,
-0.056212130934000015,
-0.14230976998806,
-0.052409034222364426,
-0.0728459507226944,
0.017381802201271057,
-0.0859743058681488,
-0.017379917204380035,
0.021926190704107285,
0.006908397190272808,
0.02990424446761608,
-0.026645656675100327,
-0.049561817198991776,
0.021254703402519226,
0.06490101665258408,
-0.0037617047782987356,
0.12023693323135376,
0.008277264423668385,
-0.18308481574058533,
0.07930773496627808,
0.08478537946939468,
0.09196605533361435,
0.013250201940536499,
0.02685922384262085,
-0.021522263064980507,
-0.08061408251523972,
-0.054420311003923416,
0.02957955375313759,
0.11417073011398315,
0.1317172348499298,
0.2361993044614792,
0.08753683418035507,
0.04697408527135849,
-0.02164587564766407,
-0.016415923833847046,
0.002810494042932987,
-0.06318057328462601,
-0.029935607686638832,
0.10614971816539764,
0.05865858122706413,
-0.067733034491539,
-0.04576427489519119,
0.09590928256511688,
0.02732124738395214,
0.21205885708332062,
-0.03342745825648308,
0.01286078616976738,
-0.10957037657499313,
-0.06550975888967514,
-0.031982194632291794,
0.09201868623495102,
0.09498392790555954,
0.009755023755133152,
-0.022056059911847115,
-0.04259001836180687,
0.0012916827108711004,
-0.1334889680147171,
-0.10375088453292847,
0.026475343853235245,
0.013400445692241192,
-0.11206940561532974,
0.11674030870199203,
-0.11352457851171494,
0.039504457265138626,
0.06024791672825813,
-0.13837239146232605,
0.04428480193018913,
-0.029713207855820656,
-0.07886212319135666,
0.16866780817508698,
-0.11075661331415176,
-0.094340018928051,
-0.08831550180912018,
0.004082420375198126,
0.0075836325995624065,
-0.03922267258167267,
-0.009283260442316532,
-0.19952571392059326,
-0.005375816952437162,
-0.03544965013861656,
0.013616434298455715,
-0.06988783925771713,
-0.11287739872932434,
-0.010957922786474228,
0.07084179669618607,
-0.043388739228248596,
-0.07803605496883392,
0.007967432029545307,
-0.08923084288835526,
-0.10623309016227722,
0.028189711272716522,
0.019765101373195648,
-0.022883659228682518,
0.16152891516685486,
0.01816628873348236,
0.05626589432358742,
-0.03298520669341087,
0.30665266513824463,
-0.038163769990205765,
0.08371731638908386,
-0.02993497997522354,
-0.07433546334505081,
0.06130730360746384,
-0.022327827289700508,
0.06086638569831848,
-0.020221687853336334,
-0.02362890914082527,
0.0077952733263373375,
-0.08579335361719131,
-0.18365982174873352,
-0.05417544022202492,
0.03724347800016403,
0.195254847407341,
0.031118987128138542,
0.01910330168902874,
-0.0488768145442009,
-0.010547760874032974,
0.1665220558643341,
-0.10005921125411987,
0.04030545800924301,
-0.05366240441799164,
0.11506262421607971,
-0.08640182018280029,
0.06195629760622978,
0.020486772060394287,
0.04266135022044182,
-0.04877188801765442,
0.09486009180545807,
0.0826394334435463,
0.1121082529425621,
-0.02206910029053688,
0.046257395297288895,
0.019012698903679848,
0.07383184134960175,
0.11073657125234604,
0.0368414968252182,
-0.0729052945971489,
0.001982470043003559,
-0.006313489284366369,
-0.039427030831575394,
0.11933320760726929,
0.17963355779647827,
-0.11991413682699203,
-0.05106910318136215,
0.27167606353759766,
0.0031242913100868464,
0.19481229782104492,
-0.01315275114029646,
0.043591804802417755,
-0.04484925419092178,
0.04572054371237755,
-0.05338600277900696,
-0.04086209088563919,
0.2094656229019165,
0.08045925945043564,
-0.17165091633796692,
-0.08549032360315323,
-0.05912299454212189,
0.07081323862075806,
0.10728751868009567,
0.0013539529172703624,
-0.04156802222132683,
0.0004610282776411623,
0.0014198932331055403,
0.08339415490627289,
-0.14520122110843658,
0.11816094070672989,
-0.03172019124031067,
0.05612684786319733,
0.017555562779307365,
-0.045326150953769684,
0.04264266416430473,
0.07474290579557419,
0.26618310809135437,
0.0904107540845871,
-0.040318213403224945,
-0.0892091691493988,
-0.12260187417268753,
0.010461576282978058,
0.029102616012096405,
-0.03534553572535515,
0.0037547778338193893,
-0.020087555050849915,
0.0318896509706974,
0.008264793083071709,
0.016230624169111252,
-0.08987458795309067,
-0.03175399824976921,
-0.027736429125070572,
-0.023839212954044342,
0.10733365267515182,
-0.09495144337415695,
-0.1444292515516281,
-0.15713949501514435,
0.04191131144762039,
-0.0766405463218689,
-0.056593164801597595,
-0.054507751017808914,
-0.05239389091730118,
-0.0311186034232378,
-0.03773957118391991,
0.09099467098712921,
-0.0021037792321294546,
0.14807306230068207,
-0.1920108050107956,
-0.04220759496092796,
0.051812779158353806,
-0.07607918977737427,
-0.08729588985443115,
0.03410962224006653,
0.12136995792388916,
0.05116051807999611,
0.11504370719194412,
0.013609255664050579,
0.09567681699991226,
0.0045484392903745174,
-0.06713183224201202,
0.15302421152591705,
-0.14069625735282898,
-0.27875974774360657,
-0.03836318850517273,
0.016946332529187202,
0.1615200787782669,
-0.05613167956471443,
0.031766023486852646,
0.3335736393928528,
0.27782970666885376,
-0.1428707242012024,
0.25916144251823425,
0.019178593531250954,
0.004398873541504145,
-0.19130495190620422,
-0.10125631093978882,
0.025324683636426926,
0.04740457236766815,
0.12032642960548401,
-0.14564448595046997,
-0.010732659138739109,
-0.04543145373463631,
-0.025908485054969788,
0.10386138409376144,
-0.12300799041986465,
-0.07263197749853134,
0.07765276730060577,
0.039809420704841614,
0.1808302253484726,
0.03932500258088112,
0.0014799144119024277,
0.13626977801322937,
0.06612244248390198,
0.019124457612633705,
0.05216038227081299,
0.08028066903352737,
-0.018944554030895233,
0.14207926392555237,
0.05448179319500923,
-0.02551644667983055,
0.052681710571050644,
-0.0054580713622272015,
-0.03219012916088104,
0.015605825930833817,
-0.183198019862175,
-0.10147556662559509,
-0.0561356320977211,
-0.10798973590135574,
-0.04978342354297638,
0.056853994727134705,
-0.12395523488521576,
-0.007896827533841133,
-0.03841273859143257,
0.03718273714184761,
-0.07831971347332001,
-0.09360362589359283,
-0.036494381725788116,
0.1351792961359024,
0.07210618257522583,
0.04471297934651375,
0.035655103623867035,
-0.07390819489955902,
0.07097936421632767,
0.21671734750270844,
0.08159157633781433,
0.028919655829668045,
-0.19545674324035645,
-0.024042490869760513,
-0.0803457647562027,
0.06306298077106476,
-0.08856996893882751,
-0.016788700595498085,
0.11923003196716309,
0.08616556972265244,
0.05413002520799637,
0.09640096127986908,
-0.045083072036504745,
0.021686913445591927,
0.02684609219431877,
-0.15131035447120667,
-0.18501274287700653,
-0.08534606546163559,
-0.03519878163933754,
0.11561143398284912,
-0.06398691236972809,
0.10897188633680344,
-0.13615410029888153,
0.010051886551082134,
-0.006060056854039431,
0.02693452313542366,
-0.03596206381917,
-0.11251141875982285,
0.15348562598228455,
0.11999429017305374,
-0.06767056882381439,
0.03127254918217659,
-0.09527092427015305,
-0.04423454403877258,
0.12686803936958313,
-0.013623855076730251,
-0.0371493324637413,
-0.054547641426324844,
-0.03628576174378395,
0.15247689187526703,
-0.03436964750289917,
0.008244883269071579,
-0.041229065507650375,
-0.18217355012893677,
0.0798322781920433,
0.09045056998729706,
0.019827889278531075,
-0.031874191015958786,
-0.09797266125679016,
-0.010231015272438526,
-0.0011165260802954435,
0.11730700731277466,
-0.10696814209222794,
-0.10933240503072739,
-0.15144047141075134,
0.06713984161615372,
-0.0007159380475059152,
0.18502596020698547,
-0.06394898891448975,
-0.08904669433832169,
-0.12429379671812057,
0.02344517596065998,
-0.0027384376153349876,
-0.042264558374881744,
0.01618490368127823,
0.07992301136255264,
-0.04095321521162987,
0.02075677551329136,
-0.06651144474744797,
0.06372585147619247,
-0.11786920577287674,
0.09625071287155151,
0.01063506118953228,
0.016993753612041473,
-0.0417880080640316,
-0.01618220843374729,
0.039470795542001724,
-0.057925306260585785,
0.07921463251113892,
0.011758086271584034,
0.0010938759660348296,
0.10196787863969803,
-0.0034960443153977394,
0.06409632414579391,
-0.05372481048107147,
-0.023290161043405533,
0.06578411161899567,
-0.05874887853860855,
-0.03370826691389084,
-0.1573946475982666,
-0.0709633082151413,
0.020051732659339905,
-0.04775108024477959,
0.002077929675579071,
0.03673801198601723,
0.062159497290849686,
-0.06937079131603241,
-0.12125655263662338,
-0.043812792748212814,
-0.028638383373618126,
0.021301284432411194,
0.10829301923513412,
-0.07526551932096481,
0.1547859013080597,
-0.052787959575653076,
-0.00020603960729204118,
0.07437096536159515,
0.04048224538564682,
0.01393822580575943,
-0.10422444343566895,
-0.04698587954044342,
-0.11035211384296417,
0.1502903699874878,
-0.007902312092483044,
-0.03533121198415756,
0.03719403222203255,
-0.11946307867765427,
-0.1572723090648651,
0.03418220207095146,
0.10199101269245148,
0.0448341928422451,
0.025807438418269157,
0.027079269289970398,
-0.04042419046163559,
-0.021270349621772766,
-0.07034418731927872,
0.0882953479886055,
-0.12085357308387756,
-0.09669415652751923,
0.09555385261774063,
0.12178351730108261,
-0.0036850625183433294,
-0.07441367954015732,
0.11554073542356491,
-0.021787192672491074,
0.05525410920381546,
-0.02971339225769043,
0.10308072715997696,
0.0796005055308342,
-0.12273547053337097,
0.005693064536899328,
-0.036891788244247437,
-0.0741485133767128,
-0.12975730001926422,
0.019545545801520348,
-0.061916105449199677,
-0.13383042812347412,
0.12179028987884521,
-0.09376577287912369,
0.030037038028240204,
-0.10506992787122726,
0.021338803693652153,
0.01864001713693142,
0.061665527522563934,
-0.10988292098045349,
0.08575301617383957,
0.13424484431743622,
-0.043199893087148666,
-0.07184189558029175,
-0.12455986440181732,
-0.05022053420543671,
-0.04231856390833855,
-0.13957437872886658,
-0.11600435525178909,
0.0100301094353199,
-0.023418782278895378,
-0.05818291753530502,
0.0015462689334526658,
-0.03659068048000336,
0.008594646118581295,
0.021907730028033257,
0.04032021388411522,
-0.02693161368370056,
0.05134565755724907,
-0.057569269090890884,
-0.052510857582092285,
0.11489357799291611,
0.04113486409187317,
-0.03561042994260788,
-0.052359987050294876,
0.12997733056545258,
-0.11959461867809296,
0.07662346214056015,
-0.020313527435064316,
0.017129231244325638,
-0.06435854732990265,
0.17131924629211426,
0.11673715710639954,
-0.1367570012807846,
-0.005008010193705559,
-0.08210669457912445,
0.020409544929862022,
0.023555370047688484,
0.13693512976169586,
-0.03411718085408211,
-0.0012358218664303422,
-0.1580323874950409,
0.018575575202703476,
-0.18557456135749817,
-0.03716109320521355,
0.04671547934412956,
0.09917585551738739,
0.15293832123279572,
-0.0034432117827236652,
-0.1263325810432434,
0.10424192249774933,
-0.2118520885705948,
0.0907607227563858,
0.05121984705328941,
-0.11874113976955414,
-0.06765396893024445,
-0.06795281916856766,
0.1198519766330719,
0.009196433238685131,
0.2040700763463974,
-0.013615905307233334,
-0.09132910519838333,
-0.07060808688402176,
-0.01980910450220108,
-0.030524181202054024,
0.09714830666780472,
0.041414931416511536,
0.04653804749250412,
0.12821412086486816,
0.00368314771912992,
0.07533777505159378,
0.060310911387205124,
0.02759413793683052,
-0.012300663627684116,
0.04076618701219559,
0.08261215686798096,
-0.14588621258735657,
-0.1659701019525528,
0.1326720416545868,
0.025149408727884293,
0.11792458593845367,
0.03658788278698921,
-0.1549617499113083,
0.06687124073505402,
0.2523096203804016,
-0.11147607117891312,
0.02505038119852543,
0.12737524509429932,
-0.0366884209215641,
0.0672016367316246,
0.1144871786236763,
-0.02633814327418804,
-0.05217865854501724,
-0.011363590136170387,
0.10233135521411896,
0.028660254552960396,
-0.04646271467208862,
-0.02340836264193058,
-0.03373933956027031,
-0.019070526584982872,
-0.011738128960132599,
-0.0909019410610199,
-0.1543993502855301,
-0.10471053421497345,
-0.16619662940502167,
0.04399140924215317,
-0.04626438021659851,
0.13418889045715332,
0.09469578415155411,
-0.012723101302981377,
0.04568437114357948,
0.028575526550412178,
0.07275456190109253,
0.07916246354579926,
-0.02939477376639843,
-0.036159269511699677
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.2.dev0 | {"library_name": "peft", "base_model": "kyujinpy/Ko-PlatYi-6B"} | null | humung/Ko-PlatYi-6B-ia3-vlending-v0.2 | [
"peft",
"arxiv:1910.09700",
"base_model:kyujinpy/Ko-PlatYi-6B",
"region:us"
] | 2024-02-06T21:42:59+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-kyujinpy/Ko-PlatYi-6B #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.7.2.dev0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.2.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-kyujinpy/Ko-PlatYi-6B #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.2.dev0"
] | [
35,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
14
] | [
"passage: TAGS\n#peft #arxiv-1910.09700 #base_model-kyujinpy/Ko-PlatYi-6B #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.7.2.dev0"
] | [
-0.09876514226198196,
0.19073259830474854,
-0.00323672778904438,
0.029302356764674187,
0.0921395793557167,
0.018243830651044846,
0.04825153574347496,
0.1340966522693634,
-0.03238559514284134,
0.10495967417955399,
0.06500212848186493,
0.10632465779781342,
0.10888411849737167,
0.203266441822052,
0.0148092620074749,
-0.21727006137371063,
0.034254927188158035,
-0.08778945356607437,
-0.008357826620340347,
0.1230270266532898,
0.14696650207042694,
-0.1014677882194519,
0.07995446771383286,
-0.007174729369580746,
-0.014661393128335476,
-0.041292086243629456,
-0.08698945492506027,
-0.03916380926966667,
0.03849159553647041,
0.04243577644228935,
0.05688297748565674,
0.0016522728838026524,
0.08229652047157288,
-0.26975128054618835,
0.018635062500834465,
0.041165515780448914,
-0.0041480157524347305,
0.0814678817987442,
0.09593624621629715,
-0.033022210001945496,
0.13676844537258148,
-0.04632905498147011,
0.13593026995658875,
0.07018165290355682,
-0.08915747702121735,
-0.19981540739536285,
-0.07579435408115387,
0.09094346314668655,
0.1825684756040573,
0.07934970408678055,
-0.044093817472457886,
0.13432466983795166,
-0.10569707304239273,
0.015788385644555092,
0.045379266142845154,
-0.07289189845323563,
-0.07523960620164871,
0.06609861552715302,
0.1038656160235405,
0.04234462231397629,
-0.1371532678604126,
-0.0330188013613224,
0.016769666224718094,
0.03209146484732628,
0.06253110617399216,
0.012407978996634483,
0.14311909675598145,
0.03199577331542969,
-0.15079468488693237,
-0.04260370507836342,
0.13614672422409058,
0.035203784704208374,
-0.03505922108888626,
-0.21340204775333405,
0.018451478332281113,
-0.09051692485809326,
-0.0283996369689703,
-0.046669334173202515,
0.03151408210396767,
-0.005944689270108938,
0.07779447734355927,
-0.027518639340996742,
-0.093115895986557,
-0.008810051716864109,
0.09537811577320099,
0.06348033994436264,
0.03623145818710327,
-0.023880381137132645,
0.004770452156662941,
0.12773437798023224,
0.04787571355700493,
-0.12563666701316833,
-0.06968038529157639,
-0.06729281693696976,
-0.036905985325574875,
-0.04916481301188469,
0.035899557173252106,
0.035664770752191544,
0.05838480964303017,
0.24432457983493805,
-0.02931884489953518,
0.05732228606939316,
0.0766008123755455,
0.019302478060126305,
0.051875922828912735,
0.09730489552021027,
-0.05875696614384651,
-0.14002211391925812,
-0.01856861263513565,
0.10166461765766144,
-0.01539764367043972,
-0.02190936729311943,
-0.050933532416820526,
0.030922116711735725,
0.045321058481931686,
0.10251012444496155,
0.0939849317073822,
0.0015916855772957206,
-0.06869852542877197,
-0.05664972960948944,
0.2091674506664276,
-0.1447676122188568,
0.040501467883586884,
0.016002414748072624,
-0.029118044301867485,
-0.05559597164392471,
-0.00046966332593001425,
0.02563709206879139,
-0.02903357706964016,
0.10031744092702866,
-0.060632459819316864,
-0.034664127975702286,
-0.12052953243255615,
-0.016921497881412506,
0.03720070794224739,
0.0028517988976091146,
-0.020835427567362785,
-0.029627980664372444,
-0.06240925192832947,
-0.09313222020864487,
0.1066390722990036,
-0.06759477406740189,
-0.07007677853107452,
-0.03174674138426781,
-0.09768683463335037,
0.019583391025662422,
0.03426635265350342,
0.11487739533185959,
-0.02608749456703663,
0.03989923372864723,
-0.01612684689462185,
0.06306148320436478,
0.08773471415042877,
0.03751520439982414,
-0.07264913618564606,
0.06023356318473816,
-0.19556720554828644,
0.08904028683900833,
-0.07987846434116364,
0.018540408462285995,
-0.16227586567401886,
-0.019836759194731712,
0.002629990689456463,
0.017828594893217087,
0.04002537205815315,
0.15154007077217102,
-0.1849437803030014,
-0.027686281129717827,
0.1466955691576004,
-0.09444871544837952,
-0.11927783489227295,
0.0318257100880146,
-0.054965149611234665,
0.16782020032405853,
0.016408246010541916,
-0.010907634161412716,
0.10169579833745956,
-0.1520872265100479,
-0.03854634612798691,
-0.025456633418798447,
-0.005695459432899952,
0.10356331616640091,
0.08550556004047394,
-0.07287099957466125,
0.028930900618433952,
0.019731534644961357,
-0.04325638338923454,
-0.030628256499767303,
-0.05593974515795708,
-0.11287739872932434,
0.004817551001906395,
-0.08205120265483856,
0.026501698419451714,
-0.01158793643116951,
-0.06729346513748169,
-0.0026027022395282984,
-0.1563199758529663,
-0.013512756675481796,
0.08779305964708328,
0.017277492210268974,
-0.01403864473104477,
-0.08687587827444077,
0.033815737813711166,
-0.033129483461380005,
-0.02634785696864128,
-0.15331247448921204,
-0.014435588382184505,
0.02437545172870159,
-0.15751738846302032,
0.016502289101481438,
-0.12112446874380112,
0.06427803635597229,
0.006642269901931286,
-0.0723106861114502,
-0.03806336969137192,
-0.02363140694797039,
0.009829365648329258,
-0.057992249727249146,
-0.2356681525707245,
-0.021816637367010117,
-0.04888935387134552,
0.13783061504364014,
-0.20720459520816803,
0.03867283836007118,
0.051483768969774246,
0.13063952326774597,
-0.009493352845311165,
-0.052871640771627426,
0.033725906163454056,
-0.06433308869600296,
-0.019886702299118042,
-0.06711907684803009,
-0.00016249400505330414,
-0.003747978014871478,
-0.04091058671474457,
0.02054806426167488,
-0.104316845536232,
-0.07707151770591736,
0.10213426500558853,
0.07135410606861115,
-0.1641199290752411,
-0.016627106815576553,
-0.047190893441438675,
-0.07463673502206802,
-0.0856969803571701,
-0.04951250180602074,
0.10715332627296448,
0.04453468322753906,
0.031462643295526505,
-0.07336265593767166,
-0.06990185379981995,
0.01279502548277378,
-0.021618155762553215,
-0.024881809949874878,
0.11754895001649857,
0.08605581521987915,
-0.10879196226596832,
0.09746203571557999,
0.0567326582968235,
0.018103191629052162,
0.09123095124959946,
-0.026162032037973404,
-0.11033552139997482,
-0.03233630955219269,
0.044855475425720215,
0.006908352952450514,
0.16719670593738556,
-0.08498375862836838,
0.05125255882740021,
0.045246899127960205,
-0.028511328622698784,
0.052128344774246216,
-0.10477651655673981,
0.009061472490429878,
0.0014177742414176464,
-0.009866251610219479,
0.018336158245801926,
-0.013722040690481663,
0.008013669401407242,
0.08075334131717682,
0.060330696403980255,
0.04165616258978844,
0.03424953669309616,
-0.02796100080013275,
-0.12081896513700485,
0.1848021000623703,
-0.09362580627202988,
-0.2371947467327118,
-0.14717599749565125,
0.05325336754322052,
0.045376863330602646,
-0.027709895744919777,
0.029428761452436447,
-0.06189959868788719,
-0.0973251610994339,
-0.07436543703079224,
0.0012920000590384007,
0.019239993765950203,
-0.0568179152905941,
-0.08026433736085892,
0.050187960267066956,
0.02531636506319046,
-0.1143479198217392,
0.03684041276574135,
0.06010400131344795,
-0.011388441547751427,
0.015204998664557934,
0.05447695776820183,
0.08473342657089233,
0.17977894842624664,
-0.013573434203863144,
-0.0016528705600649118,
0.055124036967754364,
0.27484437823295593,
-0.16273923218250275,
0.11902986466884613,
0.11280027776956558,
-0.054505329579114914,
0.08068351447582245,
0.18810288608074188,
0.028970537707209587,
-0.09005045145750046,
0.03906649723649025,
0.03614717349410057,
-0.028966762125492096,
-0.2675042152404785,
-0.043750956654548645,
-0.011142532341182232,
-0.09397238492965698,
0.08172720670700073,
0.08470431715250015,
0.099246084690094,
0.04492359608411789,
-0.06438618898391724,
-0.07826022058725357,
0.031874362379312515,
0.10678550601005554,
-0.0318160317838192,
0.01102462038397789,
0.08028516173362732,
-0.030693694949150085,
0.0077020092867314816,
0.09161556512117386,
-0.010481591336429119,
0.17588454484939575,
0.04486915469169617,
0.10222481936216354,
0.08746035397052765,
0.10044924914836884,
0.0010514491004869342,
0.014977035112679005,
0.01583278737962246,
0.0237195435911417,
0.01980600506067276,
-0.08118084073066711,
0.042658481746912,
0.10894613713026047,
0.04922743886709213,
0.022872215136885643,
0.01189084630459547,
-0.043850984424352646,
0.04588896781206131,
0.19224761426448822,
0.0176114309579134,
-0.1838609129190445,
-0.0788058489561081,
0.05238710343837738,
-0.07294560223817825,
-0.13962046802043915,
-0.022302161902189255,
0.014183001592755318,
-0.1806737184524536,
0.013562269508838654,
-0.04376688227057457,
0.10108932852745056,
-0.07498519867658615,
-0.04793228581547737,
0.10001019388437271,
0.07447375357151031,
-0.028249841183423996,
0.06523320823907852,
-0.20492234826087952,
0.1310746669769287,
0.020880185067653656,
0.07574290037155151,
-0.09704039245843887,
0.09401796013116837,
0.005841737613081932,
-0.014736705459654331,
0.15578433871269226,
0.010967975482344627,
-0.0749378353357315,
-0.06023567169904709,
-0.09577396512031555,
-0.014861728996038437,
0.10544072091579437,
-0.12800098955631256,
0.06875456124544144,
-0.00950710754841566,
-0.031276144087314606,
-0.0018320389790460467,
-0.0779910609126091,
-0.13245625793933868,
-0.16563202440738678,
0.06273280829191208,
-0.10716612637042999,
0.037473391741514206,
-0.08635448664426804,
-0.06957250088453293,
0.012468637898564339,
0.17884333431720734,
-0.16274811327457428,
-0.0953291654586792,
-0.1379094123840332,
-0.09139931946992874,
0.16990359127521515,
-0.04744955152273178,
0.08143265545368195,
-0.002883263397961855,
0.15850771963596344,
0.016373611986637115,
-0.0017497906228527427,
0.09099884331226349,
-0.08245395869016647,
-0.1974046379327774,
-0.047066714614629745,
0.16086357831954956,
0.14334282279014587,
0.038054052740335464,
-0.014497972093522549,
0.02437351830303669,
-0.05677694082260132,
-0.11552412062883377,
0.02631397917866707,
0.13314387202262878,
0.08864834159612656,
-0.0098939323797822,
-0.03400525450706482,
-0.08066477626562119,
-0.07754631340503693,
-0.06355717778205872,
0.0015540914610028267,
0.19227705895900726,
-0.06599409878253937,
0.16155628859996796,
0.11624565720558167,
-0.05857526883482933,
-0.20491935312747955,
0.049014560878276825,
0.06263189762830734,
0.014687481336295605,
0.013981287367641926,
-0.20429633557796478,
0.08194224536418915,
0.00002772248990368098,
-0.07184210419654846,
0.15597519278526306,
-0.1748427301645279,
-0.14986813068389893,
0.09499236196279526,
0.03904062509536743,
-0.2198549509048462,
-0.13734932243824005,
-0.09593971818685532,
-0.012299507856369019,
-0.11334100365638733,
0.06955192983150482,
0.010863668285310268,
0.01975530944764614,
0.02038431726396084,
0.024485088884830475,
0.0241528507322073,
-0.04989467188715935,
0.20908914506435394,
-0.021969733759760857,
0.0027873411308974028,
-0.05299195274710655,
-0.10689432919025421,
0.037818603217601776,
-0.06032364442944527,
0.10309293866157532,
0.00970778800547123,
0.026558956131339073,
-0.15758611261844635,
-0.03988482803106308,
-0.06918060034513474,
0.031622763723134995,
-0.09911429136991501,
-0.0933448076248169,
-0.055231478065252304,
0.10397011041641235,
0.09971566498279572,
-0.02866695262491703,
0.01952863298356533,
-0.0745440423488617,
0.05885820463299751,
0.1939351111650467,
0.17993633449077606,
0.08852244913578033,
-0.06090936437249184,
0.01875733770430088,
-0.034380096942186356,
0.042461685836315155,
-0.2314823418855667,
0.033608339726924896,
0.05990464612841606,
0.027277180925011635,
0.08665957301855087,
-0.012723897583782673,
-0.15973392128944397,
-0.07153932005167007,
0.07684534043073654,
-0.03830283135175705,
-0.15525348484516144,
-0.029488448053598404,
0.042935051023960114,
-0.20707233250141144,
-0.050409089773893356,
0.007721584290266037,
-0.02728961780667305,
-0.048877816647291183,
0.023300187662243843,
0.0754295140504837,
-0.02220873534679413,
0.10692805796861649,
0.0902336984872818,
0.09492415189743042,
-0.0963466688990593,
0.08579134196043015,
0.0718170776963234,
-0.050621308386325836,
0.02442694641649723,
0.10530178248882294,
-0.05111037194728851,
-0.03812020272016525,
0.09998145699501038,
0.0791969820857048,
0.02248576655983925,
-0.05253569036722183,
0.016671165823936462,
-0.050304532051086426,
0.06717535108327866,
0.11427665501832962,
0.030820103362202644,
-0.01010082010179758,
0.06000629439949989,
0.04130951687693596,
-0.10675185918807983,
0.10906880348920822,
0.060100458562374115,
0.01981474831700325,
-0.04003298655152321,
-0.03135182708501816,
-0.0028792524244636297,
0.003570917993783951,
-0.016298465430736542,
-0.015938134863972664,
-0.09315171837806702,
-0.008759758435189724,
-0.10045447945594788,
0.027527691796422005,
-0.08111017197370529,
0.007094807457178831,
0.021878540515899658,
-0.055656611919403076,
0.007145691197365522,
0.00738901924341917,
-0.08183029294013977,
-0.05334014445543289,
-0.02120133675634861,
0.08588994294404984,
-0.11228402704000473,
0.031590815633535385,
0.0825946256518364,
-0.10669117420911789,
0.0604001022875309,
0.007965710014104843,
0.013109453022480011,
0.01816481165587902,
-0.14200012385845184,
0.06317238509654999,
-0.02713746950030327,
-0.012978377752006054,
0.015485375188291073,
-0.21599093079566956,
-0.01455526240170002,
-0.05185962840914726,
-0.04151621833443642,
0.011521745473146439,
-0.030463997274637222,
-0.12446220964193344,
0.09725371748209,
-0.012165806256234646,
-0.07417698204517365,
-0.02249930426478386,
0.049039844423532486,
0.09582235664129257,
-0.016829969361424446,
0.12766358256340027,
-0.022165032103657722,
0.07785552740097046,
-0.1665312498807907,
-0.0033591033425182104,
-0.013584182597696781,
0.038221575319767,
-0.010516757145524025,
-0.03010104037821293,
0.05831896513700485,
-0.020163342356681824,
0.17376647889614105,
-0.022995345294475555,
0.06536977738142014,
0.04821145907044411,
0.005688286852091551,
0.0015689183492213488,
0.08719805628061295,
0.06839960813522339,
-0.0035919141955673695,
-0.003692113095894456,
0.0457555428147316,
0.002084851497784257,
-0.04715726152062416,
-0.15485942363739014,
0.07113448530435562,
0.15507161617279053,
0.06486143171787262,
0.02763386443257332,
0.029991474002599716,
-0.11677856743335724,
-0.07302068173885345,
0.12547843158245087,
-0.01914913021028042,
-0.03356263041496277,
-0.07381012290716171,
0.18525929749011993,
0.1307470053434372,
-0.20536446571350098,
0.08297114819288254,
-0.057465486228466034,
-0.06310323625802994,
-0.12653155624866486,
-0.17282389104366302,
-0.06776511669158936,
-0.044829580932855606,
-0.015335825271904469,
-0.06133797764778137,
0.049858007580041885,
0.05214907228946686,
0.007714342325925827,
-0.017681285738945007,
0.10573304444551468,
0.013789644464850426,
-0.025308305397629738,
0.05249481648206711,
0.05646424740552902,
0.02526158280670643,
-0.0960976779460907,
0.010711751878261566,
-0.004370791371911764,
0.007550754584372044,
0.06547056138515472,
0.015080287121236324,
-0.06104611977934837,
0.013664142228662968,
-0.009455110877752304,
-0.11582823842763901,
0.044375453144311905,
-0.02287142537534237,
-0.020283160731196404,
0.1372823417186737,
0.03320367634296417,
0.012524846009910107,
-0.020224275067448616,
0.2427082508802414,
-0.0694260522723198,
-0.07840427756309509,
-0.15102846920490265,
0.0558466874063015,
-0.06524287164211273,
0.019614623859524727,
0.0393042266368866,
-0.1186688169836998,
0.012361818924546242,
0.16345177590847015,
0.12348780781030655,
0.003893675049766898,
0.010084673762321472,
0.05171317607164383,
0.0019162812968716025,
-0.02694123610854149,
0.011949602514505386,
0.05594397708773613,
0.12481328099966049,
-0.08323559910058975,
0.06490769237279892,
-0.012266229838132858,
-0.0776963159441948,
-0.01554912980645895,
0.10482325404882431,
0.005411098711192608,
-0.010982951149344444,
-0.07530637085437775,
0.13728787004947662,
-0.10235126316547394,
-0.22587275505065918,
0.05902639776468277,
-0.0727122500538826,
-0.1549740731716156,
-0.04708097502589226,
0.011184894479811192,
-0.011968414299190044,
0.01754353940486908,
0.07484101504087448,
-0.039985738694667816,
0.1599961370229721,
0.05347108840942383,
-0.053276341408491135,
-0.08662509173154831,
0.06747494637966156,
-0.11922024935483932,
0.2682211399078369,
0.020765753462910652,
0.061373624950647354,
0.10550156980752945,
-0.014617067761719227,
-0.1377754658460617,
0.009222462773323059,
0.10693631321191788,
-0.06977242231369019,
0.05403810366988182,
0.18409600853919983,
0.000960455508902669,
0.11515480279922485,
0.05835609883069992,
-0.05177736654877663,
0.04036068543791771,
-0.08445939421653748,
-0.03680203855037689,
-0.11923228204250336,
0.08621004968881607,
-0.08685417473316193,
0.16170427203178406,
0.14145401120185852,
-0.06655818969011307,
-0.007913162000477314,
-0.020002173259854317,
0.08310279250144958,
0.00020125771698076278,
0.09917641431093216,
0.0004914497840218246,
-0.1795046031475067,
0.03370995074510574,
0.0027074338868260384,
0.10566926002502441,
-0.19855934381484985,
-0.06314627826213837,
0.051142655313014984,
-0.02788911759853363,
-0.07488492131233215,
0.11938316375017166,
0.035459570586681366,
0.0324791818857193,
-0.03947049006819725,
-0.0570773147046566,
-0.0008471835171803832,
0.147946298122406,
-0.12305271625518799,
-0.01139128115028143
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | vaicai/kaifa-support-chat-v6 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:45:54+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
## Exllama v2 Quantizations of Magicoder-S-DS-6.7B
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization.
# The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
No GQA - VRAM requirements will be higher
| Branch | Bits | lm_head bits | Size (4k) | Size (16k) | Description |
| -------------------------------------------------------------- | ---- | ------------ | --------- | ---------- | ----------- |
| [8_0](https://huggingface.co/Bartowski/Magicoder-S-DS-6.7B-exl2/tree/8_0) | 8.0 | 8.0 | 9.4 GB | 15.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/Bartowski/Magicoder-S-DS-6.7B-exl2/tree/6_5) | 6.5 | 8.0 | 8.6 GB | 14.8 GB | Near unquantized performance at vastly reduced size, **recommended**. |
| [5_0](https://huggingface.co/Bartowski/Magicoder-S-DS-6.7B-exl2/tree/5_0) | 5.0 | 6.0 | 7.2 GB | 13.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards with 4k context. |
| [4_25](https://huggingface.co/Bartowski/Magicoder-S-DS-6.7B-exl2/tree/4_25) | 4.25 | 6.0 | 6.5 GB | 12.7 GB | GPTQ equivalent bits per weight. |
| [3_5](https://huggingface.co/Bartowski/Magicoder-S-DS-6.7B-exl2/tree/3_5) | 3.5 | 6.0 | 5.9 GB | 12.1 GB | Lower quality, not recommended. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Magicoder-S-DS-6.7B-exl2 Magicoder-S-DS-6.7B-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Magicoder-S-DS-6.7B-exl2`:
```shell
mkdir Magicoder-S-DS-6.7B-exl2
huggingface-cli download bartowski/Magicoder-S-DS-6.7B-exl2 --local-dir Magicoder-S-DS-6.7B-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir Magicoder-S-DS-6.7B-exl2-6_5
huggingface-cli download bartowski/Magicoder-S-DS-6.7B-exl2 --revision 6_5 --local-dir Magicoder-S-DS-6.7B-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir Magicoder-S-DS-6.7B-exl2-6.5
huggingface-cli download bartowski/Magicoder-S-DS-6.7B-exl2 --revision 6_5 --local-dir Magicoder-S-DS-6.7B-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski | {"license": "other", "library_name": "transformers", "datasets": ["ise-uiuc/Magicoder-OSS-Instruct-75K", "ise-uiuc/Magicoder-Evol-Instruct-110K"], "license_name": "deepseek", "pipeline_tag": "text-generation", "quantized_by": "bartowski"} | text-generation | bartowski/Magicoder-S-DS-6.7B-exl2 | [
"transformers",
"text-generation",
"dataset:ise-uiuc/Magicoder-OSS-Instruct-75K",
"dataset:ise-uiuc/Magicoder-Evol-Instruct-110K",
"license:other",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:49:40+00:00 | [] | [] | TAGS
#transformers #text-generation #dataset-ise-uiuc/Magicoder-OSS-Instruct-75K #dataset-ise-uiuc/Magicoder-Evol-Instruct-110K #license-other #endpoints_compatible #region-us
| Exllama v2 Quantizations of Magicoder-S-DS-6.7B
-----------------------------------------------
Using <a href="URL ExLlamaV2 v0.0.13 for quantization.
The "main" branch only contains the URL, download one of the other branches for the model (see below)
=====================================================================================================
Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions.
Original model: URL
No GQA - VRAM requirements will be higher
Download instructions
---------------------
With git:
With huggingface hub (credit to TheBloke for instructions):
To download the 'main' (only useful if you only care about URL) branch to a folder called 'Magicoder-S-DS-6.7B-exl2':
To download from a different branch, add the '--revision' parameter:
Linux:
Windows (which apparently doesn't like \_ in folders sometimes?):
Want to support my work? Visit my ko-fi page here: URL
| [] | [
"TAGS\n#transformers #text-generation #dataset-ise-uiuc/Magicoder-OSS-Instruct-75K #dataset-ise-uiuc/Magicoder-Evol-Instruct-110K #license-other #endpoints_compatible #region-us \n"
] | [
68
] | [
"passage: TAGS\n#transformers #text-generation #dataset-ise-uiuc/Magicoder-OSS-Instruct-75K #dataset-ise-uiuc/Magicoder-Evol-Instruct-110K #license-other #endpoints_compatible #region-us \n"
] | [
-0.05573282018303871,
0.025112656876444817,
-0.0027117945719510317,
0.023539641872048378,
0.14343614876270294,
0.07985922694206238,
0.14479988813400269,
0.09083966910839081,
0.08179165422916412,
-0.03033108450472355,
0.087122343480587,
0.20867177844047546,
0.04696662724018097,
0.05123422294855118,
-0.09575318545103073,
-0.16792654991149902,
0.10010845214128494,
0.03584270551800728,
-0.10988390445709229,
0.05015891417860985,
0.10377173870801926,
-0.009317725896835327,
0.1041240394115448,
-0.035869065672159195,
-0.11021468788385391,
0.020866787061095238,
0.00004751390588353388,
-0.08304236829280853,
0.0747796893119812,
0.06558737903833389,
0.04926271736621857,
0.032050665467977524,
-0.0342363640666008,
-0.20191709697246552,
-0.003555318573489785,
0.015483977273106575,
-0.08209460228681564,
-0.001690839882940054,
0.025433294475078583,
0.020591692999005318,
0.12267245352268219,
-0.07804799824953079,
0.008556297980248928,
0.06860213726758957,
-0.11113686114549637,
-0.09857966750860214,
-0.12307555228471756,
0.055764395743608475,
0.0632782056927681,
0.08042999356985092,
0.04003824293613434,
0.07471203804016113,
-0.010413181968033314,
0.0960560068488121,
0.11066185683012009,
-0.3022836446762085,
0.03587621822953224,
0.15306870639324188,
0.07926958054304123,
0.04598764702677727,
-0.019259851425886154,
0.011366074904799461,
0.04149609059095383,
0.0003566857776604593,
-0.06640729308128357,
-0.07395700365304947,
0.010566500946879387,
0.03115210309624672,
-0.04734712094068527,
-0.06940082460641861,
0.34861838817596436,
0.01009384635835886,
-0.0006694354815408587,
0.008607580326497555,
-0.021816100925207138,
0.019504817202687263,
-0.008736600168049335,
0.05035791173577309,
-0.004913450218737125,
0.07103196531534195,
-0.00554767157882452,
0.022308656945824623,
-0.11385215818881989,
-0.010317455045878887,
-0.1652681827545166,
0.17512211203575134,
0.010714388452470303,
0.07466384023427963,
-0.10117514431476593,
-0.0031490009278059006,
-0.05741392821073532,
-0.07641775906085968,
-0.06751891225576401,
-0.039114098995923996,
0.0002047121524810791,
-0.031159738078713417,
-0.05877598747611046,
-0.0833488404750824,
0.0846792533993721,
0.1811879277229309,
-0.04169478267431259,
0.020503699779510498,
-0.004040514584630728,
0.09615075588226318,
0.039910927414894104,
0.046270065009593964,
-0.022676462307572365,
-0.04782746732234955,
-0.01170200016349554,
-0.15495631098747253,
-0.0004938054480589926,
-0.05262449383735657,
-0.10378021746873856,
-0.08613485842943192,
-0.039039671421051025,
0.07170897722244263,
0.02092590183019638,
0.06054528057575226,
-0.05514320358633995,
-0.008146163076162338,
0.07233656197786331,
-0.054349448531866074,
0.03682640939950943,
-0.009470121935009956,
0.013076155446469784,
0.11881078779697418,
0.027841707691550255,
0.01242578960955143,
-0.060144856572151184,
0.07890170067548752,
-0.04488452896475792,
0.020681627094745636,
-0.036982376128435135,
-0.08351275324821472,
0.08119557797908783,
-0.10583766549825668,
0.050310198217630386,
-0.14820758998394012,
-0.20563383400440216,
-0.014668098650872707,
0.06210868060588837,
-0.00685296393930912,
0.04934872314333916,
-0.010429147630929947,
-0.06496023386716843,
0.0920587107539177,
-0.04589178413152695,
-0.06971634924411774,
-0.07051806151866913,
0.05132346600294113,
-0.06187697872519493,
0.03084961511194706,
-0.17559002339839935,
0.06404727697372437,
-0.03882709890604019,
0.002627820009365678,
0.0057191974483430386,
0.02701498568058014,
-0.10479000955820084,
0.13204863667488098,
-0.061724498867988586,
-0.01878579705953598,
0.03179258108139038,
0.04029308259487152,
0.00945222657173872,
0.1387466937303543,
-0.21173816919326782,
-0.024013787508010864,
0.14833688735961914,
-0.11316153407096863,
-0.21745678782463074,
0.1010718047618866,
0.008900849148631096,
0.03548252582550049,
0.03062545321881771,
0.15661700069904327,
0.047842103987932205,
-0.08167756348848343,
-0.0247933492064476,
0.09533403068780899,
-0.07238801568746567,
-0.22450068593025208,
0.09269371628761292,
-0.009576295502483845,
-0.028821345418691635,
0.026984313502907753,
0.044490158557891846,
0.07235754281282425,
-0.026405099779367447,
-0.04623289033770561,
-0.09279937297105789,
-0.04639409855008125,
-0.006342027802020311,
-0.005289603024721146,
0.04259079322218895,
-0.06294385343790054,
0.007745281793177128,
-0.018135692924261093,
0.061630189418792725,
-0.05400737002491951,
0.04541664198040962,
-0.07090573757886887,
0.042879991233348846,
-0.030825627967715263,
0.02835586667060852,
-0.10770941525697708,
0.023939527571201324,
-0.03906525298953056,
0.09426683932542801,
-0.026746414601802826,
0.056383345276117325,
0.06287115812301636,
-0.020249929279088974,
0.018365267664194107,
0.016256876289844513,
0.0784069150686264,
0.03893605247139931,
-0.037260543555021286,
-0.08767750859260559,
-0.0033308384008705616,
-0.07089512795209885,
-0.13789892196655273,
-0.08541648089885712,
0.03663961961865425,
0.08034231513738632,
0.07259725034236908,
-0.02820591814815998,
0.02202332764863968,
-0.060093387961387634,
0.04541833698749542,
-0.07385498285293579,
-0.05182703584432602,
0.0683741569519043,
0.03366267308592796,
-0.09100800007581711,
0.11506744474172592,
-0.07188363373279572,
0.2259422391653061,
0.16926676034927368,
-0.10166513919830322,
0.04295054450631142,
0.00016591201710980386,
0.012535935267806053,
-0.006508019752800465,
0.08418408781290054,
-0.0335640050470829,
0.0030301904771476984,
0.03921181708574295,
0.14122727513313293,
-0.008043285459280014,
0.03084040991961956,
0.012623454444110394,
-0.04936349764466286,
-0.08362264186143875,
0.05390624701976776,
0.08787146210670471,
-0.1802973449230194,
0.14996686577796936,
0.21598754823207855,
0.04025659337639809,
0.1365184783935547,
-0.06268511712551117,
-0.03733684495091438,
-0.01412828080356121,
-0.008726408705115318,
0.031354550272226334,
0.025080690160393715,
-0.2163497805595398,
0.0012571970000863075,
0.08089513331651688,
0.03398224338889122,
0.07087064534425735,
-0.10581818968057632,
-0.05328573286533356,
0.034636106342077255,
-0.008432954549789429,
-0.12609626352787018,
0.05874749645590782,
0.0030842944979667664,
0.062370665371418,
-0.04869949445128441,
0.007099298294633627,
0.09525198489427567,
-0.003865949809551239,
-0.08769086003303528,
0.2112206518650055,
-0.1381329447031021,
-0.2032335102558136,
-0.20934540033340454,
-0.13188357651233673,
-0.035805072635412216,
0.00952148623764515,
0.11505201458930969,
-0.05993257462978363,
-0.0800551325082779,
-0.023259328678250313,
0.07270388305187225,
-0.08666399866342545,
0.005596811417490244,
0.054627642035484314,
0.07340181618928909,
-0.08449685573577881,
-0.1425415426492691,
-0.06152411922812462,
0.04455728083848953,
-0.04151361435651779,
0.10069294273853302,
-0.1028578132390976,
0.12561152875423431,
0.08023448288440704,
0.004132380243390799,
0.04484400898218155,
0.004857017192989588,
0.1693020462989807,
-0.04885420203208923,
-0.009012931026518345,
0.21157561242580414,
0.015148388221859932,
0.07155558466911316,
0.10927615314722061,
0.05117533355951309,
-0.07971766591072083,
-0.01227365992963314,
-0.08213650435209274,
-0.08732372522354126,
-0.2626253366470337,
-0.10715636610984802,
-0.12167990207672119,
0.04482952505350113,
0.05295982211828232,
0.047068897634744644,
0.04439475014805794,
0.11839284002780914,
0.002610155614092946,
0.08358186483383179,
-0.002466556616127491,
0.09141147136688232,
0.14522653818130493,
-0.006152618210762739,
0.06226464733481407,
-0.11786440014839172,
0.012290854007005692,
0.09108199924230576,
0.13129466772079468,
0.18413051962852478,
0.08759793639183044,
0.1450846791267395,
0.05717478692531586,
0.08604362607002258,
0.06367912143468857,
0.16076116263866425,
0.04069436714053154,
-0.023862455040216446,
-0.003492501797154546,
0.005328724160790443,
-0.08287977427244186,
0.04652349650859833,
0.0021367270965129137,
-0.14638355374336243,
-0.040078721940517426,
-0.020390747115015984,
0.043077271431684494,
0.08146888017654419,
0.007597672287374735,
-0.21069090068340302,
-0.043925266712903976,
0.08145748823881149,
0.01951301284134388,
-0.0814783051609993,
0.06026412546634674,
0.09048213809728622,
-0.05775436386466026,
0.07268029451370239,
-0.03665102273225784,
0.10228860378265381,
-0.01940516009926796,
0.012037779204547405,
0.04945807158946991,
-0.033149152994155884,
0.026794075965881348,
0.0820741131901741,
-0.28434062004089355,
0.19026067852973938,
0.0009778373641893268,
0.06618586927652359,
-0.09328874945640564,
0.022446073591709137,
0.004599754232913256,
0.1572970747947693,
0.1173437163233757,
0.04800768196582794,
-0.09037420153617859,
-0.1516692042350769,
0.017402073368430138,
0.0020336743909865618,
0.07296562194824219,
0.04439237713813782,
-0.006822117604315281,
-0.019856439903378487,
0.038278479129076004,
0.007978811860084534,
0.077476367354393,
-0.0904601663351059,
-0.23966270685195923,
0.05427251756191254,
0.09816507995128632,
0.06317257881164551,
-0.05991153046488762,
0.01720460131764412,
-0.11740391701459885,
0.21185629069805145,
-0.13459210097789764,
-0.04495679959654808,
-0.11483930051326752,
-0.08391478657722473,
0.10488902032375336,
-0.04548552259802818,
-0.011854120530188084,
-0.009656422771513462,
0.01204759068787098,
-0.11102306097745895,
-0.1679658144712448,
0.06668692082166672,
-0.14717289805412292,
0.016456522047519684,
-0.0473538301885128,
0.05478872358798981,
-0.08508110791444778,
0.006437947973608971,
0.043351538479328156,
0.004967937245965004,
-0.0452711246907711,
-0.14918790757656097,
-0.018543947488069534,
0.021315904334187508,
0.024414218962192535,
0.06835387647151947,
-0.04667424410581589,
-0.02880076877772808,
0.003539870958775282,
-0.09707048535346985,
0.19743560254573822,
0.14748993515968323,
-0.04693103954195976,
0.08096577972173691,
0.13191989064216614,
-0.08509153872728348,
-0.24995797872543335,
-0.08905819058418274,
-0.11035104095935822,
-0.026179594919085503,
-0.06936106085777283,
-0.13374076783657074,
0.09063879400491714,
0.07220146805047989,
0.009485079906880856,
0.045437294989824295,
-0.25918325781822205,
-0.0991346463561058,
0.1114906370639801,
0.07622030377388,
0.3035489618778229,
-0.1739376187324524,
-0.06537076085805893,
-0.13382869958877563,
-0.27361735701560974,
0.21684642136096954,
-0.04732302576303482,
0.10881131887435913,
-0.03778490424156189,
0.07066573947668076,
-0.0025767581537365913,
-0.08735957741737366,
0.12507382035255432,
0.07648392766714096,
0.0751439779996872,
-0.10510358214378357,
-0.012358822859823704,
0.16890834271907806,
-0.0032716048881411552,
0.07079645991325378,
-0.0553731769323349,
0.011913318186998367,
-0.1821497231721878,
-0.004946490284055471,
-0.011167291551828384,
0.00709791062399745,
-0.013339419849216938,
-0.01841660588979721,
-0.022637901827692986,
0.014848851598799229,
0.05856874957680702,
-0.02298419550061226,
0.23367521166801453,
0.07004401087760925,
0.0006344781722873449,
0.06601740419864655,
0.01840655505657196,
-0.19736140966415405,
-0.0423058420419693,
-0.03956330567598343,
-0.04961153119802475,
0.042547062039375305,
-0.11398918181657791,
0.020906660705804825,
0.10160470753908157,
-0.027403295040130615,
0.09564007818698883,
0.11179061979055405,
0.020174596458673477,
0.028084930032491684,
0.11403444409370422,
-0.07126513868570328,
-0.07676383852958679,
0.017850345000624657,
0.03301580995321274,
0.04033059626817703,
0.07098019123077393,
0.11707576364278793,
0.00724976509809494,
0.03209300339221954,
-0.05188095197081566,
0.028583046048879623,
-0.08325503766536713,
0.09482831507921219,
0.022626986727118492,
0.03316599130630493,
-0.14430426061153412,
0.08543538302183151,
-0.036399103701114655,
-0.11287465691566467,
0.03631626442074776,
0.03861452639102936,
-0.11481579393148422,
-0.1031012162566185,
-0.02490287274122238,
0.050672534853219986,
-0.17934930324554443,
-0.10638806968927383,
0.010878019034862518,
-0.1264428198337555,
0.06779344379901886,
0.10931680351495743,
0.042163070291280746,
0.06162318214774132,
-0.04999934136867523,
-0.08832545578479767,
-0.05499531328678131,
-0.06118104234337807,
-0.04851005598902702,
0.05071384087204933,
-0.11796589940786362,
0.021276600658893585,
-0.08526292443275452,
0.03345617279410362,
-0.013613209128379822,
0.0053728180937469006,
-0.15766307711601257,
0.009433174505829811,
-0.08391417562961578,
0.03247201070189476,
-0.17627625167369843,
0.004682545084506273,
0.03699463605880737,
-0.06142016127705574,
-0.03676941618323326,
-0.0013555618934333324,
-0.09043783694505692,
-0.030733522027730942,
-0.004064621869474649,
0.08386293053627014,
-0.07658246159553528,
-0.03469609096646309,
0.0444333553314209,
-0.07118094712495804,
0.04465038701891899,
0.06293746083974838,
-0.06879960000514984,
0.04454054310917854,
-0.2922970652580261,
-0.09531805664300919,
0.05334968864917755,
0.04857425019145012,
0.0425463505089283,
0.024368738755583763,
0.024225836619734764,
0.10719817876815796,
-0.010219221003353596,
0.04011143743991852,
0.016561053693294525,
-0.09267564862966537,
-0.04428037628531456,
-0.0868975818157196,
-0.09709563106298447,
-0.07078570872545242,
0.00800476223230362,
0.19385242462158203,
0.01785246841609478,
0.19044698774814606,
-0.02578595280647278,
0.03963788226246834,
-0.03800525143742561,
0.010997987352311611,
0.054994624108076096,
-0.10683811455965042,
0.05204311013221741,
-0.08735379576683044,
0.012589113786816597,
0.000828542048111558,
0.23101292550563812,
-0.045177657157182693,
-0.007036809343844652,
0.02252134121954441,
0.024826837703585625,
-0.0771188884973526,
-0.024806611239910126,
0.3014107942581177,
0.0789821669459343,
-0.004402689635753632,
-0.09295745939016342,
0.05119467154145241,
0.04168057441711426,
0.01795724406838417,
0.09212016314268112,
0.11718542128801346,
-0.019217848777770996,
0.12111727148294449,
0.01799112744629383,
-0.03277376666665077,
-0.008701319806277752,
-0.07096593827009201,
0.005137863103300333,
0.04965372383594513,
0.022413037717342377,
0.08087903261184692,
0.09024528414011002,
-0.1366531103849411,
0.04322725906968117,
-0.021331625059247017,
-0.060496434569358826,
-0.08858704566955566,
-0.10761721432209015,
-0.06513629853725433,
-0.11725310236215591,
0.08384629338979721,
-0.10811864584684372,
0.08779531717300415,
0.12911608815193176,
0.06682395935058594,
-0.007713347673416138,
-0.03392698988318443,
-0.05159962177276611,
-0.0214986652135849,
0.028996216133236885,
-0.04335174337029457,
-0.012279078364372253,
0.014695761725306511,
-0.03816472738981247,
-0.014970283024013042,
-0.0914275124669075,
0.030794130638241768,
0.0922788679599762,
0.016165243461728096,
0.05900205671787262,
-0.11932876706123352,
-0.07206860929727554,
-0.031664326786994934,
0.0397048220038414,
0.013274955563247204,
0.152912437915802,
0.0521390326321125,
0.012159902602434158,
0.055440954864025116,
0.12708599865436554,
-0.02920800819993019,
-0.14508600533008575,
-0.09977662563323975,
-0.07714539021253586,
0.09698185324668884,
0.057587504386901855,
-0.012469591572880745,
-0.035267721861600876,
-0.06791073828935623,
0.188479483127594,
0.17320430278778076,
0.001443500746972859,
-0.006568189710378647,
0.02550901100039482,
0.022384466603398323,
0.043055713176727295,
0.11983340233564377,
0.07651735097169876,
0.15775464475154877,
-0.05150265246629715,
-0.01729537360370159,
-0.03590015694499016,
-0.03730042651295662,
-0.08691652119159698,
0.06914693862199783,
-0.024741141125559807,
-0.09569690376520157,
0.0003361334674991667,
0.11719804257154465,
-0.12172481417655945,
0.04239727929234505,
0.10529538989067078,
-0.13456638157367706,
-0.01502878125756979,
-0.02924230694770813,
0.13980571925640106,
0.004343152046203613,
0.05497001111507416,
-0.025578539818525314,
-0.05324910953640938,
-0.005589419975876808,
0.018487868830561638,
-0.19672828912734985,
0.029506249353289604,
0.012062066234648228,
-0.012714522890746593,
0.0658702477812767,
0.0020484195556491613,
0.12101982533931732,
0.11686074733734131,
0.06971926987171173,
-0.07835408300161362,
0.05587374418973923,
-0.017796048894524574,
0.030652638524770737,
0.03703911975026131,
-0.01512168999761343,
-0.0500459261238575,
-0.013012019917368889,
0.024473950266838074,
-0.16439659893512726,
0.03886304423213005,
0.06876502931118011,
0.0066345552913844585,
-0.03523431718349457,
-0.01274906750768423,
-0.06808801740407944,
0.11302849650382996,
0.0717412531375885,
0.002746434649452567,
-0.008146367035806179,
-0.034027472138404846,
0.06095127761363983,
0.020102111622691154,
-0.06527754664421082,
-0.07532432675361633,
-0.08531245589256287,
-0.059053003787994385,
0.06699518859386444,
0.046992938965559006,
-0.10810719430446625,
-0.03289095684885979,
-0.08687970787286758,
-0.009715965948998928,
-0.11323157697916031,
0.07073536515235901,
0.17334192991256714,
0.011554728262126446,
-0.04122501239180565,
-0.14812897145748138,
0.029387928545475006,
0.0781736895442009,
-0.042441580444574356,
-0.10099715739488602
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# outputs
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7371
- Rouge1: 8.8243
- Rouge2: 1.3093
- Rougel: 8.7971
- Rougelsum: 8.838
- Gen Len: 18.6465
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.8929 | 1.0 | 10995 | 0.8547 | 8.6675 | 1.2002 | 8.6197 | 8.6811 | 18.5008 |
| 0.8248 | 2.0 | 21990 | 0.7847 | 8.8312 | 1.3639 | 8.8073 | 8.8448 | 18.4607 |
| 0.7483 | 3.0 | 32985 | 0.7488 | 8.913 | 1.3639 | 8.8925 | 8.9096 | 18.9223 |
| 0.6492 | 4.0 | 43980 | 0.7371 | 8.8243 | 1.3093 | 8.7971 | 8.838 | 18.6465 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "base_model": "google/mt5-small", "model-index": [{"name": "outputs", "results": []}]} | text2text-generation | mekhak/outputs | [
"transformers",
"tensorboard",
"safetensors",
"mt5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/mt5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T21:51:29+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| outputs
=======
This model is a fine-tuned version of google/mt5-small on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.7371
* Rouge1: 8.8243
* Rouge2: 1.3093
* Rougel: 8.7971
* Rougelsum: 8.838
* Gen Len: 18.6465
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0005
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
81,
97,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.09932879358530045,
0.09069059789180756,
-0.0018614818109199405,
0.11272648721933365,
0.11764151602983475,
-0.008061802014708519,
0.19799469411373138,
0.12052515149116516,
-0.040779244154691696,
0.04678841307759285,
0.15236283838748932,
0.10913313925266266,
0.014125053770840168,
0.13851961493492126,
-0.061019428074359894,
-0.19655442237854004,
0.017501624301075935,
0.02495242841541767,
-0.04052918404340744,
0.12883003056049347,
0.09660807251930237,
-0.11356306821107864,
0.11528627574443817,
0.002841838402673602,
-0.1390327513217926,
0.005211189389228821,
0.024229366332292557,
-0.04674891382455826,
0.128818541765213,
0.03311280161142349,
0.07704704999923706,
0.04339658468961716,
0.05016582831740379,
-0.17796479165554047,
0.012237366288900375,
0.049750953912734985,
-0.0003030954976566136,
0.08533769845962524,
0.050034962594509125,
-0.014534779824316502,
0.039448246359825134,
-0.0745847150683403,
0.035339850932359695,
0.031951822340488434,
-0.11929972469806671,
-0.21137835085391998,
-0.07818572223186493,
0.03552841767668724,
0.07005753368139267,
0.09937341511249542,
-0.012714613229036331,
0.13237974047660828,
-0.016647737473249435,
0.09046533703804016,
0.23392382264137268,
-0.312409371137619,
-0.0594155453145504,
0.05984683707356453,
0.05428208038210869,
0.10847923904657364,
-0.08362942934036255,
0.008890964090824127,
0.05271323770284653,
0.019179189577698708,
0.14526475965976715,
-0.02335818111896515,
0.012490877881646156,
0.0008368437411263585,
-0.12238835543394089,
-0.04050017520785332,
0.20525223016738892,
0.06621190160512924,
-0.0523984357714653,
-0.07679695636034012,
-0.0710747167468071,
-0.12544536590576172,
-0.020267795771360397,
-0.009682342410087585,
0.05282856151461601,
-0.006660127080976963,
-0.09576162695884705,
-0.06351467967033386,
-0.10746414959430695,
-0.06289438903331757,
-0.03654351085424423,
0.11901181191205978,
0.015626495704054832,
0.000311148731270805,
-0.02528354898095131,
0.0945310965180397,
-0.018683839589357376,
-0.14939118921756744,
0.012739677913486958,
0.022798610851168633,
0.042941540479660034,
-0.03328073024749756,
-0.053884051740169525,
-0.1088438630104065,
0.023228958249092102,
0.13096153736114502,
-0.035208214074373245,
0.04745607450604439,
0.004224054049700499,
0.05136712267994881,
-0.11190436035394669,
0.1750451773405075,
-0.03745545819401741,
-0.0567474365234375,
0.04268254339694977,
0.1115567535161972,
0.08463341742753983,
-0.015507644042372704,
-0.1444564014673233,
0.025451377034187317,
0.11110862344503403,
0.01676047034561634,
-0.02659011259675026,
0.06999067962169647,
-0.05540185421705246,
-0.021994614973664284,
0.006668047048151493,
-0.08036976307630539,
0.014582370407879353,
-0.007445926312357187,
-0.052139438688755035,
-0.07166484743356705,
0.027893539518117905,
0.02701200358569622,
0.0046119713224470615,
0.06214891001582146,
-0.09048888832330704,
0.0028160708025097847,
-0.06554604321718216,
-0.1010633036494255,
0.01492890901863575,
-0.0612238347530365,
0.021900122985243797,
-0.11651372909545898,
-0.21860305964946747,
-0.0013666633749380708,
0.05435064062476158,
-0.030860455706715584,
-0.06217874214053154,
-0.06344511359930038,
-0.06999078392982483,
0.01732763461768627,
-0.01624053716659546,
0.07722790539264679,
-0.0662963017821312,
0.09021115303039551,
0.057773999869823456,
0.05285561457276344,
-0.06201590225100517,
0.03366250917315483,
-0.10813809931278229,
0.0529671236872673,
-0.14939554035663605,
0.05207516625523567,
-0.027897223830223083,
0.07747106999158859,
-0.09801653772592545,
-0.05842066556215286,
-0.03820282220840454,
-0.011239783838391304,
0.07248377799987793,
0.11326568573713303,
-0.14573365449905396,
-0.0770355686545372,
0.1599515676498413,
-0.07749739289283752,
-0.18802036345005035,
0.14233338832855225,
-0.04163169488310814,
0.08132602274417877,
0.07371247559785843,
0.19251132011413574,
0.06403642892837524,
-0.07193803787231445,
-0.005761254113167524,
-0.011280633509159088,
0.06945756077766418,
-0.05892621725797653,
0.09868989884853363,
-0.012030898593366146,
-0.005370189901441336,
0.013372301124036312,
-0.051689695566892624,
0.06190172955393791,
-0.06807053089141846,
-0.08188910782337189,
-0.04526795074343681,
-0.10624182969331741,
0.043705906718969345,
0.03516611456871033,
0.0769384428858757,
-0.10944632440805435,
-0.09268712997436523,
0.034072618931531906,
0.05268750339746475,
-0.0871126651763916,
0.015497485175728798,
-0.07641438394784927,
0.10969147086143494,
-0.11582404375076294,
-0.002474947366863489,
-0.13350901007652283,
-0.04287455230951309,
0.02698456682264805,
-0.02344774454832077,
0.020823605358600616,
-0.029302190989255905,
0.09076482057571411,
0.06394832581281662,
-0.07770021259784698,
-0.042736709117889404,
-0.018394241109490395,
0.0029073061887174845,
-0.12089622765779495,
-0.16963426768779755,
-0.018014822155237198,
-0.022577282041311264,
0.15863309800624847,
-0.2053709626197815,
0.0536624975502491,
0.002158707706257701,
0.07642620801925659,
0.036193571984767914,
-0.02182774618268013,
-0.023922039195895195,
0.033685699105262756,
-0.0496639758348465,
-0.0746183767914772,
0.06961336731910706,
0.02966957911849022,
-0.12815023958683014,
0.010667925700545311,
-0.16082726418972015,
0.18866658210754395,
0.13349638879299164,
-0.0700368657708168,
-0.03522689267992973,
-0.0030778481159359217,
-0.03200274705886841,
-0.035317499190568924,
-0.04134422913193703,
-0.0359739288687706,
0.12985482811927795,
0.003725906601175666,
0.1583106815814972,
-0.10774748027324677,
-0.0458604134619236,
0.0228395015001297,
-0.03987966850399971,
-0.005240495316684246,
0.10930553823709488,
0.04155142605304718,
-0.11981984972953796,
0.14911238849163055,
0.20072072744369507,
-0.06846989691257477,
0.12796156108379364,
-0.040508098900318146,
-0.061276208609342575,
-0.03311778977513313,
0.017996257171034813,
0.019836466759443283,
0.08829893171787262,
-0.1043304055929184,
0.007396450731903315,
0.011994675733149052,
0.020840121433138847,
0.022048916667699814,
-0.1916647106409073,
-0.02112801931798458,
0.05346565321087837,
-0.060458358377218246,
-0.0039478144608438015,
-0.011468712240457535,
-0.025570061057806015,
0.08175220340490341,
0.010138840414583683,
-0.059398338198661804,
0.06711883097887039,
0.0019844863563776016,
-0.08449846506118774,
0.19009293615818024,
-0.053448546677827835,
-0.1670067310333252,
-0.16609717905521393,
-0.05967321619391441,
-0.08360643684864044,
0.04014541581273079,
0.06968927383422852,
-0.04490061104297638,
-0.03607620671391487,
-0.13698232173919678,
0.019037198275327682,
0.007158851716667414,
0.016990428790450096,
0.027267105877399445,
-0.009224052540957928,
0.09203469008207321,
-0.09850580245256424,
-0.009296753443777561,
-0.0003184177039656788,
-0.034039873629808426,
0.024526458233594894,
0.0005688487435691059,
0.10218992084264755,
0.1103033795952797,
-0.009515171870589256,
0.010956564918160439,
-0.02442399226129055,
0.22993013262748718,
-0.05526430904865265,
-0.017063003033399582,
0.16564728319644928,
0.002431423868983984,
0.056998152285814285,
0.12408530712127686,
0.04248172044754028,
-0.09838588535785675,
0.02090582810342312,
0.019156429916620255,
-0.03873814269900322,
-0.2056998908519745,
-0.009228862822055817,
-0.04585821554064751,
0.0266732070595026,
0.10448043048381805,
0.034829773008823395,
0.04877340793609619,
0.08238954097032547,
0.01596740260720253,
0.09622719138860703,
0.009787584654986858,
0.08362587541341782,
0.12935808300971985,
0.050268497318029404,
0.13045953214168549,
-0.04370316118001938,
-0.047742810100317,
0.03476151078939438,
0.0075445836409926414,
0.18468846380710602,
0.01684192195534706,
0.21984019875526428,
0.03349888697266579,
0.1317185014486313,
0.0017436048947274685,
0.06769007444381714,
0.0019174570916220546,
-0.02997600845992565,
-0.01925058849155903,
-0.056558214128017426,
-0.03500772640109062,
0.03829769790172577,
-0.05486578494310379,
0.07224800437688828,
-0.08223964273929596,
0.03529481217265129,
0.05333518609404564,
0.2682993412017822,
0.045453738421201706,
-0.36222779750823975,
-0.09983798116445541,
0.030808134004473686,
-0.014036666601896286,
-0.02519964426755905,
0.027148665860295296,
0.1458621770143509,
-0.0526169091463089,
0.03663087636232376,
-0.08328662812709808,
0.09010970592498779,
-0.04742090776562691,
0.04468376561999321,
0.0466541051864624,
0.07009457051753998,
-0.003420300781726837,
0.06542867422103882,
-0.2754117548465729,
0.24283264577388763,
0.01934739574790001,
0.06565765291452408,
-0.051598742604255676,
-0.00017232430400326848,
0.03098139353096485,
0.053865961730480194,
0.08158855885267258,
-0.011944245547056198,
-0.025875689461827278,
-0.15788443386554718,
-0.10600550472736359,
0.025326140224933624,
0.0837642103433609,
-0.07694441825151443,
0.10380353033542633,
-0.050263114273548126,
-0.0021668998524546623,
0.06441868096590042,
0.03504328057169914,
-0.06910586357116699,
-0.10265611112117767,
-0.0011812616139650345,
0.06718432158231735,
0.007170933298766613,
-0.08896099776029587,
-0.09502729028463364,
-0.11771059036254883,
0.1525477021932602,
-0.010952617041766644,
-0.042292896658182144,
-0.09629342705011368,
0.05024639144539833,
0.05374746024608612,
-0.07969045639038086,
0.0344478003680706,
0.00610979413613677,
0.10279747098684311,
0.02002664841711521,
-0.06013062968850136,
0.11808188259601593,
-0.06394191086292267,
-0.1700248420238495,
-0.05072304606437683,
0.13862016797065735,
-0.017673488706350327,
0.04128167778253555,
-0.0028632362373173237,
0.021014582365751266,
-0.046679966151714325,
-0.07016723603010178,
0.03335941955447197,
-0.022064974531531334,
0.042784184217453,
0.00315102213062346,
-0.01590600423514843,
0.03831961005926132,
-0.051301002502441406,
-0.04882761836051941,
0.16556955873966217,
0.2994859516620636,
-0.06599016487598419,
-0.010610555298626423,
0.05539260804653168,
-0.04805921018123627,
-0.18167653679847717,
0.020096812397241592,
0.018668700009584427,
0.003666047938168049,
0.06717903167009354,
-0.1272680014371872,
0.07539908587932587,
0.08583731949329376,
-0.03202027082443237,
0.11149173229932785,
-0.3002254068851471,
-0.14511173963546753,
0.090736985206604,
0.15591324865818024,
0.12848150730133057,
-0.165110781788826,
-0.06859035044908524,
-0.054325561970472336,
-0.131223663687706,
0.10417912155389786,
-0.1373022347688675,
0.1172252893447876,
-0.00509833637624979,
0.053100209683179855,
0.0049748532474040985,
-0.05574840307235718,
0.13688112795352936,
-0.034021440893411636,
0.08908600360155106,
-0.05806809663772583,
0.00771629111841321,
0.09041063487529755,
-0.06830228865146637,
0.028946300968527794,
-0.14547649025917053,
0.03988853469491005,
-0.042395852506160736,
-0.03758106008172035,
-0.045775167644023895,
0.031075958162546158,
-0.029315374791622162,
-0.052701059728860855,
-0.03257988393306732,
0.009243499487638474,
0.04487268254160881,
-0.0032020623330026865,
0.177199125289917,
-0.000406766397645697,
0.12469389289617538,
0.15764695405960083,
0.10165780782699585,
-0.08085041493177414,
-0.033656686544418335,
-0.01814296469092369,
-0.04478610306978226,
0.0451681949198246,
-0.14756913483142853,
0.048387326300144196,
0.10175368189811707,
0.0025805369950830936,
0.1492609679698944,
0.06776253134012222,
-0.025593694299459457,
0.023560887202620506,
0.059724148362874985,
-0.16883032023906708,
-0.16740632057189941,
-0.04545307531952858,
-0.021759534254670143,
-0.13754934072494507,
0.05265797674655914,
0.1407676786184311,
-0.06787781417369843,
0.0018846900202333927,
-0.008620431646704674,
0.0113441227003932,
-0.02820795774459839,
0.16107594966888428,
0.03809191286563873,
0.04427824914455414,
-0.07935705780982971,
0.09974051266908646,
0.04360298439860344,
-0.069385826587677,
0.00655868835747242,
0.03111358918249607,
-0.08476442098617554,
-0.04142802208662033,
0.01715831458568573,
0.17032009363174438,
-0.023137854412198067,
-0.04705926030874252,
-0.17058397829532623,
-0.11425787210464478,
0.04341200739145279,
0.11692115664482117,
0.07896027714014053,
0.02669399604201317,
-0.023842191323637962,
-0.0026627809274941683,
-0.0914997011423111,
0.124358169734478,
0.03931255266070366,
0.0847344696521759,
-0.1710716038942337,
0.07968046516180038,
-0.010213966481387615,
0.008279673755168915,
-0.02060719206929207,
0.03670251742005348,
-0.09298893809318542,
-0.0034155489411205053,
-0.1370731145143509,
0.010094013065099716,
-0.02624322660267353,
-0.007044615689665079,
-0.007491805125027895,
-0.05595673993229866,
-0.07665212452411652,
0.019600877538323402,
-0.1007777526974678,
-0.0430712029337883,
0.03410857543349266,
0.06118793413043022,
-0.10560087859630585,
-0.026677679270505905,
0.034605905413627625,
-0.07941361516714096,
0.08454431593418121,
0.023239588364958763,
0.00408723670989275,
0.022310154512524605,
-0.1498626321554184,
0.04056211933493614,
0.04873662069439888,
0.0071040871553123,
0.02104097604751587,
-0.10459022969007492,
-0.020087242126464844,
0.015383797697722912,
0.031706199049949646,
0.013653903268277645,
0.08596866577863693,
-0.12028826028108597,
-0.0016226897714659572,
-0.018504278734326363,
-0.0338151715695858,
-0.058890603482723236,
0.02162163332104683,
0.061954136937856674,
0.020651839673519135,
0.22130922973155975,
-0.08994460105895996,
0.0032042618840932846,
-0.21003951132297516,
0.01976281963288784,
0.008739612996578217,
-0.126698300242424,
-0.12684878706932068,
-0.06087355315685272,
0.046661972999572754,
-0.06163741648197174,
0.1301482617855072,
-0.0196958277374506,
0.025511017069220543,
0.03314514085650444,
0.002101317048072815,
0.06467641144990921,
0.015620706602931023,
0.22923539578914642,
0.01228349283337593,
-0.03206711262464523,
0.04457561671733856,
0.03187419846653938,
0.11672414839267731,
0.10159586369991302,
0.15964345633983612,
0.15783990919589996,
-0.04073801264166832,
0.1194319799542427,
0.03987850248813629,
-0.01494645606726408,
-0.15527784824371338,
0.05244114249944687,
-0.02514202892780304,
0.10929836332798004,
-0.018534086644649506,
0.2099897861480713,
0.11817045509815216,
-0.14768464863300323,
0.012030650861561298,
-0.05516796559095383,
-0.059370655566453934,
-0.09618662297725677,
-0.11241090297698975,
-0.10331162810325623,
-0.15748804807662964,
-0.004895136691629887,
-0.0977591797709465,
0.0035919530782848597,
0.09256131947040558,
0.003759208833798766,
-0.034144580364227295,
0.16856589913368225,
-0.0032473073806613684,
0.001899027032777667,
0.043115224689245224,
-0.01948540285229683,
-0.04221583157777786,
-0.07183005660772324,
-0.11109495162963867,
0.011988729238510132,
-0.008076854981482029,
0.03219312056899071,
-0.03067493811249733,
-0.021658040583133698,
0.027328141033649445,
-0.0245380662381649,
-0.11477231979370117,
0.00010428512177895755,
0.027302082628011703,
0.04366065934300423,
0.030637940391898155,
0.003778599202632904,
-0.007133269216865301,
0.0056197247467935085,
0.2332235872745514,
-0.0795142725110054,
-0.052183281630277634,
-0.08517441898584366,
0.14974693953990936,
-0.000411021348554641,
-0.005099331960082054,
0.0020173629745841026,
-0.0904441699385643,
0.03798694908618927,
0.21811848878860474,
0.17940166592597961,
-0.0880373865365982,
-0.006147042848169804,
-0.01015152595937252,
-0.01064956933259964,
-0.020802384242415428,
0.06663694977760315,
0.08880604803562164,
-0.007427392061799765,
-0.07262007892131805,
-0.005686732474714518,
-0.03215709328651428,
-0.006833881605416536,
-0.038202881813049316,
0.08398719877004623,
0.0010397429578006268,
0.016321413218975067,
-0.044610582292079926,
0.05326269194483757,
-0.04291051998734474,
-0.06827906519174576,
0.013673674315214157,
-0.19353602826595306,
-0.12821154296398163,
-0.028754208236932755,
0.09698637574911118,
-0.016733922064304352,
0.050230465829372406,
-0.02277926169335842,
0.02060019224882126,
0.017631491646170616,
-0.02937697246670723,
-0.07730740308761597,
-0.05501692369580269,
0.05939958989620209,
-0.10748258233070374,
0.23486454784870148,
-0.039442822337150574,
0.02289603091776371,
0.1302393227815628,
0.02956606075167656,
-0.10134455561637878,
0.08974383771419525,
0.0385507196187973,
-0.04286611080169678,
0.04745045676827431,
0.08059106767177582,
-0.026505840942263603,
0.12424419820308685,
0.04756734147667885,
-0.08252515643835068,
0.007652686908841133,
-0.02374262362718582,
-0.05284687876701355,
-0.053666919469833374,
-0.06821763515472412,
-0.05837826058268547,
0.1366390734910965,
0.15101008117198944,
-0.05705232918262482,
-0.015519101172685623,
-0.042136240750551224,
0.02805718220770359,
0.08595746755599976,
0.03383743762969971,
-0.02553224377334118,
-0.24187925457954407,
0.003575077746063471,
0.08649285137653351,
-0.00031307805329561234,
-0.31128498911857605,
-0.09083260595798492,
-0.018904659897089005,
-0.04510977491736412,
-0.08465883135795593,
0.07915116846561432,
0.14430969953536987,
0.04806450381875038,
-0.0632883682847023,
-0.07500121742486954,
-0.08084913343191147,
0.15960286557674408,
-0.13049259781837463,
-0.09982842952013016
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224-dmae-va-U-40
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0573
- Accuracy: 0.9817
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.9 | 7 | 1.3991 | 0.3486 |
| 1.4669 | 1.94 | 15 | 1.2475 | 0.4128 |
| 1.1455 | 2.97 | 23 | 0.8962 | 0.5872 |
| 0.8447 | 4.0 | 31 | 0.6655 | 0.7064 |
| 0.8447 | 4.9 | 38 | 0.4931 | 0.8257 |
| 0.6223 | 5.94 | 46 | 0.3267 | 0.9174 |
| 0.4293 | 6.97 | 54 | 0.4080 | 0.8440 |
| 0.3355 | 8.0 | 62 | 0.1563 | 0.9450 |
| 0.3355 | 8.9 | 69 | 0.1380 | 0.9633 |
| 0.2435 | 9.94 | 77 | 0.1885 | 0.9358 |
| 0.2571 | 10.97 | 85 | 0.1819 | 0.9083 |
| 0.2174 | 12.0 | 93 | 0.1306 | 0.9541 |
| 0.1584 | 12.9 | 100 | 0.0573 | 0.9817 |
| 0.1584 | 13.94 | 108 | 0.1427 | 0.9358 |
| 0.1568 | 14.97 | 116 | 0.1311 | 0.9541 |
| 0.1515 | 16.0 | 124 | 0.1165 | 0.9541 |
| 0.1664 | 16.9 | 131 | 0.0692 | 0.9725 |
| 0.1664 | 17.94 | 139 | 0.0659 | 0.9817 |
| 0.1294 | 18.97 | 147 | 0.1305 | 0.9633 |
| 0.1411 | 20.0 | 155 | 0.0809 | 0.9817 |
| 0.1167 | 20.9 | 162 | 0.0753 | 0.9817 |
| 0.1069 | 21.94 | 170 | 0.0504 | 0.9817 |
| 0.1069 | 22.97 | 178 | 0.0513 | 0.9817 |
| 0.1071 | 24.0 | 186 | 0.0854 | 0.9725 |
| 0.118 | 24.9 | 193 | 0.0816 | 0.9817 |
| 0.094 | 25.94 | 201 | 0.0782 | 0.9817 |
| 0.094 | 26.97 | 209 | 0.1030 | 0.9817 |
| 0.0866 | 28.0 | 217 | 0.0601 | 0.9817 |
| 0.0765 | 28.9 | 224 | 0.0911 | 0.9817 |
| 0.0891 | 29.94 | 232 | 0.0579 | 0.9817 |
| 0.0828 | 30.97 | 240 | 0.0890 | 0.9817 |
| 0.0828 | 32.0 | 248 | 0.0769 | 0.9817 |
| 0.08 | 32.9 | 255 | 0.0668 | 0.9817 |
| 0.0691 | 33.94 | 263 | 0.0807 | 0.9817 |
| 0.082 | 34.97 | 271 | 0.0861 | 0.9817 |
| 0.082 | 36.0 | 279 | 0.0839 | 0.9817 |
| 0.0632 | 36.13 | 280 | 0.0837 | 0.9817 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/beit-base-patch16-224", "model-index": [{"name": "beit-base-patch16-224-dmae-va-U-40", "results": []}]} | image-classification | Augusto777/beit-base-patch16-224-dmae-va-U-40 | [
"transformers",
"tensorboard",
"safetensors",
"beit",
"image-classification",
"generated_from_trainer",
"base_model:microsoft/beit-base-patch16-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:54:00+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| beit-base-patch16-224-dmae-va-U-40
==================================
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0573
* Accuracy: 0.9817
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 40
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 40",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 40",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
74,
144,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 40### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.15580879151821136,
0.11568272858858109,
-0.0011432305909693241,
0.08701680600643158,
0.14450009167194366,
0.011544065549969673,
0.11072596162557602,
0.12627318501472473,
-0.10063721984624863,
0.09281303733587265,
0.12062758952379227,
0.1041189432144165,
0.04523768275976181,
0.15393319725990295,
-0.030806714668869972,
-0.2849563658237457,
-0.0002944870211649686,
0.018430840224027634,
-0.17528310418128967,
0.11312742531299591,
0.10153121501207352,
-0.12236548960208893,
0.08037753403186798,
0.026003293693065643,
-0.17455483973026276,
0.00212640012614429,
-0.018853571265935898,
-0.04994526877999306,
0.11440490931272507,
0.04547718167304993,
0.10701078176498413,
0.026614194735884666,
0.1132938489317894,
-0.1875641644001007,
0.005448718089610338,
0.07538590580224991,
0.01551246177405119,
0.09789653867483139,
0.07583890855312347,
-0.00736799044534564,
0.10447058826684952,
-0.08167547732591629,
0.060886237770318985,
0.04828415438532829,
-0.0982714295387268,
-0.2844589352607727,
-0.1065894216299057,
0.08159696310758591,
0.12947560846805573,
0.06994566321372986,
-0.012607996352016926,
0.11193771660327911,
-0.056677237153053284,
0.09255875647068024,
0.24574527144432068,
-0.27762553095817566,
-0.0886147990822792,
0.030422644689679146,
0.04539977014064789,
0.02097506634891033,
-0.12568499147891998,
-0.018643535673618317,
0.07108232378959656,
0.02054312825202942,
0.09841810911893845,
0.0066913398914039135,
0.016518544405698776,
0.008636661805212498,
-0.1468956619501114,
-0.03817138820886612,
0.1461900919675827,
0.09720475971698761,
-0.05251549929380417,
-0.06256230175495148,
-0.03783943131566048,
-0.2195797860622406,
-0.031260646879673004,
0.009871920570731163,
0.0457853339612484,
-0.06690452992916107,
-0.12666994333267212,
0.01619042083621025,
-0.09396807849407196,
-0.09721476584672928,
0.014171896502375603,
0.15469583868980408,
0.04733603075146675,
0.004752789624035358,
0.004566648975014687,
0.13897038996219635,
0.04773217812180519,
-0.15598063170909882,
-0.009479740634560585,
0.02473464421927929,
-0.06425407528877258,
-0.027234956622123718,
-0.027604850009083748,
0.016369853168725967,
0.003094610059633851,
0.19048453867435455,
-0.05334935709834099,
0.055341217666864395,
0.05961620807647705,
0.03945273905992508,
-0.09865258634090424,
0.172518789768219,
-0.06616749614477158,
-0.05083649978041649,
-0.0314667709171772,
0.09870076924562454,
0.011510608717799187,
-0.003166432958096266,
-0.08132781833410263,
0.04286457225680351,
0.09382416307926178,
0.025448264554142952,
-0.033619266003370285,
0.035532861948013306,
-0.05696607753634453,
-0.020817147567868233,
0.0731838271021843,
-0.07991882413625717,
0.02997560426592827,
-0.000003830555215245113,
-0.10718128830194473,
-0.03996901586651802,
0.03393830358982086,
0.021093301475048065,
0.03011055663228035,
0.1419140100479126,
-0.10589121282100677,
-0.010111644864082336,
-0.10787200182676315,
-0.09543949365615845,
0.021262142807245255,
-0.06124042347073555,
0.0076093534007668495,
-0.08970796316862106,
-0.1499912291765213,
-0.04282985255122185,
0.059910848736763,
-0.04315509647130966,
-0.06830041110515594,
-0.03048563003540039,
-0.09683264046907425,
0.0380600281059742,
-0.01636355184018612,
0.14434899389743805,
-0.05375232174992561,
0.1111791655421257,
0.05489741638302803,
0.06659460067749023,
0.011064041405916214,
0.04082103818655014,
-0.07217657566070557,
0.05049397796392441,
-0.18593882024288177,
0.028690509498119354,
-0.09356211125850677,
0.0963178426027298,
-0.11323682963848114,
-0.11236649006605148,
0.0014497386291623116,
0.0062028043903410435,
0.07263995707035065,
0.10412361472845078,
-0.15423345565795898,
-0.08941419422626495,
0.14261798560619354,
-0.08202896267175674,
-0.1364767700433731,
0.09527913480997086,
-0.018865132704377174,
0.013483233749866486,
0.029703978449106216,
0.11046916246414185,
0.07013769447803497,
-0.09976578503847122,
-0.038410790264606476,
-0.02191292867064476,
0.10046815872192383,
-0.021225351840257645,
0.09767354279756546,
-0.02022717520594597,
0.030932245776057243,
0.008629394695162773,
-0.06731655448675156,
0.039756666868925095,
-0.10936618596315384,
-0.08319497108459473,
-0.030136138200759888,
-0.10124394297599792,
0.021191628649830818,
0.06630240380764008,
0.06458543986082077,
-0.09378420561552048,
-0.13835245370864868,
0.06386571377515793,
0.12582851946353912,
-0.0687277540564537,
0.007196838967502117,
-0.06833832710981369,
0.07032029330730438,
-0.04774562269449234,
-0.026385437697172165,
-0.1642444133758545,
-0.06682262569665909,
0.013829282484948635,
-0.046890467405319214,
0.0033473875373601913,
-0.013802753761410713,
0.07130629569292068,
0.08436039090156555,
-0.06347830593585968,
-0.06301463395357132,
-0.07202781736850739,
-0.014032321982085705,
-0.10205206274986267,
-0.23967400193214417,
-0.09832020848989487,
-0.01711811125278473,
0.17742229998111725,
-0.24862931668758392,
0.036589980125427246,
0.026745745912194252,
0.15510927140712738,
0.061651553958654404,
-0.037063416093587875,
-0.03904256597161293,
0.055116672068834305,
-0.0460062138736248,
-0.08286001533269882,
0.026884598657488823,
0.0033566963393241167,
-0.09752671420574188,
-0.048249535262584686,
-0.09285326302051544,
0.1572778820991516,
0.11854983866214752,
-0.031245216727256775,
-0.10378594696521759,
-0.03147673234343529,
-0.09059324860572815,
-0.05090630427002907,
-0.030259430408477783,
-0.019940339028835297,
0.07516695559024811,
0.012159721925854683,
0.13623879849910736,
-0.07419022172689438,
-0.06769037246704102,
0.029619891196489334,
-0.013957898132503033,
-0.0050237406976521015,
0.12109722197055817,
0.11589592695236206,
-0.06709575653076172,
0.14676590263843536,
0.11399830877780914,
-0.08398841321468353,
0.14268717169761658,
-0.05617288872599602,
-0.09060903638601303,
-0.01678181253373623,
0.01943342015147209,
0.030775627121329308,
0.1683158129453659,
-0.08731751888990402,
-0.010993041098117828,
0.0214499793946743,
0.006545419804751873,
0.022019803524017334,
-0.211863175034523,
-0.010419890284538269,
0.026875080540776253,
-0.03758282959461212,
-0.003303983248770237,
-0.028203297406435013,
-0.022419774904847145,
0.09202510118484497,
0.007453316822648048,
-0.047655701637268066,
0.01036258228123188,
0.007898767478764057,
-0.06938964873552322,
0.20849518477916718,
-0.07705733180046082,
-0.1241726502776146,
-0.16113696992397308,
0.01774759590625763,
-0.04455811157822609,
0.0014449357986450195,
0.0375661626458168,
-0.09762849658727646,
-0.037458643317222595,
-0.05971523001790047,
0.03686073049902916,
0.007412387058138847,
0.03264521062374115,
0.01655402220785618,
0.03359152749180794,
0.09475374966859818,
-0.11238798499107361,
0.023779600858688354,
-0.025559065863490105,
-0.05169767513871193,
0.02368639037013054,
0.03673664480447769,
0.11059288680553436,
0.1395743191242218,
0.022016169503331184,
0.016212526708841324,
-0.028963124379515648,
0.1913943886756897,
-0.10920561850070953,
-0.011342901736497879,
0.12407058477401733,
0.010480785742402077,
0.04796367138624191,
0.11456979066133499,
0.06332486867904663,
-0.09529506415128708,
0.033315908163785934,
0.07102564722299576,
-0.018962539732456207,
-0.20269663631916046,
-0.015906337648630142,
-0.03875306621193886,
0.0069689699448645115,
0.11250003427267075,
0.04783150926232338,
0.02776651829481125,
0.068137988448143,
-0.01716579496860504,
0.056622982025146484,
-0.04774558171629906,
0.08437368273735046,
0.026868777349591255,
0.04601230099797249,
0.13897007703781128,
-0.041057392954826355,
-0.0335208885371685,
0.03900573030114174,
0.009621982462704182,
0.23730072379112244,
-0.013905663043260574,
0.131418839097023,
0.056785643100738525,
0.17418831586837769,
-0.0037407949566841125,
0.07850160449743271,
0.011355522088706493,
-0.04549825191497803,
0.01298321969807148,
-0.05833439528942108,
-0.009699930436909199,
0.05721636116504669,
-0.0057777464389801025,
0.07429567724466324,
-0.12363391369581223,
0.018352579325437546,
0.053257107734680176,
0.3249110281467438,
0.07838262617588043,
-0.34968599677085876,
-0.12019408494234085,
0.011998746544122696,
-0.05162084847688675,
-0.0382818728685379,
0.009500961750745773,
0.10996663570404053,
-0.09330575168132782,
0.06131160631775856,
-0.08507991582155228,
0.09463299065828323,
-0.03617255762219429,
0.0004443000943865627,
0.11482472717761993,
0.08620448410511017,
-0.009698096662759781,
0.05955251306295395,
-0.22834403812885284,
0.28496626019477844,
0.003751464420929551,
0.0693139135837555,
-0.040414631366729736,
0.035813283175230026,
0.043195128440856934,
0.0390775091946125,
0.06961400806903839,
-0.020908981561660767,
-0.08184529095888138,
-0.21027904748916626,
-0.07781326025724411,
0.018415890634059906,
0.12377647310495377,
-0.10998876392841339,
0.12741324305534363,
-0.018484117463231087,
-0.026409659534692764,
0.05063074082136154,
-0.06671973317861557,
-0.10028181970119476,
-0.08593037724494934,
0.01294318214058876,
-0.030933687463402748,
0.026422321796417236,
-0.11279373615980148,
-0.12250350415706635,
-0.07439052313566208,
0.16112738847732544,
-0.11508611589670181,
-0.03156212717294693,
-0.14136295020580292,
0.11741231381893158,
0.12989190220832825,
-0.07072079181671143,
0.05835464224219322,
0.004103312734514475,
0.12244048714637756,
0.033861465752124786,
-0.02649141475558281,
0.11743561178445816,
-0.09205859154462814,
-0.24454569816589355,
-0.06137458235025406,
0.12703034281730652,
0.03014490380883217,
0.04671153426170349,
-0.03642084077000618,
0.024065867066383362,
-0.015287874266505241,
-0.08852625638246536,
0.05146036669611931,
-0.04191415384411812,
0.0570962131023407,
0.031152429059147835,
-0.03330414369702339,
0.02601044811308384,
-0.038745056837797165,
-0.052230820059776306,
0.08772961795330048,
0.30019208788871765,
-0.09912443906068802,
-0.02786787785589695,
0.031081942841410637,
-0.03215664625167847,
-0.16336721181869507,
0.06956995278596878,
0.12279650568962097,
0.029344851151108742,
0.02385619282722473,
-0.18482211232185364,
0.1154002919793129,
0.1180473268032074,
-0.045723557472229004,
0.16191966831684113,
-0.25918251276016235,
-0.1426587849855423,
0.0974525585770607,
0.11430674046278,
-0.031159771606326103,
-0.17760273814201355,
-0.059078823775053024,
-0.030353309586644173,
-0.14695003628730774,
0.09002604335546494,
-0.06096697226166725,
0.10497429221868515,
-0.004049544222652912,
0.03643757849931717,
0.00796073954552412,
-0.05786653980612755,
0.15988174080848694,
0.002966419095173478,
0.10075300186872482,
-0.02045711874961853,
-0.004049621522426605,
0.03760407865047455,
-0.06428039819002151,
0.016378069296479225,
-0.08357858657836914,
0.037869784981012344,
-0.1009715273976326,
-0.014742666855454445,
-0.08175210654735565,
0.05513859912753105,
-0.059795185923576355,
-0.04902137815952301,
-0.042904749512672424,
0.05960093066096306,
-0.0077393208630383015,
-0.009638882242143154,
0.1746526062488556,
0.006012176629155874,
0.16142785549163818,
0.11698448657989502,
0.04664156585931778,
-0.023784201592206955,
-0.0851312130689621,
-0.007921128533780575,
-0.018350720405578613,
0.077496737241745,
-0.1688975989818573,
0.01519703958183527,
0.1409231722354889,
0.050250329077243805,
0.13691063225269318,
0.06289023160934448,
-0.0589429996907711,
0.013635346665978432,
0.10228360444307327,
-0.10540791600942612,
-0.07631298899650574,
-0.016673889011144638,
-0.0029267610516399145,
-0.14002156257629395,
0.08422275632619858,
0.10760382562875748,
-0.06442110240459442,
-0.005827974062412977,
0.004343545529991388,
0.014259964227676392,
-0.039842404425144196,
0.22143541276454926,
0.08087996393442154,
0.09030964225530624,
-0.08751460164785385,
0.08633464574813843,
0.03676861524581909,
-0.10871431231498718,
-0.012980259023606777,
0.05899125337600708,
-0.05741587653756142,
-0.012358185835182667,
0.021609194576740265,
0.10175931453704834,
-0.05930735915899277,
-0.056330326944589615,
-0.1596241146326065,
-0.1138581931591034,
0.06077823042869568,
0.12121576070785522,
0.07764183729887009,
0.022345466539263725,
-0.002705804305151105,
0.06215142458677292,
-0.11419077217578888,
0.10720742493867874,
0.07317975163459778,
0.10732002556324005,
-0.1814582645893097,
0.14613273739814758,
0.018050113692879677,
0.026621300727128983,
-0.006233036983758211,
0.038840629160404205,
-0.1250418722629547,
-0.008661361411213875,
-0.09951817989349365,
-0.04889854043722153,
-0.04640473797917366,
-0.00825629010796547,
0.014318671077489853,
-0.05311083793640137,
-0.07136270403862,
0.029037069529294968,
-0.11894223839044571,
-0.052006129175424576,
0.025387544184923172,
0.050026703625917435,
-0.11011168360710144,
-0.00787628535181284,
0.04817010462284088,
-0.10899858176708221,
0.07932347059249878,
0.022261032834649086,
0.061819497495889664,
0.04018948972225189,
-0.07467778772115707,
0.03782668337225914,
0.04993046075105667,
-0.01645493507385254,
0.05312908813357353,
-0.10221885144710541,
-0.010227267630398273,
-0.05000282824039459,
0.05833018571138382,
-0.011112069711089134,
0.044559236615896225,
-0.14324168860912323,
-0.017356326803565025,
-0.030824463814496994,
-0.05326159670948982,
-0.05957144498825073,
0.04397602379322052,
0.06572026014328003,
0.015203124843537807,
0.17602397501468658,
-0.06260696053504944,
0.006880478002130985,
-0.23481249809265137,
0.0017139833653345704,
-0.016546204686164856,
-0.0902457907795906,
-0.07777878642082214,
-0.020035520195961,
0.07637650519609451,
-0.068385548889637,
0.09180471301078796,
-0.03195365518331528,
0.07143356651067734,
0.03767867758870125,
-0.0594123974442482,
0.041350241750478745,
0.04652688652276993,
0.16838319599628448,
0.03030811809003353,
0.008244830183684826,
0.03864724189043045,
0.036265090107917786,
0.07686526328325272,
0.03819601610302925,
0.19293898344039917,
0.1264534443616867,
-0.05351605266332626,
0.11382195353507996,
0.06286299228668213,
-0.11887547373771667,
-0.17160844802856445,
0.07308566570281982,
-0.04287067800760269,
0.12290294468402863,
-0.025512881577014923,
0.1588064283132553,
0.12171884626150131,
-0.18622177839279175,
0.01430496945977211,
-0.039757139980793,
-0.07368874549865723,
-0.0923042744398117,
-0.01734093204140663,
-0.06932887434959412,
-0.1887882947921753,
0.017733056098222733,
-0.11058878153562546,
0.005381662864238024,
0.10084428638219833,
0.01352386549115181,
0.014461253769695759,
0.1692572385072708,
0.013161464594304562,
0.030359340831637383,
0.07007089257240295,
0.022829322144389153,
-0.028001004830002785,
-0.060781706124544144,
-0.09023755043745041,
0.008128945715725422,
-0.02294836938381195,
0.03610432520508766,
-0.08658736199140549,
-0.09987562149763107,
0.06871923059225082,
0.05136583372950554,
-0.09515927731990814,
0.017193222418427467,
0.007219658233225346,
0.05413496494293213,
0.04503549635410309,
-0.006816210690885782,
0.037297945469617844,
-0.03327684476971626,
0.23513372242450714,
-0.11380438506603241,
-0.029862212017178535,
-0.14594867825508118,
0.22495949268341064,
0.00802818313241005,
-0.016843076795339584,
0.027268990874290466,
-0.10981176793575287,
-0.008199756033718586,
0.1606123149394989,
0.15139850974082947,
-0.0397639200091362,
-0.02602352946996689,
0.022746393457055092,
-0.0190750639885664,
-0.06510210037231445,
0.07910415530204773,
0.11508089303970337,
0.09535553306341171,
-0.07653990387916565,
-0.06735870242118835,
-0.029508009552955627,
-0.05553296208381653,
-0.015077886171638966,
0.06568847596645355,
0.024382619187235832,
0.006144014187157154,
-0.04149716719985008,
0.08129061758518219,
-0.017118873074650764,
-0.1506379395723343,
0.10698029398918152,
-0.17768296599388123,
-0.19019179046154022,
-0.021896393969655037,
0.07812042534351349,
-0.0005218140431679785,
0.06384305655956268,
-0.008814951404929161,
-0.04096520319581032,
0.10602825880050659,
-0.009079867042601109,
-0.0596691370010376,
-0.13714855909347534,
0.08687742054462433,
-0.09537934511899948,
0.23806588351726532,
-0.06622904539108276,
0.02864673361182213,
0.13151805102825165,
0.033067815005779266,
-0.08837077021598816,
0.022003259509801865,
0.06708190590143204,
-0.12538188695907593,
0.03177158161997795,
0.15070709586143494,
-0.034419067203998566,
0.13102605938911438,
0.029045676812529564,
-0.15978053212165833,
0.005134232807904482,
-0.06478496640920639,
-0.05024096742272377,
-0.08159563690423965,
-0.009468351490795612,
-0.05544444918632507,
0.12806399166584015,
0.22491717338562012,
-0.05464690178632736,
-0.01072855107486248,
-0.058849699795246124,
0.04524980112910271,
0.06433571875095367,
0.07838860899209976,
-0.027172256261110306,
-0.2712578773498535,
0.05012010782957077,
0.01417649444192648,
-0.025187674909830093,
-0.23800331354141235,
-0.0853491872549057,
0.036650922149419785,
-0.06466991454362869,
-0.059811390936374664,
0.09008607268333435,
0.09336967766284943,
0.055670347064733505,
-0.060697805136442184,
-0.0767512395977974,
-0.0763721689581871,
0.16761742532253265,
-0.16959482431411743,
-0.08588293939828873
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SMIDS_5x_beit_large_RMSProp_lr00001_fold4
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3933
- Accuracy: 0.8983
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0747 | 1.0 | 750 | 0.4586 | 0.8833 |
| 0.1761 | 2.0 | 1500 | 0.7229 | 0.8717 |
| 0.1094 | 3.0 | 2250 | 0.8727 | 0.8783 |
| 0.0533 | 4.0 | 3000 | 0.9154 | 0.8883 |
| 0.0263 | 5.0 | 3750 | 0.9688 | 0.8833 |
| 0.0 | 6.0 | 4500 | 0.9721 | 0.8967 |
| 0.0008 | 7.0 | 5250 | 1.1283 | 0.8883 |
| 0.0411 | 8.0 | 6000 | 1.2294 | 0.885 |
| 0.0344 | 9.0 | 6750 | 0.9962 | 0.8883 |
| 0.0001 | 10.0 | 7500 | 1.1028 | 0.875 |
| 0.0619 | 11.0 | 8250 | 0.9730 | 0.9017 |
| 0.0058 | 12.0 | 9000 | 1.0644 | 0.9017 |
| 0.0002 | 13.0 | 9750 | 0.9447 | 0.8967 |
| 0.0055 | 14.0 | 10500 | 0.9340 | 0.8933 |
| 0.0 | 15.0 | 11250 | 1.2942 | 0.875 |
| 0.0 | 16.0 | 12000 | 1.0549 | 0.895 |
| 0.0002 | 17.0 | 12750 | 1.0516 | 0.895 |
| 0.0 | 18.0 | 13500 | 1.0739 | 0.8933 |
| 0.0 | 19.0 | 14250 | 1.1633 | 0.895 |
| 0.0412 | 20.0 | 15000 | 1.1385 | 0.8867 |
| 0.0 | 21.0 | 15750 | 1.1855 | 0.8967 |
| 0.0111 | 22.0 | 16500 | 1.3141 | 0.8817 |
| 0.0 | 23.0 | 17250 | 1.0368 | 0.9 |
| 0.0 | 24.0 | 18000 | 1.1011 | 0.9033 |
| 0.0 | 25.0 | 18750 | 1.0956 | 0.9 |
| 0.0 | 26.0 | 19500 | 1.3122 | 0.8867 |
| 0.0 | 27.0 | 20250 | 1.2880 | 0.8833 |
| 0.0 | 28.0 | 21000 | 1.1364 | 0.905 |
| 0.0 | 29.0 | 21750 | 1.1357 | 0.8867 |
| 0.0 | 30.0 | 22500 | 1.2790 | 0.89 |
| 0.0 | 31.0 | 23250 | 1.4119 | 0.895 |
| 0.0 | 32.0 | 24000 | 1.3427 | 0.89 |
| 0.0 | 33.0 | 24750 | 1.3870 | 0.895 |
| 0.0 | 34.0 | 25500 | 1.4497 | 0.8983 |
| 0.0 | 35.0 | 26250 | 1.3710 | 0.895 |
| 0.0 | 36.0 | 27000 | 1.3075 | 0.8983 |
| 0.0 | 37.0 | 27750 | 1.4303 | 0.89 |
| 0.0 | 38.0 | 28500 | 1.2948 | 0.9017 |
| 0.0 | 39.0 | 29250 | 1.2670 | 0.8967 |
| 0.0 | 40.0 | 30000 | 1.2472 | 0.91 |
| 0.0 | 41.0 | 30750 | 1.3043 | 0.9033 |
| 0.0 | 42.0 | 31500 | 1.3639 | 0.895 |
| 0.0 | 43.0 | 32250 | 1.3192 | 0.9033 |
| 0.0 | 44.0 | 33000 | 1.4178 | 0.8883 |
| 0.0 | 45.0 | 33750 | 1.4165 | 0.8933 |
| 0.0 | 46.0 | 34500 | 1.4090 | 0.8983 |
| 0.0 | 47.0 | 35250 | 1.4022 | 0.8967 |
| 0.0 | 48.0 | 36000 | 1.3956 | 0.8967 |
| 0.0 | 49.0 | 36750 | 1.3906 | 0.8967 |
| 0.0 | 50.0 | 37500 | 1.3933 | 0.8983 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_5x_beit_large_RMSProp_lr00001_fold4", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8983333333333333, "name": "Accuracy"}]}]}]} | image-classification | onizukal/SMIDS_5x_beit_large_RMSProp_lr00001_fold4 | [
"transformers",
"pytorch",
"beit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/beit-large-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:55:38+00:00 | [] | [] | TAGS
#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| SMIDS\_5x\_beit\_large\_RMSProp\_lr00001\_fold4
===============================================
This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3933
* Accuracy: 0.8983
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 50
### Training results
### Framework versions
* Transformers 4.32.1
* Pytorch 2.0.1
* Datasets 2.12.0
* Tokenizers 0.13.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
"TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
81,
116,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2"
] | [
-0.1292150914669037,
0.17132072150707245,
-0.002415567170828581,
0.13183215260505676,
0.11657863855361938,
0.020753253251314163,
0.1335890144109726,
0.16620413959026337,
-0.08238927274942398,
0.04929587244987488,
0.13697229325771332,
0.1357421576976776,
0.04955337569117546,
0.20790311694145203,
-0.053285520523786545,
-0.26080378890037537,
0.0391765721142292,
0.03443576768040657,
-0.020672276616096497,
0.12494900077581406,
0.09484300017356873,
-0.1312379240989685,
0.11272566765546799,
0.025938162580132484,
-0.20840293169021606,
-0.033587437123060226,
-0.01026944164186716,
-0.06854863464832306,
0.10221196711063385,
0.001568986801430583,
0.0741027221083641,
0.037979885935783386,
0.08491890877485275,
-0.12677186727523804,
0.000941311358474195,
0.04326357692480087,
0.0062435888685286045,
0.1065368577837944,
0.062226198613643646,
-0.008521218784153461,
0.06926212459802628,
-0.07453521341085434,
0.06115834787487984,
0.008060229010879993,
-0.11478453874588013,
-0.2692618668079376,
-0.09817449003458023,
0.07377522438764572,
0.08109822124242783,
0.06491127610206604,
0.006432840134948492,
0.16222304105758667,
-0.015434488654136658,
0.1024109497666359,
0.23076069355010986,
-0.2713507413864136,
-0.054792311042547226,
0.022649891674518585,
0.0155020197853446,
0.06252340972423553,
-0.10333037376403809,
-0.01993185468018055,
0.019141921773552895,
0.042880840599536896,
0.14450453221797943,
-0.012332411482930183,
-0.03331032395362854,
-0.02637922763824463,
-0.11139829456806183,
-0.08930420875549316,
0.18604889512062073,
0.06140090152621269,
-0.04917457327246666,
-0.07841385900974274,
-0.07612120360136032,
-0.17419220507144928,
-0.03924720734357834,
0.008911197073757648,
0.046679239720106125,
-0.04711441695690155,
-0.10239296406507492,
-0.03511375933885574,
-0.07504668086767197,
-0.05196268856525421,
-0.026160720735788345,
0.1420334428548813,
0.03879573196172714,
0.05471520125865936,
-0.027205273509025574,
0.10149593651294708,
0.010796112939715385,
-0.1717151701450348,
-0.02661297097802162,
0.0005703883362002671,
0.010487399995326996,
-0.01821139082312584,
-0.029929913580417633,
-0.06737607717514038,
-0.003975129686295986,
0.15347014367580414,
-0.07002666592597961,
0.058850113302469254,
-0.0054583000019192696,
0.041531506925821304,
-0.049319881945848465,
0.1874888390302658,
-0.029916515573859215,
-0.016198426485061646,
0.019476165995001793,
0.08928463608026505,
0.0656052976846695,
-0.030047036707401276,
-0.12371734529733658,
0.021691862493753433,
0.13241209089756012,
0.006458523217588663,
-0.022870952263474464,
0.054544735699892044,
-0.0711979940533638,
-0.0584990456700325,
0.09274657070636749,
-0.09275025129318237,
0.035496871918439865,
-0.011692462489008904,
-0.08981472253799438,
-0.06787234544754028,
0.029122935608029366,
0.011931490153074265,
-0.009771439246833324,
0.06940538436174393,
-0.09093258529901505,
0.01846885494887829,
-0.06650768965482712,
-0.09852384030818939,
0.01388985849916935,
-0.11549968272447586,
0.010918805375695229,
-0.10079170018434525,
-0.19154705107212067,
0.0032797311432659626,
0.07527101784944534,
-0.06246669217944145,
-0.06951755285263062,
-0.033377837389707565,
-0.07729615271091461,
0.03790769353508949,
-0.01523390132933855,
0.07408059388399124,
-0.07056254893541336,
0.09071778506040573,
0.02892814762890339,
0.09002465009689331,
-0.052364569157361984,
0.048610031604766846,
-0.09854818880558014,
0.05158581584692001,
-0.19896768033504486,
0.0824570581316948,
-0.04529954120516777,
0.05730293318629265,
-0.10005063563585281,
-0.10804302245378494,
0.029095064848661423,
-0.0466112419962883,
0.07224688678979874,
0.09985066950321198,
-0.16068536043167114,
-0.05396431311964989,
0.14283035695552826,
-0.09281232208013535,
-0.14269256591796875,
0.09829698503017426,
-0.045770496129989624,
0.014614340849220753,
0.04329100251197815,
0.2130173146724701,
0.04901750758290291,
-0.08417420834302902,
-0.023242823779582977,
-0.02969830296933651,
0.03785223513841629,
-0.0668954998254776,
0.10032020509243011,
0.025215676054358482,
0.05325069651007652,
0.02284027636051178,
-0.029413679614663124,
0.04126512631773949,
-0.08672589063644409,
-0.09880872070789337,
-0.053216658532619476,
-0.0853687971830368,
0.03892384096980095,
0.05334646999835968,
0.0614997074007988,
-0.10279879719018936,
-0.09344549477100372,
0.0453280434012413,
0.09495674818754196,
-0.07567895948886871,
0.02865210548043251,
-0.08989366888999939,
0.10926083475351334,
-0.08635354787111282,
-0.02427433431148529,
-0.18316780030727386,
-0.041861772537231445,
0.04194685444235802,
-0.025394707918167114,
-0.007599220145493746,
-0.05216266214847565,
0.06521623581647873,
0.0848059430718422,
-0.05379978567361832,
-0.05897609516978264,
-0.05670713260769844,
0.002749721286818385,
-0.10883764177560806,
-0.17341645061969757,
-0.08353621512651443,
-0.03381705656647682,
0.14265403151512146,
-0.15880316495895386,
0.019960513338446617,
0.05115775763988495,
0.12808771431446075,
0.060330405831336975,
-0.044940851628780365,
-0.0009795452933758497,
0.02373526245355606,
-0.05278978496789932,
-0.09012233465909958,
0.059676408767700195,
0.0331520177423954,
-0.07579167187213898,
-0.016548609361052513,
-0.09850107133388519,
0.1460651308298111,
0.1280234009027481,
-0.010448831133544445,
-0.04986010119318962,
-0.011923554353415966,
-0.06967874616384506,
-0.030430803075432777,
-0.036602724343538284,
0.019139016047120094,
0.09450183063745499,
0.012393946759402752,
0.14818525314331055,
-0.09332848340272903,
-0.034156475216150284,
0.05024607852101326,
-0.028047295287251472,
-0.03259625658392906,
0.0731319710612297,
0.025664178654551506,
-0.14941470324993134,
0.14837577939033508,
0.14845694601535797,
-0.04714515432715416,
0.12564225494861603,
-0.03889495134353638,
-0.06329566240310669,
-0.04632000997662544,
-0.02844901941716671,
0.013190032914280891,
0.13346467912197113,
-0.076783187687397,
-0.004412572830915451,
0.05686868354678154,
0.017921162769198418,
-0.004722983110696077,
-0.1827412098646164,
0.003951311111450195,
0.0321657620370388,
-0.05121494084596634,
-0.011695281602442265,
-0.017026077955961227,
0.003609517589211464,
0.09151934087276459,
0.02040533348917961,
-0.06441836804151535,
0.05384209007024765,
0.012033452279865742,
-0.05366513133049011,
0.1677880585193634,
-0.07823625206947327,
-0.20364677906036377,
-0.12268579006195068,
-0.06752478331327438,
-0.10258819162845612,
0.012170074507594109,
0.06315170973539352,
-0.04569438472390175,
-0.050954580307006836,
-0.0997823104262352,
-0.037851084023714066,
0.021281057968735695,
0.026625970378518105,
0.05139283835887909,
-0.005415658466517925,
0.09185726940631866,
-0.09241294115781784,
-0.030897676944732666,
-0.01631389558315277,
0.009287231601774693,
0.06772445887327194,
0.019780615344643593,
0.1102219671010971,
0.07713042199611664,
-0.029881305992603302,
0.05137522891163826,
-0.013354548253118992,
0.2620471715927124,
-0.06917091459035873,
-0.002909549279138446,
0.1375615894794464,
-0.015162656083703041,
0.08283410966396332,
0.1273423582315445,
0.041794080287218094,
-0.09746479243040085,
-0.011291430331766605,
-0.0008301159832626581,
-0.049490246921777725,
-0.16143162548542023,
-0.04317644611001015,
-0.0434197373688221,
-0.010716320015490055,
0.1416788250207901,
0.03848205506801605,
0.024626927450299263,
0.07702240347862244,
0.015813151374459267,
0.057987019419670105,
-0.02077260985970497,
0.1017511859536171,
0.0805719867348671,
0.06816057115793228,
0.13305824995040894,
-0.036980245262384415,
-0.02092074789106846,
0.057033997029066086,
0.04002218693494797,
0.21362732350826263,
-0.02804172970354557,
0.15433214604854584,
0.026679744943976402,
0.1909136176109314,
0.019870078191161156,
0.07247955352067947,
-0.010095180943608284,
0.0028269465547055006,
-0.018500015139579773,
-0.04554403945803642,
-0.05979170650243759,
0.03185109794139862,
-0.016015755012631416,
0.05207211896777153,
-0.09269700944423676,
0.028567379340529442,
0.06037893891334534,
0.3028397262096405,
0.061388690024614334,
-0.41139692068099976,
-0.09273239970207214,
0.009406263940036297,
-0.002105827210471034,
-0.06053102761507034,
-0.011343861930072308,
0.09683393687009811,
-0.09968853741884232,
0.08300996571779251,
-0.09414921700954437,
0.08760150521993637,
-0.08863518387079239,
0.016419410705566406,
0.07728815078735352,
0.06722814589738846,
0.01766069419682026,
0.057678405195474625,
-0.22131015360355377,
0.2517315745353699,
0.02006395347416401,
0.04867706075310707,
-0.08515261113643646,
0.013813616707921028,
0.029918700456619263,
0.058915551751852036,
0.08619558066129684,
0.0083828279748559,
-0.09208258241415024,
-0.19043345749378204,
-0.12182265520095825,
-0.0015020827995613217,
0.06677291542291641,
-0.03118232637643814,
0.0942893773317337,
-0.01760665327310562,
-0.012930129654705524,
0.019664883613586426,
0.00020212549134157598,
-0.039232417941093445,
-0.09916181117296219,
0.019594477489590645,
0.03770963475108147,
-0.0040510352700948715,
-0.06473120301961899,
-0.1088499054312706,
-0.027749689295887947,
0.1611177921295166,
0.0489477813243866,
-0.07595206052064896,
-0.14163517951965332,
0.0831608697772026,
0.0844789668917656,
-0.08478974550962448,
0.046326830983161926,
-0.015740465372800827,
0.14427345991134644,
0.02813553437590599,
-0.08791226893663406,
0.10567717254161835,
-0.05589807406067848,
-0.18345315754413605,
-0.035460758954286575,
0.09823724627494812,
0.006449915003031492,
0.047238387167453766,
0.0029976284131407738,
0.05834325775504112,
-0.03208146244287491,
-0.05784951522946358,
0.06896662712097168,
-0.0034485149662941694,
0.1075923964381218,
-0.0061480943113565445,
-0.0032397336326539516,
0.02182089537382126,
-0.04197082296013832,
-0.0014782516518607736,
0.1645156890153885,
0.23995232582092285,
-0.10496784001588821,
0.055536478757858276,
0.030249565839767456,
-0.03645236790180206,
-0.18277540802955627,
0.009984065778553486,
0.08414819091558456,
0.0021475672256201506,
0.040169790387153625,
-0.1663118302822113,
0.05386544391512871,
0.10983236879110336,
-0.04191310703754425,
0.07995743304491043,
-0.2803034782409668,
-0.1190505102276802,
0.08906996995210648,
0.13602600991725922,
0.06884066760540009,
-0.13274545967578888,
-0.045290667563676834,
-0.039063699543476105,
-0.16666166484355927,
0.1351267695426941,
-0.04754851385951042,
0.11997194588184357,
-0.040666740387678146,
0.06989686191082001,
0.015085658058524132,
-0.05448267608880997,
0.14587333798408508,
0.00877679605036974,
0.0857420563697815,
-0.07118549197912216,
0.0021252231672406197,
0.10074540972709656,
-0.0982399731874466,
0.07668103277683258,
-0.08308075368404388,
0.06399426609277725,
-0.11283876746892929,
-0.007322354707866907,
-0.07328318059444427,
0.015542288310825825,
-0.012007588520646095,
-0.043488435447216034,
-0.04113076627254486,
0.03472091257572174,
0.06403200328350067,
-0.015996064990758896,
0.20271754264831543,
0.0629286915063858,
0.08313194662332535,
0.17939580976963043,
0.04974674805998802,
-0.096995510160923,
-0.09814400225877762,
-0.04502987116575241,
-0.028452320024371147,
0.06312472373247147,
-0.13321243226528168,
0.05335186421871185,
0.1209464818239212,
0.008661448024213314,
0.12983813881874084,
0.054849762469530106,
-0.0316605418920517,
0.033173978328704834,
0.06366948038339615,
-0.16513317823410034,
-0.08843576163053513,
-0.011303714476525784,
0.01758752204477787,
-0.12545546889305115,
0.0447046272456646,
0.12079240381717682,
-0.057224519550800323,
-0.015418118797242641,
-0.0026640621945261955,
0.03586487099528313,
-0.00886022113263607,
0.16030296683311462,
0.05005719140172005,
0.05675157532095909,
-0.11541767418384552,
0.1181424930691719,
0.06067226454615593,
-0.0710521712899208,
0.031696248799562454,
0.05698402598500252,
-0.10586927086114883,
-0.022646361961960793,
0.03662630170583725,
0.14154238998889923,
-0.06414706259965897,
-0.04990902543067932,
-0.13196614384651184,
-0.0909038558602333,
0.07024894654750824,
0.0724560096859932,
0.09284354001283646,
0.016252439469099045,
-0.031063025817275047,
-0.014114780351519585,
-0.10623957961797714,
0.10545456409454346,
0.04753988981246948,
0.09451808035373688,
-0.17563696205615997,
0.06374634802341461,
0.0007657874375581741,
0.07206296175718307,
-0.024532334879040718,
0.005616967566311359,
-0.09020458161830902,
-0.0008940583793446422,
-0.10660925507545471,
0.025940274819731712,
-0.04968960955739021,
0.0027822551783174276,
-0.020955873653292656,
-0.058104176074266434,
-0.06385789811611176,
0.02704726532101631,
-0.11796805262565613,
-0.05728267878293991,
0.01832517236471176,
0.029680335894227028,
-0.11609132587909698,
-0.04758497327566147,
0.014494677074253559,
-0.09034118801355362,
0.09993617236614227,
0.05929066613316536,
-0.006737631745636463,
0.0029803363140672445,
0.011042662896215916,
-0.02363271825015545,
0.06827948242425919,
0.006517379079014063,
0.07795335352420807,
-0.11366859823465347,
-0.018052512779831886,
0.017967568710446358,
-0.002112566027790308,
0.011524608358740807,
0.15499049425125122,
-0.12699781358242035,
-0.0033930845092982054,
-0.022802060469985008,
-0.06095515564084053,
-0.06754840165376663,
0.06765563786029816,
0.10613249987363815,
0.0214694757014513,
0.2064255326986313,
-0.054858945310115814,
0.01148067507892847,
-0.21229742467403412,
-0.011367390863597393,
0.0014767643297091126,
-0.1394193321466446,
-0.10240225493907928,
-0.03432944789528847,
0.0646229088306427,
-0.07021024078130722,
0.1212792620062828,
0.036924295127391815,
0.015180133283138275,
0.028698688372969627,
0.025451842695474625,
-0.009322993457317352,
0.01828060857951641,
0.16467928886413574,
0.014544252306222916,
-0.030929861590266228,
0.12307319045066833,
0.026831358671188354,
0.0918813943862915,
0.11550118029117584,
0.17162561416625977,
0.1226300448179245,
0.042329173535108566,
0.09527058154344559,
0.05073356628417969,
-0.032373297959566116,
-0.2198440134525299,
0.04109371080994606,
-0.043747998774051666,
0.14987531304359436,
-0.0034218686632812023,
0.15886609256267548,
0.08696271479129791,
-0.1824999451637268,
0.04266338422894478,
-0.02988567017018795,
-0.08202743530273438,
-0.08238054066896439,
-0.1163601353764534,
-0.10495591163635254,
-0.15148837864398956,
0.0012598474277183414,
-0.10238117724657059,
0.02373862825334072,
0.11528778076171875,
-0.010980993509292603,
-0.00952758826315403,
0.1250862330198288,
-0.01644187793135643,
0.019042596220970154,
0.04508042708039284,
0.007425562012940645,
-0.05218745768070221,
-0.04613304138183594,
-0.08413935452699661,
0.015972480177879333,
0.0363130047917366,
0.05680973082780838,
-0.03208919242024422,
-0.008708061650395393,
0.03847881406545639,
-0.008026620373129845,
-0.12142552435398102,
0.013289375230669975,
0.007551861461251974,
0.04767835885286331,
-0.004989264067262411,
0.007813788950443268,
0.026865217834711075,
-0.01780105195939541,
0.195222407579422,
-0.06977689266204834,
-0.02860948257148266,
-0.12041912227869034,
0.17737813293933868,
0.00569287920370698,
-0.048185933381319046,
0.05394943431019783,
-0.09105358272790909,
-0.02213868498802185,
0.15108588337898254,
0.18787547945976257,
-0.06683575361967087,
-0.017941389232873917,
-0.014669668860733509,
-0.01477136928588152,
-0.01832989603281021,
0.10442051291465759,
0.09986825287342072,
-0.004740583244711161,
-0.07264549285173416,
-0.024389909580349922,
-0.06369390338659286,
-0.032235804945230484,
-0.04127946496009827,
0.07026855647563934,
-0.001124961650930345,
0.005972458980977535,
-0.07571399211883545,
0.03954308480024338,
-0.020357538014650345,
-0.06112333759665489,
0.07204564660787582,
-0.21083933115005493,
-0.1802441030740738,
0.0017737408634275198,
0.07683850824832916,
0.0021866720635443926,
0.04613208398222923,
-0.012570524588227272,
0.018509654328227043,
0.07427240163087845,
-0.02333001233637333,
-0.08794470131397247,
-0.09525144845247269,
0.1020299568772316,
-0.13951729238033295,
0.24700812995433807,
-0.03552914783358574,
0.0377071388065815,
0.1201176866889,
0.03583609312772751,
-0.13580889999866486,
0.03513867408037186,
0.03722600266337395,
-0.02918340638279915,
0.0181744247674942,
0.14616045355796814,
-0.03901152312755585,
0.07440102845430374,
0.04275068640708923,
-0.10678882896900177,
-0.04424819350242615,
-0.04619530588388443,
-0.015570126473903656,
-0.02712010033428669,
-0.05963090807199478,
-0.04089967906475067,
0.12949442863464355,
0.17410574853420258,
-0.04094170406460762,
-0.021948745474219322,
-0.06438223272562027,
0.035308949649333954,
0.08067496865987778,
-0.026465818285942078,
-0.04482371732592583,
-0.2364819198846817,
0.0028874515555799007,
0.050913918763399124,
-0.008316555991768837,
-0.19871793687343597,
-0.10607530176639557,
-0.00044736277777701616,
-0.05943094193935394,
-0.08227076381444931,
0.09325046092271805,
0.06211918964982033,
0.03563893958926201,
-0.06190048158168793,
0.02738066203892231,
-0.07750356942415237,
0.14178979396820068,
-0.14600589871406555,
-0.07656177133321762
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kelp-from-scratch-segformer-b1-lr-0.0001-cleaned
This model is a fine-tuned version of [](https://huggingface.co/) on the samitizerxu/kelp_data_rgbagg_swin_nir_int_cleaned dataset.
It achieves the following results on the evaluation set:
- Iou Kelp: 0.1757
- Loss: 0.7377
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 22
- eval_batch_size: 22
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Iou Kelp | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.9943 | 0.15 | 30 | 0.0093 | 0.9841 |
| 0.9987 | 0.3 | 60 | 0.0091 | 0.9797 |
| 0.9912 | 0.46 | 90 | 0.0093 | 0.9822 |
| 0.9809 | 0.61 | 120 | 0.0089 | 0.9788 |
| 0.9882 | 0.76 | 150 | 0.0096 | 0.9791 |
| 0.9804 | 0.91 | 180 | 0.0070 | 0.9799 |
| 0.9987 | 1.07 | 210 | 0.0104 | 0.9275 |
| 0.997 | 1.22 | 240 | 0.0086 | 0.9696 |
| 0.8985 | 1.37 | 270 | 0.0086 | 0.9513 |
| 0.9921 | 1.52 | 300 | 0.0234 | 0.8703 |
| 0.9656 | 1.68 | 330 | 0.0115 | 0.9610 |
| 0.9229 | 1.83 | 360 | 0.0235 | 0.8871 |
| 0.9999 | 1.98 | 390 | 0.0117 | 0.9416 |
| 0.8409 | 2.13 | 420 | 0.0172 | 0.9212 |
| 0.9533 | 2.28 | 450 | 0.0322 | 0.8209 |
| 0.9815 | 2.44 | 480 | 0.0167 | 0.9070 |
| 0.9567 | 2.59 | 510 | 0.0314 | 0.8028 |
| 0.9747 | 2.74 | 540 | 0.0300 | 0.8489 |
| 0.983 | 2.89 | 570 | 0.0176 | 0.9069 |
| 0.963 | 3.05 | 600 | 0.0312 | 0.8878 |
| 0.9616 | 3.2 | 630 | 0.0249 | 0.8482 |
| 0.9395 | 3.35 | 660 | 0.0418 | 0.7781 |
| 0.8966 | 3.5 | 690 | 0.0155 | 0.8981 |
| 0.9939 | 3.65 | 720 | 0.0219 | 0.8737 |
| 0.9895 | 3.81 | 750 | 0.0107 | 0.9480 |
| 0.9434 | 3.96 | 780 | 0.0266 | 0.8413 |
| 0.9813 | 4.11 | 810 | 0.0323 | 0.8320 |
| 0.9051 | 4.26 | 840 | 0.0379 | 0.8097 |
| 0.9629 | 4.42 | 870 | 0.0447 | 0.7619 |
| 0.9067 | 4.57 | 900 | 0.0330 | 0.8137 |
| 0.9245 | 4.72 | 930 | 0.0253 | 0.8327 |
| 1.0 | 4.87 | 960 | 0.0273 | 0.8226 |
| 0.9869 | 5.03 | 990 | 0.0182 | 0.8993 |
| 0.9236 | 5.18 | 1020 | 0.0390 | 0.7772 |
| 0.9487 | 5.33 | 1050 | 0.0433 | 0.7845 |
| 0.9085 | 5.48 | 1080 | 0.0181 | 0.9285 |
| 0.9518 | 5.63 | 1110 | 0.0514 | 0.7551 |
| 0.9768 | 5.79 | 1140 | 0.0344 | 0.8475 |
| 0.8779 | 5.94 | 1170 | 0.0123 | 0.9069 |
| 0.9556 | 6.09 | 1200 | 0.0183 | 0.9066 |
| 0.8875 | 6.24 | 1230 | 0.1934 | 0.7787 |
| 0.9932 | 6.4 | 1260 | 0.0543 | 0.8902 |
| 0.9991 | 6.55 | 1290 | 0.0467 | 0.7678 |
| 0.9654 | 6.7 | 1320 | 0.0420 | 0.8434 |
| 0.9794 | 6.85 | 1350 | 0.0190 | 0.9163 |
| 0.9659 | 7.01 | 1380 | 0.0345 | 0.9441 |
| 0.8959 | 7.16 | 1410 | 0.0255 | 0.8717 |
| 0.9775 | 7.31 | 1440 | 0.0296 | 0.9072 |
| 0.9406 | 7.46 | 1470 | 0.0331 | 0.8282 |
| 0.9702 | 7.61 | 1500 | 0.0283 | 0.8532 |
| 0.9828 | 7.77 | 1530 | 0.0164 | 0.8719 |
| 0.9511 | 7.92 | 1560 | 0.0248 | 0.8392 |
| 0.9046 | 8.07 | 1590 | 0.0116 | 0.9260 |
| 0.9508 | 8.22 | 1620 | 0.0243 | 0.8499 |
| 0.9535 | 8.38 | 1650 | 0.0185 | 0.8567 |
| 0.9586 | 8.53 | 1680 | 0.0176 | 0.8867 |
| 0.947 | 8.68 | 1710 | 0.0296 | 0.7973 |
| 0.9404 | 8.83 | 1740 | 0.0137 | 0.8879 |
| 1.0 | 8.98 | 1770 | 0.0227 | 0.8902 |
| 0.9618 | 9.14 | 1800 | 0.0419 | 0.8119 |
| 0.8463 | 9.29 | 1830 | 0.0500 | 0.8065 |
| 0.9683 | 9.44 | 1860 | 0.0136 | 0.9266 |
| 0.9087 | 9.59 | 1890 | 0.0357 | 0.8041 |
| 0.946 | 9.75 | 1920 | 0.0426 | 0.8023 |
| 0.9723 | 9.9 | 1950 | 0.0470 | 0.7823 |
| 0.9487 | 10.05 | 1980 | 0.0218 | 0.8771 |
| 0.9483 | 10.2 | 2010 | 0.0265 | 0.8317 |
| 0.9678 | 10.36 | 2040 | 0.0512 | 0.7447 |
| 0.9909 | 10.51 | 2070 | 0.0266 | 0.8505 |
| 0.9688 | 10.66 | 2100 | 0.0315 | 0.8457 |
| 0.9617 | 10.81 | 2130 | 0.0388 | 0.7916 |
| 0.9105 | 10.96 | 2160 | 0.0641 | 0.7939 |
| 0.9447 | 11.12 | 2190 | 0.0338 | 0.8046 |
| 0.9127 | 11.27 | 2220 | 0.0883 | 0.7771 |
| 0.9151 | 11.42 | 2250 | 0.0285 | 0.8568 |
| 0.9339 | 11.57 | 2280 | 0.0773 | 0.7554 |
| 1.0 | 11.73 | 2310 | 0.0452 | 0.7623 |
| 0.9428 | 11.88 | 2340 | 0.0147 | 0.9230 |
| 1.0 | 12.03 | 2370 | 0.0266 | 0.8265 |
| 0.9432 | 12.18 | 2400 | 0.0284 | 0.8732 |
| 0.9436 | 12.34 | 2430 | 0.0398 | 0.7938 |
| 0.9772 | 12.49 | 2460 | 0.0345 | 0.8073 |
| 0.9552 | 12.64 | 2490 | 0.0125 | 0.9084 |
| 1.0 | 12.79 | 2520 | 0.0255 | 0.8099 |
| 0.953 | 12.94 | 2550 | 0.0694 | 0.7384 |
| 0.9225 | 13.1 | 2580 | 0.0286 | 0.8104 |
| 0.9119 | 13.25 | 2610 | 0.0312 | 0.8538 |
| 0.9726 | 13.4 | 2640 | 0.0511 | 0.7505 |
| 0.9674 | 13.55 | 2670 | 0.0504 | 0.7473 |
| 0.972 | 13.71 | 2700 | 0.0496 | 0.8009 |
| 0.9238 | 13.86 | 2730 | 0.0179 | 0.8479 |
| 0.9535 | 14.01 | 2760 | 0.1306 | 0.7997 |
| 0.9509 | 14.16 | 2790 | 0.0254 | 0.8065 |
| 0.8756 | 14.31 | 2820 | 0.0584 | 0.7479 |
| 0.9335 | 14.47 | 2850 | 0.0297 | 0.7988 |
| 0.956 | 14.62 | 2880 | 0.0311 | 0.8155 |
| 0.9544 | 14.77 | 2910 | 0.0526 | 0.8159 |
| 0.8577 | 14.92 | 2940 | 0.0770 | 0.7906 |
| 0.965 | 15.08 | 2970 | 0.0709 | 0.7446 |
| 0.987 | 15.23 | 3000 | 0.0479 | 0.7767 |
| 0.9692 | 15.38 | 3030 | 0.0895 | 0.8900 |
| 0.9602 | 15.53 | 3060 | 0.1262 | 0.8408 |
| 0.9586 | 15.69 | 3090 | 0.0643 | 0.7370 |
| 0.8871 | 15.84 | 3120 | 0.1753 | 0.7848 |
| 0.9259 | 15.99 | 3150 | 0.1110 | 0.7571 |
| 0.9463 | 16.14 | 3180 | 0.0651 | 0.7799 |
| 0.9489 | 16.29 | 3210 | 0.0627 | 0.7776 |
| 0.9814 | 16.45 | 3240 | 0.0476 | 0.7595 |
| 0.926 | 16.6 | 3270 | 0.0588 | 0.7354 |
| 0.8921 | 16.75 | 3300 | 0.0608 | 0.7637 |
| 0.9722 | 16.9 | 3330 | 0.0404 | 0.7916 |
| 0.9535 | 17.06 | 3360 | 0.0520 | 0.8781 |
| 0.9442 | 17.21 | 3390 | 0.0326 | 0.8189 |
| 0.945 | 17.36 | 3420 | 0.1141 | 0.8753 |
| 0.9799 | 17.51 | 3450 | 0.0678 | 0.7472 |
| 0.8504 | 17.66 | 3480 | 0.1633 | 0.8211 |
| 1.0 | 17.82 | 3510 | 0.0479 | 0.7849 |
| 0.9681 | 17.97 | 3540 | 0.0585 | 0.7741 |
| 0.9492 | 18.12 | 3570 | 0.0656 | 0.7374 |
| 0.9481 | 18.27 | 3600 | 0.0817 | 0.7382 |
| 0.9405 | 18.43 | 3630 | 0.0805 | 0.9278 |
| 0.8967 | 18.58 | 3660 | 0.0457 | 0.7692 |
| 0.9215 | 18.73 | 3690 | 0.0615 | 0.8308 |
| 0.9722 | 18.88 | 3720 | 0.1454 | 0.8367 |
| 0.9352 | 19.04 | 3750 | 0.1014 | 0.7641 |
| 0.9581 | 19.19 | 3780 | 0.1549 | 0.8425 |
| 0.9438 | 19.34 | 3810 | 0.0689 | 0.7524 |
| 0.976 | 19.49 | 3840 | 0.1321 | 0.8181 |
| 0.9248 | 19.64 | 3870 | 0.1782 | 0.8164 |
| 0.9114 | 19.8 | 3900 | 0.1553 | 0.7879 |
| 0.8975 | 19.95 | 3930 | 0.1875 | 0.7522 |
| 0.9696 | 20.1 | 3960 | 0.1521 | 0.8031 |
| 0.9217 | 20.25 | 3990 | 0.0667 | 0.7436 |
| 0.9375 | 20.41 | 4020 | 0.0902 | 0.9042 |
| 0.886 | 20.56 | 4050 | 0.0672 | 0.7541 |
| 0.9647 | 20.71 | 4080 | 0.1952 | 0.7983 |
| 0.9029 | 20.86 | 4110 | 0.0600 | 0.8339 |
| 0.9865 | 21.02 | 4140 | 0.0353 | 0.8191 |
| 0.9348 | 21.17 | 4170 | 0.0683 | 0.9285 |
| 0.965 | 21.32 | 4200 | 0.1153 | 0.7778 |
| 0.9006 | 21.47 | 4230 | 0.2049 | 0.7928 |
| 0.9726 | 21.62 | 4260 | 0.0687 | 0.7431 |
| 0.8811 | 21.78 | 4290 | 0.1643 | 0.7903 |
| 0.9622 | 21.93 | 4320 | 0.1069 | 0.7641 |
| 0.9267 | 22.08 | 4350 | 0.0647 | 0.7764 |
| 0.9729 | 22.23 | 4380 | 0.0770 | 0.7323 |
| 0.951 | 22.39 | 4410 | 0.1069 | 0.8905 |
| 0.976 | 22.54 | 4440 | 0.1024 | 0.7324 |
| 0.9763 | 22.69 | 4470 | 0.0679 | 0.8286 |
| 0.912 | 22.84 | 4500 | 0.1492 | 0.7784 |
| 0.8856 | 22.99 | 4530 | 0.1400 | 0.7411 |
| 0.9663 | 23.15 | 4560 | 0.1588 | 0.8195 |
| 0.9577 | 23.3 | 4590 | 0.0532 | 0.7803 |
| 0.9898 | 23.45 | 4620 | 0.1014 | 0.7892 |
| 0.9079 | 23.6 | 4650 | 0.0457 | 0.7695 |
| 0.9014 | 23.76 | 4680 | 0.1119 | 0.7742 |
| 0.959 | 23.91 | 4710 | 0.0781 | 0.7461 |
| 0.9762 | 24.06 | 4740 | 0.0852 | 0.8429 |
| 0.952 | 24.21 | 4770 | 0.0978 | 0.7348 |
| 0.9606 | 24.37 | 4800 | 0.0966 | 0.7263 |
| 0.93 | 24.52 | 4830 | 0.0707 | 0.7334 |
| 0.9514 | 24.67 | 4860 | 0.2207 | 0.7526 |
| 0.9639 | 24.82 | 4890 | 0.0877 | 0.7545 |
| 0.8319 | 24.97 | 4920 | 0.0751 | 0.7816 |
| 0.959 | 25.13 | 4950 | 0.0457 | 0.7726 |
| 0.9875 | 25.28 | 4980 | 0.0877 | 0.9052 |
| 0.9567 | 25.43 | 5010 | 0.0875 | 0.7308 |
| 0.8535 | 25.58 | 5040 | 0.1697 | 0.8189 |
| 0.903 | 25.74 | 5070 | 0.2176 | 0.7322 |
| 0.9654 | 25.89 | 5100 | 0.2082 | 0.7325 |
| 0.9139 | 26.04 | 5130 | 0.0856 | 0.7604 |
| 0.9684 | 26.19 | 5160 | 0.1764 | 0.8378 |
| 0.9869 | 26.35 | 5190 | 0.0372 | 0.8459 |
| 0.9325 | 26.5 | 5220 | 0.2127 | 0.7494 |
| 0.9396 | 26.65 | 5250 | 0.2123 | 0.7630 |
| 0.9522 | 26.8 | 5280 | 0.1121 | 0.7878 |
| 0.9404 | 26.95 | 5310 | 0.0783 | 0.7300 |
| 0.8336 | 27.11 | 5340 | 0.0862 | 0.8091 |
| 0.9827 | 27.26 | 5370 | 0.1633 | 0.7761 |
| 0.9743 | 27.41 | 5400 | 0.1033 | 0.7903 |
| 0.8255 | 27.56 | 5430 | 0.1535 | 0.7349 |
| 0.9828 | 27.72 | 5460 | 0.0835 | 0.7236 |
| 0.9607 | 27.87 | 5490 | 0.1012 | 0.7503 |
| 0.9659 | 28.02 | 5520 | 0.1087 | 0.7412 |
| 0.9467 | 28.17 | 5550 | 0.0687 | 0.7867 |
| 0.9261 | 28.32 | 5580 | 0.1773 | 0.8152 |
| 1.0 | 28.48 | 5610 | 0.0922 | 0.7728 |
| 0.9543 | 28.63 | 5640 | 0.2284 | 0.7482 |
| 0.9198 | 28.78 | 5670 | 0.2101 | 0.7313 |
| 0.9667 | 28.93 | 5700 | 0.1985 | 0.7698 |
| 0.8591 | 29.09 | 5730 | 0.0994 | 0.7528 |
| 0.9697 | 29.24 | 5760 | 0.1437 | 0.7865 |
| 0.9313 | 29.39 | 5790 | 0.1197 | 0.7443 |
| 0.9457 | 29.54 | 5820 | 0.1529 | 0.8172 |
| 0.9283 | 29.7 | 5850 | 0.1204 | 0.7310 |
| 0.8794 | 29.85 | 5880 | 0.2253 | 0.7703 |
| 0.9999 | 30.0 | 5910 | 0.0922 | 0.7463 |
| 1.0 | 30.15 | 5940 | 0.0763 | 0.7472 |
| 0.9674 | 30.3 | 5970 | 0.0678 | 0.7574 |
| 0.9543 | 30.46 | 6000 | 0.1619 | 0.7388 |
| 0.96 | 30.61 | 6030 | 0.1436 | 0.8416 |
| 0.9778 | 30.76 | 6060 | 0.0994 | 0.7353 |
| 0.9436 | 30.91 | 6090 | 0.1649 | 0.7740 |
| 0.9054 | 31.07 | 6120 | 0.1537 | 0.7387 |
| 0.967 | 31.22 | 6150 | 0.1574 | 0.7569 |
| 0.9174 | 31.37 | 6180 | 0.1378 | 0.7870 |
| 0.9667 | 31.52 | 6210 | 0.1505 | 0.7650 |
| 0.9848 | 31.68 | 6240 | 0.1231 | 0.7584 |
| 0.9514 | 31.83 | 6270 | 0.1188 | 0.7533 |
| 0.9179 | 31.98 | 6300 | 0.2073 | 0.7696 |
| 0.9733 | 32.13 | 6330 | 0.0941 | 0.7400 |
| 0.9177 | 32.28 | 6360 | 0.1431 | 0.8260 |
| 0.9338 | 32.44 | 6390 | 0.1259 | 0.7474 |
| 0.9704 | 32.59 | 6420 | 0.2298 | 0.7447 |
| 0.9133 | 32.74 | 6450 | 0.1500 | 0.7347 |
| 0.9121 | 32.89 | 6480 | 0.1538 | 0.7280 |
| 0.9649 | 33.05 | 6510 | 0.1617 | 0.7385 |
| 0.9113 | 33.2 | 6540 | 0.1399 | 0.7408 |
| 0.998 | 33.35 | 6570 | 0.1663 | 0.7621 |
| 0.9567 | 33.5 | 6600 | 0.1559 | 0.7560 |
| 0.9421 | 33.65 | 6630 | 0.1966 | 0.7766 |
| 0.9441 | 33.81 | 6660 | 0.1558 | 0.7314 |
| 0.934 | 33.96 | 6690 | 0.1846 | 0.7564 |
| 0.9874 | 34.11 | 6720 | 0.2541 | 0.7462 |
| 0.8515 | 34.26 | 6750 | 0.2071 | 0.7591 |
| 0.9204 | 34.42 | 6780 | 0.1673 | 0.7342 |
| 0.9358 | 34.57 | 6810 | 0.1883 | 0.7930 |
| 0.8267 | 34.72 | 6840 | 0.2290 | 0.7462 |
| 0.8998 | 34.87 | 6870 | 0.2199 | 0.7532 |
| 0.9496 | 35.03 | 6900 | 0.1121 | 0.7522 |
| 0.9854 | 35.18 | 6930 | 0.1238 | 0.7288 |
| 0.9971 | 35.33 | 6960 | 0.1982 | 0.7527 |
| 0.9621 | 35.48 | 6990 | 0.1837 | 0.7460 |
| 0.9626 | 35.63 | 7020 | 0.1268 | 0.7404 |
| 0.9037 | 35.79 | 7050 | 0.1184 | 0.7267 |
| 0.908 | 35.94 | 7080 | 0.1914 | 0.7388 |
| 0.996 | 36.09 | 7110 | 0.2036 | 0.7363 |
| 0.9635 | 36.24 | 7140 | 0.1858 | 0.7450 |
| 0.9446 | 36.4 | 7170 | 0.1363 | 0.7285 |
| 0.9808 | 36.55 | 7200 | 0.1578 | 0.7666 |
| 0.9212 | 36.7 | 7230 | 0.2064 | 0.7660 |
| 0.8472 | 36.85 | 7260 | 0.1804 | 0.7241 |
| 0.9328 | 37.01 | 7290 | 0.1143 | 0.7270 |
| 0.9276 | 37.16 | 7320 | 0.2104 | 0.7725 |
| 0.9599 | 37.31 | 7350 | 0.2237 | 0.7334 |
| 0.9058 | 37.46 | 7380 | 0.1586 | 0.7304 |
| 0.8654 | 37.61 | 7410 | 0.1439 | 0.7490 |
| 0.9653 | 37.77 | 7440 | 0.1785 | 0.7817 |
| 0.9201 | 37.92 | 7470 | 0.1178 | 0.7317 |
| 0.9545 | 38.07 | 7500 | 0.1523 | 0.7752 |
| 0.9484 | 38.22 | 7530 | 0.1208 | 0.7194 |
| 0.8723 | 38.38 | 7560 | 0.2017 | 0.7564 |
| 0.9555 | 38.53 | 7590 | 0.1065 | 0.7323 |
| 0.9654 | 38.68 | 7620 | 0.1721 | 0.7586 |
| 0.9044 | 38.83 | 7650 | 0.1482 | 0.7538 |
| 0.9745 | 38.98 | 7680 | 0.1507 | 0.7523 |
| 0.991 | 39.14 | 7710 | 0.1344 | 0.7389 |
| 0.9504 | 39.29 | 7740 | 0.1108 | 0.7170 |
| 0.9948 | 39.44 | 7770 | 0.1555 | 0.7555 |
| 0.9458 | 39.59 | 7800 | 0.1324 | 0.7640 |
| 0.9725 | 39.75 | 7830 | 0.1792 | 0.7599 |
| 0.9747 | 39.9 | 7860 | 0.1785 | 0.7485 |
| 0.9779 | 40.05 | 7890 | 0.1751 | 0.7391 |
| 0.9325 | 40.2 | 7920 | 0.2171 | 0.7406 |
| 0.8857 | 40.36 | 7950 | 0.1687 | 0.7203 |
| 0.9229 | 40.51 | 7980 | 0.2092 | 0.7256 |
| 0.9177 | 40.66 | 8010 | 0.1453 | 0.7217 |
| 0.9315 | 40.81 | 8040 | 0.1878 | 0.7415 |
| 0.9942 | 40.96 | 8070 | 0.1602 | 0.7443 |
| 0.9101 | 41.12 | 8100 | 0.1596 | 0.7546 |
| 0.9029 | 41.27 | 8130 | 0.1510 | 0.7346 |
| 0.994 | 41.42 | 8160 | 0.1474 | 0.7336 |
| 0.9862 | 41.57 | 8190 | 0.1274 | 0.7234 |
| 0.9136 | 41.73 | 8220 | 0.1425 | 0.7433 |
| 0.9723 | 41.88 | 8250 | 0.1138 | 0.7286 |
| 0.937 | 42.03 | 8280 | 0.1345 | 0.7425 |
| 0.9773 | 42.18 | 8310 | 0.1405 | 0.7342 |
| 0.9655 | 42.34 | 8340 | 0.1193 | 0.7290 |
| 0.9165 | 42.49 | 8370 | 0.1306 | 0.7318 |
| 0.9409 | 42.64 | 8400 | 0.1504 | 0.7364 |
| 0.976 | 42.79 | 8430 | 0.2013 | 0.7437 |
| 1.0 | 42.94 | 8460 | 0.1821 | 0.7342 |
| 0.967 | 43.1 | 8490 | 0.1685 | 0.7384 |
| 0.9877 | 43.25 | 8520 | 0.1471 | 0.7409 |
| 0.9736 | 43.4 | 8550 | 0.1682 | 0.7372 |
| 1.0 | 43.55 | 8580 | 0.1467 | 0.7332 |
| 0.8718 | 43.71 | 8610 | 0.1380 | 0.7329 |
| 0.997 | 43.86 | 8640 | 0.1314 | 0.7350 |
| 1.0 | 44.01 | 8670 | 0.1372 | 0.7361 |
| 1.0 | 44.16 | 8700 | 0.1442 | 0.7400 |
| 0.8811 | 44.31 | 8730 | 0.1603 | 0.7432 |
| 1.0 | 44.47 | 8760 | 0.1651 | 0.7373 |
| 0.9233 | 44.62 | 8790 | 0.2112 | 0.7484 |
| 0.9555 | 44.77 | 8820 | 0.1837 | 0.7375 |
| 0.8655 | 44.92 | 8850 | 0.1394 | 0.7348 |
| 0.9908 | 45.08 | 8880 | 0.1355 | 0.7375 |
| 0.8959 | 45.23 | 8910 | 0.1391 | 0.7354 |
| 0.9595 | 45.38 | 8940 | 0.1437 | 0.7325 |
| 0.9383 | 45.53 | 8970 | 0.1448 | 0.7382 |
| 0.9417 | 45.69 | 9000 | 0.1793 | 0.7486 |
| 0.9317 | 45.84 | 9030 | 0.1720 | 0.7391 |
| 0.9744 | 45.99 | 9060 | 0.1552 | 0.7388 |
| 0.9443 | 46.14 | 9090 | 0.1486 | 0.7345 |
| 0.9325 | 46.29 | 9120 | 0.1391 | 0.7383 |
| 0.9421 | 46.45 | 9150 | 0.1539 | 0.7393 |
| 0.9451 | 46.6 | 9180 | 0.1436 | 0.7328 |
| 0.9538 | 46.75 | 9210 | 0.1419 | 0.7342 |
| 0.955 | 46.9 | 9240 | 0.1581 | 0.7433 |
| 0.9611 | 47.06 | 9270 | 0.1652 | 0.7407 |
| 0.9296 | 47.21 | 9300 | 0.1716 | 0.7377 |
| 0.9413 | 47.36 | 9330 | 0.1567 | 0.7374 |
| 0.9372 | 47.51 | 9360 | 0.1511 | 0.7376 |
| 0.9524 | 47.66 | 9390 | 0.1586 | 0.7369 |
| 0.9681 | 47.82 | 9420 | 0.1411 | 0.7370 |
| 0.9295 | 47.97 | 9450 | 0.1506 | 0.7394 |
| 0.9983 | 48.12 | 9480 | 0.1503 | 0.7318 |
| 0.8795 | 48.27 | 9510 | 0.1363 | 0.7276 |
| 0.9147 | 48.43 | 9540 | 0.1502 | 0.7331 |
| 0.9063 | 48.58 | 9570 | 0.1556 | 0.7400 |
| 0.9501 | 48.73 | 9600 | 0.1616 | 0.7346 |
| 1.0 | 48.88 | 9630 | 0.1546 | 0.7307 |
| 0.9565 | 49.04 | 9660 | 0.1458 | 0.7335 |
| 0.9266 | 49.19 | 9690 | 0.1525 | 0.7336 |
| 0.935 | 49.34 | 9720 | 0.1516 | 0.7333 |
| 0.8765 | 49.49 | 9750 | 0.1364 | 0.7313 |
| 0.9403 | 49.64 | 9780 | 0.1501 | 0.7282 |
| 0.91 | 49.8 | 9810 | 0.1577 | 0.7422 |
| 0.9521 | 49.95 | 9840 | 0.1757 | 0.7377 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"tags": ["vision", "image-segmentation", "generated_from_trainer"], "model-index": [{"name": "kelp-from-scratch-segformer-b1-lr-0.0001-cleaned", "results": []}]} | image-segmentation | samitizerxu/kelp-from-scratch-segformer-b1-lr-0.0001-cleaned | [
"transformers",
"safetensors",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | 2024-02-06T21:55:53+00:00 | [] | [] | TAGS
#transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #endpoints_compatible #region-us
| kelp-from-scratch-segformer-b1-lr-0.0001-cleaned
================================================
This model is a fine-tuned version of [](URL on the samitizerxu/kelp\_data\_rgbagg\_swin\_nir\_int\_cleaned dataset.
It achieves the following results on the evaluation set:
* Iou Kelp: 0.1757
* Loss: 0.7377
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 22
* eval\_batch\_size: 22
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* num\_epochs: 50
### Training results
### Framework versions
* Transformers 4.37.1
* Pytorch 2.1.2
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 22\n* eval\\_batch\\_size: 22\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.1\n* Pytorch 2.1.2\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 22\n* eval\\_batch\\_size: 22\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.1\n* Pytorch 2.1.2\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
40,
98,
4,
30
] | [
"passage: TAGS\n#transformers #safetensors #segformer #vision #image-segmentation #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 22\n* eval\\_batch\\_size: 22\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.37.1\n* Pytorch 2.1.2\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.10408954322338104,
-0.026065897196531296,
-0.0007313147070817649,
0.08782719820737839,
0.1902226358652115,
0.02267811819911003,
0.1230877935886383,
0.07130265980958939,
-0.1499708592891693,
0.03791635110974312,
0.1111045703291893,
0.12298715859651566,
0.0011185973417013884,
0.12847045063972473,
-0.05057148635387421,
-0.26246777176856995,
0.0052273510955274105,
0.024643002077937126,
-0.1244410052895546,
0.10300317406654358,
0.08746258914470673,
-0.1771487444639206,
0.0898594930768013,
-0.019401900470256805,
-0.2788475751876831,
0.02623869851231575,
0.025358054786920547,
-0.049064427614212036,
0.14365534484386444,
0.018767431378364563,
0.16320304572582245,
-0.000880575564224273,
0.12471058964729309,
-0.19084647297859192,
0.014591431245207787,
0.061836592853069305,
0.021511152386665344,
0.0490340031683445,
0.04402589052915573,
0.001503857783973217,
0.07096531987190247,
-0.11715114116668701,
0.08415345847606659,
0.010598324239253998,
-0.14732472598552704,
-0.2127920389175415,
-0.06863270699977875,
0.001790571608580649,
0.10255827009677887,
0.09381721913814545,
0.0008145943866111338,
0.12385814636945724,
-0.08545314520597458,
0.10528142750263214,
0.2740096151828766,
-0.19949471950531006,
-0.09502120316028595,
0.03530304133892059,
-0.002859444124624133,
0.08046794682741165,
-0.13640548288822174,
0.012257250025868416,
0.08502581715583801,
0.03407080098986626,
0.10491352528333664,
-0.028584877029061317,
-0.10527454316616058,
0.0072779287584125996,
-0.14027176797389984,
-0.028738994151353836,
0.10061831772327423,
0.045107170939445496,
-0.02818879671394825,
-0.008528117090463638,
-0.07078354805707932,
-0.16621628403663635,
-0.07526730000972748,
-0.021426375955343246,
0.07010900229215622,
-0.06928145885467529,
-0.11673619598150253,
0.008355014957487583,
-0.13057738542556763,
-0.11217643320560455,
-0.0355205237865448,
0.18886862695217133,
0.03914446011185646,
0.03047463297843933,
-0.05894109979271889,
0.10184881091117859,
-0.055519312620162964,
-0.13669675588607788,
0.014427213929593563,
0.026186136528849602,
-0.04354460537433624,
-0.053048647940158844,
-0.07794442027807236,
-0.08207893371582031,
-0.0035623263102024794,
0.13879090547561646,
-0.1057266891002655,
0.0614396296441555,
0.042402464896440506,
0.049930643290281296,
-0.12581051886081696,
0.1984913945198059,
-0.024094946682453156,
0.016239570453763008,
-0.015859458595514297,
0.040872376412153244,
-0.0008815459441393614,
0.0041676899418234825,
-0.08217955380678177,
0.0007772769313305616,
0.09968431293964386,
-0.014807021245360374,
-0.11902023106813431,
0.05776993930339813,
-0.02893114648759365,
0.022850947454571724,
-0.02301093563437462,
-0.08735070377588272,
0.04214486479759216,
-0.014702950604259968,
-0.06000930443406105,
-0.03442135453224182,
0.051473964005708694,
0.025293903425335884,
0.03494325280189514,
0.13915376365184784,
-0.08262728154659271,
0.05670129135251045,
-0.1222686842083931,
-0.07819120585918427,
-0.013242857530713081,
-0.028251076117157936,
0.04067349061369896,
-0.1125744879245758,
-0.15940797328948975,
-0.016167037189006805,
0.04953886568546295,
-0.011307355016469955,
0.017190828919410706,
-0.05225008353590965,
-0.10726005584001541,
0.009080706164240837,
-0.014135616831481457,
0.13240692019462585,
-0.05307342857122421,
0.10645301640033722,
0.07946892082691193,
0.07832948118448257,
-0.06646651774644852,
0.020781146362423897,
-0.09051629900932312,
0.02041533775627613,
-0.2707131505012512,
0.03990618512034416,
-0.05356854572892189,
0.09322720766067505,
-0.038691941648721695,
-0.11025168001651764,
-0.011127578094601631,
0.004124922677874565,
0.08515273779630661,
0.1185169517993927,
-0.20084920525550842,
-0.07852721214294434,
0.1616164743900299,
-0.12565475702285767,
-0.12264277786016464,
0.0913291722536087,
-0.054323360323905945,
0.022589420899748802,
0.08092746138572693,
0.16592539846897125,
0.04595652595162392,
-0.13407745957374573,
0.0018451203359290957,
-0.035836875438690186,
0.04144582152366638,
-0.03190635144710541,
0.04340649023652077,
0.036127809435129166,
0.034322962164878845,
0.018876567482948303,
-0.06167827174067497,
0.06880328804254532,
-0.1386251598596573,
-0.08918589353561401,
-0.052776675671339035,
-0.10740049183368683,
0.027025705203413963,
0.0835985615849495,
0.09360212832689285,
-0.12652286887168884,
-0.0463026687502861,
0.11681617796421051,
0.0685240626335144,
-0.06993123888969421,
0.032378025352954865,
-0.054626625031232834,
0.023097939789295197,
-0.05297740176320076,
-0.03489290177822113,
-0.16440734267234802,
-0.06733860075473785,
-0.011517396196722984,
0.048449039459228516,
0.01582466997206211,
-0.015399151481688023,
0.1003677248954773,
0.09345817565917969,
-0.07627570629119873,
-0.04451718181371689,
-0.07883709669113159,
0.009247573092579842,
-0.12277426570653915,
-0.20117001235485077,
-0.009585580788552761,
-0.006431672256439924,
0.09071243554353714,
-0.20495782792568207,
0.031071651726961136,
0.00929634552448988,
0.12526047229766846,
0.032798949629068375,
-0.02506839856505394,
-0.07815680652856827,
0.07619763165712357,
0.0005216057179495692,
-0.0639580562710762,
0.030506378039717674,
-0.015604090876877308,
-0.049507107585668564,
-0.06123549863696098,
-0.1128569096326828,
0.18726541101932526,
0.14417330920696259,
-0.18603813648223877,
-0.11764419078826904,
0.00901184231042862,
-0.06456082314252853,
-0.026783134788274765,
-0.06650799512863159,
0.010974103584885597,
0.15323184430599213,
-0.026841629296541214,
0.13847899436950684,
-0.06791567802429199,
-0.038285527378320694,
0.025620395317673683,
-0.054665084928274155,
0.042239297181367874,
0.08560372143983841,
0.09097518026828766,
-0.07845429331064224,
0.12940140068531036,
0.14031925797462463,
-0.11284039914608002,
0.12039253860712051,
-0.05724825710058212,
-0.08059912174940109,
0.0014262597542256117,
-0.0142345130443573,
-0.00267855916172266,
0.17113764584064484,
-0.10336518287658691,
-0.01570955663919449,
-0.019782962277531624,
0.025873946025967598,
0.02955174259841442,
-0.2560316026210785,
-0.04751421511173248,
0.033165093511343,
-0.016044167801737785,
0.036104388535022736,
-0.03491784632205963,
0.011668039485812187,
0.10214601457118988,
-0.020869750529527664,
-0.061092961579561234,
0.01347903162240982,
-0.007385303732007742,
-0.0664028450846672,
0.2250770628452301,
-0.08172278851270676,
-0.10305092483758926,
-0.1066613718867302,
-0.004897443111985922,
-0.01573096588253975,
0.028991438448429108,
0.05818544700741768,
-0.13842812180519104,
-0.030935194343328476,
-0.04027548059821129,
0.03424448147416115,
0.03267240524291992,
0.07290616631507874,
0.053861696273088455,
0.006436922587454319,
0.0753529891371727,
-0.09364011138677597,
-0.013989988714456558,
-0.06489545106887817,
-0.06627567112445831,
0.05249955132603645,
0.04325300455093384,
0.1402459591627121,
0.1428721696138382,
-0.048128776252269745,
0.01533639058470726,
-0.027834845706820488,
0.26497727632522583,
-0.11063150316476822,
-0.06952637434005737,
0.11537538468837738,
-0.016401510685682297,
0.030788997188210487,
0.09473388642072678,
0.0685395747423172,
-0.13207145035266876,
0.01500699296593666,
0.04750249534845352,
-0.04537460580468178,
-0.15604211390018463,
-0.02117121033370495,
-0.028876718133687973,
-0.0515357106924057,
0.06272458285093307,
0.019130801782011986,
0.013409706763923168,
0.06759857386350632,
0.031434062868356705,
0.06883452832698822,
-0.004592313896864653,
0.06466144323348999,
0.07225973159074783,
0.03201477974653244,
0.10394014418125153,
-0.04913843795657158,
-0.08548251539468765,
0.015165050514042377,
-0.03471224755048752,
0.24438884854316711,
0.01264136005192995,
0.038867127150297165,
0.06186576187610626,
0.11913899332284927,
-0.0065804519690573215,
0.06472357362508774,
0.011637115851044655,
-0.08907603472471237,
0.008873790502548218,
-0.04678308591246605,
-0.03309590369462967,
0.04171918332576752,
-0.0963800698518753,
0.06727636605501175,
-0.14101004600524902,
0.03217482194304466,
0.09137250483036041,
0.2311534732580185,
0.024566419422626495,
-0.34350648522377014,
-0.06850620359182358,
0.009248083457350731,
-0.02630051225423813,
-0.016981251537799835,
0.01447969488799572,
0.159878209233284,
-0.06735461205244064,
0.05724005773663521,
-0.06099735572934151,
0.07852853834629059,
-0.004905571695417166,
0.041481710970401764,
0.04279521852731705,
0.062116414308547974,
0.0014446366112679243,
0.034439895302057266,
-0.27654945850372314,
0.29472222924232483,
-0.002057331847026944,
0.109369657933712,
-0.030824678018689156,
-0.02470492012798786,
0.014365823939442635,
0.11402909457683563,
0.07089903205633163,
-0.020408406853675842,
-0.07345880568027496,
-0.23411233723163605,
0.002096196636557579,
0.04255609214305878,
0.16593553125858307,
-0.011250393465161324,
0.10261226445436478,
-0.015165881253778934,
0.0035540584940463305,
0.09040619432926178,
-0.045417215675115585,
-0.08221465349197388,
-0.05899110808968544,
-0.05202043056488037,
-0.009198078885674477,
-0.0049799662083387375,
-0.09091341495513916,
-0.09146494418382645,
-0.11119135469198227,
0.12657271325588226,
0.0008036648505367339,
0.00005027078077546321,
-0.1280333250761032,
0.11384470760822296,
0.07036065310239792,
-0.05656403675675392,
0.06737390160560608,
0.05156963691115379,
0.08945593237876892,
0.02838478982448578,
-0.047693703323602676,
0.09875060617923737,
-0.07384651899337769,
-0.1706410050392151,
-0.05427723005414009,
0.0872294157743454,
0.045469123870134354,
0.03417831286787987,
-0.002298095030710101,
0.02261117845773697,
0.010228035040199757,
-0.09187711775302887,
0.04485679417848587,
0.0037852937821298838,
0.07434602081775665,
0.044989559799432755,
-0.013970654457807541,
0.01819220744073391,
-0.04491238296031952,
-0.012654216960072517,
0.13497035205364227,
0.3033303916454315,
-0.07870528101921082,
-0.0472615621984005,
0.01634788326919079,
-0.06036204844713211,
-0.19721460342407227,
0.11614269018173218,
0.0865013524889946,
-0.00587882986292243,
0.03335496783256531,
-0.11137092113494873,
0.13625915348529816,
0.1118125393986702,
-0.011457807384431362,
0.06564374268054962,
-0.32325664162635803,
-0.14725680649280548,
0.09346058964729309,
0.19229409098625183,
0.12870441377162933,
-0.16228465735912323,
-0.0021789423190057278,
-0.05587567016482353,
-0.12266235053539276,
0.07379785925149918,
-0.09161027520895004,
0.11058288812637329,
-0.007389801554381847,
0.07285777479410172,
0.011907240375876427,
-0.06215064227581024,
0.13846486806869507,
-0.0039570820517838,
0.15989243984222412,
-0.05582618713378906,
-0.017994605004787445,
0.07073824852705002,
-0.046108800917863846,
-0.012702491134405136,
0.01574091427028179,
0.04120810329914093,
-0.009337984025478363,
-0.014767199754714966,
-0.08397889137268066,
0.029787465929985046,
-0.020125646144151688,
-0.058208875358104706,
-0.05623609200119972,
0.012519816868007183,
0.02245420217514038,
-0.016988186165690422,
0.15470722317695618,
0.010703438892960548,
0.13576190173625946,
0.025993963703513145,
0.05913648381829262,
-0.07455144077539444,
-0.07082084566354752,
0.009549730457365513,
-0.010620125569403172,
0.07103677093982697,
-0.13967421650886536,
0.035982679575681686,
0.13503900170326233,
0.03886833414435387,
0.1261834353208542,
0.0973731204867363,
-0.01861124485731125,
0.02878599800169468,
0.09136071056127548,
-0.15862366557121277,
-0.10792669653892517,
-0.00538584915921092,
-0.022320110350847244,
-0.06604320555925369,
0.095940500497818,
0.08483196794986725,
-0.09497539699077606,
0.014889542944729328,
-0.03703360632061958,
-0.011212412267923355,
-0.0827275738120079,
0.23503154516220093,
0.06973793357610703,
0.04536287486553192,
-0.09539005905389786,
0.08955147862434387,
0.004157234448939562,
-0.07925701141357422,
-0.005427843425422907,
0.07556066662073135,
-0.06166604906320572,
-0.004415255505591631,
0.13554877042770386,
0.21062591671943665,
-0.09311196208000183,
-0.043302081525325775,
-0.16297495365142822,
-0.10784313827753067,
0.05072386562824249,
0.2450491338968277,
0.1074587032198906,
0.0036608825903385878,
-0.0003761299012694508,
0.06588821113109589,
-0.1395302414894104,
0.06748441606760025,
0.014591187238693237,
0.10519056022167206,
-0.16917552053928375,
0.19141460955142975,
0.006355038844048977,
0.037026602774858475,
-0.04129580408334732,
0.05127307027578354,
-0.13053137063980103,
0.04326584190130234,
-0.1008821502327919,
-0.026284880936145782,
0.012628352269530296,
-0.010918346233665943,
0.02295856550335884,
-0.07127801328897476,
-0.069139763712883,
0.02366385981440544,
-0.1202489584684372,
-0.010686429217457771,
0.04194096475839615,
0.017233237624168396,
-0.1284901648759842,
-0.04332638904452324,
0.038904424756765366,
-0.06784875690937042,
0.022619783878326416,
0.056565381586551666,
0.030804889276623726,
0.08865382522344589,
-0.21029187738895416,
-0.03579074516892433,
0.11714376509189606,
-0.021011747419834137,
0.05759783834218979,
-0.026123184710741043,
-0.029975619167089462,
-0.010043532587587833,
0.10521670430898666,
0.013506144285202026,
0.05609238147735596,
-0.12241137772798538,
-0.010903659276664257,
-0.03940216824412346,
-0.08570346236228943,
-0.06197238713502884,
0.006314459722489119,
0.07527332752943039,
0.017614690586924553,
0.14716079831123352,
-0.09670934826135635,
0.03344879299402237,
-0.20609700679779053,
-0.009870002046227455,
-0.0033515014220029116,
-0.11311353743076324,
-0.0888056829571724,
-0.04837993532419205,
0.08128736168146133,
-0.06580519676208496,
0.1149805337190628,
0.006831574719399214,
0.09150569885969162,
0.04257483407855034,
-0.041204918175935745,
0.018034497275948524,
0.07135306298732758,
0.24122004210948944,
0.0483878031373024,
-0.025821847841143608,
0.06186182051897049,
0.09481015801429749,
0.1381133496761322,
0.059871476143598557,
0.21145844459533691,
0.16003689169883728,
-0.1182151660323143,
0.12638384103775024,
0.04089439660310745,
-0.05276791751384735,
-0.14007912576198578,
0.008907157927751541,
-0.08394023030996323,
0.04723334684967995,
-0.04479145631194115,
0.17540188133716583,
0.12738806009292603,
-0.1796334832906723,
0.036581479012966156,
-0.05152067542076111,
-0.09667918086051941,
-0.08456405252218246,
0.036519698798656464,
-0.09852748364210129,
-0.18569140136241913,
0.044763680547475815,
-0.11519982665777206,
0.016766628250479698,
0.140718474984169,
0.0026646999176591635,
0.008435450494289398,
0.26299986243247986,
0.03870485723018646,
0.052504561841487885,
0.03897664323449135,
-0.0046839406713843346,
-0.025555172935128212,
-0.08033555001020432,
-0.08853347599506378,
0.03583184629678726,
-0.04153253138065338,
0.017260966822504997,
-0.0734385997056961,
-0.093912772834301,
0.0315413698554039,
0.02531459927558899,
-0.08979962766170502,
0.027641013264656067,
0.024620747193694115,
0.06034540757536888,
-0.03597657382488251,
0.0007363297627307475,
0.021440520882606506,
-0.018914643675088882,
0.2350997030735016,
-0.10069040209054947,
-0.10678038001060486,
-0.10486719012260437,
0.22169069945812225,
0.050414495170116425,
0.039726510643959045,
0.004121191333979368,
-0.10491061210632324,
-0.0012138776946812868,
0.20548905432224274,
0.11774007976055145,
-0.09878893941640854,
0.0025117381010204554,
-0.02488635666668415,
-0.010615422390401363,
-0.06617008149623871,
0.10989008098840714,
0.11866578459739685,
0.03118986077606678,
-0.10287247598171234,
-0.05074657127261162,
-0.024517839774489403,
-0.02574852667748928,
-0.028515668585896492,
0.02363915741443634,
0.04675403609871864,
0.03930847346782684,
-0.07596579194068909,
0.07373041659593582,
-0.017734035849571228,
-0.12399747967720032,
0.12360891699790955,
-0.19808319211006165,
-0.12610070407390594,
0.007172230165451765,
0.13108831644058228,
-0.02886688895523548,
0.05369458347558975,
-0.03816305473446846,
-0.024062504991889,
0.031537704169750214,
-0.013473810628056526,
-0.0708712786436081,
-0.130253866314888,
0.06199004128575325,
-0.12930679321289062,
0.21546699106693268,
-0.05301408842206001,
0.08169581741094589,
0.09902982413768768,
0.04279198497533798,
-0.049552638083696365,
0.06209449842572212,
0.026931630447506905,
-0.13325046002864838,
-0.016797931864857674,
0.16714464128017426,
-0.05604662746191025,
0.08210700750350952,
0.030247259885072708,
-0.18968825042247772,
0.020098835229873657,
-0.05249829217791557,
-0.047962721437215805,
-0.03739848732948303,
-0.06692197918891907,
-0.07510285824537277,
0.10456331074237823,
0.18231050670146942,
-0.0116568049415946,
0.050248704850673676,
-0.07520707696676254,
0.0443350188434124,
0.07210291177034378,
0.046253494918346405,
-0.059762608259916306,
-0.2693147659301758,
0.019004039466381073,
0.11356474459171295,
-0.0521271638572216,
-0.1617065668106079,
-0.1147189512848854,
0.018804004415869713,
-0.050145361572504044,
-0.05759759992361069,
0.08570095896720886,
0.11669570952653885,
0.04381931945681572,
-0.06196514144539833,
-0.1858823001384735,
-0.0549757294356823,
0.17763124406337738,
-0.13368000090122223,
-0.10763043165206909
] |
null | null | transformers | **INTRODUCTION**
It is our team's pleasure to work with you and offer our latest cutting-edge Language Model (LLM)-Enteli-49B for your business needs.
This collaboration marks a significant step in utilizing advanced Natural Language Processing (NLP) to enhance your business operations.
This Hugging Face repository is divided into 5 sections; **Model Architecture**, **Model Usage**, **Immediate Integration**, **Deployment** and **Future Work** .
**Please check out our demo for that model: https://huggingface.co/spaces/arhanovich/Enteli-49B_Demo**
**Key Features of Enteli-49B:**
-**SOTA Performance**: As it can be discerned from the benchmarks, Enteli-49B outperforms incredibly other language models like GPT-3.5.
Our LLM excels in understanding and generating human-like text with advanced reasoning, coding and math abilities.
-**Customization and Scalability**: Tailor the model to your specific industry needs, ensuring relevance and efficiency in a plethora of tasks.
-**Computational Efficiency**: Regarding its high performance, our LLM's parameter size is relatively low and has less computational intensity for interference
-**Seamless Integration**: Easy integration with your existing systems and workflows.
**Choosing HuggingFace for Delivery and Demonstration:**
Our choice of HuggingFace as the platform for demonstration and delivery of our LLM to your sides is strategic and deliberate. HuggingFace is well-known for its robust,
user-friendly, and versatile environment. This platform not only simplifies the integration and deployment of advanced AI models but also ensures that you stay at the
forefront of AI technology with continuous updates and community support. Prominent firms in the field of AI like Google, Meta, Openai and Microsoft take advantage of
HuggingFace for sharing LLMs safely and easily.
**MODEL ARCHITECTURE**
It is pondered as an endorsed fact that successful LLMs like GPT-4 have been trained using a method called Mixture of Experts due its great performance and higher
efficiency. Thus, we, as EnteliMind trained Enteli-49B using the Mixture of Experts algorithm.
When it comes to improving the quality of machine learning models, scale is key. Given a fixed computing budget, training a larger model for fewer steps is better
than training a smaller model for more steps.An intriguing approach to achieve better scale with limited computational resources is the Mixture of Experts (MoE) model. This method allows for larger models or datasets to be pre-trained using the same compute budget as traditional dense models, but with significantly faster results. Instead of training a single language model where its training would be like a "black box", unaware of its domain-specific abilities, expert models can be separately trained with each expert dedicated to a single ability.
At its core, a MoE model comprises two primary components:
**Sparse MoE Layers**: These replace the usual dense feed-forward network (FFN) layers. A MoE layer consists of several "experts" – each being a separate neural network.
Typically, these experts are FFNs themselves, but they can also be more intricate, even forming hierarchical structures.
**Gate Network/Router:** This component directs specific tokens to specific experts. For instance, one token might be routed to one expert while another goes
to a different one. The routing process is critical in MoE models and is based on learned parameters that are pre-trained alongside the network.

**Gating Network Mechanics:**
The gating network's function is to efficiently distribute input across various experts. It's mathematically defined as:

**Sparsity and Conditional Computation:**
Sparsity in MoE models is about using conditional computation - activating only parts of the network for specific inputs. This approach enables scaling up the
model size without a proportional increase in computation. This is mathematically represented as:

Where _y_ is the output, _G_(_x_) is the gating function, _Ei_(_x_) is the operation by the i-th expert, and _n_ is the number of experts.
**Innovative Gating and Load Balancing:**
Beyond traditional gating, techniques like Noisy Top-k Gating add noise to the gating process, keeping only the top k values. This method, while
introducing complexity, aids in faster training and inference by activating fewer experts. Additionally, noise helps in load balancing, ensuring an equitable
distribution of tokens among experts, preventing any single expert from becoming a bottleneck. Here is its mathematical representation:

**Our Research Findings:**
We have simplified our own entire model architecture to the transformer module's mixture of experts known as "MixtralForCausalLM". This allows for easy integration
with the HuggingFace and the transformers module which will certainly facilitate the future work like Supervised Fine-tuning.
However, it is best to acknowledge that the difference between the original implementation and the simplified version is pretty minute and we would like to share our
extra research findings when training Enteli-49B.
**1-) Exponential Mean Absolute Deviation Normalization (EMADNorm):**
Enteli-49B incorporates EMADNorm to normalize the data, which divides each element by an exponential factor dependent on the dataset's mean absolute deviation (MAD).
The MAD and EMADNorm are defined as:

Where N is the number of elements, xi is each individual element, μ is the mean of all elements, and e is the base of the natural logarithm.
EMADNorm focuses on the spread of the data by considering the mean absolute deviation. This aspect is particularly beneficial in datasets where the dispersion is an
important feature and needs to be emphasized or normalized differently from the mean. By using an exponential function of the MAD, EMADNorm adapts the degree of
normalization to the characteristics of the dataset. This adaptability can be crucial for datasets with varying levels of volatility or dispersion. Moreover, by normalizing the input data effectively, EMADNorm can contribute to more stable and efficient model training. It ensures that the scale of the inputs does not adversely affect the learning process, which can be critical for the convergence and performance of deep learning models.
**2-) CurveLu Activation Function**
The feed-forward network in Enteli-49B utilizes the CurveLu activation function, a blend of ReLU and Tanh, allowing sensitivity to both positive and negative inputs.
The network can be represented as:

Where the Curvelu activation function equals to:

And _k_ is a hyper-parameter that dictates the steepness of the tanh function or it can be either set as a constant 1.
This novel activation function is both smooth and more forgiving to positive values as it can be discerned from the graph below.
**More Details:**
Enteli-49B is pre-trained on data extracted from the open Web with experts and routers trained simultaneously with over **1.9 Trillions of tokens.**
# Benchmarks
| | Enteli-49B (EnteliMind) | GPT 3.5 (OpenAI) | LLaMa 70B (Meta AI) |
|--------------------------|-------------------------|------------------|--------------------|
| MMLU | 73.6% | 70% | 69.9% |
| HelloSwag (10-shot) | 90.6% | 85.5% | 87.1% |
| ARC Challenge (25-shot) | 87.9% | 85.2% | 85.1% |
| WinoGrande (5-shot) | 83.2% | 81.6% | 83.2% |
| GSM-8K (5-shot) | 61.1% | 57.1% | 53.6% |
These benchmarks indicate that our model **outperforms** models like GPT-3.5 and LLaMa 2 70b although having fewer parameter size.
**Model Usage**
Our model can be easily used with the transformers python library.
The chat template that must be strictly used is as follows:
```
\<s\> [INST] There goes the prompt [/INST] There goes the answer\</s\> [INST] Follow-up prompt [/INST]
```
- \<s\> is the BOS (Beginning of string)
- \</s\> is the EOS (End of String)
Here is an example code for the model usage in python using GPU:
```python
#pip install transformers accelerate bitsandbytes
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "arhanovich/Enteli-49B"
auth_token = "There goes the auth token" #Since this a private model, you must use that auth token to access the model and the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, use_default_system_prompt=False, use_auth_token=auth_token)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True, use_auth_token=auth_token)
prompt = input("Query: ")
full_prompt = f"<s>[INST] You are a helpful AI called Enteli trained by the AI company EnteliMind.[/INST]\nUser: {prompt}\nAssistant:"
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500)
answer = str(tokenizer.decode(generation_output[0], skip_special_tokens=True)).replace(full_prompt, "")
print(f"Answer: {answer}")
```
**Important Notes:**
- This chat template must be strictly used
- In this code **torch.float32** has been used however, alternatively, torch.float16 could also be used which can lead to faster computations and lower memory usage
but at the cost of precision.
- In this code model has been loaded with **4-bit** which refers to a form of model quantization where the weights of a neural network are represented
using only 4 bits per weight. Quantization reduces the model size and can speed up inference. However, for the sake of precision, it can be replaced with
for example 32 bit which would require more memory and hardware like GPU accelerator.
- Other parameters of the model.generate() such as temperature, top_p, top_k or max_new_tokens can also be altered upon request
**Immediate Integration**
In the dynamic landscape of artificial intelligence, the fusion of Enteli-49B with external functions heralds a groundbreaking era of innovation and utility.
This integration is not just an advancement; it's a revolution, poised to redefine the boundaries of technology and human interaction.
To exemplify, here are some potential use cases of the combination of Enteli-49B with external functions:
- Combining it with a calculator function to enable it carry out flawless calculations
- Combining it with a web browser or a search engine, making it aware of the current data
- Combining it with complex financial calculation tools like market analysis or investment portfolio.
Thus, any API or function in a coding environment can be integrated with Enteli-49B. Things get very interesting when you combine multiple
Enteli-49B with each one having its tools, enabling it to carry out complex tasks that humans are not able to perform efficiently. This can be potentailly
be the dawn of a new form of intelligence.
We, as EnteliMind team, have written two examplar scripts that will be a starting-point of that journey:
**Example1: Integration with functions of Single Paramter**
In the first example script, we are combining Enteli-49B with a **calculator tool** and a **webbrowser**.
Here is the code:
```python
pip install transformers accelerate bitsandbytes duckduckgo_search
import torch
import transformers
model_name = "arhanovich/Enteli-49B"
auth_token = "There goes the auth token" #Since this a private model, you must use that auth token to access the model and the tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_default_system_prompt=False, use_auth_token=auth_token)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True, use_auth_token=auth_token)
generate_text = transformers.pipeline(
model=model, tokenizer=tokenizer,
return_full_text=False,
task="text-generation",
temperature=0.1, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
top_p=0.15, # select from top tokens whose probability add up to 15%
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
max_new_tokens=512, # max number of tokens to generate in the output
repetition_penalty=1.1
)
def instruction_format(sys_message: str, query: str):
return f'<s> [INST] {sys_message} [/INST]\nUser: {query}\nAssistant: ```json\n{{\n"tool_name": '
system_message= """You are a helpful AI assistant, you are an agent capable of using a variety of tools to answer a question. Here are a few of the tools available to you:
- Calculator: the calculator should be used whenever you need to perform a calculation, no matter how simple. It uses Python so make sure to write complete Python code required to perform the calculation required and make sure the Python returns your answer to the `output` variable.
- Search: the search tool should be used whenever you need to find information. It can be used to find information about everything
- Final Answer: the final answer tool must be used to respond to the user. You must use this when you have decided on an answer.
TOOL USAGE
Let's get started. The users query is as follows.
"""
import json
def format_output(text: str):
full_json_str = '{\n"tool_name": '+text
full_json_str = full_json_str.strip()
if full_json_str.endswith("```"):
full_json_str = full_json_str[:-3]
return json.loads(full_json_str)
from duckduckgo_search import DDGS
def use_tool(action: dict):
tool_name = action["tool_name"]
if tool_name == "Final Answer":
return "Assistant: "+action["input"]
elif tool_name == "Calculator":
exec(action["input"])
return f"Tool Output: {output}"
elif tool_name == "Search":
contexts = []
with DDGS() as ddgs:
results = ddgs.text(
action["input"],
region="wt-wt", safesearch="on",
max_results=3
)
for r in results:
contexts.append(r['body'])
info = "\n---\n".join(contexts)
return f"Tool Output: {info}"
else:
# otherwise just assume final answer
return "Assistant: "+action["input"]
def run_agent(query: str):
res = generate_text(query)
action_dict = format_output(res[0]["generated_text"])
response = use_tool(action_dict)
full_text = f"{query}{res[0]['generated_text']}\n{response}"
return response, full_text
query = input(">: ")
input_prompt = instruction_format(system_message, query)
out = run_agent(input_prompt)
print(out)
second_step = out[1]+"""
Assistant: ```json
{
"tool_name": """
out = run_agent(second_step)
print(out[0])
```
This code sets up a basic AI agent. Note that, python libraries such as Langchain or LlamaIndex could also be utilised for building the agent.
Also, the custom cools (and the corresponding system prompt) can be altered for different functionalities.
Also replace the TOOL USAGE part with:
To use these tools you must always respond in JSON format containing `"tool_name"` and `"input"` key-value pairs. For example, to answer the question, "what is the square root of 51?" you must use the calculator tool like so:
```json
{
"tool_name": "Calculator",
"input": "from math import sqrt; output = sqrt(51)"
}
```
Or to answer the question "who is the current president of the USA?" you must respond:
```json
{
"tool_name": "Search",
"input": "current president of USA"
}
```
Remember, even when answering to the user, you must still use this JSON format! If you'd like to ask how the user is doing you must write:
```json
{
"tool_name": "Final Answer",
"input": "How are you today?"
}
```
**Example2:Integration with functions of Multiple Paramters**
In this example, we will be building a Finance Agent that has tools of Compund Interest, Present Value Annuity and Capital Asset Pricing calculation.
```python
#pip install transformers accelerate bitsandbytes
import torch
import transformers
auth_token = "There goes the auth token" #Since this a private model, you must use that auth token to access the model and the tokenizer
model_name = "arhanovich/Enteli-49B"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_default_system_prompt=False, use_auth_token=auth_token)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True, use_auth_token=auth_token)
def generate_text(query):
system_message = """
<s>[INST]You are a helpful AI assistant, you are an agent capable of using a variety of tools to answer a question. Here are a few of the tools available to you:
- Compund Interest: Calculate the future value of an investment with compound interest. :param principal: Initial amount of money invested (principal) :param rate: Annual interest rate (as a decimal) :param periods: Number of periods the money is invested for :return: Future value of the investment.
- Present Value Annuity: Calculate the present value of an annuity :param payment: The fixed payment amount per period :param rate: Discount rate per period (as a decimal).:param periods: Total number of periods :return: Present value of the annuity.
- Capital Asset Pricing: Calculate the expected return of an asset using the Capital Asset Pricing Model (CAPM) :param expected_market_return: Expected return of the market :param risk_free_rate: Risk-free rate of return :param beta: Beta of the asset :return: Expected return of the asset.
- Final Answer: the final answer tool must be used to respond to the user. You must use this when you have decided on an answer. :param answer:Your final answer
To use these tools you must always respond in JSON format containing `"tool_name"` and `"parameters"` key-value pairs.
For example, to answer the question, "Suppose you invest $5,000 in a savings account offering an annual interest rate of 4%. How much money will be in the account after 10 years if the interest is compounded annually?" you must use the tool like so:
```json
{
"tool_name": "Compund Interest",
"input": "principal=5000, rate=0.04, periods=10"
}
```
Or to answer the question "You are considering an investment that will pay you $1,000 per year for the next 5 years. If your discount rate is 3%, what is the present value of these future payments?" you must respond:
```json
{
"tool_name": "Present Value Annuity",
"input": "payment=1000, rate=0.03, periods=5"
}
```
To answer the question "An asset has a beta of 1.2. The risk-free rate is 2%, and the expected market return is 8%. What is the expected return on this asset according to the CAPM?" use the tool like that
```json
{
"tool_name": "Capital Asset Pricing",
"input": "expected_market_return=0.08, risk_free_rate=0.02, beta=1.2"
}
```
Remember, even when answering to the user, you must still use this JSON format! Example, if the Present Value of the Annuity tool gave an ouput like that: 4987.76
```json
{
"tool_name": "Final Answer",
"input": "answer: The Present Value of the Annuity is 4987.76"
}
```
Let's get started. The users query is as follows. You must always give your answer in JSON fomat!!!
User: """
full_prompt = system_message + query + "[/INST]"
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(input_ids=input_ids, max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50)
answer = str(tokenizer.decode(generation_output[0], skip_special_tokens=True))
answer = answer.split("[/INST]")[-1].strip()
return answer
import json
import re
def format_output(text: str):
# Find the JSON part in the text
start = text.find("{")
end = text.rfind("}") + 1
if start == -1 or end == -1:
raise ValueError("JSON string not found in the text")
# Extract the JSON string
json_str = text[start:end]
# Parse the JSON string
try:
json_obj = json.loads(json_str)
except json.JSONDecodeError:
match = re.search(r'"answer":\s*"([^"]+)"', text)
if match:
return match.group(1)
else:
raise ValueError("Answer not found")
# Ensure the necessary keys are present
if "tool_name" not in json_obj or "input" not in json_obj:
raise ValueError("Required keys ('tool_name', 'input') are missing in the JSON")
# Extract and parse the parameters
try:
parameters_str = json_obj["input"]
params = dict(param.split("=") for param in parameters_str.split(", "))
# Convert parameter values to appropriate type (int, float, or leave as string)
def convert_value(v):
try:
return float(v) if '.' in v else int(v)
except ValueError:
return v # If conversion to int or float fails, return the string as is
params = {k: convert_value(v) for k, v in params.items()}
except Exception as e:
raise ValueError(f"Error parsing parameters: {e}")
return json_obj["tool_name"], params
def compound_interest(principal, rate, periods):
"""
Calculate the future value of an investment with compound interest.
:param principal: Initial amount of money invested (principal).
:param rate: Annual interest rate (as a decimal).
:param periods: Number of periods the money is invested for.
:return: Future value of the investment.
"""
return principal * (1 + rate) ** periods
def present_value_annuity(payment, rate, periods):
"""
Calculate the present value of an annuity.
:param payment: The fixed payment amount per period.
:param rate: Discount rate per period (as a decimal).
:param periods: Total number of periods.
:return: Present value of the annuity.
"""
return payment * ((1 - (1 + rate) ** -periods) / rate)
def capm(expected_market_return, risk_free_rate, beta):
"""
Calculate the expected return of an asset using the Capital Asset Pricing Model (CAPM).
:param expected_market_return: Expected return of the market.
:param risk_free_rate: Risk-free rate of return.
:param beta: Beta of the asset.
:return: Expected return of the asset.
"""
return risk_free_rate + beta * (expected_market_return - risk_free_rate)
def final_answer(answer):
return answer
def use_tool(tool_name, params):
if tool_name == "Final Answer":
result = final_answer(**params)
return "Assistant:" + result
elif tool_name == "Capital Asset Pricing":
result = capm(**params)
return "Tool Output:" + str(result)
elif tool_name == "Present Value Annuity":
result = present_value_annuity(**params)
return "Tool Output:" + str(result)
elif tool_name == "Compound Interest":
result = compound_interest(**params)
return "Tool Output:" + str(result)
else:
return "Assistant: An error occured"
def run_agent(query: str):
res = generate_text(query)
print(res)
tool_name, params = format_output(res)
response = use_tool(tool_name, params)
full_text = f"{query}{res}\n{response}"
return response, full_text
query= input(">: ")
out = run_agent(query)
print(f"Result: {out[0]}")
#You can run the second outputs and get the final results using the same logic as in the previous example
```
**Deployment**
Enteli-49B, a sophisticated AI model, necessitates a minimum of 95GB of VRAM for optimal operation. It functions efficiently on **dual
A100 80GB** systems, where each A100 is equipped with 80GB of VRAM, 117GB of RAM, and 12 VCPUs.
The model is compatible with virtual machines, with affordable options available through runpod.io. On average,
the model processes and outputs a total of 500 tokens in approximately 35 seconds when utilizing a dual A100 80GB setup.
In the context of this model, 'tokens' represent fragments of words. During the initial processing phase, the input is segmented into these tokens,
which may consist of partial words, spaces, or even sub-words. For the English language, a single token is roughly equivalent to three-quarters of a word.
The cost for one-hour usage of a dual A100 80GB system on Runpod is approximately 4 USD. Consequently, processing 1,000,000 tokens (equivalent to around 750,000 words)
would incur a cost of about 75 USD. However, this approach allows for processing only one prompt at a time and presents challenges in GPU management. Additionally,
time-based GPU rental can lead to inefficiencies, as the model may not be in constant use. Thus, employing services like Runpod might not be the most user-friendly
option for consumers.
**Fortunately**, at EnteliMind, we have access to extensive, dedicated computational servers equipped with numerous GPUs.
We aim to offer an API service where you are billed based on token usage. Last month, our usage amounted to approximately 948,750,000 tokens, costing us 7590 USD.
From this data, we deduce that the cost for processing 1,000,000 tokens (about 750,000 words) is 8 USD. Therefore, we are **prepared to offer you our API service**
at a rate of 8 USD per 1 million tokens, subsequent to the purchase of our Enteli-49B AI model.
**Future Work**
The abilities of Enteli-49B can be amplified with these several mathods.
**1-)Building More Complex AI Agents and Swarms**
This is probably the cheapest and the easiest method, though it will produce the best results. The abilities of Enteli-49B could be expanded with many custom tools
(functions) integrated with. This opens wide avanues to the innovation in **finance** for example, combining the AI with any imaginable tool. Another advanced method is
builiding an AI agent swarm where different AIs with their toolsi talk, negotiate with each other to solve pretty intricate problems. This may sound a bit hard to implement
however the projects CrewAI and Autogen have simplified this process immensely.
Langchain: https://python.langchain.com/docs/get_started/introduction
CrewAI: https://github.com/joaomdmoura/crewAI
Autogen: https://github.com/microsoft/autogen
**2-)Fine-Tuning**
Fine-tuning is a crucial step in enhancing the capabilities of pre-trained large language models (LLMs) for specific tasks or domains.
Initially, these models are trained on vast and diverse datasets, equipping them with a broad understanding of language and its various applications.
However, this general training doesn't provide the model with deep expertise in particular areas or specialized tasks.
To address this, fine-tuning comes into play. It involves adjusting the model's parameters further, but this time using a smaller, domain-specific dataset.
This process is akin to giving the model a "mini-education" in a particular field or task, allowing it to become more adept and efficient in that area.
During fine-tuning, the model is exposed to examples that are closely related to the specific task at hand. This exposure helps the model to grasp the
subtleties and nuances of the domain, which might not have been covered during its initial training. For instance, a model trained on a general dataset may
have a basic understanding of medical terminology, but through fine-tuning with medical texts, it can develop a much more refined and accurate understanding of this
domain.
The result of fine-tuning is a more specialized version of the language model, tailored to perform better in specific applications.
It effectively narrows the gap between a general-purpose model and a specialized tool, unlocking new possibilities and enhancing the model's performance in targeted tasks.
This makes fine-tuning an invaluable process for realizing the full potential of LLMs in various domains and applications.
One of the most well-known technique is PEFT (Parameter-Efficient Fine-Tuning). It is a library for efficiently adapting large pretrained models to various
downstream applications without fine-tuning all of a model’s parameters because it is prohibitively costly. PEFT methods only fine-tune a small
number of (extra) model parameters - significantly decreasing computational and storage costs - while yielding performance comparable to a fully fine-tuned model.
This makes it more accessible to train and store large language models (LLMs) on consumer hardware.
PEFT: https://huggingface.co/docs/peft/index
| {} | text-generation | EnteliMindDelivery/Enteli-49B | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:00:38+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| INTRODUCTION
It is our team's pleasure to work with you and offer our latest cutting-edge Language Model (LLM)-Enteli-49B for your business needs.
This collaboration marks a significant step in utilizing advanced Natural Language Processing (NLP) to enhance your business operations.
This Hugging Face repository is divided into 5 sections; Model Architecture, Model Usage, Immediate Integration, Deployment and Future Work .
Please check out our demo for that model: URL
Key Features of Enteli-49B:
-SOTA Performance: As it can be discerned from the benchmarks, Enteli-49B outperforms incredibly other language models like GPT-3.5.
Our LLM excels in understanding and generating human-like text with advanced reasoning, coding and math abilities.
-Customization and Scalability: Tailor the model to your specific industry needs, ensuring relevance and efficiency in a plethora of tasks.
-Computational Efficiency: Regarding its high performance, our LLM's parameter size is relatively low and has less computational intensity for interference
-Seamless Integration: Easy integration with your existing systems and workflows.
Choosing HuggingFace for Delivery and Demonstration:
Our choice of HuggingFace as the platform for demonstration and delivery of our LLM to your sides is strategic and deliberate. HuggingFace is well-known for its robust,
user-friendly, and versatile environment. This platform not only simplifies the integration and deployment of advanced AI models but also ensures that you stay at the
forefront of AI technology with continuous updates and community support. Prominent firms in the field of AI like Google, Meta, Openai and Microsoft take advantage of
HuggingFace for sharing LLMs safely and easily.
MODEL ARCHITECTURE
It is pondered as an endorsed fact that successful LLMs like GPT-4 have been trained using a method called Mixture of Experts due its great performance and higher
efficiency. Thus, we, as EnteliMind trained Enteli-49B using the Mixture of Experts algorithm.
When it comes to improving the quality of machine learning models, scale is key. Given a fixed computing budget, training a larger model for fewer steps is better
than training a smaller model for more steps.An intriguing approach to achieve better scale with limited computational resources is the Mixture of Experts (MoE) model. This method allows for larger models or datasets to be pre-trained using the same compute budget as traditional dense models, but with significantly faster results. Instead of training a single language model where its training would be like a "black box", unaware of its domain-specific abilities, expert models can be separately trained with each expert dedicated to a single ability.
At its core, a MoE model comprises two primary components:
Sparse MoE Layers: These replace the usual dense feed-forward network (FFN) layers. A MoE layer consists of several "experts" – each being a separate neural network.
Typically, these experts are FFNs themselves, but they can also be more intricate, even forming hierarchical structures.
Gate Network/Router: This component directs specific tokens to specific experts. For instance, one token might be routed to one expert while another goes
to a different one. The routing process is critical in MoE models and is based on learned parameters that are pre-trained alongside the network.
!MoE Layer
Gating Network Mechanics:
The gating network's function is to efficiently distribute input across various experts. It's mathematically defined as:
!Gating Network Mechanics
Sparsity and Conditional Computation:
Sparsity in MoE models is about using conditional computation - activating only parts of the network for specific inputs. This approach enables scaling up the
model size without a proportional increase in computation. This is mathematically represented as:
!Sparsity and Conditional Computation
Where *y* is the output, *G*(*x*) is the gating function, \_Ei\_(*x*) is the operation by the i-th expert, and *n* is the number of experts.
Innovative Gating and Load Balancing:
Beyond traditional gating, techniques like Noisy Top-k Gating add noise to the gating process, keeping only the top k values. This method, while
introducing complexity, aids in faster training and inference by activating fewer experts. Additionally, noise helps in load balancing, ensuring an equitable
distribution of tokens among experts, preventing any single expert from becoming a bottleneck. Here is its mathematical representation:
!Innovative Gating
Our Research Findings:
We have simplified our own entire model architecture to the transformer module's mixture of experts known as "MixtralForCausalLM". This allows for easy integration
with the HuggingFace and the transformers module which will certainly facilitate the future work like Supervised Fine-tuning.
However, it is best to acknowledge that the difference between the original implementation and the simplified version is pretty minute and we would like to share our
extra research findings when training Enteli-49B.
1-) Exponential Mean Absolute Deviation Normalization (EMADNorm):
Enteli-49B incorporates EMADNorm to normalize the data, which divides each element by an exponential factor dependent on the dataset's mean absolute deviation (MAD).
The MAD and EMADNorm are defined as:
!EMADNorm
Where N is the number of elements, xi is each individual element, μ is the mean of all elements, and e is the base of the natural logarithm.
EMADNorm focuses on the spread of the data by considering the mean absolute deviation. This aspect is particularly beneficial in datasets where the dispersion is an
important feature and needs to be emphasized or normalized differently from the mean. By using an exponential function of the MAD, EMADNorm adapts the degree of
normalization to the characteristics of the dataset. This adaptability can be crucial for datasets with varying levels of volatility or dispersion. Moreover, by normalizing the input data effectively, EMADNorm can contribute to more stable and efficient model training. It ensures that the scale of the inputs does not adversely affect the learning process, which can be critical for the convergence and performance of deep learning models.
2-) CurveLu Activation Function
The feed-forward network in Enteli-49B utilizes the CurveLu activation function, a blend of ReLU and Tanh, allowing sensitivity to both positive and negative inputs.
The network can be represented as:
!CurveLu Activation Function
Where the Curvelu activation function equals to:
!CurveLu Activation Function
And *k* is a hyper-parameter that dictates the steepness of the tanh function or it can be either set as a constant 1.
This novel activation function is both smooth and more forgiving to positive values as it can be discerned from the graph below.
More Details:
Enteli-49B is pre-trained on data extracted from the open Web with experts and routers trained simultaneously with over 1.9 Trillions of tokens.
Benchmarks
==========
These benchmarks indicate that our model outperforms models like GPT-3.5 and LLaMa 2 70b although having fewer parameter size.
Model Usage
Our model can be easily used with the transformers python library.
The chat template that must be strictly used is as follows:
* <s> is the BOS (Beginning of string)
* </s> is the EOS (End of String)
Here is an example code for the model usage in python using GPU:
Important Notes:
* This chat template must be strictly used
* In this code torch.float32 has been used however, alternatively, torch.float16 could also be used which can lead to faster computations and lower memory usage
but at the cost of precision.
* In this code model has been loaded with 4-bit which refers to a form of model quantization where the weights of a neural network are represented
using only 4 bits per weight. Quantization reduces the model size and can speed up inference. However, for the sake of precision, it can be replaced with
for example 32 bit which would require more memory and hardware like GPU accelerator.
* Other parameters of the model.generate() such as temperature, top\_p, top\_k or max\_new\_tokens can also be altered upon request
Immediate Integration
In the dynamic landscape of artificial intelligence, the fusion of Enteli-49B with external functions heralds a groundbreaking era of innovation and utility.
This integration is not just an advancement; it's a revolution, poised to redefine the boundaries of technology and human interaction.
To exemplify, here are some potential use cases of the combination of Enteli-49B with external functions:
* Combining it with a calculator function to enable it carry out flawless calculations
* Combining it with a web browser or a search engine, making it aware of the current data
* Combining it with complex financial calculation tools like market analysis or investment portfolio.
Thus, any API or function in a coding environment can be integrated with Enteli-49B. Things get very interesting when you combine multiple
Enteli-49B with each one having its tools, enabling it to carry out complex tasks that humans are not able to perform efficiently. This can be potentailly
be the dawn of a new form of intelligence.
We, as EnteliMind team, have written two examplar scripts that will be a starting-point of that journey:
Example1: Integration with functions of Single Paramter
In the first example script, we are combining Enteli-49B with a calculator tool and a webbrowser.
Here is the code:
json\n{{\n"tool\_name": '
system\_message= """You are a helpful AI assistant, you are an agent capable of using a variety of tools to answer a question. Here are a few of the tools available to you:
* Calculator: the calculator should be used whenever you need to perform a calculation, no matter how simple. It uses Python so make sure to write complete Python code required to perform the calculation required and make sure the Python returns your answer to the 'output' variable.
* Search: the search tool should be used whenever you need to find information. It can be used to find information about everything
* Final Answer: the final answer tool must be used to respond to the user. You must use this when you have decided on an answer.
TOOL USAGE
Let's get started. The users query is as follows.
"""
import json
def format\_output(text: str):
full\_json\_str = '{\n"tool\_name": '+text
full\_json\_str = full\_json\_str.strip()
if full\_json\_str.endswith("json
{
"tool\_name": """
out = run\_agent(second\_step)
print(out[0])
json
{
"tool\_name": "Calculator",
"input": "from math import sqrt; output = sqrt(51)"
}
json
{
"tool\_name": "Search",
"input": "current president of USA"
}
json
{
"tool\_name": "Final Answer",
"input": "How are you today?"
}
python
#pip install transformers accelerate bitsandbytes
import torch
import transformers
auth\_token = "There goes the auth token" #Since this a private model, you must use that auth token to access the model and the tokenizer
model\_name = "arhanovich/Enteli-49B"
tokenizer = transformers.AutoTokenizer.from\_pretrained(model\_name, use\_default\_system\_prompt=False, use\_auth\_token=auth\_token)
model = transformers.AutoModelForCausalLM.from\_pretrained(model\_name, torch\_dtype=torch.float32, device\_map='auto',local\_files\_only=False, load\_in\_4bit=True, use\_auth\_token=auth\_token)
def generate\_text(query):
system\_message = """
~~[INST]You are a helpful AI assistant, you are an agent capable of using a variety of tools to answer a question. Here are a few of the tools available to you:~~
```
- Compund Interest: Calculate the future value of an investment with compound interest. :param principal: Initial amount of money invested (principal) :param rate: Annual interest rate (as a decimal) :param periods: Number of periods the money is invested for :return: Future value of the investment.
- Present Value Annuity: Calculate the present value of an annuity :param payment: The fixed payment amount per period :param rate: Discount rate per period (as a decimal).:param periods: Total number of periods :return: Present value of the annuity.
- Capital Asset Pricing: Calculate the expected return of an asset using the Capital Asset Pricing Model (CAPM) :param expected_market_return: Expected return of the market :param risk_free_rate: Risk-free rate of return :param beta: Beta of the asset :return: Expected return of the asset.
- Final Answer: the final answer tool must be used to respond to the user. You must use this when you have decided on an answer. :param answer:Your final answer
To use these tools you must always respond in JSON format containing '"tool_name"' and '"parameters"' key-value pairs.
For example, to answer the question, "Suppose you invest $5,000 in a savings account offering an annual interest rate of 4%. How much money will be in the account after 10 years if the interest is compounded annually?" you must use the tool like so:
Or to answer the question "You are considering an investment that will pay you $1,000 per year for the next 5 years. If your discount rate is 3%, what is the present value of these future payments?" you must respond:
To answer the question "An asset has a beta of 1.2. The risk-free rate is 2%, and the expected market return is 8%. What is the expected return on this asset according to the CAPM?" use the tool like that
Remember, even when answering to the user, you must still use this JSON format! Example, if the Present Value of the Annuity tool gave an ouput like that: 4987.76
Let's get started. The users query is as follows. You must always give your answer in JSON fomat!!!
User: """
full_prompt = system_message + query + "[/INST]"
input_ids = tokenizer(full_prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(input_ids=input_ids, max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50)
answer = str(URL(generation_output[0], skip_special_tokens=True))
answer = URL("[/INST]")[-1].strip()
return answer
```
import json
import re
def format\_output(text: str):
# Find the JSON part in the text
start = URL("{")
end = URL("}") + 1
if start == -1 or end == -1:
raise ValueError("JSON string not found in the text")
```
# Extract the JSON string
json_str = text[start:end]
# Parse the JSON string
try:
json_obj = URL(json_str)
except json.JSONDecodeError:
match = URL(r'"answer":\s*"([^"]+)"', text)
if match:
return URL(1)
else:
raise ValueError("Answer not found")
# Ensure the necessary keys are present
if "tool_name" not in json_obj or "input" not in json_obj:
raise ValueError("Required keys ('tool_name', 'input') are missing in the JSON")
# Extract and parse the parameters
try:
parameters_str = json_obj["input"]
params = dict(URL("=") for param in parameters_str.split(", "))
# Convert parameter values to appropriate type (int, float, or leave as string)
def convert_value(v):
try:
return float(v) if '.' in v else int(v)
except ValueError:
return v # If conversion to int or float fails, return the string as is
params = {k: convert_value(v) for k, v in URL()}
except Exception as e:
raise ValueError(f"Error parsing parameters: {e}")
return json_obj["tool_name"], params
```
def compound\_interest(principal, rate, periods):
"""
Calculate the future value of an investment with compound interest.
:param principal: Initial amount of money invested (principal).
:param rate: Annual interest rate (as a decimal).
:param periods: Number of periods the money is invested for.
:return: Future value of the investment.
"""
return principal \* (1 + rate) periods
def present\_value\_annuity(payment, rate, periods):
"""
Calculate the present value of an annuity.
:param payment: The fixed payment amount per period.
:param rate: Discount rate per period (as a decimal).
:param periods: Total number of periods.
:return: Present value of the annuity.
"""
return payment \* ((1 - (1 + rate) -periods) / rate)
def capm(expected\_market\_return, risk\_free\_rate, beta):
"""
Calculate the expected return of an asset using the Capital Asset Pricing Model (CAPM).
:param expected\_market\_return: Expected return of the market.
:param risk\_free\_rate: Risk-free rate of return.
:param beta: Beta of the asset.
:return: Expected return of the asset.
"""
return risk\_free\_rate + beta \* (expected\_market\_return - risk\_free\_rate)
def final\_answer(answer):
return answer
def use\_tool(tool\_name, params):
if tool\_name == "Final Answer":
result = final\_answer(params)
return "Assistant:" + result
```
elif tool_name == "Capital Asset Pricing":
result = capm(params)
return "Tool Output:" + str(result)
elif tool_name == "Present Value Annuity":
result = present_value_annuity(params)
return "Tool Output:" + str(result)
elif tool_name == "Compound Interest":
result = compound_interest(params)
return "Tool Output:" + str(result)
else:
return "Assistant: An error occured"
```
def run\_agent(query: str):
res = generate\_text(query)
print(res)
tool\_name, params = format\_output(res)
response = use\_tool(tool\_name, params)
full\_text = f"{query}{res}\n{response}"
return response, full\_text
query= input(">: ")
out = run\_agent(query)
print(f"Result: {out[0]}")
#You can run the second outputs and get the final results using the same logic as in the previous example
'''
Deployment
Enteli-49B, a sophisticated AI model, necessitates a minimum of 95GB of VRAM for optimal operation. It functions efficiently on dual
A100 80GB systems, where each A100 is equipped with 80GB of VRAM, 117GB of RAM, and 12 VCPUs.
The model is compatible with virtual machines, with affordable options available through URL. On average,
the model processes and outputs a total of 500 tokens in approximately 35 seconds when utilizing a dual A100 80GB setup.
In the context of this model, 'tokens' represent fragments of words. During the initial processing phase, the input is segmented into these tokens,
which may consist of partial words, spaces, or even sub-words. For the English language, a single token is roughly equivalent to three-quarters of a word.
The cost for one-hour usage of a dual A100 80GB system on Runpod is approximately 4 USD. Consequently, processing 1,000,000 tokens (equivalent to around 750,000 words)
would incur a cost of about 75 USD. However, this approach allows for processing only one prompt at a time and presents challenges in GPU management. Additionally,
time-based GPU rental can lead to inefficiencies, as the model may not be in constant use. Thus, employing services like Runpod might not be the most user-friendly
option for consumers.
Fortunately, at EnteliMind, we have access to extensive, dedicated computational servers equipped with numerous GPUs.
We aim to offer an API service where you are billed based on token usage. Last month, our usage amounted to approximately 948,750,000 tokens, costing us 7590 USD.
From this data, we deduce that the cost for processing 1,000,000 tokens (about 750,000 words) is 8 USD. Therefore, we are prepared to offer you our API service
at a rate of 8 USD per 1 million tokens, subsequent to the purchase of our Enteli-49B AI model.
Future Work
The abilities of Enteli-49B can be amplified with these several mathods.
1-)Building More Complex AI Agents and Swarms
This is probably the cheapest and the easiest method, though it will produce the best results. The abilities of Enteli-49B could be expanded with many custom tools
(functions) integrated with. This opens wide avanues to the innovation in finance for example, combining the AI with any imaginable tool. Another advanced method is
builiding an AI agent swarm where different AIs with their toolsi talk, negotiate with each other to solve pretty intricate problems. This may sound a bit hard to implement
however the projects CrewAI and Autogen have simplified this process immensely.
Langchain: URL
CrewAI: URL
Autogen: URL
2-)Fine-Tuning
Fine-tuning is a crucial step in enhancing the capabilities of pre-trained large language models (LLMs) for specific tasks or domains.
Initially, these models are trained on vast and diverse datasets, equipping them with a broad understanding of language and its various applications.
However, this general training doesn't provide the model with deep expertise in particular areas or specialized tasks.
To address this, fine-tuning comes into play. It involves adjusting the model's parameters further, but this time using a smaller, domain-specific dataset.
This process is akin to giving the model a "mini-education" in a particular field or task, allowing it to become more adept and efficient in that area.
During fine-tuning, the model is exposed to examples that are closely related to the specific task at hand. This exposure helps the model to grasp the
subtleties and nuances of the domain, which might not have been covered during its initial training. For instance, a model trained on a general dataset may
have a basic understanding of medical terminology, but through fine-tuning with medical texts, it can develop a much more refined and accurate understanding of this
domain.
The result of fine-tuning is a more specialized version of the language model, tailored to perform better in specific applications.
It effectively narrows the gap between a general-purpose model and a specialized tool, unlocking new possibilities and enhancing the model's performance in targeted tasks.
This makes fine-tuning an invaluable process for realizing the full potential of LLMs in various domains and applications.
One of the most well-known technique is PEFT (Parameter-Efficient Fine-Tuning). It is a library for efficiently adapting large pretrained models to various
downstream applications without fine-tuning all of a model’s parameters because it is prohibitively costly. PEFT methods only fine-tune a small
number of (extra) model parameters - significantly decreasing computational and storage costs - while yielding performance comparable to a fully fine-tuned model.
This makes it more accessible to train and store large language models (LLMs) on consumer hardware.
PEFT: URL
| [
"# Find the JSON part in the text\nstart = URL(\"{\")\nend = URL(\"}\") + 1\nif start == -1 or end == -1:\nraise ValueError(\"JSON string not found in the text\")\n\n\n\n```",
"# Extract the JSON string\njson_str = text[start:end]",
"# Parse the JSON string\ntry:\n json_obj = URL(json_str)\nexcept json.JSONDecodeError:\n match = URL(r'\"answer\":\\s*\"([^\"]+)\"', text)\n if match:\n return URL(1)\n else:\n raise ValueError(\"Answer not found\")",
"# Ensure the necessary keys are present\nif \"tool_name\" not in json_obj or \"input\" not in json_obj:\n raise ValueError(\"Required keys ('tool_name', 'input') are missing in the JSON\")",
"# Extract and parse the parameters\ntry:\n parameters_str = json_obj[\"input\"]\n params = dict(URL(\"=\") for param in parameters_str.split(\", \"))\n\n # Convert parameter values to appropriate type (int, float, or leave as string)\n def convert_value(v):\n try:\n return float(v) if '.' in v else int(v)\n except ValueError:\n return v # If conversion to int or float fails, return the string as is\n\n params = {k: convert_value(v) for k, v in URL()}\nexcept Exception as e:\n raise ValueError(f\"Error parsing parameters: {e}\")\n\nreturn json_obj[\"tool_name\"], params\n\n```\n\ndef compound\\_interest(principal, rate, periods):\n\"\"\"\nCalculate the future value of an investment with compound interest.\n:param principal: Initial amount of money invested (principal).\n:param rate: Annual interest rate (as a decimal).\n:param periods: Number of periods the money is invested for.\n:return: Future value of the investment.\n\"\"\"\nreturn principal \\* (1 + rate) periods\n\n\ndef present\\_value\\_annuity(payment, rate, periods):\n\"\"\"\nCalculate the present value of an annuity.\n:param payment: The fixed payment amount per period.\n:param rate: Discount rate per period (as a decimal).\n:param periods: Total number of periods.\n:return: Present value of the annuity.\n\"\"\"\nreturn payment \\* ((1 - (1 + rate) -periods) / rate)\n\n\ndef capm(expected\\_market\\_return, risk\\_free\\_rate, beta):\n\"\"\"\nCalculate the expected return of an asset using the Capital Asset Pricing Model (CAPM).\n:param expected\\_market\\_return: Expected return of the market.\n:param risk\\_free\\_rate: Risk-free rate of return.\n:param beta: Beta of the asset.\n:return: Expected return of the asset.\n\"\"\"\nreturn risk\\_free\\_rate + beta \\* (expected\\_market\\_return - risk\\_free\\_rate)\n\n\ndef final\\_answer(answer):\nreturn answer\n\n\ndef use\\_tool(tool\\_name, params):\nif tool\\_name == \"Final Answer\":\nresult = final\\_answer(params)\nreturn \"Assistant:\" + result\n\n\n\n```\nelif tool_name == \"Capital Asset Pricing\":\n result = capm(params)\n return \"Tool Output:\" + str(result)\n \nelif tool_name == \"Present Value Annuity\":\n result = present_value_annuity(params)\n return \"Tool Output:\" + str(result)\nelif tool_name == \"Compound Interest\":\n result = compound_interest(params)\n return \"Tool Output:\" + str(result)\n \nelse:\n return \"Assistant: An error occured\"\n\n```\n\ndef run\\_agent(query: str):\nres = generate\\_text(query)\nprint(res)\ntool\\_name, params = format\\_output(res)\nresponse = use\\_tool(tool\\_name, params)\nfull\\_text = f\"{query}{res}\\n{response}\"\nreturn response, full\\_text\n\n\nquery= input(\">: \")\nout = run\\_agent(query)\nprint(f\"Result: {out[0]}\")"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Find the JSON part in the text\nstart = URL(\"{\")\nend = URL(\"}\") + 1\nif start == -1 or end == -1:\nraise ValueError(\"JSON string not found in the text\")\n\n\n\n```",
"# Extract the JSON string\njson_str = text[start:end]",
"# Parse the JSON string\ntry:\n json_obj = URL(json_str)\nexcept json.JSONDecodeError:\n match = URL(r'\"answer\":\\s*\"([^\"]+)\"', text)\n if match:\n return URL(1)\n else:\n raise ValueError(\"Answer not found\")",
"# Ensure the necessary keys are present\nif \"tool_name\" not in json_obj or \"input\" not in json_obj:\n raise ValueError(\"Required keys ('tool_name', 'input') are missing in the JSON\")",
"# Extract and parse the parameters\ntry:\n parameters_str = json_obj[\"input\"]\n params = dict(URL(\"=\") for param in parameters_str.split(\", \"))\n\n # Convert parameter values to appropriate type (int, float, or leave as string)\n def convert_value(v):\n try:\n return float(v) if '.' in v else int(v)\n except ValueError:\n return v # If conversion to int or float fails, return the string as is\n\n params = {k: convert_value(v) for k, v in URL()}\nexcept Exception as e:\n raise ValueError(f\"Error parsing parameters: {e}\")\n\nreturn json_obj[\"tool_name\"], params\n\n```\n\ndef compound\\_interest(principal, rate, periods):\n\"\"\"\nCalculate the future value of an investment with compound interest.\n:param principal: Initial amount of money invested (principal).\n:param rate: Annual interest rate (as a decimal).\n:param periods: Number of periods the money is invested for.\n:return: Future value of the investment.\n\"\"\"\nreturn principal \\* (1 + rate) periods\n\n\ndef present\\_value\\_annuity(payment, rate, periods):\n\"\"\"\nCalculate the present value of an annuity.\n:param payment: The fixed payment amount per period.\n:param rate: Discount rate per period (as a decimal).\n:param periods: Total number of periods.\n:return: Present value of the annuity.\n\"\"\"\nreturn payment \\* ((1 - (1 + rate) -periods) / rate)\n\n\ndef capm(expected\\_market\\_return, risk\\_free\\_rate, beta):\n\"\"\"\nCalculate the expected return of an asset using the Capital Asset Pricing Model (CAPM).\n:param expected\\_market\\_return: Expected return of the market.\n:param risk\\_free\\_rate: Risk-free rate of return.\n:param beta: Beta of the asset.\n:return: Expected return of the asset.\n\"\"\"\nreturn risk\\_free\\_rate + beta \\* (expected\\_market\\_return - risk\\_free\\_rate)\n\n\ndef final\\_answer(answer):\nreturn answer\n\n\ndef use\\_tool(tool\\_name, params):\nif tool\\_name == \"Final Answer\":\nresult = final\\_answer(params)\nreturn \"Assistant:\" + result\n\n\n\n```\nelif tool_name == \"Capital Asset Pricing\":\n result = capm(params)\n return \"Tool Output:\" + str(result)\n \nelif tool_name == \"Present Value Annuity\":\n result = present_value_annuity(params)\n return \"Tool Output:\" + str(result)\nelif tool_name == \"Compound Interest\":\n result = compound_interest(params)\n return \"Tool Output:\" + str(result)\n \nelse:\n return \"Assistant: An error occured\"\n\n```\n\ndef run\\_agent(query: str):\nres = generate\\_text(query)\nprint(res)\ntool\\_name, params = format\\_output(res)\nresponse = use\\_tool(tool\\_name, params)\nfull\\_text = f\"{query}{res}\\n{response}\"\nreturn response, full\\_text\n\n\nquery= input(\">: \")\nout = run\\_agent(query)\nprint(f\"Result: {out[0]}\")"
] | [
51,
53,
18,
79,
65,
864
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Find the JSON part in the text\nstart = URL(\"{\")\nend = URL(\"}\") + 1\nif start == -1 or end == -1:\nraise ValueError(\"JSON string not found in the text\")\n\n\n\n```# Extract the JSON string\njson_str = text[start:end]# Parse the JSON string\ntry:\n json_obj = URL(json_str)\nexcept json.JSONDecodeError:\n match = URL(r'\"answer\":\\s*\"([^\"]+)\"', text)\n if match:\n return URL(1)\n else:\n raise ValueError(\"Answer not found\")# Ensure the necessary keys are present\nif \"tool_name\" not in json_obj or \"input\" not in json_obj:\n raise ValueError(\"Required keys ('tool_name', 'input') are missing in the JSON\")"
] | [
0.04543771967291832,
0.11970344930887222,
-0.010654691606760025,
0.03476559743285179,
0.13013587892055511,
-0.029331689700484276,
0.10442980378866196,
0.10093532502651215,
0.020729301497340202,
0.12218264490365982,
0.1243233010172844,
0.152996227145195,
0.017466116696596146,
-0.010914415121078491,
-0.1655258685350418,
0.043954793363809586,
0.020278697833418846,
-0.04899955168366432,
0.17397630214691162,
0.04800492525100708,
0.009313256479799747,
-0.037358034402132034,
0.07982262223958969,
0.004753781016916037,
0.06732916086912155,
0.06816353648900986,
0.03163154795765877,
-0.0009145911317318678,
-0.018339844420552254,
0.003465804969891906,
-0.013427789323031902,
0.024070868268609047,
0.006385690066963434,
-0.17959998548030853,
0.03189831227064133,
0.10576440393924713,
-0.0013121090596541762,
0.02183939330279827,
0.12545087933540344,
-0.22069494426250458,
-0.1476529836654663,
-0.14303255081176758,
-0.03833674639463425,
0.05925257131457329,
-0.06335257738828659,
-0.10385383665561676,
-0.08803347498178482,
-0.03954882174730301,
0.07305260747671127,
0.035381510853767395,
-0.03631959855556488,
0.12606331706047058,
0.012085826136171818,
0.09963212162256241,
0.21595557034015656,
-0.0792304128408432,
0.041123759001493454,
-0.054985929280519485,
0.03303973749279976,
0.12772135436534882,
-0.06710470467805862,
-0.06981245428323746,
-0.0020388716366142035,
0.02206416241824627,
-0.009347856044769287,
-0.08858153223991394,
-0.22048702836036682,
0.039201248437166214,
-0.040451113134622574,
-0.05167245492339134,
0.19846713542938232,
0.07273715734481812,
-0.08448489755392075,
0.020941991358995438,
-0.052390579134225845,
-0.011955257505178452,
0.011686289682984352,
-0.004903992637991905,
0.02084803208708763,
0.08729581534862518,
0.003362782998010516,
-0.07593975216150284,
-0.0691584125161171,
0.02712332271039486,
0.002961728721857071,
0.11745531857013702,
-0.0057839639484882355,
0.04314878210425377,
-0.07797716557979584,
0.0301705002784729,
-0.1448778510093689,
-0.0770573690533638,
-0.027820542454719543,
-0.040007781237363815,
-0.030320627614855766,
0.008642131462693214,
-0.03459791839122772,
-0.38281506299972534,
0.10408131778240204,
0.14852061867713928,
-0.07129435986280441,
0.025246512144804,
-0.0941600352525711,
0.05105604976415634,
0.03340988606214523,
0.10002230852842331,
-0.018648546189069748,
-0.0801372081041336,
0.05583251267671585,
0.01871827431023121,
0.018326502293348312,
-0.003984025213867426,
0.0010738964192569256,
-0.06297960877418518,
0.03097340650856495,
0.0022711469791829586,
0.07143291085958481,
0.08649811893701553,
-0.13302473723888397,
0.050103478133678436,
-0.06762444972991943,
-0.10370780527591705,
0.03602668270468712,
0.07326002418994904,
-0.06156563758850098,
0.021500183269381523,
0.1640550047159195,
0.08948671817779541,
-0.09648330509662628,
0.06884972006082535,
-0.011118489317595959,
0.0714571550488472,
0.034500591456890106,
-0.11503704637289047,
-0.004232744220644236,
-0.09579753130674362,
0.02069632150232792,
-0.09726041555404663,
-0.20486074686050415,
-0.09078337252140045,
0.019655359908938408,
0.05250462144613266,
0.10266298800706863,
-0.07824694365262985,
-0.03706086054444313,
-0.015936361625790596,
0.017995797097682953,
-0.18669526278972626,
-0.06002970039844513,
0.04958513006567955,
-0.007991529069840908,
-0.01584559865295887,
0.03516513854265213,
0.0013820837484672666,
-0.20625397562980652,
0.026123542338609695,
0.014619243331253529,
0.11669005453586578,
0.004413270391523838,
0.11565009504556656,
-0.16933217644691467,
0.0812772661447525,
0.007647865917533636,
-0.02458074316382408,
0.06869874894618988,
0.2030431479215622,
-0.04516445845365524,
-0.01233882736414671,
0.12008955329656601,
0.033999986946582794,
-0.024477552622556686,
0.1221829429268837,
-0.029855435714125633,
-0.04243149980902672,
0.07416640967130661,
0.1613861471414566,
0.07895081490278244,
-0.11103934049606323,
-0.07116644084453583,
0.049135737121105194,
-0.1343194991350174,
0.08389265835285187,
0.11349307000637054,
-0.15684795379638672,
-0.01787997968494892,
0.023850776255130768,
0.02046789415180683,
-0.014862858690321445,
0.017606422305107117,
-0.02807389385998249,
-0.05715938284993172,
0.00815707165747881,
0.09418048709630966,
-0.028088249266147614,
-0.04402340203523636,
-0.053979821503162384,
-0.10293953865766525,
0.000030082243029028177,
-0.007980601862072945,
-0.02550390549004078,
0.04972562938928604,
-0.043271616101264954,
-0.0035777061711996794,
-0.24660195410251617,
0.0189847182482481,
-0.06658119708299637,
-0.0734732523560524,
-0.028187425807118416,
0.024155909195542336,
0.04958155006170273,
-0.048498038202524185,
0.08881134539842606,
0.016125615686178207,
0.09989828616380692,
-0.05351090431213379,
0.16056211292743683,
-0.016457604244351387,
-0.05094469338655472,
-0.05771573260426521,
-0.011210143566131592,
-0.02955382876098156,
-0.006293283309787512,
-0.12212549895048141,
0.013948269188404083,
-0.08266760408878326,
0.047620739787817,
0.058144669979810715,
-0.06914990395307541,
0.07314649969339371,
-0.038298554718494415,
-0.045857302844524384,
-0.025057438760995865,
-0.056868378072977066,
-0.0063362764194607735,
-0.059741754084825516,
0.01875150389969349,
-0.09610018134117126,
-0.022103801369667053,
0.0377403125166893,
-0.019780132919549942,
-0.02311401255428791,
0.04769359529018402,
-0.035919155925512314,
0.019746627658605576,
-0.05380818247795105,
0.02857908047735691,
0.12750853598117828,
0.11836134642362595,
0.09908991307020187,
-0.020844798535108566,
-0.004721875302493572,
0.02194783464074135,
-0.17070628702640533,
-0.04845289885997772,
0.0642198845744133,
-0.02520587481558323,
-0.11379867792129517,
0.048543963581323624,
-0.02035314403474331,
-0.09836595505475998,
0.1338587999343872,
0.028236577287316322,
-0.03757292777299881,
-0.020158058032393456,
0.1505710333585739,
-0.05595726519823074,
-0.15392479300498962,
-0.06050987169146538,
0.00482533685863018,
0.030408969148993492,
0.0042200698517262936,
-0.02513050101697445,
-0.039190907031297684,
0.031548306345939636,
0.05437542870640755,
-0.014085442759096622,
-0.05075597018003464,
0.03805554658174515,
0.07615263760089874,
-0.04699812829494476,
0.005448248703032732,
0.08350399881601334,
0.07930067181587219,
-0.008135764859616756,
-0.11855423450469971,
0.10801897197961807,
-0.11411383002996445,
0.050874266773462296,
-0.13003011047840118,
-0.14401204884052277,
-0.11011214554309845,
0.04920846223831177,
0.18509580194950104,
-0.07332237809896469,
-0.05752794072031975,
-0.07192492485046387,
-0.005135151091963053,
0.06016349047422409,
-0.07901245355606079,
-0.1146383062005043,
-0.024774614721536636,
0.05685998499393463,
-0.07785181701183319,
-0.011049485765397549,
0.02934524603188038,
-0.05840921029448509,
-0.006376831792294979,
0.0604352243244648,
0.08368872106075287,
0.004183224402368069,
-0.04913591966032982,
0.0370187908411026,
0.021611753851175308,
0.16363146901130676,
0.036080095916986465,
-0.04471881315112114,
0.11711172014474869,
-0.07396474480628967,
0.093192920088768,
0.15327122807502747,
-0.014305505901575089,
0.07148486375808716,
0.014595936983823776,
0.07458020001649857,
0.005537607707083225,
-0.2668049931526184,
0.037035878747701645,
-0.025285786017775536,
0.006277481094002724,
0.024013293907046318,
0.023596713319420815,
0.05654842406511307,
0.09944438934326172,
-0.04890373349189758,
0.06790728121995926,
0.04235641658306122,
0.10701289772987366,
-0.024945249781012535,
0.08369648456573486,
0.04540253058075905,
-0.004833489656448364,
0.0076960246078670025,
0.004510072059929371,
0.04250643774867058,
-0.09727522730827332,
-0.09209631383419037,
0.15106481313705444,
0.0814652293920517,
0.09446529299020767,
-0.06074255332350731,
-0.03533476963639259,
0.01592409983277321,
0.06153545528650284,
-0.005150925368070602,
-0.07800356298685074,
-0.11054635792970657,
0.053911373019218445,
0.05352550745010376,
0.09254918992519379,
-0.03850911557674408,
0.0917573869228363,
0.09150954335927963,
0.08001593500375748,
-0.009148888289928436,
-0.27678999304771423,
-0.027677128091454506,
0.06035993993282318,
0.0040684533305466175,
-0.04544762894511223,
-0.019713204354047775,
0.02140255831182003,
-0.06737475097179413,
0.018904482945799828,
0.009714812971651554,
0.06978460401296616,
-0.019468382000923157,
0.040861260145902634,
-0.037686530500650406,
0.10914652794599533,
-0.03914239630103111,
0.0264622513204813,
-0.12584009766578674,
-0.06743890792131424,
0.06916017830371857,
0.10976357758045197,
0.002377260709181428,
0.0517592690885067,
0.0017473400803282857,
0.04619225859642029,
0.1360200047492981,
-0.02314816601574421,
0.04597446322441101,
-0.14027614891529083,
0.039901893585920334,
-0.012089391238987446,
0.04684184864163399,
-0.012166641652584076,
0.09468646347522736,
-0.05798390880227089,
-0.049621306359767914,
-0.035942815244197845,
0.14384207129478455,
-0.11106233298778534,
-0.07179519534111023,
-0.007650062907487154,
0.03262511268258095,
0.14933206140995026,
0.0499010868370533,
0.06427735835313797,
-0.07463131844997406,
0.14782164990901947,
-0.0829017236828804,
-0.10157297551631927,
-0.08457618206739426,
0.009792995639145374,
0.00936551671475172,
-0.11377696692943573,
-0.11986516416072845,
-0.04051567614078522,
0.029715407639741898,
-0.05071607232093811,
-0.10255216062068939,
0.0056371139362454414,
-0.04968408867716789,
-0.023275885730981827,
-0.06768608093261719,
0.04583573713898659,
-0.01701400987803936,
-0.04566210135817528,
-0.004312432371079922,
-0.0010298168053850532,
-0.06205509230494499,
-0.004655936267226934,
0.08345408737659454,
0.1219840720295906,
0.17775967717170715,
0.09867378324270248,
0.07927414029836655,
-0.14136910438537598,
-0.050486791878938675,
0.0893620178103447,
0.09772764891386032,
0.15980930626392365,
-0.042072415351867676,
0.053602755069732666,
0.18313398957252502,
-0.06554146856069565,
-0.06792151927947998,
0.02588670514523983,
0.0544528067111969,
-0.05299883335828781,
0.044737670570611954,
0.01594007946550846,
0.08827280253171921,
0.008338316343724728,
0.056092895567417145,
-0.05339791253209114,
-0.1782229244709015,
-0.036601535975933075,
0.0640362948179245,
0.03663352131843567,
0.12867650389671326,
-0.15303680300712585,
-0.10455992817878723,
-0.07808743417263031,
-0.2993330657482147,
0.050575993955135345,
-0.14940248429775238,
0.028489770367741585,
0.027998344972729683,
0.07716171443462372,
0.08538632094860077,
-0.08233211934566498,
0.01539491768926382,
-0.02844305709004402,
0.027159295976161957,
-0.08873714506626129,
0.002751886146143079,
0.030516769737005234,
-0.09749486297369003,
0.1732247918844223,
-0.09308426082134247,
0.02608073502779007,
-0.05942421779036522,
-0.04233911260962486,
-0.044683851301670074,
0.12590156495571136,
0.03651944920420647,
-0.06201779469847679,
0.018239418044686317,
-0.1231837272644043,
0.1550614833831787,
0.04313170164823532,
0.3071296811103821,
-0.033295392990112305,
0.12616771459579468,
0.1708793193101883,
0.049243707209825516,
-0.013759690336883068,
-0.1271456927061081,
-0.0079903993755579,
-0.07853373885154724,
0.03727094829082489,
-0.1254800707101822,
0.029817786067724228,
0.012165174819529057,
0.014856872148811817,
0.21534974873065948,
0.000527812575455755,
-0.06615453213453293,
0.05251062288880348,
-0.012121553532779217,
-0.13608808815479279,
0.02452177181839943,
-0.040477462112903595,
-0.11835040152072906,
-0.09982868283987045,
0.04459623247385025,
0.20946426689624786,
-0.02155659720301628,
-0.04216432943940163,
-0.04418826103210449,
0.07079273462295532,
-0.0664280578494072,
0.0104551762342453,
0.04663808271288872,
0.02671254426240921,
-0.03553216904401779,
0.051544152200222015,
0.08645772933959961,
0.031013883650302887,
0.09014347195625305,
0.11056208610534668,
-0.0647229477763176,
-0.04398699104785919,
-0.010693266056478024,
0.20794367790222168,
0.07422246783971786,
-0.0012920277658849955,
-0.06531350314617157,
0.029187649488449097,
0.0163117628544569,
0.02164999023079872,
-0.015232962556183338,
-0.01438022032380104,
0.0005805748514831066,
-0.06307559460401535,
-0.09054124355316162,
0.11524640023708344,
0.06100979447364807,
0.006736680865287781,
-0.07782676070928574,
0.05941161513328552,
-0.09423764795064926,
0.07432140409946442,
0.05743049085140228,
-0.009836161509156227,
-0.07451304793357849,
0.027797091752290726,
-0.19705364108085632,
0.08889735490083694,
-0.05991683527827263,
0.02642142027616501,
0.041646748781204224,
-0.04318457096815109,
-0.015086532570421696,
0.03535018861293793,
-0.023802751675248146,
-0.07551265507936478,
0.0794595256447792,
0.11591225117444992,
-0.19063639640808105,
-0.018272893503308296,
-0.012488286010921001,
-0.004923347383737564,
-0.019395506009459496,
0.11183159053325653,
-0.10443955659866333,
0.00680150743573904,
-0.14907963573932648,
-0.044291138648986816,
0.05983882397413254,
-0.04747391492128372,
-0.002144632861018181,
0.10182216763496399,
-0.007982316426932812,
0.021869655698537827,
-0.04073549062013626,
-0.039611611515283585,
0.06853477656841278,
-0.0974973514676094,
0.021405896171927452,
0.039451874792575836,
0.0700685903429985,
-0.11922024190425873,
0.016572630032896996,
-0.07542239874601364,
0.05645327270030975,
0.16673292219638824,
-0.03505542501807213,
0.09844169020652771,
-0.1029081717133522,
-0.05707139894366264,
0.05587022006511688,
-0.08703812211751938,
-0.10561992973089218,
-0.002739143557846546,
0.0463913269340992,
-0.05326073616743088,
-0.0505613274872303,
0.10633612424135208,
0.008837676607072353,
-0.03876486420631409,
0.04050343856215477,
0.1023840680718422,
-0.018843919038772583,
0.01655513420701027,
-0.00561616150662303,
-0.07150565832853317,
-0.029118191450834274,
0.004847050178796053,
0.11644481867551804,
-0.17098574340343475,
0.01626337692141533,
0.12020502239465714,
0.047559622675180435,
0.0780416801571846,
-0.06275136768817902,
-0.02709042839705944,
-0.0137026347219944,
-0.002849725540727377,
0.01992163062095642,
0.08046837896108627,
-0.043689269572496414,
0.026908546686172485,
0.23563237488269806,
0.020228082314133644,
-0.01073947362601757,
0.056790802627801895,
0.007143730763345957,
-0.1252507120370865,
-0.18790654838085175,
-0.09089704602956772,
-0.07626523077487946,
0.039147526025772095,
-0.07134134322404861,
0.08448474109172821,
0.011285160668194294,
-0.03903711214661598,
0.02194673754274845,
0.03981533646583557,
0.18222856521606445,
-0.10908851772546768,
-0.08248237520456314,
-0.1150207594037056,
-0.01714002527296543,
0.07240131497383118,
-0.045761410146951675,
0.14661960303783417,
-0.03652909770607948,
0.09100116044282913,
0.03469311073422432,
0.07469432055950165,
0.04597541317343712,
-0.14992564916610718,
-0.15684063732624054,
-0.006657052785158157,
0.1371559202671051,
-0.10357096791267395,
0.007836108095943928,
0.06136039271950722,
0.0007919298368506134,
0.006098803598433733,
0.2378433495759964,
-0.03742805868387222,
-0.0396977961063385,
-0.11053821444511414,
-0.010523862205445766,
0.1418699026107788,
0.08215639740228653,
0.0007865488296374679,
-0.19645950198173523,
0.06432227045297623,
0.013675500638782978,
0.07877463847398758,
0.06298880279064178,
0.009326617233455181,
0.001107050571590662,
-0.013048299588263035,
-0.005698648747056723,
-0.02935732528567314,
-0.028692645952105522,
0.0729883685708046,
-0.022655067965388298,
0.18289555609226227,
0.08996471017599106,
-0.005474054254591465,
-0.031104352325201035,
0.05561412125825882,
-0.11476092785596848,
-0.01059824600815773,
0.045904189348220825,
0.02046254649758339,
-0.11618366092443466,
-0.03003503382205963,
-0.07781767100095749,
0.0029536348301917315,
0.001628832658752799,
-0.06746882200241089,
0.09405779838562012,
0.048810847103595734,
0.06579756736755371,
0.05443701148033142,
-0.08433251082897186,
0.11023475974798203,
-0.06185773387551308,
-0.09543728828430176,
0.003950157668441534,
-0.049318283796310425,
-0.1104738637804985,
0.1081940084695816,
0.04921011999249458,
0.03084172122180462,
0.06417349725961685,
-0.012897467240691185,
-0.07369696348905563,
0.04711202532052994,
0.016478488221764565,
-0.0070588174276053905,
0.0342109240591526,
0.07095099240541458,
-0.04144633561372757,
0.10631576925516129,
0.016951680183410645,
-0.18885086476802826,
0.025113878771662712,
-0.05533191189169884,
-0.01994173973798752,
-0.08590570837259293,
-0.06711962819099426,
-0.05394639074802399,
0.002099819015711546,
0.03728583827614784,
-0.020412079989910126,
0.059025660157203674,
-0.03705647587776184,
0.05436858907341957,
0.07084587216377258,
0.01799379102885723,
-0.02236817590892315,
-0.060611676424741745,
0.033354271203279495,
0.14185622334480286,
0.09372629225254059,
-0.19220009446144104,
0.002327916445210576,
0.057711124420166016,
0.004880492575466633,
-0.03080403432250023,
-0.003308114828541875,
0.15524692833423615,
-0.033967193216085434,
-0.02463269606232643,
-0.2795036733150482,
0.06337613612413406,
0.14377762377262115,
0.002169262384995818,
-0.0427863672375679
] |
null | null | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Statos6/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Statos6/q-FrozenLake-v1-4x4-noSlippery | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T22:03:13+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
40,
39
] | [
"passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
0.04578453302383423,
-0.08074592798948288,
-0.00430759321898222,
0.10720831900835037,
0.05034215748310089,
-0.040469273924827576,
0.11997015029191971,
0.018999949097633362,
0.20601962506771088,
-0.010012076236307621,
0.1455274522304535,
0.007022971753031015,
-0.006192410364747047,
0.1867983490228653,
0.04572829231619835,
-0.26324528455734253,
0.01831899583339691,
-0.09495259821414948,
-0.07281816750764847,
0.11870454251766205,
0.05470194295048714,
-0.01901467889547348,
-0.0007633853238075972,
0.056141503155231476,
-0.0673527717590332,
0.0007737681735306978,
0.031996939331293106,
-0.012976245954632759,
0.19804789125919342,
-0.02254498563706875,
0.06641989201307297,
0.054705578833818436,
0.0758768692612648,
-0.1998077929019928,
0.0358855277299881,
-0.04215473681688309,
-0.09439758956432343,
-0.03934839740395546,
-0.018780618906021118,
0.05878105387091637,
0.053356342017650604,
0.03858819976449013,
0.058354366570711136,
0.09384993463754654,
-0.0773480236530304,
0.04328357055783272,
0.04280758649110794,
0.024811049923300743,
0.04589218273758888,
-0.0237203948199749,
-0.027002155780792236,
0.08246652781963348,
-0.22182892262935638,
0.10318073630332947,
-0.010159241035580635,
-0.5270710587501526,
-0.00633762264624238,
0.24088262021541595,
0.11517096310853958,
0.05707438662648201,
-0.06903956830501556,
0.10566288232803345,
0.03913382440805435,
-0.007209456991404295,
0.03210983797907829,
0.02150118350982666,
0.12817370891571045,
0.06009242683649063,
-0.09581366181373596,
0.040699947625398636,
0.13722525537014008,
0.012822695076465607,
0.020306183025240898,
-0.08888901025056839,
0.0410032719373703,
-0.03461858257651329,
-0.007679527159780264,
-0.09758518636226654,
0.05478060990571976,
0.012466507963836193,
-0.0934976264834404,
-0.09247440844774246,
-0.04236573353409767,
-0.06708304584026337,
0.11252415925264359,
0.046419668942689896,
-0.0874939113855362,
0.03884070739150047,
-0.06760413944721222,
0.05918780341744423,
-0.16863860189914703,
0.02074250765144825,
-0.06627868115901947,
-0.09376336634159088,
-0.11799788475036621,
-0.01683047041296959,
-0.07946427166461945,
0.009092256426811218,
0.056664444506168365,
0.1447116881608963,
0.22076484560966492,
0.06690320372581482,
0.09728849679231644,
0.07456006109714508,
0.06531001627445221,
0.1538129299879074,
0.10918238013982773,
0.019075315445661545,
-0.015266558155417442,
0.0948706716299057,
-0.06445580720901489,
-0.1351388692855835,
-0.15579092502593994,
0.005488025024533272,
0.0983937531709671,
0.08871900290250778,
-0.044080477207899094,
-0.006702381651848555,
-0.024641724303364754,
0.08566431701183319,
-0.11314457654953003,
-0.024612564593553543,
-0.002267979085445404,
0.06882024556398392,
-0.024801667779684067,
0.020378148183226585,
-0.06242705136537552,
0.12715265154838562,
0.04222423583269119,
-0.059924717992544174,
-0.055308472365140915,
-0.03053177334368229,
-0.014276440255343914,
-0.027539284899830818,
0.02446848154067993,
-0.07659092545509338,
0.04767750948667526,
-0.16766095161437988,
-0.042871296405792236,
-0.04784649610519409,
0.025697942823171616,
-0.03907240927219391,
-0.13557587563991547,
-0.17699143290519714,
-0.048906855285167694,
-0.022438718006014824,
0.03549358621239662,
-0.038111843168735504,
0.006551501806825399,
-0.006318534724414349,
-0.1583600640296936,
0.09783563017845154,
0.09784027189016342,
-0.03643378987908363,
-0.02749447710812092,
0.056263517588377,
-0.07194498926401138,
0.1561182290315628,
-0.21054518222808838,
-0.054014235734939575,
-0.044764336198568344,
-0.06595750898122787,
0.19673264026641846,
0.012690845876932144,
-0.01202624011784792,
0.19873127341270447,
-0.29073721170425415,
-0.06078760325908661,
0.12533614039421082,
-0.07834373414516449,
-0.0936407670378685,
0.06941844522953033,
-0.04206686094403267,
0.023345354944467545,
0.046047765761613846,
0.36345911026000977,
-0.02069227211177349,
-0.16197136044502258,
-0.021782705560326576,
0.13971707224845886,
-0.1184760183095932,
0.059895481914281845,
0.04240793362259865,
0.12543781101703644,
-0.04250509291887283,
-0.018672896549105644,
-0.09023164212703705,
0.05999075248837471,
-0.05241934582591057,
-0.09016361832618713,
-0.03393383324146271,
-0.07645075023174286,
0.13294468820095062,
-0.0629684180021286,
0.05601520463824272,
-0.03255095332860947,
-0.07133250683546066,
-0.050324998795986176,
-0.016492370516061783,
0.04460815340280533,
0.05951254442334175,
-0.12794871628284454,
0.11029167473316193,
0.13025271892547607,
-0.0006193425506353378,
-0.07498852163553238,
-0.17872096598148346,
0.003240168560296297,
0.009576505981385708,
0.039837226271629333,
0.17141658067703247,
0.12209978699684143,
0.033295199275016785,
0.008770671673119068,
-0.06389404833316803,
-0.18276847898960114,
0.058129217475652695,
-0.056212130934000015,
-0.14230976998806,
-0.052409034222364426,
-0.0728459507226944,
0.017381802201271057,
-0.0859743058681488,
-0.017379917204380035,
0.021926190704107285,
0.006908397190272808,
0.02990424446761608,
-0.026645656675100327,
-0.049561817198991776,
0.021254703402519226,
0.06490101665258408,
-0.0037617047782987356,
0.12023693323135376,
0.008277264423668385,
-0.18308481574058533,
0.07930773496627808,
0.08478537946939468,
0.09196605533361435,
0.013250201940536499,
0.02685922384262085,
-0.021522263064980507,
-0.08061408251523972,
-0.054420311003923416,
0.02957955375313759,
0.11417073011398315,
0.1317172348499298,
0.2361993044614792,
0.08753683418035507,
0.04697408527135849,
-0.02164587564766407,
-0.016415923833847046,
0.002810494042932987,
-0.06318057328462601,
-0.029935607686638832,
0.10614971816539764,
0.05865858122706413,
-0.067733034491539,
-0.04576427489519119,
0.09590928256511688,
0.02732124738395214,
0.21205885708332062,
-0.03342745825648308,
0.01286078616976738,
-0.10957037657499313,
-0.06550975888967514,
-0.031982194632291794,
0.09201868623495102,
0.09498392790555954,
0.009755023755133152,
-0.022056059911847115,
-0.04259001836180687,
0.0012916827108711004,
-0.1334889680147171,
-0.10375088453292847,
0.026475343853235245,
0.013400445692241192,
-0.11206940561532974,
0.11674030870199203,
-0.11352457851171494,
0.039504457265138626,
0.06024791672825813,
-0.13837239146232605,
0.04428480193018913,
-0.029713207855820656,
-0.07886212319135666,
0.16866780817508698,
-0.11075661331415176,
-0.094340018928051,
-0.08831550180912018,
0.004082420375198126,
0.0075836325995624065,
-0.03922267258167267,
-0.009283260442316532,
-0.19952571392059326,
-0.005375816952437162,
-0.03544965013861656,
0.013616434298455715,
-0.06988783925771713,
-0.11287739872932434,
-0.010957922786474228,
0.07084179669618607,
-0.043388739228248596,
-0.07803605496883392,
0.007967432029545307,
-0.08923084288835526,
-0.10623309016227722,
0.028189711272716522,
0.019765101373195648,
-0.022883659228682518,
0.16152891516685486,
0.01816628873348236,
0.05626589432358742,
-0.03298520669341087,
0.30665266513824463,
-0.038163769990205765,
0.08371731638908386,
-0.02993497997522354,
-0.07433546334505081,
0.06130730360746384,
-0.022327827289700508,
0.06086638569831848,
-0.020221687853336334,
-0.02362890914082527,
0.0077952733263373375,
-0.08579335361719131,
-0.18365982174873352,
-0.05417544022202492,
0.03724347800016403,
0.195254847407341,
0.031118987128138542,
0.01910330168902874,
-0.0488768145442009,
-0.010547760874032974,
0.1665220558643341,
-0.10005921125411987,
0.04030545800924301,
-0.05366240441799164,
0.11506262421607971,
-0.08640182018280029,
0.06195629760622978,
0.020486772060394287,
0.04266135022044182,
-0.04877188801765442,
0.09486009180545807,
0.0826394334435463,
0.1121082529425621,
-0.02206910029053688,
0.046257395297288895,
0.019012698903679848,
0.07383184134960175,
0.11073657125234604,
0.0368414968252182,
-0.0729052945971489,
0.001982470043003559,
-0.006313489284366369,
-0.039427030831575394,
0.11933320760726929,
0.17963355779647827,
-0.11991413682699203,
-0.05106910318136215,
0.27167606353759766,
0.0031242913100868464,
0.19481229782104492,
-0.01315275114029646,
0.043591804802417755,
-0.04484925419092178,
0.04572054371237755,
-0.05338600277900696,
-0.04086209088563919,
0.2094656229019165,
0.08045925945043564,
-0.17165091633796692,
-0.08549032360315323,
-0.05912299454212189,
0.07081323862075806,
0.10728751868009567,
0.0013539529172703624,
-0.04156802222132683,
0.0004610282776411623,
0.0014198932331055403,
0.08339415490627289,
-0.14520122110843658,
0.11816094070672989,
-0.03172019124031067,
0.05612684786319733,
0.017555562779307365,
-0.045326150953769684,
0.04264266416430473,
0.07474290579557419,
0.26618310809135437,
0.0904107540845871,
-0.040318213403224945,
-0.0892091691493988,
-0.12260187417268753,
0.010461576282978058,
0.029102616012096405,
-0.03534553572535515,
0.0037547778338193893,
-0.020087555050849915,
0.0318896509706974,
0.008264793083071709,
0.016230624169111252,
-0.08987458795309067,
-0.03175399824976921,
-0.027736429125070572,
-0.023839212954044342,
0.10733365267515182,
-0.09495144337415695,
-0.1444292515516281,
-0.15713949501514435,
0.04191131144762039,
-0.0766405463218689,
-0.056593164801597595,
-0.054507751017808914,
-0.05239389091730118,
-0.0311186034232378,
-0.03773957118391991,
0.09099467098712921,
-0.0021037792321294546,
0.14807306230068207,
-0.1920108050107956,
-0.04220759496092796,
0.051812779158353806,
-0.07607918977737427,
-0.08729588985443115,
0.03410962224006653,
0.12136995792388916,
0.05116051807999611,
0.11504370719194412,
0.013609255664050579,
0.09567681699991226,
0.0045484392903745174,
-0.06713183224201202,
0.15302421152591705,
-0.14069625735282898,
-0.27875974774360657,
-0.03836318850517273,
0.016946332529187202,
0.1615200787782669,
-0.05613167956471443,
0.031766023486852646,
0.3335736393928528,
0.27782970666885376,
-0.1428707242012024,
0.25916144251823425,
0.019178593531250954,
0.004398873541504145,
-0.19130495190620422,
-0.10125631093978882,
0.025324683636426926,
0.04740457236766815,
0.12032642960548401,
-0.14564448595046997,
-0.010732659138739109,
-0.04543145373463631,
-0.025908485054969788,
0.10386138409376144,
-0.12300799041986465,
-0.07263197749853134,
0.07765276730060577,
0.039809420704841614,
0.1808302253484726,
0.03932500258088112,
0.0014799144119024277,
0.13626977801322937,
0.06612244248390198,
0.019124457612633705,
0.05216038227081299,
0.08028066903352737,
-0.018944554030895233,
0.14207926392555237,
0.05448179319500923,
-0.02551644667983055,
0.052681710571050644,
-0.0054580713622272015,
-0.03219012916088104,
0.015605825930833817,
-0.183198019862175,
-0.10147556662559509,
-0.0561356320977211,
-0.10798973590135574,
-0.04978342354297638,
0.056853994727134705,
-0.12395523488521576,
-0.007896827533841133,
-0.03841273859143257,
0.03718273714184761,
-0.07831971347332001,
-0.09360362589359283,
-0.036494381725788116,
0.1351792961359024,
0.07210618257522583,
0.04471297934651375,
0.035655103623867035,
-0.07390819489955902,
0.07097936421632767,
0.21671734750270844,
0.08159157633781433,
0.028919655829668045,
-0.19545674324035645,
-0.024042490869760513,
-0.0803457647562027,
0.06306298077106476,
-0.08856996893882751,
-0.016788700595498085,
0.11923003196716309,
0.08616556972265244,
0.05413002520799637,
0.09640096127986908,
-0.045083072036504745,
0.021686913445591927,
0.02684609219431877,
-0.15131035447120667,
-0.18501274287700653,
-0.08534606546163559,
-0.03519878163933754,
0.11561143398284912,
-0.06398691236972809,
0.10897188633680344,
-0.13615410029888153,
0.010051886551082134,
-0.006060056854039431,
0.02693452313542366,
-0.03596206381917,
-0.11251141875982285,
0.15348562598228455,
0.11999429017305374,
-0.06767056882381439,
0.03127254918217659,
-0.09527092427015305,
-0.04423454403877258,
0.12686803936958313,
-0.013623855076730251,
-0.0371493324637413,
-0.054547641426324844,
-0.03628576174378395,
0.15247689187526703,
-0.03436964750289917,
0.008244883269071579,
-0.041229065507650375,
-0.18217355012893677,
0.0798322781920433,
0.09045056998729706,
0.019827889278531075,
-0.031874191015958786,
-0.09797266125679016,
-0.010231015272438526,
-0.0011165260802954435,
0.11730700731277466,
-0.10696814209222794,
-0.10933240503072739,
-0.15144047141075134,
0.06713984161615372,
-0.0007159380475059152,
0.18502596020698547,
-0.06394898891448975,
-0.08904669433832169,
-0.12429379671812057,
0.02344517596065998,
-0.0027384376153349876,
-0.042264558374881744,
0.01618490368127823,
0.07992301136255264,
-0.04095321521162987,
0.02075677551329136,
-0.06651144474744797,
0.06372585147619247,
-0.11786920577287674,
0.09625071287155151,
0.01063506118953228,
0.016993753612041473,
-0.0417880080640316,
-0.01618220843374729,
0.039470795542001724,
-0.057925306260585785,
0.07921463251113892,
0.011758086271584034,
0.0010938759660348296,
0.10196787863969803,
-0.0034960443153977394,
0.06409632414579391,
-0.05372481048107147,
-0.023290161043405533,
0.06578411161899567,
-0.05874887853860855,
-0.03370826691389084,
-0.1573946475982666,
-0.0709633082151413,
0.020051732659339905,
-0.04775108024477959,
0.002077929675579071,
0.03673801198601723,
0.062159497290849686,
-0.06937079131603241,
-0.12125655263662338,
-0.043812792748212814,
-0.028638383373618126,
0.021301284432411194,
0.10829301923513412,
-0.07526551932096481,
0.1547859013080597,
-0.052787959575653076,
-0.00020603960729204118,
0.07437096536159515,
0.04048224538564682,
0.01393822580575943,
-0.10422444343566895,
-0.04698587954044342,
-0.11035211384296417,
0.1502903699874878,
-0.007902312092483044,
-0.03533121198415756,
0.03719403222203255,
-0.11946307867765427,
-0.1572723090648651,
0.03418220207095146,
0.10199101269245148,
0.0448341928422451,
0.025807438418269157,
0.027079269289970398,
-0.04042419046163559,
-0.021270349621772766,
-0.07034418731927872,
0.0882953479886055,
-0.12085357308387756,
-0.09669415652751923,
0.09555385261774063,
0.12178351730108261,
-0.0036850625183433294,
-0.07441367954015732,
0.11554073542356491,
-0.021787192672491074,
0.05525410920381546,
-0.02971339225769043,
0.10308072715997696,
0.0796005055308342,
-0.12273547053337097,
0.005693064536899328,
-0.036891788244247437,
-0.0741485133767128,
-0.12975730001926422,
0.019545545801520348,
-0.061916105449199677,
-0.13383042812347412,
0.12179028987884521,
-0.09376577287912369,
0.030037038028240204,
-0.10506992787122726,
0.021338803693652153,
0.01864001713693142,
0.061665527522563934,
-0.10988292098045349,
0.08575301617383957,
0.13424484431743622,
-0.043199893087148666,
-0.07184189558029175,
-0.12455986440181732,
-0.05022053420543671,
-0.04231856390833855,
-0.13957437872886658,
-0.11600435525178909,
0.0100301094353199,
-0.023418782278895378,
-0.05818291753530502,
0.0015462689334526658,
-0.03659068048000336,
0.008594646118581295,
0.021907730028033257,
0.04032021388411522,
-0.02693161368370056,
0.05134565755724907,
-0.057569269090890884,
-0.052510857582092285,
0.11489357799291611,
0.04113486409187317,
-0.03561042994260788,
-0.052359987050294876,
0.12997733056545258,
-0.11959461867809296,
0.07662346214056015,
-0.020313527435064316,
0.017129231244325638,
-0.06435854732990265,
0.17131924629211426,
0.11673715710639954,
-0.1367570012807846,
-0.005008010193705559,
-0.08210669457912445,
0.020409544929862022,
0.023555370047688484,
0.13693512976169586,
-0.03411718085408211,
-0.0012358218664303422,
-0.1580323874950409,
0.018575575202703476,
-0.18557456135749817,
-0.03716109320521355,
0.04671547934412956,
0.09917585551738739,
0.15293832123279572,
-0.0034432117827236652,
-0.1263325810432434,
0.10424192249774933,
-0.2118520885705948,
0.0907607227563858,
0.05121984705328941,
-0.11874113976955414,
-0.06765396893024445,
-0.06795281916856766,
0.1198519766330719,
0.009196433238685131,
0.2040700763463974,
-0.013615905307233334,
-0.09132910519838333,
-0.07060808688402176,
-0.01980910450220108,
-0.030524181202054024,
0.09714830666780472,
0.041414931416511536,
0.04653804749250412,
0.12821412086486816,
0.00368314771912992,
0.07533777505159378,
0.060310911387205124,
0.02759413793683052,
-0.012300663627684116,
0.04076618701219559,
0.08261215686798096,
-0.14588621258735657,
-0.1659701019525528,
0.1326720416545868,
0.025149408727884293,
0.11792458593845367,
0.03658788278698921,
-0.1549617499113083,
0.06687124073505402,
0.2523096203804016,
-0.11147607117891312,
0.02505038119852543,
0.12737524509429932,
-0.0366884209215641,
0.0672016367316246,
0.1144871786236763,
-0.02633814327418804,
-0.05217865854501724,
-0.011363590136170387,
0.10233135521411896,
0.028660254552960396,
-0.04646271467208862,
-0.02340836264193058,
-0.03373933956027031,
-0.019070526584982872,
-0.011738128960132599,
-0.0909019410610199,
-0.1543993502855301,
-0.10471053421497345,
-0.16619662940502167,
0.04399140924215317,
-0.04626438021659851,
0.13418889045715332,
0.09469578415155411,
-0.012723101302981377,
0.04568437114357948,
0.028575526550412178,
0.07275456190109253,
0.07916246354579926,
-0.02939477376639843,
-0.036159269511699677
] |
null | null | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="frntcx/q-learning-taxi2", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-learning-taxi2", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.80 +/- 2.54", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | frntcx/q-learning-taxi | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T22:05:34+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
32,
33
] | [
"passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
0.048862796276807785,
-0.16549694538116455,
-0.005485367961227894,
0.02960980497300625,
0.1345081776380539,
-0.01784728653728962,
0.11895976960659027,
0.07759871333837509,
-0.07461097836494446,
-0.055395450443029404,
0.1418241262435913,
0.09088201075792313,
0.055222880095243454,
0.05699880048632622,
0.09511256217956543,
-0.27440664172172546,
0.048217080533504486,
-0.02918700873851776,
0.05621987581253052,
0.11878681182861328,
0.0670095682144165,
-0.040441032499074936,
0.061956584453582764,
0.11818158626556396,
-0.1018151044845581,
-0.007344264071434736,
0.035402704030275345,
-0.09440053254365921,
0.17413531243801117,
0.07204403728246689,
0.12337774783372879,
0.05132639780640602,
0.179361954331398,
-0.12762396037578583,
0.024310702458024025,
-0.0010275895474478602,
-0.10138072073459625,
-0.03909514099359512,
-0.012415820732712746,
-0.08349097520112991,
0.03230205550789833,
0.23522862792015076,
0.07199250161647797,
0.06632792949676514,
-0.17707863450050354,
-0.06584878265857697,
-0.04375573247671127,
0.069611094892025,
0.14951466023921967,
0.03758616745471954,
-0.033800311386585236,
0.1684885323047638,
-0.2564343810081482,
0.05066783353686333,
0.037275806069374084,
-0.42313119769096375,
0.017119819298386574,
0.1507398933172226,
0.15090937912464142,
0.06909667700529099,
-0.10573802888393402,
0.013512322679162025,
0.051325585693120956,
-0.0005318621988408267,
0.024325110018253326,
0.006554204970598221,
0.15601307153701782,
0.08537693321704865,
-0.1487821787595749,
-0.058576688170433044,
0.17441977560520172,
-0.03788546845316887,
-0.02613203600049019,
-0.039745692163705826,
0.0067160045728087425,
-0.06427708268165588,
-0.004067842848598957,
-0.1777995079755783,
0.00734262028709054,
0.06666424125432968,
-0.014348524622619152,
0.014901017770171165,
-0.035522811114788055,
-0.0966939702630043,
-0.023098144680261612,
-0.08592145889997482,
0.01677769608795643,
-0.006319406442344189,
-0.10187895596027374,
0.05002119392156601,
-0.061138734221458435,
0.0014382408699020743,
-0.05123179033398628,
-0.15047866106033325,
-0.049055423587560654,
-0.03481535613536835,
0.1474713832139969,
-0.0044205985032022,
-0.01873963139951229,
-0.03164304047822952,
0.15474793314933777,
0.049551334232091904,
-0.05370146036148071,
0.05625450983643532,
0.07605006545782089,
0.23867930471897125,
0.10401605814695358,
0.10196955502033234,
-0.06798075139522552,
0.10180158913135529,
-0.12330973148345947,
-0.08915644884109497,
-0.17508824169635773,
0.11820860952138901,
0.00015364694991149008,
0.1317785084247589,
-0.12023144960403442,
0.07898581773042679,
-0.067511186003685,
0.013453764840960503,
0.01636839471757412,
0.0820009782910347,
-0.012399360537528992,
0.10676060616970062,
-0.005061192903667688,
-0.06941985338926315,
0.014177112840116024,
0.05935845896601677,
0.03754841163754463,
-0.038601722568273544,
-0.03192409873008728,
-0.05762290954589844,
-0.05065649375319481,
-0.10128600150346756,
-0.06447898596525192,
0.018573462963104248,
-0.007677143905311823,
-0.1833900660276413,
-0.06407523155212402,
0.00897200871258974,
0.015712225809693336,
-0.03988850116729736,
-0.05148044601082802,
-0.15265507996082306,
-0.042461175471544266,
-0.015450406819581985,
-0.03500641882419586,
-0.06214277446269989,
-0.0383245050907135,
0.046435944736003876,
-0.07560601085424423,
0.013364278711378574,
0.023342855274677277,
0.05405820533633232,
-0.025881100445985794,
0.06068144738674164,
-0.08357544988393784,
0.09493788331747055,
-0.1540430635213852,
-0.03271956741809845,
-0.025445878505706787,
-0.041183918714523315,
0.1752462536096573,
0.06099751964211464,
-0.015994304791092873,
0.15260063111782074,
-0.17141541838645935,
-0.058121129870414734,
0.15596486628055573,
0.008629098534584045,
-0.09967197477817535,
-0.003560945624485612,
-0.09397093951702118,
0.1428760588169098,
0.08571921288967133,
0.2478504776954651,
0.12005335837602615,
-0.22748184204101562,
0.055358242243528366,
0.12515293061733246,
-0.14365963637828827,
0.10365243256092072,
0.07344598323106766,
0.005470725707709789,
-0.18886831402778625,
-0.06843198090791702,
-0.06121627986431122,
0.1053021252155304,
-0.08522345870733261,
-0.0776243582367897,
0.09323626756668091,
-0.05086790770292282,
0.24641476571559906,
-0.028281206265091896,
0.06174173951148987,
-0.026681531220674515,
-0.1389324963092804,
-0.01723906397819519,
0.060955192893743515,
0.05258452147245407,
-0.024835573509335518,
-0.25895482301712036,
0.13646544516086578,
0.048650871962308884,
0.025074828416109085,
0.004106190986931324,
-0.05691491439938545,
0.016934165731072426,
0.1511998474597931,
0.020012924447655678,
0.13717477023601532,
0.027723990380764008,
0.0706823319196701,
-0.006239562761038542,
-0.10560829937458038,
-0.04169593006372452,
0.061916545033454895,
-0.08518962562084198,
-0.06641357392072678,
0.011197872459888458,
-0.06935211271047592,
-0.11783787608146667,
-0.12166737765073776,
-0.026334572583436966,
-0.02980303019285202,
-0.07444227486848831,
0.02368103712797165,
0.06536602973937988,
-0.06702698022127151,
-0.0023908785078674555,
0.007125476840883493,
-0.011537045240402222,
0.16434046626091003,
0.011393417604267597,
-0.007796820718795061,
0.1328643560409546,
-0.11533161997795105,
0.12461213022470474,
0.049438029527664185,
-0.024806302040815353,
-0.04662557691335678,
0.0014137453399598598,
-0.057529181241989136,
0.029044216498732567,
-0.04390640929341316,
0.02774495631456375,
0.20111067593097687,
0.02772962674498558,
0.11389166116714478,
-0.0656520202755928,
0.04385066404938698,
-0.007961965166032314,
-0.009693224914371967,
0.018563594669103622,
0.07608018070459366,
0.07813210040330887,
-0.1324140727519989,
0.02262016013264656,
0.22455167770385742,
0.1385764330625534,
0.18313980102539062,
-0.010877152904868126,
0.06325667351484299,
-0.04875868931412697,
0.027505528181791306,
0.024100203067064285,
0.10314226150512695,
-0.10732068121433258,
-0.0322517491877079,
-0.025407759472727776,
0.023599207401275635,
-0.08197105675935745,
-0.1055799350142479,
-0.090115025639534,
0.01222382951527834,
-0.03125503659248352,
-0.15570329129695892,
0.13300658762454987,
-0.10451057553291321,
0.01802753657102585,
0.04692702740430832,
-0.22163605690002441,
0.11530312895774841,
0.014291439205408096,
-0.10303618758916855,
0.11281087249517441,
-0.12051989883184433,
-0.08699832111597061,
-0.05777236074209213,
-0.18658851087093353,
0.05280197039246559,
0.04673841595649719,
0.05166793242096901,
-0.18521739542484283,
0.024835903197526932,
0.05545609071850777,
0.13426995277404785,
-0.09743253141641617,
-0.07142634689807892,
-0.15038461983203888,
0.016068490222096443,
-0.033661190420389175,
-0.16029728949069977,
-0.005609163548797369,
-0.032781440764665604,
-0.18849676847457886,
-0.04539939761161804,
-0.15086813271045685,
-0.034627582877874374,
0.20464378595352173,
0.026907702907919884,
0.09480511397123337,
-0.07926445454359055,
0.3802889585494995,
-0.042039383202791214,
-0.06146497279405594,
-0.01321389526128769,
-0.07072482258081436,
0.02512686513364315,
0.13271741569042206,
0.0036099457647651434,
-0.017886579036712646,
-0.0037857077550143003,
0.0024592927657067776,
-0.06234965845942497,
-0.13400450348854065,
0.0028710351325571537,
0.03905198723077774,
0.1874423623085022,
0.004639793653041124,
0.06659388542175293,
0.03133883699774742,
0.057546284049749374,
0.07748064398765564,
0.030926106497645378,
0.0011591583024710417,
-0.01591806672513485,
0.06604493409395218,
-0.11684755235910416,
0.042466625571250916,
-0.030429253354668617,
-0.10143838077783585,
-0.013183288276195526,
0.07950251549482346,
0.12755028903484344,
0.17849206924438477,
-0.04790908098220825,
0.17489230632781982,
0.13580141961574554,
0.16576050221920013,
0.049315933138132095,
-0.020801831036806107,
-0.08773037046194077,
-0.06118565797805786,
0.004774159751832485,
-0.031952597200870514,
0.04869702458381653,
0.3231290578842163,
0.037619613111019135,
-0.09036035090684891,
0.11149907857179642,
0.009480619803071022,
0.05359881371259689,
0.022797370329499245,
-0.11162138730287552,
0.11170321702957153,
0.07968773692846298,
-0.06341761350631714,
-0.07602835446596146,
0.16758501529693604,
-0.1109386757016182,
-0.26646625995635986,
-0.11410990357398987,
-0.012305386364459991,
0.07903840392827988,
0.005651174578815699,
0.05498376116156578,
-0.11829282343387604,
-0.16034497320652008,
-0.034191906452178955,
0.1335442066192627,
-0.3077351450920105,
0.2065143585205078,
-0.0198091771453619,
0.06707923114299774,
-0.039657969027757645,
-0.07026876509189606,
0.09694647043943405,
0.13174086809158325,
0.29124146699905396,
0.01396956667304039,
0.04841272905468941,
-0.15176129341125488,
-0.0976925864815712,
0.0018439020495861769,
0.015482662245631218,
-0.02563396655023098,
0.028520405292510986,
-0.0540912002325058,
0.008404579944908619,
-0.018086453899741173,
0.2102297693490982,
-0.11316607892513275,
0.004344627261161804,
-0.06968966871500015,
-0.11707738786935806,
0.19409789144992828,
-0.07178345322608948,
-0.04543264955282211,
-0.14959357678890228,
-0.15512511134147644,
-0.004174166824668646,
-0.02413962036371231,
-0.019664527848362923,
-0.17603960633277893,
-0.18804074823856354,
-0.05204557999968529,
-0.005645004566758871,
-0.003464865731075406,
0.05867868289351463,
-0.07517234236001968,
-0.04805335775017738,
0.1009904220700264,
-0.07743175327777863,
-0.056063808500766754,
-0.1103200614452362,
0.1391381323337555,
0.06248528137803078,
0.16743235290050507,
0.05907081440091133,
0.0006117874872870743,
0.11471151560544968,
-0.02913086675107479,
0.11103474348783493,
-0.11291708797216415,
-0.17145049571990967,
-0.08334989100694656,
-0.018775060772895813,
0.09519003331661224,
-0.04789286106824875,
0.0028788831550627947,
0.2550160884857178,
0.14880181849002838,
-0.0897710770368576,
0.27680760622024536,
0.04414956644177437,
-0.09375058114528656,
-0.18432219326496124,
-0.15961645543575287,
0.03759992495179176,
0.060025621205568314,
0.13095876574516296,
-0.057205069810152054,
-0.08483537286520004,
-0.08492398262023926,
-0.07478608191013336,
-0.13140805065631866,
-0.24232175946235657,
-0.030598774552345276,
0.22874866425991058,
0.08656918257474899,
0.08219650387763977,
-0.012482990510761738,
-0.01186054851859808,
0.00526038184762001,
0.02680150233209133,
0.12018456310033798,
-0.13341329991817474,
0.11107480525970459,
0.022198403254151344,
0.044267985969781876,
0.009712530300021172,
0.07929777354001999,
0.03375575691461563,
-0.003218587953597307,
-0.0006439819699153304,
-0.0988350659608841,
-0.2596651017665863,
0.0816885456442833,
-0.01623627357184887,
-0.09960969537496567,
0.014988959766924381,
0.02061903104186058,
-0.2089255303144455,
0.011128270998597145,
-0.019883770495653152,
-0.03150356933474541,
-0.06483490765094757,
-0.10664787143468857,
-0.056551624089479446,
0.04928823933005333,
0.10853826254606247,
0.011660109274089336,
0.05354316532611847,
-0.0404130220413208,
0.07917837053537369,
0.0826287642121315,
0.15132710337638855,
0.06795957684516907,
-0.190711110830307,
-0.10953907668590546,
-0.0414445661008358,
0.12121522426605225,
-0.12505418062210083,
0.036917757242918015,
0.053161121904850006,
-0.016534561291337013,
0.14621229469776154,
0.1070784479379654,
-0.07452095299959183,
0.11915595084428787,
0.08904775977134705,
-0.04094788804650307,
-0.23367151618003845,
-0.07120766490697861,
0.11133213341236115,
0.07195597887039185,
-0.03961895406246185,
0.018120890483260155,
-0.04960581287741661,
-0.013980977237224579,
0.048759616911411285,
-0.0538676381111145,
-0.07230538129806519,
0.004421027842909098,
0.1247575581073761,
0.1029362753033638,
-0.04655474051833153,
0.01296416949480772,
0.037371400743722916,
0.003788623260334134,
0.04730486497282982,
0.0407949760556221,
-0.08269952982664108,
-0.04124005511403084,
0.02782733179628849,
0.37552911043167114,
-0.010165480896830559,
-0.020456433296203613,
0.018555615097284317,
-0.19949445128440857,
0.09135842323303223,
0.13205479085445404,
0.04697350412607193,
0.004247748292982578,
-0.08139242231845856,
0.026877427473664284,
-0.010625290684401989,
0.09936143457889557,
-0.07806670665740967,
-0.05493134260177612,
-0.21631066501140594,
-0.025010565295815468,
0.017490221187472343,
0.24077683687210083,
-0.08458559215068817,
-0.12801732122898102,
-0.20628872513771057,
0.13128381967544556,
-0.11333390325307846,
-0.03695881739258766,
-0.024473199620842934,
0.03926658630371094,
-0.01989821158349514,
0.06291737407445908,
-0.0710630789399147,
0.006373001262545586,
-0.11024709790945053,
0.055267609655857086,
0.04204455390572548,
0.1229788213968277,
0.014207782223820686,
0.02016810141503811,
0.05822525918483734,
-0.01837925612926483,
0.07173580676317215,
-0.06203491613268852,
-0.04550490900874138,
0.14224006235599518,
-0.020255116745829582,
-0.04152837023139,
-0.0483345128595829,
-0.036874305456876755,
0.11981741338968277,
-0.05059147998690605,
-0.007141099311411381,
-0.054929375648498535,
-0.06906463205814362,
0.03462086617946625,
-0.009175732731819153,
-0.008798843249678612,
0.06801853328943253,
0.04024988040328026,
-0.026994358748197556,
0.005263668950647116,
0.03447828069329262,
-0.10330043733119965,
-0.04955084249377251,
0.16955432295799255,
-0.0749620869755745,
0.10274054110050201,
-0.031069839373230934,
0.018015999346971512,
0.005847334861755371,
-0.022399673238396645,
-0.015360680408775806,
-0.1457086056470871,
-0.06137600541114807,
-0.09489979594945908,
0.11565322428941727,
0.08146517723798752,
0.03358805552124977,
0.04274565726518631,
0.019532648846507072,
-0.04414922371506691,
-0.038583990186452866,
0.12961317598819733,
0.08133101463317871,
0.012996876612305641,
0.01137041300535202,
0.01941833831369877,
-0.020302120596170425,
0.0028480992186814547,
-0.01250747125595808,
-0.07239153981208801,
-0.05874783173203468,
0.09400010108947754,
0.1600283533334732,
-0.06127211079001427,
-0.13325586915016174,
-0.020593497902154922,
0.04988488554954529,
0.0014717020094394684,
-0.08777432143688202,
0.04833676666021347,
0.15805292129516602,
-0.05623878911137581,
0.03216489031910896,
-0.09984751045703888,
-0.07263360917568207,
-0.16060975193977356,
-0.10029061883687973,
-0.06092562898993492,
-0.28350353240966797,
0.09752398729324341,
0.006392303854227066,
-0.014731393195688725,
0.059529416263103485,
0.051305368542671204,
-0.052508849650621414,
0.07068239152431488,
-0.18146829307079315,
-0.007054794579744339,
0.03497592359781265,
-0.13212306797504425,
0.02475893869996071,
-0.2378365397453308,
0.10198072344064713,
-0.04623803123831749,
-0.1519704908132553,
-0.04004510119557381,
0.0641569048166275,
-0.09540136158466339,
-0.01822364516556263,
-0.0475153923034668,
-0.01922670193016529,
0.01624443754553795,
-0.009348669089376926,
-0.031147832050919533,
0.13716529309749603,
0.02827494591474533,
-0.03268734738230705,
0.005254602525383234,
0.0223685409873724,
0.03955082967877388,
-0.0969657450914383,
-0.05986930429935455,
0.08311155438423157,
-0.031056145206093788,
0.14728976786136627,
0.000341245875461027,
0.04181376099586487,
-0.06758682429790497,
0.2593761384487152,
0.2023983597755432,
-0.12479214370250702,
0.008118697442114353,
-0.021801479160785675,
0.012670028023421764,
-0.041751839220523834,
0.13110700249671936,
0.013386172242462635,
0.12186761200428009,
-0.17513342201709747,
-0.01036517322063446,
-0.0818324014544487,
-0.04501292482018471,
0.06702108681201935,
0.14714950323104858,
0.15742522478103638,
0.03436789661645889,
-0.07328428328037262,
0.06722653657197952,
-0.30119743943214417,
0.20540550351142883,
-0.1346001923084259,
-0.01498429011553526,
-0.040251150727272034,
-0.058389630168676376,
0.061147745698690414,
0.11309876292943954,
0.10832664370536804,
-0.021150551736354828,
-0.0905047357082367,
-0.04486766457557678,
-0.039378076791763306,
-0.13019338250160217,
-0.02718670479953289,
0.1654091775417328,
0.06799814850091934,
0.31520840525627136,
-0.017577875405550003,
0.07702425122261047,
0.034410297870635986,
0.06451138854026794,
0.004519328009337187,
0.09537279605865479,
0.07960964739322662,
-0.06345855444669724,
-0.07373003661632538,
-0.001637450186535716,
0.05033271387219429,
0.14567798376083374,
-0.03826142102479935,
-0.18691548705101013,
0.15858715772628784,
0.07192251086235046,
-0.13762691617012024,
-0.05777517706155777,
0.08409425616264343,
-0.0739973932504654,
0.0550808347761631,
0.08115427941083908,
0.015876613557338715,
-0.017793258652091026,
-0.004664506763219833,
0.06074233725667,
0.024694660678505898,
-0.02343848906457424,
0.003570882137864828,
-0.08337053656578064,
-0.04151543974876404,
0.07267895340919495,
-0.0844460055232048,
-0.20546193420886993,
-0.0957019031047821,
-0.07551700621843338,
0.030557552352547646,
-0.0649830624461174,
0.12575586140155792,
0.1717868149280548,
0.0593598335981369,
-0.03307248651981354,
-0.10721943527460098,
-0.035562749952077866,
0.07602505385875702,
-0.044773899018764496,
-0.09409699589014053
] |
null | null | null |
# Lora of jingliu/鏡流/镜流/경류 (Honkai: Star Rail)
## What Is This?
This is the LoRA model of waifu jingliu/鏡流/镜流/경류 (Honkai: Star Rail).
## How Is It Trained?
* This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion).
* The [auto-training framework](https://github.com/deepghs/cyberharem) is maintained by [DeepGHS Team](https://huggingface.co/deepghs).
* The base model used for training is [deepghs/animefull-latest](https://huggingface.co/deepghs/animefull-latest).
* Dataset used for training is the `stage3-p480-800` in [CyberHarem/jingliu_starrail](https://huggingface.co/datasets/CyberHarem/jingliu_starrail), which contains 1309 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 1, resolution is 720x720, clustering into 20 buckets.
* Trained for 10000 steps, 40 checkpoints were saved and evaluated.
* **Trigger word is `jingliu_starrail`.**
* Pruned core tags for this waifu are `long_hair, bangs, breasts, red_eyes, white_hair, hair_between_eyes, very_long_hair, hair_ornament`. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
## How to Use It?
### If You Are Using A1111 WebUI v1.7+
**Just use it like the classic LoRA**. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 10000, you need to download [`10000/jingliu_starrail.pt`](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/10000/jingliu_starrail.pt) as the embedding and [`10000/jingliu_starrail.safetensors`](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/10000/jingliu_starrail.safetensors) for loading Lora. By using both files together, you can generate images for the desired characters.
## Which Step Should I Use?
We selected 5 good steps for you to choose. The best one is step 10000.
1800 images (2.00 GiB) were generated for auto-testing.

The base model used for generating preview images is [Meina/MeinaMix_V11](https://huggingface.co/Meina/MeinaMix_V11).
Here are the preview of the recommended steps:
| Step | Epoch | CCIP | AI Corrupt | Bikini Plus | Score | Download | pattern_0 | pattern_1 | pattern_2_0 | pattern_2_1 | pattern_3 | pattern_4 | pattern_5 | pattern_6_0 | pattern_6_1 | pattern_7 | portrait_0 | portrait_1 | portrait_2 | full_body_0 | full_body_1 | profile_0 | profile_1 | free_0 | free_1 | shorts | maid_0 | maid_1 | miko | yukata | suit | china | bikini_0 | bikini_1 | bikini_2 | sit | squat | kneel | jump | crossed_arms | angry | smile | cry | grin | n_lie_0 | n_lie_1 | n_stand_0 | n_stand_1 | n_stand_2 | n_sex_0 | n_sex_1 |
|-------:|--------:|:----------|:-------------|:--------------|:----------|:-------------------------------------------------------------------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------|:---------------------------------------------|:---------------------------------------------|:---------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:-------------------------------------|:---------------------------------|:-------------------------------------|:---------------------------------|:-----------------------------------|:-----------------------------------------|:-----------------------------------------|:-----------------------------------------|:-------------------------------|:-----------------------------------|:-----------------------------------|:---------------------------------|:-------------------------------------------------|:-----------------------------------|:-----------------------------------|:-------------------------------|:---------------------------------|:---------------------------------------|:---------------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------------|:---------------------------------------|:---------------------------------------|
| 10000 | 31 | **0.940** | 0.961 | 0.827 | **0.784** | [Download](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/10000/jingliu_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7750 | 24 | 0.938 | 0.968 | 0.827 | 0.781 | [Download](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/7750/jingliu_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9750 | 30 | 0.936 | 0.975 | **0.828** | 0.777 | [Download](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/9750/jingliu_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7250 | 23 | 0.935 | **0.980** | 0.823 | 0.767 | [Download](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/7250/jingliu_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6750 | 21 | 0.917 | 0.978 | 0.823 | 0.724 | [Download](https://huggingface.co/CyberHarem/jingliu_starrail/resolve/main/6750/jingliu_starrail.zip) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
## Anything Else?
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
## All Steps
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* [Steps From 7750 to 10000](all/0.md)
* [Steps From 5250 to 7500](all/1.md)
* [Steps From 2750 to 5000](all/2.md)
* [Steps From 250 to 2500](all/3.md)
| {"license": "mit", "tags": ["art", "not-for-all-audiences"], "datasets": ["CyberHarem/jingliu_starrail"], "pipeline_tag": "text-to-image"} | text-to-image | CyberHarem/jingliu_starrail | [
"art",
"not-for-all-audiences",
"text-to-image",
"dataset:CyberHarem/jingliu_starrail",
"license:mit",
"region:us"
] | 2024-02-06T22:08:10+00:00 | [] | [] | TAGS
#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/jingliu_starrail #license-mit #region-us
| Lora of jingliu/鏡流/镜流/경류 (Honkai: Star Rail)
============================================
What Is This?
-------------
This is the LoRA model of waifu jingliu/鏡流/镜流/경류 (Honkai: Star Rail).
How Is It Trained?
------------------
* This model is trained with HCP-Diffusion.
* The auto-training framework is maintained by DeepGHS Team.
* The base model used for training is deepghs/animefull-latest.
* Dataset used for training is the 'stage3-p480-800' in CyberHarem/jingliu\_starrail, which contains 1309 images.
* Batch size is 4, resolution is 720x720, clustering into 5 buckets.
* Batch size for regularization dataset is 1, resolution is 720x720, clustering into 20 buckets.
* Trained for 10000 steps, 40 checkpoints were saved and evaluated.
* Trigger word is 'jingliu\_starrail'.
* Pruned core tags for this waifu are 'long\_hair, bangs, breasts, red\_eyes, white\_hair, hair\_between\_eyes, very\_long\_hair, hair\_ornament'. You can add them to the prompt when some features of waifu (e.g. hair color) are not stable.
How to Use It?
--------------
### If You Are Using A1111 WebUI v1.7+
Just use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.
### If You Are Using A1111 WebUI v1.6 or Lower
After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.
For example, if you want to use the model from step 10000, you need to download '10000/jingliu\_starrail.pt' as the embedding and '10000/jingliu\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.
Which Step Should I Use?
------------------------
We selected 5 good steps for you to choose. The best one is step 10000.
1800 images (2.00 GiB) were generated for auto-testing.
!Metrics Plot
The base model used for generating preview images is Meina/MeinaMix\_V11.
Here are the preview of the recommended steps:
Anything Else?
--------------
Because the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:
1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.
2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.
3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.
4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.
5. Individuals who finds the generated image content offensive to their values.
All Steps
---------
We uploaded the files in all steps. you can check the images, metrics and download them in the following links:
* Steps From 7750 to 10000
* Steps From 5250 to 7500
* Steps From 2750 to 5000
* Steps From 250 to 2500
| [
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 10000, you need to download '10000/jingliu\\_starrail.pt' as the embedding and '10000/jingliu\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 10000.\n\n\n1800 images (2.00 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 7750 to 10000\n* Steps From 5250 to 7500\n* Steps From 2750 to 5000\n* Steps From 250 to 2500"
] | [
"TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/jingliu_starrail #license-mit #region-us \n",
"### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file.",
"### If You Are Using A1111 WebUI v1.6 or Lower\n\n\nAfter downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora.\n\n\nFor example, if you want to use the model from step 10000, you need to download '10000/jingliu\\_starrail.pt' as the embedding and '10000/jingliu\\_starrail.safetensors' for loading Lora. By using both files together, you can generate images for the desired characters.\n\n\nWhich Step Should I Use?\n------------------------\n\n\nWe selected 5 good steps for you to choose. The best one is step 10000.\n\n\n1800 images (2.00 GiB) were generated for auto-testing.\n\n\n!Metrics Plot\n\n\nThe base model used for generating preview images is Meina/MeinaMix\\_V11.\n\n\nHere are the preview of the recommended steps:\n\n\n\nAnything Else?\n--------------\n\n\nBecause the automation of LoRA training always annoys some people. So for the following groups, it is not recommended to use this model and we express regret:\n\n\n1. Individuals who cannot tolerate any deviations from the original character design, even in the slightest detail.\n2. Individuals who are facing the application scenarios with high demands for accuracy in recreating character outfits.\n3. Individuals who cannot accept the potential randomness in AI-generated images based on the Stable Diffusion algorithm.\n4. Individuals who are not comfortable with the fully automated process of training character models using LoRA, or those who believe that training character models must be done purely through manual operations to avoid disrespecting the characters.\n5. Individuals who finds the generated image content offensive to their values.\n\n\nAll Steps\n---------\n\n\nWe uploaded the files in all steps. you can check the images, metrics and download them in the following links:\n\n\n* Steps From 7750 to 10000\n* Steps From 5250 to 7500\n* Steps From 2750 to 5000\n* Steps From 250 to 2500"
] | [
43,
38,
464
] | [
"passage: TAGS\n#art #not-for-all-audiences #text-to-image #dataset-CyberHarem/jingliu_starrail #license-mit #region-us \n### If You Are Using A1111 WebUI v1.7+\n\n\nJust use it like the classic LoRA. The LoRA we provided are bundled with the embedding file."
] | [
0.010640069842338562,
0.011492393910884857,
-0.0041901059448719025,
0.09873465448617935,
0.08679992705583572,
0.07007210701704025,
0.2236756682395935,
0.0805082768201828,
0.1014585867524147,
-0.06410456448793411,
0.08289302885532379,
0.06095780059695244,
-0.011293175630271435,
0.06620380282402039,
-0.026308780536055565,
-0.1776566058397293,
-0.05798192694783211,
-0.025275351479649544,
-0.026017483323812485,
0.03197869285941124,
0.08278705179691315,
-0.0013825383502990007,
0.11524111032485962,
-0.05029309168457985,
-0.07417751103639603,
0.05768173933029175,
-0.021605364978313446,
-0.04790963605046272,
0.03613848239183426,
0.058783650398254395,
0.12958809733390808,
0.02435844950377941,
0.07748182117938995,
-0.13423559069633484,
0.06254568696022034,
-0.00012251226871740073,
-0.10226569324731827,
0.003156906459480524,
0.019082030281424522,
-0.02680928260087967,
0.1305551826953888,
0.068479523062706,
-0.07348780333995819,
0.045340582728385925,
-0.1240796446800232,
-0.004105121362954378,
-0.06416156888008118,
0.07562790811061859,
0.12144078314304352,
0.06824930757284164,
0.018571600317955017,
0.06320064514875412,
-0.07245371490716934,
0.08759649842977524,
0.11914204806089401,
-0.15195892751216888,
-0.06632013618946075,
0.1365300416946411,
0.023161618039011955,
0.1374315619468689,
-0.10086257010698318,
0.0899229422211647,
0.08246439695358276,
-0.05732456594705582,
-0.12295496463775635,
-0.08437580615282059,
-0.21386057138442993,
0.012800530530512333,
-0.003953916952013969,
0.044414520263671875,
0.4140952229499817,
0.04175141826272011,
0.034684427082538605,
0.06315939873456955,
-0.06158529222011566,
-0.04252275452017784,
-0.08405925333499908,
0.10058511793613434,
0.04817374050617218,
0.09891442954540253,
-0.039922311902046204,
-0.11449281871318817,
-0.10639706999063492,
-0.09284219890832901,
-0.053522996604442596,
-0.030226772651076317,
0.03597124293446541,
0.11571422964334488,
-0.18739053606987,
0.017507141456007957,
-0.04635610431432724,
-0.11566136032342911,
0.025217073038220406,
-0.10900439321994781,
0.15185333788394928,
0.06829987466335297,
-0.0041976929642260075,
0.006305852439254522,
0.20377692580223083,
0.1270640641450882,
0.21007241308689117,
0.04458749294281006,
-0.1049065962433815,
0.1323728710412979,
0.04600747302174568,
-0.08831126987934113,
-0.03986908867955208,
-0.0824839323759079,
0.14613120257854462,
-0.0487280897796154,
0.10729013383388519,
-0.07668221741914749,
-0.11556726694107056,
0.03135696426033974,
-0.1141500324010849,
0.06818623095750809,
0.01650303229689598,
0.008073147386312485,
-0.05521571636199951,
0.039230477064847946,
0.055892325937747955,
-0.025948675349354744,
0.012258313596248627,
-0.025237543508410454,
-0.06870802491903305,
0.05944749712944031,
0.1045631393790245,
0.03434720262885094,
0.06673356145620346,
0.04258344694972038,
-0.048079755157232285,
0.0048608556389808655,
-0.05260446295142174,
0.009991442784667015,
0.03447660058736801,
0.008737071417272091,
0.08060605078935623,
-0.1528804451227188,
-0.08748584240674973,
-0.014661261811852455,
0.0385327972471714,
-0.008475341834127903,
0.07602936774492264,
-0.014835452660918236,
0.020828047767281532,
0.012110788375139236,
-0.019817570224404335,
0.011541838757693768,
-0.10180263221263885,
0.07304029166698456,
-0.022215107455849648,
0.0737122893333435,
-0.19452710449695587,
-0.0025879857130348682,
-0.06813300400972366,
0.005541712511330843,
0.028835656121373177,
-0.022786669433116913,
-0.1206272542476654,
0.12844626605510712,
0.006718331947922707,
0.05510986968874931,
-0.0822245180606842,
0.04966214671730995,
0.02466619946062565,
0.07114242017269135,
-0.12631268799304962,
0.01435715053230524,
0.11212896555662155,
-0.16704027354717255,
-0.15052567422389984,
0.09592956304550171,
-0.027590008452534676,
0.031867362558841705,
0.025841454043984413,
0.15972939133644104,
0.17414207756519318,
-0.20027896761894226,
-0.010625390335917473,
0.041264716535806656,
-0.059574052691459656,
-0.086758553981781,
-0.010566534474492073,
0.13092616200447083,
0.016303973272442818,
0.03155379742383957,
-0.01613239385187626,
0.1075722873210907,
-0.03632419928908348,
-0.0739140659570694,
-0.03593011945486069,
-0.07885583490133286,
-0.08091863989830017,
0.05100926756858826,
0.00695031089708209,
-0.06106642633676529,
0.013922788202762604,
-0.12962967157363892,
0.17565302550792694,
0.0188693068921566,
0.024334590882062912,
-0.07746946811676025,
0.10879533737897873,
0.030643479898571968,
-0.008751519955694675,
0.013289757072925568,
-0.019574563950300217,
-0.08020960539579391,
0.2463103085756302,
0.08949308097362518,
0.1458158642053604,
0.04898296296596527,
-0.0522562712430954,
-0.06940887868404388,
0.01921621710062027,
0.025516167283058167,
-0.02982410043478012,
0.018755022436380386,
-0.132053405046463,
0.048735231161117554,
-0.023284927010536194,
0.016063380986452103,
-0.03390174359083176,
-0.01738392561674118,
0.08168268948793411,
0.027448954060673714,
-0.007397039327770472,
0.06547892838716507,
0.056470662355422974,
-0.009903361089527607,
-0.07080619037151337,
-0.0023076666984707117,
0.06235240027308464,
0.011894009076058865,
-0.07702887058258057,
0.062170084565877914,
-0.01505143754184246,
0.058132268488407135,
0.19860897958278656,
-0.21700061857700348,
0.011062243022024632,
0.04908989742398262,
0.046661484986543655,
0.03295742720365524,
-0.010493109934031963,
-0.01392278540879488,
0.04503023624420166,
-0.0423671118915081,
0.09412716329097748,
-0.010436873883008957,
0.06504472345113754,
-0.035499442368745804,
-0.12538766860961914,
-0.005976031068712473,
-0.020018257200717926,
0.14768286049365997,
-0.15592841804027557,
0.08215212821960449,
0.11872655898332596,
-0.13655643165111542,
0.13862594962120056,
0.01405166182667017,
0.010429278016090393,
-0.0014514201320707798,
0.0314803309738636,
-0.0016530024586245418,
0.11708010733127594,
-0.09494002908468246,
-0.04222751408815384,
0.012150234542787075,
-0.07302074134349823,
0.040728382766246796,
-0.1277666985988617,
-0.12419461458921432,
-0.06285447627305984,
-0.025327693670988083,
-0.02875869907438755,
0.02551976405084133,
-0.0712495967745781,
0.08038648962974548,
-0.1057458221912384,
-0.09196481108665466,
-0.02957793138921261,
-0.07520325481891632,
0.01651664264500141,
-0.0036225824151188135,
-0.06936512887477875,
-0.13666369020938873,
-0.13589009642601013,
-0.07559416443109512,
-0.12181790173053741,
0.00019873626297339797,
0.06130078434944153,
-0.11291982233524323,
-0.05050266534090042,
0.008156283758580685,
-0.05621468648314476,
0.04779351130127907,
-0.07761531323194504,
0.00005767976472270675,
0.06447196006774902,
-0.04452656954526901,
-0.16566231846809387,
0.012271981686353683,
-0.08064259588718414,
-0.06278055161237717,
0.13435710966587067,
-0.12814861536026,
0.1877065896987915,
-0.014832562766969204,
0.048064444214105606,
0.06337758153676987,
0.02410125732421875,
0.0829673632979393,
-0.09561516344547272,
0.0793183296918869,
0.18666787445545197,
0.06093169376254082,
0.06500329077243805,
0.11871060729026794,
0.0910109356045723,
-0.10043445974588394,
0.04736437648534775,
0.07223246991634369,
-0.10811400413513184,
-0.10975640267133713,
-0.04504367709159851,
-0.11630778759717941,
-0.026503313332796097,
0.03701314330101013,
0.07361079752445221,
0.06976030766963959,
0.11987873166799545,
-0.035840291529893875,
0.02572333998978138,
0.09152430295944214,
0.050595782697200775,
0.046372659504413605,
0.02173025906085968,
0.06986242532730103,
-0.14749598503112793,
-0.04725734516978264,
0.17041407525539398,
0.19366203248500824,
0.21288596093654633,
-0.002034425036981702,
0.04990600794553757,
0.1099284216761589,
0.09416254609823227,
0.12334734201431274,
0.03074701316654682,
0.002810746431350708,
0.009682493284344673,
-0.07343152910470963,
-0.034797172993421555,
0.023163527250289917,
0.010759037919342518,
-0.0334191620349884,
-0.12343480437994003,
0.11202394962310791,
0.04118815436959267,
0.0664905533194542,
0.12353315949440002,
0.043672677129507065,
-0.10322430729866028,
0.17545916140079498,
0.08352747559547424,
0.1008807048201561,
-0.057626280933618546,
0.1514904797077179,
0.08911922574043274,
-0.009031219407916069,
0.1501944363117218,
0.024590054526925087,
0.1449943631887436,
-0.041787631809711456,
-0.06921038776636124,
-0.047056645154953,
-0.03777915611863136,
-0.002856316277757287,
0.0325285866856575,
-0.23644040524959564,
0.08210817724466324,
0.039322029799222946,
0.01398456934839487,
0.008802933618426323,
-0.05260956287384033,
0.17276594042778015,
0.17339350283145905,
0.09358750283718109,
0.02614874579012394,
-0.05753983184695244,
-0.03764485567808151,
-0.10027062147855759,
0.03618701919913292,
0.029068881645798683,
0.0642266720533371,
-0.05143480747938156,
-0.09616459906101227,
-0.02212785743176937,
-0.0016147213755175471,
0.022227732464671135,
-0.07874096184968948,
-0.0934247151017189,
-0.041684456169605255,
0.2765338122844696,
-0.07140427827835083,
0.048471253365278244,
0.051475271582603455,
0.02334265224635601,
-0.012404882349073887,
0.04428591951727867,
-0.01633981615304947,
-0.027891259640455246,
-0.03165925294160843,
0.014025961980223656,
0.017469119280576706,
-0.03753872588276863,
-0.04597964510321617,
-0.03012387827038765,
-0.07439888268709183,
-0.08999687433242798,
0.014842133037745953,
-0.039187777787446976,
-0.017009010538458824,
-0.04422210901975632,
0.025692153722047806,
-0.10506188124418259,
-0.020755594596266747,
0.004216264467686415,
0.043293047696352005,
-0.07838307321071625,
-0.14152894914150238,
-0.00794950406998396,
-0.03054339811205864,
-0.061841510236263275,
0.061896514147520065,
-0.10161717236042023,
-0.06961330771446228,
-0.0358305424451828,
-0.037076838314533234,
0.11007768660783768,
0.230587899684906,
-0.043417058885097504,
0.026747502386569977,
0.12451554834842682,
-0.0997590571641922,
-0.32498469948768616,
-0.14039337635040283,
-0.1740490198135376,
-0.10631517320871353,
0.0024640962947160006,
-0.07173726707696915,
0.0265108160674572,
0.09493131190538406,
-0.05030001327395439,
0.16509951651096344,
-0.19551102817058563,
-0.11077407747507095,
0.05236192047595978,
0.073623888194561,
0.2955683171749115,
-0.23821865022182465,
0.001088975928723812,
-0.09094676375389099,
-0.052340809255838394,
0.005230305716395378,
-0.08377090841531754,
0.1143178790807724,
0.02245989628136158,
0.045543354004621506,
-0.006360942497849464,
-0.013758418150246143,
0.12504081428050995,
-0.07028000801801682,
0.1401684284210205,
-0.11245669424533844,
-0.09575043618679047,
0.2210761159658432,
-0.02777453511953354,
0.030833248049020767,
-0.1978166252374649,
-0.015988783910870552,
-0.03289975970983505,
0.03512526676058769,
0.005750560201704502,
0.040985774248838425,
-0.0077588725835084915,
-0.012875586748123169,
-0.14714686572551727,
-0.022150473669171333,
-0.03412400558590889,
0.04712025821208954,
0.22842204570770264,
-0.042299091815948486,
-0.06843250244855881,
0.027103347703814507,
-0.023089922964572906,
0.10600867867469788,
0.001610980718396604,
-0.05203050747513771,
-0.04158516600728035,
0.09887456148862839,
-0.21430326998233795,
0.059339944273233414,
0.0052556367591023445,
0.010308577679097652,
0.017689621075987816,
0.03403375670313835,
0.020972004160284996,
0.1222207248210907,
0.16499853134155273,
-0.028973519802093506,
-0.026650693267583847,
-0.023110225796699524,
0.02742553874850273,
0.15360477566719055,
0.02073795720934868,
0.1000911295413971,
-0.020615698769688606,
0.03900611028075218,
0.0162324421107769,
0.054046086966991425,
-0.07495824247598648,
-0.06910736858844757,
0.10940815508365631,
-0.04464268684387207,
-0.09145309031009674,
0.10606635361909866,
0.05721806362271309,
0.0778966024518013,
0.011034184135496616,
0.0514075942337513,
0.013241352513432503,
-0.12045314908027649,
0.036941055208444595,
0.22335417568683624,
-0.055214934051036835,
-0.06557516008615494,
-0.07407267391681671,
0.0025137881748378277,
-0.10268491506576538,
0.0724698007106781,
0.04117030277848244,
-0.015576262958347797,
0.08375333994626999,
-0.03694605082273483,
-0.0702446848154068,
0.010572963394224644,
-0.04835733026266098,
0.06276154518127441,
-0.18229056894779205,
-0.1768711358308792,
0.05188273265957832,
-0.022429274395108223,
-0.07625342905521393,
-0.07780469954013824,
-0.09251642227172852,
0.06725891679525375,
-0.09266933798789978,
0.14254018664360046,
-0.05564205348491669,
0.05298241600394249,
-0.04443901777267456,
-0.06704365462064743,
-0.11690585315227509,
-0.005440863315016031,
-0.04916005954146385,
-0.022092944011092186,
0.05478852242231369,
0.002750667743384838,
-0.1326616108417511,
-0.10577612370252609,
0.06351932883262634,
-0.01313278079032898,
0.006782261189073324,
0.018824012950062752,
-0.08072225004434586,
-0.002471834421157837,
-0.23099149763584137,
-0.04862523823976517,
0.08854229748249054,
0.03520139679312706,
-0.0794597640633583,
0.13630592823028564,
0.046841058880090714,
-0.02569551393389702,
0.03880446404218674,
0.005278979893773794,
0.16292650997638702,
-0.08535424619913101,
0.024149205535650253,
-0.12360477447509766,
-0.16646496951580048,
-0.030864322558045387,
0.03570245951414108,
0.24083943665027618,
0.08898208290338516,
0.12350710481405258,
-0.04511888325214386,
0.017190255224704742,
-0.011874206364154816,
0.06465449929237366,
0.02309633046388626,
-0.09678907692432404,
-0.061842866241931915,
-0.15105344355106354,
-0.06840744614601135,
-0.06843606382608414,
0.17712253332138062,
0.042645424604415894,
-0.16676868498325348,
-0.005472669377923012,
0.13549120724201202,
-0.1567295342683792,
0.0033570360392332077,
0.16378241777420044,
-0.04520681872963905,
0.001720593310892582,
-0.1368951052427292,
0.02477438561618328,
0.08818695694208145,
-0.03326060250401497,
-0.007886531762778759,
0.11637704819440842,
-0.0038751959800720215,
-0.0013906549429520965,
0.038119569420814514,
-0.028881261125206947,
0.05211813747882843,
-0.061759430915117264,
0.013574979268014431,
-0.006885030772536993,
-0.04829034209251404,
-0.08146494626998901,
0.16197283565998077,
-0.005947939120233059,
0.017220299690961838,
-0.057559557259082794,
-0.009419035166501999,
-0.10409534722566605,
-0.0941910669207573,
-0.06253333389759064,
-0.156426340341568,
0.07529293745756149,
-0.05392787978053093,
0.027609555050730705,
-0.012528248131275177,
0.025122838094830513,
-0.06738938391208649,
0.000508151832036674,
-0.17342965304851532,
-0.026186605915427208,
0.020165417343378067,
-0.007332487031817436,
-0.040841083973646164,
-0.06293727457523346,
-0.032639019191265106,
0.019836196675896645,
-0.06602584570646286,
-0.05913994088768959,
0.05769826099276543,
0.09135611355304718,
0.05571998283267021,
-0.1476040482521057,
-0.09703002125024796,
-0.05307934805750847,
0.004974796436727047,
0.0767570361495018,
0.1444491744041443,
0.023916300386190414,
-0.003232649527490139,
0.03657900169491768,
0.18243487179279327,
0.0004722684680018574,
-0.04676565155386925,
-0.07515324652194977,
-0.12536922097206116,
-0.11681549996137619,
-0.0029952379409223795,
-0.05713654309511185,
-0.03389308974146843,
0.008110000751912594,
0.2281654328107834,
0.20991218090057373,
-0.14109264314174652,
0.03269529342651367,
-0.06319017708301544,
0.03404492512345314,
-0.033649664372205734,
0.15492841601371765,
0.049642164260149,
0.13327571749687195,
-0.02293703891336918,
-0.022165056318044662,
-0.0667651891708374,
0.009740496054291725,
-0.08670258522033691,
0.040156107395887375,
-0.008352085016667843,
-0.07690180838108063,
-0.08441822975873947,
0.08637699484825134,
-0.12731271982192993,
0.07478317618370056,
0.17714840173721313,
-0.161148801445961,
-0.016664782539010048,
-0.03731222078204155,
0.07690832763910294,
0.1004856675863266,
0.008142204955220222,
-0.059781696647405624,
-0.016785450279712677,
0.0014595140237361193,
0.02870810776948929,
-0.17853695154190063,
-0.11416792124509811,
-0.011859780177474022,
-0.13189226388931274,
0.16176770627498627,
-0.013316032476723194,
0.0020096171647310257,
0.0421711727976799,
-0.056186310946941376,
-0.015601513907313347,
0.1491347998380661,
0.002081997925415635,
-0.0667119175195694,
-0.04792129993438721,
-0.03413965180516243,
-0.09621939063072205,
0.08628284186124802,
0.07209639996290207,
0.05176601558923721,
-0.012549206614494324,
0.11627567559480667,
-0.003210438648238778,
-0.05502919480204582,
0.11724767088890076,
-0.15526360273361206,
0.09600654989480972,
0.00043841791921295226,
-0.023831740021705627,
-0.060440320521593094,
-0.04002521187067032,
0.028087371960282326,
0.07204456627368927,
-0.12776276469230652,
-0.012701098807156086,
0.03892951086163521,
-0.10249105095863342,
0.08617863059043884,
0.05869457125663757,
-0.10585128515958786,
0.00860850140452385,
-0.13098974525928497,
-0.007085842080414295,
-0.10580511391162872,
0.032210350036621094,
0.19533254206180573,
-0.006054985336959362,
0.004063452128320932,
-0.14137551188468933,
0.05692382529377937,
-0.02230008877813816,
-0.04596037417650223,
-0.07938989251852036
] |
null | null | null |
## MiquMaid v2 2x70 DPO
Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z)
<center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-GGUF">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO-GGUF">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-GGUF">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF">V2-2x70B-DPO</a>]
</br>
<div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/Wbzwoko-IZbOJfvPaImre.png" style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca **prompting format**
Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.
The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO [here](https://huggingface.co/Undi95/Miqu-70B-Alpaca-DPO-GGUF)
We have seen a significant improvement, so we decided to share that, even if the model is very big.
## Credits:
- Undi
- IkariDev
## Description
This repo contains GGUF files of MiquMaid-v2-2x70B-DPO.
Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## DPO training data used:
- [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | null | NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF | [
"gguf",
"not-for-all-audiences",
"nsfw",
"license:cc-by-nc-4.0",
"region:us"
] | 2024-02-06T22:12:39+00:00 | [] | [] | TAGS
#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us
|
## MiquMaid v2 2x70 DPO
Check out our blogpost about this model series Here! - Join our Discord server Here!
<center>[<a href="URL - <a href="URL - <a href="URL - <a href="URL
</br>
<div style="width: 100%;">
<img src="URL style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca prompting format
Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.
The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here
We have seen a significant improvement, so we decided to share that, even if the model is very big.
## Credits:
- Undi
- IkariDev
## Description
This repo contains GGUF files of MiquMaid-v2-2x70B-DPO.
Switch: FP16 - GGUF
## Training data used:
- Aesir datasets
- NoRobots
- limarp
- toxic-dpo-v0.1-sharegpt
- ToxicQAFinal
## DPO training data used:
- ToxicDPOqa
- toxic-dpo-v0.1-NoWarning
### Custom format:
## Others
Undi: If you want to support us, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains GGUF files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n",
"## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains GGUF files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
33,
210,
11,
35,
40,
27,
5,
32
] | [
"passage: TAGS\n#gguf #not-for-all-audiences #nsfw #license-cc-by-nc-4.0 #region-us \n## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.## Credits:\n- Undi\n- IkariDev## Description\n\nThis repo contains GGUF files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning### Custom format:## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.09767807275056839,
0.13714319467544556,
-0.004830847028642893,
0.0033813489135354757,
0.10708901286125183,
0.042653024196624756,
0.12872625887393951,
0.17025531828403473,
-0.010673273354768753,
0.054206881672143936,
0.018335610628128052,
0.117179274559021,
0.09306074678897858,
0.18848782777786255,
0.02871321700513363,
-0.18759925663471222,
0.05708254128694534,
-0.03155378997325897,
-0.10157077014446259,
0.08637464046478271,
0.13721932470798492,
-0.06910477578639984,
0.05579647421836853,
0.012171142734587193,
-0.09005651623010635,
-0.029397524893283844,
-0.054577987641096115,
-0.03720082715153694,
0.08094151318073273,
0.03045598976314068,
0.05400784686207771,
0.08814431726932526,
0.01087385043501854,
-0.21634571254253387,
0.03612647205591202,
0.07923735678195953,
0.035320766270160675,
0.097951740026474,
0.05587204545736313,
0.03509202599525452,
0.09874875843524933,
-0.10565278679132462,
-0.028430379927158356,
0.04495644569396973,
-0.09872980415821075,
-0.15590418875217438,
-0.16502612829208374,
0.14481087028980255,
0.05092981457710266,
0.052380409091711044,
-0.012574736028909683,
0.11849342286586761,
-0.049597084522247314,
0.012728116475045681,
0.17860053479671478,
-0.18478389084339142,
-0.013008453883230686,
0.17132362723350525,
0.04341202601790428,
-0.05429137870669365,
-0.11044967919588089,
0.02602788433432579,
0.03214794397354126,
-0.013544895686209202,
-0.0636044591665268,
0.015905437991023064,
0.18978862464427948,
-0.003130617318674922,
-0.07675305008888245,
-0.0129621010273695,
0.22577139735221863,
0.079688660800457,
-0.07985076308250427,
-0.0845317617058754,
0.018394146114587784,
0.02132580429315567,
-0.026439037173986435,
-0.11741221696138382,
0.042082514613866806,
0.008939679712057114,
0.005462229251861572,
-0.07280809432268143,
-0.0844733789563179,
-0.03795398771762848,
-0.02367248944938183,
0.08585751801729202,
0.0029785255901515484,
-0.02347179874777794,
-0.007289322093129158,
0.10653132200241089,
-0.04715154692530632,
-0.09107359498739243,
-0.0650593563914299,
-0.09955273568630219,
-0.009378374554216862,
-0.0670657530426979,
-0.06130466237664223,
-0.049695536494255066,
0.12792588770389557,
0.11571324616670609,
0.028383873403072357,
-0.034158751368522644,
-0.03956882655620575,
0.007802470587193966,
0.030621496960520744,
0.03667410463094711,
-0.14688237011432648,
-0.0405692383646965,
0.07260909676551819,
0.065306656062603,
-0.01306877750903368,
0.013212679885327816,
-0.03275841847062111,
-0.05864958092570305,
-0.00005084915392217226,
0.04697031155228615,
0.0912318229675293,
0.07360433042049408,
-0.07306177169084549,
-0.0795922800898552,
0.13784387707710266,
-0.13114413619041443,
-0.0027673395816236734,
0.03644793480634689,
-0.07164181768894196,
0.09107805043458939,
0.010829069651663303,
0.029024001210927963,
-0.045462191104888916,
0.045740701258182526,
-0.03369271755218506,
-0.018958356231451035,
-0.0953126847743988,
-0.03732666000723839,
0.07043255120515823,
0.09454832971096039,
-0.032347362488508224,
-0.09485866874456406,
-0.10293447971343994,
-0.03630935773253441,
0.02018965408205986,
-0.009585423395037651,
-0.04620729014277458,
-0.014878748916089535,
-0.026585642248392105,
-0.010173815302550793,
0.011318175122141838,
0.08772087842226028,
-0.04909859225153923,
0.09423243999481201,
-0.0319494903087616,
0.06276044994592667,
-0.014682800509035587,
0.011831746436655521,
-0.016013965010643005,
0.009590807370841503,
-0.1677241176366806,
0.08729209750890732,
-0.041914504021406174,
-0.013473553583025932,
-0.119743213057518,
-0.002816026099026203,
-0.08707070350646973,
-0.01454976387321949,
0.04971766471862793,
0.2096167653799057,
-0.1398216187953949,
-0.06782715022563934,
0.22227630019187927,
-0.10714342445135117,
-0.07320556044578552,
0.041810426861047745,
0.0028811306692659855,
-0.01255809236317873,
0.10200665891170502,
0.035206686705350876,
0.09216140955686569,
-0.176651731133461,
-0.11598286777734756,
-0.06499695032835007,
-0.07330524176359177,
0.044081833213567734,
0.11023032665252686,
-0.041091375052928925,
0.032672226428985596,
0.031178422272205353,
-0.07152098417282104,
0.014156566001474857,
-0.06815570592880249,
-0.047883570194244385,
-0.0262441523373127,
-0.04389440268278122,
-0.007719875779002905,
-0.020353233441710472,
-0.027760550379753113,
-0.000798856548499316,
-0.08518466353416443,
-0.07313230633735657,
0.1918482929468155,
0.011317362077534199,
-0.001970522105693817,
-0.13254386186599731,
0.13344942033290863,
-0.034286726266145706,
0.035174548625946045,
-0.12118568271398544,
-0.043305885046720505,
-0.018768806010484695,
-0.05801120027899742,
-0.008548562414944172,
0.10374776273965836,
0.04380820319056511,
-0.004381421022117138,
-0.05779821798205376,
0.026465877890586853,
-0.08737426996231079,
-0.005045181605964899,
-0.0024543008767068386,
-0.18084286153316498,
0.000663685379549861,
-0.034954626113176346,
0.17803692817687988,
-0.14026540517807007,
0.02802567183971405,
0.061213549226522446,
0.18132832646369934,
0.03456879407167435,
-0.05489300936460495,
0.048077695071697235,
-0.051175039261579514,
-0.004529239609837532,
-0.03580847382545471,
0.00017924857093021274,
0.03015204332768917,
-0.08529973030090332,
0.08351340144872665,
-0.025804487988352776,
-0.006338695529848337,
0.15588198602199554,
0.02333894558250904,
-0.029147116467356682,
-0.051322948187589645,
-0.059534702450037,
-0.012205970473587513,
-0.0371861532330513,
-0.02594783715903759,
0.004283568821847439,
0.0705290213227272,
0.056158918887376785,
-0.039337676018476486,
-0.014388581737875938,
-0.010030163452029228,
-0.04989071190357208,
-0.01722108945250511,
0.008501513861119747,
0.03506956622004509,
-0.1630851924419403,
0.08411605656147003,
0.0867587998509407,
0.07021871954202652,
0.1310432106256485,
0.003914983011782169,
-0.14492572844028473,
-0.05171062797307968,
0.015875250101089478,
0.012700400315225124,
0.13327522575855255,
-0.03321422263979912,
0.061655011028051376,
0.06776192039251328,
0.018473438918590546,
0.03957641124725342,
-0.07480984181165695,
0.001713506761007011,
-0.0010365549242123961,
-0.0994466096162796,
-0.06542332470417023,
0.013196296989917755,
0.014415006153285503,
0.13332432508468628,
0.04262283071875572,
0.04386647418141365,
0.022208234295248985,
-0.03242769092321396,
-0.0677822157740593,
0.1235562190413475,
-0.08034206926822662,
-0.22259549796581268,
-0.052480921149253845,
-0.02344154752790928,
-0.04317420721054077,
0.004808355588465929,
-0.0062953089363873005,
-0.10558555275201797,
-0.047829579561948776,
0.007661874871701002,
0.07311763614416122,
0.0471445694565773,
-0.020309429615736008,
0.04813963547348976,
0.0710902139544487,
0.10836692899465561,
-0.11025220900774002,
-0.006613914389163256,
0.023293081670999527,
-0.0296309944242239,
0.03907189518213272,
0.015141413547098637,
0.06815629452466965,
0.056094154715538025,
0.033219341188669205,
-0.0025790974032133818,
0.033830173313617706,
0.1389709860086441,
-0.14312374591827393,
-0.0002336448524147272,
0.12531039118766785,
0.065879225730896,
0.024620093405246735,
0.10412544012069702,
0.03200755640864372,
-0.07366134971380234,
0.007766949478536844,
0.09605339169502258,
0.02509983815252781,
-0.22221511602401733,
-0.0796431452035904,
-0.04066908732056618,
-0.06322669237852097,
-0.018256913870573044,
0.05749521404504776,
-0.006249269470572472,
0.057014379650354385,
-0.09946370124816895,
-0.020506342872977257,
0.013509978540241718,
0.050606612116098404,
0.008308294229209423,
-0.02206282503902912,
0.06148194149136543,
-0.03908221051096916,
-0.031082239001989365,
0.13649846613407135,
0.07983417809009552,
0.11013659089803696,
-0.014259492978453636,
0.07895500212907791,
0.08717004954814911,
0.11403106153011322,
-0.015643944963812828,
0.03184106945991516,
0.08029264211654663,
-0.015824241563677788,
-0.031666845083236694,
-0.06391691416501999,
-0.05921250209212303,
0.005918595939874649,
0.10376019030809402,
-0.04412231966853142,
-0.10443902760744095,
-0.008862756192684174,
0.09922698885202408,
0.22267462313175201,
0.06630031019449234,
-0.23237955570220947,
-0.0524837002158165,
-0.014295282773673534,
-0.007188500836491585,
-0.0345284603536129,
-0.062025368213653564,
0.004115536343306303,
-0.12768886983394623,
0.08725740760564804,
-0.029477713629603386,
0.0760580450296402,
-0.09746992588043213,
0.030050447210669518,
0.004151500295847654,
0.04892211779952049,
-0.03318888321518898,
0.08880498260259628,
-0.3497518002986908,
0.13546855747699738,
0.03204099461436272,
0.06796932965517044,
-0.08238594979047775,
0.027372118085622787,
0.09686895459890366,
0.03877285495400429,
0.1104603260755539,
0.0029773488640785217,
0.030654054135084152,
-0.08953723311424255,
-0.1686403453350067,
0.03506147116422653,
0.047126103192567825,
-0.10924433171749115,
0.07963860780000687,
0.00017498823581263423,
0.010908452793955803,
-0.03623652830719948,
0.11664671450853348,
-0.1964074820280075,
-0.10745920985937119,
0.12033256143331528,
-0.0199880413711071,
0.11204974353313446,
-0.07708949595689774,
-0.055616412311792374,
-0.03625943884253502,
0.24907340109348297,
0.02491174452006817,
-0.049323223531246185,
-0.08780018240213394,
0.12738963961601257,
0.06940536201000214,
-0.05201437696814537,
-0.05737520009279251,
0.021634282544255257,
0.1566174179315567,
-0.0015456316759809852,
-0.07832606881856918,
0.006135167554020882,
-0.08711879700422287,
-0.14915646612644196,
-0.03393331170082092,
0.12550704181194305,
0.038052819669246674,
0.011381812393665314,
0.049584392458200455,
-0.06027941778302193,
0.055281661450862885,
-0.061024196445941925,
0.07515547424554825,
0.1187119111418724,
0.09425590932369232,
0.07239463180303574,
-0.10757516324520111,
0.0042159706354141235,
-0.12503860890865326,
-0.050866760313510895,
0.07447470724582672,
0.25629690289497375,
-0.004850419238209724,
0.04682048037648201,
0.10376833379268646,
-0.09529286623001099,
-0.18058772385120392,
-0.05392435938119888,
0.018276255577802658,
0.04318492114543915,
-0.011558860540390015,
-0.24150234460830688,
0.030866427347064018,
0.14504428207874298,
-0.04097483307123184,
0.10850333422422409,
-0.18359188735485077,
-0.07161037623882294,
0.07796363532543182,
-0.008137634955346584,
0.0885881707072258,
-0.16245222091674805,
-0.04366587474942207,
-0.05411297827959061,
-0.1271074414253235,
0.1322420835494995,
-0.08284122496843338,
0.10484768450260162,
0.013615092262625694,
0.04067593440413475,
0.07360918074846268,
-0.050993844866752625,
0.18355120718479156,
-0.021578943356871605,
0.029053036123514175,
-0.1229766309261322,
0.003499486716464162,
0.0221415963023901,
-0.07771633565425873,
0.04111120104789734,
0.05348466336727142,
0.012087392620742321,
-0.07996965944766998,
-0.041927486658096313,
-0.08063571900129318,
0.05381434038281441,
-0.03147848695516586,
-0.05278612673282623,
-0.06262707710266113,
0.13270598649978638,
0.03541161119937897,
0.005279942881315947,
-0.010047944262623787,
-0.049949098378419876,
0.03437487408518791,
0.004334933124482632,
0.10860203206539154,
-0.02387404814362526,
-0.07694030553102493,
0.005185056012123823,
-0.020010298117995262,
0.08906731754541397,
-0.03834037855267525,
0.09426748752593994,
0.06290170550346375,
-0.011024226434528828,
0.09631136804819107,
0.028369585052132607,
-0.15228429436683655,
-0.0030881818383932114,
0.12092301994562149,
-0.11703281849622726,
-0.11814207583665848,
-0.010575725696980953,
-0.015801740810275078,
-0.08220136165618896,
0.011018183082342148,
0.17829681932926178,
-0.009188051335513592,
-0.028498418629169464,
0.03575337678194046,
0.058942053467035294,
-0.08141162991523743,
0.11068829894065857,
0.04134887456893921,
0.03592149540781975,
-0.07777576893568039,
0.10042297840118408,
0.03750148043036461,
-0.0923127606511116,
0.014250498265028,
-0.08202565461397171,
-0.07141707092523575,
-0.05543605610728264,
-0.031213615089654922,
0.10051652789115906,
0.00523694371804595,
-0.08825590461492538,
-0.054348524659872055,
-0.013285835273563862,
0.0341159850358963,
-0.09649284183979034,
0.020900767296552658,
0.11607872694730759,
0.08615719527006149,
0.012850074097514153,
-0.14689627289772034,
0.03151320293545723,
0.01708480715751648,
0.005510139279067516,
-0.13229715824127197,
0.0758596807718277,
-0.05112345889210701,
0.014523444697260857,
-0.021279960870742798,
0.011800280772149563,
-0.0784839540719986,
-0.0437963493168354,
-0.07323712110519409,
-0.017910581082105637,
-0.11550469696521759,
-0.03778575360774994,
0.014194990508258343,
0.002069038338959217,
0.021030616015195847,
0.015275909565389156,
-0.08001971244812012,
-0.06523630768060684,
-0.001985216047614813,
0.08843990415334702,
-0.14469368755817413,
-0.004167001228779554,
0.01235414668917656,
-0.06868832558393478,
0.10174711048603058,
0.09386735409498215,
0.040530040860176086,
-0.026210254058241844,
-0.1518557220697403,
-0.03983699157834053,
0.04409446194767952,
0.030342331156134605,
0.003067287616431713,
-0.2359222024679184,
0.04503653571009636,
0.024768656119704247,
-0.04077107086777687,
0.03696996346116066,
0.040039461106061935,
-0.11755059659481049,
-0.052153076976537704,
-0.019765112549066544,
0.02899499237537384,
-0.027459314092993736,
0.022109536454081535,
0.10139378905296326,
0.06454767286777496,
0.13586179912090302,
-0.04556954279541969,
0.01951901614665985,
-0.16332067549228668,
0.022783612832427025,
-0.01561030000448227,
0.03769338130950928,
0.030486714094877243,
0.010902456939220428,
0.08235447108745575,
-0.05000298470258713,
0.10454154759645462,
-0.07796823233366013,
-0.03496218100190163,
0.04311595484614372,
-0.11549215763807297,
-0.0031274796929210424,
-0.009769724681973457,
0.11767888069152832,
0.04998715966939926,
0.012472357600927353,
0.03207194805145264,
0.014746349304914474,
0.018204914405941963,
0.003031301312148571,
0.1388954520225525,
0.19137443602085114,
0.11159831285476685,
0.0428907610476017,
0.03055753745138645,
-0.1423826664686203,
-0.021495627239346504,
0.062112897634506226,
-0.0762014091014862,
0.07431556284427643,
-0.024280013516545296,
0.013545376248657703,
0.12959356606006622,
-0.15954193472862244,
0.07234235852956772,
-0.05074624717235565,
-0.020636484026908875,
-0.10959497094154358,
-0.1272268146276474,
-0.0759272575378418,
-0.10207826644182205,
0.037798333913087845,
-0.12085748463869095,
0.03949173912405968,
0.1311425417661667,
0.030275655910372734,
-0.05012166500091553,
0.032827503979206085,
-0.054571136832237244,
-0.08106285333633423,
0.07904153317213058,
-0.02584993839263916,
-0.07663607597351074,
-0.05610617622733116,
-0.04074804112315178,
0.03656253218650818,
0.058050528168678284,
0.06900066882371902,
0.010548625141382217,
0.06277180463075638,
0.05543351545929909,
-0.06337473541498184,
-0.0636335089802742,
-0.006602527108043432,
-0.02061024308204651,
0.0958673357963562,
0.14685669541358948,
0.018374599516391754,
-0.01621248386800289,
-0.0007443513604812324,
0.2230691909790039,
0.0014254474081099033,
-0.06867020577192307,
-0.1996527463197708,
0.030497999861836433,
0.016712898388504982,
-0.018202317878603935,
0.0024276734329760075,
-0.11687556654214859,
-0.003255353542044759,
0.14950408041477203,
0.18570853769779205,
-0.06819946318864822,
-0.011670928448438644,
0.003469411050900817,
-0.004801763687282801,
-0.005538387689739466,
0.07604138553142548,
0.08247585594654083,
0.0582844540476799,
-0.03589433804154396,
0.04562937840819359,
-0.01833769679069519,
0.02327495999634266,
-0.0025107550900429487,
0.1581011712551117,
-0.03892947733402252,
-0.01936296559870243,
-0.03011236898601055,
0.11286991089582443,
-0.019549671560525894,
-0.20864897966384888,
-0.022169115021824837,
-0.06352252513170242,
-0.14065495133399963,
-0.03995523601770401,
-0.06442549079656601,
0.028548413887619972,
0.07913021743297577,
-0.010249360464513302,
0.009581107646226883,
0.2277088463306427,
-0.03209708631038666,
-0.07259570807218552,
-0.07942647486925125,
0.05528198555111885,
0.06692754477262497,
0.18926392495632172,
0.021304922178387642,
0.07666190713644028,
0.09646070748567581,
-0.04225034639239311,
-0.16971856355667114,
0.007191651966422796,
-0.001582846394740045,
-0.08319833874702454,
0.034662120044231415,
0.09939474612474442,
-0.007582816760987043,
0.022421589121222496,
0.09204981476068497,
-0.06472011655569077,
0.013471170328557491,
0.023913152515888214,
-0.014002158306539059,
-0.11773926764726639,
0.13757218420505524,
-0.10039284080266953,
0.11667825281620026,
0.19079768657684326,
-0.061812859028577805,
0.04734930023550987,
-0.05013018473982811,
0.08190121501684189,
0.04215828329324722,
0.027072753757238388,
-0.0681774690747261,
-0.1499079316854477,
0.02374734915792942,
-0.043022483587265015,
0.015381976962089539,
-0.14139820635318756,
-0.06170182302594185,
0.05467057600617409,
-0.05239597335457802,
-0.02009807527065277,
0.10325169563293457,
0.0009632990695536137,
0.04913400486111641,
-0.046342916786670685,
0.010701816529035568,
-0.027542682364583015,
0.10768736153841019,
-0.13259364664554596,
-0.08725404739379883
] |
null | null | transformers |
## MiquMaid v2 2x70 DPO
Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z)
<center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO">V2-2x70B-DPO</a>]
</br>
<div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/Wbzwoko-IZbOJfvPaImre.png" style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca **prompting format**
Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.
The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO [here](https://huggingface.co/Undi95/Miqu-70B-Alpaca-DPO-GGUF)
We have seen a significant improvement, so we decided to share that, even if the model is very big.
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v2-2x70B-DPO.
Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## DPO training data used:
- [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | text-generation | NeverSleep/MiquMaid-v2-2x70B-DPO | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:12:48+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## MiquMaid v2 2x70 DPO
Check out our blogpost about this model series Here! - Join our Discord server Here!
<center>[<a href="URL - <a href="URL - <a href="URL - <a href="URL
</br>
<div style="width: 100%;">
<img src="URL style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca prompting format
Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.
The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here
We have seen a significant improvement, so we decided to share that, even if the model is very big.
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v2-2x70B-DPO.
Switch: FP16 - GGUF
## Training data used:
- Aesir datasets
- NoRobots
- limarp
- toxic-dpo-v0.1-sharegpt
- ToxicQAFinal
## DPO training data used:
- ToxicDPOqa
- toxic-dpo-v0.1-NoWarning
### Custom format:
## Others
Undi: If you want to support us, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF",
"## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal",
"## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning",
"### Custom format:",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
75,
210,
11,
35,
40,
27,
5,
32
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## MiquMaid v2 2x70 DPO\n\nCheck out our blogpost about this model series Here! - Join our Discord server Here!\n\n<center>[<a href=\"URL - <a href=\"URL - <a href=\"URL - <a href=\"URL\n</br>\n<div style=\"width: 100%;\">\n <img src=\"URL style=\"display: block; margin: auto;\">\n</div></center>\n\nThis model uses the Alpaca prompting format\n\nThen, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.\n\nThe two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO here\n\nWe have seen a significant improvement, so we decided to share that, even if the model is very big.## Credits:\n- Undi\n- IkariDev## Description\n\nThis repo contains FP16 files of MiquMaid-v2-2x70B-DPO.\n\nSwitch: FP16 - GGUF## Training data used:\n- Aesir datasets\n- NoRobots\n- limarp\n- toxic-dpo-v0.1-sharegpt\n- ToxicQAFinal## DPO training data used:\n- ToxicDPOqa\n- toxic-dpo-v0.1-NoWarning### Custom format:## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.08322587609291077,
0.08175056427717209,
-0.0055728270672261715,
0.016568152233958244,
0.08308054506778717,
0.05306538939476013,
0.14567303657531738,
0.12926249206066132,
0.0228903628885746,
0.10643213987350464,
-0.0013251571217551827,
0.07762584835290909,
0.0942251905798912,
0.18447981774806976,
0.005383491050451994,
-0.20895586907863617,
0.0434865839779377,
-0.03584234416484833,
-0.004771251231431961,
0.07482351362705231,
0.12583808600902557,
-0.06961724907159805,
0.07055482268333435,
0.02341715805232525,
-0.061905037611722946,
-0.03636528179049492,
-0.010709179565310478,
-0.03500340133905411,
0.07078579068183899,
0.053111184388399124,
0.07287522405385971,
0.0797262191772461,
0.017979731783270836,
-0.2242787778377533,
0.04246906936168671,
0.07796678692102432,
0.008833984844386578,
0.08452127128839493,
0.09753596782684326,
-0.023547085002064705,
0.07684999704360962,
-0.06403782218694687,
0.008976373821496964,
0.06858740001916885,
-0.12675221264362335,
-0.13630148768424988,
-0.1300961971282959,
0.19824208319187164,
0.07094621658325195,
0.010369530878961086,
-0.009648829698562622,
0.0999331995844841,
-0.03509241342544556,
0.03885633870959282,
0.13886569440364838,
-0.1694156676530838,
-0.0332564041018486,
0.15487995743751526,
0.02543502487242222,
-0.048256393522024155,
-0.07051641494035721,
-0.004634113982319832,
0.02897823229432106,
-0.014436803758144379,
-0.021106034517288208,
0.008296414278447628,
0.16611158847808838,
-0.04490438103675842,
-0.08771254867315292,
-0.01789119467139244,
0.1833019256591797,
0.07460318505764008,
-0.05830187350511551,
-0.131986603140831,
-0.03571898117661476,
0.05086994543671608,
-0.046183161437511444,
-0.06744949519634247,
0.011370598338544369,
0.0249439999461174,
0.044066883623600006,
-0.05942930653691292,
-0.09535989910364151,
-0.011820502579212189,
-0.010260680690407753,
0.06824370473623276,
0.009925764054059982,
-0.014782274141907692,
-0.004903093911707401,
0.09505046159029007,
-0.16118071973323822,
-0.1226964145898819,
-0.03487006202340126,
-0.11661268025636673,
-0.010934583842754364,
-0.09422975778579712,
-0.027175121009349823,
-0.0307169146835804,
0.14087940752506256,
0.20340056717395782,
0.016623802483081818,
-0.01913497969508171,
-0.031687717884778976,
0.012174399569630623,
0.054371438920497894,
0.03681851178407669,
-0.11383666098117828,
-0.06612528860569,
0.06157006323337555,
0.07104776054620743,
0.02257978357374668,
-0.003720178734511137,
-0.012264952063560486,
-0.02658775821328163,
-0.0027979991864413023,
0.04237896949052811,
0.10889467597007751,
0.07514047622680664,
-0.08691144734621048,
-0.0609746016561985,
0.21440647542476654,
-0.12984922528266907,
0.01607750914990902,
0.06248185783624649,
-0.02321486361324787,
0.09254080057144165,
0.007397894747555256,
0.029916729778051376,
-0.04162244498729706,
0.07982143014669418,
-0.022525979205965996,
-0.011808608658611774,
-0.09315355867147446,
-0.0641087144613266,
0.06427174061536789,
0.05324447527527809,
-0.03133834898471832,
-0.11200495064258575,
-0.083650141954422,
-0.05320780724287033,
0.04229982942342758,
-0.04882919788360596,
-0.05814952775835991,
0.014935133047401905,
-0.02245750091969967,
0.01635144092142582,
-0.0046884906478226185,
-0.030080441385507584,
-0.05000891536474228,
0.04819094017148018,
-0.004542937036603689,
0.05954891815781593,
0.03302045911550522,
0.0016744636232033372,
-0.06052873283624649,
0.03793414309620857,
-0.2521441876888275,
0.08566590398550034,
-0.029480239376425743,
0.007420490495860577,
-0.11654376983642578,
0.020348910242319107,
-0.07522062957286835,
-0.002234116895124316,
0.02903014048933983,
0.19013279676437378,
-0.13273926079273224,
-0.04551460221409798,
0.21019329130649567,
-0.13934452831745148,
-0.09831961989402771,
0.11406073719263077,
0.00043720207759179175,
0.023597916588187218,
0.09138742089271545,
0.07639618217945099,
0.0995941162109375,
-0.13819043338298798,
-0.08565419912338257,
-0.02741648256778717,
-0.03784094378352165,
0.0911875069141388,
0.07344833761453629,
-0.05763764679431915,
0.05809881165623665,
0.017925653606653214,
-0.049992796033620834,
0.012958590872585773,
-0.0321786142885685,
-0.039132628589868546,
-0.024412933737039566,
-0.04075583070516586,
0.020073359832167625,
-0.026397839188575745,
-0.05293427035212517,
-0.024455703794956207,
-0.07854247093200684,
-0.051584094762802124,
0.1513960063457489,
-0.006222069729119539,
-0.0016651126788929105,
-0.11105501651763916,
0.15782423317432404,
-0.0476687029004097,
0.02906816266477108,
-0.12879818677902222,
-0.06851780414581299,
0.006990274880081415,
-0.06941312551498413,
-0.004689231514930725,
0.039326541125774384,
0.044459018856287,
0.02904370054602623,
-0.03591950610280037,
-0.015460054390132427,
0.004460100084543228,
-0.006422784645110369,
-0.02682160586118698,
-0.1785145252943039,
-0.05363856628537178,
-0.0498899407684803,
0.1715172976255417,
-0.16980905830860138,
0.05459129810333252,
0.0672403946518898,
0.16633860766887665,
0.02089398354291916,
-0.019497813656926155,
0.048624929040670395,
-0.042324498295784,
-0.02642376348376274,
-0.04294122755527496,
0.025376005098223686,
0.020300276577472687,
-0.08497953414916992,
0.09000350534915924,
-0.11138954758644104,
-0.02351846918463707,
0.13866788148880005,
-0.019736556336283684,
-0.05745825171470642,
-0.0546082966029644,
-0.028377942740917206,
-0.01832570694386959,
-0.055963605642318726,
-0.03559993952512741,
-0.006533037405461073,
0.07800199836492538,
0.07851526886224747,
-0.05610864236950874,
-0.0125391511246562,
-0.016693081706762314,
-0.06687252968549728,
-0.016988690942525864,
0.04965713247656822,
0.022201692685484886,
-0.11321530491113663,
0.07499245554208755,
0.08302930742502213,
0.03812093287706375,
0.10765257477760315,
0.00994646642357111,
-0.09897708892822266,
-0.024080505594611168,
0.04383711516857147,
0.03545910492539406,
0.04248449578881264,
-0.018126528710126877,
0.03819604590535164,
0.07154548168182373,
-0.0038717114366590977,
0.010172213427722454,
-0.06188233196735382,
0.03393910825252533,
0.027773641049861908,
-0.06007060781121254,
-0.01615568995475769,
0.026981404051184654,
0.01962198130786419,
0.10396405309438705,
0.028018241748213768,
0.03202433884143829,
0.018552035093307495,
-0.043981779366731644,
-0.07579024881124496,
0.13291198015213013,
-0.04472162202000618,
-0.17857933044433594,
-0.11330357193946838,
-0.05411584675312042,
-0.0855315551161766,
0.009778711013495922,
0.019991597160696983,
-0.06942670047283173,
-0.06439674645662308,
-0.060187723487615585,
0.04027637839317322,
0.10290952771902084,
-0.056008633226156235,
-0.0016718949191272259,
0.045296810567379,
0.0768512710928917,
-0.10286520421504974,
-0.022195963189005852,
0.03304346650838852,
-0.049653563648462296,
0.04235450550913811,
0.02704085223376751,
0.07418239116668701,
0.09192617982625961,
0.03773355484008789,
-0.01706463098526001,
0.03461378440260887,
0.16830822825431824,
-0.10787967592477798,
0.07683000713586807,
0.23435674607753754,
0.018682798370718956,
0.0762547105550766,
0.16471920907497406,
0.05072706565260887,
-0.047359365969896317,
0.021650202572345734,
0.04242003709077835,
0.006857219617813826,
-0.19462276995182037,
-0.08288053423166275,
-0.03733248636126518,
-0.005401137750595808,
0.03887356445193291,
0.03884530067443848,
0.03638356178998947,
0.08440032601356506,
-0.1335083693265915,
-0.01989644020795822,
0.06710001081228256,
0.09737187623977661,
0.0470300167798996,
0.016155386343598366,
0.07607840746641159,
-0.03195458650588989,
-0.020392533391714096,
0.125222310423851,
0.03692743927240372,
0.054144784808158875,
-0.010853162035346031,
0.15007740259170532,
0.07049945741891861,
0.11567993462085724,
0.01744772121310234,
0.06520543992519379,
0.011086692102253437,
0.0008784758392721415,
-0.005976899527013302,
-0.09406907111406326,
-0.043418195098638535,
0.03740313649177551,
0.033981408923864365,
-0.008436039090156555,
-0.07429444044828415,
0.0089281490072608,
0.08650987595319748,
0.2329338639974594,
0.08074720203876495,
-0.23459991812705994,
-0.05113663524389267,
0.030431639403104782,
-0.0017387619009241462,
-0.06295337527990341,
-0.0535212866961956,
0.007416590582579374,
-0.13988573849201202,
0.09301675856113434,
-0.01374578382819891,
0.09371960163116455,
-0.08305789530277252,
0.01754147559404373,
0.0010732945520430803,
0.10589087754487991,
-0.03642948344349861,
0.0761088877916336,
-0.2409944087266922,
0.09077653288841248,
0.025983767583966255,
0.06898926198482513,
-0.06974323838949203,
0.03639273717999458,
0.07066138088703156,
0.10320880264043808,
0.08927302807569504,
-0.015603153966367245,
0.014260424301028252,
-0.12127617001533508,
-0.14003118872642517,
-0.005038144066929817,
0.02316853031516075,
-0.11417363584041595,
0.0889570489525795,
-0.021646302193403244,
-0.01703503727912903,
-0.047649335116147995,
0.08012019842863083,
-0.19778020679950714,
-0.12629102170467377,
0.0556010976433754,
-0.02794748917222023,
0.11238892376422882,
-0.06772707402706146,
-0.018717490136623383,
-0.06733881682157516,
0.21206505596637726,
-0.03213505446910858,
-0.08062493056058884,
-0.11441121250391006,
0.026783747598528862,
0.09243682771921158,
-0.07596920430660248,
-0.04873773455619812,
-0.020093174651265144,
0.18777383863925934,
-0.038672178983688354,
-0.08744341880083084,
0.02058858796954155,
-0.13621196150779724,
-0.17661337554454803,
-0.009326227009296417,
0.12615975737571716,
0.005194135941565037,
0.01783698983490467,
0.0553680844604969,
-0.032263725996017456,
0.01754561997950077,
-0.08365732431411743,
0.004025184083729982,
0.12217502295970917,
0.1031312644481659,
0.05967877805233002,
-0.08511815965175629,
-0.06096949800848961,
-0.12095168232917786,
-0.014022979885339737,
0.06344130635261536,
0.274539589881897,
-0.021416950970888138,
0.04458567500114441,
0.1531730592250824,
-0.08092541247606277,
-0.18641507625579834,
-0.0707169696688652,
-0.006356265861541033,
0.016780180856585503,
0.026573697105050087,
-0.16014130413532257,
0.09384822845458984,
0.12316624075174332,
-0.029336633160710335,
0.010762334801256657,
-0.17613527178764343,
-0.11435005068778992,
0.04461490735411644,
-0.008269629441201687,
-0.007621788885444403,
-0.16946391761302948,
-0.05849017947912216,
-0.097660131752491,
-0.13063886761665344,
0.07310420274734497,
-0.1337449699640274,
0.05166454613208771,
0.024179695174098015,
-0.011226987466216087,
0.06603258103132248,
-0.04934181645512581,
0.1542011946439743,
-0.014666094444692135,
0.0488555021584034,
-0.11426164954900742,
0.022456545382738113,
0.025384416803717613,
-0.08568163216114044,
0.0957207977771759,
0.016474649310112,
0.00353869516402483,
-0.06551156938076019,
-0.041226454079151154,
-0.06761892139911652,
0.06725402921438217,
-0.0496300607919693,
-0.05391307175159454,
-0.02730843611061573,
0.09395930171012878,
0.05517663434147835,
0.02695770375430584,
0.025536878034472466,
-0.06142789497971535,
0.08103754371404648,
0.1282617598772049,
0.1624961644411087,
-0.034375064074993134,
-0.06949970871210098,
-0.003418775973841548,
-0.029255326837301254,
0.05017935857176781,
-0.058590181171894073,
0.07636282593011856,
0.03195631876587868,
-0.019935868680477142,
0.10776576399803162,
0.016949327662587166,
-0.13329020142555237,
0.0010127915302291512,
0.10175907611846924,
-0.10444045066833496,
-0.13793757557868958,
-0.019259877502918243,
-0.011894114315509796,
-0.11659997701644897,
-0.004532825667411089,
0.1646127849817276,
-0.02335214987397194,
-0.025871800258755684,
0.010859032161533833,
0.07287444174289703,
-0.06349191814661026,
0.08762151747941971,
0.02943357639014721,
0.048725955188274384,
-0.08221688121557236,
0.05564256012439728,
0.08500798046588898,
-0.07775967568159103,
-0.02606010064482689,
-0.0020648466888815165,
-0.08763104677200317,
-0.0770595446228981,
-0.011978598311543465,
0.08557475358247757,
-0.0072275185957551,
-0.07969184964895248,
-0.03965126350522041,
-0.03673487901687622,
0.0038413447327911854,
0.022416790947318077,
0.03850710391998291,
0.053902629762887955,
0.08095742017030716,
-0.015250563621520996,
-0.12866808474063873,
0.05684584379196167,
0.061837319284677505,
0.053982555866241455,
-0.1288672238588333,
0.08606503158807755,
-0.03616081923246384,
0.0001065447140717879,
-0.01687285304069519,
0.008593684993684292,
-0.09486141800880432,
-0.04473700001835823,
-0.09752067178487778,
0.014202088117599487,
-0.1366480588912964,
-0.010705758817493916,
0.008868695236742496,
0.015530426986515522,
0.020175326615571976,
-0.0018080180743709207,
-0.06507045775651932,
-0.048653632402420044,
-0.019045451655983925,
0.10604381561279297,
-0.15450651943683624,
0.01790817640721798,
0.03755521401762962,
-0.0954449325799942,
0.09731156378984451,
0.020690008997917175,
0.009245280176401138,
-0.04879627376794815,
-0.1989574283361435,
-0.031209442764520645,
0.0032003915403038263,
0.040476858615875244,
0.005679417867213488,
-0.15560869872570038,
0.0363885872066021,
0.00671869982033968,
-0.07395973801612854,
0.02105339989066124,
0.013977659866213799,
-0.11103937774896622,
0.03546896204352379,
-0.011142640374600887,
-0.025681473314762115,
-0.051306284964084625,
0.018851416185498238,
0.09601647406816483,
0.030291985720396042,
0.15892551839351654,
-0.06564448773860931,
0.03888765349984169,
-0.1798815280199051,
0.005874267313629389,
-0.006889458280056715,
0.019220640882849693,
0.0032177921384572983,
-0.02018679492175579,
0.07053004950284958,
-0.014638642780482769,
0.09781185537576675,
-0.03873058408498764,
-0.01587735302746296,
0.03689304739236832,
-0.0924365371465683,
0.030703654512763023,
0.014611534774303436,
0.08200304210186005,
0.04422298073768616,
0.00758464727550745,
-0.010053911246359348,
0.018468985334038734,
0.011190245859324932,
-0.04577228054404259,
0.08127540349960327,
0.18978351354599,
0.05793013423681259,
0.009278765879571438,
0.0705496221780777,
-0.06932304054498672,
0.020705074071884155,
0.006358034908771515,
-0.07233873009681702,
0.0593639500439167,
-0.03248776122927666,
0.049889251589775085,
0.16352644562721252,
-0.13677527010440826,
0.0541604608297348,
-0.046597033739089966,
-0.026141921058297157,
-0.12328024953603745,
-0.201401486992836,
-0.08468230068683624,
-0.08219466358423233,
0.011756179854273796,
-0.11093132942914963,
0.03190327063202858,
0.1321842074394226,
0.01770351640880108,
-0.03608028590679169,
0.048036400228738785,
-0.03725583106279373,
-0.045282989740371704,
0.062158916145563126,
-0.018250254914164543,
-0.0339951366186142,
0.014523237012326717,
-0.045400600880384445,
0.008889129385352135,
0.02148539200425148,
0.0529278926551342,
0.05407964065670967,
0.06979437917470932,
0.04528309032320976,
-0.04661824554204941,
-0.11286436021327972,
0.00664541544392705,
-0.024927299469709396,
0.05191243439912796,
0.14725761115550995,
0.04077182337641716,
-0.020731596276164055,
-0.0030263580847531557,
0.1737184226512909,
-0.012461662292480469,
-0.08229293674230576,
-0.1849258840084076,
0.04707200080156326,
-0.014785108156502247,
0.005045464728027582,
-0.010502869263291359,
-0.1249101385474205,
0.020687149837613106,
0.15070722997188568,
0.18973442912101746,
-0.03985215350985527,
0.006694442126899958,
-0.004333381075412035,
-0.0001975145860342309,
-0.026144858449697495,
0.09000145643949509,
0.054642438888549805,
0.0797259733080864,
-0.04702547565102577,
0.12402088940143585,
-0.0032300916500389576,
-0.010969951748847961,
-0.09058138728141785,
0.12157844007015228,
-0.05310794711112976,
-0.009148834273219109,
0.0033057827968150377,
0.12607726454734802,
-0.04102335497736931,
-0.15445716679096222,
-0.012124078348279,
-0.0505206435918808,
-0.11069467663764954,
-0.04342915862798691,
-0.04115661233663559,
0.04071194306015968,
0.08778784424066544,
-0.012153390794992447,
-0.0267386082559824,
0.1862812638282776,
-0.0398721881210804,
-0.03568607568740845,
-0.024290045723319054,
0.040014710277318954,
0.03972858563065529,
0.15488167107105255,
0.03170529380440712,
0.07604373246431351,
0.11825017631053925,
-0.04868915304541588,
-0.133987158536911,
0.011587274260818958,
0.02060517482459545,
-0.07713516801595688,
0.056650310754776,
0.08037795126438141,
-0.009189124219119549,
0.03399558737874031,
0.09163636714220047,
-0.15729060769081116,
0.024951322004199028,
0.01875595934689045,
0.0009336867369711399,
-0.1323002725839615,
0.11611334979534149,
-0.08535318821668625,
0.13006633520126343,
0.17944560945034027,
-0.061025045812129974,
0.005815831013023853,
-0.03884975239634514,
0.06299284845590591,
0.037699922919273376,
0.06932730972766876,
-0.052074331790208817,
-0.15504075586795807,
0.04075303673744202,
-0.015410016290843487,
0.05524608865380287,
-0.1700689196586609,
-0.06216317042708397,
0.01801665686070919,
-0.026410387828946114,
-0.07110541313886642,
0.08316947519779205,
0.07301883399486542,
0.03250555694103241,
-0.03453917056322098,
-0.041888199746608734,
-0.014949793927371502,
0.11215480417013168,
-0.11826141923666,
-0.07197774946689606
] |
null | null | transformers | # KoboldAI/LLaMA2-13B-Tiefighter-HQQ
This is [KoboldAI's Estopia](https://huggingface.co/KoboldAI/LLaMA2-13B-Estopia) quantized to 4bit HQQ
# Usage
To run this quantization, you can use the following code.
```bash
pip install git+https://github.com/mobiusml/hqq/ transformers -U
```
```python
model_id = 'HQQHouse/LLaMA2-13B-Estopia-HQQ'
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = HQQModelForCausalLM.from_quantized(model_id)
# Prompt for inference
prompt = "### Instruction: Why is water so good for you ### Response:"
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
output = model.generate(input_ids=input_ids, max_length=50, num_return_sequences=1, do_sample=True, top_k=50)
generated_sequence = tokenizer.decode(output[0].cuda(), skip_special_tokens=True)
print(generated_sequence)
```
# Read About HQQ
https://mobiusml.github.io/hqq_blog/
________________________
# Original Readme
# Introduction
- Estopia is a model focused on improving the dialogue and prose returned when using the instruct format. As a side benefit, character cards and similar seem to have also improved, remembering details well in many cases.
- It focuses on "guided narratives" - using instructions to guide or explore fictional stories, where you act as a guide for the AI to narrate and fill in the details.
- It has primarily been tested around prose, using instructions to guide narrative, detail retention and "neutrality" - in particular with regards to plot armour. Unless you define different rules for your adventure / narrative with instructions, it should be realistic in the responses provided.
- It has been tested using different modes, such as instruct, chat, adventure and story modes - and should be able to do them all to a degree, with it's strengths being instruct and adventure, with story being a close second.
# Usage
- The Estopia model has been tested primarily using the Alpaca format, but with the range of models included likely has some understanding of others. Some examples of tested formats are below:
- ```\n### Instruction:\nWhat colour is the sky?\n### Response:\nThe sky is...```
- ```<Story text>\n***\nWrite a summary of the text above\n***\nThe story starts by...```
- Using the Kobold Lite AI adventure mode
- ```User:Hello there!\nAssistant:Good morning...\n```
- For settings, the following are recommended for general use:
- Temperature: 0.8-1.2
- Min P: 0.05-0.1
- Max P: 0.92, or 1 if using a Min P greater than 0
- Top K: 0
- Response length: Higher than your usual amount most likely - for example a common value selected is 512.
- Note: Response lengths are not guaranteed to always be this length. On occasion, responses may be shorter if they convey the response entirely, other times they could be upwards of this value. It depends mostly on the character card, instructions, etc.
- Rep Pen: 1.1
- Rep Pen Range: 2 or 3x your response length
- Stopping tokens (Not needed, but can help if the AI is writing too much):
- ```##||$||---||$||ASSISTANT:||$||[End||$||</s>``` - A single string for Kobold Lite combining the ones below
- ```##```
- ```---```
- ```ASSISTANT:```
- ```[End```
- ```</s>```
- The settings above should provide a generally good experience balancing instruction following and creativity. Generally the higher you set the temperature, the greater the creativity and higher chance of logical errors when providing responses from the AI.
# Recipe
This model was made in three stages, along with many experimental stages which will be skipped for brevity. The first was internally referred to as EstopiaV9, which has a high degree of instruction following and creativity in responses, though they were generally shorter and a little more restricted in the scope of outputs, but conveyed nuance better.
```yaml
merge_method: task_arithmetic
base_model: TheBloke/Llama-2-13B-fp16
models:
- model: TheBloke/Llama-2-13B-fp16
- model: Undi95/UtopiaXL-13B
parameters:
weight: 1.0
- model: Doctor-Shotgun/cat-v1.0-13b
parameters:
weight: 0.02
- model: PygmalionAI/mythalion-13b
parameters:
weight: 0.10
- model: Undi95/Emerhyst-13B
parameters:
weight: 0.05
- model: CalderaAI/13B-Thorns-l2
parameters:
weight: 0.05
- model: KoboldAI/LLaMA2-13B-Tiefighter
parameters:
weight: 0.20
dtype: float16
```
The second part of the merge was known as EstopiaV13. This produced responses which were long, but tended to write beyond good stopping points for further instructions to be added as it leant heavily on novel style prose. It did however benefit from a greater degree of neutrality as described above, and retained many of the detail tracking abilities of V9.
```yaml
merge_method: task_arithmetic
base_model: TheBloke/Llama-2-13B-fp16
models:
- model: TheBloke/Llama-2-13B-fp16
- model: Undi95/UtopiaXL-13B
parameters:
weight: 1.0
- model: Doctor-Shotgun/cat-v1.0-13b
parameters:
weight: 0.01
- model: chargoddard/rpguild-chatml-13b
parameters:
weight: 0.02
- model: PygmalionAI/mythalion-13b
parameters:
weight: 0.08
- model: CalderaAI/13B-Thorns-l2
parameters:
weight: 0.02
- model: KoboldAI/LLaMA2-13B-Tiefighter
parameters:
weight: 0.20
dtype: float16
```
The third step was a merge between the two to retain the benefits of both as much as possible. This was performed using the dare merging technique.
```yaml
# task-arithmetic style
models:
- model: EstopiaV9
parameters:
weight: 1
density: 1
- model: EstopiaV13
parameters:
weight: 0.05
density: 0.30
merge_method: dare_ties
base_model: TheBloke/Llama-2-13B-fp16
parameters:
int8_mask: true
dtype: bfloat16
```
# Model selection
- Undi95/UtopiaXL-13B
- Solid all around base for models, with the ability to write longer responses and generally good retension to detail.
- Doctor-Shotgun/cat-v1.0-13b
- A medical focused model which is added to focus a little more on the human responses, such as for psycology.
- PygmalionAI/mythalion-13b
- A roleplay and instruct focused model, which improves attentiveness to character card details and the variety of responses
- Undi95/Emerhyst-13B
- A roleplay but also longer form response model. It can be quite variable, but helps add to the depth and possible options the AI can respond with during narratives.
- CalderaAI/13B-Thorns-l2
- A neutral and very attentive model. It is good at chat and following instructions, which help benefit these modes.
- KoboldAI/LLaMA2-13B-Tiefighter
- A solid all around model, focusing on story writing and adventure modes. It provides all around benefits to creativity and the prose in models, along with adventure mode support.
- chargoddard/rpguild-chatml-13b
- A roleplay model, which introduces new data and also improves the detail retention in longer narratives.
# Notes
- With the differing models inside, this model will not have perfect end of sequence tokens which is a problem many merges can share. While attempts have been made to minimise this, you may occasionally get oddly behaving tokens - this should be possible to resolve with a quick manual edit once and the model should pick up on it.
- Chat is one of the least tested areas for this model. It works fairly well, but it can be quite character card dependant.
- This is a narrative and prose focused model. As a result, it can and will talk for you if guided to do so (such as asking it to act as a co-author or narrator) within instructions or other contexts. This can be mitigated mostly by adding instructions to limit this, or using chat mode instead.
# Future areas
- Llava
- Some success has been had with merging the llava lora on this. While no in depth testing has been performed, more narrative responses based on the images could be obtained - though there were drawbacks in the form of degraded performance in other areas, and hallucinations due to the fictional focus of this model.
- Stheno
- A merge which has similar promise from Sao. Some merge attempts have been made between the two and were promising, but not entirely consistent at the moment. With some possible refinement, this could produce an even stronger model.
- DynamicFactor
- All the merges used have been based on llama two in this merge, but a dare merge with dynamic factor (an attempted refinement of llama two) showed a beneficial improvement to the instruction abilities of the model, along with lengthy responses. It lost a little of the variety of responses, so perhaps if a balance of it could be added the instruction abilities and reasoning could be improved even further. | {"license": "llama2", "inference": false} | text-generation | HQQHouse/LLaMA2-13B-Estopia-HQQ | [
"transformers",
"llama",
"text-generation",
"license:llama2",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:13:03+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #license-llama2 #autotrain_compatible #text-generation-inference #region-us
| # KoboldAI/LLaMA2-13B-Tiefighter-HQQ
This is KoboldAI's Estopia quantized to 4bit HQQ
# Usage
To run this quantization, you can use the following code.
# Read About HQQ
URL
________________________
# Original Readme
# Introduction
- Estopia is a model focused on improving the dialogue and prose returned when using the instruct format. As a side benefit, character cards and similar seem to have also improved, remembering details well in many cases.
- It focuses on "guided narratives" - using instructions to guide or explore fictional stories, where you act as a guide for the AI to narrate and fill in the details.
- It has primarily been tested around prose, using instructions to guide narrative, detail retention and "neutrality" - in particular with regards to plot armour. Unless you define different rules for your adventure / narrative with instructions, it should be realistic in the responses provided.
- It has been tested using different modes, such as instruct, chat, adventure and story modes - and should be able to do them all to a degree, with it's strengths being instruct and adventure, with story being a close second.
# Usage
- The Estopia model has been tested primarily using the Alpaca format, but with the range of models included likely has some understanding of others. Some examples of tested formats are below:
-
-
- Using the Kobold Lite AI adventure mode
-
- For settings, the following are recommended for general use:
- Temperature: 0.8-1.2
- Min P: 0.05-0.1
- Max P: 0.92, or 1 if using a Min P greater than 0
- Top K: 0
- Response length: Higher than your usual amount most likely - for example a common value selected is 512.
- Note: Response lengths are not guaranteed to always be this length. On occasion, responses may be shorter if they convey the response entirely, other times they could be upwards of this value. It depends mostly on the character card, instructions, etc.
- Rep Pen: 1.1
- Rep Pen Range: 2 or 3x your response length
- Stopping tokens (Not needed, but can help if the AI is writing too much):
- - A single string for Kobold Lite combining the ones below
-
-
-
-
-
- The settings above should provide a generally good experience balancing instruction following and creativity. Generally the higher you set the temperature, the greater the creativity and higher chance of logical errors when providing responses from the AI.
# Recipe
This model was made in three stages, along with many experimental stages which will be skipped for brevity. The first was internally referred to as EstopiaV9, which has a high degree of instruction following and creativity in responses, though they were generally shorter and a little more restricted in the scope of outputs, but conveyed nuance better.
The second part of the merge was known as EstopiaV13. This produced responses which were long, but tended to write beyond good stopping points for further instructions to be added as it leant heavily on novel style prose. It did however benefit from a greater degree of neutrality as described above, and retained many of the detail tracking abilities of V9.
The third step was a merge between the two to retain the benefits of both as much as possible. This was performed using the dare merging technique.
# Model selection
- Undi95/UtopiaXL-13B
- Solid all around base for models, with the ability to write longer responses and generally good retension to detail.
- Doctor-Shotgun/cat-v1.0-13b
- A medical focused model which is added to focus a little more on the human responses, such as for psycology.
- PygmalionAI/mythalion-13b
- A roleplay and instruct focused model, which improves attentiveness to character card details and the variety of responses
- Undi95/Emerhyst-13B
- A roleplay but also longer form response model. It can be quite variable, but helps add to the depth and possible options the AI can respond with during narratives.
- CalderaAI/13B-Thorns-l2
- A neutral and very attentive model. It is good at chat and following instructions, which help benefit these modes.
- KoboldAI/LLaMA2-13B-Tiefighter
- A solid all around model, focusing on story writing and adventure modes. It provides all around benefits to creativity and the prose in models, along with adventure mode support.
- chargoddard/rpguild-chatml-13b
- A roleplay model, which introduces new data and also improves the detail retention in longer narratives.
# Notes
- With the differing models inside, this model will not have perfect end of sequence tokens which is a problem many merges can share. While attempts have been made to minimise this, you may occasionally get oddly behaving tokens - this should be possible to resolve with a quick manual edit once and the model should pick up on it.
- Chat is one of the least tested areas for this model. It works fairly well, but it can be quite character card dependant.
- This is a narrative and prose focused model. As a result, it can and will talk for you if guided to do so (such as asking it to act as a co-author or narrator) within instructions or other contexts. This can be mitigated mostly by adding instructions to limit this, or using chat mode instead.
# Future areas
- Llava
- Some success has been had with merging the llava lora on this. While no in depth testing has been performed, more narrative responses based on the images could be obtained - though there were drawbacks in the form of degraded performance in other areas, and hallucinations due to the fictional focus of this model.
- Stheno
- A merge which has similar promise from Sao. Some merge attempts have been made between the two and were promising, but not entirely consistent at the moment. With some possible refinement, this could produce an even stronger model.
- DynamicFactor
- All the merges used have been based on llama two in this merge, but a dare merge with dynamic factor (an attempted refinement of llama two) showed a beneficial improvement to the instruction abilities of the model, along with lengthy responses. It lost a little of the variety of responses, so perhaps if a balance of it could be added the instruction abilities and reasoning could be improved even further. | [
"# KoboldAI/LLaMA2-13B-Tiefighter-HQQ\nThis is KoboldAI's Estopia quantized to 4bit HQQ",
"# Usage\nTo run this quantization, you can use the following code.",
"# Read About HQQ\nURL\n________________________",
"# Original Readme",
"# Introduction\n- Estopia is a model focused on improving the dialogue and prose returned when using the instruct format. As a side benefit, character cards and similar seem to have also improved, remembering details well in many cases.\n- It focuses on \"guided narratives\" - using instructions to guide or explore fictional stories, where you act as a guide for the AI to narrate and fill in the details.\n- It has primarily been tested around prose, using instructions to guide narrative, detail retention and \"neutrality\" - in particular with regards to plot armour. Unless you define different rules for your adventure / narrative with instructions, it should be realistic in the responses provided.\n- It has been tested using different modes, such as instruct, chat, adventure and story modes - and should be able to do them all to a degree, with it's strengths being instruct and adventure, with story being a close second.",
"# Usage\n- The Estopia model has been tested primarily using the Alpaca format, but with the range of models included likely has some understanding of others. Some examples of tested formats are below:\n - \n - \n - Using the Kobold Lite AI adventure mode\n - \n- For settings, the following are recommended for general use:\n - Temperature: 0.8-1.2\n - Min P: 0.05-0.1\n - Max P: 0.92, or 1 if using a Min P greater than 0\n - Top K: 0\n - Response length: Higher than your usual amount most likely - for example a common value selected is 512.\n - Note: Response lengths are not guaranteed to always be this length. On occasion, responses may be shorter if they convey the response entirely, other times they could be upwards of this value. It depends mostly on the character card, instructions, etc.\n - Rep Pen: 1.1\n - Rep Pen Range: 2 or 3x your response length\n - Stopping tokens (Not needed, but can help if the AI is writing too much):\n - - A single string for Kobold Lite combining the ones below\n - \n - \n - \n - \n - \n- The settings above should provide a generally good experience balancing instruction following and creativity. Generally the higher you set the temperature, the greater the creativity and higher chance of logical errors when providing responses from the AI.",
"# Recipe\nThis model was made in three stages, along with many experimental stages which will be skipped for brevity. The first was internally referred to as EstopiaV9, which has a high degree of instruction following and creativity in responses, though they were generally shorter and a little more restricted in the scope of outputs, but conveyed nuance better.\n\nThe second part of the merge was known as EstopiaV13. This produced responses which were long, but tended to write beyond good stopping points for further instructions to be added as it leant heavily on novel style prose. It did however benefit from a greater degree of neutrality as described above, and retained many of the detail tracking abilities of V9.\n\nThe third step was a merge between the two to retain the benefits of both as much as possible. This was performed using the dare merging technique.",
"# Model selection\n- Undi95/UtopiaXL-13B\n - Solid all around base for models, with the ability to write longer responses and generally good retension to detail.\n- Doctor-Shotgun/cat-v1.0-13b\n - A medical focused model which is added to focus a little more on the human responses, such as for psycology.\n- PygmalionAI/mythalion-13b\n - A roleplay and instruct focused model, which improves attentiveness to character card details and the variety of responses\n- Undi95/Emerhyst-13B\n - A roleplay but also longer form response model. It can be quite variable, but helps add to the depth and possible options the AI can respond with during narratives.\n- CalderaAI/13B-Thorns-l2\n - A neutral and very attentive model. It is good at chat and following instructions, which help benefit these modes.\n- KoboldAI/LLaMA2-13B-Tiefighter\n - A solid all around model, focusing on story writing and adventure modes. It provides all around benefits to creativity and the prose in models, along with adventure mode support.\n- chargoddard/rpguild-chatml-13b\n - A roleplay model, which introduces new data and also improves the detail retention in longer narratives.",
"# Notes\n- With the differing models inside, this model will not have perfect end of sequence tokens which is a problem many merges can share. While attempts have been made to minimise this, you may occasionally get oddly behaving tokens - this should be possible to resolve with a quick manual edit once and the model should pick up on it.\n- Chat is one of the least tested areas for this model. It works fairly well, but it can be quite character card dependant.\n- This is a narrative and prose focused model. As a result, it can and will talk for you if guided to do so (such as asking it to act as a co-author or narrator) within instructions or other contexts. This can be mitigated mostly by adding instructions to limit this, or using chat mode instead.",
"# Future areas\n- Llava\n - Some success has been had with merging the llava lora on this. While no in depth testing has been performed, more narrative responses based on the images could be obtained - though there were drawbacks in the form of degraded performance in other areas, and hallucinations due to the fictional focus of this model.\n- Stheno\n - A merge which has similar promise from Sao. Some merge attempts have been made between the two and were promising, but not entirely consistent at the moment. With some possible refinement, this could produce an even stronger model.\n- DynamicFactor\n - All the merges used have been based on llama two in this merge, but a dare merge with dynamic factor (an attempted refinement of llama two) showed a beneficial improvement to the instruction abilities of the model, along with lengthy responses. It lost a little of the variety of responses, so perhaps if a balance of it could be added the instruction abilities and reasoning could be improved even further."
] | [
"TAGS\n#transformers #llama #text-generation #license-llama2 #autotrain_compatible #text-generation-inference #region-us \n",
"# KoboldAI/LLaMA2-13B-Tiefighter-HQQ\nThis is KoboldAI's Estopia quantized to 4bit HQQ",
"# Usage\nTo run this quantization, you can use the following code.",
"# Read About HQQ\nURL\n________________________",
"# Original Readme",
"# Introduction\n- Estopia is a model focused on improving the dialogue and prose returned when using the instruct format. As a side benefit, character cards and similar seem to have also improved, remembering details well in many cases.\n- It focuses on \"guided narratives\" - using instructions to guide or explore fictional stories, where you act as a guide for the AI to narrate and fill in the details.\n- It has primarily been tested around prose, using instructions to guide narrative, detail retention and \"neutrality\" - in particular with regards to plot armour. Unless you define different rules for your adventure / narrative with instructions, it should be realistic in the responses provided.\n- It has been tested using different modes, such as instruct, chat, adventure and story modes - and should be able to do them all to a degree, with it's strengths being instruct and adventure, with story being a close second.",
"# Usage\n- The Estopia model has been tested primarily using the Alpaca format, but with the range of models included likely has some understanding of others. Some examples of tested formats are below:\n - \n - \n - Using the Kobold Lite AI adventure mode\n - \n- For settings, the following are recommended for general use:\n - Temperature: 0.8-1.2\n - Min P: 0.05-0.1\n - Max P: 0.92, or 1 if using a Min P greater than 0\n - Top K: 0\n - Response length: Higher than your usual amount most likely - for example a common value selected is 512.\n - Note: Response lengths are not guaranteed to always be this length. On occasion, responses may be shorter if they convey the response entirely, other times they could be upwards of this value. It depends mostly on the character card, instructions, etc.\n - Rep Pen: 1.1\n - Rep Pen Range: 2 or 3x your response length\n - Stopping tokens (Not needed, but can help if the AI is writing too much):\n - - A single string for Kobold Lite combining the ones below\n - \n - \n - \n - \n - \n- The settings above should provide a generally good experience balancing instruction following and creativity. Generally the higher you set the temperature, the greater the creativity and higher chance of logical errors when providing responses from the AI.",
"# Recipe\nThis model was made in three stages, along with many experimental stages which will be skipped for brevity. The first was internally referred to as EstopiaV9, which has a high degree of instruction following and creativity in responses, though they were generally shorter and a little more restricted in the scope of outputs, but conveyed nuance better.\n\nThe second part of the merge was known as EstopiaV13. This produced responses which were long, but tended to write beyond good stopping points for further instructions to be added as it leant heavily on novel style prose. It did however benefit from a greater degree of neutrality as described above, and retained many of the detail tracking abilities of V9.\n\nThe third step was a merge between the two to retain the benefits of both as much as possible. This was performed using the dare merging technique.",
"# Model selection\n- Undi95/UtopiaXL-13B\n - Solid all around base for models, with the ability to write longer responses and generally good retension to detail.\n- Doctor-Shotgun/cat-v1.0-13b\n - A medical focused model which is added to focus a little more on the human responses, such as for psycology.\n- PygmalionAI/mythalion-13b\n - A roleplay and instruct focused model, which improves attentiveness to character card details and the variety of responses\n- Undi95/Emerhyst-13B\n - A roleplay but also longer form response model. It can be quite variable, but helps add to the depth and possible options the AI can respond with during narratives.\n- CalderaAI/13B-Thorns-l2\n - A neutral and very attentive model. It is good at chat and following instructions, which help benefit these modes.\n- KoboldAI/LLaMA2-13B-Tiefighter\n - A solid all around model, focusing on story writing and adventure modes. It provides all around benefits to creativity and the prose in models, along with adventure mode support.\n- chargoddard/rpguild-chatml-13b\n - A roleplay model, which introduces new data and also improves the detail retention in longer narratives.",
"# Notes\n- With the differing models inside, this model will not have perfect end of sequence tokens which is a problem many merges can share. While attempts have been made to minimise this, you may occasionally get oddly behaving tokens - this should be possible to resolve with a quick manual edit once and the model should pick up on it.\n- Chat is one of the least tested areas for this model. It works fairly well, but it can be quite character card dependant.\n- This is a narrative and prose focused model. As a result, it can and will talk for you if guided to do so (such as asking it to act as a co-author or narrator) within instructions or other contexts. This can be mitigated mostly by adding instructions to limit this, or using chat mode instead.",
"# Future areas\n- Llava\n - Some success has been had with merging the llava lora on this. While no in depth testing has been performed, more narrative responses based on the images could be obtained - though there were drawbacks in the form of degraded performance in other areas, and hallucinations due to the fictional focus of this model.\n- Stheno\n - A merge which has similar promise from Sao. Some merge attempts have been made between the two and were promising, but not entirely consistent at the moment. With some possible refinement, this could produce an even stronger model.\n- DynamicFactor\n - All the merges used have been based on llama two in this merge, but a dare merge with dynamic factor (an attempted refinement of llama two) showed a beneficial improvement to the instruction abilities of the model, along with lengthy responses. It lost a little of the variety of responses, so perhaps if a balance of it could be added the instruction abilities and reasoning could be improved even further."
] | [
41,
33,
16,
9,
4,
206,
298,
197,
289,
182,
230
] | [
"passage: TAGS\n#transformers #llama #text-generation #license-llama2 #autotrain_compatible #text-generation-inference #region-us \n# KoboldAI/LLaMA2-13B-Tiefighter-HQQ\nThis is KoboldAI's Estopia quantized to 4bit HQQ# Usage\nTo run this quantization, you can use the following code.# Read About HQQ\nURL\n________________________# Original Readme# Introduction\n- Estopia is a model focused on improving the dialogue and prose returned when using the instruct format. As a side benefit, character cards and similar seem to have also improved, remembering details well in many cases.\n- It focuses on \"guided narratives\" - using instructions to guide or explore fictional stories, where you act as a guide for the AI to narrate and fill in the details.\n- It has primarily been tested around prose, using instructions to guide narrative, detail retention and \"neutrality\" - in particular with regards to plot armour. Unless you define different rules for your adventure / narrative with instructions, it should be realistic in the responses provided.\n- It has been tested using different modes, such as instruct, chat, adventure and story modes - and should be able to do them all to a degree, with it's strengths being instruct and adventure, with story being a close second.",
"passage: # Usage\n- The Estopia model has been tested primarily using the Alpaca format, but with the range of models included likely has some understanding of others. Some examples of tested formats are below:\n - \n - \n - Using the Kobold Lite AI adventure mode\n - \n- For settings, the following are recommended for general use:\n - Temperature: 0.8-1.2\n - Min P: 0.05-0.1\n - Max P: 0.92, or 1 if using a Min P greater than 0\n - Top K: 0\n - Response length: Higher than your usual amount most likely - for example a common value selected is 512.\n - Note: Response lengths are not guaranteed to always be this length. On occasion, responses may be shorter if they convey the response entirely, other times they could be upwards of this value. It depends mostly on the character card, instructions, etc.\n - Rep Pen: 1.1\n - Rep Pen Range: 2 or 3x your response length\n - Stopping tokens (Not needed, but can help if the AI is writing too much):\n - - A single string for Kobold Lite combining the ones below\n - \n - \n - \n - \n - \n- The settings above should provide a generally good experience balancing instruction following and creativity. Generally the higher you set the temperature, the greater the creativity and higher chance of logical errors when providing responses from the AI.# Recipe\nThis model was made in three stages, along with many experimental stages which will be skipped for brevity. The first was internally referred to as EstopiaV9, which has a high degree of instruction following and creativity in responses, though they were generally shorter and a little more restricted in the scope of outputs, but conveyed nuance better.\n\nThe second part of the merge was known as EstopiaV13. This produced responses which were long, but tended to write beyond good stopping points for further instructions to be added as it leant heavily on novel style prose. It did however benefit from a greater degree of neutrality as described above, and retained many of the detail tracking abilities of V9.\n\nThe third step was a merge between the two to retain the benefits of both as much as possible. This was performed using the dare merging technique.# Model selection\n- Undi95/UtopiaXL-13B\n - Solid all around base for models, with the ability to write longer responses and generally good retension to detail.\n- Doctor-Shotgun/cat-v1.0-13b\n - A medical focused model which is added to focus a little more on the human responses, such as for psycology.\n- PygmalionAI/mythalion-13b\n - A roleplay and instruct focused model, which improves attentiveness to character card details and the variety of responses\n- Undi95/Emerhyst-13B\n - A roleplay but also longer form response model. It can be quite variable, but helps add to the depth and possible options the AI can respond with during narratives.\n- CalderaAI/13B-Thorns-l2\n - A neutral and very attentive model. It is good at chat and following instructions, which help benefit these modes.\n- KoboldAI/LLaMA2-13B-Tiefighter\n - A solid all around model, focusing on story writing and adventure modes. It provides all around benefits to creativity and the prose in models, along with adventure mode support.\n- chargoddard/rpguild-chatml-13b\n - A roleplay model, which introduces new data and also improves the detail retention in longer narratives."
] | [
-0.05784781277179718,
-0.043537355959415436,
-0.0031391053926199675,
0.023577086627483368,
0.04931917041540146,
0.0014427045825868845,
0.05432021617889404,
0.08250676840543747,
0.0744464099407196,
0.0527547225356102,
0.07082908600568771,
-0.03941962495446205,
0.06605841219425201,
0.08507920056581497,
0.01861565001308918,
-0.16677160561084747,
0.06548012048006058,
-0.06355510652065277,
0.0581631101667881,
0.07894830405712128,
0.07056353241205215,
-0.08218642324209213,
0.024304604157805443,
0.018678024411201477,
0.022798338904976845,
-0.0030363157857209444,
-0.005823737476021051,
-0.010180361568927765,
0.14175426959991455,
0.055154409259557724,
0.09382881224155426,
0.0018223533406853676,
0.0221417136490345,
-0.21043530106544495,
0.02749437652528286,
0.03981558233499527,
0.005568447522819042,
-0.02031603269279003,
0.013163328170776367,
0.08024159073829651,
0.12268362939357758,
-0.054964832961559296,
0.045933544635772705,
0.03690268099308014,
-0.054002486169338226,
-0.047745488584041595,
-0.04829609394073486,
0.03631889075040817,
0.13925370573997498,
0.07238055765628815,
-0.038055624812841415,
0.07313334196805954,
-0.018173160031437874,
0.04938704892992973,
0.13898839056491852,
-0.1591958999633789,
-0.015401742421090603,
-0.0017978707328438759,
0.1001189649105072,
0.05378739535808563,
-0.04398440569639206,
0.04448186978697777,
0.030392702668905258,
0.01755594275891781,
-0.031964290887117386,
-0.02160453423857689,
0.10540986806154251,
0.01565500907599926,
-0.08816565573215485,
-0.05273980274796486,
0.1250559389591217,
-0.0002560224384069443,
-0.11682277917861938,
-0.0976688489317894,
-0.015885133296251297,
-0.01639021374285221,
0.042078256607055664,
-0.09406515955924988,
-0.004751335363835096,
-0.010404210537672043,
0.12188264727592468,
-0.0612831637263298,
-0.15453049540519714,
-0.027361024171113968,
-0.055763836950063705,
0.11445766687393188,
0.044696103781461716,
0.012261561118066311,
-0.03952381759881973,
0.08502694219350815,
-0.02162393555045128,
-0.028011765331029892,
-0.07449080049991608,
-0.025786643847823143,
-0.11353417485952377,
0.002184836892411113,
-0.06400163471698761,
-0.060180723667144775,
0.019407659769058228,
-0.04788399860262871,
-0.006458956748247147,
0.025066863745450974,
0.05830228328704834,
0.04255057871341705,
0.06493107229471207,
0.08261086046695709,
0.007697504013776779,
0.02123800665140152,
0.04453665018081665,
0.08684425055980682,
0.04216640815138817,
-0.08764070272445679,
-0.07025991380214691,
-0.009346379898488522,
0.0517263263463974,
0.0644618347287178,
-0.0168519988656044,
-0.031469784677028656,
-0.038543183356523514,
-0.006641820073127747,
0.040884871035814285,
-0.11301474273204803,
-0.026706073433160782,
-0.03452049940824509,
-0.014983137138187885,
0.026333924382925034,
-0.030058344826102257,
-0.0036182880867272615,
-0.05042035132646561,
0.021282365545630455,
-0.042410656809806824,
-0.02220575325191021,
-0.071630097925663,
-0.062062330543994904,
0.03678378090262413,
0.03864160180091858,
-0.05606149137020111,
-0.1386832743883133,
-0.13583959639072418,
-0.03718835487961769,
0.03227612376213074,
-0.010900779627263546,
0.004192677326500416,
0.009784526191651821,
-0.004101624712347984,
-0.013231361284852028,
0.021317388862371445,
-0.07717704027891159,
-0.030724532902240753,
0.027384361252188683,
-0.029664885252714157,
0.0669967383146286,
-0.011277695186436176,
-0.005663887597620487,
-0.04167778789997101,
0.042483069002628326,
-0.08765880018472672,
0.06620854884386063,
0.009821152314543724,
-0.03459124267101288,
-0.01777784340083599,
0.0048562753945589066,
0.07628689706325531,
0.0434129498898983,
-0.0158432275056839,
0.11167065799236298,
-0.19029466807842255,
-0.011460336856544018,
0.050831034779548645,
-0.12237181514501572,
-0.05721106752753258,
0.17491041123867035,
-0.03511660173535347,
0.054916106164455414,
0.09128165245056152,
0.11461228132247925,
0.1283905953168869,
-0.12754729390144348,
-0.030222173780202866,
-0.004429780878126621,
-0.027149397879838943,
0.13341933488845825,
0.035014376044273376,
0.03347163274884224,
-0.05378133803606033,
0.01975773274898529,
-0.024095796048641205,
-0.05435501039028168,
0.0068076723255217075,
-0.04608234018087387,
-0.027186144143342972,
0.0010161316022276878,
-0.0023043453693389893,
-0.032821036875247955,
-0.024935942143201828,
-0.04802398756146431,
-0.07204960286617279,
-0.0893470048904419,
0.1199401319026947,
-0.06700991094112396,
0.06002703309059143,
-0.08826756477355957,
0.10216192901134491,
0.04221191257238388,
-0.0003207237459719181,
-0.07298320531845093,
-0.031437426805496216,
0.047645844519138336,
-0.12015202641487122,
0.03932986408472061,
0.16177892684936523,
-0.009890507906675339,
0.0897480919957161,
-0.03499540314078331,
-0.001624461030587554,
-0.07900921255350113,
-0.02994580566883087,
-0.07030173391103745,
-0.11869300156831741,
-0.0020024236291646957,
-0.05189364776015282,
0.10239778459072113,
-0.11286717653274536,
-0.017315536737442017,
0.03684843331575394,
0.009774144738912582,
-0.007754012476652861,
-0.040132999420166016,
-0.004853840917348862,
-0.0014160964637994766,
-0.06405322998762131,
0.002542925765737891,
-0.008573297411203384,
-0.02540530636906624,
-0.14929603040218353,
0.06932324916124344,
-0.228225439786911,
-0.12417332082986832,
0.056107617914676666,
0.06499999761581421,
-0.05604661628603935,
-0.10102301090955734,
0.006670098751783371,
-0.016481710597872734,
-0.0941387414932251,
-0.09356994926929474,
0.18125566840171814,
0.03210947662591934,
0.06569688022136688,
-0.09063352644443512,
-0.05017636716365814,
-0.022600697353482246,
-0.05017808452248573,
-0.021817196160554886,
0.06859986484050751,
-0.028170816600322723,
-0.16711550951004028,
-0.0230396818369627,
0.059414301067590714,
-0.02540729008615017,
0.21360665559768677,
0.060246165841817856,
-0.0750972107052803,
-0.050676509737968445,
0.06471007317304611,
0.016529006883502007,
0.12779881060123444,
-0.10961717367172241,
0.006722115445882082,
0.0169998612254858,
0.033767469227313995,
-0.009540134109556675,
-0.13859817385673523,
-0.012179887853562832,
0.03890014439821243,
-0.04459378868341446,
-0.031131496652960777,
0.006573897786438465,
-0.04145427048206329,
0.09728015214204788,
0.022325964644551277,
0.025043455883860588,
-0.015170465223491192,
-0.07583476603031158,
-0.09821242094039917,
0.1579791009426117,
-0.07151451706886292,
-0.303386926651001,
-0.08841277658939362,
0.06819238513708115,
-0.05238046869635582,
0.012713149189949036,
0.044407181441783905,
-0.14288492500782013,
-0.051004018634557724,
-0.12116120755672455,
0.026485726237297058,
-0.08179312199354172,
-0.018259041011333466,
-0.08964620530605316,
0.032756395637989044,
-0.014743069186806679,
-0.06413911283016205,
-0.015693068504333496,
-0.028306186199188232,
-0.08100894838571548,
0.041334740817546844,
0.010186951607465744,
0.08610428869724274,
0.1287240982055664,
-0.033254772424697876,
-0.015366863459348679,
-0.04141688719391823,
0.13735169172286987,
-0.07225172221660614,
0.06325049698352814,
0.17249898612499237,
-0.005208849906921387,
0.0754888504743576,
0.10471996665000916,
-0.005072120577096939,
-0.055203184485435486,
0.06719841063022614,
0.01526685431599617,
-0.055749282240867615,
-0.144846111536026,
-0.010704193264245987,
-0.06082804501056671,
-0.01630864292383194,
-0.00675576739013195,
0.03887965530157089,
-0.009540148079395294,
0.02401960827410221,
-0.072568878531456,
0.015344975516200066,
0.0005220901221036911,
0.07031910866498947,
0.1063920110464096,
-0.013764724135398865,
0.059134580194950104,
-0.018374502658843994,
-0.021974455565214157,
0.08610620349645615,
0.06909758597612381,
0.2325131893157959,
-0.03930522873997688,
0.03527000546455383,
0.06499841064214706,
0.06909847259521484,
-0.006855987012386322,
0.0107534509152174,
0.00011768471449613571,
-0.021662801504135132,
-0.06529790163040161,
-0.030145499855279922,
-0.06630630791187286,
0.11480165272951126,
0.05456755310297012,
-0.0339636504650116,
-0.07203708589076996,
0.09944668412208557,
0.04541453719139099,
0.05050680413842201,
0.0657215416431427,
-0.04040020331740379,
-0.028466787189245224,
0.05563858523964882,
-0.08248607814311981,
-0.0600208044052124,
0.03244951367378235,
0.16447389125823975,
-0.1074942797422409,
0.021212272346019745,
-0.007555569056421518,
0.03812483325600624,
-0.08477339893579483,
0.018770042806863785,
-0.09511880576610565,
0.047155044972896576,
-0.00996782910078764,
0.11177100986242294,
-0.15082396566867828,
0.18242016434669495,
0.012684963643550873,
0.07276318967342377,
-0.07469074428081512,
-0.013123624958097935,
0.05924961715936661,
0.046799156814813614,
0.10990351438522339,
0.037146855145692825,
-0.03675850108265877,
-0.1005864143371582,
-0.015929006040096283,
0.06935669481754303,
0.08899632096290588,
-0.028979670256376266,
0.08238166570663452,
-0.03583288565278053,
0.0448160320520401,
-0.04616294801235199,
0.07731332629919052,
-0.10181428492069244,
-0.16971752047538757,
0.08230271935462952,
0.014452571049332619,
-0.05652667582035065,
-0.05640145763754845,
-0.0331902801990509,
0.06778134405612946,
0.10023432970046997,
-0.021926959976553917,
-0.03781548887491226,
-0.0762748271226883,
-0.03598158061504364,
0.03800215572118759,
-0.07888123393058777,
0.0013530254364013672,
-0.019649365916848183,
0.12906451523303986,
-0.07075214385986328,
-0.0016260650008916855,
-0.005894330330193043,
-0.07285340130329132,
-0.13488124310970306,
-0.06224793568253517,
0.04388134181499481,
0.09357442706823349,
0.06594405323266983,
0.03155456855893135,
-0.00906501803547144,
-0.06384623050689697,
-0.0979798287153244,
0.007893252186477184,
0.06496217101812363,
-0.042984358966350555,
0.034502044320106506,
-0.02181992679834366,
0.11659492552280426,
-0.12147770822048187,
-0.11326843500137329,
0.1213245689868927,
0.2713768482208252,
-0.042556747794151306,
0.1239832192659378,
0.1043018251657486,
-0.07615083456039429,
-0.20797918736934662,
-0.06157544255256653,
0.014974597841501236,
0.033204082399606705,
-0.015660464763641357,
-0.06758391857147217,
0.0005042003467679024,
0.053632475435733795,
-0.00993144791573286,
0.013404698111116886,
-0.14234618842601776,
-0.12986454367637634,
0.02578089013695717,
0.08601049333810806,
0.16919223964214325,
-0.11220874637365341,
0.015008687973022461,
-0.07055430114269257,
0.06369234621524811,
0.046469904482364655,
-0.04766448587179184,
0.10680912435054779,
-0.008509404957294464,
0.059183064848184586,
0.027741098776459694,
-0.03598708659410477,
0.18564900755882263,
-0.05557548999786377,
0.044888585805892944,
-0.033154308795928955,
0.0334591418504715,
-0.000001817941665649414,
-0.08586376160383224,
0.09136083722114563,
-0.07956565916538239,
-0.006229121703654528,
-0.11049129068851471,
-0.05909108370542526,
-0.05772816762328148,
0.043942082673311234,
-0.03321244195103645,
-0.05888339504599571,
-0.09644736349582672,
0.07289422303438187,
0.04013447463512421,
0.0014014365151524544,
-0.04913013055920601,
-0.08875623345375061,
0.024139806628227234,
0.06393089145421982,
0.16873708367347717,
-0.07230355590581894,
-0.049048371613025665,
0.051241934299468994,
0.0027000107802450657,
0.07041554152965546,
-0.10437744855880737,
0.00751735083758831,
0.06791305541992188,
-0.013045677915215492,
0.11803753674030304,
0.026565350592136383,
-0.10637494176626205,
0.05983240529894829,
0.060417622327804565,
-0.10442808270454407,
-0.19839993119239807,
-0.010717515833675861,
0.1357363760471344,
-0.044291868805885315,
-0.014156714081764221,
0.1355956792831421,
-0.057674817740917206,
0.0006331689655780792,
-0.026131827384233475,
0.05975053086876869,
0.035694949328899384,
0.09706342220306396,
-0.004050303716212511,
0.050970934331417084,
-0.04558815062046051,
0.056999824941158295,
-0.0006257654167711735,
-0.12485513091087341,
0.11217861622571945,
0.041505493223667145,
-0.06065122038125992,
-0.05717473849654198,
-0.08141188323497772,
0.028417881578207016,
-0.012667682021856308,
-0.08538743853569031,
-0.04274358972907066,
-0.09688322991132736,
0.011644469574093819,
0.10017824918031693,
0.03322257846593857,
-0.0035498575307428837,
-0.02715303748846054,
0.00759879220277071,
-0.06608787924051285,
0.056474532932043076,
0.029793018475174904,
0.007679835427552462,
-0.08430485427379608,
0.07857848703861237,
0.0347040593624115,
0.050471194088459015,
-0.01419808715581894,
-0.0544334277510643,
-0.04939251393079758,
0.013962439261376858,
-0.1116560846567154,
-0.0052315182983875275,
-0.05165534466505051,
-0.011966799385845661,
0.03522159159183502,
0.00014378130435943604,
0.009018143638968468,
0.023404579609632492,
-0.06472340226173401,
-0.014462711289525032,
-0.04604204744100571,
0.007042417768388987,
-0.0747685432434082,
-0.022396305575966835,
0.09770400822162628,
-0.08893260359764099,
0.07772804796695709,
-0.011481218039989471,
-0.07506720721721649,
0.042158886790275574,
-0.14545971155166626,
0.07198783755302429,
-0.011017595417797565,
0.07729934900999069,
0.003302559955045581,
-0.12533538043498993,
-0.0067165084183216095,
0.01312034297734499,
0.006930876523256302,
0.021754449233412743,
0.10891857743263245,
-0.04295358434319496,
-0.005145116709172726,
0.03623158484697342,
-0.10541421175003052,
-0.07767561078071594,
0.015388671308755875,
0.009380022063851357,
0.019800661131739616,
0.10125705599784851,
-0.049773212522268295,
0.054378002882003784,
-0.09957911819219589,
-0.030358977615833282,
0.052023112773895264,
0.018188292160630226,
-0.03539307415485382,
-0.09867089986801147,
0.05048799514770508,
-0.01984681561589241,
0.09083929657936096,
-0.025196468457579613,
0.04826551675796509,
0.02911464124917984,
-0.05393890663981438,
0.0769723504781723,
-0.05165329948067665,
-0.001465700101107359,
-0.022537335753440857,
0.0016666073352098465,
-0.03315692022442818,
-0.0469357930123806,
0.03129290044307709,
-0.04800716042518616,
0.16209305822849274,
0.022974496707320213,
0.06597161293029785,
0.07102729380130768,
-0.01200827769935131,
-0.0077933669090271,
-0.04259049519896507,
-0.06534326076507568,
-0.06643162667751312,
0.08162469416856766,
-0.0014981855638325214,
0.05693665146827698,
0.195286825299263,
-0.11860551685094833,
0.07957886904478073,
-0.08697180449962616,
-0.08540314435958862,
-0.10417652130126953,
-0.12082486599683762,
-0.03161207586526871,
-0.08435393869876862,
0.021397896111011505,
-0.1040254607796669,
0.06993528455495834,
0.031182007864117622,
0.03415341675281525,
-0.010795106180012226,
0.12507933378219604,
-0.0005996469408273697,
-0.042156629264354706,
0.05911090970039368,
0.010131150484085083,
0.04631352424621582,
0.0995505303144455,
0.008411149494349957,
0.005014891270548105,
-0.05277838557958603,
0.024577345699071884,
0.08313219249248505,
0.022875631228089333,
0.004552105441689491,
-0.048293109983205795,
-0.04082163795828819,
0.012966016307473183,
-0.03588642179965973,
0.024463417008519173,
0.1443663239479065,
0.05771154165267944,
-0.06358851492404938,
-0.007876787334680557,
0.16705860197544098,
-0.05406078323721886,
-0.05879686772823334,
-0.09655839949846268,
0.18280193209648132,
0.008562320843338966,
0.008292078971862793,
-0.002182160969823599,
-0.07049502432346344,
0.016243623569607735,
0.21158865094184875,
0.04152229055762291,
-0.07798217236995697,
-0.012724838219583035,
-0.043600283563137054,
0.007405757904052734,
-0.023208238184452057,
0.1341046839952469,
0.06337982416152954,
0.25322189927101135,
-0.0781170129776001,
0.0723622590303421,
-0.05695517733693123,
-0.011709233745932579,
-0.06971809267997742,
0.10060329735279083,
-0.0042223744094371796,
0.0234301146119833,
-0.10323221236467361,
0.043965838849544525,
0.027655495330691338,
-0.18393346667289734,
0.00040938612073659897,
-0.03413987532258034,
-0.03366114944219589,
0.009244363754987717,
0.16339702904224396,
-0.07386191189289093,
0.1016034260392189,
-0.016612188890576363,
0.027830280363559723,
0.08214826881885529,
0.011051137000322342,
-0.07733357697725296,
-0.028757762163877487,
0.1236429214477539,
0.006318756379187107,
0.1282736212015152,
0.038198716938495636,
0.08877524733543396,
0.0795091837644577,
0.006588161922991276,
-0.0479278564453125,
0.10495378077030182,
0.058165982365608215,
-0.04769907146692276,
-0.0028728656470775604,
0.17489582300186157,
0.02407762221992016,
0.003644293174147606,
0.12145592272281647,
0.014067811891436577,
0.07319855690002441,
-0.028452131897211075,
0.029901612550020218,
-0.055793505162000656,
0.1140010803937912,
-0.09565094113349915,
0.13333037495613098,
0.12620875239372253,
-0.015767492353916168,
0.02461763098835945,
-0.03868453949689865,
-0.015696164220571518,
-0.02529478818178177,
0.05011242628097534,
0.009789185598492622,
-0.09886573255062103,
0.017529064789414406,
0.03361087664961815,
0.037386491894721985,
-0.26179060339927673,
-0.10514506697654724,
0.047219254076480865,
-0.01700752042233944,
-0.006608941592276096,
0.11063751578330994,
0.0436115488409996,
0.010480282828211784,
-0.04168260470032692,
-0.029850633814930916,
0.001249745488166809,
0.08481850475072861,
-0.06297296285629272,
-0.06384804844856262
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tfm_qa_torch_spanish
This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 3 | 2.8229 |
| No log | 2.0 | 6 | 2.6078 |
| No log | 3.0 | 9 | 2.5237 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"tags": ["generated_from_trainer"], "base_model": "dccuchile/distilbert-base-spanish-uncased", "model-index": [{"name": "tfm_qa_torch_spanish", "results": []}]} | question-answering | joseTfm/tfm_qa_torch_spanish | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"question-answering",
"generated_from_trainer",
"base_model:dccuchile/distilbert-base-spanish-uncased",
"endpoints_compatible",
"region:us"
] | 2024-02-06T22:14:35+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-dccuchile/distilbert-base-spanish-uncased #endpoints_compatible #region-us
| tfm\_qa\_torch\_spanish
=======================
This model is a fine-tuned version of dccuchile/distilbert-base-spanish-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 2.5237
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-dccuchile/distilbert-base-spanish-uncased #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
65,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #distilbert #question-answering #generated_from_trainer #base_model-dccuchile/distilbert-base-spanish-uncased #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.12850894033908844,
0.0666399821639061,
-0.0024004443548619747,
0.10218407213687897,
0.14692945778369904,
0.02715647965669632,
0.1258968710899353,
0.09909100830554962,
-0.06455446779727936,
0.07714042067527771,
0.13083802163600922,
0.12135428935289383,
-0.009120190516114235,
0.0713157057762146,
-0.07120738923549652,
-0.21671804785728455,
-0.005265796557068825,
0.03963487595319748,
-0.09531428664922714,
0.10626023262739182,
0.07598402351140976,
-0.1446782797574997,
0.06535155326128006,
-0.023384906351566315,
-0.18919876217842102,
0.03105955943465233,
0.009330560453236103,
-0.0383988618850708,
0.12018190324306488,
0.02048671990633011,
0.16897694766521454,
0.0340319462120533,
0.07630210369825363,
-0.17735812067985535,
0.01643083244562149,
0.047698695212602615,
0.003226205939427018,
0.07504447549581528,
0.03545971214771271,
-0.012216986157000065,
0.08118220418691635,
-0.10879524052143097,
0.06088779866695404,
0.01563095673918724,
-0.14217686653137207,
-0.22157776355743408,
-0.08352115005254745,
0.023902375251054764,
0.08274291455745697,
0.09524225443601608,
-0.016285452991724014,
0.1323484629392624,
-0.08393581956624985,
0.08238594233989716,
0.230645552277565,
-0.2934213876724243,
-0.08075007051229477,
0.0452021099627018,
0.02944938652217388,
0.07705379277467728,
-0.10170246660709381,
-0.02581864967942238,
0.07963360100984573,
0.019035372883081436,
0.07271893322467804,
-0.04629739001393318,
-0.07698444277048111,
0.01598813384771347,
-0.1418880969285965,
-0.0016912819119170308,
0.14090374112129211,
0.05083321034908295,
-0.041699156165122986,
-0.02441660314798355,
-0.06574252247810364,
-0.1184142678976059,
-0.03468263894319534,
-0.053007375448942184,
0.036571383476257324,
-0.05659204348921776,
-0.08496028929948807,
-0.010436922311782837,
-0.1015358418226242,
-0.0943235456943512,
-0.05711625516414642,
0.20164036750793457,
0.040209632366895676,
-0.002909831004217267,
-0.016698544844985008,
0.10390614718198776,
-0.03736583888530731,
-0.14720197021961212,
0.011673436500132084,
0.021556450054049492,
-0.019044039770960808,
-0.06360688805580139,
-0.052881211042404175,
-0.07890710979700089,
0.01622357778251171,
0.15322478115558624,
-0.10295231640338898,
0.04215390980243683,
0.037896279245615005,
0.024737993255257607,
-0.08241607993841171,
0.15419626235961914,
-0.06481711566448212,
-0.0035751310642808676,
-0.02141512557864189,
0.07298067212104797,
0.00818130373954773,
0.0018550233216956258,
-0.09158351272344589,
-0.0034314459189772606,
0.09156682342290878,
0.02350476011633873,
-0.0602584183216095,
0.05309496819972992,
-0.05371333658695221,
-0.011714396998286247,
0.008785100653767586,
-0.0850898027420044,
0.03617963194847107,
0.020963139832019806,
-0.06020525097846985,
-0.006430082954466343,
0.0075536672957241535,
0.012122534215450287,
0.021475307643413544,
0.10101483017206192,
-0.1043117418885231,
0.01695476472377777,
-0.09238826483488083,
-0.12629221379756927,
0.008430431596934795,
-0.08113853633403778,
0.034369759261608124,
-0.09216377884149551,
-0.1320798397064209,
-0.03585251793265343,
0.050664324313402176,
-0.04851985722780228,
0.012015038169920444,
-0.06683303415775299,
-0.08190924674272537,
0.004057824146002531,
0.003350740997120738,
0.061988405883312225,
-0.051299646496772766,
0.1083337664604187,
0.07609885185956955,
0.08314258605241776,
-0.03709454461932182,
0.03300182893872261,
-0.09348636865615845,
0.04015646502375603,
-0.2118690460920334,
0.034563615918159485,
-0.08040016144514084,
0.058838650584220886,
-0.08163052052259445,
-0.09706659615039825,
-0.027568208053708076,
0.015656625851988792,
0.09764986485242844,
0.13188764452934265,
-0.1549178659915924,
-0.06918710470199585,
0.17651991546154022,
-0.07841309159994125,
-0.14529554545879364,
0.12166468054056168,
-0.058066099882125854,
0.0724688246846199,
0.05121513083577156,
0.16715198755264282,
0.06718272715806961,
-0.12232013791799545,
-0.013408723287284374,
-0.008079951629042625,
0.06824200600385666,
0.0021105599589645863,
0.057927217334508896,
-0.023312367498874664,
0.009203090332448483,
0.005862995982170105,
-0.055516719818115234,
0.024449102580547333,
-0.1090269535779953,
-0.08101159334182739,
-0.03392529860138893,
-0.10089705139398575,
0.0718471109867096,
0.07812318205833435,
0.07199157029390335,
-0.10888908058404922,
-0.08229918777942657,
0.08978363126516342,
0.0721874013543129,
-0.08144155889749527,
0.012640567496418953,
-0.06826146692037582,
0.07729458063840866,
-0.09317111223936081,
-0.03761877864599228,
-0.16434964537620544,
-0.07478969544172287,
0.004343952517956495,
0.04626210406422615,
0.0047696735709905624,
0.029049476608633995,
0.0932319313287735,
0.06862076371908188,
-0.07560744881629944,
-0.04296119138598442,
-0.05558999255299568,
0.006162695586681366,
-0.11749515682458878,
-0.19896261394023895,
-0.014442876912653446,
-0.042516835033893585,
0.10316390544176102,
-0.23050089180469513,
0.0353657603263855,
0.010927638038992882,
0.08827102929353714,
0.043219972401857376,
-0.011830688454210758,
-0.04234709590673447,
0.07968175411224365,
-0.029467832297086716,
-0.05811456963419914,
0.04534019157290459,
-0.0122993728145957,
-0.09064514189958572,
-0.09357530623674393,
-0.1282334178686142,
0.1652461290359497,
0.117988221347332,
-0.10743734240531921,
-0.10543107241392136,
-0.02632349729537964,
-0.05513414368033409,
-0.02790728025138378,
-0.03311111032962799,
0.004110822454094887,
0.1311265528202057,
-0.016575200483202934,
0.1188434585928917,
-0.08683784306049347,
-0.025657394900918007,
0.017329711467027664,
-0.04560985788702965,
0.007605322636663914,
0.12283030897378922,
0.09927157312631607,
-0.07508955895900726,
0.13325448334217072,
0.16047044098377228,
-0.11196998506784439,
0.1451934278011322,
-0.04710552468895912,
-0.09858787804841995,
-0.03289121389389038,
0.03496532514691353,
0.020383227616548538,
0.1461348533630371,
-0.1516612023115158,
0.0017985376762226224,
0.0021213956642895937,
0.012172284536063671,
0.03004016913473606,
-0.21030999720096588,
-0.05077749118208885,
0.037698112428188324,
-0.032430876046419144,
-0.01869727298617363,
-0.0008327092509716749,
-0.0006734435446560383,
0.09368197619915009,
-0.003883516415953636,
-0.05497296154499054,
0.027415495365858078,
-0.0018006404861807823,
-0.07653717696666718,
0.22390025854110718,
-0.06760726869106293,
-0.0839284211397171,
-0.09893230348825455,
-0.025067592039704323,
-0.035384394228458405,
0.034102000296115875,
0.05558448284864426,
-0.10073801875114441,
-0.01469679269939661,
-0.0675719752907753,
0.035610806196928024,
0.02731715515255928,
0.034504469484090805,
0.018692152574658394,
-0.0013898612232878804,
0.07080251723527908,
-0.10223953425884247,
0.015131920576095581,
-0.05270254611968994,
-0.07365908473730087,
0.04220305010676384,
0.021399637684226036,
0.14601722359657288,
0.15125024318695068,
-0.014161230064928532,
-0.0029220946598798037,
-0.01596764475107193,
0.24593792855739594,
-0.08361274749040604,
-0.03941943496465683,
0.10546892136335373,
-0.013390444219112396,
0.03533000126481056,
0.13810408115386963,
0.07727453112602234,
-0.10605974495410919,
0.021517936140298843,
0.053625572472810745,
-0.0212513767182827,
-0.22266410291194916,
-0.022365402430295944,
-0.04220912978053093,
-0.01493921224027872,
0.08011750876903534,
0.013298378325998783,
0.029733259230852127,
0.09160104393959045,
0.03094537742435932,
0.04364209994673729,
-0.04718523845076561,
0.06265145540237427,
0.07702678442001343,
0.03412018343806267,
0.10737983882427216,
-0.038371626287698746,
-0.07807222008705139,
0.025341855362057686,
0.004584093578159809,
0.22330515086650848,
0.006070508621633053,
0.1250782459974289,
0.06286494433879852,
0.1613369733095169,
-0.025012854486703873,
0.07663401961326599,
-0.012371432967483997,
-0.0807657316327095,
0.006157053634524345,
-0.05263425409793854,
-0.007073716260492802,
0.030711069703102112,
-0.055121470242738724,
0.07574167847633362,
-0.13193528354167938,
0.014679607935249805,
0.07106928527355194,
0.1945984959602356,
0.06961508095264435,
-0.29031431674957275,
-0.10055592656135559,
0.009345516562461853,
-0.003443074179813266,
-0.021697917953133583,
0.019302543252706528,
0.15042291581630707,
-0.04288388788700104,
0.005683999042958021,
-0.06662642955780029,
0.07313961535692215,
-0.005324259400367737,
0.041540078818798065,
0.043222080916166306,
0.094561867415905,
-0.017499204725027084,
0.06469615548849106,
-0.2705112397670746,
0.28424277901649475,
0.02310701459646225,
0.08626015484333038,
-0.03695768117904663,
-0.018322395160794258,
0.005406138487160206,
0.06524240970611572,
0.09419240802526474,
-0.028003446757793427,
-0.014729405753314495,
-0.1882941722869873,
-0.0280394796282053,
0.03666875511407852,
0.12743449211120605,
-0.04123557358980179,
0.12137652188539505,
0.0013459116453304887,
0.009671437554061413,
0.08674919605255127,
-0.0229206383228302,
-0.10618308931589127,
-0.08479994535446167,
-0.013067143969237804,
-0.01956353522837162,
-0.04256972670555115,
-0.07695164531469345,
-0.1019582748413086,
-0.12259051948785782,
0.13889120519161224,
-0.04347339645028114,
-0.014622812159359455,
-0.10976151376962662,
0.07940580695867538,
0.09851039946079254,
-0.07939916849136353,
0.03985009714961052,
0.027751341462135315,
0.05195111036300659,
0.033409830182790756,
-0.02805090881884098,
0.1307552009820938,
-0.07955346256494522,
-0.15773414075374603,
-0.06808096915483475,
0.11463969945907593,
0.050587546080350876,
0.040039487183094025,
-0.00900522992014885,
0.0006954543059691787,
-0.007154184393584728,
-0.09093326330184937,
0.03339336812496185,
-0.046507883816957474,
0.07131198048591614,
0.0441901832818985,
-0.06669969111680984,
0.036681853234767914,
-0.05428444594144821,
-0.0010987704154103994,
0.1497470587491989,
0.2931464910507202,
-0.08465602248907089,
-0.032191649079322815,
0.05286230519413948,
-0.047648511826992035,
-0.19546298682689667,
0.09127185493707657,
0.05396263673901558,
0.012040702626109123,
0.048257336020469666,
-0.15360340476036072,
0.11661188304424286,
0.10269474983215332,
-0.0031740430276840925,
0.11440888047218323,
-0.3158248960971832,
-0.1246173232793808,
0.115824393928051,
0.16195301711559296,
0.11350614577531815,
-0.16527287662029266,
-0.03923589363694191,
-0.009281262755393982,
-0.13314290344715118,
0.07767092436552048,
-0.13361017405986786,
0.10205444693565369,
-0.009168597869575024,
0.06011359393596649,
0.022098777815699577,
-0.06765537708997726,
0.15275128185749054,
0.006104911677539349,
0.10908322036266327,
-0.03960898518562317,
-0.042281623929739,
0.06217409297823906,
-0.03901832923293114,
0.013086830265820026,
-0.03917337581515312,
0.048478372395038605,
-0.047988928854465485,
-0.03590342402458191,
-0.06985510140657425,
0.03782127797603607,
-0.056871552020311356,
-0.06340697407722473,
-0.037074651569128036,
0.025533534586429596,
0.03282689303159714,
-0.00793408416211605,
0.1263277679681778,
-0.001475669676437974,
0.16036203503608704,
0.09101822227239609,
0.09817872941493988,
-0.049650318920612335,
-0.03999291732907295,
0.026775306090712547,
-0.018517592921853065,
0.07136345654726028,
-0.12634983658790588,
0.03987008333206177,
0.14494137465953827,
0.03941088169813156,
0.13501527905464172,
0.07804804295301437,
-0.037197936326265335,
0.018236864358186722,
0.061294347047805786,
-0.1537487655878067,
-0.13140635192394257,
-0.0069488538429141045,
-0.08424469828605652,
-0.1377311497926712,
0.0836624801158905,
0.09914091974496841,
-0.040132176131010056,
0.0032277272548526525,
-0.006590075325220823,
-0.027086034417152405,
-0.05680593103170395,
0.1992473006248474,
0.09091426432132721,
0.04480869323015213,
-0.06617505848407745,
0.06133418530225754,
0.021959934383630753,
-0.11275478452444077,
-0.0034905883949249983,
0.038164012134075165,
-0.059654511511325836,
-0.04177229478955269,
0.04817735403776169,
0.1858922690153122,
-0.05007506534457207,
-0.029089326038956642,
-0.15856872498989105,
-0.09055208414793015,
0.04848606884479523,
0.19437175989151,
0.09606067836284637,
0.0035305398050695658,
-0.021677104756236076,
0.04631243273615837,
-0.13421157002449036,
0.10356515645980835,
0.04637487977743149,
0.08675731718540192,
-0.15064987540245056,
0.1404360979795456,
-0.02081873081624508,
0.012821083888411522,
-0.027527034282684326,
0.05028016120195389,
-0.1444246768951416,
0.006426937412470579,
-0.15178713202476501,
-0.03481419011950493,
-0.035123731940984726,
-0.005798941943794489,
0.010756338946521282,
-0.07936720550060272,
-0.06752356886863708,
0.006290818564593792,
-0.10515371710062027,
-0.005067081190645695,
0.05918532982468605,
0.037380918860435486,
-0.12606368958950043,
-0.031203214079141617,
0.0353940911591053,
-0.07145344465970993,
0.05943896621465683,
0.04036357253789902,
0.03107796236872673,
0.052356820553541183,
-0.2010660320520401,
0.029480475932359695,
0.05222860351204872,
-0.0011170568177476525,
0.0629434883594513,
-0.08162319660186768,
-0.021104833111166954,
-0.01366743165999651,
0.07524847984313965,
0.01677251048386097,
0.05768232047557831,
-0.11558017134666443,
0.00787854753434658,
-0.04576168581843376,
-0.07335569709539413,
-0.05970442295074463,
0.03564717248082161,
0.09424056857824326,
0.004619957879185677,
0.1701463758945465,
-0.0919823944568634,
0.03717711195349693,
-0.20750266313552856,
-0.007027619052678347,
0.004951779730618,
-0.06607434153556824,
-0.06624685227870941,
-0.04206837713718414,
0.0670345351099968,
-0.05925522372126579,
0.11416356265544891,
-0.04017166048288345,
0.06159888580441475,
0.022998379543423653,
-0.07236519455909729,
0.06343401223421097,
0.03134828060865402,
0.25851577520370483,
0.033784572035074234,
-0.037079986184835434,
-0.005962124094367027,
0.0654129907488823,
0.10053619742393494,
0.11237072944641113,
0.18845820426940918,
0.17661678791046143,
-0.06719477474689484,
0.08865419030189514,
0.04236232116818428,
-0.05924055725336075,
-0.10552346706390381,
0.05314789339900017,
-0.01871824823319912,
0.04193525016307831,
-0.010294780135154724,
0.17918291687965393,
0.10751809179782867,
-0.15512722730636597,
0.02283022180199623,
-0.04279669374227524,
-0.10459127277135849,
-0.09674761444330215,
-0.008042789995670319,
-0.08448002487421036,
-0.1691790670156479,
0.01809138059616089,
-0.13142900168895721,
-0.0011100394185632467,
0.0669362023472786,
0.01588459126651287,
-0.009505405090749264,
0.2546366751194,
0.021876130253076553,
0.03964303806424141,
0.05790266767144203,
0.006143373902887106,
-0.014394981786608696,
-0.06222293898463249,
-0.06186547130346298,
0.004363975953310728,
-0.03613802790641785,
0.015713458880782127,
-0.058298882097005844,
-0.05774254351854324,
0.026912450790405273,
0.005625956226140261,
-0.09554305672645569,
-0.00111355260014534,
0.04557761177420616,
0.054867587983608246,
0.06622087210416794,
0.010785751044750214,
0.01025224570184946,
-0.024473240599036217,
0.21389850974082947,
-0.07543742656707764,
-0.05285190790891647,
-0.1202789843082428,
0.20540118217468262,
0.036645304411649704,
0.04104997590184212,
0.008479993790388107,
-0.10936596244573593,
0.03937309980392456,
0.20359966158866882,
0.15906603634357452,
-0.09136945754289627,
0.006784332916140556,
0.014932545833289623,
-0.0021405303850769997,
-0.053945135325193405,
0.05215047299861908,
0.10584916919469833,
0.056059498339891434,
-0.08442765474319458,
-0.08615172654390335,
-0.03845902532339096,
-0.0062756347469985485,
-0.03684923052787781,
0.04346289485692978,
0.05915779620409012,
0.014681082218885422,
-0.05846235528588295,
0.06999115645885468,
-0.045984137803316116,
-0.12935909628868103,
0.09313368797302246,
-0.19547896087169647,
-0.1446201354265213,
-0.029475783929228783,
0.09513209760189056,
-0.00985782127827406,
0.0683964341878891,
-0.04412809759378433,
-0.030679700896143913,
0.07884790748357773,
-0.013082843273878098,
-0.058736253529787064,
-0.08386116474866867,
0.07172877341508865,
-0.08206182718276978,
0.20591041445732117,
-0.03983807936310768,
0.07226331532001495,
0.13880819082260132,
0.03841510787606239,
-0.05936438590288162,
0.0660175085067749,
0.0730288028717041,
-0.09175311774015427,
0.0241624154150486,
0.09871964156627655,
-0.036592788994312286,
0.10604599863290787,
0.06089741736650467,
-0.1832548826932907,
0.017638012766838074,
-0.03153897449374199,
-0.07238312065601349,
-0.08398421108722687,
-0.01792662963271141,
-0.07061398029327393,
0.12887202203273773,
0.20879828929901123,
-0.02840372920036316,
0.028985124081373215,
-0.03517751023173332,
0.05069098249077797,
0.08124034106731415,
0.09489250183105469,
-0.045592524111270905,
-0.24289093911647797,
0.04224949702620506,
0.07055570930242538,
-0.027028372511267662,
-0.2523841857910156,
-0.08823440968990326,
0.02726771868765354,
-0.05444575846195221,
-0.06375841796398163,
0.0622781440615654,
0.10774075984954834,
0.07468607276678085,
-0.0546899177134037,
-0.11637628078460693,
-0.08557301014661789,
0.16706649959087372,
-0.13446222245693207,
-0.09417897462844849
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-350m-snli-model1
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0012
- Accuracy: 0.752
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.33 | 1.0 | 2146 | 0.2674 | 0.8998 |
| 0.2369 | 2.0 | 4292 | 0.2634 | 0.9070 |
| 0.1527 | 3.0 | 6438 | 0.3009 | 0.9087 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "other", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/opt-350m", "model-index": [{"name": "opt-350m-snli-model1", "results": []}]} | text-classification | varun-v-rao/opt-350m-snli-model1 | [
"transformers",
"tensorboard",
"safetensors",
"opt",
"text-classification",
"generated_from_trainer",
"base_model:facebook/opt-350m",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:15:00+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| opt-350m-snli-model1
====================
This model is a fine-tuned version of facebook/opt-350m on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 1.0012
* Accuracy: 0.752
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 256
* eval\_batch\_size: 256
* seed: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
75,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #opt #text-classification #generated_from_trainer #base_model-facebook/opt-350m #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.09882891923189163,
0.09604543447494507,
-0.0016829465748742223,
0.1024753674864769,
0.15899845957756042,
0.009933569468557835,
0.16071031987667084,
0.10500570386648178,
-0.04803038388490677,
0.05024987831711769,
0.12429694086313248,
0.1135401800274849,
0.029011210426688194,
0.16251744329929352,
-0.08244393020868301,
-0.21385248005390167,
0.009031066671013832,
0.0287199467420578,
-0.05977411940693855,
0.1253417432308197,
0.08024958521127701,
-0.12525317072868347,
0.1123722642660141,
-0.008043397217988968,
-0.16786280274391174,
0.010798436589539051,
0.03652210533618927,
-0.06514757126569748,
0.1324290633201599,
0.06142273172736168,
0.11864668130874634,
0.03555690869688988,
0.07125706970691681,
-0.1900130808353424,
0.015353094786405563,
0.06623809039592743,
-0.020418904721736908,
0.08467644453048706,
0.0345427468419075,
0.0013959633652120829,
0.09812265634536743,
-0.09600198268890381,
0.05904754251241684,
0.025029316544532776,
-0.1399465650320053,
-0.1915917545557022,
-0.060738611966371536,
0.046508725732564926,
0.08869409561157227,
0.0909571573138237,
-0.02605876326560974,
0.13452422618865967,
-0.035653311759233475,
0.09284286946058273,
0.18480046093463898,
-0.31241631507873535,
-0.0609930083155632,
0.02509600669145584,
0.024041753262281418,
0.09226004779338837,
-0.09716080874204636,
0.007178119383752346,
0.07104124873876572,
0.02244100533425808,
0.13026964664459229,
-0.019359461963176727,
0.0031463399063795805,
-0.01938134804368019,
-0.1393081396818161,
-0.030321747064590454,
0.16462363302707672,
0.06989172101020813,
-0.04943997785449028,
-0.0713348463177681,
-0.06326540559530258,
-0.13436521589756012,
-0.03090466558933258,
-0.011183306574821472,
0.033695682883262634,
-0.02090679667890072,
-0.07558573782444,
-0.023343905806541443,
-0.11301577091217041,
-0.05843932554125786,
-0.0424928143620491,
0.13057328760623932,
0.024496302008628845,
0.002560712629929185,
-0.02126321755349636,
0.0935199037194252,
-0.01733073592185974,
-0.1349792331457138,
0.029551425948739052,
0.015987033024430275,
0.0007280877325683832,
-0.05610710754990578,
-0.04096361994743347,
-0.09643148630857468,
0.007668658159673214,
0.10122407972812653,
-0.0740036889910698,
0.05651729553937912,
-0.013735148124396801,
0.049986448138952255,
-0.0922444611787796,
0.15160906314849854,
-0.03441735357046127,
-0.018775563687086105,
0.01826920360326767,
0.10548053681850433,
0.057842839509248734,
-0.020094696432352066,
-0.13696742057800293,
0.02263300120830536,
0.10827085375785828,
0.015921030193567276,
-0.06163128837943077,
0.08032942563295364,
-0.05363939329981804,
-0.012415329925715923,
0.062242522835731506,
-0.07607603073120117,
0.02324565127491951,
0.01006004586815834,
-0.05306650698184967,
-0.08850434422492981,
0.03322669491171837,
0.014746544882655144,
0.0019988040439784527,
0.09653886407613754,
-0.08625975251197815,
0.005203981883823872,
-0.07218312472105026,
-0.12239434570074081,
0.015896139666438103,
-0.061765607446432114,
0.012245463207364082,
-0.12654341757297516,
-0.1517961472272873,
-0.009416935965418816,
0.042050495743751526,
-0.024777470156550407,
-0.047723185271024704,
-0.05662711709737778,
-0.07275745272636414,
0.022746175527572632,
-0.022335322573781013,
0.07433286309242249,
-0.07096859067678452,
0.10134398192167282,
0.04964377358555794,
0.05751023069024086,
-0.05796763673424721,
0.034229349344968796,
-0.09767930954694748,
0.0361410416662693,
-0.18245507776737213,
0.03693491593003273,
-0.04158318415284157,
0.06286116689443588,
-0.0734635666012764,
-0.08536782115697861,
-0.012114330194890499,
0.014829174615442753,
0.05955348536372185,
0.1011132150888443,
-0.15851236879825592,
-0.08130364120006561,
0.17566828429698944,
-0.10270478576421738,
-0.15374882519245148,
0.14431755244731903,
-0.056134097278118134,
0.031461577862501144,
0.07212086021900177,
0.1857755035161972,
0.0724136233329773,
-0.09331708401441574,
-0.0026315334253013134,
-0.01363604236394167,
0.04021143540740013,
-0.05434015020728111,
0.07461060583591461,
-0.00009323719859821722,
-0.014945666305720806,
0.007199046202003956,
-0.0340934619307518,
0.0636802539229393,
-0.07249625027179718,
-0.08005480468273163,
-0.028359612450003624,
-0.09438654780387878,
0.054718535393476486,
0.061444155871868134,
0.055188875645399094,
-0.12224505096673965,
-0.09334944188594818,
0.05084843561053276,
0.06266098469495773,
-0.06817038357257843,
0.011769878678023815,
-0.07499866932630539,
0.08242195099592209,
-0.073410265147686,
-0.018883612006902695,
-0.15007168054580688,
-0.05106639489531517,
0.013127518817782402,
-0.0027471305802464485,
0.01923675276339054,
0.019950740039348602,
0.06425944715738297,
0.08372501283884048,
-0.07441024482250214,
-0.03539753332734108,
-0.012065103277564049,
0.009434951469302177,
-0.12569771707057953,
-0.18954719603061676,
-0.013439828529953957,
-0.030697371810674667,
0.16246753931045532,
-0.2632434070110321,
0.05699804425239563,
0.008907224051654339,
0.08456847071647644,
0.040343184024095535,
-0.008741098456084728,
-0.0296968724578619,
0.06715096533298492,
-0.039058297872543335,
-0.05629023537039757,
0.06817903369665146,
0.013580214232206345,
-0.10883636027574539,
-0.02880064956843853,
-0.17858920991420746,
0.2022564560174942,
0.13691116869449615,
-0.0794185996055603,
-0.08306754380464554,
-0.011319121345877647,
-0.039791353046894073,
-0.020667769014835358,
-0.04845016449689865,
-0.0019362014718353748,
0.15364377200603485,
-0.003994048107415438,
0.16724736988544464,
-0.09293946623802185,
-0.02902018092572689,
0.037428807467222214,
-0.04290255531668663,
-0.007846460677683353,
0.11926259845495224,
0.09489251673221588,
-0.16590796411037445,
0.15364249050617218,
0.16651125252246857,
-0.046428434550762177,
0.16565662622451782,
-0.03150811791419983,
-0.04521622136235237,
-0.027632834389805794,
0.022635024040937424,
0.01580420695245266,
0.1108485534787178,
-0.11139066517353058,
-0.004362073261290789,
0.0021461579017341137,
0.007905214093625546,
0.012330635450780392,
-0.20650388300418854,
-0.029481051489710808,
0.043605174869298935,
-0.05383790656924248,
-0.005128500517457724,
-0.017043275758624077,
0.00022127859119791538,
0.1056419238448143,
0.008270400576293468,
-0.07168424874544144,
0.051555097103118896,
-0.008229859173297882,
-0.09591706097126007,
0.20626746118068695,
-0.06485647708177567,
-0.20905016362667084,
-0.15466944873332977,
-0.027350502088665962,
-0.06111343577504158,
0.03551946207880974,
0.05752470716834068,
-0.0781690701842308,
-0.0365990549325943,
-0.1193937435746193,
-0.0015158347086980939,
0.02115103229880333,
0.022730175405740738,
0.004572760313749313,
0.012642639689147472,
0.09398872405290604,
-0.08582088351249695,
-0.019855910912156105,
-0.041806526482105255,
-0.03638796508312225,
0.030085155740380287,
0.026972832158207893,
0.10921822488307953,
0.12812234461307526,
-0.033398374915122986,
0.0023110348265618086,
-0.03636441379785538,
0.21530160307884216,
-0.0779828205704689,
-0.017801038920879364,
0.13223060965538025,
-0.024372827261686325,
0.050017762929201126,
0.14378701150417328,
0.04968726262450218,
-0.10059088468551636,
0.033408015966415405,
0.034565381705760956,
-0.03417826443910599,
-0.19141913950443268,
-0.044342704117298126,
-0.04136771708726883,
0.014572523534297943,
0.10337674617767334,
0.03299333155155182,
0.03548358753323555,
0.059911105781793594,
0.00839649885892868,
0.06354711949825287,
-0.006255544722080231,
0.06962666660547256,
0.11171744763851166,
0.0500284805893898,
0.13438090682029724,
-0.05569572001695633,
-0.06710122525691986,
0.03877396881580353,
-0.036381080746650696,
0.1844562292098999,
0.018318327143788338,
0.13028454780578613,
0.04731760546565056,
0.13999289274215698,
0.01970803365111351,
0.05151407793164253,
0.005550338886678219,
-0.05084601417183876,
-0.011974041350185871,
-0.041987720876932144,
-0.04226633161306381,
0.032769422978162766,
-0.0596686489880085,
0.05925920233130455,
-0.1373266875743866,
0.0247429721057415,
0.04988550394773483,
0.2195046991109848,
0.058160871267318726,
-0.33451104164123535,
-0.0921664834022522,
0.02386869117617607,
-0.019580470398068428,
-0.03704366460442543,
0.025304654613137245,
0.16002704203128815,
-0.060222167521715164,
0.057289548218250275,
-0.07881788164377213,
0.0809268057346344,
-0.05566917359828949,
0.05624501779675484,
0.044541504234075546,
0.06571053713560104,
-0.0262721199542284,
0.07667333632707596,
-0.27240896224975586,
0.27429863810539246,
0.018257131800055504,
0.06806638091802597,
-0.058081015944480896,
-0.005568319465965033,
0.02138819731771946,
0.09933198243379593,
0.07710867375135422,
-0.01925419457256794,
-0.0739406868815422,
-0.20686252415180206,
-0.06231136620044708,
0.02257225476205349,
0.08535189926624298,
-0.04440483823418617,
0.10056795924901962,
-0.030217330902814865,
0.0014619618887081742,
0.08218873292207718,
0.005138234235346317,
-0.07475541532039642,
-0.10789418965578079,
-0.01930554024875164,
0.042654089629650116,
-0.03565995767712593,
-0.08242972195148468,
-0.09995849430561066,
-0.10653591901063919,
0.16102059185504913,
-0.04531300812959671,
-0.04156818985939026,
-0.0977955162525177,
0.07891493290662766,
0.025286488234996796,
-0.08628802746534348,
0.02835749462246895,
0.009999867528676987,
0.10776697099208832,
0.01019267737865448,
-0.06214894354343414,
0.13065201044082642,
-0.0617237389087677,
-0.18470656871795654,
-0.06154227256774902,
0.13391168415546417,
0.018114732578396797,
0.03957091271877289,
0.005008117761462927,
0.002314151730388403,
-0.002811240730807185,
-0.07437588274478912,
0.04271707311272621,
-0.027212880551815033,
0.06949826329946518,
0.018096309155225754,
-0.03883734345436096,
-0.021520337089896202,
-0.05833286792039871,
-0.025667361915111542,
0.15874221920967102,
0.3049643039703369,
-0.07769819349050522,
0.00010593327169772238,
0.061611346900463104,
-0.05958210676908493,
-0.18315453827381134,
0.04329819232225418,
0.01869281195104122,
0.008612444624304771,
0.05440295860171318,
-0.142091765999794,
0.07568909227848053,
0.08728130906820297,
-0.02554420568048954,
0.10243608057498932,
-0.2722315788269043,
-0.13885435461997986,
0.11412885040044785,
0.15276587009429932,
0.1450919657945633,
-0.15277758240699768,
-0.03993382677435875,
-0.04890765622258186,
-0.08839043229818344,
0.13667280972003937,
-0.1302066445350647,
0.10763111710548401,
-0.005994257517158985,
0.039736296981573105,
0.012135246768593788,
-0.05056645721197128,
0.12247803807258606,
-0.029858047142624855,
0.1159685030579567,
-0.0771934762597084,
-0.015350641682744026,
0.05580626055598259,
-0.05546005442738533,
0.026962466537952423,
-0.1372968703508377,
0.018273839727044106,
-0.07536207884550095,
-0.035937510430812836,
-0.06043592467904091,
0.04653039202094078,
-0.04099828004837036,
-0.04891766235232353,
-0.041696853935718536,
0.03280915319919586,
0.03894152119755745,
-0.0060796276666224,
0.15516217052936554,
-0.005776955746114254,
0.1725487858057022,
0.153905987739563,
0.1067708283662796,
-0.0559157058596611,
-0.0061784121207892895,
-0.002712987130507827,
-0.03868365287780762,
0.05827565863728523,
-0.13416598737239838,
0.038857314735651016,
0.11331602931022644,
-0.007290794979780912,
0.16070815920829773,
0.06520147621631622,
-0.035719770938158035,
0.021955210715532303,
0.077046699821949,
-0.1743922382593155,
-0.13451635837554932,
-0.030988473445177078,
-0.033025648444890976,
-0.12081654369831085,
0.04992823675274849,
0.1291937679052353,
-0.07253620028495789,
0.009943750686943531,
-0.01245587132871151,
0.013485126197338104,
-0.028729582205414772,
0.1558910757303238,
0.06814149767160416,
0.05368216708302498,
-0.08039647340774536,
0.08018416166305542,
0.0513160414993763,
-0.08124072849750519,
0.03620743006467819,
0.04056282714009285,
-0.09500458836555481,
-0.04858144372701645,
0.028196917846798897,
0.2093285471200943,
-0.018085401505231857,
-0.06466630101203918,
-0.158636674284935,
-0.12812286615371704,
0.054056208580732346,
0.17560739815235138,
0.08269354701042175,
-0.00013078039046376944,
-0.026711028069257736,
-0.0008244055206887424,
-0.12480359524488449,
0.11660713702440262,
0.027316458523273468,
0.07375913858413696,
-0.16508229076862335,
0.14215071499347687,
-0.0017904990818351507,
0.012345816008746624,
-0.025689085945487022,
0.04078154265880585,
-0.11956635117530823,
-0.005309329368174076,
-0.11728131771087646,
-0.007956186309456825,
-0.0218997523188591,
0.001916388631798327,
-0.0068146116100251675,
-0.04922940582036972,
-0.06632032245397568,
0.0012688386486843228,
-0.10034236311912537,
-0.017623746767640114,
0.044920556247234344,
0.056147221475839615,
-0.12615783512592316,
-0.04439619183540344,
0.014562388882040977,
-0.0650939866900444,
0.06946875900030136,
0.005191129166632891,
0.019902849569916725,
0.045273490250110626,
-0.13776469230651855,
0.03767199441790581,
0.06963125616312027,
0.011107857339084148,
0.04008295759558678,
-0.08148045092821121,
0.000653740658890456,
0.0030047125183045864,
0.0422702357172966,
0.031095653772354126,
0.08819442242383957,
-0.12449059635400772,
0.015245432034134865,
-0.0044671399518847466,
-0.05569499358534813,
-0.052054233849048615,
0.04697587341070175,
0.07236780971288681,
0.00661976495757699,
0.21624356508255005,
-0.10877015441656113,
0.006741982419043779,
-0.21491265296936035,
0.001212545670568943,
0.007467965129762888,
-0.1154366061091423,
-0.07827307283878326,
-0.0629722848534584,
0.06016421318054199,
-0.05804339423775673,
0.1342553347349167,
0.03048400767147541,
0.047568581998348236,
0.03983433172106743,
-0.048651278018951416,
0.04952894523739815,
0.02809314988553524,
0.20130842924118042,
0.016204237937927246,
-0.05373016372323036,
0.04804730415344238,
0.020343925803899765,
0.12018471211194992,
0.08396348357200623,
0.18725557625293732,
0.15813513100147247,
-0.05545699968934059,
0.09563688933849335,
0.053796861320734024,
-0.04435385763645172,
-0.13299086689949036,
0.031461991369724274,
-0.06514192372560501,
0.10928981006145477,
-0.01546145137399435,
0.18380829691886902,
0.0933426022529602,
-0.15134413540363312,
0.011929609812796116,
-0.056882649660110474,
-0.08015558868646622,
-0.10716360807418823,
-0.0817566066980362,
-0.10045843571424484,
-0.13291031122207642,
0.0005045309662818909,
-0.10805579274892807,
-0.0009850116912275553,
0.09437496960163116,
-0.0026009168941527605,
-0.035986464470624924,
0.17718790471553802,
0.0193439070135355,
0.01889059692621231,
0.07512910664081573,
0.0009891189401969314,
-0.03381652384996414,
-0.08339980989694595,
-0.0840207114815712,
0.02118917740881443,
-0.02503681369125843,
0.02292535826563835,
-0.04258119314908981,
-0.03616807237267494,
0.04720667004585266,
-0.001829999266192317,
-0.11353003233671188,
0.011666016653180122,
0.025028513744473457,
0.05936942994594574,
0.05225527659058571,
0.017160218209028244,
0.0059218211099505424,
-0.0026724699418991804,
0.21062445640563965,
-0.06777536123991013,
-0.03610891476273537,
-0.09623479843139648,
0.21347655355930328,
0.021605143323540688,
0.013007541187107563,
0.004680342972278595,
-0.09160521626472473,
0.034297604113817215,
0.1989847719669342,
0.1874556839466095,
-0.08600418269634247,
0.011298833414912224,
-0.029595352709293365,
-0.009216118603944778,
-0.014883182011544704,
0.11053277552127838,
0.09584230929613113,
-0.0022212970070540905,
-0.06824223697185516,
-0.02376914769411087,
-0.040212053805589676,
0.0033518807031214237,
-0.02675725147128105,
0.07042662054300308,
0.039743609726428986,
0.023185433819890022,
-0.05091530829668045,
0.0659099742770195,
-0.029096247628331184,
-0.11732493340969086,
0.03164537996053696,
-0.210121750831604,
-0.1468859761953354,
-0.017419133335351944,
0.0968918725848198,
-0.00896272249519825,
0.05822195112705231,
-0.03302766755223274,
0.011285917833447456,
0.04998144879937172,
-0.022092320024967194,
-0.07191473245620728,
-0.07293351739645004,
0.04817160591483116,
-0.12491504102945328,
0.21992182731628418,
-0.040456559509038925,
0.034477923065423965,
0.12696444988250732,
0.026301100850105286,
-0.06752220541238785,
0.096044160425663,
0.038077179342508316,
-0.032220661640167236,
0.043251994997262955,
0.09210920333862305,
-0.03258397430181503,
0.11377819627523422,
0.06662460416555405,
-0.13012076914310455,
0.009129173122346401,
-0.1106809601187706,
-0.07358172535896301,
-0.058847662061452866,
-0.026978740468621254,
-0.05609728768467903,
0.1367090940475464,
0.18519656360149384,
-0.036695513874292374,
0.0013623660197481513,
-0.04052671417593956,
0.013602741062641144,
0.07616564631462097,
0.044558387249708176,
-0.024907592684030533,
-0.2407080978155136,
0.012554346583783627,
0.0799599140882492,
0.002642965642735362,
-0.34015482664108276,
-0.07155055552721024,
-0.024209538474678993,
-0.05118226259946823,
-0.08763710409402847,
0.09186075627803802,
0.10391464829444885,
0.05438632518053055,
-0.07135730981826782,
-0.0664924681186676,
-0.06896303594112396,
0.16904538869857788,
-0.12508849799633026,
-0.08978844434022903
] |
null | null | transformers | # miquliz-120b

- EXL2: 2.4bpw | [2.65bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.65bpw-h6-exl2) | [2.9bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.9bpw-h6-exl2) | [4.0bpw](https://huggingface.co/LoneStriker/miquliz-120b-4.0bpw-h6-exl2)
- GGUF: [IQ3_XXS](https://huggingface.co/wolfram/miquliz-120b-GGUF) | [Q4_K_S+Q4_K_M](https://huggingface.co/NanoByte/miquliz-120b-Q4-GGUF)
- HF: [wolfram/miquliz-120b](https://huggingface.co/wolfram/miquliz-120b)
This is a 120b frankenmerge created by interleaving layers of [miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) with [lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) using [mergekit](https://github.com/cg123/mergekit).
Inspired by [goliath-120b](https://huggingface.co/alpindale/goliath-120b).
Thanks for the support, [CopilotKit](https://github.com/CopilotKit/CopilotKit) - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, [Lone Striker](https://huggingface.co/LoneStriker) and [NanoByte](https://huggingface.co/NanoByte)!
## Prompt template: Mistral
```
<s>[INST] {prompt} [/INST]
```
See also: [🐺🐦⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with **17** different instruct templates : LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/comments/18ljvxb/llm_prompt_format_comparisontest_mixtral_8x7b/)
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 16]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [8, 24]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [17, 32]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [25, 40]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [33, 48]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [41, 56]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [49, 64]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [57, 72]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [65, 80]
model: 152334H/miqu-1-70b-sf
```
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: [mistralai (Mistral AI_)](https://huggingface.co/mistralai)
- leaked model: [miqudev/miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b)
- f16 model: [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- 2nd model: [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
- mergekit: [arcee-ai/mergekit: Tools for merging pretrained large language models.](https://github.com/arcee-ai/mergekit)
- mergekit_config.yml: [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
### Support
- [My Ko-fi page](https://ko-fi.com/wolframravenwolf) if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS [BASED ON A LEAKED ASSET](https://huggingface.co/miqudev/miqu-1-70b/discussions/10) AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| {"language": ["en", "de", "fr", "es", "it"], "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["152334H/miqu-1-70b-sf", "lizpreciatior/lzlv_70b_fp16_hf"]} | text-generation | LoneStriker/miquliz-120b-2.4bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"en",
"de",
"fr",
"es",
"it",
"base_model:152334H/miqu-1-70b-sf",
"base_model:lizpreciatior/lzlv_70b_fp16_hf",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:15:58+00:00 | [] | [
"en",
"de",
"fr",
"es",
"it"
] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # miquliz-120b
!image/jpeg
- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw
- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M
- HF: wolfram/miquliz-120b
This is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.
Inspired by goliath-120b.
Thanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!
## Prompt template: Mistral
See also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- 152334H/miqu-1-70b-sf
- lizpreciatior/lzlv_70b_fp16_hf
### Configuration
The following YAML configuration was used to produce this model:
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: mistralai (Mistral AI_)
- leaked model: miqudev/miqu-1-70b
- f16 model: 152334H/miqu-1-70b-sf
- 2nd model: lizpreciatior/lzlv_70b_fp16_hf
- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.
- mergekit_config.yml: alpindale/goliath-120b
### Support
- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| [
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
108,
193,
44,
18,
4,
17,
48,
17,
128,
69,
43
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137## Merge Details### Merge Method\n\nThis model was merged using the passthrough merge method.### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.12368366122245789,
0.12789610028266907,
-0.004829886835068464,
0.07118041813373566,
0.008432804606854916,
0.030466794967651367,
0.15808768570423126,
0.1408398449420929,
0.12250641733407974,
0.11074402928352356,
-0.0003772966156248003,
0.059276167303323746,
0.0867873802781105,
0.16237597167491913,
-0.01879403181374073,
-0.09192074835300446,
0.023846887052059174,
-0.03254108875989914,
-0.016614433377981186,
0.08230546861886978,
0.06071207672357559,
-0.04489263892173767,
0.06874342262744904,
0.05266686528921127,
-0.1173800379037857,
-0.0025762326549738646,
-0.019535329192876816,
-0.0035260901786386967,
0.08725646883249283,
0.090943343937397,
0.03682366758584976,
0.047848619520664215,
0.013767924159765244,
-0.14496155083179474,
0.03160346671938896,
0.04793968051671982,
-0.03261971473693848,
0.08455878496170044,
0.11339690536260605,
-0.032416824251413345,
0.0792437195777893,
-0.04937126114964485,
-0.024935640394687653,
0.09329741448163986,
-0.10145971179008484,
-0.18160124123096466,
-0.17187398672103882,
0.1256534308195114,
0.037529584020376205,
0.023336073383688927,
-0.02024589292705059,
0.11190760880708694,
0.0369829423725605,
0.08653295785188675,
0.24754253029823303,
-0.17050236463546753,
-0.05275990068912506,
0.04109650105237961,
0.017943190410733223,
-0.09884168952703476,
-0.02588641084730625,
0.037537846714258194,
0.02536020427942276,
-0.013790946453809738,
0.0470578595995903,
-0.06060151010751724,
0.07586272805929184,
-0.05851813033223152,
-0.14439910650253296,
-0.011108231730759144,
0.0699799656867981,
0.051052119582891464,
-0.04237183555960655,
-0.15585270524024963,
-0.07426974177360535,
0.011751646175980568,
-0.0058364905416965485,
-0.012671277858316898,
-0.026297500357031822,
-0.03774981573224068,
0.07239900529384613,
-0.06227460131049156,
-0.027483807876706123,
-0.041599247604608536,
-0.030472077429294586,
0.1456686556339264,
0.03454676270484924,
0.016460439190268517,
0.0009482491295784712,
0.07474207133054733,
-0.11470949649810791,
-0.14837470650672913,
-0.04670407250523567,
-0.023340268060564995,
-0.10872059315443039,
-0.03630848973989487,
0.0027755394112318754,
-0.04055022448301315,
0.060745719820261,
0.20719100534915924,
-0.11167024075984955,
0.058465491980314255,
0.02167990617454052,
0.03042621538043022,
0.0022220457904040813,
0.05014816299080849,
-0.05429374426603317,
-0.06990977376699448,
0.024466900154948235,
0.043704770505428314,
0.04189739376306534,
-0.011906677857041359,
-0.00637865299358964,
-0.005814081989228725,
-0.025086048990488052,
0.04248442500829697,
0.057028356939554214,
0.00006505353667307645,
-0.06931952387094498,
-0.05062215030193329,
0.1558380275964737,
-0.12208744138479233,
0.05983341857790947,
0.027952637523412704,
-0.02203182876110077,
-0.03659253567457199,
0.07147088646888733,
-0.036103203892707825,
-0.06757796555757523,
0.003653585212305188,
-0.05460790544748306,
0.01350486185401678,
-0.03342496603727341,
-0.06830274313688278,
0.03372606262564659,
-0.030463969334959984,
-0.049800045788288116,
-0.13874182105064392,
-0.11608945578336716,
-0.05686583369970322,
0.039471741765737534,
-0.07531989365816116,
0.03137357160449028,
0.0206131674349308,
-0.06815514713525772,
0.016908833757042885,
0.04215963929891586,
-0.02309141494333744,
-0.014663412235677242,
-0.008669499307870865,
0.026837516576051712,
0.04982210323214531,
0.011029177345335484,
-0.00849899835884571,
-0.03755652904510498,
0.08720458298921585,
-0.13124476373195648,
0.11570584774017334,
-0.10697617381811142,
-0.0175891425460577,
-0.14562152326107025,
-0.021388312801718712,
0.02837793342769146,
-0.014576669782400131,
0.06801756471395493,
0.15541520714759827,
-0.11956251412630081,
-0.057199627161026,
0.14212393760681152,
-0.10452718287706375,
-0.08326901495456696,
0.0896964743733406,
-0.001530867419205606,
0.004996958654373884,
0.023222999647259712,
0.15921443700790405,
0.2206583321094513,
-0.09496251493692398,
-0.03753845393657684,
-0.041817598044872284,
0.02606145292520523,
0.10511910915374756,
0.04245214909315109,
-0.04663945734500885,
0.041522711515426636,
-0.007779768668115139,
-0.033237650990486145,
-0.017682453617453575,
-0.009546971879899502,
-0.07089126110076904,
-0.06520862132310867,
-0.06327446550130844,
0.00790522713214159,
-0.029427755624055862,
-0.009285880252718925,
-0.031943242996931076,
-0.06854052096605301,
-0.03167993202805519,
0.13503709435462952,
-0.045838870108127594,
-0.014511617831885815,
-0.07795076072216034,
0.13901136815547943,
-0.02076946385204792,
0.019529197365045547,
-0.1386507749557495,
-0.10085764527320862,
0.06192042678594589,
-0.2569917142391205,
0.0288861021399498,
-0.024994120001792908,
0.033609483391046524,
0.09510236233472824,
-0.022114844992756844,
-0.04090216010808945,
-0.0036946572363376617,
-0.02901856228709221,
-0.01620562933385372,
-0.13861826062202454,
-0.09312329441308975,
-0.021515900269150734,
0.16482308506965637,
-0.10285954922437668,
0.060498472303152084,
0.05872023105621338,
0.177692711353302,
-0.0010935618774965405,
-0.0495661161839962,
0.04133046418428421,
0.014076328836381435,
-0.00933940801769495,
-0.06117941439151764,
0.03129934147000313,
-0.017155325040221214,
-0.07683154195547104,
0.0230487659573555,
-0.09522220492362976,
-0.06828600913286209,
0.0454079769551754,
0.1084422916173935,
-0.08888481557369232,
-0.045977573841810226,
-0.010482335463166237,
-0.02788333222270012,
-0.05628563091158867,
-0.05581507459282875,
0.08716053515672684,
0.0313115268945694,
0.06286195665597916,
-0.07583241164684296,
-0.12060359865427017,
0.011962266638875008,
0.00497860461473465,
-0.03765784949064255,
0.136618509888649,
0.0008419781224802136,
-0.1441844403743744,
0.09529437869787216,
0.0573565848171711,
0.02403576485812664,
0.15169063210487366,
0.010673169046640396,
-0.03464016318321228,
-0.09475518018007278,
0.06382697820663452,
0.04144428297877312,
0.09565594792366028,
0.016134966164827347,
0.0277025755494833,
0.051495399326086044,
-0.013188540004193783,
0.014995002187788486,
-0.11568167805671692,
0.028803836554288864,
0.02679041586816311,
-0.04290289059281349,
0.016975726932287216,
0.06925228238105774,
-0.006320801563560963,
0.06676694005727768,
-0.015466314740478992,
0.061539020389318466,
-0.03364915773272514,
-0.058776941150426865,
-0.1265030950307846,
0.1567183881998062,
-0.08924178034067154,
-0.1561521589756012,
-0.15872417390346527,
-0.019933052361011505,
-0.11261028796434402,
-0.04740180820226669,
0.03474276140332222,
-0.026875589042901993,
-0.04287160560488701,
-0.09326061606407166,
0.05285726115107536,
0.07770129293203354,
-0.05764682963490486,
0.029928429052233696,
-0.01687181368470192,
0.06855647265911102,
-0.11296849697828293,
-0.023465275764465332,
0.060048799961805344,
0.02526327408850193,
0.028736509382724762,
0.05163873732089996,
0.09489382058382034,
0.08398807793855667,
0.0362507700920105,
0.015089208260178566,
0.013857324607670307,
0.2598232924938202,
-0.09863453358411789,
0.08720748126506805,
0.16616471111774445,
0.0034785973839461803,
0.07429353147745132,
0.13056929409503937,
0.07720997929573059,
-0.06613697111606598,
-0.023135513067245483,
0.02194489724934101,
-0.024997616186738014,
-0.158270925283432,
-0.07069829851388931,
-0.055327292531728745,
0.003951964899897575,
0.05960322916507721,
0.048116009682416916,
-0.007396707311272621,
0.054213475435972214,
-0.052058011293411255,
-0.038888148963451385,
0.04421881586313248,
0.07643278688192368,
0.06988003104925156,
0.04795686528086662,
0.0641406998038292,
-0.019555028527975082,
0.01910572312772274,
0.09517364203929901,
0.01043457631021738,
0.10210463404655457,
-0.02330624684691429,
0.18152542412281036,
0.06063041090965271,
0.10171207040548325,
0.009897595271468163,
0.0423230305314064,
0.019875910133123398,
0.014567595906555653,
0.037878766655921936,
-0.09714611619710922,
0.03497471660375595,
0.04005565494298935,
-0.038389697670936584,
0.06132099777460098,
-0.029189273715019226,
-0.029169373214244843,
0.06890357285737991,
0.23063409328460693,
0.08791407197713852,
-0.23662646114826202,
-0.06820894032716751,
0.028633689507842064,
-0.01798653043806553,
-0.02710089273750782,
-0.07196102291345596,
0.08232519030570984,
-0.1499929130077362,
0.12502896785736084,
-0.02664428949356079,
0.08723902702331543,
-0.05597300082445145,
-0.03246639296412468,
0.023017756640911102,
0.13063931465148926,
0.007563863415271044,
0.021590637043118477,
-0.08814773708581924,
0.13470914959907532,
0.03742704913020134,
0.03612137585878372,
-0.048384156078100204,
0.04792026802897453,
0.05386565625667572,
0.03256596624851227,
0.12723557651042938,
0.03399898111820221,
-0.04833051189780235,
-0.1234588697552681,
-0.06502183526754379,
-0.011905249208211899,
0.07326267659664154,
-0.11644229292869568,
0.1085549145936966,
0.0008896282524801791,
-0.05773821100592613,
-0.06975867599248886,
0.04854271560907364,
-0.1246747151017189,
-0.1326695680618286,
0.09270588308572769,
0.019206488505005836,
-0.004347942303866148,
-0.08910027891397476,
-0.02384672500193119,
-0.07720056921243668,
0.17835187911987305,
-0.13138552010059357,
-0.10424366593360901,
-0.14623430371284485,
0.019838901236653328,
0.12011423707008362,
-0.09586021304130554,
0.04952145740389824,
-0.054908137768507004,
0.13131214678287506,
-0.08491016179323196,
-0.10803071409463882,
0.0031110455747693777,
-0.10406436771154404,
-0.15895523130893707,
-0.016845667734742165,
0.18804065883159637,
0.06841174513101578,
0.01998257078230381,
0.04636812582612038,
0.033293623477220535,
0.0006021942244842649,
-0.10974181443452835,
0.0050140367820858955,
0.12546297907829285,
0.006240382324904203,
0.09202331304550171,
-0.04566655680537224,
-0.04445214569568634,
-0.09057268500328064,
-0.04287262633442879,
0.05312792956829071,
0.306938499212265,
-0.07398373633623123,
0.057277124375104904,
0.06801817566156387,
-0.04662609472870827,
-0.13315193355083466,
-0.019342564046382904,
0.06505969911813736,
0.019270027056336403,
0.025498589500784874,
-0.10378386825323105,
0.05618932843208313,
0.08659297972917557,
-0.003092100378125906,
0.15438351035118103,
-0.28497934341430664,
-0.12206729501485825,
0.014736184850335121,
0.054704729467630386,
-0.10833261907100677,
-0.13666997849941254,
-0.11265040189027786,
-0.05001175031065941,
-0.18979574739933014,
0.07308121025562286,
-0.03530014306306839,
0.05785314366221428,
-0.02325328253209591,
0.038133639842271805,
0.025217236950993538,
-0.037785958498716354,
0.19537271559238434,
-0.00041987834265455604,
0.05685656517744064,
-0.06840397417545319,
0.07129933685064316,
0.009667005389928818,
-0.07543710619211197,
0.08063114434480667,
-0.016769062727689743,
0.057787660509347916,
-0.07750823348760605,
-0.0037023189943283796,
-0.09891999512910843,
0.08838903158903122,
-0.06746514141559601,
-0.003480901475995779,
-0.068965382874012,
0.08907764405012131,
0.04152337461709976,
-0.016935698688030243,
-0.010590536519885063,
-0.03918278589844704,
0.12641924619674683,
0.22624219954013824,
0.08268904685974121,
-0.021522628143429756,
-0.08541391789913177,
-0.0028606210835278034,
-0.02340327389538288,
0.03568483144044876,
-0.05007392168045044,
0.030080698430538177,
0.09638979285955429,
0.07416202127933502,
0.11765220761299133,
0.007687520235776901,
-0.13749492168426514,
-0.025064611807465553,
0.05596223101019859,
-0.1590513288974762,
-0.1764783412218094,
-0.04164158180356026,
0.018489325419068336,
-0.043415963649749756,
0.0011119890259578824,
0.2094741314649582,
-0.01564190536737442,
-0.04446769133210182,
0.032563433051109314,
0.03490924462676048,
-0.03007512353360653,
0.17149731516838074,
0.02123425342142582,
0.07249967008829117,
-0.07722723484039307,
0.061947356909513474,
0.030385101214051247,
0.01590743474662304,
-0.007486291229724884,
0.16145873069763184,
-0.09378024935722351,
-0.09352295100688934,
-0.05824456736445427,
0.07370655238628387,
-0.076044961810112,
-0.022184815257787704,
-0.021405579522252083,
-0.08294608443975449,
0.021521613001823425,
0.14948487281799316,
0.04223942011594772,
-0.029807860031723976,
0.06489751487970352,
-0.022353671491146088,
-0.01262697670608759,
0.07513593137264252,
0.039529748260974884,
0.06516161561012268,
-0.064303457736969,
0.07645869255065918,
-0.018901096656918526,
0.057515405118465424,
-0.009405039250850677,
0.006718489807099104,
-0.14400263130664825,
-0.045528147369623184,
-0.09107623994350433,
0.0010434531141072512,
-0.1279691606760025,
-0.012957594357430935,
-0.02937966212630272,
-0.01140217762440443,
-0.025888843461871147,
0.045904770493507385,
-0.060938358306884766,
-0.09193648397922516,
-0.06444298475980759,
0.07826902717351913,
-0.1475367248058319,
0.009270556271076202,
0.04979900270700455,
-0.07672209292650223,
0.09466429054737091,
0.0037219945807009935,
0.0019856125582009554,
0.005022512748837471,
-0.058107685297727585,
-0.017707034945487976,
-0.015370056964457035,
0.014712527394294739,
0.03841640055179596,
-0.2599083185195923,
0.011125855147838593,
-0.04668840765953064,
-0.049365609884262085,
-0.0039966413751244545,
0.0883522555232048,
-0.0780402198433876,
-0.045397866517305374,
-0.01794837787747383,
-0.011920806020498276,
-0.09755246341228485,
0.054385263472795486,
0.09318234771490097,
0.03412151709198952,
0.07688449323177338,
-0.03006233647465706,
0.07344099879264832,
-0.18182457983493805,
-0.04424624145030975,
0.02999134548008442,
-0.05988047271966934,
0.0637851133942604,
-0.028003206476569176,
0.07074891775846481,
-0.034066688269376755,
0.0678243488073349,
-0.046109482645988464,
0.007584958337247372,
0.013275442644953728,
-0.046227503567934036,
-0.0583421066403389,
0.008887110278010368,
0.05411682277917862,
0.007681099697947502,
0.013896060176193714,
0.01718263141810894,
0.013841814361512661,
-0.03844862058758736,
-0.03254514932632446,
0.08677802234888077,
0.10292897373437881,
0.0019177087815478444,
0.03871221840381622,
0.09347283095121384,
-0.10394598543643951,
-0.00770309055224061,
0.016344331204891205,
-0.03223894536495209,
0.08392903208732605,
-0.06932943314313889,
0.06159314885735512,
0.10241761803627014,
-0.18410246074199677,
0.12296594679355621,
0.03679967299103737,
-0.043706249445676804,
-0.0891125425696373,
-0.21334221959114075,
-0.045117102563381195,
-0.048360999673604965,
-0.022531423717737198,
-0.08107305318117142,
0.04106675833463669,
-0.0223915446549654,
0.013382375240325928,
-0.00431291526183486,
0.15338565409183502,
-0.06828607618808746,
-0.07131311297416687,
0.06271100044250488,
0.023739539086818695,
-0.04255959391593933,
0.0186128169298172,
-0.007370177656412125,
0.0280170738697052,
0.044481273740530014,
0.04065921530127525,
0.034952398389577866,
0.008677106350660324,
0.011015135794878006,
-0.04583385959267616,
-0.08386383205652237,
-0.009981885552406311,
-0.018855948001146317,
0.0022483908105641603,
0.04748959466814995,
0.05323795601725578,
0.010519832372665405,
-0.015437587164342403,
0.1065712571144104,
-0.0388643741607666,
-0.03411516174674034,
-0.1333073228597641,
0.1729545295238495,
-0.0884871631860733,
-0.013233300298452377,
-0.002624036045745015,
-0.08557087928056717,
-0.001440701656974852,
0.18324314057826996,
0.1605691760778427,
-0.039348162710666656,
0.043843336403369904,
0.011063226498663425,
0.006158569362014532,
0.013256123289465904,
0.024207735434174538,
0.03296574577689171,
0.09810876101255417,
-0.02288897894322872,
0.09398314356803894,
-0.0317111611366272,
-0.06202622130513191,
-0.07543383538722992,
0.0866965726017952,
-0.019786138087511063,
0.012943508103489876,
-0.01467861421406269,
0.0688600167632103,
-0.004709766712039709,
-0.15824270248413086,
0.05247723311185837,
-0.10000913590192795,
-0.13650010526180267,
-0.011311225593090057,
-0.07559972256422043,
-0.029222870245575905,
0.058672528713941574,
-0.02281065098941326,
0.005110166966915131,
0.18161675333976746,
0.0018605180084705353,
-0.04716502130031586,
-0.10844589024782181,
0.039931196719408035,
-0.10910598933696747,
0.11147446185350418,
-0.013411503285169601,
0.03250350430607796,
0.13634388148784637,
-0.034907348453998566,
-0.12645463645458221,
0.051742274314165115,
0.08569781482219696,
-0.10352301597595215,
0.0018046568147838116,
0.20331788063049316,
0.004622191656380892,
0.034741874784231186,
0.056502580642700195,
-0.08139484375715256,
0.009915951639413834,
0.0622529499232769,
0.04897496849298477,
-0.09269192814826965,
0.07155569642782211,
-0.09523096680641174,
0.1415766328573227,
0.19516132771968842,
-0.03245047479867935,
0.004381112288683653,
-0.04549586400389671,
0.0795249342918396,
0.04511290788650513,
0.07024716585874557,
-0.01037550251930952,
-0.18170195817947388,
0.08128581196069717,
-0.04013247787952423,
0.03869382664561272,
-0.14531628787517548,
-0.10904447734355927,
-0.0074611627496778965,
-0.031184248626232147,
0.026880715042352676,
0.12320626527070999,
0.08135218173265457,
0.032344263046979904,
-0.012878159992396832,
-0.23100483417510986,
-0.011181864887475967,
0.0913306251168251,
-0.09959501773118973,
-0.024197351187467575
] |
null | null | transformers | Exllamav2 4.0bpw h6 quant for [BigWeave-v16-103b](https://huggingface.co/llmixer/BigWeave-v16-103b).
Default calibration dataset. | {"language": ["en"], "license": "llama2", "tags": ["4.0bpw", "h6", "exl2"], "pipeline_tag": "conversational"} | text-generation | llmixer/BigWeave-v16-103b-4.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"4.0bpw",
"h6",
"exl2",
"conversational",
"en",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:16:53+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #4.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Exllamav2 4.0bpw h6 quant for BigWeave-v16-103b.
Default calibration dataset. | [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #4.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
72
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #4.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.014624089002609253,
0.02502390928566456,
-0.005784318316727877,
0.021104594692587852,
0.09587370604276657,
-0.024728523567318916,
0.18501603603363037,
0.12350449711084366,
0.0023090930189937353,
-0.00737159326672554,
0.13900898396968842,
0.18862783908843994,
-0.014773555099964142,
0.04249310493469238,
-0.12514916062355042,
-0.15008747577667236,
0.06949780136346817,
-0.007442784029990435,
0.032808076590299606,
0.07007662206888199,
0.10293366760015488,
-0.06866941601037979,
0.09774570912122726,
-0.059669457376003265,
-0.08799078315496445,
0.04853596165776253,
0.05079410597681999,
-0.10613664984703064,
0.10030116885900497,
0.08371633291244507,
0.07306494563817978,
0.08459213376045227,
-0.015535599552094936,
-0.23328347504138947,
0.024171333760023117,
-0.014896096661686897,
-0.0808754563331604,
0.011610093526542187,
0.034360677003860474,
-0.08113504946231842,
0.05391255021095276,
0.02475675754249096,
-0.023136276751756668,
0.08134804666042328,
-0.12089595943689346,
-0.02677130699157715,
-0.06121793016791344,
0.0052248756401240826,
0.09876649081707001,
0.10079409182071686,
0.0029533111955970526,
0.11336831003427505,
-0.039001356810331345,
0.10858765244483948,
0.18876203894615173,
-0.3420359790325165,
0.02135869301855564,
0.08658628910779953,
0.08263689279556274,
0.06655193865299225,
-0.05225702375173569,
0.09482970088720322,
0.08660946041345596,
-0.027106206864118576,
0.024297678843140602,
-0.0690896138548851,
-0.050865110009908676,
0.05097731947898865,
-0.0626235231757164,
-0.010629691183567047,
0.2451413869857788,
-0.015819337218999863,
0.022052133455872536,
-0.06001259759068489,
-0.07255854457616806,
-0.037822168320417404,
-0.003316215006634593,
0.027317674830555916,
0.0047947708517313,
0.0548611581325531,
0.04888840764760971,
-0.03329068049788475,
-0.13606876134872437,
-0.022776449099183083,
-0.14556530117988586,
0.18314693868160248,
0.0012747899163514376,
0.03677703067660332,
-0.15327076613903046,
0.05360349267721176,
0.07752249389886856,
-0.12221994251012802,
-0.018148979172110558,
-0.04777134209871292,
0.10886085778474808,
0.03563753888010979,
-0.02614421956241131,
-0.050228118896484375,
0.1522078812122345,
0.09781081974506378,
-0.03658279776573181,
0.0389237105846405,
-0.09008803963661194,
0.09144042432308197,
-0.022875702008605003,
0.01711265742778778,
0.05550821125507355,
-0.03709954023361206,
0.08989769220352173,
-0.05010915920138359,
0.09476865828037262,
-0.038693275302648544,
-0.17464010417461395,
0.026493549346923828,
0.007944631390273571,
0.140319362282753,
0.0015006698668003082,
0.08267957717180252,
-0.04079426825046539,
0.05680225417017937,
0.032297272235155106,
-0.11382044106721878,
-0.003752038348466158,
0.01630423404276371,
0.03595932573080063,
0.020556682720780373,
0.033028800040483475,
0.024492846801877022,
-0.07361850142478943,
0.04187210276722908,
-0.05753063037991524,
-0.023245135322213173,
-0.04252883791923523,
-0.0571114718914032,
0.061747606843709946,
-0.01879667304456234,
0.03491013124585152,
-0.17272396385669708,
-0.1915844827890396,
0.008568472228944302,
-0.00646207807585597,
-0.027859706431627274,
-0.01188875362277031,
-0.07150817662477493,
-0.045766327530145645,
0.03827333077788353,
-0.0850512757897377,
-0.06827162206172943,
-0.0889095738530159,
0.08036760240793228,
0.003889946499839425,
0.07360421866178513,
-0.17581410706043243,
0.03034648858010769,
-0.07729760557413101,
0.022965287789702415,
-0.013510164804756641,
0.012350811623036861,
-0.06044828146696091,
0.15282225608825684,
-0.011947269551455975,
0.01406549196690321,
-0.03537600114941597,
0.07720353454351425,
-0.030837081372737885,
0.19462549686431885,
-0.1323024481534958,
-0.04712322726845741,
0.23029176890850067,
-0.13225288689136505,
-0.22259438037872314,
0.08839234709739685,
-0.005101875402033329,
0.045982688665390015,
0.09734562039375305,
0.1980842798948288,
-0.023250117897987366,
-0.10454895347356796,
0.02437831647694111,
0.10066841542720795,
-0.06269631534814835,
-0.07229872047901154,
0.017486516386270523,
-0.014755374751985073,
-0.060821305960416794,
0.03017774410545826,
0.05598869547247887,
0.029711013659834862,
-0.009072192013263702,
-0.05624156817793846,
-0.04989694803953171,
-0.04475313797593117,
-0.0029487330466508865,
-0.052144359797239304,
0.03200653940439224,
-0.11132896691560745,
-0.022730989381670952,
0.04601267725229263,
0.026234254240989685,
-0.025981560349464417,
0.028828231617808342,
-0.10032696276903152,
0.09209322929382324,
0.01339471060782671,
0.034316278994083405,
-0.07833081483840942,
-0.08983514457941055,
-0.050094183534383774,
0.08673511445522308,
0.017439519986510277,
0.05871809273958206,
0.052097298204898834,
0.008547668345272541,
-0.017779860645532608,
-0.010758670046925545,
0.15254518389701843,
0.037236038595438004,
-0.0522448904812336,
-0.11617407947778702,
0.0904487892985344,
-0.04907457157969475,
0.03289216384291649,
-0.11871641874313354,
0.02421732433140278,
0.09860815852880478,
0.09044589102268219,
0.010892711579799652,
0.062414076179265976,
-0.0124656418338418,
-0.00027991243405267596,
-0.08456950634717941,
0.0011317775351926684,
0.07888784259557724,
-0.0005869093001820147,
-0.11943657696247101,
0.19207505881786346,
-0.23423485457897186,
0.29319167137145996,
0.20526009798049927,
-0.17237365245819092,
0.038478970527648926,
-0.05689002200961113,
0.00028631885652430356,
0.005950616206973791,
0.01575145684182644,
-0.06246365234255791,
0.0392993800342083,
-0.02532375045120716,
0.17981013655662537,
-0.0885864794254303,
-0.03958863019943237,
-0.008056296966969967,
-0.07558448612689972,
-0.04163574054837227,
0.07397560030221939,
0.06292787194252014,
-0.16059212386608124,
0.16732247173786163,
0.25409582257270813,
0.02224087528884411,
0.18918555974960327,
-0.0213124118745327,
0.014538943767547607,
0.03305529057979584,
0.056074582040309906,
-0.010974524542689323,
0.0037655348423868418,
-0.10001299530267715,
-0.0012398801045492291,
0.04411248117685318,
0.027860242873430252,
0.07673598825931549,
-0.1529352366924286,
-0.05754443258047104,
-0.013506497256457806,
-0.058351725339889526,
0.015288387425243855,
0.06294555962085724,
-0.007337450981140137,
0.13099494576454163,
-0.0375371016561985,
-0.06682590395212173,
0.09070377796888351,
-0.0225239135324955,
-0.10790587961673737,
0.17853105068206787,
-0.14071181416511536,
-0.2665744721889496,
-0.16036581993103027,
-0.14974850416183472,
-0.0630606934428215,
0.03592512384057045,
0.14284102618694305,
-0.0728132501244545,
-0.06974393129348755,
-0.07621023058891296,
0.018540821969509125,
-0.03948350250720978,
-0.005501193925738335,
-0.0028450065292418003,
0.06409809738397598,
-0.043758831918239594,
-0.13343651592731476,
-0.06146720051765442,
0.018918240442872047,
-0.059237491339445114,
0.09289146214723587,
-0.061612579971551895,
0.08977466076612473,
0.1319267451763153,
0.02246379293501377,
0.018703917041420937,
-0.04707663878798485,
0.12957821786403656,
-0.05264851823449135,
-0.023246068507432938,
0.18923749029636383,
-0.07041344791650772,
0.058294571936130524,
0.14196747541427612,
0.018674828112125397,
-0.13652032613754272,
0.03599545732140541,
-0.026965972036123276,
-0.07247921079397202,
-0.2388296127319336,
-0.10246721655130386,
-0.0741761326789856,
0.10670460015535355,
0.0005225061904639006,
0.07127487659454346,
0.100992351770401,
0.04896487295627594,
-0.024417057633399963,
-0.027662744745612144,
0.05272366479039192,
0.09656074643135071,
0.23962128162384033,
-0.04527932032942772,
0.1194884404540062,
-0.10270234197378159,
-0.10021818429231644,
0.07317773997783661,
0.07884261757135391,
0.06085629388689995,
0.10832566022872925,
0.06929702311754227,
0.05960996448993683,
0.05520235374569893,
0.09365833550691605,
0.10512124001979828,
0.030780361965298653,
-0.045615728944540024,
-0.020307427272200584,
-0.06972361356019974,
-0.021917304024100304,
0.06994408369064331,
-0.08996496349573135,
-0.09104444086551666,
-0.04960503801703453,
-0.034993771463632584,
0.08674252778291702,
0.07065241783857346,
0.05481724441051483,
-0.20339368283748627,
0.020531190559267998,
0.14099173247814178,
-0.008230026811361313,
-0.07868284732103348,
0.12132928520441055,
0.0440211184322834,
-0.0385090708732605,
0.1150328740477562,
0.00024371025210712105,
0.09348153322935104,
-0.03621777147054672,
0.0763237327337265,
-0.10795734077692032,
-0.0693286806344986,
-0.0028484268113970757,
0.11079848557710648,
-0.3053176701068878,
0.20508968830108643,
0.029420457780361176,
-0.002620869083330035,
-0.06976915150880814,
-0.010374323464930058,
0.00784527137875557,
0.12311423569917679,
0.15231096744537354,
-0.01847509853541851,
-0.10991477966308594,
-0.023766016587615013,
-0.017359690740704536,
0.046371445059776306,
0.11958513408899307,
0.018417123705148697,
0.028554921969771385,
-0.05340861529111862,
-0.011748276650905609,
0.004787222947925329,
-0.036031585186719894,
-0.020643234252929688,
-0.1555185467004776,
0.04193536564707756,
0.12001893669366837,
0.08819922804832458,
-0.03803446516394615,
0.00677349790930748,
-0.13976562023162842,
0.19395104050636292,
-0.15907514095306396,
-0.06293820589780807,
-0.09900327771902084,
-0.11946335434913635,
-0.011732138693332672,
-0.03224385902285576,
0.03564038872718811,
-0.024543004110455513,
0.03471953794360161,
-0.07803075760602951,
-0.17489205300807953,
0.12101171910762787,
-0.10312908887863159,
-0.06318462640047073,
-0.029312139376997948,
0.1828273981809616,
-0.09951164573431015,
-0.020755847916007042,
0.042280133813619614,
-0.00014424911933019757,
-0.05772042274475098,
-0.11548108607530594,
0.025169139727950096,
0.047007203102111816,
0.028657153248786926,
0.00875910371541977,
-0.12064903974533081,
-0.06381364911794662,
-0.005244092084467411,
-0.08397094905376434,
0.24697339534759521,
0.2833234667778015,
-0.04191160202026367,
0.1557900458574295,
0.13207891583442688,
-0.10890784114599228,
-0.3387155830860138,
-0.11964914947748184,
-0.18229997158050537,
-0.04163976386189461,
0.004620666615664959,
-0.06895841658115387,
0.06887922435998917,
0.029895013198256493,
-0.04631926864385605,
0.1474330872297287,
-0.19744011759757996,
-0.11156320571899414,
0.14503517746925354,
0.043421197682619095,
0.35806259512901306,
-0.1891792118549347,
-0.10747324675321579,
-0.13014551997184753,
-0.1594506800174713,
0.12653295695781708,
-0.1470547616481781,
0.09348229318857193,
-0.00023347139358520508,
0.061417192220687866,
0.02693987265229225,
-0.03775831684470177,
0.1078091561794281,
-0.044913891702890396,
0.07217787951231003,
-0.13584034144878387,
-0.02923017181456089,
0.03020719811320305,
-0.02520674467086792,
0.06579248607158661,
-0.20615136623382568,
0.01904238574206829,
-0.06925155967473984,
-0.029797449707984924,
-0.019707446917891502,
0.06853382289409637,
-0.008314729668200016,
-0.048456303775310516,
-0.03394334390759468,
-0.07020146399736404,
0.030884381383657455,
0.0002779714995995164,
0.25020667910575867,
-0.08433369547128677,
0.14317618310451508,
0.22666853666305542,
0.16332733631134033,
-0.1356874704360962,
0.08393587172031403,
-0.03373867645859718,
-0.08463110774755478,
0.05745149403810501,
-0.15159299969673157,
0.066808320581913,
0.0865926668047905,
-0.02889592945575714,
0.0927286371588707,
0.08867520093917847,
0.010110861621797085,
-0.0019097569165751338,
0.15920396149158478,
-0.20904648303985596,
-0.08913516253232956,
-0.046011440455913544,
0.068972647190094,
0.07460033148527145,
0.1047024056315422,
0.19858229160308838,
-0.020192578434944153,
0.021653378382325172,
-0.010203015059232712,
0.06070214882493019,
-0.05325740948319435,
0.05183536931872368,
0.022225938737392426,
0.03504849970340729,
-0.12082129716873169,
0.10505440086126328,
-0.029818469658493996,
-0.11584684997797012,
0.03926699608564377,
0.12514613568782806,
-0.10928308218717575,
-0.12453967332839966,
-0.04976485297083855,
0.13989868760108948,
-0.1511269062757492,
-0.09423520416021347,
-0.08312356472015381,
-0.1817186027765274,
0.022302662953734398,
0.22929096221923828,
0.0405750535428524,
0.07598979771137238,
0.04093538597226143,
-0.032779909670352936,
-0.023706015199422836,
0.0424787811934948,
-0.07795298844575882,
0.02439328283071518,
-0.12959367036819458,
0.022829750552773476,
-0.029453331604599953,
0.06776940077543259,
-0.07278820127248764,
-0.005029648542404175,
-0.1586650162935257,
0.020784927532076836,
-0.15379944443702698,
0.007279790472239256,
-0.0633573830127716,
-0.018586084246635437,
0.009585249237716198,
-0.013889215886592865,
-0.052366361021995544,
-0.023734739050269127,
-0.09822350740432739,
0.006682459264993668,
-0.023749535903334618,
0.05018344148993492,
-0.09067263454198837,
-0.027396952733397484,
0.04664527252316475,
-0.039344046264886856,
0.10597502440214157,
0.0708988606929779,
-0.09052922576665878,
0.10921681672334671,
-0.2281842678785324,
-0.03619805723428726,
0.13342182338237762,
0.005632877815514803,
0.02767523005604744,
0.05399645119905472,
-0.03653727471828461,
0.10666611045598984,
0.01723341830074787,
0.04123646020889282,
0.016167784109711647,
-0.10475567728281021,
0.02659190259873867,
-0.03916238993406296,
-0.10138861835002899,
-0.018714293837547302,
-0.060904692858457565,
0.06169157847762108,
-0.035124771296978,
0.1413777619600296,
-0.08869001269340515,
0.03413742780685425,
-0.05284988880157471,
0.03730835020542145,
0.03438449651002884,
-0.15841026604175568,
-0.0940750390291214,
-0.06626802682876587,
0.01075141690671444,
-0.03200845792889595,
0.264486163854599,
-0.006506944075226784,
-0.07792660593986511,
0.06803325563669205,
0.004894019570201635,
0.009728816337883472,
0.02221165969967842,
0.2607744634151459,
0.039399612694978714,
-0.019862772896885872,
-0.15621602535247803,
0.009038046933710575,
0.04428093507885933,
-0.06367406994104385,
0.1083773598074913,
0.10021260380744934,
-0.07096187025308609,
0.11524826288223267,
0.07701326906681061,
-0.022152245044708252,
-0.04278026148676872,
-0.08895212411880493,
-0.028071636334061623,
0.07163673639297485,
-0.031985193490982056,
0.07053546607494354,
0.2264190912246704,
-0.015675321221351624,
-0.0013933449517935514,
-0.0657970979809761,
-0.03148968145251274,
-0.18603460490703583,
-0.078956738114357,
-0.10698696225881577,
-0.14217206835746765,
0.017657844349741936,
-0.09808991849422455,
0.06888562440872192,
0.01725362055003643,
0.05232522636651993,
-0.03855964168906212,
0.09900063276290894,
-0.0054439580999314785,
-0.05857052281498909,
0.015903914347290993,
-0.027512917295098305,
0.030752278864383698,
-0.01986834965646267,
-0.03125442937016487,
-0.04669823870062828,
-0.06380899250507355,
-0.037941884249448776,
0.07472170889377594,
0.011975714936852455,
0.04519399628043175,
-0.12855280935764313,
-0.0571402870118618,
-0.028265783563256264,
0.08157184720039368,
0.00024269521236419678,
0.1390472650527954,
0.02240787073969841,
-0.044157177209854126,
0.06282452493906021,
0.19599179923534393,
-0.08070541173219681,
-0.11800862848758698,
0.0009124612552113831,
0.17217426002025604,
0.04428281635046005,
0.13777539134025574,
-0.050644651055336,
-0.01234858762472868,
-0.011216298677027225,
0.31149664521217346,
0.26675552129745483,
-0.0705290362238884,
0.047776490449905396,
-0.06932460516691208,
0.04736122861504555,
0.05453705042600632,
0.0828668549656868,
0.10296417027711868,
0.2790437936782837,
-0.0367853157222271,
-0.02428857795894146,
-0.009661411866545677,
0.01360268983989954,
-0.12798643112182617,
0.08831225335597992,
-0.01606430485844612,
-0.04653428867459297,
-0.014695584774017334,
0.07195516675710678,
-0.15002024173736572,
0.054907072335481644,
-0.061094194650650024,
-0.14977826178073883,
-0.013275074772536755,
-0.004355212673544884,
0.15938006341457367,
-0.007394789252430201,
0.048089850693941116,
-0.029539411887526512,
-0.09701990336179733,
0.0310180876404047,
0.007772421929985285,
-0.2193242609500885,
0.02914690412580967,
0.009650195948779583,
-0.05893273279070854,
0.0497722327709198,
0.003317497204989195,
0.05436485633254051,
0.07701832056045532,
0.022657593712210655,
-0.04257960617542267,
0.17495301365852356,
0.024179179221391678,
-0.1021280288696289,
0.04606116935610771,
-0.003076041117310524,
-0.013684920966625214,
0.01274965051561594,
0.05018823966383934,
-0.08514449000358582,
0.04569206014275551,
0.08778731524944305,
-0.11537797749042511,
-0.019294779747724533,
0.012117106467485428,
-0.07350447028875351,
0.07536502182483673,
0.036104004830121994,
-0.028492188081145287,
0.011481092311441898,
-0.017432576045393944,
0.027135001495480537,
-0.015292796306312084,
-0.13507933914661407,
-0.014357770793139935,
-0.13002800941467285,
-0.043466925621032715,
0.13048876821994781,
0.016558533534407616,
-0.27265623211860657,
0.008050046861171722,
-0.09177999943494797,
0.06139390543103218,
-0.17805203795433044,
0.05036284402012825,
0.20522840321063995,
0.007899003103375435,
-0.02867361716926098,
-0.1690259724855423,
0.05415639653801918,
0.09307197481393814,
-0.0544666051864624,
-0.11274665594100952
] |
null | null | transformers |
6BPW exl2 quant of MiquMaid 70B.
Original model card:
## MiquMaid
---
# Disclaimer:
## This model is HIGHLY EXPERIMENTAL, do not expect everything to work.
This model uses the Alpaca **prompting format**
---
Quick train to see if miqu finetuned results in good models
## Credits:
- Undi
- IkariDev
<!-- description start -->
## Description
<!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) -->
This repo contains FP16 files of MiquMaid-v1-70B.
[FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/MiquMaid-v1-70B)
<!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)-->
<!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)-->
<!-- [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)-->
<!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)-->
<!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)-->
[GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/MiquMaid-v1-70B-GGUF)
<!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)-->
## Ratings:
Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!
No ratings yet!
If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi".
<!-- description end -->
<!-- prompt-template start -->
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support me, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "other", "license_name": "other", "license_link": "LICENSE"} | text-generation | Panchovix/MiquMaid-v1-70B-6bpw-exl2 | [
"transformers",
"llama",
"text-generation",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:17:53+00:00 | [] | [] | TAGS
#transformers #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
6BPW exl2 quant of MiquMaid 70B.
Original model card:
## MiquMaid
---
# Disclaimer:
## This model is HIGHLY EXPERIMENTAL, do not expect everything to work.
This model uses the Alpaca prompting format
---
Quick train to see if miqu finetuned results in good models
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v1-70B.
FP16 - by IkariDev and Undi
GGUF - by IkariDev and Undi
## Ratings:
Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!
No ratings yet!
If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi".
### Custom format:
## Others
Undi: If you want to support me, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## MiquMaid\n\n---",
"# Disclaimer:",
"## This model is HIGHLY EXPERIMENTAL, do not expect everything to work.\n\nThis model uses the Alpaca prompting format\n\n---\n\nQuick train to see if miqu finetuned results in good models",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\n\n\nThis repo contains FP16 files of MiquMaid-v1-70B.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi",
"## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".",
"### Custom format:",
"## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#transformers #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## MiquMaid\n\n---",
"# Disclaimer:",
"## This model is HIGHLY EXPERIMENTAL, do not expect everything to work.\n\nThis model uses the Alpaca prompting format\n\n---\n\nQuick train to see if miqu finetuned results in good models",
"## Credits:\n- Undi\n- IkariDev",
"## Description\n\n\n\nThis repo contains FP16 files of MiquMaid-v1-70B.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi",
"## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".",
"### Custom format:",
"## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
47,
6,
3,
44,
11,
43,
78,
5,
32
] | [
"passage: TAGS\n#transformers #llama #text-generation #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## MiquMaid\n\n---# Disclaimer:## This model is HIGHLY EXPERIMENTAL, do not expect everything to work.\n\nThis model uses the Alpaca prompting format\n\n---\n\nQuick train to see if miqu finetuned results in good models## Credits:\n- Undi\n- IkariDev## Description\n\n\n\nThis repo contains FP16 files of MiquMaid-v1-70B.\n\nFP16 - by IkariDev and Undi\n\n\n\n\n\n\n\n\n\n\n\nGGUF - by IkariDev and Undi## Ratings:\n\nNote: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here!\n\nNo ratings yet!\n\nIf you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is \"ikaridev\" and \"undi\".### Custom format:## Others\n\nUndi: If you want to support me, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.07728984206914902,
-0.02610531449317932,
-0.0018740606028586626,
0.019432779401540756,
0.07159573584794998,
0.060908377170562744,
0.1260148137807846,
0.13306599855422974,
0.11194555461406708,
0.06096811592578888,
0.04029972851276398,
0.09731069952249527,
0.10590685158967972,
0.18386061489582062,
-0.006677919067442417,
-0.25672122836112976,
0.027033576741814613,
0.018206264823675156,
0.15151181817054749,
0.08837917447090149,
0.08236616849899292,
-0.07113844901323318,
0.115030936896801,
0.03255203366279602,
-0.17739829421043396,
-0.055377110838890076,
-0.0071820542216300964,
-0.09636151790618896,
0.07967805117368698,
0.007670383434742689,
0.07529349625110626,
0.0613790787756443,
-0.010438828729093075,
-0.07923837006092072,
0.04557676613330841,
0.030098794028162956,
0.01728498376905918,
0.04969043284654617,
0.09865187853574753,
0.05150415748357773,
0.13081830739974976,
-0.008310658857226372,
-0.03853679448366165,
0.018870385363698006,
-0.10154737532138824,
-0.04313574358820915,
-0.14968180656433105,
0.15847566723823547,
0.15817776322364807,
0.030604448169469833,
0.023236408829689026,
0.11018224060535431,
-0.09555815905332565,
0.06453348696231842,
0.16796956956386566,
-0.11013559252023697,
-0.04464929550886154,
0.14941099286079407,
-0.07714973390102386,
0.006031940225511789,
-0.03608671575784683,
0.027110323309898376,
-0.027302071452140808,
-0.031431037932634354,
-0.07445329427719116,
-0.04137347266077995,
0.067264124751091,
-0.06931652873754501,
-0.08531774580478668,
-0.010883290320634842,
0.23190252482891083,
0.032155245542526245,
-0.08605127036571503,
-0.05395064130425453,
0.03711436316370964,
0.03616052865982056,
-0.06871656328439713,
-0.06655363738536835,
-0.04000779241323471,
-0.0705864280462265,
0.03276946768164635,
-0.015474601648747921,
-0.09469146281480789,
-0.07311021536588669,
-0.03222579136490822,
0.08599617332220078,
0.009474060498178005,
0.032102249562740326,
-0.08342396467924118,
0.08974869549274445,
-0.17126835882663727,
-0.07597993314266205,
-0.0888557955622673,
-0.08099467307329178,
0.062167514115571976,
-0.06499768793582916,
-0.0109492102637887,
-0.10015508532524109,
0.042123354971408844,
0.11694103479385376,
0.07575740665197372,
-0.006698149722069502,
0.033191461116075516,
0.04493653029203415,
0.021946704015135765,
0.04895969480276108,
0.021477747708559036,
-0.00046277864021249115,
0.05563313141465187,
-0.042420919984579086,
0.03240811079740524,
-0.037228457629680634,
-0.05981038883328438,
-0.06556056439876556,
-0.0156452227383852,
0.023251526057720184,
0.035984501242637634,
0.08440857380628586,
-0.0395590104162693,
-0.062413327395915985,
0.3255777060985565,
-0.03511069342494011,
0.021752968430519104,
-0.003074559848755598,
-0.0761018916964531,
0.08280985802412033,
0.006018455605953932,
0.01790957897901535,
-0.031643759459257126,
0.14004983007907867,
-0.034162770956754684,
0.03086545318365097,
-0.09094538539648056,
-0.015592893585562706,
0.05526980757713318,
-0.06817685067653656,
-0.0056581562384963036,
-0.1524532288312912,
-0.11176381260156631,
-0.01626325584948063,
0.0019944908563047647,
-0.04334307834506035,
-0.03745761141180992,
0.07717345654964447,
-0.03056258335709572,
0.05784326791763306,
0.020891906693577766,
-0.015497317537665367,
-0.03296305611729622,
0.04311484098434448,
0.005567986983805895,
0.1593305468559265,
-0.034461189061403275,
0.032820481806993484,
-0.08139399439096451,
-0.014515059068799019,
-0.3718279302120209,
0.011512753553688526,
-0.06079162284731865,
-0.008492333814501762,
-0.08268149197101593,
0.03780803084373474,
-0.056252796202898026,
-0.019538667052984238,
-0.012264944612979889,
0.2352210134267807,
-0.1715780794620514,
-0.017887057736516,
0.07883448153734207,
-0.16160479187965393,
-0.14463035762310028,
0.09145069122314453,
0.05850210785865784,
0.031584762036800385,
0.04934385046362877,
0.15240149199962616,
0.06874390691518784,
-0.17206509411334991,
-0.07560710608959198,
0.008580327033996582,
-0.033722106367349625,
-0.04886050894856453,
0.02967890165746212,
0.012372581288218498,
0.03488202393054962,
0.016605332493782043,
-0.10558050870895386,
-0.0015798751264810562,
-0.020574739202857018,
-0.00063183723250404,
-0.01713806577026844,
-0.02796686440706253,
-0.024167528375983238,
0.00012157174205640331,
0.03014932945370674,
0.015154978260397911,
-0.03418990597128868,
-0.13641299307346344,
0.11082936078310013,
0.04407438263297081,
-0.0012638034531846642,
-0.09152012318372726,
0.1392775923013687,
0.008741678670048714,
0.017363840714097023,
-0.06655652076005936,
-0.015430200845003128,
0.03307779133319855,
-0.051258817315101624,
0.039624277502298355,
-0.04553050547838211,
-0.00000212793429454905,
-0.023529289290308952,
-0.018544085323810577,
-0.04052368924021721,
0.03204449266195297,
-0.0012003700248897076,
-0.05917026475071907,
-0.10264648497104645,
0.0038922857493162155,
0.007644777186214924,
0.06878635287284851,
-0.16551601886749268,
-0.01126826461404562,
0.1852942407131195,
0.14793619513511658,
0.03469955921173096,
-0.03368059918284416,
0.041549958288669586,
-0.012177076190710068,
-0.04551258310675621,
0.0012190965935587883,
0.04965135455131531,
0.007700282149016857,
0.0007623425335623324,
0.12242064625024796,
-0.059728726744651794,
-0.1451466977596283,
0.1347847580909729,
-0.02545313723385334,
-0.06336724013090134,
-0.018040603026747704,
0.028196655213832855,
-0.02020588517189026,
-0.013338888064026833,
0.013706252910196781,
0.0002940996491815895,
0.03990206494927406,
0.060596466064453125,
0.0017750014085322618,
-0.005821434315294027,
0.022905169054865837,
-0.035511814057826996,
-0.05834454670548439,
-0.006938278675079346,
0.16631554067134857,
-0.08704128116369247,
0.030537519603967667,
0.10580575466156006,
-0.04714442417025566,
0.13495869934558868,
0.006264531519263983,
-0.08919287472963333,
-0.024695798754692078,
-0.016232265159487724,
0.0783880278468132,
0.13523904979228973,
-0.07412124425172806,
-0.03772822394967079,
0.04810488969087601,
-0.03892666473984718,
-0.02563156746327877,
-0.09375610202550888,
-0.013655462302267551,
-0.006615362595766783,
-0.02059229090809822,
-0.013357747346162796,
0.10718842595815659,
-0.05003752186894417,
0.06456517428159714,
-0.010701610706746578,
0.03204808756709099,
0.029350033029913902,
-0.0026498439256101847,
-0.05341191589832306,
0.13712523877620697,
-0.0079417172819376,
-0.22779127955436707,
-0.09100431948900223,
-0.057112693786621094,
-0.06036011502146721,
-0.062038835138082504,
0.018850484862923622,
-0.0737905353307724,
-0.026687905192375183,
-0.028201568871736526,
0.00864650122821331,
-0.0030674764420837164,
-0.018908631056547165,
-0.07478652149438858,
-0.042491331696510315,
-0.03550073504447937,
-0.06213502213358879,
-0.01582423225045204,
0.05468572676181793,
-0.038007281720638275,
0.18932569026947021,
0.01030329242348671,
0.15971019864082336,
0.10534653067588806,
-0.006721382960677147,
0.04485231637954712,
0.01495349407196045,
0.1977843940258026,
-0.16748745739459991,
0.16802017390727997,
0.14829982817173004,
0.03149622678756714,
0.07638575881719589,
0.1585530787706375,
0.03757710009813309,
-0.03292856365442276,
0.031156377866864204,
0.01680583320558071,
-0.052854228764772415,
-0.11622845381498337,
-0.01629279926419258,
-0.02996373362839222,
-0.0008008443401195109,
0.00010923433728748932,
0.010462597012519836,
0.21890950202941895,
0.13546067476272583,
-0.07025723159313202,
0.07762782275676727,
-0.014524201862514019,
0.11735271662473679,
0.0873565524816513,
0.056608572602272034,
0.017364969477057457,
-0.03763015568256378,
0.0031617553904652596,
0.11475785821676254,
0.053704794496297836,
0.1109277755022049,
-0.011989853344857693,
0.11473871022462845,
0.04107663407921791,
0.09662970155477524,
0.11784324049949646,
0.04319855570793152,
-0.010036064311861992,
-0.033514998853206635,
0.0024661195930093527,
-0.07240896672010422,
0.03190532699227333,
0.04009143263101578,
-0.012872620485723019,
-0.15814466774463654,
-0.010784314945340157,
-0.029185941442847252,
-0.023073868826031685,
0.11526647210121155,
0.07633629441261292,
-0.20452634990215302,
-0.06702470034360886,
-0.010213391855359077,
0.02094372548162937,
-0.06275789439678192,
-0.03319890424609184,
-0.03726240620017052,
-0.10337309539318085,
0.13623695075511932,
-0.03438292816281319,
0.04569054767489433,
-0.13826990127563477,
-0.022035015746951103,
0.0033169968519359827,
-0.0027736627962440252,
-0.031008070334792137,
0.032960064709186554,
-0.22702333331108093,
0.124495729804039,
0.024297956377267838,
0.060281503945589066,
-0.09493718296289444,
-0.0465240404009819,
0.06759587675333023,
0.16703158617019653,
0.0679640844464302,
0.0192907452583313,
-0.05774863436818123,
-0.14049851894378662,
-0.05203302204608917,
-0.03374572470784187,
0.09552642703056335,
-0.0728231742978096,
0.0881999060511589,
0.028918610885739326,
-0.0165764931589365,
-0.06608551740646362,
0.04287208244204521,
-0.22734498977661133,
-0.07483465224504471,
0.12060259282588959,
0.0564732626080513,
0.12382031977176666,
0.004902379121631384,
-0.009415403008460999,
0.02887590415775776,
0.004224350210279226,
-0.06884387880563736,
-0.04035970941185951,
-0.10566167533397675,
-0.07362746447324753,
0.062158770859241486,
-0.09603114426136017,
-0.008600889705121517,
-0.0501454658806324,
0.162111297249794,
-0.005609922576695681,
-0.060908038169145584,
0.013915467076003551,
-0.14625805616378784,
-0.12383226305246353,
-0.023086952045559883,
0.010318842716515064,
0.034450091421604156,
0.016989583149552345,
0.06025267392396927,
0.0575668066740036,
0.024228710681200027,
-0.08983513712882996,
0.03482556343078613,
0.010716431774199009,
0.024081379175186157,
-0.008229600265622139,
0.012446579523384571,
0.03823705017566681,
-0.15581369400024414,
-0.09956397861242294,
0.054372090846300125,
0.2762099504470825,
-0.024238433688879013,
0.046106815338134766,
0.032627932727336884,
-0.04885341599583626,
-0.24782691895961761,
-0.05493919923901558,
0.00026590266497805715,
-0.027655543759465218,
-0.012340985238552094,
-0.1792096346616745,
0.12542824447155,
0.0911475196480751,
-0.05088571086525917,
0.15477167069911957,
-0.10509266704320908,
-0.1434113085269928,
0.036171700805425644,
0.090691477060318,
0.08948096632957458,
-0.18765394389629364,
-0.0910232737660408,
-0.019221285358071327,
0.011910994537174702,
0.056364938616752625,
0.07004057615995407,
0.03138604015111923,
-0.058373309671878815,
0.15486808121204376,
0.016450868919491768,
-0.01295473426580429,
0.12308461219072342,
0.0017258182633668184,
0.03730981424450874,
-0.16898100078105927,
-0.05624992400407791,
0.022648105397820473,
-0.08827941864728928,
0.12063686549663544,
0.056054845452308655,
-0.017488205805420876,
-0.16774918138980865,
0.02755277417600155,
-0.11211296170949936,
0.07200147211551666,
-0.016155919060111046,
-0.02647571451961994,
-0.08245761692523956,
0.0983261987566948,
-0.05403858423233032,
-0.0035861865617334843,
0.08915790915489197,
-0.00486967945471406,
0.021255657076835632,
0.10612963140010834,
0.08216071873903275,
-0.020589647814631462,
-0.05913188308477402,
-0.01718098111450672,
-0.045948732644319534,
0.06916365772485733,
-0.03139191493391991,
-0.028117481619119644,
0.035606108605861664,
0.05679783970117569,
0.06680668145418167,
-0.019590670242905617,
-0.11544522643089294,
0.04187009111046791,
0.14840851724147797,
-0.10875123739242554,
-0.09181839972734451,
-0.021418379619717598,
0.06852696090936661,
0.0018785811262205243,
0.03693901374936104,
0.10566149652004242,
-0.07914119958877563,
-0.011355064809322357,
-0.0058313957415521145,
0.04318615421652794,
0.011054831556975842,
0.054423630237579346,
0.09939252585172653,
0.03268987312912941,
-0.07478143274784088,
0.060148995369672775,
0.07411471009254456,
-0.13151991367340088,
-0.03796645626425743,
0.05620855838060379,
-0.10811259597539902,
-0.12660335004329681,
0.026579737663269043,
0.015917399898171425,
-0.12041150778532028,
-0.07470844686031342,
-0.0037561177741736174,
-0.014389020390808582,
0.02607051655650139,
0.15030384063720703,
0.01744067668914795,
-0.017243117094039917,
0.06657588481903076,
0.010488116182386875,
-0.14382019639015198,
0.06048929691314697,
-0.016333486884832382,
0.11635433882474899,
-0.21345607936382294,
0.026083525270223618,
-0.009228698909282684,
0.03826233372092247,
-0.027714846655726433,
-0.026825563982129097,
-0.07993261516094208,
-0.055003490298986435,
-0.014032059349119663,
0.0216462891548872,
-0.09233281761407852,
-0.004942478146404028,
0.017716476693749428,
-0.022806257009506226,
-0.021375784650444984,
-0.013188771903514862,
-0.07968657463788986,
-0.009004941210150719,
-0.022982997819781303,
0.08179713040590286,
-0.08603978902101517,
-0.032632190734148026,
0.07091116160154343,
-0.04403670132160187,
0.059867437928915024,
0.068674236536026,
0.005194320343434811,
0.009030665270984173,
-0.08551869541406631,
0.058744870126247406,
0.031068002805113792,
0.03255192190408707,
0.005889464635401964,
-0.0865858793258667,
-0.016664255410432816,
-0.03285377100110054,
0.010972095653414726,
0.02569129504263401,
0.06996800750494003,
-0.07794570922851562,
0.0034979181364178658,
-0.01921282336115837,
-0.04723174870014191,
-0.08431436121463776,
0.12078089267015457,
0.16753457486629486,
0.009279068559408188,
0.12692122161388397,
-0.04896847903728485,
0.011825690977275372,
-0.0707574337720871,
0.01875905506312847,
-0.0027435601223260164,
-0.048439089208841324,
0.01097855344414711,
-0.05630715191364288,
0.035970624536275864,
0.004999373573809862,
0.044840820133686066,
-0.004375835414975882,
-0.018065594136714935,
0.027565117925405502,
-0.027637537568807602,
-0.08543413132429123,
-0.025718823075294495,
0.10207846015691757,
0.05068547651171684,
-0.007850000634789467,
-0.03615354374051094,
0.07365377992391586,
-0.006597905419766903,
-0.01813233457505703,
0.13872171938419342,
0.05160749331116676,
-0.09244552254676819,
0.03544275462627411,
0.056567445397377014,
-0.017387185245752335,
-0.04077455401420593,
-0.08289080113172531,
-0.11190100759267807,
0.09778382629156113,
-0.006283027585595846,
0.14867949485778809,
0.17915169894695282,
-0.12037859857082367,
-0.000037705183785874397,
-0.06255655735731125,
-0.05793586000800133,
-0.04915250092744827,
-0.2976538836956024,
-0.07252845913171768,
-0.1710791289806366,
0.03442308306694031,
-0.07120249420404434,
0.0883641466498375,
0.08123061060905457,
0.04065297916531563,
-0.04234861582517624,
0.1812952160835266,
-0.038262609392404556,
-0.04737550765275955,
0.16033495962619781,
-0.04553470015525818,
-0.1356891244649887,
-0.0019756113179028034,
0.06384310126304626,
-0.05245586484670639,
-0.047123804688453674,
0.014026765711605549,
0.032644350081682205,
-0.03368903696537018,
0.02093472145497799,
-0.0069280522875487804,
-0.13675415515899658,
0.009368527680635452,
-0.021324625238776207,
0.06449805200099945,
0.11970318853855133,
0.031277842819690704,
0.03498684987425804,
-0.0008110980852507055,
0.1337442547082901,
-0.012984107248485088,
-0.011628778651356697,
-0.0426214225590229,
0.04715581238269806,
-0.03523004800081253,
-0.030616743490099907,
-0.03804118558764458,
-0.13064071536064148,
-0.010121611878275871,
0.14568793773651123,
0.05322909727692604,
0.0095002930611372,
-0.043189000338315964,
-0.0338289774954319,
0.01916908286511898,
-0.03606381639838219,
0.11832796037197113,
0.005543015897274017,
0.16139306128025055,
-0.04006362333893776,
0.10542790591716766,
-0.04789220914244652,
-0.037931907922029495,
-0.08879855275154114,
0.06477527320384979,
0.0158446803689003,
-0.09198886156082153,
-0.0601436123251915,
0.1530466377735138,
-0.1311579942703247,
-0.13186860084533691,
0.005092572420835495,
-0.0762697383761406,
-0.05877475440502167,
-0.017788730561733246,
-0.06428243964910507,
-0.0020724216010421515,
0.0648781955242157,
-0.025590188801288605,
0.013948099687695503,
0.041122570633888245,
0.022865336388349533,
-0.1065562292933464,
-0.06320712715387344,
0.05146632716059685,
0.009036299772560596,
0.13048811256885529,
0.007540234364569187,
0.12942199409008026,
0.05202673375606537,
-0.03618539869785309,
-0.10976939648389816,
0.04418022930622101,
0.013847146183252335,
-0.05813554674386978,
0.01530564296990633,
0.20559021830558777,
0.003060824004933238,
-0.02961520291864872,
0.08405692130327225,
-0.10152149945497513,
0.045272596180438995,
0.10014726221561432,
0.0497041679918766,
-0.1072801798582077,
0.1222066879272461,
-0.11654117703437805,
0.1512073576450348,
0.14494973421096802,
-0.023508550599217415,
-0.013842993415892124,
-0.021195702254772186,
0.020973505452275276,
0.06976844370365143,
-0.033254437148571014,
-0.031283698976039886,
-0.05419391021132469,
-0.014175976626574993,
-0.07590407133102417,
0.0728483647108078,
-0.0867227092385292,
-0.015027009882032871,
-0.05302632972598076,
-0.009504667483270168,
-0.08212079107761383,
0.07424243539571762,
0.0853271484375,
-0.025451023131608963,
-0.034542351961135864,
-0.023600900545716286,
-0.006763339973986149,
0.10236794501543045,
-0.1267668753862381,
-0.074534572660923
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-bn-adapter-895K-snli-model2
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8392
- Accuracy: 0.6865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5125 | 1.0 | 8584 | 0.4403 | 0.8329 |
| 0.4659 | 2.0 | 17168 | 0.4000 | 0.8463 |
| 0.4495 | 3.0 | 25752 | 0.3917 | 0.8503 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-base-cased-bn-adapter-895K-snli-model2", "results": []}]} | null | varun-v-rao/bert-base-cased-bn-adapter-895K-snli-model2 | [
"tensorboard",
"generated_from_trainer",
"base_model:bert-base-cased",
"license:apache-2.0",
"region:us"
] | 2024-02-06T22:18:04+00:00 | [] | [] | TAGS
#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us
| bert-base-cased-bn-adapter-895K-snli-model2
===========================================
This model is a fine-tuned version of bert-base-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8392
* Accuracy: 0.6865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 33
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 33\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 33\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
36,
98,
4,
33
] | [
"passage: TAGS\n#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 33\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.08676572889089584,
0.0067308321595191956,
-0.0004883838701061904,
0.10251890122890472,
0.17094627022743225,
0.03562212362885475,
0.1460513025522232,
0.08591793477535248,
-0.12777262926101685,
0.016099177300930023,
0.09705448895692825,
0.11291605234146118,
0.00804662611335516,
0.07380790263414383,
-0.025221480056643486,
-0.24431927502155304,
-0.012817000970244408,
0.041240036487579346,
-0.12418682128190994,
0.12202692031860352,
0.08942954987287521,
-0.13509942591190338,
0.06755828112363815,
0.0032509895972907543,
-0.26988303661346436,
0.050524208694696426,
0.023729462176561356,
-0.05365482345223427,
0.1321066915988922,
-0.0033364309929311275,
0.16280125081539154,
-0.006148706190288067,
0.13064821064472198,
-0.1506684124469757,
0.0124765420332551,
0.08265525102615356,
0.00426729628816247,
0.08252470940351486,
0.0525505356490612,
0.02385278418660164,
0.12336269021034241,
-0.06993350386619568,
0.057024940848350525,
0.022920869290828705,
-0.12202120572328568,
-0.2638511061668396,
-0.08351839333772659,
0.013457266613841057,
0.06391331553459167,
0.08086227625608444,
-0.002014939906075597,
0.1480880230665207,
-0.08336276561021805,
0.0809171050786972,
0.2630179524421692,
-0.2705865502357483,
-0.08217157423496246,
0.09376270323991776,
0.016254307702183723,
0.09833504259586334,
-0.10156098753213882,
-0.029744837433099747,
0.07667817175388336,
0.04771564528346062,
0.11388222873210907,
-0.029431577771902084,
-0.14968830347061157,
0.04312280938029289,
-0.15218430757522583,
0.008439472876489162,
0.10219468921422958,
0.036384254693984985,
-0.024398187175393105,
0.032479673624038696,
-0.07722162455320358,
-0.13403336703777313,
-0.05248111113905907,
-0.025127025321125984,
0.07973992079496384,
-0.03720197081565857,
-0.10697735100984573,
-0.03470073640346527,
-0.1050541028380394,
-0.10983237624168396,
-0.051474157720804214,
0.17733579874038696,
0.04480194300413132,
0.04965188354253769,
-0.06702344864606857,
0.11597032845020294,
-0.060314152389764786,
-0.1374949812889099,
0.04609652981162071,
0.03746062517166138,
-0.0005913192289881408,
-0.05158268287777901,
-0.078857421875,
-0.08279970288276672,
0.02150450460612774,
0.13479743897914886,
-0.07180511206388474,
0.05007888749241829,
0.031112270429730415,
0.05375882610678673,
-0.11027919501066208,
0.17461054027080536,
-0.063889279961586,
0.02221858501434326,
0.004233973100781441,
0.06009867042303085,
0.011227468959987164,
-0.003690027166157961,
-0.11821016669273376,
0.034112121909856796,
0.07975314557552338,
0.0016493377042934299,
-0.08315454423427582,
0.028956104069948196,
-0.031672727316617966,
-0.010871795937418938,
-0.024876894429326057,
-0.09040110558271408,
0.04115718975663185,
-0.0043372963555157185,
-0.10308991372585297,
-0.014152158983051777,
0.013805869966745377,
0.027686327695846558,
0.018290428444743156,
0.1220376119017601,
-0.09950494766235352,
0.06519787013530731,
-0.14105944335460663,
-0.10855596512556076,
0.012205202132463455,
-0.02961903251707554,
0.020715126767754555,
-0.06537599861621857,
-0.16536536812782288,
-0.005328682251274586,
0.08375243842601776,
-0.0443488173186779,
-0.020971305668354034,
-0.027157023549079895,
-0.09637099504470825,
-0.0031683442648500204,
-0.01896531507372856,
0.19655150175094604,
-0.05069516971707344,
0.09634864330291748,
0.05469547212123871,
0.06496736407279968,
-0.09999389946460724,
0.04201000556349754,
-0.09042944759130478,
0.005621185060590506,
-0.2551603317260742,
0.0038799038156867027,
-0.07215673476457596,
0.06385593861341476,
-0.08273998647928238,
-0.0858137235045433,
0.007645998615771532,
0.004328793380409479,
0.10619349032640457,
0.058234285563230515,
-0.2060820460319519,
-0.07232625782489777,
0.12082289904356003,
-0.07605540007352829,
-0.0943174660205841,
0.08447553962469101,
-0.05528499186038971,
0.06723941117525101,
0.06429798156023026,
0.176035538315773,
-0.02887841872870922,
-0.11071792989969254,
0.027312301099300385,
-0.012727227061986923,
0.07035458087921143,
-0.09201055020093918,
0.05358707532286644,
-0.022163106128573418,
0.003547413507476449,
0.030261659994721413,
-0.056433066725730896,
0.05497119203209877,
-0.11078322678804398,
-0.08489242196083069,
-0.06025197356939316,
-0.1093314066529274,
0.005253833718597889,
0.07232444733381271,
0.08456353843212128,
-0.09964508563280106,
-0.08162719756364822,
0.15609107911586761,
0.08648192882537842,
-0.05715334415435791,
0.031025618314743042,
-0.04866165667772293,
0.06934463977813721,
-0.07533816248178482,
-0.03449065238237381,
-0.1869240403175354,
-0.04004519805312157,
0.008793357759714127,
-0.006218486465513706,
0.05498354136943817,
-0.0008425195701420307,
0.0856233686208725,
0.06467977166175842,
-0.07029120624065399,
0.00889474805444479,
-0.08201000094413757,
-0.0066900853998959064,
-0.12882587313652039,
-0.22111983597278595,
-0.04926682636141777,
-0.00811835378408432,
0.07444033771753311,
-0.1904408186674118,
0.024178482592105865,
-0.0316641665995121,
0.09520377218723297,
0.004982935264706612,
-0.011874769814312458,
-0.07176925987005234,
0.09378504753112793,
0.0015112828696146607,
-0.06934797763824463,
0.04584100842475891,
-0.01362233329564333,
-0.0633765161037445,
-0.08226106315851212,
-0.07382137328386307,
0.1528151035308838,
0.14480982720851898,
-0.13967131078243256,
-0.07046860456466675,
0.04228755831718445,
-0.06299688667058945,
-0.031975820660591125,
-0.053950920701026917,
0.054752007126808167,
0.16444899141788483,
-0.010245557874441147,
0.13036203384399414,
-0.09425953775644302,
-0.03866751492023468,
0.002905219327658415,
-0.030544143170118332,
0.06054135039448738,
0.07596506923437119,
0.19107596576213837,
-0.036295853555202484,
0.11468807607889175,
0.16318395733833313,
-0.1551791876554489,
0.108726866543293,
-0.07325205206871033,
-0.09406016021966934,
-0.028749292716383934,
-0.03546047955751419,
-0.016115985810756683,
0.17176051437854767,
-0.065986767411232,
0.010295617394149303,
-0.002342592692002654,
0.014033283106982708,
0.0491255447268486,
-0.2489520013332367,
-0.03950676694512367,
0.006816748064011335,
-0.04297304525971413,
-0.016535792499780655,
-0.032735276967287064,
0.005459239706397057,
0.09830357879400253,
-0.03344179689884186,
-0.07522645592689514,
0.01919899880886078,
0.0062305680476129055,
-0.05700894817709923,
0.20975297689437866,
-0.07696137577295303,
-0.03560878336429596,
-0.1108579933643341,
-0.03684750944375992,
-0.05534821376204491,
-0.02519291639328003,
0.03421507775783539,
-0.120301254093647,
-0.03002912364900112,
-0.05004717409610748,
0.039136141538619995,
0.019720058888196945,
0.03731647878885269,
0.015198227018117905,
0.0040328362956643105,
0.09796469658613205,
-0.14104725420475006,
0.021979069337248802,
-0.0812869518995285,
-0.09666932374238968,
0.01510874554514885,
0.08037713170051575,
0.1070554107427597,
0.16665151715278625,
-0.028593435883522034,
0.005616406910121441,
-0.010545795783400536,
0.2655993402004242,
-0.05780448392033577,
-0.03662584722042084,
0.11329140514135361,
-0.007037407252937555,
0.05134250223636627,
0.09700673818588257,
0.10830753296613693,
-0.11098388582468033,
-0.0018807861488312483,
0.05923308804631233,
-0.0383300855755806,
-0.23268599808216095,
-0.012624201364815235,
-0.02553153783082962,
-0.08417288959026337,
0.07001790404319763,
0.03780217096209526,
0.046272244304418564,
0.058823712170124054,
0.060038186609745026,
0.10698223859071732,
-0.06493163853883743,
0.042611610144376755,
0.06183182820677757,
0.06271497160196304,
0.11375641077756882,
-0.05345306545495987,
-0.05904830992221832,
0.027966046705842018,
-0.011443215422332287,
0.24934707581996918,
0.007636700291186571,
0.11729296296834946,
0.0701194480061531,
0.18523508310317993,
-0.008689293637871742,
0.08895133435726166,
-0.02357759326696396,
-0.0590616837143898,
-0.0002266478695673868,
-0.06110812723636627,
0.021086793392896652,
0.015019833110272884,
-0.08898833394050598,
0.07044831663370132,
-0.07195127010345459,
-0.01652798242866993,
0.056192126125097275,
0.24510183930397034,
0.004153498448431492,
-0.29535719752311707,
-0.03575773909687996,
-0.0027078562416136265,
-0.008906945586204529,
-0.008042103610932827,
0.012498114258050919,
0.11455894261598587,
-0.03693296015262604,
0.007230429444462061,
-0.04877530410885811,
0.09623315930366516,
0.011687370017170906,
0.022569574415683746,
0.08105134963989258,
0.16489273309707642,
-0.0027682080399245024,
0.05392851680517197,
-0.2933197617530823,
0.2781255543231964,
0.031085435301065445,
0.11431095004081726,
-0.04879097640514374,
-0.004279812797904015,
0.033610712736845016,
0.022638659924268723,
0.010410678572952747,
-0.0223169457167387,
-0.0502249151468277,
-0.170955091714859,
-0.0537155345082283,
0.050115589052438736,
0.11666195094585419,
0.0008218276198022068,
0.08346181362867355,
-0.008689168840646744,
0.011601289734244347,
0.1037047803401947,
-0.060629572719335556,
-0.13776026666164398,
-0.04433727264404297,
-0.05289825424551964,
0.021067950874567032,
-0.08815614134073257,
-0.08118679374456406,
-0.11659220606088638,
-0.09567178785800934,
0.09172459691762924,
0.029216017574071884,
-0.023443227633833885,
-0.11215265095233917,
0.11171872168779373,
0.122768335044384,
-0.047225069254636765,
0.04415668547153473,
0.02692061848938465,
0.05238798260688782,
0.0384664461016655,
-0.07623103260993958,
0.11149406433105469,
-0.05126620829105377,
-0.14730112254619598,
-0.04838336631655693,
0.06516190618276596,
0.04896112531423569,
0.05327750742435455,
-0.03565594553947449,
0.01806466095149517,
-0.011855202727019787,
-0.10174345225095749,
0.007559667341411114,
-0.05746182054281235,
0.030038166791200638,
-0.0016272047068923712,
-0.03645722568035126,
0.036534633487463,
-0.04330727830529213,
-0.01826142705976963,
0.11653893440961838,
0.27228039503097534,
-0.08026168495416641,
-0.020717313513159752,
0.06105882301926613,
-0.06984195113182068,
-0.16726401448249817,
0.09371010214090347,
0.06981033086776733,
-0.008634177036583424,
0.05810689181089401,
-0.1801670342683792,
0.17001819610595703,
0.1259414404630661,
-0.022359220311045647,
0.1306615024805069,
-0.3201201260089874,
-0.15024031698703766,
0.10750146210193634,
0.18151603639125824,
0.11179742217063904,
-0.15878841280937195,
-0.02676735632121563,
-0.029747171327471733,
-0.11592128872871399,
0.11073452979326248,
-0.16447605192661285,
0.09234347939491272,
-0.010469221509993076,
0.09897790849208832,
-0.015543941408395767,
-0.05890011042356491,
0.1355891227722168,
0.017279241234064102,
0.13382761180400848,
-0.03655390813946724,
-0.004927263595163822,
0.11522764712572098,
-0.018216775730252266,
0.002749479142948985,
-0.05009875074028969,
0.018258731812238693,
-0.03588186576962471,
0.001191791263408959,
-0.07769725471735,
0.037797488272190094,
-0.042985860258340836,
-0.061277903616428375,
-0.04538249596953392,
0.011870097368955612,
-0.014222432859241962,
-0.02911989949643612,
0.13035619258880615,
0.0553460493683815,
0.15326735377311707,
0.11416340619325638,
0.02033727429807186,
-0.07752173393964767,
-0.061658136546611786,
0.0261568333953619,
-0.017595205456018448,
0.08594851195812225,
-0.18494825065135956,
-0.0009420564165338874,
0.12096861749887466,
0.02802961878478527,
0.09732770919799805,
0.08822315186262131,
-0.06548411399126053,
0.015488464385271072,
0.07765260338783264,
-0.1421041488647461,
-0.0836484357714653,
0.01186913251876831,
-0.04995003715157509,
-0.09040351957082748,
0.06698736548423767,
0.0692499503493309,
-0.08314617723226547,
-0.006808529142290354,
-0.0025912243872880936,
-0.024226751178503036,
-0.09885451942682266,
0.21175983548164368,
0.10608436912298203,
0.04251052066683769,
-0.11301440000534058,
0.10115581750869751,
0.05223453789949417,
-0.03134160116314888,
-0.00234980252571404,
0.06564290076494217,
-0.046918973326683044,
0.004641195759177208,
0.14669248461723328,
0.22259239852428436,
-0.0704757496714592,
-0.05941690877079964,
-0.17016272246837616,
-0.0901486724615097,
0.04912344366312027,
0.19536778330802917,
0.11293933540582657,
-0.017303407192230225,
-0.029178090393543243,
0.04493311047554016,
-0.13481494784355164,
0.06577369570732117,
0.016620013862848282,
0.08164943754673004,
-0.12680771946907043,
0.13186630606651306,
0.040806494653224945,
0.018447179347276688,
-0.02739216759800911,
0.04743006452918053,
-0.12360496819019318,
0.02630283311009407,
-0.14719219505786896,
-0.06345058977603912,
0.020705368369817734,
-0.005257845856249332,
0.014268736355006695,
-0.07519879192113876,
-0.09208277612924576,
0.03667069226503372,
-0.14505232870578766,
-0.017811603844165802,
0.05670872703194618,
0.028949186205863953,
-0.14907965064048767,
-0.01234126091003418,
0.024179058149456978,
-0.04833799600601196,
0.01528818067163229,
0.04427924007177353,
0.03881346806883812,
0.10440801829099655,
-0.17537729442119598,
-0.012483897618949413,
0.04905575513839722,
0.0062340241856873035,
0.08847301453351974,
-0.02586941048502922,
-0.02770175226032734,
-0.014871089719235897,
0.12780265510082245,
-0.0013404071796685457,
0.06116195023059845,
-0.13314072787761688,
-0.02010899968445301,
-0.05790786072611809,
-0.082612045109272,
-0.03750554844737053,
0.007211786694824696,
0.09759721904993057,
0.03327077627182007,
0.1770831048488617,
-0.06294365972280502,
0.0056964377872645855,
-0.23017363250255585,
0.0006700808298774064,
-0.01670689694583416,
-0.0799146220088005,
-0.11084103584289551,
-0.05158751457929611,
0.056068625301122665,
-0.0662911906838417,
0.150605708360672,
0.0333152636885643,
0.050890397280454636,
0.033887725323438644,
-0.0024437536485493183,
0.0014695873251184821,
0.037725068628787994,
0.24395343661308289,
0.041467662900686264,
0.004316252190619707,
0.05857709050178528,
0.07279150933027267,
0.11387162655591965,
0.07889504730701447,
0.20183497667312622,
0.14577288925647736,
-0.03212304040789604,
0.10509519279003143,
0.07271488755941391,
-0.06714080274105072,
-0.10221372544765472,
0.09160524606704712,
-0.030299628153443336,
0.07161109149456024,
-0.030030956491827965,
0.2277449071407318,
0.0811951756477356,
-0.15836912393569946,
0.036613140255212784,
-0.04081647843122482,
-0.0875440165400505,
-0.11270873993635178,
0.019551608711481094,
-0.07286848872900009,
-0.2020549476146698,
0.0272537712007761,
-0.10878553241491318,
0.01352783851325512,
0.16202393174171448,
0.0018309280276298523,
0.006170944776386023,
0.1821865439414978,
0.05382467806339264,
0.05055781453847885,
0.025108907371759415,
-0.007792739663273096,
-0.044107381254434586,
-0.10020269453525543,
-0.07156693190336227,
-0.012954000383615494,
-0.01690601371228695,
0.027428781613707542,
-0.06417710334062576,
-0.08970581740140915,
0.04605201631784439,
0.0037221808452159166,
-0.09182620048522949,
0.025048239156603813,
0.01747453212738037,
0.0655670315027237,
0.01821749657392502,
-0.0006041014567017555,
0.021126046776771545,
-0.0269301887601614,
0.21422697603702545,
-0.08271259814500809,
-0.10581398755311966,
-0.08760502189397812,
0.2208128422498703,
0.013932475820183754,
-0.006789445877075195,
0.01319438498467207,
-0.09031776338815689,
-0.016123538836836815,
0.20163966715335846,
0.16929078102111816,
-0.10772299021482468,
-0.030964551493525505,
-0.0016677045496180654,
-0.025513414293527603,
-0.09506512433290482,
0.1339389681816101,
0.12084172666072845,
0.020575562492012978,
-0.12116213142871857,
-0.05333889275789261,
-0.05627299100160599,
-0.02275852859020233,
-0.04630739986896515,
0.03600464388728142,
0.04851512238383293,
-0.0036709029227495193,
-0.04785960167646408,
0.06814455986022949,
-0.05580080300569534,
-0.11278138309717178,
0.08134640753269196,
-0.1629391610622406,
-0.17595961689949036,
-0.013108638115227222,
0.15810368955135345,
-0.026394948363304138,
0.054180536419153214,
-0.0486062616109848,
0.00693377573043108,
0.04943901672959328,
-0.04136522486805916,
-0.08750180155038834,
-0.14258414506912231,
0.11568046361207962,
-0.13633327186107635,
0.22046297788619995,
-0.038865718990564346,
0.10681890696287155,
0.11006920784711838,
0.04674842581152916,
-0.07050406187772751,
0.05239320918917656,
0.03642714396119118,
-0.14088229835033417,
-0.01396561786532402,
0.10315559804439545,
-0.03803260996937752,
0.06279066950082779,
0.014273012056946754,
-0.116024449467659,
0.01984642818570137,
-0.044775575399398804,
-0.04839320480823517,
-0.051133669912815094,
-0.08405429124832153,
-0.08306232839822769,
0.09733027964830399,
0.18868063390254974,
-0.018412545323371887,
0.038005489856004715,
-0.08861823379993439,
0.04382651671767235,
0.07355212420225143,
0.04339069873094559,
-0.0695219561457634,
-0.23761992156505585,
0.028306327760219574,
0.11259370297193527,
-0.06628967821598053,
-0.21217843890190125,
-0.07467803359031677,
0.032768070697784424,
-0.07751622796058655,
-0.08451317250728607,
0.07062540203332901,
0.13213901221752167,
0.06710062175989151,
-0.05094636231660843,
-0.13006381690502167,
-0.09675641357898712,
0.13741986453533173,
-0.16611093282699585,
-0.09520172327756882
] |
null | null | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Statos6/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.56 +/- 2.71", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | Statos6/taxi-v3 | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-06T22:19:19+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
32,
33
] | [
"passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
0.048862796276807785,
-0.16549694538116455,
-0.005485367961227894,
0.02960980497300625,
0.1345081776380539,
-0.01784728653728962,
0.11895976960659027,
0.07759871333837509,
-0.07461097836494446,
-0.055395450443029404,
0.1418241262435913,
0.09088201075792313,
0.055222880095243454,
0.05699880048632622,
0.09511256217956543,
-0.27440664172172546,
0.048217080533504486,
-0.02918700873851776,
0.05621987581253052,
0.11878681182861328,
0.0670095682144165,
-0.040441032499074936,
0.061956584453582764,
0.11818158626556396,
-0.1018151044845581,
-0.007344264071434736,
0.035402704030275345,
-0.09440053254365921,
0.17413531243801117,
0.07204403728246689,
0.12337774783372879,
0.05132639780640602,
0.179361954331398,
-0.12762396037578583,
0.024310702458024025,
-0.0010275895474478602,
-0.10138072073459625,
-0.03909514099359512,
-0.012415820732712746,
-0.08349097520112991,
0.03230205550789833,
0.23522862792015076,
0.07199250161647797,
0.06632792949676514,
-0.17707863450050354,
-0.06584878265857697,
-0.04375573247671127,
0.069611094892025,
0.14951466023921967,
0.03758616745471954,
-0.033800311386585236,
0.1684885323047638,
-0.2564343810081482,
0.05066783353686333,
0.037275806069374084,
-0.42313119769096375,
0.017119819298386574,
0.1507398933172226,
0.15090937912464142,
0.06909667700529099,
-0.10573802888393402,
0.013512322679162025,
0.051325585693120956,
-0.0005318621988408267,
0.024325110018253326,
0.006554204970598221,
0.15601307153701782,
0.08537693321704865,
-0.1487821787595749,
-0.058576688170433044,
0.17441977560520172,
-0.03788546845316887,
-0.02613203600049019,
-0.039745692163705826,
0.0067160045728087425,
-0.06427708268165588,
-0.004067842848598957,
-0.1777995079755783,
0.00734262028709054,
0.06666424125432968,
-0.014348524622619152,
0.014901017770171165,
-0.035522811114788055,
-0.0966939702630043,
-0.023098144680261612,
-0.08592145889997482,
0.01677769608795643,
-0.006319406442344189,
-0.10187895596027374,
0.05002119392156601,
-0.061138734221458435,
0.0014382408699020743,
-0.05123179033398628,
-0.15047866106033325,
-0.049055423587560654,
-0.03481535613536835,
0.1474713832139969,
-0.0044205985032022,
-0.01873963139951229,
-0.03164304047822952,
0.15474793314933777,
0.049551334232091904,
-0.05370146036148071,
0.05625450983643532,
0.07605006545782089,
0.23867930471897125,
0.10401605814695358,
0.10196955502033234,
-0.06798075139522552,
0.10180158913135529,
-0.12330973148345947,
-0.08915644884109497,
-0.17508824169635773,
0.11820860952138901,
0.00015364694991149008,
0.1317785084247589,
-0.12023144960403442,
0.07898581773042679,
-0.067511186003685,
0.013453764840960503,
0.01636839471757412,
0.0820009782910347,
-0.012399360537528992,
0.10676060616970062,
-0.005061192903667688,
-0.06941985338926315,
0.014177112840116024,
0.05935845896601677,
0.03754841163754463,
-0.038601722568273544,
-0.03192409873008728,
-0.05762290954589844,
-0.05065649375319481,
-0.10128600150346756,
-0.06447898596525192,
0.018573462963104248,
-0.007677143905311823,
-0.1833900660276413,
-0.06407523155212402,
0.00897200871258974,
0.015712225809693336,
-0.03988850116729736,
-0.05148044601082802,
-0.15265507996082306,
-0.042461175471544266,
-0.015450406819581985,
-0.03500641882419586,
-0.06214277446269989,
-0.0383245050907135,
0.046435944736003876,
-0.07560601085424423,
0.013364278711378574,
0.023342855274677277,
0.05405820533633232,
-0.025881100445985794,
0.06068144738674164,
-0.08357544988393784,
0.09493788331747055,
-0.1540430635213852,
-0.03271956741809845,
-0.025445878505706787,
-0.041183918714523315,
0.1752462536096573,
0.06099751964211464,
-0.015994304791092873,
0.15260063111782074,
-0.17141541838645935,
-0.058121129870414734,
0.15596486628055573,
0.008629098534584045,
-0.09967197477817535,
-0.003560945624485612,
-0.09397093951702118,
0.1428760588169098,
0.08571921288967133,
0.2478504776954651,
0.12005335837602615,
-0.22748184204101562,
0.055358242243528366,
0.12515293061733246,
-0.14365963637828827,
0.10365243256092072,
0.07344598323106766,
0.005470725707709789,
-0.18886831402778625,
-0.06843198090791702,
-0.06121627986431122,
0.1053021252155304,
-0.08522345870733261,
-0.0776243582367897,
0.09323626756668091,
-0.05086790770292282,
0.24641476571559906,
-0.028281206265091896,
0.06174173951148987,
-0.026681531220674515,
-0.1389324963092804,
-0.01723906397819519,
0.060955192893743515,
0.05258452147245407,
-0.024835573509335518,
-0.25895482301712036,
0.13646544516086578,
0.048650871962308884,
0.025074828416109085,
0.004106190986931324,
-0.05691491439938545,
0.016934165731072426,
0.1511998474597931,
0.020012924447655678,
0.13717477023601532,
0.027723990380764008,
0.0706823319196701,
-0.006239562761038542,
-0.10560829937458038,
-0.04169593006372452,
0.061916545033454895,
-0.08518962562084198,
-0.06641357392072678,
0.011197872459888458,
-0.06935211271047592,
-0.11783787608146667,
-0.12166737765073776,
-0.026334572583436966,
-0.02980303019285202,
-0.07444227486848831,
0.02368103712797165,
0.06536602973937988,
-0.06702698022127151,
-0.0023908785078674555,
0.007125476840883493,
-0.011537045240402222,
0.16434046626091003,
0.011393417604267597,
-0.007796820718795061,
0.1328643560409546,
-0.11533161997795105,
0.12461213022470474,
0.049438029527664185,
-0.024806302040815353,
-0.04662557691335678,
0.0014137453399598598,
-0.057529181241989136,
0.029044216498732567,
-0.04390640929341316,
0.02774495631456375,
0.20111067593097687,
0.02772962674498558,
0.11389166116714478,
-0.0656520202755928,
0.04385066404938698,
-0.007961965166032314,
-0.009693224914371967,
0.018563594669103622,
0.07608018070459366,
0.07813210040330887,
-0.1324140727519989,
0.02262016013264656,
0.22455167770385742,
0.1385764330625534,
0.18313980102539062,
-0.010877152904868126,
0.06325667351484299,
-0.04875868931412697,
0.027505528181791306,
0.024100203067064285,
0.10314226150512695,
-0.10732068121433258,
-0.0322517491877079,
-0.025407759472727776,
0.023599207401275635,
-0.08197105675935745,
-0.1055799350142479,
-0.090115025639534,
0.01222382951527834,
-0.03125503659248352,
-0.15570329129695892,
0.13300658762454987,
-0.10451057553291321,
0.01802753657102585,
0.04692702740430832,
-0.22163605690002441,
0.11530312895774841,
0.014291439205408096,
-0.10303618758916855,
0.11281087249517441,
-0.12051989883184433,
-0.08699832111597061,
-0.05777236074209213,
-0.18658851087093353,
0.05280197039246559,
0.04673841595649719,
0.05166793242096901,
-0.18521739542484283,
0.024835903197526932,
0.05545609071850777,
0.13426995277404785,
-0.09743253141641617,
-0.07142634689807892,
-0.15038461983203888,
0.016068490222096443,
-0.033661190420389175,
-0.16029728949069977,
-0.005609163548797369,
-0.032781440764665604,
-0.18849676847457886,
-0.04539939761161804,
-0.15086813271045685,
-0.034627582877874374,
0.20464378595352173,
0.026907702907919884,
0.09480511397123337,
-0.07926445454359055,
0.3802889585494995,
-0.042039383202791214,
-0.06146497279405594,
-0.01321389526128769,
-0.07072482258081436,
0.02512686513364315,
0.13271741569042206,
0.0036099457647651434,
-0.017886579036712646,
-0.0037857077550143003,
0.0024592927657067776,
-0.06234965845942497,
-0.13400450348854065,
0.0028710351325571537,
0.03905198723077774,
0.1874423623085022,
0.004639793653041124,
0.06659388542175293,
0.03133883699774742,
0.057546284049749374,
0.07748064398765564,
0.030926106497645378,
0.0011591583024710417,
-0.01591806672513485,
0.06604493409395218,
-0.11684755235910416,
0.042466625571250916,
-0.030429253354668617,
-0.10143838077783585,
-0.013183288276195526,
0.07950251549482346,
0.12755028903484344,
0.17849206924438477,
-0.04790908098220825,
0.17489230632781982,
0.13580141961574554,
0.16576050221920013,
0.049315933138132095,
-0.020801831036806107,
-0.08773037046194077,
-0.06118565797805786,
0.004774159751832485,
-0.031952597200870514,
0.04869702458381653,
0.3231290578842163,
0.037619613111019135,
-0.09036035090684891,
0.11149907857179642,
0.009480619803071022,
0.05359881371259689,
0.022797370329499245,
-0.11162138730287552,
0.11170321702957153,
0.07968773692846298,
-0.06341761350631714,
-0.07602835446596146,
0.16758501529693604,
-0.1109386757016182,
-0.26646625995635986,
-0.11410990357398987,
-0.012305386364459991,
0.07903840392827988,
0.005651174578815699,
0.05498376116156578,
-0.11829282343387604,
-0.16034497320652008,
-0.034191906452178955,
0.1335442066192627,
-0.3077351450920105,
0.2065143585205078,
-0.0198091771453619,
0.06707923114299774,
-0.039657969027757645,
-0.07026876509189606,
0.09694647043943405,
0.13174086809158325,
0.29124146699905396,
0.01396956667304039,
0.04841272905468941,
-0.15176129341125488,
-0.0976925864815712,
0.0018439020495861769,
0.015482662245631218,
-0.02563396655023098,
0.028520405292510986,
-0.0540912002325058,
0.008404579944908619,
-0.018086453899741173,
0.2102297693490982,
-0.11316607892513275,
0.004344627261161804,
-0.06968966871500015,
-0.11707738786935806,
0.19409789144992828,
-0.07178345322608948,
-0.04543264955282211,
-0.14959357678890228,
-0.15512511134147644,
-0.004174166824668646,
-0.02413962036371231,
-0.019664527848362923,
-0.17603960633277893,
-0.18804074823856354,
-0.05204557999968529,
-0.005645004566758871,
-0.003464865731075406,
0.05867868289351463,
-0.07517234236001968,
-0.04805335775017738,
0.1009904220700264,
-0.07743175327777863,
-0.056063808500766754,
-0.1103200614452362,
0.1391381323337555,
0.06248528137803078,
0.16743235290050507,
0.05907081440091133,
0.0006117874872870743,
0.11471151560544968,
-0.02913086675107479,
0.11103474348783493,
-0.11291708797216415,
-0.17145049571990967,
-0.08334989100694656,
-0.018775060772895813,
0.09519003331661224,
-0.04789286106824875,
0.0028788831550627947,
0.2550160884857178,
0.14880181849002838,
-0.0897710770368576,
0.27680760622024536,
0.04414956644177437,
-0.09375058114528656,
-0.18432219326496124,
-0.15961645543575287,
0.03759992495179176,
0.060025621205568314,
0.13095876574516296,
-0.057205069810152054,
-0.08483537286520004,
-0.08492398262023926,
-0.07478608191013336,
-0.13140805065631866,
-0.24232175946235657,
-0.030598774552345276,
0.22874866425991058,
0.08656918257474899,
0.08219650387763977,
-0.012482990510761738,
-0.01186054851859808,
0.00526038184762001,
0.02680150233209133,
0.12018456310033798,
-0.13341329991817474,
0.11107480525970459,
0.022198403254151344,
0.044267985969781876,
0.009712530300021172,
0.07929777354001999,
0.03375575691461563,
-0.003218587953597307,
-0.0006439819699153304,
-0.0988350659608841,
-0.2596651017665863,
0.0816885456442833,
-0.01623627357184887,
-0.09960969537496567,
0.014988959766924381,
0.02061903104186058,
-0.2089255303144455,
0.011128270998597145,
-0.019883770495653152,
-0.03150356933474541,
-0.06483490765094757,
-0.10664787143468857,
-0.056551624089479446,
0.04928823933005333,
0.10853826254606247,
0.011660109274089336,
0.05354316532611847,
-0.0404130220413208,
0.07917837053537369,
0.0826287642121315,
0.15132710337638855,
0.06795957684516907,
-0.190711110830307,
-0.10953907668590546,
-0.0414445661008358,
0.12121522426605225,
-0.12505418062210083,
0.036917757242918015,
0.053161121904850006,
-0.016534561291337013,
0.14621229469776154,
0.1070784479379654,
-0.07452095299959183,
0.11915595084428787,
0.08904775977134705,
-0.04094788804650307,
-0.23367151618003845,
-0.07120766490697861,
0.11133213341236115,
0.07195597887039185,
-0.03961895406246185,
0.018120890483260155,
-0.04960581287741661,
-0.013980977237224579,
0.048759616911411285,
-0.0538676381111145,
-0.07230538129806519,
0.004421027842909098,
0.1247575581073761,
0.1029362753033638,
-0.04655474051833153,
0.01296416949480772,
0.037371400743722916,
0.003788623260334134,
0.04730486497282982,
0.0407949760556221,
-0.08269952982664108,
-0.04124005511403084,
0.02782733179628849,
0.37552911043167114,
-0.010165480896830559,
-0.020456433296203613,
0.018555615097284317,
-0.19949445128440857,
0.09135842323303223,
0.13205479085445404,
0.04697350412607193,
0.004247748292982578,
-0.08139242231845856,
0.026877427473664284,
-0.010625290684401989,
0.09936143457889557,
-0.07806670665740967,
-0.05493134260177612,
-0.21631066501140594,
-0.025010565295815468,
0.017490221187472343,
0.24077683687210083,
-0.08458559215068817,
-0.12801732122898102,
-0.20628872513771057,
0.13128381967544556,
-0.11333390325307846,
-0.03695881739258766,
-0.024473199620842934,
0.03926658630371094,
-0.01989821158349514,
0.06291737407445908,
-0.0710630789399147,
0.006373001262545586,
-0.11024709790945053,
0.055267609655857086,
0.04204455390572548,
0.1229788213968277,
0.014207782223820686,
0.02016810141503811,
0.05822525918483734,
-0.01837925612926483,
0.07173580676317215,
-0.06203491613268852,
-0.04550490900874138,
0.14224006235599518,
-0.020255116745829582,
-0.04152837023139,
-0.0483345128595829,
-0.036874305456876755,
0.11981741338968277,
-0.05059147998690605,
-0.007141099311411381,
-0.054929375648498535,
-0.06906463205814362,
0.03462086617946625,
-0.009175732731819153,
-0.008798843249678612,
0.06801853328943253,
0.04024988040328026,
-0.026994358748197556,
0.005263668950647116,
0.03447828069329262,
-0.10330043733119965,
-0.04955084249377251,
0.16955432295799255,
-0.0749620869755745,
0.10274054110050201,
-0.031069839373230934,
0.018015999346971512,
0.005847334861755371,
-0.022399673238396645,
-0.015360680408775806,
-0.1457086056470871,
-0.06137600541114807,
-0.09489979594945908,
0.11565322428941727,
0.08146517723798752,
0.03358805552124977,
0.04274565726518631,
0.019532648846507072,
-0.04414922371506691,
-0.038583990186452866,
0.12961317598819733,
0.08133101463317871,
0.012996876612305641,
0.01137041300535202,
0.01941833831369877,
-0.020302120596170425,
0.0028480992186814547,
-0.01250747125595808,
-0.07239153981208801,
-0.05874783173203468,
0.09400010108947754,
0.1600283533334732,
-0.06127211079001427,
-0.13325586915016174,
-0.020593497902154922,
0.04988488554954529,
0.0014717020094394684,
-0.08777432143688202,
0.04833676666021347,
0.15805292129516602,
-0.05623878911137581,
0.03216489031910896,
-0.09984751045703888,
-0.07263360917568207,
-0.16060975193977356,
-0.10029061883687973,
-0.06092562898993492,
-0.28350353240966797,
0.09752398729324341,
0.006392303854227066,
-0.014731393195688725,
0.059529416263103485,
0.051305368542671204,
-0.052508849650621414,
0.07068239152431488,
-0.18146829307079315,
-0.007054794579744339,
0.03497592359781265,
-0.13212306797504425,
0.02475893869996071,
-0.2378365397453308,
0.10198072344064713,
-0.04623803123831749,
-0.1519704908132553,
-0.04004510119557381,
0.0641569048166275,
-0.09540136158466339,
-0.01822364516556263,
-0.0475153923034668,
-0.01922670193016529,
0.01624443754553795,
-0.009348669089376926,
-0.031147832050919533,
0.13716529309749603,
0.02827494591474533,
-0.03268734738230705,
0.005254602525383234,
0.0223685409873724,
0.03955082967877388,
-0.0969657450914383,
-0.05986930429935455,
0.08311155438423157,
-0.031056145206093788,
0.14728976786136627,
0.000341245875461027,
0.04181376099586487,
-0.06758682429790497,
0.2593761384487152,
0.2023983597755432,
-0.12479214370250702,
0.008118697442114353,
-0.021801479160785675,
0.012670028023421764,
-0.041751839220523834,
0.13110700249671936,
0.013386172242462635,
0.12186761200428009,
-0.17513342201709747,
-0.01036517322063446,
-0.0818324014544487,
-0.04501292482018471,
0.06702108681201935,
0.14714950323104858,
0.15742522478103638,
0.03436789661645889,
-0.07328428328037262,
0.06722653657197952,
-0.30119743943214417,
0.20540550351142883,
-0.1346001923084259,
-0.01498429011553526,
-0.040251150727272034,
-0.058389630168676376,
0.061147745698690414,
0.11309876292943954,
0.10832664370536804,
-0.021150551736354828,
-0.0905047357082367,
-0.04486766457557678,
-0.039378076791763306,
-0.13019338250160217,
-0.02718670479953289,
0.1654091775417328,
0.06799814850091934,
0.31520840525627136,
-0.017577875405550003,
0.07702425122261047,
0.034410297870635986,
0.06451138854026794,
0.004519328009337187,
0.09537279605865479,
0.07960964739322662,
-0.06345855444669724,
-0.07373003661632538,
-0.001637450186535716,
0.05033271387219429,
0.14567798376083374,
-0.03826142102479935,
-0.18691548705101013,
0.15858715772628784,
0.07192251086235046,
-0.13762691617012024,
-0.05777517706155777,
0.08409425616264343,
-0.0739973932504654,
0.0550808347761631,
0.08115427941083908,
0.015876613557338715,
-0.017793258652091026,
-0.004664506763219833,
0.06074233725667,
0.024694660678505898,
-0.02343848906457424,
0.003570882137864828,
-0.08337053656578064,
-0.04151543974876404,
0.07267895340919495,
-0.0844460055232048,
-0.20546193420886993,
-0.0957019031047821,
-0.07551700621843338,
0.030557552352547646,
-0.0649830624461174,
0.12575586140155792,
0.1717868149280548,
0.0593598335981369,
-0.03307248651981354,
-0.10721943527460098,
-0.035562749952077866,
0.07602505385875702,
-0.044773899018764496,
-0.09409699589014053
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# jjunhaoo/food_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.0402
- Validation Loss: 2.9013
- Train Accuracy: 1.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 4.5433 | 4.3217 | 0.75 | 0 |
| 4.1725 | 3.9809 | 1.0 | 1 |
| 3.8289 | 3.6061 | 1.0 | 2 |
| 3.4173 | 3.2314 | 1.0 | 3 |
| 3.0402 | 2.9013 | 1.0 | 4 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "jjunhaoo/food_classifier", "results": []}]} | image-classification | jjunhaoo/food_classifier | [
"transformers",
"tf",
"vit",
"image-classification",
"generated_from_keras_callback",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T22:20:45+00:00 | [] | [] | TAGS
#transformers #tf #vit #image-classification #generated_from_keras_callback #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| jjunhaoo/food\_classifier
=========================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 3.0402
* Validation Loss: 2.9013
* Train Accuracy: 1.0
* Epoch: 4
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': {'module': 'keras.optimizers.schedules', 'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 3e-05, 'decay\_steps': 400, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\_name': None}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.35.2
* TensorFlow 2.15.0
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 3e-05, 'decay\\_steps': 400, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tf #vit #image-classification #generated_from_keras_callback #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 3e-05, 'decay\\_steps': 400, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
73,
226,
4,
31
] | [
"passage: TAGS\n#transformers #tf #vit #image-classification #generated_from_keras_callback #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 3e-05, 'decay\\_steps': 400, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.06523994356393814,
0.08933252096176147,
-0.0068702795542776585,
0.0819518193602562,
0.1491285115480423,
0.05608782172203064,
0.12430917471647263,
0.1260741502046585,
-0.08639281243085861,
0.1382567137479782,
0.0950152575969696,
0.10200110077857971,
0.06359922885894775,
0.11788767576217651,
-0.06286967545747757,
-0.14539866149425507,
0.03986704349517822,
-0.04287168011069298,
-0.0552997812628746,
0.06505192816257477,
0.07549911737442017,
-0.0708431750535965,
0.08935240656137466,
-0.033237505704164505,
-0.09456295520067215,
0.0017593818483874202,
0.036958858370780945,
-0.04602492228150368,
0.08664177358150482,
0.06314503401517868,
0.08168798685073853,
0.016000965610146523,
0.013517109677195549,
-0.20119532942771912,
0.0028364849276840687,
0.12048403173685074,
0.003996292129158974,
0.07819075882434845,
0.04507597163319588,
-0.04954990744590759,
0.09748060256242752,
-0.1065066009759903,
0.04927827790379524,
0.044264793395996094,
-0.1428103744983673,
-0.2375440150499344,
-0.08476506173610687,
0.033404089510440826,
0.08140776306390762,
0.07494243234395981,
0.008982403203845024,
0.10985369980335236,
-0.07917682081460953,
0.07997514307498932,
0.11949628591537476,
-0.23177537322044373,
-0.050311487168073654,
0.06880635023117065,
-0.010371272452175617,
0.03794105723500252,
-0.08091945201158524,
0.005548550747334957,
0.0025621105451136827,
0.014224483631551266,
0.02586584910750389,
0.002448371844366193,
-0.03538304194808006,
-0.04247616231441498,
-0.044719863682985306,
-0.05013206973671913,
0.12954238057136536,
0.06757690012454987,
-0.03346073627471924,
-0.05551617965102196,
-0.022604327648878098,
-0.1919618546962738,
-0.025678519159555435,
0.0015706246485933661,
0.028804108500480652,
0.016939964145421982,
-0.03754890710115433,
-0.00815530400723219,
-0.04561583325266838,
-0.044876523315906525,
0.023588260635733604,
0.055859021842479706,
0.027274195104837418,
0.03229864686727524,
0.004960552789270878,
0.05649881064891815,
-0.049483127892017365,
-0.11646495759487152,
-0.025021478533744812,
-0.005781807936728001,
-0.055287521332502365,
-0.03310679271817207,
-0.051074642688035965,
-0.002067220862954855,
0.09607159346342087,
0.15676741302013397,
-0.06961341947317123,
0.12378352135419846,
-0.023680947721004486,
0.03856693580746651,
-0.10408394783735275,
0.08638209104537964,
0.0007005894440226257,
-0.025668172165751457,
-0.0050703599117696285,
0.06944496929645538,
0.00024498661514371634,
-0.03374238684773445,
-0.05253719165921211,
0.034798234701156616,
0.09064968675374985,
0.029376771301031113,
-0.0053185210563242435,
0.0953027606010437,
-0.08417382091283798,
-0.007758313789963722,
0.004783830605447292,
-0.09892626106739044,
0.04834321513772011,
0.05557303875684738,
-0.07946209609508514,
0.051140397787094116,
0.08037105202674866,
-0.00044255625107325613,
-0.055350977927446365,
0.0470958836376667,
-0.059192150831222534,
-0.01228332705795765,
-0.09732981771230698,
-0.09733691811561584,
0.027550887316465378,
-0.07094807177782059,
-0.037690259516239166,
-0.08039800822734833,
-0.14478738605976105,
-0.07683106511831284,
0.10041427612304688,
-0.049874261021614075,
-0.03317463397979736,
-0.07138606160879135,
-0.15102186799049377,
0.05371255427598953,
0.005742668639868498,
0.10557012259960175,
-0.05538265407085419,
0.0667707771062851,
-0.02123563177883625,
0.043816931545734406,
0.00606867391616106,
0.03319726139307022,
-0.056328196078538895,
0.03811051324009895,
-0.17659538984298706,
0.11567597091197968,
-0.09663105010986328,
0.07673002779483795,
-0.16046075522899628,
-0.05811609700322151,
0.03087891824543476,
0.010275923646986485,
0.09575599431991577,
0.11312996596097946,
-0.16151709854602814,
-0.05806472897529602,
0.11417139321565628,
-0.0890435054898262,
-0.08071023225784302,
0.06923387944698334,
-0.025900641456246376,
-0.01113391388207674,
0.0832904726266861,
0.07939548045396805,
0.0670185461640358,
-0.092934250831604,
0.019218334928154945,
-0.06794236600399017,
0.027995530515909195,
0.04391709715127945,
0.03161126747727394,
-0.07994335889816284,
-0.09629090875387192,
0.034392278641462326,
-0.016918838024139404,
0.0019158537033945322,
-0.0630016177892685,
-0.06389398872852325,
-0.0376952663064003,
-0.06752309203147888,
0.02684999629855156,
0.0349738635122776,
0.01663396693766117,
-0.08066949248313904,
-0.16897466778755188,
0.04886091500520706,
0.04981915280222893,
-0.06533067673444748,
0.02075624093413353,
-0.06188792735338211,
0.059598956257104874,
0.05199499428272247,
-0.003426626790314913,
-0.15194867551326752,
-0.09414087235927582,
0.024784907698631287,
-0.03377727419137955,
0.029164839535951614,
-0.05369368568062782,
0.0596887543797493,
0.03732021898031235,
-0.06428422033786774,
-0.0033941317815333605,
-0.00335623393766582,
0.017594195902347565,
-0.04583108797669411,
-0.24162057042121887,
-0.028591681271791458,
-0.004280817694962025,
0.1127559244632721,
-0.289811909198761,
0.003264413448050618,
0.07035552710294724,
0.13011693954467773,
0.0414014533162117,
-0.037743937224149704,
-0.031123073771595955,
0.06073550879955292,
-0.016904732212424278,
-0.07401780784130096,
0.04541030526161194,
0.01101329643279314,
-0.10306757688522339,
-0.06594835966825485,
-0.14996224641799927,
0.06740780919790268,
0.11775107681751251,
-0.09527021646499634,
-0.1476702243089676,
0.011289166286587715,
-0.02334384061396122,
-0.035568684339523315,
-0.001161892549134791,
0.028507433831691742,
0.13488751649856567,
0.03392152115702629,
0.12888400256633759,
-0.029506461694836617,
0.000015095320122782141,
0.014102467335760593,
-0.01734025403857231,
-0.02254057489335537,
0.12374059110879898,
0.03331584483385086,
-0.06973709911108017,
0.08980822563171387,
0.04486920312047005,
-0.129018172621727,
0.09853347390890121,
-0.0493021234869957,
-0.048267289996147156,
-0.06676939874887466,
0.06196487694978714,
0.06201593205332756,
0.04728525131940842,
-0.10357242822647095,
0.003943828400224447,
0.018100015819072723,
-0.001358422334305942,
-0.003832010319456458,
-0.14554180204868317,
0.021634941920638084,
-0.011163224466145039,
-0.056459374725818634,
0.05951609089970589,
-0.020167812705039978,
0.013250373303890228,
0.10511339455842972,
0.039496779441833496,
-0.021808326244354248,
0.050515834242105484,
-0.023419877514243126,
-0.0802338644862175,
0.2040148675441742,
-0.11731565743684769,
-0.1295371949672699,
-0.1061258539557457,
-0.005444710608571768,
-0.05899575352668762,
-0.014238722622394562,
0.0023036140482872725,
-0.08714549988508224,
-0.07385063916444778,
-0.06987684965133667,
-0.03544340655207634,
-0.0233866348862648,
0.0004968849825672805,
-0.0151223698630929,
0.04198896884918213,
0.14459921419620514,
-0.08650793135166168,
-0.03312649577856064,
0.0018781566759571433,
-0.08890727907419205,
0.012887026183307171,
0.019822057336568832,
0.00012305645213928074,
0.1151992455124855,
-0.0002317980251973495,
0.01527024619281292,
-0.038067836314439774,
0.21158358454704285,
-0.05988483130931854,
0.031458720564842224,
0.12401638925075531,
0.0021726475097239017,
0.07701876014471054,
0.17425276339054108,
0.06518083810806274,
-0.0916348248720169,
0.0349365770816803,
0.08494669198989868,
-0.01023017056286335,
-0.23043105006217957,
-0.03179590031504631,
-0.04679303616285324,
-0.08102588355541229,
0.08993636071681976,
0.05526819825172424,
0.18017689883708954,
0.023878630250692368,
-0.0033179305028170347,
0.07667672634124756,
0.06485425680875778,
0.09308961778879166,
0.13847549259662628,
0.09639596939086914,
0.10573937743902206,
-0.033387452363967896,
0.031159212812781334,
0.030891451984643936,
-0.009706972166895866,
0.20489943027496338,
0.01373082585632801,
0.08396943658590317,
0.09510501474142075,
0.07465333491563797,
0.015293283388018608,
-0.041536230593919754,
0.009758801199495792,
0.013530637137591839,
0.019903888925909996,
-0.07894326746463776,
-0.04222172871232033,
0.05137632042169571,
0.04375059902667999,
0.04637441784143448,
-0.08121396601200104,
-0.0015205212403088808,
0.06426884233951569,
0.2204958200454712,
0.10632963478565216,
-0.3152839243412018,
-0.10140565782785416,
0.011453954502940178,
-0.004810939077287912,
-0.05024619400501251,
-0.013310892507433891,
0.03334634751081467,
-0.08260884881019592,
0.09190267324447632,
-0.04487234354019165,
0.074082151055336,
-0.07065103203058243,
0.041731350123882294,
0.12328451126813889,
0.11284703016281128,
0.02083093300461769,
0.016031453385949135,
-0.34666386246681213,
0.2621854543685913,
0.01983681321144104,
0.11848147958517075,
-0.039753735065460205,
0.05616605281829834,
0.04440862685441971,
-0.021285906434059143,
0.06593245267868042,
-0.013182940892875195,
-0.13158756494522095,
-0.18306882679462433,
-0.05431419983506203,
-0.006656438112258911,
0.10933765023946762,
-0.05055519565939903,
0.07908042520284653,
-0.0380803644657135,
-0.016925612464547157,
0.0413588210940361,
-0.016230836510658264,
-0.19517295062541962,
-0.07944566011428833,
0.055472005158662796,
0.03072485513985157,
0.028826061636209488,
-0.06404997408390045,
-0.06092096492648125,
-0.09517411142587662,
0.21558859944343567,
-0.14302727580070496,
-0.054843612015247345,
-0.13902416825294495,
0.08200296759605408,
0.10324732214212418,
-0.060355544090270996,
0.05529334023594856,
-0.03003547340631485,
0.07562036067247391,
0.06550554931163788,
-0.06727931648492813,
0.1278756856918335,
-0.008564258925616741,
-0.2157880961894989,
-0.07589557021856308,
0.10607418417930603,
0.03208479285240173,
0.018473844975233078,
-0.017138013616204262,
0.08129080384969711,
0.037883657962083817,
-0.0835108757019043,
0.08051515370607376,
0.06357105821371078,
0.0604572631418705,
0.05705726891756058,
-0.04084961116313934,
-0.06818677484989166,
-0.04300456494092941,
-0.0023771601263433695,
0.06477808207273483,
0.3033161163330078,
-0.0847308337688446,
0.043088361620903015,
0.0368351973593235,
-0.097429059445858,
-0.18537089228630066,
0.06997167319059372,
0.10594309121370316,
-0.015341135673224926,
-0.0760001465678215,
-0.20477186143398285,
0.07405830919742584,
0.1052435040473938,
-0.01809150166809559,
0.056576207280159,
-0.2582327425479889,
-0.150040403008461,
0.04805506393313408,
0.1041020080447197,
-0.005013380665332079,
-0.17995214462280273,
-0.07387471944093704,
-0.072332464158535,
-0.06682697683572769,
0.14079298079013824,
-0.04385928809642792,
0.08886972069740295,
0.027887627482414246,
-0.002775636501610279,
0.02229415811598301,
-0.03603346645832062,
0.15187284350395203,
-0.006327168084681034,
0.0878087505698204,
-0.05234052613377571,
-0.033769089728593826,
0.07450295984745026,
-0.10217361152172089,
0.027832752093672752,
-0.046234339475631714,
0.03701256960630417,
-0.11300058662891388,
0.003950067330151796,
-0.07307921350002289,
0.06602579355239868,
-0.06929588317871094,
-0.0026041758246719837,
-0.02676226943731308,
0.07628470659255981,
0.08442319184541702,
0.011644239537417889,
0.11633139848709106,
-0.04477602615952492,
0.2018195539712906,
0.14362849295139313,
0.06966099143028259,
0.02798503264784813,
-0.06855624169111252,
0.05895787104964256,
-0.03888441249728203,
0.06566864252090454,
-0.1754254251718521,
0.05667287856340408,
0.13241498172283173,
-0.001319012837484479,
0.13714641332626343,
0.053250961005687714,
-0.047427620738744736,
0.013406021520495415,
0.06526943296194077,
-0.09671559929847717,
-0.053119055926799774,
0.015361858531832695,
0.003669068217277527,
-0.06519480049610138,
0.009972775354981422,
0.14286553859710693,
-0.03729699179530144,
0.024233391508460045,
0.024186735972762108,
0.049871355295181274,
-0.0563608855009079,
0.09401120245456696,
0.020217429846525192,
0.08741015940904617,
-0.0806712880730629,
0.1299591064453125,
0.10404971987009048,
-0.1197289302945137,
0.09122856706380844,
0.059615690261125565,
-0.07361043989658356,
-0.03852023184299469,
0.05513541027903557,
0.12210196256637573,
0.06275201588869095,
-0.042991071939468384,
-0.06891109049320221,
-0.14341066777706146,
0.08609221875667572,
0.16897062957286835,
0.01618681661784649,
0.05397279933094978,
-0.014693878591060638,
0.0008513685315847397,
-0.09658186882734299,
0.06263619661331177,
0.037087518721818924,
0.05224648118019104,
-0.12648722529411316,
0.1554933488368988,
0.015908537432551384,
-0.03987313061952591,
0.005199352744966745,
0.00012935396807733923,
-0.20190858840942383,
-0.005349094048142433,
-0.11203640699386597,
0.046703945845365524,
0.012456921860575676,
0.00776296854019165,
0.03907468542456627,
-0.04256904870271683,
-0.05383211001753807,
0.022434022277593613,
-0.09737829864025116,
-0.06438390910625458,
0.050858646631240845,
0.09059534966945648,
-0.12050584703683853,
-0.052930183708667755,
0.02174568735063076,
-0.11197291314601898,
0.04488315433263779,
0.017236385494470596,
-0.00014291064871940762,
0.011449805460870266,
-0.13060832023620605,
0.021362051367759705,
0.020468249917030334,
0.0013200746616348624,
0.015075154602527618,
-0.1267658770084381,
0.02389545738697052,
-0.03900663182139397,
0.03454919159412384,
0.020102882757782936,
0.06643986701965332,
-0.09493771195411682,
-0.04332294315099716,
-0.024742435663938522,
-0.032596200704574585,
-0.03201347216963768,
0.05269462615251541,
0.1515294909477234,
-0.042223505675792694,
0.1535985767841339,
-0.11645043641328812,
0.03582393378019333,
-0.19070793688297272,
-0.007413587998598814,
0.009460111148655415,
-0.06917303055524826,
-0.11941571533679962,
-0.029442008584737778,
0.12093108892440796,
-0.09332629293203354,
0.08759645372629166,
-0.0027442185673862696,
0.08950279653072357,
0.03149063512682915,
-0.0749567374587059,
-0.09325264394283295,
0.09283805638551712,
0.1652834564447403,
0.07517562806606293,
0.00009832424984779209,
0.0849594920873642,
-0.03644877299666405,
0.045754075050354004,
0.05721120163798332,
0.16927289962768555,
0.1400960236787796,
0.01186242327094078,
0.06667707115411758,
0.06404207646846771,
-0.10038583725690842,
-0.08473270386457443,
0.18255022168159485,
-0.09171296656131744,
0.1704695075750351,
-0.08750259876251221,
0.07496347278356552,
0.030116654932498932,
-0.16793011128902435,
0.04284792020916939,
-0.07792617380619049,
-0.09246275573968887,
-0.09427420049905777,
-0.13561776280403137,
-0.10267828404903412,
-0.10795412957668304,
0.0030938347335904837,
-0.08753626048564911,
0.012725486420094967,
0.11014720052480698,
0.022630181163549423,
0.013911640271544456,
0.04341527819633484,
-0.04968942329287529,
0.023270810022950172,
0.11219298094511032,
-0.007634698413312435,
-0.0191661287099123,
-0.05696379393339157,
-0.07519245147705078,
0.045260950922966,
0.021824486553668976,
0.030002858489751816,
0.023738209158182144,
0.0015065291663631797,
0.05785052105784416,
0.004428812302649021,
-0.10559361428022385,
0.07507802546024323,
0.009766212664544582,
-0.012341134250164032,
0.0751478299498558,
0.02519831247627735,
-0.020162539556622505,
-0.009784795343875885,
0.14666536450386047,
-0.07748176157474518,
-0.05907304584980011,
-0.15515224635601044,
0.2575836181640625,
-0.030773183330893517,
0.024314919486641884,
-0.0007827566005289555,
-0.07320056855678558,
-0.016892725601792336,
0.16745400428771973,
0.15918760001659393,
-0.04214825853705406,
-0.020977579057216644,
0.08869042992591858,
-0.021450582891702652,
-0.03991864249110222,
0.13049891591072083,
0.055932044982910156,
-0.045787401497364044,
-0.04593176022171974,
-0.017958635464310646,
0.010506214573979378,
-0.03191925957798958,
-0.07817306369543076,
0.07294679433107376,
-0.01760505698621273,
-0.015542087145149708,
-0.025636401027441025,
0.07454687356948853,
-0.10556568205356598,
-0.11227039247751236,
0.14254668354988098,
-0.20621512830257416,
-0.17559340596199036,
-0.024548644199967384,
0.02085190825164318,
0.01927187666296959,
0.02099110372364521,
-0.009985029697418213,
-0.02350633405148983,
0.12500551342964172,
-0.05436969920992851,
-0.007909412495791912,
-0.11681278795003891,
0.018664009869098663,
-0.02246435172855854,
0.2184002697467804,
-0.022807098925113678,
0.0319766141474247,
0.15066763758659363,
0.016558587551116943,
-0.08904965966939926,
0.04315397888422012,
0.07486569881439209,
-0.11801667511463165,
0.03707626089453697,
0.08376757800579071,
-0.028695007786154747,
0.1763283610343933,
0.09004658460617065,
-0.0940234437584877,
0.01529322937130928,
-0.031818047165870667,
-0.06281027942895889,
-0.041865456849336624,
-0.0342453271150589,
-0.07450445741415024,
0.12181416153907776,
0.2166699916124344,
-0.03473570570349693,
-0.018007807433605194,
-0.03881128504872322,
0.0331200547516346,
0.028153399005532265,
0.01875312067568302,
-0.07743532955646515,
-0.2098219245672226,
0.08288799226284027,
0.016421930864453316,
0.07191802561283112,
-0.14360015094280243,
-0.08213033527135849,
0.015767589211463928,
-0.006415944546461105,
-0.10406085103750229,
0.11334984749555588,
0.06197289749979973,
0.028336236253380775,
-0.05701330676674843,
-0.1648964285850525,
-0.017802610993385315,
0.18976429104804993,
-0.10796687752008438,
-0.06967024505138397
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Qwen1.5-0.5B-OpenHermes-2.5
This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the teknium/OpenHermes-2.5 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.1
### Inference
```
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "minghaowu/phi-2-OpenHermes-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
your_instruction = <your_instruction>
infer_prompt = f"### USER: {your_instruction} <|endoftext|>\n### ASSISTANT:"
output = pipe(infer_prompt, do_sample=True, max_new_tokens=256)[0]["generated_text"]
print(output)
``` | {"license": "other", "tags": ["generated_from_trainer"], "datasets": ["teknium/OpenHermes-2.5"], "base_model": "Qwen/Qwen1.5-0.5B", "model-index": [{"name": "Qwen1.5-0.5B-OpenHermes-2.5", "results": []}]} | text-generation | minghaowu/Qwen1.5-0.5B-OpenHermes-2.5 | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"conversational",
"dataset:teknium/OpenHermes-2.5",
"base_model:Qwen/Qwen1.5-0.5B",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | 2024-02-06T22:22:11+00:00 | [] | [] | TAGS
#transformers #safetensors #qwen2 #text-generation #generated_from_trainer #conversational #dataset-teknium/OpenHermes-2.5 #base_model-Qwen/Qwen1.5-0.5B #license-other #autotrain_compatible #endpoints_compatible #has_space #region-us
|
# Qwen1.5-0.5B-OpenHermes-2.5
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B on the teknium/OpenHermes-2.5 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.1
### Inference
| [
"# Qwen1.5-0.5B-OpenHermes-2.5\n\nThis model is a fine-tuned version of Qwen/Qwen1.5-0.5B on the teknium/OpenHermes-2.5 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 128\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1",
"### Inference"
] | [
"TAGS\n#transformers #safetensors #qwen2 #text-generation #generated_from_trainer #conversational #dataset-teknium/OpenHermes-2.5 #base_model-Qwen/Qwen1.5-0.5B #license-other #autotrain_compatible #endpoints_compatible #has_space #region-us \n",
"# Qwen1.5-0.5B-OpenHermes-2.5\n\nThis model is a fine-tuned version of Qwen/Qwen1.5-0.5B on the teknium/OpenHermes-2.5 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 128\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1",
"### Inference"
] | [
85,
45,
6,
12,
8,
3,
157,
4,
33,
5
] | [
"passage: TAGS\n#transformers #safetensors #qwen2 #text-generation #generated_from_trainer #conversational #dataset-teknium/OpenHermes-2.5 #base_model-Qwen/Qwen1.5-0.5B #license-other #autotrain_compatible #endpoints_compatible #has_space #region-us \n# Qwen1.5-0.5B-OpenHermes-2.5\n\nThis model is a fine-tuned version of Qwen/Qwen1.5-0.5B on the teknium/OpenHermes-2.5 dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 2\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 128\n- total_eval_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1.0### Training results### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.0.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.1### Inference"
] | [
-0.10301993787288666,
0.1784859299659729,
-0.002672990784049034,
0.0664626732468605,
0.09456273913383484,
0.04157905653119087,
0.10190943628549576,
0.1465296745300293,
-0.03115239366889,
0.11199719458818436,
0.07206103205680847,
0.011450398713350296,
0.08142507076263428,
0.12438718974590302,
0.005304240621626377,
-0.2109193503856659,
0.0181268323212862,
-0.05070583149790764,
-0.04786154627799988,
0.06956794112920761,
0.09219053387641907,
-0.07898624986410141,
0.06191208213567734,
-0.013030651956796646,
-0.07603701949119568,
-0.02175072208046913,
-0.05646706745028496,
-0.054166682064533234,
0.08625099807977676,
0.03575335443019867,
0.020106356590986252,
0.023517340421676636,
0.10844653099775314,
-0.267047643661499,
-0.001090805046260357,
0.07419133186340332,
0.013767295517027378,
0.06855090707540512,
0.08565797656774521,
0.0295372623950243,
0.07890637218952179,
-0.14867910742759705,
0.08384421467781067,
0.04124724119901657,
-0.06272563338279724,
-0.15241868793964386,
-0.08611652255058289,
0.09660228341817856,
0.07779601216316223,
0.06169094517827034,
-0.004593034740537405,
0.13982944190502167,
-0.0607665479183197,
0.06062837317585945,
0.13716799020767212,
-0.30150553584098816,
-0.04797747731208801,
0.06385335326194763,
0.06111694127321243,
0.0762111023068428,
-0.12341248244047165,
0.0112827243283391,
0.02621757984161377,
0.02507605031132698,
0.0635068267583847,
0.010723262093961239,
-0.005626875441521406,
0.009761583991348743,
-0.12134916335344315,
-0.032398827373981476,
0.14729268848896027,
0.07791423052549362,
-0.04253673925995827,
-0.15394577383995056,
-0.03366707265377045,
-0.05256175622344017,
0.0024914497043937445,
-0.0282782930880785,
0.006125007756054401,
-0.047550469636917114,
-0.05047200620174408,
-0.03742865473031998,
-0.05487838760018349,
-0.048740312457084656,
0.01683206669986248,
0.10275749117136002,
0.041205279529094696,
0.008728968910872936,
0.026837531477212906,
0.10193915665149689,
-0.05600372329354286,
-0.11843256652355194,
-0.049442071467638016,
-0.02070733904838562,
-0.13972924649715424,
-0.05264180153608322,
-0.013515142723917961,
0.008450628258287907,
0.026808962225914,
0.1819094717502594,
-0.03528602793812752,
0.07447690516710281,
0.04430151358246803,
-0.023676173761487007,
0.02289794385433197,
0.11618908494710922,
-0.07365618646144867,
-0.13226567208766937,
-0.022317765280604362,
0.10438792407512665,
0.023493444547057152,
-0.03000793606042862,
-0.0798678919672966,
-0.02547682262957096,
0.08307282626628876,
0.05774563178420067,
0.02617695927619934,
0.027362748980522156,
-0.035454876720905304,
-0.053061697632074356,
0.12530949711799622,
-0.11527172476053238,
0.047020457684993744,
-0.005399712361395359,
-0.052994322031736374,
-0.03516898676753044,
0.003511151298880577,
0.008449834771454334,
-0.038511987775564194,
0.05204189196228981,
-0.07096834480762482,
-0.04486175626516342,
-0.040644776076078415,
-0.05059549957513809,
0.03455064073204994,
-0.06405507773160934,
-0.007925032638013363,
-0.08073892444372177,
-0.15969343483448029,
-0.029183782637119293,
0.039363615214824677,
-0.08966735005378723,
-0.06415301561355591,
-0.01667964830994606,
-0.046581462025642395,
0.03604511916637421,
-0.005663569550961256,
0.09797708690166473,
-0.04548869654536247,
0.05275126174092293,
0.0050201681442558765,
0.02280924655497074,
0.05280020460486412,
0.02195494994521141,
-0.04431379586458206,
0.06026872992515564,
-0.07311169803142548,
0.0937080830335617,
-0.1042502373456955,
0.013643940910696983,
-0.1390751153230667,
-0.08719734847545624,
0.00853943731635809,
-0.048370085656642914,
0.06986641883850098,
0.129366934299469,
-0.10239692777395248,
-0.012734591960906982,
0.15251359343528748,
-0.05792703852057457,
-0.12403182685375214,
0.12221084535121918,
-0.0055281720124185085,
-0.03594176843762398,
0.03466418385505676,
0.14464792609214783,
0.15578322112560272,
-0.15960785746574402,
-0.06332535296678543,
0.04904937371611595,
0.09426996856927872,
0.05943416431546211,
0.11428725719451904,
-0.015565300360321999,
0.07646186649799347,
0.014036381617188454,
-0.04660661891102791,
0.008277448825538158,
-0.06150380149483681,
-0.08565399050712585,
-0.043365780264139175,
-0.10695022344589233,
0.048440832644701004,
0.011524454690515995,
0.014887364581227303,
-0.04745548591017723,
-0.12876497209072113,
0.03435032069683075,
0.1483638733625412,
-0.04243866726756096,
0.002847451949492097,
-0.0982617512345314,
0.045992422848939896,
-0.043581925332546234,
0.003203872125595808,
-0.16011767089366913,
-0.13665670156478882,
0.06232542544603348,
-0.09919051826000214,
0.015797019004821777,
-0.013092273846268654,
0.06091653183102608,
0.09399014711380005,
-0.062203265726566315,
-0.037310484796762466,
-0.07405878603458405,
0.003991579636931419,
-0.07919622957706451,
-0.17718683183193207,
-0.09676190465688705,
-0.042615193873643875,
0.20040324330329895,
-0.19938775897026062,
0.011168673634529114,
0.010076234117150307,
0.1262863278388977,
0.016658565029501915,
-0.06951934099197388,
0.01755138300359249,
0.01605350337922573,
-0.018183350563049316,
-0.10007485002279282,
0.013212891295552254,
0.004527004901319742,
-0.11834371089935303,
-0.05033537745475769,
-0.14857786893844604,
0.07419075071811676,
0.05206790938973427,
0.09760333597660065,
-0.07070017606019974,
-0.05489351972937584,
-0.05264897644519806,
-0.062270987778902054,
-0.06401406228542328,
-0.02116067335009575,
0.1510152518749237,
0.02230646274983883,
0.07419721782207489,
-0.05311403051018715,
-0.07456350326538086,
0.015294160693883896,
0.03476319462060928,
-0.03891695290803909,
0.08016608655452728,
0.03530660271644592,
-0.1445384919643402,
0.072821706533432,
0.09784103184938431,
-0.0011107411701232195,
0.10803158581256866,
-0.03699313476681709,
-0.08208232372999191,
-0.05317559465765953,
0.028508750721812248,
0.0098498510196805,
0.13210679590702057,
-0.09007010608911514,
0.0028620599769055843,
0.044680699706077576,
0.019898870959877968,
0.012343588285148144,
-0.10702721029520035,
0.00819290429353714,
0.026683533564209938,
-0.03619402274489403,
-0.0060763610526919365,
-0.03847745060920715,
-0.011005966924130917,
0.07136909663677216,
0.04551710933446884,
0.04032618924975395,
0.007249210961163044,
-0.020708346739411354,
-0.09256327152252197,
0.1762750893831253,
-0.10548575967550278,
-0.11509878188371658,
-0.11120311170816422,
0.03852596506476402,
-0.0713966116309166,
-0.026309821754693985,
-0.004497938323765993,
-0.0628836527466774,
-0.054519910365343094,
-0.09724589437246323,
-0.02139604650437832,
-0.059780754148960114,
0.0032626865431666374,
0.04584072530269623,
0.020573237910866737,
0.07907237857580185,
-0.11512795090675354,
0.023160278797149658,
0.02790289744734764,
-0.07663544267416,
-0.006657871883362532,
0.057699088007211685,
0.10207875818014145,
0.10628168284893036,
0.030219461768865585,
0.006585653405636549,
-0.03750606253743172,
0.21258707344532013,
-0.08713152259588242,
0.029760124161839485,
0.08874834328889847,
0.006852954160422087,
0.047048646956682205,
0.11087198555469513,
0.032616131007671356,
-0.07316381484270096,
0.005234529729932547,
0.042564209550619125,
-0.018724802881479263,
-0.23299378156661987,
-0.06304822862148285,
-0.03134751692414284,
0.0018211547285318375,
0.10286004841327667,
0.05205194279551506,
-0.0027801943942904472,
0.05297357216477394,
-0.04869352653622627,
0.053899992257356644,
-0.007943782955408096,
0.08508609235286713,
0.058536987751722336,
0.04710318148136139,
0.08355355262756348,
-0.03128531575202942,
0.022492174059152603,
0.07779502868652344,
0.06817358732223511,
0.2074328064918518,
-0.03949761763215065,
0.18255354464054108,
0.005923911929130554,
0.17193929851055145,
-0.04380812123417854,
0.0159161314368248,
0.025992989540100098,
0.007781556807458401,
0.01824846863746643,
-0.07207717001438141,
-0.02183166705071926,
0.06743766367435455,
0.039035774767398834,
-0.00400410033762455,
-0.0667605847120285,
0.0430774912238121,
0.034417930990457535,
0.1992780566215515,
0.05979034677147865,
-0.25042617321014404,
-0.10669177025556564,
0.03911362588405609,
-0.02622455544769764,
-0.05004001781344414,
-0.00022804424224887043,
0.1399598866701126,
-0.15114986896514893,
0.09623494744300842,
-0.04396388307213783,
0.0822802409529686,
-0.07008857280015945,
-0.016279159113764763,
0.0628645122051239,
0.08380955457687378,
0.004723542835563421,
0.10520023852586746,
-0.15973792970180511,
0.18022187054157257,
0.031929861754179,
0.07538038492202759,
-0.0856519266963005,
0.046573858708143234,
-0.009484643116593361,
0.057067375630140305,
0.11497212946414948,
0.009148230776190758,
-0.053302157670259476,
-0.14068640768527985,
-0.10659269243478775,
0.0219257865101099,
0.1222822517156601,
-0.05875805765390396,
0.09331563860177994,
-0.028752630576491356,
-0.01145217940211296,
0.016204435378313065,
0.0032810145057737827,
-0.14807778596878052,
-0.1696820706129074,
0.05562411993741989,
-0.0129678500816226,
-0.022922774776816368,
-0.07528962939977646,
-0.07475043088197708,
-0.09507444500923157,
0.20503117144107819,
-0.06657543778419495,
-0.04618264362215996,
-0.13985617458820343,
0.07133481651544571,
0.13588230311870575,
-0.08075415343046188,
0.02036060206592083,
0.0015917265554890037,
0.11726830154657364,
0.003577369963750243,
-0.0728229284286499,
0.05997179448604584,
-0.08548793941736221,
-0.1700587421655655,
-0.04677128046751022,
0.12466061860322952,
0.04351622238755226,
0.05976465716958046,
-0.0014335302403196692,
0.0021883705630898476,
0.01779724843800068,
-0.10479329526424408,
0.04784858599305153,
0.09051335602998734,
0.056971050798892975,
0.03410794958472252,
-0.03706379234790802,
0.025646846741437912,
-0.03250842168927193,
-0.027043849229812622,
0.10626279562711716,
0.24055925011634827,
-0.09522470831871033,
0.09062616527080536,
0.0906543955206871,
-0.06014677509665489,
-0.15988294780254364,
-0.0060090781189501286,
0.09843424707651138,
0.022931357845664024,
0.05797208100557327,
-0.18951213359832764,
0.08234300464391708,
0.0863165333867073,
-0.03028765879571438,
0.05669139698147774,
-0.2813904583454132,
-0.12300176173448563,
0.05006798729300499,
0.05381175875663757,
-0.06252383440732956,
-0.16436919569969177,
-0.07426770776510239,
-0.019252458587288857,
-0.1700078248977661,
0.07267744094133377,
-0.06426341086626053,
0.08539135009050369,
0.004217964597046375,
0.036706604063510895,
0.035115696489810944,
-0.05438711866736412,
0.1784338802099228,
0.04554153233766556,
0.012090690433979034,
-0.06878111511468887,
0.044492825865745544,
0.09224299341440201,
-0.07346618175506592,
0.05479004979133606,
-0.06593587249517441,
0.06383839249610901,
-0.15369120240211487,
-0.021415309980511665,
-0.045703478157520294,
0.03916390612721443,
-0.05312845855951309,
-0.062050752341747284,
-0.03475802391767502,
0.07919621467590332,
0.07795102149248123,
-0.02559078112244606,
0.07260225713253021,
0.03348501771688461,
0.09927527606487274,
0.15293046832084656,
0.08371150493621826,
0.026055559515953064,
-0.10444389283657074,
-0.024326281622052193,
-0.028965258970856667,
0.0460444912314415,
-0.11031707376241684,
0.015841860324144363,
0.11043686419725418,
0.05442935973405838,
0.11886335164308548,
0.0058847637847065926,
-0.08441655337810516,
0.01167082879692316,
0.028733346611261368,
-0.10259620100259781,
-0.18225570023059845,
-0.014947268180549145,
0.029562780633568764,
-0.16643929481506348,
0.022505734115839005,
0.11885426193475723,
-0.028501935303211212,
-0.012299916706979275,
-0.014071695506572723,
0.04977709427475929,
-0.013593319803476334,
0.1753527820110321,
0.02366418018937111,
0.08632995188236237,
-0.05764603987336159,
0.12947386503219604,
0.10371322929859161,
-0.12356740236282349,
0.05912485346198082,
0.05150868743658066,
-0.08986280113458633,
-0.03695245087146759,
0.016013354063034058,
0.03362433612346649,
-0.006086993031203747,
-0.037361860275268555,
-0.030904533341526985,
-0.07489457726478577,
0.04864327609539032,
0.012032432481646538,
0.0259217768907547,
-0.003252998925745487,
0.003690315643325448,
0.024863949045538902,
-0.11132319271564484,
0.10931248962879181,
0.03109731152653694,
0.06065395101904869,
-0.1526108980178833,
0.06099468469619751,
-0.0006825826712884009,
0.05925852805376053,
-0.009731610305607319,
0.007833490148186684,
-0.08720563352108002,
-0.03306270390748978,
-0.13922683894634247,
-0.0008408051799051464,
-0.06160234659910202,
0.019357522949576378,
-0.026816265657544136,
-0.0516078807413578,
-0.013903679326176643,
0.03544553369283676,
-0.053517695516347885,
-0.08664150536060333,
-0.016359616070985794,
0.0721346065402031,
-0.13205447793006897,
-0.012670161202549934,
0.028984323143959045,
-0.11011955142021179,
0.11676062643527985,
0.04013344645500183,
0.03516630083322525,
-0.0051344349049031734,
-0.0220886692404747,
0.023077333346009254,
-0.021334420889616013,
0.04050840437412262,
0.03515726327896118,
-0.10825427621603012,
-0.009324613958597183,
-0.04223107546567917,
-0.006351022981107235,
0.02334299124777317,
0.052021026611328125,
-0.09765823930501938,
-0.005615970119833946,
-0.05428842827677727,
-0.03360293060541153,
-0.05896575748920441,
0.049332428723573685,
0.06503921002149582,
-0.01950305886566639,
0.09753211587667465,
-0.05715312063694,
0.044724829494953156,
-0.206869974732399,
-0.03860560059547424,
0.009084667079150677,
0.008362715132534504,
-0.040661539882421494,
-0.02167813666164875,
0.08595895022153854,
-0.03443288058042526,
0.1300601214170456,
-0.06992143392562866,
0.09389325976371765,
0.032817672938108444,
-0.022682853043079376,
0.005660989787429571,
0.016148120164871216,
0.16359126567840576,
0.0711430236697197,
-0.013277792371809483,
0.05741269513964653,
-0.026963086798787117,
0.029871316626667976,
0.04297836124897003,
0.10135933756828308,
0.13433381915092468,
0.0018298800569027662,
0.05173483118414879,
0.0560644268989563,
-0.1508796066045761,
-0.1598772555589676,
0.09381340444087982,
-0.060739800333976746,
0.1181003749370575,
-0.06995443254709244,
0.08699740469455719,
0.09508321434259415,
-0.18343804776668549,
0.03716093674302101,
-0.03909431770443916,
-0.10045446455478668,
-0.08132226020097733,
-0.11079755425453186,
-0.07405342161655426,
-0.1054549366235733,
0.023612122982740402,
-0.10574420541524887,
0.02514575980603695,
0.06855753064155579,
0.020619073882699013,
0.013577795587480068,
0.14131103456020355,
-0.03330580145120621,
0.006047336384654045,
0.061546940356492996,
0.027665533125400543,
-0.014261267147958279,
-0.010016089305281639,
-0.03843418508768082,
0.05354975536465645,
0.01633467711508274,
0.08920575678348541,
-0.021567413583397865,
-0.0001719896972645074,
0.061365727335214615,
0.013788105919957161,
-0.07436919957399368,
0.007875969633460045,
-0.002195400185883045,
0.012915611267089844,
0.08217152208089828,
0.039606284350156784,
0.002724246820434928,
-0.0490553118288517,
0.24334676563739777,
-0.06694371998310089,
-0.06613591313362122,
-0.13836140930652618,
0.14080895483493805,
0.005636028945446014,
-0.010136641561985016,
0.07545778900384903,
-0.11235678941011429,
-0.0045479293912649155,
0.11967602372169495,
0.1677996963262558,
-0.0620458722114563,
-0.019040124490857124,
0.01915089786052704,
-0.015312578529119492,
-0.022728927433490753,
0.09707842022180557,
0.05676601454615593,
0.06604615598917007,
-0.05481302738189697,
0.0004580427485052496,
0.015454718843102455,
-0.04733658954501152,
-0.06117408722639084,
0.07787527143955231,
0.0005565967294387519,
0.018827304244041443,
-0.028992341831326485,
0.07494892179965973,
-0.013950754888355732,
-0.1630619317293167,
0.03255258873105049,
-0.16023842990398407,
-0.18833684921264648,
-0.02327219769358635,
0.07483941316604614,
-0.0028342518489807844,
0.05074986442923546,
0.005191459320485592,
0.0018325705314055085,
0.14849542081356049,
0.0005959647241979837,
-0.06514395028352737,
-0.0750766173005104,
0.07274327427148819,
-0.012920071370899677,
0.2192956954240799,
-0.009951546788215637,
0.06525413691997528,
0.1222911849617958,
-0.005192799028009176,
-0.1672285795211792,
0.008108707144856453,
0.10543886572122574,
-0.07435065507888794,
0.040561284869909286,
0.1610666960477829,
-0.037988848984241486,
0.13046212494373322,
0.05631015822291374,
-0.07801326364278793,
-0.022330282256007195,
0.010959504172205925,
0.0159763190895319,
-0.08640633523464203,
0.03294520452618599,
-0.051852915436029434,
0.19325287640094757,
0.1522459089756012,
-0.05910202115774155,
-0.01797507144510746,
-0.04281330108642578,
0.036006342619657516,
0.020743032917380333,
0.11557304859161377,
-0.01710839569568634,
-0.19716838002204895,
0.03730551153421402,
-0.07433756440877914,
0.07818685472011566,
-0.22402551770210266,
-0.09295924007892609,
0.08146790415048599,
-0.019612250849604607,
-0.05373194068670273,
0.1343497335910797,
0.08470180630683899,
-0.009086578153073788,
-0.05344991013407707,
-0.14457635581493378,
-0.03592962399125099,
0.10655525326728821,
-0.15233998000621796,
-0.05442097783088684
] |
null | null | transformers |
# Model Card for EncT5 (Fine-tuned on GLUE SST2)
This is a fine-tuned model of [EncT5 (the T5-base variant)](https://huggingface.co/hackyon/enct5-base) on the
[GLUE SST2 dataset](https://huggingface.co/datasets/glue/viewer/sst2) for positive/negative sentiment analysis.
For more info on GLUE SST2, visit the [official site](https://gluebenchmark.com/).
See the [base EncT5 model card](https://huggingface.co/hackyon/enct5-base) for more details.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
model = AutoModelForSequenceClassification.from_pretrained("hackyon/enct5-base-glue-sst2", trust_remote_code=True)
```
See the [github repro](https://github.com/hackyon/EncT5) for a more comprehensive guide.
| {"language": ["en", "fr", "ro", "de"], "license": "apache-2.0", "library_name": "transformers", "datasets": ["c4", "glue"]} | text-classification | hackyon/enct5-base-glue-sst2 | [
"transformers",
"safetensors",
"enct5",
"text-classification",
"custom_code",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | 2024-02-06T22:23:31+00:00 | [] | [
"en",
"fr",
"ro",
"de"
] | TAGS
#transformers #safetensors #enct5 #text-classification #custom_code #en #fr #ro #de #dataset-c4 #dataset-glue #license-apache-2.0 #autotrain_compatible #region-us
|
# Model Card for EncT5 (Fine-tuned on GLUE SST2)
This is a fine-tuned model of EncT5 (the T5-base variant) on the
GLUE SST2 dataset for positive/negative sentiment analysis.
For more info on GLUE SST2, visit the official site.
See the base EncT5 model card for more details.
## How to Get Started with the Model
Use the code below to get started with the model.
See the github repro for a more comprehensive guide.
| [
"# Model Card for EncT5 (Fine-tuned on GLUE SST2)\n\nThis is a fine-tuned model of EncT5 (the T5-base variant) on the \nGLUE SST2 dataset for positive/negative sentiment analysis.\nFor more info on GLUE SST2, visit the official site.\n\nSee the base EncT5 model card for more details.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.\n\n\n\nSee the github repro for a more comprehensive guide."
] | [
"TAGS\n#transformers #safetensors #enct5 #text-classification #custom_code #en #fr #ro #de #dataset-c4 #dataset-glue #license-apache-2.0 #autotrain_compatible #region-us \n",
"# Model Card for EncT5 (Fine-tuned on GLUE SST2)\n\nThis is a fine-tuned model of EncT5 (the T5-base variant) on the \nGLUE SST2 dataset for positive/negative sentiment analysis.\nFor more info on GLUE SST2, visit the official site.\n\nSee the base EncT5 model card for more details.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.\n\n\n\nSee the github repro for a more comprehensive guide."
] | [
64,
85,
31
] | [
"passage: TAGS\n#transformers #safetensors #enct5 #text-classification #custom_code #en #fr #ro #de #dataset-c4 #dataset-glue #license-apache-2.0 #autotrain_compatible #region-us \n# Model Card for EncT5 (Fine-tuned on GLUE SST2)\n\nThis is a fine-tuned model of EncT5 (the T5-base variant) on the \nGLUE SST2 dataset for positive/negative sentiment analysis.\nFor more info on GLUE SST2, visit the official site.\n\nSee the base EncT5 model card for more details.## How to Get Started with the Model\n\nUse the code below to get started with the model.\n\n\n\nSee the github repro for a more comprehensive guide."
] | [
-0.09973672032356262,
0.10739164799451828,
-0.0012008899357169867,
0.09026548266410828,
0.08863945305347443,
0.0562443844974041,
0.02593459002673626,
0.04376911371946335,
0.07088993489742279,
-0.013290811330080032,
0.1725960075855255,
0.05491701513528824,
0.08856357634067535,
0.3486301600933075,
-0.021745553240180016,
-0.03748757764697075,
0.048261091113090515,
-0.002877523424103856,
-0.00004292581434128806,
0.09124691784381866,
0.12618397176265717,
-0.03393560275435448,
0.12844277918338776,
-0.02028384804725647,
-0.12446234375238419,
0.0603041872382164,
-0.005241804756224155,
0.013218086212873459,
0.07501842826604843,
-0.008485673926770687,
0.04394550994038582,
0.058543190360069275,
0.15387243032455444,
-0.10862608999013901,
0.033415596932172775,
0.0291764959692955,
-0.06449238210916519,
0.004541559610515833,
-0.0006529888487420976,
-0.037536799907684326,
0.0453304797410965,
-0.06505681574344635,
0.06410395354032516,
0.017073389142751694,
-0.06585731357336044,
-0.09060053527355194,
-0.0646837055683136,
0.07217325270175934,
0.1329549103975296,
0.019299454987049103,
0.002055091317743063,
0.04103381559252739,
-0.06692776829004288,
0.03435137867927551,
0.12695474922657013,
-0.17004695534706116,
0.012975760735571384,
0.1149875670671463,
-0.012602468021214008,
0.04503795877099037,
-0.017732786014676094,
0.01824178546667099,
0.13964742422103882,
0.03974320366978645,
0.16471253335475922,
-0.01512314472347498,
0.004833175800740719,
0.04504451900720596,
-0.12465915828943253,
-0.07047834992408752,
0.21529752016067505,
0.03327196091413498,
-0.07344762235879898,
-0.028692206367850304,
-0.05108717828989029,
-0.04252641648054123,
0.0726083517074585,
-0.09281352162361145,
0.06221241131424904,
0.030364179983735085,
0.06063731759786606,
-0.21454648673534393,
-0.1213841587305069,
-0.10571278631687164,
-0.04937416687607765,
0.13009236752986908,
0.037954118102788925,
0.0550716333091259,
0.013565665110945702,
0.12770092487335205,
-0.12054704874753952,
-0.04136817157268524,
-0.13919280469417572,
-0.09863211959600449,
-0.02946864254772663,
0.007768553681671619,
0.00235444656573236,
0.01189245656132698,
-0.005846777465194464,
0.18976470828056335,
-0.05749296396970749,
0.025756118819117546,
0.12978331744670868,
0.007958291098475456,
0.07826253026723862,
0.04625946283340454,
-0.013398237526416779,
-0.03348282352089882,
0.10839510709047318,
-0.04019802436232567,
0.04517675191164017,
-0.05384726822376251,
-0.1578153371810913,
-0.028570566326379776,
-0.003054756671190262,
0.08545871078968048,
-0.06745348125696182,
0.03617186099290848,
-0.04940735921263695,
-0.007235532160848379,
0.1249510794878006,
-0.08884935081005096,
0.032795269042253494,
-0.007882497273385525,
-0.055761780589818954,
-0.1059069037437439,
-0.005788836628198624,
-0.021611571311950684,
-0.06106982380151749,
-0.0036002129781991243,
-0.0642911046743393,
-0.10499812662601471,
-0.054788604378700256,
-0.07575532048940659,
0.0355587899684906,
-0.17403481900691986,
0.03515136241912842,
-0.16768263280391693,
-0.3123367428779602,
0.018332751467823982,
0.0291142575442791,
0.015507408417761326,
0.013677210547029972,
-0.10769089311361313,
-0.021497610956430435,
-0.010680212639272213,
0.004820651840418577,
-0.08002069592475891,
-0.03657631576061249,
-0.03424542769789696,
0.005313415080308914,
0.06561430543661118,
-0.17721250653266907,
-0.04962005093693733,
-0.1648387759923935,
0.021777300164103508,
-0.0318482369184494,
-0.011754985898733139,
-0.012200606986880302,
0.03652334585785866,
-0.07698744535446167,
-0.06304161250591278,
-0.008046353235840797,
0.027925048023462296,
0.03593488410115242,
0.12253623455762863,
-0.0766991600394249,
-0.04700180143117905,
0.13387492299079895,
-0.14939896762371063,
-0.1280774027109146,
0.07429680973291397,
0.0002558690612204373,
0.06930657476186752,
0.06291300058364868,
0.1539522409439087,
0.003577987663447857,
-0.08006209135055542,
-0.02230771631002426,
0.07357810437679291,
-0.1393117755651474,
-0.054940126836299896,
0.04775552824139595,
0.0544598288834095,
-0.20968317985534668,
0.022692125290632248,
-0.20111273229122162,
0.032777514308691025,
0.004483601078391075,
-0.028432857245206833,
-0.06034519150853157,
-0.12483830004930496,
0.05855441838502884,
-0.05923190712928772,
-0.05302819609642029,
-0.06025168299674988,
-0.07078161835670471,
-0.05615019053220749,
0.10730913281440735,
-0.06619125604629517,
0.0011942463461309671,
-0.12726405262947083,
0.15141642093658447,
-0.07654640823602676,
0.02183375507593155,
0.002683320315554738,
-0.09127144515514374,
0.0015866337344050407,
-0.09049181640148163,
0.0485193133354187,
-0.07309209555387497,
0.05326284095644951,
0.040209636092185974,
-0.05984698235988617,
-0.07069580256938934,
-0.007289387751370668,
0.017680048942565918,
0.059513598680496216,
-0.1613074094057083,
-0.02543623186647892,
-0.05349412187933922,
0.14127503335475922,
-0.12675130367279053,
0.07208990305662155,
0.03974088653922081,
0.062362559139728546,
-0.018107248470187187,
-0.02111043594777584,
0.04656505212187767,
-0.04490787908434868,
-0.05016951635479927,
-0.09319981932640076,
-0.034456316381692886,
0.03924660384654999,
-0.10302771627902985,
0.03827524930238724,
-0.0911657065153122,
0.04889426752924919,
0.08747471868991852,
0.050110284239053726,
-0.09500398486852646,
0.08834637701511383,
-0.0038500383961945772,
0.017033981159329414,
-0.06567709147930145,
-0.04228068143129349,
0.016133829951286316,
-0.08997061103582382,
0.08797761797904968,
-0.10361187160015106,
-0.052041616290807724,
0.03629587963223457,
-0.06544043868780136,
-0.006546373479068279,
0.03273781016469002,
0.17514176666736603,
-0.22308015823364258,
0.07426513731479645,
0.11878899484872818,
-0.0657561719417572,
0.0625201016664505,
0.05170905217528343,
-0.047461725771427155,
-0.018969960510730743,
-0.005979851353913546,
-0.05069959908723831,
0.19040565192699432,
-0.035374391824007034,
-0.033466629683971405,
-0.0024351689498871565,
-0.03251388669013977,
0.03598830848932266,
-0.11671917885541916,
-0.025034362450242043,
0.037381209433078766,
-0.05606028065085411,
-0.0946555957198143,
0.0011707976227626204,
-0.09648836404085159,
0.05533570051193237,
0.024812866002321243,
-0.05219655483961105,
0.07096171379089355,
0.040781259536743164,
-0.13009236752986908,
0.18700522184371948,
-0.10815542936325073,
-0.24175992608070374,
-0.06717631965875626,
0.02077343873679638,
0.034138716757297516,
0.05775587633252144,
0.07327807694673538,
-0.14744162559509277,
-0.10209140926599503,
-0.09299996495246887,
-0.010727474465966225,
-0.05177346244454384,
0.03984617441892624,
0.047841627150774,
-0.019621992483735085,
-0.013981799595057964,
-0.11314446479082108,
0.00048759582568891346,
0.022568583488464355,
-0.07892712950706482,
0.04194704070687294,
-0.07968368381261826,
0.14840680360794067,
0.23243960738182068,
-0.0656224712729454,
0.06701990962028503,
-0.04435879364609718,
0.17656736075878143,
-0.05779566243290901,
0.08684647083282471,
0.04966159909963608,
-0.02645133249461651,
0.026142917573451996,
0.1007005125284195,
0.0075080618262290955,
-0.07071486115455627,
0.053510505706071854,
-0.04339896887540817,
-0.10382009297609329,
-0.24230243265628815,
-0.020827557891607285,
-0.02087901346385479,
0.06205771118402481,
0.04750712960958481,
0.08688763529062271,
0.1496419608592987,
0.10726706683635712,
0.01307748630642891,
-0.04170876741409302,
0.007197673432528973,
0.132644921541214,
0.022676965221762657,
0.030163872987031937,
0.009801087900996208,
-0.1017678827047348,
0.03712422773241997,
0.15432627499103546,
0.053921788930892944,
0.11202548444271088,
-0.024617336690425873,
0.07485447824001312,
0.042227260768413544,
0.09557907283306122,
0.015453778207302094,
0.04153595492243767,
-0.036393746733665466,
0.0361098013818264,
-0.027927692979574203,
-0.009245014749467373,
0.020022548735141754,
0.11132758855819702,
-0.09576974809169769,
-0.03170405328273773,
-0.06505467742681503,
0.028989430516958237,
0.06097879260778427,
-0.046120405197143555,
0.09536676108837128,
-0.26312583684921265,
-0.06349800527095795,
0.05352415144443512,
0.04752082750201225,
-0.040984392166137695,
0.03512290120124817,
0.057185493409633636,
-0.042260438203811646,
0.09293825179338455,
0.08461084961891174,
0.05945504084229469,
0.003924846183508635,
-0.031933438032865524,
0.072109155356884,
0.1546630710363388,
-0.028479687869548798,
0.0620233528316021,
-0.19230279326438904,
0.0608975812792778,
-0.0028382735326886177,
0.08096954971551895,
-0.03127055987715721,
0.0012581247137859464,
0.037177883088588715,
0.13394129276275635,
0.1932016909122467,
0.03486177697777748,
-0.1995057761669159,
-0.11766837537288666,
0.01254246849566698,
0.06941259652376175,
0.030634000897407532,
-0.044933293014764786,
0.013475397601723671,
-0.0190140213817358,
-0.026918405666947365,
0.02453530766069889,
-0.12027985602617264,
-0.1528676450252533,
-0.09244532883167267,
0.01112340483814478,
0.05359101668000221,
-0.05246596410870552,
-0.07033447921276093,
-0.037548407912254333,
0.009437807835638523,
0.18479962646961212,
-0.10885106772184372,
-0.13064740598201752,
-0.09234871715307236,
0.0069837430492043495,
-0.011242195963859558,
-0.049156494438648224,
0.10022096335887909,
0.03953094407916069,
0.11727813631296158,
0.012903370894491673,
-0.13194063305854797,
0.053512826561927795,
-0.11381866037845612,
-0.1287059485912323,
-0.004803130403161049,
0.06216204911470413,
0.06731849908828735,
-0.01369666401296854,
0.08298442512750626,
-0.030787721276283264,
-0.02582218311727047,
-0.13350243866443634,
0.15201537311077118,
0.08718962967395782,
-0.05049287527799606,
0.08096334338188171,
0.05911041051149368,
-0.1269821971654892,
0.025788407772779465,
-0.03654531389474869,
0.07151218503713608,
0.16030524671077728,
-0.0698167160153389,
0.11125397682189941,
0.16800500452518463,
-0.09017249196767807,
-0.21437135338783264,
0.009382599964737892,
-0.07413670420646667,
0.033480431884527206,
-0.035259854048490524,
-0.2039593905210495,
0.049719903618097305,
0.01692524552345276,
-0.0573575459420681,
-0.001329130376689136,
-0.20841901004314423,
-0.07204058021306992,
0.12502408027648926,
0.03433781489729881,
0.1747257113456726,
-0.04687337204813957,
-0.05576338991522789,
-0.011488646268844604,
-0.18440574407577515,
0.13375155627727509,
-0.18386106193065643,
0.01678028516471386,
-0.0020752050913870335,
0.05138684809207916,
-0.0007152198813855648,
0.0020347111858427525,
0.10063114762306213,
-0.04498093202710152,
0.030395198613405228,
-0.08026289939880371,
0.02342108078300953,
0.11355150490999222,
-0.05745995417237282,
0.1557401865720749,
-0.08009940385818481,
0.0802515521645546,
-0.025344867259263992,
-0.08663763850927353,
-0.01130651868879795,
0.09267587214708328,
0.0019278497202321887,
-0.12264259904623032,
-0.09410170465707779,
-0.002551822690293193,
0.06393305957317352,
-0.04277312010526657,
-0.06945201009511948,
0.011432889848947525,
-0.006888104602694511,
0.0022910204716026783,
0.14903730154037476,
-0.0488215796649456,
0.06568053364753723,
0.047358378767967224,
-0.11074574291706085,
0.050612810999155045,
-0.20843221247196198,
0.014701144769787788,
0.055213019251823425,
0.012366590090095997,
0.07137215882539749,
0.09059430658817291,
-0.03787149861454964,
0.01731065846979618,
0.11509000509977341,
-0.13152875006198883,
-0.09303393214941025,
-0.04377347230911255,
-0.06463025510311127,
0.006078963167965412,
0.1640520840883255,
0.09119517356157303,
-0.07405270636081696,
-0.0381302684545517,
-0.012944580987095833,
0.07598759233951569,
-0.06189616024494171,
0.032711952924728394,
0.17672675848007202,
-0.008289547637104988,
-0.09993182122707367,
0.07473158091306686,
0.03409142047166824,
-0.017096342518925667,
0.09933575987815857,
0.05613481253385544,
-0.13152655959129333,
-0.049878641963005066,
0.00354370498098433,
0.12391405552625656,
-0.15148720145225525,
-0.16127033531665802,
-0.016072005033493042,
-0.08285542577505112,
0.03416445851325989,
0.059630464762449265,
0.04310902953147888,
0.061793889850378036,
0.0460999459028244,
0.10133904963731766,
-0.07239852845668793,
0.04145137220621109,
0.06775134801864624,
0.08596400171518326,
-0.1837977021932602,
-0.049963418394327164,
-0.02918044663965702,
0.08600971102714539,
-0.07390659302473068,
0.02212563157081604,
-0.0793234258890152,
0.0008012312464416027,
-0.024790292605757713,
0.06455863267183304,
-0.07915294170379639,
0.01446113083511591,
0.056284770369529724,
-0.0690651684999466,
-0.039051078259944916,
0.0996808260679245,
-0.033833809196949005,
0.037559933960437775,
0.04285026341676712,
-0.006694253534078598,
-0.09030096977949142,
0.0026953278575092554,
0.02510477975010872,
-0.03816312924027443,
0.12725120782852173,
-0.010483144782483578,
-0.03494660556316376,
0.10581328719854355,
-0.23722709715366364,
0.006469378713518381,
0.06740164756774902,
0.028371213003993034,
-0.03745163232088089,
-0.003444986417889595,
0.000049322563427267596,
0.041601624339818954,
-0.11736498773097992,
0.0004796106950379908,
0.044171202927827835,
-0.006512211635708809,
0.05493645370006561,
0.007599706295877695,
-0.0313589833676815,
-0.02607390098273754,
0.060258157551288605,
0.06947164982557297,
0.02920290268957615,
0.04748240113258362,
-0.0348246805369854,
-0.037552427500486374,
-0.04904192313551903,
0.028581244871020317,
0.05232953652739525,
-0.01851649209856987,
-0.20711706578731537,
-0.04728098213672638,
0.03256397321820259,
-0.019518256187438965,
0.2213972806930542,
-0.06369322538375854,
-0.07333599030971527,
-0.0009687048150226474,
0.08715113252401352,
0.12123322486877441,
0.014847986400127411,
0.1656969040632248,
-0.06355886161327362,
-0.06949584931135178,
-0.06574439257383347,
-0.0234232135117054,
0.06696442514657974,
-0.1413075178861618,
0.14728158712387085,
-0.07997102290391922,
0.13817888498306274,
0.08380875736474991,
-0.039695534855127335,
-0.04605698585510254,
-0.09941475093364716,
0.055877912789583206,
-0.036690715700387955,
0.024182463064789772,
0.003968211356550455,
0.14703163504600525,
0.14161629974842072,
-0.008284412324428558,
-0.017642220482230186,
0.03900422900915146,
-0.06106238067150116,
-0.16068582236766815,
-0.16827021539211273,
-0.08338341116905212,
-0.15404027700424194,
0.012744423933327198,
-0.0901411920785904,
-0.0026914121117442846,
-0.03956957533955574,
0.04602963104844093,
-0.017589112743735313,
0.11784184724092484,
0.10046223551034927,
0.008394254371523857,
-0.002823827788233757,
-0.014139732345938683,
-0.027874834835529327,
0.01781598851084709,
-0.027657335624098778,
0.03436410799622536,
0.04970976337790489,
0.04904431104660034,
-0.027649981901049614,
0.017403729259967804,
0.03966128081083298,
0.001686492352746427,
-0.0021746400743722916,
-0.04742373898625374,
0.06932307779788971,
-0.07553712278604507,
0.0057497648522257805,
0.021788453683257103,
-0.04272362217307091,
0.07154537737369537,
0.20404914021492004,
-0.050704631954431534,
-0.09127382934093475,
-0.08875860273838043,
0.06355328112840652,
0.026726365089416504,
0.04333516210317612,
0.06641706824302673,
-0.14714473485946655,
0.0068709696643054485,
0.1122441291809082,
0.19660960137844086,
0.046888019889593124,
0.019282657653093338,
-0.054069843143224716,
0.02329249493777752,
-0.01485561951994896,
0.0780339390039444,
-0.0004714688693638891,
0.19978879392147064,
-0.036482322961091995,
0.015031698159873486,
0.007611467503011227,
0.044793762266635895,
0.00597319845110178,
0.024407431483268738,
-0.016176430508494377,
-0.04589032381772995,
-0.0888604149222374,
0.07241605222225189,
-0.09038504213094711,
-0.0650835782289505,
-0.002729100175201893,
0.028284689411520958,
-0.015949463471770287,
0.0020688227377831936,
0.1202378123998642,
0.03113359585404396,
0.0002437997900415212,
-0.046861447393894196,
-0.011685811914503574,
0.101124607026577,
0.03939362242817879,
-0.20800438523292542,
-0.0546976663172245,
0.08400774002075195,
-0.09202823042869568,
0.285053551197052,
-0.008024686947464943,
0.1328243613243103,
0.06447235494852066,
-0.04680727794766426,
-0.14583760499954224,
0.04283662140369415,
0.01978890784084797,
0.05225624889135361,
0.03952189162373543,
0.0695459172129631,
-0.025296809151768684,
0.006700413767248392,
-0.009380625560879707,
-0.0924520343542099,
-0.02318837121129036,
0.1322818100452423,
-0.03257410600781441,
-0.08441310375928879,
0.051360804587602615,
-0.10840059071779251,
0.09889524430036545,
-0.002297700848430395,
-0.034874677658081055,
0.018486658111214638,
-0.04453045502305031,
0.08094482123851776,
0.049803655594587326,
0.0540999174118042,
0.12121826410293579,
-0.07047642022371292,
0.029418395832180977,
0.05149218440055847,
0.09341976791620255,
-0.11521503329277039,
-0.02351401560008526,
-0.13167259097099304,
0.05141357332468033,
-0.07307511568069458,
0.10101503133773804,
0.20530906319618225,
0.06753422319889069,
-0.02730904333293438,
0.0999462753534317,
-0.017940692603588104,
0.04636235535144806,
-0.049903448671102524,
-0.10197337716817856
] |
null | null | transformers | Exllamav2 6.0bpw h6 quant for [BigWeave-v16-103b](https://huggingface.co/llmixer/BigWeave-v16-103b).
Default calibration dataset. | {"language": ["en"], "license": "llama2", "tags": ["6.0bpw", "h6", "exl2"], "pipeline_tag": "conversational"} | text-generation | llmixer/BigWeave-v16-103b-6.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"6.0bpw",
"h6",
"exl2",
"conversational",
"en",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:30:24+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #6.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| Exllamav2 6.0bpw h6 quant for BigWeave-v16-103b.
Default calibration dataset. | [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #6.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
74
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #6.0bpw #h6 #exl2 #conversational #en #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.011848550289869308,
0.02962702326476574,
-0.005725844297558069,
0.02206643857061863,
0.0899951159954071,
-0.029855551198124886,
0.18010728061199188,
0.1264295130968094,
0.008079173974692822,
-0.01295966375619173,
0.14408127963542938,
0.2014361321926117,
-0.014986290596425533,
0.027864474803209305,
-0.12990285456180573,
-0.15289010107517242,
0.06685394793748856,
0.002372076502069831,
0.039863258600234985,
0.07154489308595657,
0.10273408889770508,
-0.07392045110464096,
0.09364102780818939,
-0.058184463530778885,
-0.09551545232534409,
0.050469234585762024,
0.05195239186286926,
-0.10264913737773895,
0.1040232852101326,
0.0844755619764328,
0.07455309480428696,
0.08821407705545425,
-0.011199403554201126,
-0.2307361513376236,
0.0230849776417017,
-0.015946637839078903,
-0.08248140662908554,
0.013875861652195454,
0.03498527407646179,
-0.0752188041806221,
0.05758398771286011,
0.03165826201438904,
-0.0208092350512743,
0.08372973650693893,
-0.11807972192764282,
-0.014961004257202148,
-0.06009826809167862,
-0.0022672093473374844,
0.1147293895483017,
0.1082201823592186,
0.00408991938456893,
0.11962541937828064,
-0.046289701014757156,
0.10746076703071594,
0.19391970336437225,
-0.33753877878189087,
0.024101603776216507,
0.09479346871376038,
0.08551713824272156,
0.05550595000386238,
-0.06116504594683647,
0.08595053851604462,
0.08693069219589233,
-0.026300692930817604,
0.015359885059297085,
-0.06636310368776321,
-0.049531277269124985,
0.05225878581404686,
-0.06820958852767944,
-0.006975160911679268,
0.24011532962322235,
-0.013451986946165562,
0.02897772379219532,
-0.05425018444657326,
-0.076178640127182,
-0.04648154228925705,
-0.0019246110459789634,
0.025155510753393173,
0.007886608131229877,
0.056349266320466995,
0.052932579070329666,
-0.02478058822453022,
-0.13697341084480286,
-0.02892729826271534,
-0.14803065359592438,
0.17897148430347443,
0.003148626536130905,
0.03580796718597412,
-0.1633644998073578,
0.05698009580373764,
0.08518192172050476,
-0.12278104573488235,
-0.023408042266964912,
-0.04480769857764244,
0.10224953293800354,
0.03443647548556328,
-0.023035479709506035,
-0.05985935404896736,
0.14260002970695496,
0.08170037716627121,
-0.03291114419698715,
0.041104767471551895,
-0.0926118865609169,
0.09106329083442688,
-0.024364935234189034,
0.014813322573900223,
0.05960940569639206,
-0.02086198329925537,
0.0820259302854538,
-0.04949747025966644,
0.0885622650384903,
-0.03457915410399437,
-0.18122151494026184,
0.025293994694948196,
0.005941355135291815,
0.13605959713459015,
0.0005537517718039453,
0.07925958931446075,
-0.03679888695478439,
0.05588419735431671,
0.02326674573123455,
-0.1086515560746193,
-0.0066985394805669785,
0.010774757713079453,
0.036829348653554916,
0.014186281710863113,
0.026105841621756554,
0.027295803651213646,
-0.07018709182739258,
0.04969559982419014,
-0.06513868272304535,
-0.023963697254657745,
-0.04419532045722008,
-0.05058291181921959,
0.06238827854394913,
-0.029411248862743378,
0.03803229704499245,
-0.1717652976512909,
-0.1907181590795517,
0.010468215681612492,
-0.007829591631889343,
-0.030192099511623383,
-0.01142892986536026,
-0.07800094783306122,
-0.056232016533613205,
0.03702791407704353,
-0.08460986614227295,
-0.05571532994508743,
-0.08989298343658447,
0.0814337208867073,
-0.010485467500984669,
0.06593449413776398,
-0.1732734888792038,
0.03111887536942959,
-0.08098617941141129,
0.020830299705266953,
-0.00007149768498493358,
0.017420779913663864,
-0.06349831074476242,
0.1463266760110855,
-0.013565937988460064,
0.016020258888602257,
-0.04083281382918358,
0.07553645968437195,
-0.029223237186670303,
0.19753237068653107,
-0.1370186060667038,
-0.04631956294178963,
0.22348041832447052,
-0.1256917268037796,
-0.21161647140979767,
0.07948404550552368,
-0.009401996619999409,
0.0426270067691803,
0.09061582386493683,
0.2014675885438919,
-0.01871836557984352,
-0.1056462898850441,
0.014284820295870304,
0.10216224938631058,
-0.0752667561173439,
-0.08250147104263306,
0.018893081694841385,
-0.010999810881912708,
-0.056246593594551086,
0.026243720203638077,
0.06286677718162537,
0.02652064710855484,
-0.012533862143754959,
-0.04903814196586609,
-0.050400782376527786,
-0.037275705486536026,
-0.006645035929977894,
-0.04302283376455307,
0.03638291358947754,
-0.10270727425813675,
-0.0252088513225317,
0.05379563570022583,
0.024624455720186234,
-0.018494542688131332,
0.029552040621638298,
-0.0982278510928154,
0.09057492762804031,
0.00496753491461277,
0.02938941866159439,
-0.0813715010881424,
-0.08483696728944778,
-0.045034728944301605,
0.08281609416007996,
0.01974746212363243,
0.07992140203714371,
0.050444021821022034,
0.003785776672884822,
-0.021648267284035683,
-0.0131779033690691,
0.1601448953151703,
0.039880771189928055,
-0.056775715202093124,
-0.1195027157664299,
0.08854520320892334,
-0.05377335473895073,
0.016341008245944977,
-0.11548734456300735,
0.021228233352303505,
0.10169151425361633,
0.09165370464324951,
0.0054911114275455475,
0.06495355069637299,
-0.018307236954569817,
-0.009051932953298092,
-0.08687154203653336,
0.004684176761657,
0.08096877485513687,
-0.00026190662174485624,
-0.11360760033130646,
0.19122916460037231,
-0.22720730304718018,
0.27751070261001587,
0.2016594111919403,
-0.1593397855758667,
0.033319614827632904,
-0.06393495947122574,
-0.008912382647395134,
0.004227091558277607,
0.012479722499847412,
-0.057557638734579086,
0.05814826115965843,
-0.02158196084201336,
0.17380459606647491,
-0.08838705718517303,
-0.04397450387477875,
-0.006266836076974869,
-0.06890101730823517,
-0.04635355621576309,
0.08077522367238998,
0.08169513195753098,
-0.17181427776813507,
0.16607311367988586,
0.25084877014160156,
0.0292903333902359,
0.1899574249982834,
-0.023901181295514107,
0.012454644776880741,
0.030799198895692825,
0.05226542428135872,
-0.012867682613432407,
0.005581637378782034,
-0.0986490473151207,
0.003940673545002937,
0.04126003757119179,
0.029817165806889534,
0.07791456580162048,
-0.15674544870853424,
-0.06258630752563477,
-0.01773960515856743,
-0.0513489805161953,
0.014486839063465595,
0.06844037771224976,
-0.009884587489068508,
0.13035745918750763,
-0.03791828453540802,
-0.07766610383987427,
0.091721311211586,
-0.02637823484838009,
-0.10512661188840866,
0.18515606224536896,
-0.13063885271549225,
-0.2543162703514099,
-0.15540625154972076,
-0.14783556759357452,
-0.06152856722474098,
0.038397978991270065,
0.1418796181678772,
-0.07489816099405289,
-0.07022508233785629,
-0.0749058872461319,
0.015531576238572598,
-0.053273677825927734,
-0.004030266776680946,
-0.011046458035707474,
0.06632448732852936,
-0.055497415363788605,
-0.1401313841342926,
-0.06396984308958054,
0.0054974486120045185,
-0.05793962627649307,
0.0874801054596901,
-0.06210862845182419,
0.08085744827985764,
0.13857190310955048,
0.022581426426768303,
0.020732641220092773,
-0.047884829342365265,
0.11353112757205963,
-0.05206795781850815,
-0.02754228562116623,
0.1772315502166748,
-0.06107732653617859,
0.05711186304688454,
0.1528456211090088,
0.020518489181995392,
-0.1340578943490982,
0.0364835187792778,
-0.024604979902505875,
-0.07347291707992554,
-0.24411587417125702,
-0.10105754435062408,
-0.07584904134273529,
0.10502304136753082,
-0.002962038852274418,
0.0750211700797081,
0.10267766565084457,
0.045390136539936066,
-0.017644325271248817,
-0.03128739073872566,
0.053684432059526443,
0.0968572273850441,
0.23787789046764374,
-0.04389353469014168,
0.12212804704904556,
-0.09984364360570908,
-0.09994077682495117,
0.06729990988969803,
0.07087752968072891,
0.06965497136116028,
0.10907846689224243,
0.06346210092306137,
0.06065300107002258,
0.04455947130918503,
0.09872659295797348,
0.10436495393514633,
0.035438232123851776,
-0.04815791919827461,
-0.020624060183763504,
-0.06263413280248642,
-0.015335463918745518,
0.07452753186225891,
-0.0777372494339943,
-0.08377374708652496,
-0.04292534664273262,
-0.03266320377588272,
0.07971704751253128,
0.07500924915075302,
0.0631319060921669,
-0.20222072303295135,
0.03110697865486145,
0.13484379649162292,
-0.017427366226911545,
-0.07647918164730072,
0.12786559760570526,
0.03309718146920204,
-0.03359244018793106,
0.10951324552297592,
-0.0018176449229940772,
0.090896837413311,
-0.027172492817044258,
0.0761919617652893,
-0.10686998069286346,
-0.07284167408943176,
-0.005603414960205555,
0.11301662027835846,
-0.3130953013896942,
0.22018367052078247,
0.02717292681336403,
-0.010795391164720058,
-0.07065155357122421,
-0.01284791249781847,
0.0014506971929222345,
0.1108090803027153,
0.16424332559108734,
-0.01996625028550625,
-0.11594845354557037,
-0.012889591977000237,
-0.022219551727175713,
0.04524765908718109,
0.11818904429674149,
0.02017223834991455,
0.02498805522918701,
-0.05276084691286087,
-0.01206181850284338,
0.013353627175092697,
-0.03493000194430351,
-0.01095697283744812,
-0.15088242292404175,
0.04418520629405975,
0.11013902723789215,
0.07711341977119446,
-0.03398584574460983,
0.001250821864232421,
-0.12282838672399521,
0.18648585677146912,
-0.16439808905124664,
-0.05865967646241188,
-0.09643249958753586,
-0.11241123080253601,
-0.01130988635122776,
-0.03481115400791168,
0.0324011966586113,
-0.02719680406153202,
0.03895329684019089,
-0.07972115278244019,
-0.1737813949584961,
0.12684212625026703,
-0.09612250328063965,
-0.061640407890081406,
-0.03569447249174118,
0.1905517876148224,
-0.09809403866529465,
-0.01799689419567585,
0.037167031317949295,
0.003982815425843,
-0.0542159341275692,
-0.11440543830394745,
0.02855151705443859,
0.04109293222427368,
0.033479753881692886,
0.0016771432710811496,
-0.11700403690338135,
-0.06692426651716232,
-0.004046223126351833,
-0.08328445255756378,
0.24640822410583496,
0.29283392429351807,
-0.04596100375056267,
0.1588197648525238,
0.13218165934085846,
-0.11227844655513763,
-0.3360916078090668,
-0.11419223248958588,
-0.1741398572921753,
-0.0473504364490509,
-0.002386464737355709,
-0.058264706283807755,
0.07159250974655151,
0.03051902912557125,
-0.048579633235931396,
0.14763087034225464,
-0.20566119253635406,
-0.11314748972654343,
0.1453769952058792,
0.03906257823109627,
0.36354249715805054,
-0.182374507188797,
-0.10689529776573181,
-0.12887349724769592,
-0.16553707420825958,
0.13653558492660522,
-0.1316424459218979,
0.094969742000103,
-0.007315364200621843,
0.055984001606702805,
0.026648670434951782,
-0.041909828782081604,
0.09792201220989227,
-0.031702201813459396,
0.07547570765018463,
-0.13294239342212677,
-0.042379867285490036,
0.032361630350351334,
-0.027424655854701996,
0.06689286231994629,
-0.19284602999687195,
0.022383198142051697,
-0.06376155465841293,
-0.030110254883766174,
-0.029095415025949478,
0.06940870732069016,
-0.008284754119813442,
-0.05276322364807129,
-0.03524418920278549,
-0.07097437232732773,
0.036924704909324646,
-0.008823559619486332,
0.258166640996933,
-0.08200068771839142,
0.1435610055923462,
0.22969910502433777,
0.16402040421962738,
-0.13909795880317688,
0.07751703262329102,
-0.03656279295682907,
-0.0798199400305748,
0.05720395967364311,
-0.15529334545135498,
0.0649019405245781,
0.09394524991512299,
-0.020225821062922478,
0.09162230044603348,
0.09798222035169601,
0.00979637447744608,
-0.005413372535258532,
0.1492045670747757,
-0.20514246821403503,
-0.1003606840968132,
-0.045768361538648605,
0.08841144293546677,
0.07456500083208084,
0.10927282273769379,
0.19001200795173645,
-0.02666502818465233,
0.024934252724051476,
-0.0014060529647395015,
0.057744503021240234,
-0.05252347141504288,
0.04748021438717842,
0.020309077575802803,
0.03647780790925026,
-0.1200990304350853,
0.10943876206874847,
-0.032060734927654266,
-0.1143689900636673,
0.035953227430582047,
0.11986535787582397,
-0.10597530007362366,
-0.12283480167388916,
-0.04841301962733269,
0.1376807689666748,
-0.15514381229877472,
-0.07959575951099396,
-0.07887280732393265,
-0.18433836102485657,
0.033372242003679276,
0.23955963551998138,
0.036081865429878235,
0.07665778696537018,
0.034501440823078156,
-0.03135858476161957,
-0.0332990400493145,
0.0450265035033226,
-0.08376584202051163,
0.02836722880601883,
-0.1292603313922882,
0.013662016950547695,
-0.029554761946201324,
0.06653987616300583,
-0.0747770220041275,
-0.005165080074220896,
-0.15521204471588135,
0.024890676140785217,
-0.14799179136753082,
0.006287814117968082,
-0.06621571630239487,
-0.02280518412590027,
0.0076015302911400795,
-0.012781600467860699,
-0.056757766753435135,
-0.020954884588718414,
-0.10184937715530396,
0.011013524606823921,
-0.02370467223227024,
0.048052769154310226,
-0.08744794875383377,
-0.03087439015507698,
0.041023094207048416,
-0.04014357924461365,
0.10149496048688889,
0.0686996653676033,
-0.08736540377140045,
0.11272776126861572,
-0.22351643443107605,
-0.036217331886291504,
0.13396640121936798,
0.0044109211303293705,
0.02989373169839382,
0.05103369057178497,
-0.03830115497112274,
0.10754726082086563,
0.017391212284564972,
0.03653336688876152,
-0.002329655224457383,
-0.10563276708126068,
0.024246202781796455,
-0.04161437973380089,
-0.10984683781862259,
-0.018942339345812798,
-0.06254519522190094,
0.06314903497695923,
-0.03017268143594265,
0.14784294366836548,
-0.08171480149030685,
0.037169553339481354,
-0.0517251193523407,
0.03659065440297127,
0.036367785185575485,
-0.16036273539066315,
-0.08944962918758392,
-0.06599938869476318,
0.007963553071022034,
-0.03353995084762573,
0.25739243626594543,
-0.002668095054104924,
-0.07485136389732361,
0.07247384637594223,
0.01097193080931902,
0.013616526499390602,
0.02459101565182209,
0.2530827522277832,
0.03458145633339882,
-0.01872875913977623,
-0.1476380079984665,
0.015492787584662437,
0.04218541830778122,
-0.06074988469481468,
0.11544693261384964,
0.0993463471531868,
-0.07081745564937592,
0.11420585215091705,
0.08185305446386337,
-0.027696184813976288,
-0.046162061393260956,
-0.08060360699892044,
-0.03348478674888611,
0.06855632364749908,
-0.03132452070713043,
0.07537361234426498,
0.22101734578609467,
-0.01775355450809002,
-0.0011685204226523638,
-0.06780751049518585,
-0.031885482370853424,
-0.1863650232553482,
-0.0841546580195427,
-0.10429336130619049,
-0.13841724395751953,
0.02425653301179409,
-0.09412970393896103,
0.07430317252874374,
0.019939376041293144,
0.05734672397375107,
-0.03683450445532799,
0.0940014198422432,
0.0004930990980938077,
-0.05851813405752182,
0.01835847832262516,
-0.026307005435228348,
0.025924304500222206,
-0.03434149920940399,
-0.021814318373799324,
-0.042366135865449905,
-0.07287942618131638,
-0.04727296903729439,
0.07000782340765,
0.010771182365715504,
0.03856037184596062,
-0.12262279540300369,
-0.05158356577157974,
-0.025341777130961418,
0.08332459628582001,
0.00042757162009365857,
0.1390371024608612,
0.019977936521172523,
-0.038895536214113235,
0.06657611578702927,
0.19378311932086945,
-0.08377885073423386,
-0.114676833152771,
0.010468890890479088,
0.18122731149196625,
0.05526398867368698,
0.138681560754776,
-0.049045998603105545,
-0.013016736134886742,
-0.008810778148472309,
0.2937930226325989,
0.257145494222641,
-0.06495130807161331,
0.04491841420531273,
-0.062360212206840515,
0.04619316756725311,
0.05555616319179535,
0.07588943094015121,
0.10346000641584396,
0.2828470766544342,
-0.04612942412495613,
-0.02748578041791916,
-0.007263211067765951,
0.01569332368671894,
-0.1111651286482811,
0.09446040540933609,
-0.0144914910197258,
-0.054909370839595795,
-0.01669856160879135,
0.06318347901105881,
-0.15636524558067322,
0.056414615362882614,
-0.06769883632659912,
-0.15390802919864655,
-0.008484174497425556,
-0.0011523261200636625,
0.15808144211769104,
-0.006652408745139837,
0.05238869786262512,
-0.03263389319181442,
-0.09687774628400803,
0.02537815272808075,
0.006523885764181614,
-0.2290477752685547,
0.027606386691331863,
0.012579442001879215,
-0.05905579775571823,
0.05620573088526726,
-0.00009738940570969135,
0.0543033704161644,
0.07550898939371109,
0.029322348535060883,
-0.044229455292224884,
0.1737268567085266,
0.027487516403198242,
-0.11136257648468018,
0.041999392211437225,
-0.004863246344029903,
-0.008640053682029247,
0.019216388463974,
0.04285409674048424,
-0.09746899455785751,
0.05180269479751587,
0.07809833437204361,
-0.11871751397848129,
-0.023186665028333664,
0.024502970278263092,
-0.070523202419281,
0.0801381766796112,
0.03692895546555519,
-0.026914743706583977,
0.004324541427195072,
-0.021714936941862106,
0.023277346044778824,
-0.020302291959524155,
-0.12371190637350082,
-0.009685642085969448,
-0.13206802308559418,
-0.03183959424495697,
0.1363690197467804,
0.016948679462075233,
-0.27292850613594055,
0.003331792773678899,
-0.08759225904941559,
0.05062190443277359,
-0.17548513412475586,
0.04686470702290535,
0.20208954811096191,
0.012469199486076832,
-0.02944374457001686,
-0.175132617354393,
0.05326329916715622,
0.09063606709241867,
-0.06020814925432205,
-0.11170734465122223
] |
null | null | transformers | # miquliz-120b

- EXL2: [2.4bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.4bpw-h6-exl2) | 2.65bpw | [2.9bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.9bpw-h6-exl2) | [4.0bpw](https://huggingface.co/LoneStriker/miquliz-120b-4.0bpw-h6-exl2)
- GGUF: [IQ3_XXS](https://huggingface.co/wolfram/miquliz-120b-GGUF) | [Q4_K_S+Q4_K_M](https://huggingface.co/NanoByte/miquliz-120b-Q4-GGUF)
- HF: [wolfram/miquliz-120b](https://huggingface.co/wolfram/miquliz-120b)
This is a 120b frankenmerge created by interleaving layers of [miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) with [lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) using [mergekit](https://github.com/cg123/mergekit).
Inspired by [goliath-120b](https://huggingface.co/alpindale/goliath-120b).
Thanks for the support, [CopilotKit](https://github.com/CopilotKit/CopilotKit) - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, [Lone Striker](https://huggingface.co/LoneStriker) and [NanoByte](https://huggingface.co/NanoByte)!
## Prompt template: Mistral
```
<s>[INST] {prompt} [/INST]
```
See also: [🐺🐦⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with **17** different instruct templates : LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/comments/18ljvxb/llm_prompt_format_comparisontest_mixtral_8x7b/)
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 16]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [8, 24]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [17, 32]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [25, 40]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [33, 48]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [41, 56]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [49, 64]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [57, 72]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [65, 80]
model: 152334H/miqu-1-70b-sf
```
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: [mistralai (Mistral AI_)](https://huggingface.co/mistralai)
- leaked model: [miqudev/miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b)
- f16 model: [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- 2nd model: [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
- mergekit: [arcee-ai/mergekit: Tools for merging pretrained large language models.](https://github.com/arcee-ai/mergekit)
- mergekit_config.yml: [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
### Support
- [My Ko-fi page](https://ko-fi.com/wolframravenwolf) if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS [BASED ON A LEAKED ASSET](https://huggingface.co/miqudev/miqu-1-70b/discussions/10) AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| {"language": ["en", "de", "fr", "es", "it"], "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["152334H/miqu-1-70b-sf", "lizpreciatior/lzlv_70b_fp16_hf"]} | text-generation | LoneStriker/miquliz-120b-2.65bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"en",
"de",
"fr",
"es",
"it",
"base_model:152334H/miqu-1-70b-sf",
"base_model:lizpreciatior/lzlv_70b_fp16_hf",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:33:13+00:00 | [] | [
"en",
"de",
"fr",
"es",
"it"
] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # miquliz-120b
!image/jpeg
- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw
- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M
- HF: wolfram/miquliz-120b
This is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.
Inspired by goliath-120b.
Thanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!
## Prompt template: Mistral
See also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- 152334H/miqu-1-70b-sf
- lizpreciatior/lzlv_70b_fp16_hf
### Configuration
The following YAML configuration was used to produce this model:
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: mistralai (Mistral AI_)
- leaked model: miqudev/miqu-1-70b
- f16 model: 152334H/miqu-1-70b-sf
- 2nd model: lizpreciatior/lzlv_70b_fp16_hf
- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.
- mergekit_config.yml: alpindale/goliath-120b
### Support
- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| [
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
108,
193,
44,
18,
4,
17,
48,
17,
128,
69,
43
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137## Merge Details### Merge Method\n\nThis model was merged using the passthrough merge method.### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.12368366122245789,
0.12789610028266907,
-0.004829886835068464,
0.07118041813373566,
0.008432804606854916,
0.030466794967651367,
0.15808768570423126,
0.1408398449420929,
0.12250641733407974,
0.11074402928352356,
-0.0003772966156248003,
0.059276167303323746,
0.0867873802781105,
0.16237597167491913,
-0.01879403181374073,
-0.09192074835300446,
0.023846887052059174,
-0.03254108875989914,
-0.016614433377981186,
0.08230546861886978,
0.06071207672357559,
-0.04489263892173767,
0.06874342262744904,
0.05266686528921127,
-0.1173800379037857,
-0.0025762326549738646,
-0.019535329192876816,
-0.0035260901786386967,
0.08725646883249283,
0.090943343937397,
0.03682366758584976,
0.047848619520664215,
0.013767924159765244,
-0.14496155083179474,
0.03160346671938896,
0.04793968051671982,
-0.03261971473693848,
0.08455878496170044,
0.11339690536260605,
-0.032416824251413345,
0.0792437195777893,
-0.04937126114964485,
-0.024935640394687653,
0.09329741448163986,
-0.10145971179008484,
-0.18160124123096466,
-0.17187398672103882,
0.1256534308195114,
0.037529584020376205,
0.023336073383688927,
-0.02024589292705059,
0.11190760880708694,
0.0369829423725605,
0.08653295785188675,
0.24754253029823303,
-0.17050236463546753,
-0.05275990068912506,
0.04109650105237961,
0.017943190410733223,
-0.09884168952703476,
-0.02588641084730625,
0.037537846714258194,
0.02536020427942276,
-0.013790946453809738,
0.0470578595995903,
-0.06060151010751724,
0.07586272805929184,
-0.05851813033223152,
-0.14439910650253296,
-0.011108231730759144,
0.0699799656867981,
0.051052119582891464,
-0.04237183555960655,
-0.15585270524024963,
-0.07426974177360535,
0.011751646175980568,
-0.0058364905416965485,
-0.012671277858316898,
-0.026297500357031822,
-0.03774981573224068,
0.07239900529384613,
-0.06227460131049156,
-0.027483807876706123,
-0.041599247604608536,
-0.030472077429294586,
0.1456686556339264,
0.03454676270484924,
0.016460439190268517,
0.0009482491295784712,
0.07474207133054733,
-0.11470949649810791,
-0.14837470650672913,
-0.04670407250523567,
-0.023340268060564995,
-0.10872059315443039,
-0.03630848973989487,
0.0027755394112318754,
-0.04055022448301315,
0.060745719820261,
0.20719100534915924,
-0.11167024075984955,
0.058465491980314255,
0.02167990617454052,
0.03042621538043022,
0.0022220457904040813,
0.05014816299080849,
-0.05429374426603317,
-0.06990977376699448,
0.024466900154948235,
0.043704770505428314,
0.04189739376306534,
-0.011906677857041359,
-0.00637865299358964,
-0.005814081989228725,
-0.025086048990488052,
0.04248442500829697,
0.057028356939554214,
0.00006505353667307645,
-0.06931952387094498,
-0.05062215030193329,
0.1558380275964737,
-0.12208744138479233,
0.05983341857790947,
0.027952637523412704,
-0.02203182876110077,
-0.03659253567457199,
0.07147088646888733,
-0.036103203892707825,
-0.06757796555757523,
0.003653585212305188,
-0.05460790544748306,
0.01350486185401678,
-0.03342496603727341,
-0.06830274313688278,
0.03372606262564659,
-0.030463969334959984,
-0.049800045788288116,
-0.13874182105064392,
-0.11608945578336716,
-0.05686583369970322,
0.039471741765737534,
-0.07531989365816116,
0.03137357160449028,
0.0206131674349308,
-0.06815514713525772,
0.016908833757042885,
0.04215963929891586,
-0.02309141494333744,
-0.014663412235677242,
-0.008669499307870865,
0.026837516576051712,
0.04982210323214531,
0.011029177345335484,
-0.00849899835884571,
-0.03755652904510498,
0.08720458298921585,
-0.13124476373195648,
0.11570584774017334,
-0.10697617381811142,
-0.0175891425460577,
-0.14562152326107025,
-0.021388312801718712,
0.02837793342769146,
-0.014576669782400131,
0.06801756471395493,
0.15541520714759827,
-0.11956251412630081,
-0.057199627161026,
0.14212393760681152,
-0.10452718287706375,
-0.08326901495456696,
0.0896964743733406,
-0.001530867419205606,
0.004996958654373884,
0.023222999647259712,
0.15921443700790405,
0.2206583321094513,
-0.09496251493692398,
-0.03753845393657684,
-0.041817598044872284,
0.02606145292520523,
0.10511910915374756,
0.04245214909315109,
-0.04663945734500885,
0.041522711515426636,
-0.007779768668115139,
-0.033237650990486145,
-0.017682453617453575,
-0.009546971879899502,
-0.07089126110076904,
-0.06520862132310867,
-0.06327446550130844,
0.00790522713214159,
-0.029427755624055862,
-0.009285880252718925,
-0.031943242996931076,
-0.06854052096605301,
-0.03167993202805519,
0.13503709435462952,
-0.045838870108127594,
-0.014511617831885815,
-0.07795076072216034,
0.13901136815547943,
-0.02076946385204792,
0.019529197365045547,
-0.1386507749557495,
-0.10085764527320862,
0.06192042678594589,
-0.2569917142391205,
0.0288861021399498,
-0.024994120001792908,
0.033609483391046524,
0.09510236233472824,
-0.022114844992756844,
-0.04090216010808945,
-0.0036946572363376617,
-0.02901856228709221,
-0.01620562933385372,
-0.13861826062202454,
-0.09312329441308975,
-0.021515900269150734,
0.16482308506965637,
-0.10285954922437668,
0.060498472303152084,
0.05872023105621338,
0.177692711353302,
-0.0010935618774965405,
-0.0495661161839962,
0.04133046418428421,
0.014076328836381435,
-0.00933940801769495,
-0.06117941439151764,
0.03129934147000313,
-0.017155325040221214,
-0.07683154195547104,
0.0230487659573555,
-0.09522220492362976,
-0.06828600913286209,
0.0454079769551754,
0.1084422916173935,
-0.08888481557369232,
-0.045977573841810226,
-0.010482335463166237,
-0.02788333222270012,
-0.05628563091158867,
-0.05581507459282875,
0.08716053515672684,
0.0313115268945694,
0.06286195665597916,
-0.07583241164684296,
-0.12060359865427017,
0.011962266638875008,
0.00497860461473465,
-0.03765784949064255,
0.136618509888649,
0.0008419781224802136,
-0.1441844403743744,
0.09529437869787216,
0.0573565848171711,
0.02403576485812664,
0.15169063210487366,
0.010673169046640396,
-0.03464016318321228,
-0.09475518018007278,
0.06382697820663452,
0.04144428297877312,
0.09565594792366028,
0.016134966164827347,
0.0277025755494833,
0.051495399326086044,
-0.013188540004193783,
0.014995002187788486,
-0.11568167805671692,
0.028803836554288864,
0.02679041586816311,
-0.04290289059281349,
0.016975726932287216,
0.06925228238105774,
-0.006320801563560963,
0.06676694005727768,
-0.015466314740478992,
0.061539020389318466,
-0.03364915773272514,
-0.058776941150426865,
-0.1265030950307846,
0.1567183881998062,
-0.08924178034067154,
-0.1561521589756012,
-0.15872417390346527,
-0.019933052361011505,
-0.11261028796434402,
-0.04740180820226669,
0.03474276140332222,
-0.026875589042901993,
-0.04287160560488701,
-0.09326061606407166,
0.05285726115107536,
0.07770129293203354,
-0.05764682963490486,
0.029928429052233696,
-0.01687181368470192,
0.06855647265911102,
-0.11296849697828293,
-0.023465275764465332,
0.060048799961805344,
0.02526327408850193,
0.028736509382724762,
0.05163873732089996,
0.09489382058382034,
0.08398807793855667,
0.0362507700920105,
0.015089208260178566,
0.013857324607670307,
0.2598232924938202,
-0.09863453358411789,
0.08720748126506805,
0.16616471111774445,
0.0034785973839461803,
0.07429353147745132,
0.13056929409503937,
0.07720997929573059,
-0.06613697111606598,
-0.023135513067245483,
0.02194489724934101,
-0.024997616186738014,
-0.158270925283432,
-0.07069829851388931,
-0.055327292531728745,
0.003951964899897575,
0.05960322916507721,
0.048116009682416916,
-0.007396707311272621,
0.054213475435972214,
-0.052058011293411255,
-0.038888148963451385,
0.04421881586313248,
0.07643278688192368,
0.06988003104925156,
0.04795686528086662,
0.0641406998038292,
-0.019555028527975082,
0.01910572312772274,
0.09517364203929901,
0.01043457631021738,
0.10210463404655457,
-0.02330624684691429,
0.18152542412281036,
0.06063041090965271,
0.10171207040548325,
0.009897595271468163,
0.0423230305314064,
0.019875910133123398,
0.014567595906555653,
0.037878766655921936,
-0.09714611619710922,
0.03497471660375595,
0.04005565494298935,
-0.038389697670936584,
0.06132099777460098,
-0.029189273715019226,
-0.029169373214244843,
0.06890357285737991,
0.23063409328460693,
0.08791407197713852,
-0.23662646114826202,
-0.06820894032716751,
0.028633689507842064,
-0.01798653043806553,
-0.02710089273750782,
-0.07196102291345596,
0.08232519030570984,
-0.1499929130077362,
0.12502896785736084,
-0.02664428949356079,
0.08723902702331543,
-0.05597300082445145,
-0.03246639296412468,
0.023017756640911102,
0.13063931465148926,
0.007563863415271044,
0.021590637043118477,
-0.08814773708581924,
0.13470914959907532,
0.03742704913020134,
0.03612137585878372,
-0.048384156078100204,
0.04792026802897453,
0.05386565625667572,
0.03256596624851227,
0.12723557651042938,
0.03399898111820221,
-0.04833051189780235,
-0.1234588697552681,
-0.06502183526754379,
-0.011905249208211899,
0.07326267659664154,
-0.11644229292869568,
0.1085549145936966,
0.0008896282524801791,
-0.05773821100592613,
-0.06975867599248886,
0.04854271560907364,
-0.1246747151017189,
-0.1326695680618286,
0.09270588308572769,
0.019206488505005836,
-0.004347942303866148,
-0.08910027891397476,
-0.02384672500193119,
-0.07720056921243668,
0.17835187911987305,
-0.13138552010059357,
-0.10424366593360901,
-0.14623430371284485,
0.019838901236653328,
0.12011423707008362,
-0.09586021304130554,
0.04952145740389824,
-0.054908137768507004,
0.13131214678287506,
-0.08491016179323196,
-0.10803071409463882,
0.0031110455747693777,
-0.10406436771154404,
-0.15895523130893707,
-0.016845667734742165,
0.18804065883159637,
0.06841174513101578,
0.01998257078230381,
0.04636812582612038,
0.033293623477220535,
0.0006021942244842649,
-0.10974181443452835,
0.0050140367820858955,
0.12546297907829285,
0.006240382324904203,
0.09202331304550171,
-0.04566655680537224,
-0.04445214569568634,
-0.09057268500328064,
-0.04287262633442879,
0.05312792956829071,
0.306938499212265,
-0.07398373633623123,
0.057277124375104904,
0.06801817566156387,
-0.04662609472870827,
-0.13315193355083466,
-0.019342564046382904,
0.06505969911813736,
0.019270027056336403,
0.025498589500784874,
-0.10378386825323105,
0.05618932843208313,
0.08659297972917557,
-0.003092100378125906,
0.15438351035118103,
-0.28497934341430664,
-0.12206729501485825,
0.014736184850335121,
0.054704729467630386,
-0.10833261907100677,
-0.13666997849941254,
-0.11265040189027786,
-0.05001175031065941,
-0.18979574739933014,
0.07308121025562286,
-0.03530014306306839,
0.05785314366221428,
-0.02325328253209591,
0.038133639842271805,
0.025217236950993538,
-0.037785958498716354,
0.19537271559238434,
-0.00041987834265455604,
0.05685656517744064,
-0.06840397417545319,
0.07129933685064316,
0.009667005389928818,
-0.07543710619211197,
0.08063114434480667,
-0.016769062727689743,
0.057787660509347916,
-0.07750823348760605,
-0.0037023189943283796,
-0.09891999512910843,
0.08838903158903122,
-0.06746514141559601,
-0.003480901475995779,
-0.068965382874012,
0.08907764405012131,
0.04152337461709976,
-0.016935698688030243,
-0.010590536519885063,
-0.03918278589844704,
0.12641924619674683,
0.22624219954013824,
0.08268904685974121,
-0.021522628143429756,
-0.08541391789913177,
-0.0028606210835278034,
-0.02340327389538288,
0.03568483144044876,
-0.05007392168045044,
0.030080698430538177,
0.09638979285955429,
0.07416202127933502,
0.11765220761299133,
0.007687520235776901,
-0.13749492168426514,
-0.025064611807465553,
0.05596223101019859,
-0.1590513288974762,
-0.1764783412218094,
-0.04164158180356026,
0.018489325419068336,
-0.043415963649749756,
0.0011119890259578824,
0.2094741314649582,
-0.01564190536737442,
-0.04446769133210182,
0.032563433051109314,
0.03490924462676048,
-0.03007512353360653,
0.17149731516838074,
0.02123425342142582,
0.07249967008829117,
-0.07722723484039307,
0.061947356909513474,
0.030385101214051247,
0.01590743474662304,
-0.007486291229724884,
0.16145873069763184,
-0.09378024935722351,
-0.09352295100688934,
-0.05824456736445427,
0.07370655238628387,
-0.076044961810112,
-0.022184815257787704,
-0.021405579522252083,
-0.08294608443975449,
0.021521613001823425,
0.14948487281799316,
0.04223942011594772,
-0.029807860031723976,
0.06489751487970352,
-0.022353671491146088,
-0.01262697670608759,
0.07513593137264252,
0.039529748260974884,
0.06516161561012268,
-0.064303457736969,
0.07645869255065918,
-0.018901096656918526,
0.057515405118465424,
-0.009405039250850677,
0.006718489807099104,
-0.14400263130664825,
-0.045528147369623184,
-0.09107623994350433,
0.0010434531141072512,
-0.1279691606760025,
-0.012957594357430935,
-0.02937966212630272,
-0.01140217762440443,
-0.025888843461871147,
0.045904770493507385,
-0.060938358306884766,
-0.09193648397922516,
-0.06444298475980759,
0.07826902717351913,
-0.1475367248058319,
0.009270556271076202,
0.04979900270700455,
-0.07672209292650223,
0.09466429054737091,
0.0037219945807009935,
0.0019856125582009554,
0.005022512748837471,
-0.058107685297727585,
-0.017707034945487976,
-0.015370056964457035,
0.014712527394294739,
0.03841640055179596,
-0.2599083185195923,
0.011125855147838593,
-0.04668840765953064,
-0.049365609884262085,
-0.0039966413751244545,
0.0883522555232048,
-0.0780402198433876,
-0.045397866517305374,
-0.01794837787747383,
-0.011920806020498276,
-0.09755246341228485,
0.054385263472795486,
0.09318234771490097,
0.03412151709198952,
0.07688449323177338,
-0.03006233647465706,
0.07344099879264832,
-0.18182457983493805,
-0.04424624145030975,
0.02999134548008442,
-0.05988047271966934,
0.0637851133942604,
-0.028003206476569176,
0.07074891775846481,
-0.034066688269376755,
0.0678243488073349,
-0.046109482645988464,
0.007584958337247372,
0.013275442644953728,
-0.046227503567934036,
-0.0583421066403389,
0.008887110278010368,
0.05411682277917862,
0.007681099697947502,
0.013896060176193714,
0.01718263141810894,
0.013841814361512661,
-0.03844862058758736,
-0.03254514932632446,
0.08677802234888077,
0.10292897373437881,
0.0019177087815478444,
0.03871221840381622,
0.09347283095121384,
-0.10394598543643951,
-0.00770309055224061,
0.016344331204891205,
-0.03223894536495209,
0.08392903208732605,
-0.06932943314313889,
0.06159314885735512,
0.10241761803627014,
-0.18410246074199677,
0.12296594679355621,
0.03679967299103737,
-0.043706249445676804,
-0.0891125425696373,
-0.21334221959114075,
-0.045117102563381195,
-0.048360999673604965,
-0.022531423717737198,
-0.08107305318117142,
0.04106675833463669,
-0.0223915446549654,
0.013382375240325928,
-0.00431291526183486,
0.15338565409183502,
-0.06828607618808746,
-0.07131311297416687,
0.06271100044250488,
0.023739539086818695,
-0.04255959391593933,
0.0186128169298172,
-0.007370177656412125,
0.0280170738697052,
0.044481273740530014,
0.04065921530127525,
0.034952398389577866,
0.008677106350660324,
0.011015135794878006,
-0.04583385959267616,
-0.08386383205652237,
-0.009981885552406311,
-0.018855948001146317,
0.0022483908105641603,
0.04748959466814995,
0.05323795601725578,
0.010519832372665405,
-0.015437587164342403,
0.1065712571144104,
-0.0388643741607666,
-0.03411516174674034,
-0.1333073228597641,
0.1729545295238495,
-0.0884871631860733,
-0.013233300298452377,
-0.002624036045745015,
-0.08557087928056717,
-0.001440701656974852,
0.18324314057826996,
0.1605691760778427,
-0.039348162710666656,
0.043843336403369904,
0.011063226498663425,
0.006158569362014532,
0.013256123289465904,
0.024207735434174538,
0.03296574577689171,
0.09810876101255417,
-0.02288897894322872,
0.09398314356803894,
-0.0317111611366272,
-0.06202622130513191,
-0.07543383538722992,
0.0866965726017952,
-0.019786138087511063,
0.012943508103489876,
-0.01467861421406269,
0.0688600167632103,
-0.004709766712039709,
-0.15824270248413086,
0.05247723311185837,
-0.10000913590192795,
-0.13650010526180267,
-0.011311225593090057,
-0.07559972256422043,
-0.029222870245575905,
0.058672528713941574,
-0.02281065098941326,
0.005110166966915131,
0.18161675333976746,
0.0018605180084705353,
-0.04716502130031586,
-0.10844589024782181,
0.039931196719408035,
-0.10910598933696747,
0.11147446185350418,
-0.013411503285169601,
0.03250350430607796,
0.13634388148784637,
-0.034907348453998566,
-0.12645463645458221,
0.051742274314165115,
0.08569781482219696,
-0.10352301597595215,
0.0018046568147838116,
0.20331788063049316,
0.004622191656380892,
0.034741874784231186,
0.056502580642700195,
-0.08139484375715256,
0.009915951639413834,
0.0622529499232769,
0.04897496849298477,
-0.09269192814826965,
0.07155569642782211,
-0.09523096680641174,
0.1415766328573227,
0.19516132771968842,
-0.03245047479867935,
0.004381112288683653,
-0.04549586400389671,
0.0795249342918396,
0.04511290788650513,
0.07024716585874557,
-0.01037550251930952,
-0.18170195817947388,
0.08128581196069717,
-0.04013247787952423,
0.03869382664561272,
-0.14531628787517548,
-0.10904447734355927,
-0.0074611627496778965,
-0.031184248626232147,
0.026880715042352676,
0.12320626527070999,
0.08135218173265457,
0.032344263046979904,
-0.012878159992396832,
-0.23100483417510986,
-0.011181864887475967,
0.0913306251168251,
-0.09959501773118973,
-0.024197351187467575
] |
null | null | peft | ## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
| {"library_name": "peft"} | null | maheshnathwani/UserPromptFineTunedModel | [
"peft",
"region:us"
] | 2024-02-06T22:35:08+00:00 | [] | [] | TAGS
#peft #region-us
| ## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0
| [
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.5.0"
] | [
"TAGS\n#peft #region-us \n",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.5.0"
] | [
9,
164,
11
] | [
"passage: TAGS\n#peft #region-us \n## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16### Framework versions\n\n\n- PEFT 0.5.0"
] | [
-0.05062326043844223,
0.031947776675224304,
-0.002535545267164707,
0.13069355487823486,
0.08892407268285751,
0.07013178616762161,
0.10526624321937561,
0.1259550005197525,
0.024690842255949974,
0.08121774345636368,
0.11683483421802521,
0.04465406760573387,
0.06739336252212524,
0.15575210750102997,
-0.0234319306910038,
-0.006939594633877277,
0.050396185368299484,
-0.00121142971329391,
-0.009365832433104515,
0.08438551425933838,
0.05121231451630592,
-0.04849613457918167,
0.028087137266993523,
-0.0903705283999443,
-0.15515102446079254,
-0.002266852417960763,
0.009621929377317429,
0.027772219851613045,
0.04153962433338165,
0.03369219973683357,
0.06416933983564377,
0.004917609039694071,
-0.024376193061470985,
-0.2134636789560318,
-0.010926871560513973,
0.10526939481496811,
-0.027450870722532272,
0.07265305519104004,
-0.09962496906518936,
0.13929493725299835,
-0.06867742538452148,
-0.04581763595342636,
0.012086926959455013,
0.019866185262799263,
-0.08817871659994125,
-0.11104009300470352,
-0.05450243130326271,
0.058457184582948685,
0.025114551186561584,
0.06884107738733292,
-0.011274006217718124,
0.181334987282753,
-0.15732547640800476,
0.08961749076843262,
0.07933616638183594,
-0.22296668589115143,
-0.025383535772562027,
0.12420330941677094,
-0.012715290300548077,
0.16421926021575928,
-0.08521611243486404,
-0.09894448518753052,
0.06832171231508255,
0.04304948449134827,
-0.03549819439649582,
-0.0054101585410535336,
-0.08345299959182739,
0.019652970135211945,
-0.13530521094799042,
-0.05168093368411064,
0.14306625723838806,
0.033843353390693665,
-0.04046148806810379,
-0.04376876726746559,
-0.08854630589485168,
-0.36259329319000244,
0.02903297170996666,
-0.009121599607169628,
-0.07332932204008102,
0.046302519738674164,
-0.010800064541399479,
-0.012287170626223087,
-0.007684422191232443,
-0.08871802687644958,
-0.033576495945453644,
0.05927611514925957,
0.04079004377126694,
0.029575977474451065,
0.015393851324915886,
0.1033724993467331,
-0.11374221742153168,
-0.02458231709897518,
-0.04372303560376167,
-0.02469038777053356,
-0.05596129223704338,
-0.012394244782626629,
-0.07395505905151367,
0.18049843609333038,
0.07837311923503876,
0.12566469609737396,
-0.1478145569562912,
0.12655845284461975,
-0.029812879860401154,
0.05229858681559563,
-0.03332200273871422,
0.026284178718924522,
-0.12104228138923645,
0.11234045773744583,
0.008569412864744663,
0.16311071813106537,
0.010815702378749847,
-0.04875380918383598,
-0.06651268154382706,
-0.0061381421983242035,
0.15260466933250427,
0.0029926791321486235,
-0.10521747171878815,
0.012647413648664951,
-0.1452125459909439,
-0.03239082917571068,
0.07624232769012451,
-0.07078663259744644,
0.014833421446383,
0.030203405767679214,
-0.04753505438566208,
-0.02337070368230343,
0.10220759361982346,
-0.04239068552851677,
-0.024419791996479034,
-0.02340777777135372,
-0.10486506670713425,
-0.021613426506519318,
-0.09835448116064072,
-0.12955085933208466,
0.04767556115984917,
-0.1659923642873764,
0.00278829806484282,
-0.03975324705243111,
-0.05539104714989662,
0.02677193097770214,
0.011694987304508686,
-0.08209770172834396,
0.05948242172598839,
-0.09760817140340805,
-0.15744158625602722,
-0.024401629343628883,
0.012629744596779346,
0.026901230216026306,
-0.016015825793147087,
0.10551498830318451,
0.0362091138958931,
0.11116315424442291,
-0.17395399510860443,
-0.0071998536586761475,
0.00954788364470005,
0.07263795286417007,
0.04040515795350075,
0.13151618838310242,
-0.10204105079174042,
-0.037836283445358276,
-0.06294970959424973,
-0.061111364513635635,
-0.11162591725587845,
-0.019892597571015358,
0.1344252973794937,
0.08149032294750214,
-0.16250371932983398,
-0.012041479349136353,
0.07663246989250183,
-0.015649762004613876,
-0.06931181252002716,
0.1563180536031723,
-0.05834658443927765,
0.0997687578201294,
-0.03994644060730934,
0.08520026504993439,
0.2200886756181717,
-0.11086177080869675,
-0.006949157454073429,
0.11180465668439865,
0.059449806809425354,
0.010312330909073353,
0.006463318131864071,
0.07999821752309799,
-0.12195318937301636,
0.030046667903661728,
0.07861360907554626,
0.03658614680171013,
-0.06514891237020493,
-0.07225105166435242,
-0.028207551687955856,
-0.05930168926715851,
0.1197989359498024,
0.025822047144174576,
0.008483827114105225,
-0.06993843615055084,
-0.08008360117673874,
0.12536105513572693,
0.12026798725128174,
-0.02339034155011177,
-0.0020555765368044376,
-0.13477475941181183,
-0.01098099909722805,
-0.030658235773444176,
0.022662386298179626,
-0.11920644342899323,
0.029904505237936974,
0.08280965685844421,
0.0031979186460375786,
0.013616140931844711,
0.030683964490890503,
0.057090166956186295,
0.025107810273766518,
-0.06222423538565636,
0.008480658754706383,
-0.055238474160432816,
0.00579262338578701,
-0.09627698361873627,
-0.08347754925489426,
0.0024003407452255487,
-0.00564528489485383,
0.21384185552597046,
-0.13970176875591278,
0.03338500112295151,
0.11333310604095459,
-0.009577453136444092,
-0.014036672189831734,
-0.03543338179588318,
-0.07913106679916382,
0.10924740135669708,
-0.012632283382117748,
-0.03067292459309101,
0.037423718720674515,
0.022518012672662735,
-0.07262638211250305,
-0.16684772074222565,
-0.08416301012039185,
0.03487617149949074,
0.1288861781358719,
0.07757305353879929,
-0.07226191461086273,
-0.04485457390546799,
-0.01711740344762802,
-0.04363429173827171,
0.07193450629711151,
-0.06241797283291817,
0.02926059439778328,
0.0038648773916065693,
0.056059736758470535,
-0.09743638336658478,
-0.0360565111041069,
0.06633507460355759,
-0.014042643830180168,
-0.04674528166651726,
0.11279813945293427,
0.01604006253182888,
-0.10843569040298462,
0.06621769815683365,
0.05194578319787979,
-0.1483369767665863,
0.09606612473726273,
-0.010812578722834587,
-0.01690845750272274,
-0.10494428128004074,
0.16536061465740204,
0.028462355956435204,
0.11000792682170868,
-0.15221066772937775,
0.10717349499464035,
-0.012199237011373043,
0.013401282951235771,
0.06521353125572205,
-0.19244062900543213,
-0.011513727717101574,
-0.045507919043302536,
-0.08499211817979813,
-0.07470254600048065,
-0.02058754488825798,
0.004213981796056032,
0.03470912203192711,
0.0066988468170166016,
0.06654644012451172,
0.14564648270606995,
-0.021601615473628044,
-0.08057292550802231,
0.18111979961395264,
-0.22881688177585602,
-0.22392280399799347,
-0.23499540984630585,
0.0021448524203151464,
-0.10137409716844559,
-0.038418982177972794,
-0.05403083562850952,
-0.08103296905755997,
0.036397211253643036,
-0.08366411179304123,
-0.05393543466925621,
-0.016787145286798477,
0.011162059381604195,
0.051661744713783264,
0.015320545993745327,
0.17084085941314697,
-0.0792221650481224,
0.027615489438176155,
0.05353034287691116,
-0.02605612203478813,
0.12522193789482117,
-0.09210526198148727,
-0.026936184614896774,
0.11859479546546936,
-0.012055945582687855,
0.014893047511577606,
0.012820529751479626,
0.33688145875930786,
0.00714610330760479,
0.03560947999358177,
0.07418452203273773,
-0.0016640810063108802,
0.05660094693303108,
0.09079357981681824,
0.01765339821577072,
-0.10659930109977722,
0.0737229585647583,
0.05095074325799942,
-0.0817943811416626,
-0.1339583396911621,
-0.03448188304901123,
-0.06425629556179047,
0.01620282046496868,
0.07473088800907135,
0.06300622969865799,
0.09850551933050156,
0.06369796395301819,
0.03489891439676285,
0.11134681105613708,
0.011107838712632656,
-0.00981332641094923,
0.11571414023637772,
-0.022825172170996666,
0.06320998072624207,
-0.012726634740829468,
0.029012402519583702,
0.059385038912296295,
0.13105368614196777,
0.08219761401414871,
-0.07435812056064606,
0.022957654669880867,
0.05846649408340454,
0.2897326350212097,
-0.005472580436617136,
0.08632510155439377,
-0.07317395508289337,
-0.018973376601934433,
-0.008174309507012367,
-0.030377713963389397,
-0.07225457578897476,
0.03962091729044914,
0.0023769864346832037,
0.06849229335784912,
-0.0037464031483978033,
-0.01877754181623459,
0.07712353765964508,
0.09340835362672806,
0.16973954439163208,
-0.27506154775619507,
-0.11158465594053268,
-0.009113570675253868,
0.1029311940073967,
-0.09853667765855789,
0.019899634644389153,
0.22038866579532623,
0.009928187355399132,
-0.0962328165769577,
-0.03508809581398964,
0.029210880398750305,
-0.011125319637358189,
0.012437427416443825,
0.11486492305994034,
0.11335580050945282,
-0.00006648595444858074,
0.08112262934446335,
-0.32514631748199463,
0.03597854822874069,
0.05960353463888168,
0.03925929218530655,
-0.03925042226910591,
0.0006204159581102431,
-0.06600949913263321,
-0.06670874357223511,
0.04067060723900795,
0.005632224027067423,
0.1714930236339569,
-0.2926639914512634,
-0.07365668565034866,
-0.009841399267315865,
0.12947070598602295,
0.07104749977588654,
0.04920976981520653,
0.018577035516500473,
0.050449151545763016,
0.07960528880357742,
0.07301200181245804,
-0.041905395686626434,
-0.11409378796815872,
0.0028422758914530277,
0.1622314602136612,
-0.12341143190860748,
-0.06350044161081314,
-0.05339449271559715,
-0.005784027278423309,
0.04340071231126785,
-0.17277425527572632,
-0.040982481092214584,
-0.055950481444597244,
0.03610723838210106,
0.15022005140781403,
-0.029833117499947548,
-0.0017211135709658265,
-0.011757774278521538,
0.012747768312692642,
-0.041253089904785156,
-0.07824604213237762,
0.11085628718137741,
-0.03877399116754532,
-0.14386001229286194,
-0.04084289073944092,
0.13648538291454315,
0.09455946832895279,
0.001885591191239655,
-0.08269467949867249,
-0.042982637882232666,
0.02827858366072178,
-0.14205551147460938,
0.015223984606564045,
0.08111055195331573,
-0.05697271227836609,
0.07969013601541519,
-0.1041807308793068,
0.21863988041877747,
-0.059651318937540054,
0.07922596484422684,
0.07451295852661133,
0.3154607117176056,
-0.08068859577178955,
0.02568482607603073,
0.07806212455034256,
-0.02168090268969536,
-0.25518375635147095,
0.03429076820611954,
0.06746765971183777,
0.04732271283864975,
-0.0322708785533905,
-0.17180825769901276,
0.020130833610892296,
0.08413206785917282,
0.013512593694031239,
0.1574217975139618,
-0.31910890340805054,
-0.06836724281311035,
0.02943519875407219,
0.053569160401821136,
0.12204533070325851,
-0.04543095454573631,
0.012578227557241917,
0.0008200878510251641,
-0.0068303742446005344,
0.1623941957950592,
-0.0791209265589714,
0.11132743209600449,
-0.013059557415544987,
0.024836959317326546,
0.006280904170125723,
-0.039479855448007584,
0.1513778120279312,
0.009994209744036198,
0.08805269747972488,
0.026362838223576546,
-0.08036763966083527,
0.06826390326023102,
-0.06663321703672409,
0.015050971880555153,
-0.05567723140120506,
0.08448800444602966,
-0.043732915073633194,
0.007340357173234224,
-0.06824249774217606,
-0.026504473760724068,
-0.0737132653594017,
-0.051145099103450775,
-0.10828255116939545,
0.09611933678388596,
-0.008857066743075848,
-0.024331720545887947,
-0.03292443975806236,
0.05110307037830353,
0.045926809310913086,
0.4501824975013733,
-0.05112610384821892,
-0.04479379206895828,
0.09953498095273972,
0.09861098229885101,
-0.02156013622879982,
0.09563562273979187,
-0.12261191010475159,
0.04715828597545624,
0.12612582743167877,
-0.000011430385711719282,
0.1418462097644806,
0.08332885056734085,
-0.11417095363140106,
-0.0007235106895677745,
0.039305731654167175,
-0.1348685324192047,
-0.07010199129581451,
-0.02515602298080921,
-0.015840163454413414,
-0.11357172578573227,
-0.004373815376311541,
0.09482400119304657,
-0.027191972360014915,
0.05178047716617584,
0.03294437751173973,
0.04522594437003136,
-0.1392754465341568,
0.15528492629528046,
0.04107607528567314,
0.08163220435380936,
-0.08325427025556564,
0.08103220909833908,
0.035825807601213455,
0.0039214505814015865,
0.05036073178052902,
-0.019515352323651314,
-0.09949047863483429,
0.01481214351952076,
-0.04912027716636658,
-0.10096704214811325,
0.1202845424413681,
-0.032632578164339066,
-0.036672502756118774,
-0.09581804275512695,
0.011403345502912998,
0.08331082761287689,
0.0510917566716671,
0.10447126626968384,
-0.02587592974305153,
0.01857784204185009,
-0.135976180434227,
0.07700533419847488,
-0.03527642413973808,
0.019931437447667122,
-0.13095836341381073,
0.06411241739988327,
-0.02042528986930847,
0.0631302148103714,
-0.01906474493443966,
-0.016534095630049706,
-0.2293201982975006,
0.02479398250579834,
-0.029223520308732986,
0.005954822059720755,
0.040712423622608185,
0.028990281745791435,
0.025409283116459846,
0.04982120171189308,
-0.026170894503593445,
0.03148467093706131,
-0.029177922755479813,
-0.051884591579437256,
0.0464809350669384,
-0.005572126712650061,
-0.034127313643693924,
-0.05299348384141922,
0.05830252915620804,
-0.10727037489414215,
0.03763727843761444,
0.028386080637574196,
-0.050776608288288116,
0.0763009563088417,
0.05314803123474121,
0.03048534505069256,
0.09110622853040695,
0.059219591319561005,
0.04370380938053131,
-0.0665871649980545,
0.029712360352277756,
-0.022117789834737778,
-0.0065482971258461475,
0.05724584683775902,
0.13302798569202423,
-0.047161832451820374,
-0.059676140546798706,
-0.1392354965209961,
-0.022492559626698494,
-0.048365719616413116,
0.044130947440862656,
0.15557588636875153,
0.09027839452028275,
0.09550528228282928,
-0.08550538867712021,
-0.022344423457980156,
-0.14017529785633087,
-0.07700786739587784,
0.05614152178168297,
-0.05075841769576073,
-0.03768356516957283,
-0.04466019943356514,
0.07245422899723053,
-0.012602338567376137,
0.13642875850200653,
-0.0989113450050354,
-0.10401094704866409,
-0.052660662680864334,
-0.2014419436454773,
-0.12930405139923096,
0.002081585116684437,
0.2642950713634491,
0.042399562895298004,
-0.04602256789803505,
-0.07564683258533478,
-0.00014242211182136089,
0.06862727552652359,
0.15620771050453186,
0.033393681049346924,
0.08515986055135727,
-0.12263044714927673,
0.09930063039064407,
0.040869031101465225,
-0.04952564463019371,
0.10812779515981674,
0.3278227746486664,
-0.08382157981395721,
0.01039581187069416,
-0.09805446863174438,
0.10401894152164459,
0.014269120059907436,
-0.14513592422008514,
0.007122850511223078,
-0.03298584371805191,
-0.1685744971036911,
-0.1046334058046341,
0.010492784902453423,
-0.07250283658504486,
-0.184476837515831,
-0.02039995975792408,
-0.11131733655929565,
-0.06338479369878769,
0.11230585724115372,
0.040143199265003204,
-0.02951567992568016,
0.19525597989559174,
-0.0772959291934967,
0.050061777234077454,
-0.005715959705412388,
-0.013803058303892612,
-0.02109370566904545,
-0.026509340852499008,
-0.0954483225941658,
0.14619240164756775,
0.014527908526360989,
0.10474790632724762,
0.005284770391881466,
0.07882838696241379,
0.04088389128446579,
-0.02949327789247036,
-0.05304798483848572,
-0.009964176453649998,
0.009764894843101501,
-0.05718691274523735,
0.11180701106786728,
0.05529260262846947,
-0.0846262276172638,
-0.07753848284482956,
-0.011391602456569672,
-0.07701346278190613,
-0.02833656594157219,
-0.15245798230171204,
0.25855115056037903,
-0.03639429807662964,
0.11401762068271637,
-0.0026415169704705477,
-0.062056027352809906,
-0.09586884081363678,
0.1571281999349594,
0.11874818801879883,
-0.13409584760665894,
-0.009749084711074829,
0.09655620902776718,
-0.005733327008783817,
-0.08650148659944534,
0.15688790380954742,
0.08419494330883026,
-0.02273346483707428,
0.029030587524175644,
-0.025945765897631645,
-0.03298979252576828,
-0.012293667532503605,
0.013149254955351353,
-0.026859872043132782,
0.024213530123233795,
0.038611337542533875,
-0.1439896821975708,
-0.03234368562698364,
-0.07557032257318497,
-0.0781858041882515,
0.1858166754245758,
-0.13627885282039642,
-0.08026652783155441,
-0.03609616309404373,
-0.08517234027385712,
-0.1120762825012207,
0.020423999056220055,
-0.10602328181266785,
0.06851417571306229,
0.06460462510585785,
-0.053424425423145294,
-0.0002115477982442826,
-0.04778766259551048,
0.006967788562178612,
0.04023686796426773,
0.0636768713593483,
-0.011253098957240582,
0.07612244039773941,
0.11750923097133636,
-0.017751865088939667,
-0.05071284621953964,
0.1121383011341095,
0.018025998026132584,
-0.03934396803379059,
-0.14399215579032898,
0.04119670391082764,
-0.02159811742603779,
0.13147084414958954,
0.03387857973575592,
-0.07322490960359573,
-0.012440553866326809,
-0.2139837145805359,
-0.015715204179286957,
-0.1387079954147339,
-0.07678613066673279,
-0.07062267512083054,
0.10811371356248856,
0.18626092374324799,
-0.05693645775318146,
0.021047040820121765,
-0.031889330595731735,
0.027686230838298798,
-0.05138532444834709,
0.07541932910680771,
-0.004626127891242504,
-0.15026412904262543,
0.05479944869875908,
-0.05177100747823715,
0.011189370416104794,
-0.29579657316207886,
-0.00495706545189023,
0.00858752429485321,
-0.031108785420656204,
-0.04359196871519089,
0.14933212101459503,
0.00854448601603508,
0.0656750351190567,
-0.058809250593185425,
-0.25238630175590515,
-0.06515713781118393,
0.13388781249523163,
0.0016478378092870116,
-0.07038798928260803
] |
null | null | transformers | # Config Derp Massive
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": []} | text-generation | deepestneuron/money | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:38:19+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Config Derp Massive
| [
"# Config Derp Massive"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Config Derp Massive"
] | [
58,
7
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Config Derp Massive"
] | [
-0.02501862868666649,
-0.032477568835020065,
-0.005780969746410847,
0.015291434712707996,
0.10311974585056305,
-0.014390169642865658,
0.07439806312322617,
0.07427379488945007,
0.059837210923433304,
0.029310088604688644,
0.11855700612068176,
0.153062641620636,
-0.043111369013786316,
0.18941187858581543,
-0.12484785169363022,
-0.15124931931495667,
0.08502106368541718,
-0.0007311002118512988,
-0.07713950425386429,
0.06479576230049133,
0.12056288868188858,
-0.07621940225362778,
0.1069045290350914,
-0.08518809080123901,
-0.1260984241962433,
0.025514638051390648,
0.026753263548016548,
-0.11202972382307053,
0.06495165824890137,
0.07624027132987976,
0.10007961839437485,
0.006718950811773539,
-0.07603050023317337,
-0.1511572003364563,
0.04499330744147301,
0.02696925774216652,
-0.04027495160698891,
0.040484119206666946,
0.027006015181541443,
-0.06543685495853424,
0.03667980059981346,
-0.03309966251254082,
0.031024407595396042,
0.08525417745113373,
-0.10438217222690582,
0.022394996136426926,
-0.021850524470210075,
0.014221424236893654,
0.12775836884975433,
0.0655335932970047,
-0.007339194416999817,
0.057303961366415024,
-0.03636711835861206,
0.1391075998544693,
0.0019799142610281706,
-0.3290421664714813,
-0.010270447470247746,
0.14504384994506836,
0.01580960862338543,
0.017006997019052505,
0.0023336573503911495,
0.046818025410175323,
0.07088387757539749,
-0.04096565768122673,
0.046031009405851364,
-0.051486555486917496,
-0.1404523253440857,
-0.032521363347768784,
-0.08328293263912201,
0.02004067972302437,
0.30177605152130127,
-0.01595130003988743,
0.08562816679477692,
-0.09273487329483032,
-0.13965539634227753,
-0.04878982529044151,
-0.03442937880754471,
-0.01138593815267086,
-0.0339081846177578,
0.06064234673976898,
0.013369884341955185,
-0.020308125764131546,
-0.08160332590341568,
-0.014993629418313503,
-0.21295508742332458,
0.12180794030427933,
0.028877776116132736,
0.015098623931407928,
-0.15564468502998352,
0.03554082661867142,
-0.014934873208403587,
-0.0910366028547287,
0.0630558580160141,
-0.07839562743902206,
-0.0013633322669193149,
-0.021992944180965424,
-0.07363565266132355,
-0.15865980088710785,
0.16380953788757324,
0.10991189628839493,
-0.0011491274926811457,
0.038790374994277954,
-0.04796576127409935,
0.0629301443696022,
0.051055509597063065,
-0.03241785988211632,
-0.031731978058815,
-0.14976590871810913,
0.07588743418455124,
-0.07610182464122772,
0.06174749508500099,
-0.04742014780640602,
-0.11436925083398819,
0.03250649571418762,
-0.0012710102600976825,
0.0642915740609169,
-0.029107768088579178,
0.14565128087997437,
-0.04022962972521782,
0.03273353353142738,
0.06839198619127274,
-0.08686728030443192,
-0.008679652586579323,
-0.0031111990101635456,
0.03623167425394058,
0.09292017668485641,
0.04299088567495346,
0.03235384449362755,
-0.020489444956183434,
0.04365331679582596,
-0.08237823843955994,
-0.03824429214000702,
-0.04547574743628502,
-0.06038977578282356,
0.03417523577809334,
0.046433113515377045,
-0.008422523736953735,
-0.16521821916103363,
-0.15225698053836823,
0.022881340235471725,
-0.007117161061614752,
-0.01815469190478325,
-0.04769599437713623,
-0.04617645591497421,
-0.022806989029049873,
0.017002463340759277,
-0.04409962147474289,
-0.041737355291843414,
-0.07217063009738922,
0.04848606511950493,
-0.024157751351594925,
0.09627419710159302,
-0.17576725780963898,
0.03540937975049019,
-0.0671912357211113,
0.046003252267837524,
-0.15069541335105896,
0.08224692195653915,
-0.05269937962293625,
0.14557532966136932,
-0.03148255869746208,
0.021709278225898743,
-0.07218214869499207,
0.056975170969963074,
-0.01948772929608822,
0.18927399814128876,
-0.1545117199420929,
-0.0569453239440918,
0.24136708676815033,
-0.10207010805606842,
-0.15447217226028442,
0.1443391591310501,
-0.0076691689901053905,
0.03254535049200058,
0.13630878925323486,
0.16437317430973053,
0.02411792241036892,
-0.02918659709393978,
-0.004956500139087439,
0.11136657744646072,
-0.0892219990491867,
-0.03343301638960838,
0.00044267764315009117,
-0.011156813241541386,
-0.15424160659313202,
0.05962570756673813,
0.21304109692573547,
0.0844251736998558,
-0.030213210731744766,
-0.03641302511096001,
-0.07935569435358047,
-0.03647366166114807,
-0.004452125169336796,
-0.05522556230425835,
0.05452005937695503,
-0.11307788640260696,
0.016380803659558296,
0.049223318696022034,
0.030254468321800232,
0.0002648290537763387,
-0.009458369575440884,
-0.07282815128564835,
0.09582160413265228,
-0.06821552664041519,
0.07662787288427353,
-0.11206278204917908,
-0.17839640378952026,
-0.028780771419405937,
0.08767395466566086,
-0.002778231631964445,
0.07261253893375397,
0.061934471130371094,
-0.015546404756605625,
-0.013602487742900848,
0.050060614943504333,
0.2238190770149231,
0.022953059524297714,
-0.09569688886404037,
-0.08148104697465897,
0.07797572016716003,
-0.08247475326061249,
0.08369888365268707,
-0.07575634866952896,
0.04158128425478935,
0.07402559369802475,
0.1398816853761673,
0.028967740014195442,
0.040412139147520065,
0.001846955274231732,
0.01504634041339159,
-0.07323068380355835,
0.018293557688593864,
0.07760743051767349,
-0.017877725884318352,
-0.1555137187242508,
0.13333775103092194,
-0.20769865810871124,
0.28105106949806213,
0.1768496036529541,
-0.18904492259025574,
-0.01303210947662592,
-0.1097017377614975,
-0.0036375513300299644,
-0.018597813323140144,
0.050119549036026,
-0.10603175312280655,
-0.001726175076328218,
-0.008789910934865475,
0.18269997835159302,
-0.022982265800237656,
-0.038319945335388184,
-0.0038838477339595556,
-0.01134921982884407,
-0.042519133538007736,
0.0701993852853775,
0.01032235473394394,
-0.1590651273727417,
0.17975276708602905,
0.22475560009479523,
0.01672876998782158,
0.1513913869857788,
-0.0005274802679196,
0.008664618246257305,
0.0442223884165287,
0.06741055846214294,
-0.030176270753145218,
-0.09014676511287689,
-0.18668848276138306,
0.0006120381876826286,
0.06079950928688049,
0.03229027986526489,
0.06988571584224701,
-0.03334086015820503,
-0.014520970173180103,
-0.007216738071292639,
-0.016693398356437683,
0.09072639048099518,
0.11774119734764099,
0.04620342329144478,
0.13389413058757782,
-0.01764814555644989,
-0.07552565634250641,
0.0665847510099411,
-0.02479793131351471,
-0.024197543039917946,
0.1615533083677292,
-0.13630351424217224,
-0.2797318994998932,
-0.13454020023345947,
-0.13635315001010895,
-0.1005023717880249,
0.031247390434145927,
0.08000397682189941,
-0.10437922179698944,
-0.051323533058166504,
-0.08140245825052261,
0.08245663344860077,
0.029324831441044807,
0.013854313641786575,
-0.007700358517467976,
0.01879298686981201,
-0.02456926554441452,
-0.11531662940979004,
-0.042953185737133026,
0.01567223109304905,
-0.10897442698478699,
0.08966438472270966,
-0.04478234052658081,
0.09340672194957733,
0.16870757937431335,
0.04414729028940201,
0.011824244633316994,
-0.017519008368253708,
0.1201910525560379,
-0.055720120668411255,
0.0013808724470436573,
0.183382049202919,
-0.10696376115083694,
0.015243859961628914,
0.16904257237911224,
0.0019019993487745523,
-0.14066800475120544,
0.06120609864592552,
0.03405971825122833,
-0.08549696952104568,
-0.17860108613967896,
-0.18514034152030945,
-0.11105927079916,
0.16185371577739716,
-0.0005341732758097351,
0.06277927756309509,
0.04066994786262512,
0.04662133380770683,
-0.022998759523034096,
0.02172965370118618,
0.08703088015317917,
0.034704726189374924,
0.25449705123901367,
-0.08970823138952255,
0.13340994715690613,
-0.07111888378858566,
-0.15188291668891907,
0.0841294601559639,
0.08815445750951767,
0.06615990400314331,
0.05308334901928902,
0.06393684446811676,
0.018188850954174995,
0.009652850218117237,
0.058325380086898804,
0.09950846433639526,
0.015274569392204285,
-0.03587207943201065,
-0.026413537561893463,
-0.04678799957036972,
0.009557412937283516,
0.018568718805909157,
-0.010350880213081837,
-0.04307820647954941,
-0.04441184550523758,
0.02367435395717621,
0.12851093709468842,
0.1312100738286972,
0.05841432884335518,
-0.21291455626487732,
-0.011077557690441608,
0.12833993136882782,
-0.021089231595396996,
-0.08128208667039871,
0.12451151013374329,
0.11684799194335938,
-0.029416533187031746,
0.10027918964624405,
-0.03673328086733818,
0.0882057473063469,
-0.06490089744329453,
0.0835537314414978,
-0.0720883309841156,
0.016143225133419037,
0.026279442012310028,
0.06249987706542015,
-0.26423054933547974,
0.13127176463603973,
0.014631693251430988,
-0.03210146352648735,
-0.05283019319176674,
0.004225239157676697,
-0.00039566168561577797,
0.11300206184387207,
0.10317426174879074,
-0.04057231917977333,
0.01607588678598404,
-0.06232035532593727,
-0.09397777169942856,
0.034583091735839844,
0.0711178332567215,
-0.0020934955682605505,
-0.012548070400953293,
-0.05422572046518326,
-0.01962866261601448,
0.0025720379780977964,
0.02334999479353428,
-0.05060240626335144,
-0.20209600031375885,
0.03660527989268303,
0.15071269869804382,
0.05757644400000572,
-0.010946618393063545,
0.016599107533693314,
-0.17814868688583374,
0.3063254654407501,
-0.04232834652066231,
-0.07146195322275162,
-0.08588381111621857,
-0.09153936058282852,
0.05981331318616867,
-0.011860069818794727,
0.059594348073005676,
-0.06538444012403488,
0.02658778615295887,
-0.07533226162195206,
-0.18927925825119019,
0.16065767407417297,
-0.10226269066333771,
-0.039693523198366165,
-0.0291146133095026,
0.15399819612503052,
-0.08533129841089249,
-0.02325357310473919,
0.021700583398342133,
0.019836407154798508,
-0.05298633873462677,
-0.07506335526704788,
-0.026830976828932762,
0.08375118672847748,
0.022499892860651016,
0.12064041942358017,
-0.10465855896472931,
-0.11112646013498306,
0.041860468685626984,
0.003945267293602228,
0.28518688678741455,
0.24817366898059845,
-0.024657955393195152,
0.11565709859132767,
0.07798753678798676,
-0.037725068628787994,
-0.3376917541027069,
-0.05777877941727638,
-0.15962688624858856,
-0.06265385448932648,
-0.04899022355675697,
-0.0593658871948719,
0.1371753215789795,
0.13582998514175415,
-0.01804453134536743,
0.16898266971111298,
-0.277864933013916,
-0.12052788585424423,
0.13287553191184998,
-0.03251807764172554,
0.38870900869369507,
-0.15537413954734802,
-0.06114567071199417,
-0.153908833861351,
-0.16151466965675354,
0.11692839115858078,
-0.21626639366149902,
0.08054709434509277,
0.031111959367990494,
0.037290360778570175,
0.05477556586265564,
-0.03839942812919617,
0.08100013434886932,
-0.00867143552750349,
0.06466898322105408,
-0.11920326203107834,
0.0075513990595936775,
-0.03145378828048706,
-0.01594545505940914,
0.08065275847911835,
-0.18114550411701202,
-0.0031470428220927715,
0.010026336647570133,
-0.03642232343554497,
-0.01295914314687252,
0.09574823081493378,
0.02369842305779457,
-0.044071294367313385,
-0.0314045175909996,
-0.06638111174106598,
0.02030252292752266,
0.018416214734315872,
0.30678296089172363,
-0.04044240713119507,
0.22156858444213867,
0.09499570727348328,
0.14440232515335083,
-0.1284959316253662,
0.0545145682990551,
0.01017453521490097,
-0.0924261212348938,
0.09883560985326767,
-0.11960267275571823,
0.07903766632080078,
0.07743842154741287,
-0.06296393275260925,
0.07760303467512131,
0.08965209126472473,
0.0645306333899498,
0.014781644567847252,
0.13514481484889984,
-0.21959593892097473,
-0.13122330605983734,
0.011611774563789368,
0.006841306108981371,
0.064376100897789,
0.10499100387096405,
0.19849294424057007,
-0.007096794433891773,
0.028382470831274986,
0.008529741317033768,
0.0510745570063591,
-0.06572184711694717,
0.09197671711444855,
-0.04386654496192932,
0.016664527356624603,
-0.14312542974948883,
0.11992926895618439,
0.0029652607627213,
-0.18260367214679718,
0.02849608287215233,
0.08400685340166092,
-0.12564881145954132,
-0.1329854279756546,
-0.07227619737386703,
0.17366813123226166,
0.0032836718019098043,
-0.03184784948825836,
-0.025222836062312126,
-0.19562862813472748,
0.045693207532167435,
0.2256094515323639,
0.056802231818437576,
0.09382715821266174,
0.0270567424595356,
-0.021178605034947395,
-0.0411921888589859,
0.0736461877822876,
-0.0002797169436234981,
0.045107580721378326,
-0.08281588554382324,
0.06456030160188675,
-0.06512286514043808,
0.05816588178277016,
-0.09254014492034912,
-0.01201635506004095,
-0.1739901751279831,
-0.026405727490782738,
-0.19652561843395233,
-0.0929746925830841,
-0.0969247967004776,
-0.025444742292165756,
0.02242656610906124,
0.03383539244532585,
-0.012655871920287609,
-0.05535224825143814,
-0.05138184130191803,
0.00824698805809021,
-0.013359744101762772,
0.058639541268348694,
-0.08423648029565811,
-0.01505305990576744,
0.038560301065444946,
-0.035081539303064346,
0.14548105001449585,
0.045106440782547,
-0.08417580276727676,
0.03414313495159149,
-0.23290103673934937,
-0.05984829366207123,
0.148721382021904,
0.010849771089851856,
0.04558686539530754,
0.0969093069434166,
-0.003892744891345501,
0.05955100432038307,
0.02559436485171318,
0.04902901127934456,
0.060984231531620026,
-0.08715736120939255,
0.05548220872879028,
-0.0548536591231823,
-0.09138472378253937,
-0.029023684561252594,
-0.12455078959465027,
0.05329311639070511,
0.04088180139660835,
0.12584073841571808,
-0.07954975217580795,
0.03369883447885513,
-0.05214231088757515,
0.015763651579618454,
0.02043863572180271,
-0.19886524975299835,
-0.07592359185218811,
-0.021409718319773674,
0.03762146458029747,
-0.04104162007570267,
0.2978864908218384,
-0.034727517515420914,
-0.12820087373256683,
0.07082874327898026,
0.01620166189968586,
-0.0022025953512638807,
0.041007112711668015,
0.1900733858346939,
0.10184342414140701,
-0.03074660524725914,
-0.1525731086730957,
0.04341353103518486,
0.08452172577381134,
-0.05111725628376007,
0.08600891381502151,
0.06940731406211853,
-0.13130977749824524,
0.08187533915042877,
0.019683027639985085,
-0.02711818926036358,
-0.019140208140015602,
-0.1347895711660385,
-0.0711241215467453,
0.0756177231669426,
-0.05491844192147255,
0.011936438269913197,
0.11466500163078308,
-0.009002032689750195,
0.012506915256381035,
-0.05359101668000221,
-0.020041819661855698,
-0.14048905670642853,
-0.044716157019138336,
-0.10941891372203827,
-0.06856125593185425,
0.0007959636859595776,
-0.10042648017406464,
0.008844523690640926,
0.004854187369346619,
0.07471954077482224,
-0.027439074590802193,
0.18378019332885742,
-0.0785067081451416,
-0.007688804063946009,
0.04869452863931656,
-0.011182897724211216,
0.005403933580964804,
0.0022356915287673473,
-0.06886164098978043,
-0.0982925072312355,
0.0027692625299096107,
-0.055328160524368286,
0.07997198402881622,
-0.004407902713865042,
0.03693344444036484,
-0.12409596145153046,
-0.06571988016366959,
-0.0601210817694664,
0.07803947478532791,
-0.014029884710907936,
0.11057503521442413,
0.03429325670003891,
-0.06802425533533096,
0.02849329449236393,
0.13399747014045715,
-0.07102587819099426,
-0.028922148048877716,
-0.07831060886383057,
0.1436408907175064,
0.011749940924346447,
0.13330738246440887,
-0.06055135279893875,
-0.0155674759298563,
-0.09329648315906525,
0.27400222420692444,
0.2988888919353485,
-0.10868147015571594,
0.040924929082393646,
-0.03493761271238327,
0.037170834839344025,
0.04383307695388794,
0.1111597791314125,
0.09143796563148499,
0.2747077941894531,
-0.012195397168397903,
0.012079179286956787,
0.012963911518454552,
-0.029665065929293633,
-0.17131967842578888,
0.009857975877821445,
-0.009462358430027962,
-0.01782490313053131,
0.009492860175669193,
0.06011810898780823,
-0.22306866943836212,
0.09634491056203842,
-0.073457270860672,
-0.14801426231861115,
-0.06248316541314125,
-0.03503512963652611,
0.12993112206459045,
-0.0016817821888253093,
0.04662168025970459,
-0.028729738667607307,
-0.08227919042110443,
0.06320692598819733,
-0.015410483814775944,
-0.12750521302223206,
-0.03323863819241524,
0.0031152069568634033,
0.04889535531401634,
0.004613651428371668,
-0.006755812559276819,
0.026313547044992447,
0.0718918964266777,
0.0013142962707206607,
-0.029538776725530624,
0.09055163711309433,
-0.008991976268589497,
-0.050944842398166656,
-0.006656428333371878,
-0.02209797315299511,
-0.024669764563441277,
0.07887732982635498,
0.07232291251420975,
-0.10219231247901917,
0.005109626334160566,
-0.02464979887008667,
-0.0735187903046608,
-0.05515091121196747,
0.04537724703550339,
-0.03574571758508682,
0.08129268139600754,
0.14173893630504608,
-0.02231527678668499,
0.020403694361448288,
-0.03608293458819389,
-0.002556890482082963,
-0.01518204901367426,
-0.06378418952226639,
-0.10665155202150345,
-0.1671927124261856,
-0.059312328696250916,
0.08096735924482346,
0.019136199727654457,
-0.1808885633945465,
-0.018015405163168907,
-0.14291711151599884,
0.06487461924552917,
-0.14375992119312286,
0.050288811326026917,
0.21392135322093964,
0.017925957217812538,
-0.020047830417752266,
-0.0878281518816948,
0.06692366302013397,
0.06847026944160461,
-0.08648964762687683,
-0.08910271525382996
] |
null | null | transformers |
# Model Trained Using AutoTrain
- Problem type: Image Classification
## Validation Metricsg
loss: nan
f1_macro: 2.895499120347367e-06
f1_micro: 0.0012045290291496024
f1_weighted: 2.8982892905428356e-06
precision_macro: 1.4494934165458512e-06
precision_micro: 0.0012045290291496024
precision_weighted: 1.4508901820640839e-06
recall_macro: 0.0012033694344163659
recall_micro: 0.0012045290291496024
recall_weighted: 0.0012045290291496024
accuracy: 0.0012045290291496024
| {"tags": ["autotrain", "image-classification"], "datasets": ["autotrain-1pwox-g76oa/autotrain-data"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]} | image-classification | IsaacMwesigwa/autotrain-1pwox-g76oa | [
"transformers",
"safetensors",
"resnet",
"image-classification",
"autotrain",
"dataset:autotrain-1pwox-g76oa/autotrain-data",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T22:46:00+00:00 | [] | [] | TAGS
#transformers #safetensors #resnet #image-classification #autotrain #dataset-autotrain-1pwox-g76oa/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoTrain
- Problem type: Image Classification
## Validation Metricsg
loss: nan
f1_macro: 2.895499120347367e-06
f1_micro: 0.0012045290291496024
f1_weighted: 2.8982892905428356e-06
precision_macro: 1.4494934165458512e-06
precision_micro: 0.0012045290291496024
precision_weighted: 1.4508901820640839e-06
recall_macro: 0.0012033694344163659
recall_micro: 0.0012045290291496024
recall_weighted: 0.0012045290291496024
accuracy: 0.0012045290291496024
| [
"# Model Trained Using AutoTrain\n\n- Problem type: Image Classification",
"## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428356e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024"
] | [
"TAGS\n#transformers #safetensors #resnet #image-classification #autotrain #dataset-autotrain-1pwox-g76oa/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoTrain\n\n- Problem type: Image Classification",
"## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428356e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024"
] | [
64,
16,
154
] | [
"passage: TAGS\n#transformers #safetensors #resnet #image-classification #autotrain #dataset-autotrain-1pwox-g76oa/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Image Classification## Validation Metricsg\nloss: nan\n\nf1_macro: 2.895499120347367e-06\n\nf1_micro: 0.0012045290291496024\n\nf1_weighted: 2.8982892905428356e-06\n\nprecision_macro: 1.4494934165458512e-06\n\nprecision_micro: 0.0012045290291496024\n\nprecision_weighted: 1.4508901820640839e-06\n\nrecall_macro: 0.0012033694344163659\n\nrecall_micro: 0.0012045290291496024\n\nrecall_weighted: 0.0012045290291496024\n\naccuracy: 0.0012045290291496024"
] | [
-0.13593515753746033,
0.12928669154644012,
0.0008598534041084349,
0.11509276926517487,
0.10621848702430725,
0.026519373059272766,
0.07098347693681717,
0.12025495618581772,
-0.05762733146548271,
0.138227641582489,
0.1314011812210083,
0.06020290032029152,
0.0765051394701004,
0.12385819852352142,
-0.1405409723520279,
-0.11770851910114288,
0.030594229698181152,
0.023115867748856544,
0.09612008184194565,
0.07335303723812103,
0.05026467144489288,
-0.12849746644496918,
0.12722815573215485,
-0.016360433772206306,
-0.25725257396698,
0.03951896354556084,
0.13101929426193237,
-0.09607306122779846,
0.07816463708877563,
0.10613823682069778,
0.08759558945894241,
-0.03267749771475792,
0.12509432435035706,
-0.039464909583330154,
-0.02938707172870636,
0.014665990136563778,
-0.0018815499497577548,
0.054865241050720215,
0.13690818846225739,
0.019713446497917175,
-0.06711263954639435,
-0.03206251189112663,
0.050172798335552216,
0.06056763231754303,
-0.06221194937825203,
-0.075958251953125,
-0.0968061164021492,
0.09281802922487259,
0.07640384882688522,
0.10693012923002243,
-0.01268591359257698,
0.18571346998214722,
-0.035760898143053055,
0.0834125503897667,
0.11712989211082458,
-0.21666160225868225,
-0.07219653576612473,
0.159551203250885,
-0.06085772067308426,
-0.06879516690969467,
-0.07789690047502518,
0.052065592259168625,
0.1364966630935669,
0.015347341075539589,
-0.002332738833501935,
-0.00991069246083498,
-0.030188623815774918,
0.011873114854097366,
-0.09526621550321579,
-0.012660844251513481,
0.18431001901626587,
0.04280296340584755,
-0.07592212408781052,
-0.09528885036706924,
-0.060294464230537415,
-0.12118589878082275,
-0.0693613737821579,
-0.030540652573108673,
0.00432191975414753,
-0.059183359146118164,
-0.10171037912368774,
0.12513849139213562,
-0.02999986708164215,
-0.12175028026103973,
-0.16036921739578247,
0.08071042597293854,
-0.00775630259886384,
0.04523282125592232,
0.01843206211924553,
0.04000093787908554,
-0.018060822039842606,
-0.08866529911756516,
0.00601608119904995,
0.022588156163692474,
-0.08374897390604019,
-0.05339447781443596,
0.0024172591511160135,
0.006417233496904373,
0.008936060592532158,
0.13415558636188507,
0.02207043766975403,
0.05307893455028534,
-0.038608796894550323,
0.00718696229159832,
-0.0820605456829071,
0.1950133889913559,
-0.15080934762954712,
-0.07144084572792053,
0.005879355128854513,
-0.006364108994603157,
0.03562292084097862,
0.009427707642316818,
-0.059357900172472,
-0.10583867132663727,
0.15341968834400177,
0.015725532546639442,
-0.02879394218325615,
0.025850454345345497,
-0.06285113841295242,
-0.01648586615920067,
-0.02521449513733387,
-0.08259356021881104,
0.013267639093101025,
-0.06091096252202988,
-0.1637931764125824,
0.016695505008101463,
0.03904588893055916,
0.013063814491033554,
-0.026258211582899094,
0.08438848704099655,
-0.14366395771503448,
0.019634654745459557,
-0.05575808137655258,
-0.13212217390537262,
0.042452920228242874,
-0.021663900464773178,
-0.008706801570951939,
-0.11753921955823898,
-0.2213059365749359,
-0.05952358990907669,
-0.06442379206418991,
-0.1171049028635025,
0.0076931375078856945,
-0.029541168361902237,
-0.08394156396389008,
0.07976319640874863,
0.032052285969257355,
0.11440671980381012,
-0.018999384716153145,
0.03472352400422096,
0.0610932894051075,
0.0973515436053276,
-0.0030403027776628733,
0.009578189812600613,
-0.07640208303928375,
-0.0045982166193425655,
-0.18758052587509155,
0.025289176031947136,
-0.05330228433012962,
0.05869201570749283,
-0.09848396480083466,
-0.0016774662071838975,
0.05362774804234505,
-0.015940530225634575,
0.043939072638750076,
0.17341719567775726,
-0.12953704595565796,
-0.020595915615558624,
0.0567580983042717,
-0.08401969075202942,
-0.08439140021800995,
0.12064816802740097,
0.008666451089084148,
0.023730723187327385,
0.045689672231674194,
0.06538468599319458,
0.010812881402671337,
-0.09811166673898697,
-0.0819905549287796,
-0.06021584942936897,
-0.03602970391511917,
-0.04931444302201271,
0.06752975285053253,
0.007708495482802391,
-0.10626126080751419,
0.013715861365199089,
0.06791717559099197,
0.02075258269906044,
-0.07485547661781311,
-0.055596090853214264,
-0.05055424943566322,
-0.07029186934232712,
0.016663234680891037,
0.02706184610724449,
0.0526171512901783,
-0.0756685733795166,
-0.05614479258656502,
0.052628763020038605,
0.10250142961740494,
0.002766895107924938,
-0.05821482092142105,
-0.14270222187042236,
0.04954589158296585,
-0.18174107372760773,
-0.04036687687039375,
-0.154648557305336,
-0.08296551555395126,
-0.007672522217035294,
-0.009736810810863972,
-0.028563162311911583,
-0.08012466132640839,
0.09664410352706909,
0.03293633088469505,
-0.07190317660570145,
-0.03019002079963684,
0.08472687005996704,
-0.004432463087141514,
-0.10627654939889908,
-0.10629535466432571,
0.0030306363478302956,
0.03025040403008461,
0.21915701031684875,
-0.17694926261901855,
-0.02958136983215809,
0.04544859007000923,
0.10203653573989868,
0.04194706305861473,
-0.013351981528103352,
-0.017560211941599846,
0.03746310621500015,
-0.03617192059755325,
-0.0889262929558754,
0.027747076004743576,
-0.034536588937044144,
-0.0709129050374031,
0.026122085750102997,
-0.23210585117340088,
0.2864815592765808,
0.13700388371944427,
0.011730587109923363,
-0.10750459879636765,
-0.013987421058118343,
0.01963539607822895,
-0.0812743678689003,
-0.10106071084737778,
-0.0033009641338139772,
-0.029658440500497818,
-0.02610698528587818,
0.09794655442237854,
-0.06404194980859756,
-0.048642564564943314,
0.04635418578982353,
0.008224405348300934,
-0.083124540746212,
0.15445183217525482,
-0.01045786403119564,
-0.14268745481967926,
0.1292283833026886,
0.017622100189328194,
-0.10244855284690857,
0.10117945075035095,
0.02272334322333336,
-0.07389695197343826,
-0.06435884535312653,
-0.05457775294780731,
0.044776801019907,
0.13438604772090912,
0.05877457559108734,
0.03475335240364075,
0.03527973219752312,
-0.02518879435956478,
-0.01660829782485962,
-0.10421660542488098,
-0.004196594934910536,
-0.006841145921498537,
-0.01263007614761591,
0.024659665301442146,
-0.029601043090224266,
0.05151788517832756,
0.17524975538253784,
-0.001246616360731423,
-0.07956216484308243,
0.04001719877123833,
-0.005949020851403475,
-0.07049290090799332,
0.18649733066558838,
-0.06597188860177994,
-0.15707936882972717,
-0.18652087450027466,
-0.046587906777858734,
-0.10759913176298141,
-0.011639547534286976,
-0.03231046721339226,
-0.09603018313646317,
-0.11128615587949753,
-0.08097239583730698,
-0.015363005921244621,
0.007183257956057787,
-0.02437632717192173,
0.048809319734573364,
-0.021880336105823517,
0.09026691317558289,
-0.04688737913966179,
-0.0444449782371521,
-0.025943035259842873,
-0.048771932721138,
0.07907167077064514,
0.00006424470484489575,
0.14637519419193268,
0.15072444081306458,
-0.030291002243757248,
0.038618169724941254,
-0.03636116534471512,
0.11723054200410843,
-0.02326776646077633,
0.004598292056471109,
0.18119977414608002,
0.06322962790727615,
0.0036973292008042336,
0.13902127742767334,
0.014789408072829247,
-0.09062296897172928,
0.03711610659956932,
0.06615227460861206,
-0.009614977054297924,
-0.13027137517929077,
-0.1324848085641861,
0.03057558462023735,
0.017294231802225113,
0.13005217909812927,
0.017871880903840065,
0.10719804465770721,
0.10636448860168457,
-0.002880481071770191,
0.1020214706659317,
-0.03905346989631653,
0.07456742972135544,
0.13334044814109802,
0.056925512850284576,
0.18677133321762085,
-0.07443354278802872,
-0.014048616401851177,
0.05917154625058174,
-0.04455944523215294,
0.06940951943397522,
0.013784942217171192,
0.029193278402090073,
-0.04860391095280647,
0.12109092622995377,
0.06750276684761047,
0.09413427114486694,
0.0830802470445633,
-0.0674845427274704,
0.04357607290148735,
-0.09688902646303177,
-0.05201610177755356,
0.0408429391682148,
-0.009566753171384335,
0.11859967559576035,
-0.11302637308835983,
0.06935779750347137,
0.02856557071208954,
0.1400662213563919,
0.08872366696596146,
-0.48781290650367737,
-0.10188861936330795,
0.029498228803277016,
0.03536371514201164,
-0.12216096371412277,
-0.0029862723313272,
0.06772078573703766,
-0.10579628497362137,
0.03805038332939148,
-0.05717236548662186,
0.08590257912874222,
-0.033763982355594635,
-0.012193813920021057,
-0.014026287011802197,
0.06374334543943405,
-0.03572041541337967,
0.025886163115501404,
-0.2089661955833435,
0.18020960688591003,
0.07522594183683395,
0.05868278443813324,
-0.08586780726909637,
-0.006345354951918125,
0.0845518559217453,
-0.002541404915973544,
0.16522006690502167,
-0.018009910359978676,
-0.12892819941043854,
-0.35952115058898926,
-0.08055001497268677,
-0.026151403784751892,
0.02041276916861534,
0.03641475364565849,
0.10283271968364716,
-0.05486082658171654,
-0.03258805721998215,
0.038598064333200455,
-0.06008697673678398,
-0.12569165229797363,
-0.003467968665063381,
-0.007458072621375322,
0.1257074475288391,
-0.007091513369232416,
-0.06183239445090294,
-0.1064571663737297,
-0.06204121559858322,
0.08311603218317032,
-0.10549647361040115,
-0.04306984692811966,
-0.16284853219985962,
0.13044330477714539,
0.11314188688993454,
-0.08072833716869354,
0.04857088252902031,
0.00273411488160491,
0.1507689505815506,
0.03126589208841324,
-0.11681705713272095,
0.12680453062057495,
-0.09502767026424408,
-0.08643382042646408,
-0.008532973937690258,
0.013108361512422562,
-0.0013525886461138725,
0.03966817259788513,
0.0357910580933094,
0.058611851185560226,
0.013910395093262196,
-0.06512892991304398,
0.0693846195936203,
0.013246835209429264,
0.17214776575565338,
0.11774828284978867,
-0.020126275718212128,
-0.16124635934829712,
-0.0692082867026329,
0.006044953595846891,
0.07414255291223526,
0.23881757259368896,
-0.07711229473352432,
-0.1051873192191124,
0.04222232475876808,
-0.013294522650539875,
-0.2651820182800293,
0.09271528571844101,
-0.03461539000272751,
0.06759948283433914,
-0.04324702173471451,
0.01520766131579876,
0.14930643141269684,
0.18359042704105377,
-0.03154510259628296,
0.020297804847359657,
-0.24512337148189545,
-0.12400007992982864,
0.2169761061668396,
0.11461451649665833,
0.11468210816383362,
-0.10808519273996353,
-0.05693770945072174,
-0.1449929028749466,
-0.12796056270599365,
-0.009716691449284554,
-0.012330002151429653,
0.05862122401595116,
-0.07254048436880112,
0.02336432971060276,
0.0485110729932785,
-0.07901646941900253,
0.11239734292030334,
-0.020538292825222015,
0.10871181637048721,
-0.0761951133608818,
-0.031224777922034264,
-0.0032640707213431597,
-0.07695186138153076,
0.12920138239860535,
0.09148033708333969,
0.06598407030105591,
-0.0951995998620987,
-0.010310456156730652,
-0.011343425139784813,
0.0630251094698906,
-0.02810659632086754,
-0.046628184616565704,
-0.03913135081529617,
0.07045945525169373,
-0.0858338326215744,
-0.07954762876033783,
-0.037821393460035324,
-0.03249255567789078,
0.09364006668329239,
0.16549237072467804,
0.04845375567674637,
-0.06201932579278946,
-0.0012860208516940475,
0.03976135328412056,
-0.05450453981757164,
0.08338041603565216,
-0.02295726165175438,
0.06785284727811813,
0.13548025488853455,
0.022948088124394417,
0.1450035572052002,
0.06292734295129776,
-0.016346605494618416,
-0.013207809068262577,
0.040829550474882126,
-0.11066407710313797,
0.02841593697667122,
-0.037839606404304504,
-0.033271223306655884,
-0.03402257338166237,
-0.01652851700782776,
0.11383964121341705,
-0.07345248013734818,
0.03100786730647087,
-0.00686409417539835,
0.024203753098845482,
0.032546453177928925,
0.2749693989753723,
0.0009360173135064542,
0.046567995101213455,
-0.11294205486774445,
0.13298021256923676,
0.05272146686911583,
-0.12872862815856934,
0.019299648702144623,
-0.014280675910413265,
-0.07040614634752274,
0.002532814396545291,
0.035406406968832016,
0.19149194657802582,
-0.2036329060792923,
-0.07105464488267899,
-0.13499657809734344,
-0.15815259516239166,
0.07123848795890808,
0.27924391627311707,
0.10076470673084259,
0.014778455719351768,
0.02352510578930378,
-0.07552248239517212,
-0.11547412723302841,
0.08196108788251877,
0.1213160827755928,
0.04768315330147743,
-0.17535549402236938,
0.14709316194057465,
-0.03710690140724182,
-0.01683145947754383,
-0.04304146766662598,
0.03267200291156769,
-0.16123609244823456,
0.010389015078544617,
-0.0954728052020073,
0.07740312814712524,
-0.02894430235028267,
0.00917078461498022,
-0.01402892917394638,
0.004753055050969124,
-0.07444865256547928,
0.04844381660223007,
-0.03263727203011513,
-0.03693542256951332,
0.05227372422814369,
0.04012530669569969,
-0.11115750670433044,
-0.07455351948738098,
0.0448681078851223,
-0.015741372480988503,
0.013229773379862309,
0.08156715333461761,
0.0932483971118927,
-0.006840045563876629,
-0.042240243405103683,
-0.03577761352062225,
0.10493718087673187,
-0.04008181393146515,
0.06659308820962906,
-0.14390715956687927,
0.03637951985001564,
0.028700750321149826,
0.006929855793714523,
0.05588267371058464,
0.04864637926220894,
-0.09335901588201523,
-0.049074456095695496,
-0.1037953644990921,
-0.03169911354780197,
-0.14172685146331787,
0.0449799969792366,
0.19739127159118652,
0.014486904256045818,
0.1019761934876442,
-0.10701466351747513,
-0.02054566703736782,
-0.1993071585893631,
0.012322580441832542,
-0.04836644232273102,
-0.10535924881696701,
-0.057402290403842926,
0.03738365322351456,
0.08327863365411758,
-0.007131221704185009,
0.060740988701581955,
-0.01468747016042471,
-0.000983336241915822,
0.062415704131126404,
0.12700873613357544,
-0.05591445416212082,
0.0037272758781909943,
0.18597911298274994,
0.09467407315969467,
-0.02623087912797928,
0.0910976380109787,
0.09615056961774826,
0.1474253386259079,
0.05626995861530304,
0.03881335258483887,
0.09390012174844742,
-0.059719908982515335,
0.1515779197216034,
0.055057357996702194,
-0.07941573113203049,
-0.014938951469957829,
0.12574002146720886,
-0.18306805193424225,
0.0346749871969223,
-0.03317366912961006,
0.007880426943302155,
0.18148300051689148,
-0.10472512990236282,
-0.02429663948714733,
-0.0832715630531311,
-0.06149008125066757,
-0.1321505606174469,
-0.06948430091142654,
-0.15270371735095978,
-0.06107691302895546,
0.0014997024554759264,
-0.08832769840955734,
0.03198618441820145,
0.21242214739322662,
0.040309030562639236,
0.004313258919864893,
0.16230228543281555,
-0.21455489099025726,
-0.004297666251659393,
0.019967973232269287,
-0.009041355922818184,
-0.05490097030997276,
-0.036572687327861786,
-0.05222517251968384,
0.07066178321838379,
0.02512359619140625,
0.04341762512922287,
-0.015920640900731087,
0.03241753950715065,
0.05015911906957626,
0.018551232293248177,
-0.10472217202186584,
-0.035174015909433365,
0.029507793486118317,
0.025165975093841553,
0.030138207599520683,
0.0035722674801945686,
0.06237741932272911,
-0.035226039588451385,
0.23080939054489136,
-0.12162984162569046,
0.009092448279261589,
-0.09692244976758957,
0.18034566938877106,
-0.001930161495693028,
0.07245580106973648,
-0.001494607888162136,
-0.06251560151576996,
0.07506595551967621,
0.1299658715724945,
0.06313838064670563,
-0.03808830678462982,
-0.07549352198839188,
-0.009442261420190334,
-0.018762357532978058,
-0.0868057981133461,
0.06076718866825104,
0.05237604305148125,
0.0402907133102417,
-0.06170474737882614,
0.05883857235312462,
-0.004882939625531435,
-0.05493577569723129,
-0.007458393462002277,
0.028316011652350426,
-0.012658879160881042,
0.044698625802993774,
-0.060750845819711685,
0.06976164132356644,
0.02639583870768547,
0.06932307034730911,
0.14731527864933014,
-0.10389470309019089,
-0.14778830111026764,
0.0499514639377594,
0.016873806715011597,
-0.050428181886672974,
0.0749836266040802,
-0.07885941863059998,
0.04796861857175827,
-0.04703141748905182,
-0.009693725034594536,
-0.15806730091571808,
-0.15865840017795563,
-0.020236605778336525,
0.16131460666656494,
0.28457555174827576,
0.002028204733505845,
0.07827996462583542,
0.13172189891338348,
-0.04779048636555672,
-0.1763952672481537,
0.10782241821289062,
-0.03785491734743118,
-0.15380273759365082,
0.11383572965860367,
0.16056673228740692,
-0.01595248281955719,
0.19721995294094086,
0.013525803573429585,
-0.1799817830324173,
0.007858801633119583,
-0.05145753547549248,
0.0040918802842497826,
-0.05632356181740761,
0.021605005487799644,
-0.05604736879467964,
0.16052678227424622,
0.11703474819660187,
-0.03173442184925079,
0.0012719747610390186,
-0.049360353499650955,
0.038526978343725204,
0.014336735010147095,
0.056336596608161926,
0.045782044529914856,
-0.123519666492939,
0.08489515632390976,
-0.15693633258342743,
-0.01741614192724228,
-0.3231983184814453,
-0.07335621863603592,
-0.020699517801404,
-0.10112884640693665,
-0.06895366311073303,
0.09250877797603607,
0.11312112957239151,
0.05439813435077667,
-0.04983287304639816,
-0.2246108055114746,
0.06851480901241302,
0.13490897417068481,
-0.06814764440059662,
-0.12801051139831543
] |
null | null | transformers | # miquliz-120b

- EXL2: [2.4bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.4bpw-h6-exl2) | [2.65bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.65bpw-h6-exl2) | 2.9bpw | [4.0bpw](https://huggingface.co/LoneStriker/miquliz-120b-4.0bpw-h6-exl2)
- GGUF: [IQ3_XXS](https://huggingface.co/wolfram/miquliz-120b-GGUF) | [Q4_K_S+Q4_K_M](https://huggingface.co/NanoByte/miquliz-120b-Q4-GGUF)
- HF: [wolfram/miquliz-120b](https://huggingface.co/wolfram/miquliz-120b)
This is a 120b frankenmerge created by interleaving layers of [miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) with [lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) using [mergekit](https://github.com/cg123/mergekit).
Inspired by [goliath-120b](https://huggingface.co/alpindale/goliath-120b).
Thanks for the support, [CopilotKit](https://github.com/CopilotKit/CopilotKit) - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, [Lone Striker](https://huggingface.co/LoneStriker) and [NanoByte](https://huggingface.co/NanoByte)!
## Prompt template: Mistral
```
<s>[INST] {prompt} [/INST]
```
See also: [🐺🐦⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with **17** different instruct templates : LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/comments/18ljvxb/llm_prompt_format_comparisontest_mixtral_8x7b/)
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 16]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [8, 24]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [17, 32]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [25, 40]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [33, 48]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [41, 56]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [49, 64]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [57, 72]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [65, 80]
model: 152334H/miqu-1-70b-sf
```
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: [mistralai (Mistral AI_)](https://huggingface.co/mistralai)
- leaked model: [miqudev/miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b)
- f16 model: [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- 2nd model: [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
- mergekit: [arcee-ai/mergekit: Tools for merging pretrained large language models.](https://github.com/arcee-ai/mergekit)
- mergekit_config.yml: [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
### Support
- [My Ko-fi page](https://ko-fi.com/wolframravenwolf) if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS [BASED ON A LEAKED ASSET](https://huggingface.co/miqudev/miqu-1-70b/discussions/10) AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| {"language": ["en", "de", "fr", "es", "it"], "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["152334H/miqu-1-70b-sf", "lizpreciatior/lzlv_70b_fp16_hf"]} | text-generation | LoneStriker/miquliz-120b-2.9bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"en",
"de",
"fr",
"es",
"it",
"base_model:152334H/miqu-1-70b-sf",
"base_model:lizpreciatior/lzlv_70b_fp16_hf",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T22:49:50+00:00 | [] | [
"en",
"de",
"fr",
"es",
"it"
] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # miquliz-120b
!image/jpeg
- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw
- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M
- HF: wolfram/miquliz-120b
This is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.
Inspired by goliath-120b.
Thanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!
## Prompt template: Mistral
See also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- 152334H/miqu-1-70b-sf
- lizpreciatior/lzlv_70b_fp16_hf
### Configuration
The following YAML configuration was used to produce this model:
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: mistralai (Mistral AI_)
- leaked model: miqudev/miqu-1-70b
- f16 model: 152334H/miqu-1-70b-sf
- 2nd model: lizpreciatior/lzlv_70b_fp16_hf
- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.
- mergekit_config.yml: alpindale/goliath-120b
### Support
- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| [
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
108,
193,
44,
18,
4,
17,
48,
17,
128,
69,
43
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137## Merge Details### Merge Method\n\nThis model was merged using the passthrough merge method.### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.12368366122245789,
0.12789610028266907,
-0.004829886835068464,
0.07118041813373566,
0.008432804606854916,
0.030466794967651367,
0.15808768570423126,
0.1408398449420929,
0.12250641733407974,
0.11074402928352356,
-0.0003772966156248003,
0.059276167303323746,
0.0867873802781105,
0.16237597167491913,
-0.01879403181374073,
-0.09192074835300446,
0.023846887052059174,
-0.03254108875989914,
-0.016614433377981186,
0.08230546861886978,
0.06071207672357559,
-0.04489263892173767,
0.06874342262744904,
0.05266686528921127,
-0.1173800379037857,
-0.0025762326549738646,
-0.019535329192876816,
-0.0035260901786386967,
0.08725646883249283,
0.090943343937397,
0.03682366758584976,
0.047848619520664215,
0.013767924159765244,
-0.14496155083179474,
0.03160346671938896,
0.04793968051671982,
-0.03261971473693848,
0.08455878496170044,
0.11339690536260605,
-0.032416824251413345,
0.0792437195777893,
-0.04937126114964485,
-0.024935640394687653,
0.09329741448163986,
-0.10145971179008484,
-0.18160124123096466,
-0.17187398672103882,
0.1256534308195114,
0.037529584020376205,
0.023336073383688927,
-0.02024589292705059,
0.11190760880708694,
0.0369829423725605,
0.08653295785188675,
0.24754253029823303,
-0.17050236463546753,
-0.05275990068912506,
0.04109650105237961,
0.017943190410733223,
-0.09884168952703476,
-0.02588641084730625,
0.037537846714258194,
0.02536020427942276,
-0.013790946453809738,
0.0470578595995903,
-0.06060151010751724,
0.07586272805929184,
-0.05851813033223152,
-0.14439910650253296,
-0.011108231730759144,
0.0699799656867981,
0.051052119582891464,
-0.04237183555960655,
-0.15585270524024963,
-0.07426974177360535,
0.011751646175980568,
-0.0058364905416965485,
-0.012671277858316898,
-0.026297500357031822,
-0.03774981573224068,
0.07239900529384613,
-0.06227460131049156,
-0.027483807876706123,
-0.041599247604608536,
-0.030472077429294586,
0.1456686556339264,
0.03454676270484924,
0.016460439190268517,
0.0009482491295784712,
0.07474207133054733,
-0.11470949649810791,
-0.14837470650672913,
-0.04670407250523567,
-0.023340268060564995,
-0.10872059315443039,
-0.03630848973989487,
0.0027755394112318754,
-0.04055022448301315,
0.060745719820261,
0.20719100534915924,
-0.11167024075984955,
0.058465491980314255,
0.02167990617454052,
0.03042621538043022,
0.0022220457904040813,
0.05014816299080849,
-0.05429374426603317,
-0.06990977376699448,
0.024466900154948235,
0.043704770505428314,
0.04189739376306534,
-0.011906677857041359,
-0.00637865299358964,
-0.005814081989228725,
-0.025086048990488052,
0.04248442500829697,
0.057028356939554214,
0.00006505353667307645,
-0.06931952387094498,
-0.05062215030193329,
0.1558380275964737,
-0.12208744138479233,
0.05983341857790947,
0.027952637523412704,
-0.02203182876110077,
-0.03659253567457199,
0.07147088646888733,
-0.036103203892707825,
-0.06757796555757523,
0.003653585212305188,
-0.05460790544748306,
0.01350486185401678,
-0.03342496603727341,
-0.06830274313688278,
0.03372606262564659,
-0.030463969334959984,
-0.049800045788288116,
-0.13874182105064392,
-0.11608945578336716,
-0.05686583369970322,
0.039471741765737534,
-0.07531989365816116,
0.03137357160449028,
0.0206131674349308,
-0.06815514713525772,
0.016908833757042885,
0.04215963929891586,
-0.02309141494333744,
-0.014663412235677242,
-0.008669499307870865,
0.026837516576051712,
0.04982210323214531,
0.011029177345335484,
-0.00849899835884571,
-0.03755652904510498,
0.08720458298921585,
-0.13124476373195648,
0.11570584774017334,
-0.10697617381811142,
-0.0175891425460577,
-0.14562152326107025,
-0.021388312801718712,
0.02837793342769146,
-0.014576669782400131,
0.06801756471395493,
0.15541520714759827,
-0.11956251412630081,
-0.057199627161026,
0.14212393760681152,
-0.10452718287706375,
-0.08326901495456696,
0.0896964743733406,
-0.001530867419205606,
0.004996958654373884,
0.023222999647259712,
0.15921443700790405,
0.2206583321094513,
-0.09496251493692398,
-0.03753845393657684,
-0.041817598044872284,
0.02606145292520523,
0.10511910915374756,
0.04245214909315109,
-0.04663945734500885,
0.041522711515426636,
-0.007779768668115139,
-0.033237650990486145,
-0.017682453617453575,
-0.009546971879899502,
-0.07089126110076904,
-0.06520862132310867,
-0.06327446550130844,
0.00790522713214159,
-0.029427755624055862,
-0.009285880252718925,
-0.031943242996931076,
-0.06854052096605301,
-0.03167993202805519,
0.13503709435462952,
-0.045838870108127594,
-0.014511617831885815,
-0.07795076072216034,
0.13901136815547943,
-0.02076946385204792,
0.019529197365045547,
-0.1386507749557495,
-0.10085764527320862,
0.06192042678594589,
-0.2569917142391205,
0.0288861021399498,
-0.024994120001792908,
0.033609483391046524,
0.09510236233472824,
-0.022114844992756844,
-0.04090216010808945,
-0.0036946572363376617,
-0.02901856228709221,
-0.01620562933385372,
-0.13861826062202454,
-0.09312329441308975,
-0.021515900269150734,
0.16482308506965637,
-0.10285954922437668,
0.060498472303152084,
0.05872023105621338,
0.177692711353302,
-0.0010935618774965405,
-0.0495661161839962,
0.04133046418428421,
0.014076328836381435,
-0.00933940801769495,
-0.06117941439151764,
0.03129934147000313,
-0.017155325040221214,
-0.07683154195547104,
0.0230487659573555,
-0.09522220492362976,
-0.06828600913286209,
0.0454079769551754,
0.1084422916173935,
-0.08888481557369232,
-0.045977573841810226,
-0.010482335463166237,
-0.02788333222270012,
-0.05628563091158867,
-0.05581507459282875,
0.08716053515672684,
0.0313115268945694,
0.06286195665597916,
-0.07583241164684296,
-0.12060359865427017,
0.011962266638875008,
0.00497860461473465,
-0.03765784949064255,
0.136618509888649,
0.0008419781224802136,
-0.1441844403743744,
0.09529437869787216,
0.0573565848171711,
0.02403576485812664,
0.15169063210487366,
0.010673169046640396,
-0.03464016318321228,
-0.09475518018007278,
0.06382697820663452,
0.04144428297877312,
0.09565594792366028,
0.016134966164827347,
0.0277025755494833,
0.051495399326086044,
-0.013188540004193783,
0.014995002187788486,
-0.11568167805671692,
0.028803836554288864,
0.02679041586816311,
-0.04290289059281349,
0.016975726932287216,
0.06925228238105774,
-0.006320801563560963,
0.06676694005727768,
-0.015466314740478992,
0.061539020389318466,
-0.03364915773272514,
-0.058776941150426865,
-0.1265030950307846,
0.1567183881998062,
-0.08924178034067154,
-0.1561521589756012,
-0.15872417390346527,
-0.019933052361011505,
-0.11261028796434402,
-0.04740180820226669,
0.03474276140332222,
-0.026875589042901993,
-0.04287160560488701,
-0.09326061606407166,
0.05285726115107536,
0.07770129293203354,
-0.05764682963490486,
0.029928429052233696,
-0.01687181368470192,
0.06855647265911102,
-0.11296849697828293,
-0.023465275764465332,
0.060048799961805344,
0.02526327408850193,
0.028736509382724762,
0.05163873732089996,
0.09489382058382034,
0.08398807793855667,
0.0362507700920105,
0.015089208260178566,
0.013857324607670307,
0.2598232924938202,
-0.09863453358411789,
0.08720748126506805,
0.16616471111774445,
0.0034785973839461803,
0.07429353147745132,
0.13056929409503937,
0.07720997929573059,
-0.06613697111606598,
-0.023135513067245483,
0.02194489724934101,
-0.024997616186738014,
-0.158270925283432,
-0.07069829851388931,
-0.055327292531728745,
0.003951964899897575,
0.05960322916507721,
0.048116009682416916,
-0.007396707311272621,
0.054213475435972214,
-0.052058011293411255,
-0.038888148963451385,
0.04421881586313248,
0.07643278688192368,
0.06988003104925156,
0.04795686528086662,
0.0641406998038292,
-0.019555028527975082,
0.01910572312772274,
0.09517364203929901,
0.01043457631021738,
0.10210463404655457,
-0.02330624684691429,
0.18152542412281036,
0.06063041090965271,
0.10171207040548325,
0.009897595271468163,
0.0423230305314064,
0.019875910133123398,
0.014567595906555653,
0.037878766655921936,
-0.09714611619710922,
0.03497471660375595,
0.04005565494298935,
-0.038389697670936584,
0.06132099777460098,
-0.029189273715019226,
-0.029169373214244843,
0.06890357285737991,
0.23063409328460693,
0.08791407197713852,
-0.23662646114826202,
-0.06820894032716751,
0.028633689507842064,
-0.01798653043806553,
-0.02710089273750782,
-0.07196102291345596,
0.08232519030570984,
-0.1499929130077362,
0.12502896785736084,
-0.02664428949356079,
0.08723902702331543,
-0.05597300082445145,
-0.03246639296412468,
0.023017756640911102,
0.13063931465148926,
0.007563863415271044,
0.021590637043118477,
-0.08814773708581924,
0.13470914959907532,
0.03742704913020134,
0.03612137585878372,
-0.048384156078100204,
0.04792026802897453,
0.05386565625667572,
0.03256596624851227,
0.12723557651042938,
0.03399898111820221,
-0.04833051189780235,
-0.1234588697552681,
-0.06502183526754379,
-0.011905249208211899,
0.07326267659664154,
-0.11644229292869568,
0.1085549145936966,
0.0008896282524801791,
-0.05773821100592613,
-0.06975867599248886,
0.04854271560907364,
-0.1246747151017189,
-0.1326695680618286,
0.09270588308572769,
0.019206488505005836,
-0.004347942303866148,
-0.08910027891397476,
-0.02384672500193119,
-0.07720056921243668,
0.17835187911987305,
-0.13138552010059357,
-0.10424366593360901,
-0.14623430371284485,
0.019838901236653328,
0.12011423707008362,
-0.09586021304130554,
0.04952145740389824,
-0.054908137768507004,
0.13131214678287506,
-0.08491016179323196,
-0.10803071409463882,
0.0031110455747693777,
-0.10406436771154404,
-0.15895523130893707,
-0.016845667734742165,
0.18804065883159637,
0.06841174513101578,
0.01998257078230381,
0.04636812582612038,
0.033293623477220535,
0.0006021942244842649,
-0.10974181443452835,
0.0050140367820858955,
0.12546297907829285,
0.006240382324904203,
0.09202331304550171,
-0.04566655680537224,
-0.04445214569568634,
-0.09057268500328064,
-0.04287262633442879,
0.05312792956829071,
0.306938499212265,
-0.07398373633623123,
0.057277124375104904,
0.06801817566156387,
-0.04662609472870827,
-0.13315193355083466,
-0.019342564046382904,
0.06505969911813736,
0.019270027056336403,
0.025498589500784874,
-0.10378386825323105,
0.05618932843208313,
0.08659297972917557,
-0.003092100378125906,
0.15438351035118103,
-0.28497934341430664,
-0.12206729501485825,
0.014736184850335121,
0.054704729467630386,
-0.10833261907100677,
-0.13666997849941254,
-0.11265040189027786,
-0.05001175031065941,
-0.18979574739933014,
0.07308121025562286,
-0.03530014306306839,
0.05785314366221428,
-0.02325328253209591,
0.038133639842271805,
0.025217236950993538,
-0.037785958498716354,
0.19537271559238434,
-0.00041987834265455604,
0.05685656517744064,
-0.06840397417545319,
0.07129933685064316,
0.009667005389928818,
-0.07543710619211197,
0.08063114434480667,
-0.016769062727689743,
0.057787660509347916,
-0.07750823348760605,
-0.0037023189943283796,
-0.09891999512910843,
0.08838903158903122,
-0.06746514141559601,
-0.003480901475995779,
-0.068965382874012,
0.08907764405012131,
0.04152337461709976,
-0.016935698688030243,
-0.010590536519885063,
-0.03918278589844704,
0.12641924619674683,
0.22624219954013824,
0.08268904685974121,
-0.021522628143429756,
-0.08541391789913177,
-0.0028606210835278034,
-0.02340327389538288,
0.03568483144044876,
-0.05007392168045044,
0.030080698430538177,
0.09638979285955429,
0.07416202127933502,
0.11765220761299133,
0.007687520235776901,
-0.13749492168426514,
-0.025064611807465553,
0.05596223101019859,
-0.1590513288974762,
-0.1764783412218094,
-0.04164158180356026,
0.018489325419068336,
-0.043415963649749756,
0.0011119890259578824,
0.2094741314649582,
-0.01564190536737442,
-0.04446769133210182,
0.032563433051109314,
0.03490924462676048,
-0.03007512353360653,
0.17149731516838074,
0.02123425342142582,
0.07249967008829117,
-0.07722723484039307,
0.061947356909513474,
0.030385101214051247,
0.01590743474662304,
-0.007486291229724884,
0.16145873069763184,
-0.09378024935722351,
-0.09352295100688934,
-0.05824456736445427,
0.07370655238628387,
-0.076044961810112,
-0.022184815257787704,
-0.021405579522252083,
-0.08294608443975449,
0.021521613001823425,
0.14948487281799316,
0.04223942011594772,
-0.029807860031723976,
0.06489751487970352,
-0.022353671491146088,
-0.01262697670608759,
0.07513593137264252,
0.039529748260974884,
0.06516161561012268,
-0.064303457736969,
0.07645869255065918,
-0.018901096656918526,
0.057515405118465424,
-0.009405039250850677,
0.006718489807099104,
-0.14400263130664825,
-0.045528147369623184,
-0.09107623994350433,
0.0010434531141072512,
-0.1279691606760025,
-0.012957594357430935,
-0.02937966212630272,
-0.01140217762440443,
-0.025888843461871147,
0.045904770493507385,
-0.060938358306884766,
-0.09193648397922516,
-0.06444298475980759,
0.07826902717351913,
-0.1475367248058319,
0.009270556271076202,
0.04979900270700455,
-0.07672209292650223,
0.09466429054737091,
0.0037219945807009935,
0.0019856125582009554,
0.005022512748837471,
-0.058107685297727585,
-0.017707034945487976,
-0.015370056964457035,
0.014712527394294739,
0.03841640055179596,
-0.2599083185195923,
0.011125855147838593,
-0.04668840765953064,
-0.049365609884262085,
-0.0039966413751244545,
0.0883522555232048,
-0.0780402198433876,
-0.045397866517305374,
-0.01794837787747383,
-0.011920806020498276,
-0.09755246341228485,
0.054385263472795486,
0.09318234771490097,
0.03412151709198952,
0.07688449323177338,
-0.03006233647465706,
0.07344099879264832,
-0.18182457983493805,
-0.04424624145030975,
0.02999134548008442,
-0.05988047271966934,
0.0637851133942604,
-0.028003206476569176,
0.07074891775846481,
-0.034066688269376755,
0.0678243488073349,
-0.046109482645988464,
0.007584958337247372,
0.013275442644953728,
-0.046227503567934036,
-0.0583421066403389,
0.008887110278010368,
0.05411682277917862,
0.007681099697947502,
0.013896060176193714,
0.01718263141810894,
0.013841814361512661,
-0.03844862058758736,
-0.03254514932632446,
0.08677802234888077,
0.10292897373437881,
0.0019177087815478444,
0.03871221840381622,
0.09347283095121384,
-0.10394598543643951,
-0.00770309055224061,
0.016344331204891205,
-0.03223894536495209,
0.08392903208732605,
-0.06932943314313889,
0.06159314885735512,
0.10241761803627014,
-0.18410246074199677,
0.12296594679355621,
0.03679967299103737,
-0.043706249445676804,
-0.0891125425696373,
-0.21334221959114075,
-0.045117102563381195,
-0.048360999673604965,
-0.022531423717737198,
-0.08107305318117142,
0.04106675833463669,
-0.0223915446549654,
0.013382375240325928,
-0.00431291526183486,
0.15338565409183502,
-0.06828607618808746,
-0.07131311297416687,
0.06271100044250488,
0.023739539086818695,
-0.04255959391593933,
0.0186128169298172,
-0.007370177656412125,
0.0280170738697052,
0.044481273740530014,
0.04065921530127525,
0.034952398389577866,
0.008677106350660324,
0.011015135794878006,
-0.04583385959267616,
-0.08386383205652237,
-0.009981885552406311,
-0.018855948001146317,
0.0022483908105641603,
0.04748959466814995,
0.05323795601725578,
0.010519832372665405,
-0.015437587164342403,
0.1065712571144104,
-0.0388643741607666,
-0.03411516174674034,
-0.1333073228597641,
0.1729545295238495,
-0.0884871631860733,
-0.013233300298452377,
-0.002624036045745015,
-0.08557087928056717,
-0.001440701656974852,
0.18324314057826996,
0.1605691760778427,
-0.039348162710666656,
0.043843336403369904,
0.011063226498663425,
0.006158569362014532,
0.013256123289465904,
0.024207735434174538,
0.03296574577689171,
0.09810876101255417,
-0.02288897894322872,
0.09398314356803894,
-0.0317111611366272,
-0.06202622130513191,
-0.07543383538722992,
0.0866965726017952,
-0.019786138087511063,
0.012943508103489876,
-0.01467861421406269,
0.0688600167632103,
-0.004709766712039709,
-0.15824270248413086,
0.05247723311185837,
-0.10000913590192795,
-0.13650010526180267,
-0.011311225593090057,
-0.07559972256422043,
-0.029222870245575905,
0.058672528713941574,
-0.02281065098941326,
0.005110166966915131,
0.18161675333976746,
0.0018605180084705353,
-0.04716502130031586,
-0.10844589024782181,
0.039931196719408035,
-0.10910598933696747,
0.11147446185350418,
-0.013411503285169601,
0.03250350430607796,
0.13634388148784637,
-0.034907348453998566,
-0.12645463645458221,
0.051742274314165115,
0.08569781482219696,
-0.10352301597595215,
0.0018046568147838116,
0.20331788063049316,
0.004622191656380892,
0.034741874784231186,
0.056502580642700195,
-0.08139484375715256,
0.009915951639413834,
0.0622529499232769,
0.04897496849298477,
-0.09269192814826965,
0.07155569642782211,
-0.09523096680641174,
0.1415766328573227,
0.19516132771968842,
-0.03245047479867935,
0.004381112288683653,
-0.04549586400389671,
0.0795249342918396,
0.04511290788650513,
0.07024716585874557,
-0.01037550251930952,
-0.18170195817947388,
0.08128581196069717,
-0.04013247787952423,
0.03869382664561272,
-0.14531628787517548,
-0.10904447734355927,
-0.0074611627496778965,
-0.031184248626232147,
0.026880715042352676,
0.12320626527070999,
0.08135218173265457,
0.032344263046979904,
-0.012878159992396832,
-0.23100483417510986,
-0.011181864887475967,
0.0913306251168251,
-0.09959501773118973,
-0.024197351187467575
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | gugaio/filo-2 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-06T22:52:00+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | null |
il saiga è uno strano incrocio di antilopi che vive nelle steppe siberiane.
Il nome deriva dal fatto che è un parente di fauno/camoscio e un lontano cugino di cerbero (altri modelli open source ita).
E' un progetto portato avanti nei weekend con pochi soldi/tempo a disposizione
 | {"language": ["it"], "license": "apache-2.0"} | null | FinancialSupport/saiga-70b | [
"gguf",
"it",
"license:apache-2.0",
"region:us"
] | 2024-02-06T22:56:40+00:00 | [] | [
"it"
] | TAGS
#gguf #it #license-apache-2.0 #region-us
|
il saiga è uno strano incrocio di antilopi che vive nelle steppe siberiane.
Il nome deriva dal fatto che è un parente di fauno/camoscio e un lontano cugino di cerbero (altri modelli open source ita).
E' un progetto portato avanti nei weekend con pochi soldi/tempo a disposizione
!image/png | [] | [
"TAGS\n#gguf #it #license-apache-2.0 #region-us \n"
] | [
19
] | [
"passage: TAGS\n#gguf #it #license-apache-2.0 #region-us \n"
] | [
0.0016178051009774208,
0.0920332595705986,
-0.008400345221161842,
-0.0008959057740867138,
-0.06849202513694763,
0.05627158284187317,
0.11725950241088867,
0.10261170566082001,
0.1320551633834839,
-0.08983121067285538,
0.1684500277042389,
0.02306085079908371,
0.04315062612295151,
0.03244416043162346,
0.04036787897348404,
-0.11876358836889267,
0.09717405587434769,
-0.029496433213353157,
-0.08143769949674606,
0.011684653349220753,
0.03583218529820442,
0.06127451732754707,
-0.021729396656155586,
-0.03206523507833481,
-0.024484772235155106,
-0.013450114987790585,
0.06468465179204941,
-0.026392146944999695,
0.06351011991500854,
0.024966584518551826,
-0.004269459750503302,
0.0005902090924791992,
-0.04891899228096008,
-0.21637605130672455,
0.028590098023414612,
-0.011649147607386112,
-0.10958626121282578,
0.041257329285144806,
-0.004274326842278242,
0.041090525686740875,
0.08212197571992874,
0.1392366588115692,
-0.12377490103244781,
0.022860221564769745,
-0.14476941525936127,
-0.27459385991096497,
-0.16600266098976135,
0.06698372960090637,
-0.01309033203870058,
0.023883000016212463,
0.06561373919248581,
0.07021249830722809,
-0.2002817839384079,
-0.03980683907866478,
0.03718462213873863,
-0.3294595181941986,
0.00934572797268629,
0.1554594188928604,
-0.05022314190864563,
0.043394312262535095,
-0.03294273093342781,
0.10480169951915741,
0.08000557869672775,
-0.024146847426891327,
-0.13224677741527557,
-0.04849690571427345,
-0.022699609398841858,
0.10522554069757462,
-0.038049209862947464,
-0.12769918143749237,
0.2907175123691559,
0.08055096119642258,
-0.03853779658675194,
0.14338012039661407,
-0.03422350063920021,
0.0794920101761818,
0.00401746341958642,
0.07447709888219833,
0.08656497299671173,
0.22833152115345,
0.2030329555273056,
-0.11337775737047195,
-0.15588690340518951,
-0.09454114735126495,
-0.19838660955429077,
0.12372610718011856,
-0.005198353435844183,
0.15189185738563538,
-0.13147763907909393,
-0.007478274870663881,
-0.12220244109630585,
-0.045991502702236176,
-0.11123736947774887,
-0.04920389503240585,
0.13000217080116272,
0.08087021112442017,
-0.05771004781126976,
0.17452992498874664,
0.22256968915462494,
0.273738831281662,
-0.008132112212479115,
-0.0010942162480205297,
-0.04165302589535713,
0.1540987342596054,
-0.01619902066886425,
0.0006824109586887062,
0.03471958637237549,
0.09744521975517273,
0.08937014639377594,
-0.15523859858512878,
0.10358696430921555,
-0.028131788596510887,
-0.11576148867607117,
-0.022327587008476257,
-0.15011698007583618,
0.11426272243261337,
0.06581499427556992,
-0.05594572797417641,
-0.022507263347506523,
0.06117215380072594,
0.0812576413154602,
-0.025031328201293945,
0.007981235161423683,
-0.009661292657256126,
0.03059530258178711,
-0.030079761520028114,
-0.03693554550409317,
0.04433979094028473,
0.10470946878194809,
-0.0019003447378054261,
-0.09228979796171188,
-0.013486971147358418,
0.016447771340608597,
0.11228813230991364,
0.11137586086988449,
-0.0295061394572258,
0.0446636825799942,
-0.07862667739391327,
-0.14555762708187103,
0.03306080028414726,
0.06546629965305328,
0.005055317189544439,
0.02778247930109501,
0.13246482610702515,
0.020052848383784294,
0.02327997237443924,
-0.0667962059378624,
-0.03033347800374031,
-0.10733802616596222,
0.059082724153995514,
-0.07902272045612335,
0.008327730000019073,
-0.27043265104293823,
-0.024363543838262558,
-0.08412615954875946,
0.05281912907958031,
0.054268691688776016,
-0.07165232300758362,
-0.147508904337883,
0.13703958690166473,
-0.017870448529720306,
0.07889872789382935,
-0.08438713103532791,
0.007360047195106745,
-0.037496984004974365,
0.09581661224365234,
-0.10422927141189575,
-0.037957578897476196,
0.2198454588651657,
-0.15275585651397705,
-0.11267709732055664,
0.05629963427782059,
0.06578841805458069,
-0.019666898995637894,
0.02752738445997238,
0.3342294991016388,
-0.040737301111221313,
0.007862073369324207,
0.06946612149477005,
0.22510458528995514,
-0.11677953600883484,
-0.14713825285434723,
0.15413041412830353,
-0.16443023085594177,
-0.2597270905971527,
0.020326513797044754,
-0.14986100792884827,
0.13478873670101166,
0.0227279644459486,
-0.10582233220338821,
-0.03550494462251663,
-0.04561129957437515,
-0.048194412142038345,
-0.05846419557929039,
0.04386504739522934,
-0.03195967525243759,
0.03237222507596016,
-0.16246084868907928,
0.08188296109437943,
0.15266846120357513,
0.0405263788998127,
-0.04283486679196358,
0.08048930764198303,
0.02465599961578846,
0.056657303124666214,
0.002990368288010359,
0.036324091255664825,
0.018649714067578316,
-0.0575689971446991,
0.05194658786058426,
0.0928720012307167,
0.06156875938177109,
-0.08982647955417633,
0.04566509649157524,
0.029638325795531273,
-0.014051232486963272,
0.023073958232998848,
0.07239434123039246,
-0.10014801472425461,
0.09665179252624512,
-0.005720389075577259,
0.07810688763856888,
0.02583785355091095,
-0.04577145725488663,
0.08041014522314072,
-0.0715373158454895,
-0.07757028192281723,
0.043264854699373245,
-0.005054781213402748,
-0.10497588664293289,
0.04572085663676262,
-0.021514281630516052,
0.09795686602592468,
0.0682908371090889,
-0.10342629253864288,
0.15962904691696167,
0.07201304286718369,
0.2110242396593094,
0.1550392508506775,
0.030289635062217712,
0.06816130876541138,
-0.02320534735918045,
-0.01496104709804058,
0.005210255738347769,
0.12989114224910736,
0.0011600437574088573,
-0.0376247800886631,
-0.030181733891367912,
-0.0029910949524492025,
-0.033345602452754974,
0.004051282536238432,
-0.030896492302417755,
-0.0896068662405014,
-0.02384520135819912,
-0.02179395593702793,
0.18185113370418549,
-0.11402321606874466,
0.1413741558790207,
0.42886626720428467,
0.04647313058376312,
0.15773269534111023,
-0.14443323016166687,
-0.036144956946372986,
-0.08042023330926895,
0.016603250056505203,
-0.03405081853270531,
0.17052681744098663,
-0.12106289714574814,
0.027980435639619827,
0.04389025270938873,
0.06850915402173996,
0.04811713099479675,
-0.17047962546348572,
-0.12559637427330017,
-0.01961560919880867,
-0.08163641393184662,
-0.10369933396577835,
0.007759598083794117,
-0.17575950920581818,
0.028824497014284134,
0.029833819717168808,
-0.06894262880086899,
0.1423516422510147,
-0.015252059325575829,
-0.025699136778712273,
0.07480158656835556,
-0.2013239711523056,
-0.1266086995601654,
-0.06968473643064499,
0.002353455638512969,
-0.024055548012256622,
0.019124608486890793,
0.07139033079147339,
-0.07842765748500824,
-0.04411726072430611,
0.0756201446056366,
-0.04892740026116371,
-0.09182542562484741,
0.016459962353110313,
0.06057101860642433,
0.0025447465013712645,
0.0133137758821249,
-0.09789576381444931,
-0.0513310544192791,
-0.02070835791528225,
-0.10274066776037216,
0.07537396252155304,
-0.05711562559008598,
0.0616348497569561,
0.08167150616645813,
0.0993325263261795,
0.07932861149311066,
0.0025847959332168102,
0.12014457583427429,
-0.0543375238776207,
-0.054927535355091095,
0.1184154823422432,
0.017229240387678146,
0.020884163677692413,
0.10784445703029633,
0.09024699032306671,
-0.09054258465766907,
-0.043112896382808685,
-0.04453665390610695,
-0.1054236963391304,
-0.23163969814777374,
-0.006200882606208324,
-0.08021268993616104,
0.14044810831546783,
-0.029972823336720467,
0.15331222116947174,
0.15640263259410858,
0.04823370650410652,
0.050699710845947266,
-0.023458905518054962,
-0.03357594087719917,
-0.048637233674526215,
0.08492641896009445,
-0.05576317757368088,
-0.06159217283129692,
-0.14121155440807343,
0.05416315048933029,
0.2366640269756317,
0.12484841048717499,
0.08216347545385361,
0.25716689229011536,
0.08100918680429459,
0.15630042552947998,
0.14324460923671722,
0.04893600568175316,
-0.0013742599403485656,
0.017257917672395706,
-0.03719501942396164,
-0.07615488767623901,
-0.01564701274037361,
-0.039473190903663635,
0.04316189885139465,
0.0037205801345407963,
-0.20259712636470795,
0.10848604142665863,
-0.2037617713212967,
0.0670953020453453,
0.10149362683296204,
0.0653291717171669,
0.08394654095172882,
0.07414239645004272,
0.06389416009187698,
0.06821467727422714,
0.03340686112642288,
0.106501504778862,
-0.02551174722611904,
-0.061563871800899506,
0.07454273849725723,
0.04663483053445816,
0.044479213654994965,
0.0598062165081501,
0.008916295133531094,
-0.07507353276014328,
-0.11117368936538696,
0.06439967453479767,
0.11441396921873093,
-0.24861839413642883,
0.18339507281780243,
0.02529565431177616,
-0.06277958303689957,
0.0005308253457769752,
-0.016169818118214607,
0.1118401437997818,
0.16787834465503693,
0.10712475329637527,
0.10270500183105469,
-0.17836496233940125,
0.03452998772263527,
-0.058797191828489304,
0.052871666848659515,
0.005852349568158388,
-0.025659579783678055,
-0.16401448845863342,
-0.07227370887994766,
0.06471137702465057,
0.018135739490389824,
0.18280886113643646,
-0.12568399310112,
-0.06033194437623024,
0.02916693687438965,
0.11907343566417694,
0.02868165448307991,
-0.13731583952903748,
0.07007765769958496,
0.01814376190304756,
0.13938942551612854,
-0.12736062705516815,
0.036251116544008255,
-0.056537654250860214,
-0.10107381641864777,
0.00375098898075521,
-0.02245575189590454,
0.026986831799149513,
-0.10162661224603653,
-0.12066586315631866,
-0.09537002444267273,
-0.18713930249214172,
0.13498064875602722,
-0.09372369199991226,
0.027085985988378525,
-0.003766195848584175,
0.10914462804794312,
-0.04836747422814369,
0.03408892825245857,
0.009577426128089428,
-0.011588221415877342,
-0.03828861191868782,
-0.17575104534626007,
0.15674632787704468,
-0.009244960732758045,
-0.06059864163398743,
0.01095117349177599,
0.03311579301953316,
0.09867929667234421,
0.09207917004823685,
-0.09131889045238495,
0.1976807862520218,
0.26908400654792786,
-0.07470639050006866,
0.1691576987504959,
0.3148835003376007,
-0.10956370085477829,
-0.2369089275598526,
-0.20673827826976776,
-0.21065612137317657,
-0.14157861471176147,
-0.036359988152980804,
-0.23742333054542542,
0.06611941754817963,
0.1995393931865692,
-0.14683400094509125,
0.3184169828891754,
-0.18117940425872803,
0.013948298990726471,
0.16801506280899048,
-0.0931992456316948,
0.42751139402389526,
-0.1543106585741043,
-0.1286429911851883,
-0.021407483145594597,
-0.1323704719543457,
0.1418466717004776,
-0.15427249670028687,
0.06164137274026871,
0.01632850617170334,
-0.09731502085924149,
-0.056483667343854904,
-0.0077579449862241745,
0.23572158813476562,
-0.004147607367485762,
0.06203605979681015,
-0.09053853154182434,
0.007989856414496899,
0.1553724706172943,
0.0048426007851958275,
0.006973710376769304,
-0.15561452507972717,
-0.03490288928151131,
0.005481509957462549,
0.021542230620980263,
-0.05151025205850601,
0.10737452656030655,
0.017880233004689217,
-0.06993836909532547,
-0.09846378117799759,
0.009498009458184242,
-0.12241540104150772,
0.008796327747404575,
0.19793808460235596,
0.041282642632722855,
0.01334240660071373,
-0.0021526385098695755,
-0.1231505423784256,
-0.22994546592235565,
-0.01790618896484375,
-0.1166851818561554,
-0.054631832987070084,
0.09292414784431458,
-0.19398775696754456,
-0.01926339790225029,
0.006945997476577759,
0.0013896875316277146,
0.07849973440170288,
0.06350486725568771,
-0.10406613349914551,
0.0024615798611193895,
0.13592703640460968,
-0.09771819412708282,
-0.11066325008869171,
0.03361565247178078,
0.042638059705495834,
0.14868345856666565,
0.0027473517693579197,
0.05531645938754082,
0.07977849245071411,
0.014901842921972275,
0.023438433185219765,
0.06419286131858826,
-0.1573062390089035,
-0.04876156523823738,
0.05701705068349838,
-0.04194147139787674,
-0.13738422095775604,
0.1719759851694107,
-0.013737847097218037,
0.02567356266081333,
-0.019567031413316727,
0.03048495016992092,
-0.03326360136270523,
-0.1057090312242508,
-0.1457575261592865,
0.005956601817160845,
-0.08629658073186874,
-0.15239429473876953,
0.0685545802116394,
-0.08778281509876251,
-0.01611120067536831,
-0.03777826949954033,
0.08499820530414581,
0.1419077068567276,
0.04630454629659653,
0.016665900126099586,
0.1969953030347824,
-0.09591666609048843,
-0.22063066065311432,
-0.007090970408171415,
-0.06020652875304222,
-0.1899719089269638,
0.06927716732025146,
0.08744671195745468,
-0.024521736428141594,
-0.07421951740980148,
-0.10894013196229935,
0.02966197393834591,
-0.08756674826145172,
0.03858614340424538,
-0.07887115329504013,
0.008482946082949638,
0.08517374843358994,
-0.07379444688558578,
-0.014357023872435093,
0.02454252354800701,
-0.12827180325984955,
-0.06691782176494598,
0.018264664337038994,
0.03208547085523605,
-0.08554209023714066,
-0.038603994995355606,
0.11653804779052734,
0.05243787169456482,
0.12429969012737274,
0.12814325094223022,
0.06307752430438995,
0.1568371057510376,
-0.224548801779747,
-0.06876618415117264,
0.06340131908655167,
-0.00866067036986351,
-0.0393688827753067,
0.007707580458372831,
-0.023980986326932907,
0.04783766344189644,
-0.0780729427933693,
0.0443391315639019,
-0.0210877675563097,
-0.12769022583961487,
-0.11461502313613892,
-0.03667930141091347,
-0.12282713502645493,
0.03032558411359787,
-0.1620645970106125,
0.17726247012615204,
0.05342748016119003,
0.08908674865961075,
0.059358224272727966,
-0.023607401177287102,
-0.009947854094207287,
0.029303161427378654,
-0.04123656824231148,
-0.0928288921713829,
-0.15156526863574982,
-0.03135506436228752,
-0.1197286918759346,
-0.03056667186319828,
0.3195284605026245,
-0.008187750354409218,
-0.1385626196861267,
0.028120357543230057,
0.08968885987997055,
0.09629058837890625,
-0.013969222083687782,
0.22676408290863037,
0.06979181617498398,
0.004372277297079563,
-0.14291711151599884,
0.015470302663743496,
-0.0026189982891082764,
-0.3024904131889343,
0.03154363855719566,
-0.009470397606492043,
0.08788612484931946,
0.014871983788907528,
0.04424292966723442,
-0.06532912701368332,
-0.022202378138899803,
-0.04902930185198784,
0.059061795473098755,
0.018214551731944084,
0.037039387971162796,
0.0391458161175251,
0.17879268527030945,
-0.001259503187611699,
0.02371012605726719,
-0.03879725560545921,
0.021979082375764847,
-0.13138118386268616,
-0.12649200856685638,
0.015486741438508034,
-0.1769634336233139,
0.03096189722418785,
0.006018186453729868,
0.039980243891477585,
0.2229822427034378,
0.035426244139671326,
-0.04425185173749924,
-0.03661070391535759,
-0.07824728637933731,
-0.07237426936626434,
-0.0003119373577646911,
-0.04924147576093674,
-0.044763874262571335,
-0.09434957057237625,
-0.09723787754774094,
-0.025310629978775978,
-0.06528598070144653,
-0.027241654694080353,
0.03321481868624687,
0.0496908463537693,
0.02309800311923027,
-0.10746126621961594,
-0.0014869888545945287,
-0.07083825767040253,
0.043292637914419174,
-0.0321761853992939,
0.143831267952919,
0.03343670442700386,
0.00636913999915123,
0.1407013088464737,
0.0714949294924736,
0.002266945317387581,
-0.0947050079703331,
-0.05912667140364647,
0.01463992614299059,
-0.11167696118354797,
0.07561399787664413,
-0.07165595144033432,
0.01683201640844345,
-0.011463284492492676,
0.19957102835178375,
0.17431768774986267,
-0.10181889683008194,
0.013959553092718124,
-0.013631791807711124,
0.017074154689908028,
0.08428053557872772,
0.15681925415992737,
0.03903979808092117,
0.17100490629673004,
-0.06173659861087799,
-0.025353992357850075,
-0.03559672832489014,
-0.002853165613487363,
-0.1551448106765747,
0.06389649957418442,
0.020993974059820175,
-0.05066406726837158,
-0.07299932837486267,
0.09231805056333542,
-0.07292790710926056,
0.05082997679710388,
0.03912235423922539,
-0.0124362176284194,
0.04225427284836769,
-0.018668299540877342,
0.11656064540147781,
0.06689275056123734,
0.05718537047505379,
-0.10637061297893524,
-0.09091218560934067,
-0.036024268716573715,
0.0180862657725811,
-0.32918739318847656,
-0.20069032907485962,
0.10531721264123917,
0.04572724178433418,
0.2828691899776459,
-0.005664532072842121,
0.0074643162079155445,
0.024381430819630623,
0.04049868509173393,
-0.11769864708185196,
0.12579350173473358,
0.0022668647579848766,
-0.009402797557413578,
-0.1404663324356079,
-0.22807514667510986,
-0.01161899883300066,
-0.12071456760168076,
0.06841443479061127,
0.1125476285815239,
0.018314121291041374,
0.16949212551116943,
-0.08644022792577744,
-0.043632980436086655,
0.009462879039347172,
-0.1420048177242279,
0.04074118286371231,
-0.05211271345615387,
-0.03177201747894287,
-0.07142964750528336,
-0.08907884359359741,
-0.01732700876891613,
0.061054032295942307,
-0.1810102015733719,
-0.07011926174163818,
0.23802433907985687,
0.03715452924370766,
0.13736765086650848,
0.004642253741621971,
0.03875528648495674,
-0.027925042435526848,
-0.05833215266466141,
0.10369081050157547,
-0.04173697531223297,
-0.008312856778502464,
0.1358548253774643,
0.013897973112761974,
0.02876066416501999,
-0.13637714087963104,
0.03377821296453476,
-0.08295369148254395,
0.005474659614264965,
-0.05388770252466202
] |
null | null | transformers |
# Uploaded model
- **Developed by:** fhai50032
- **License:** apache-2.0
- **Finetuned from model :** fhai50032/RolePlayLake-7B
More Uncensored out of the gate without any prompting;
trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset
Trained on P100 GPU on Kaggle for 1h(approx..)
**QLoRA (4bit)**
Params to replicate training
Peft Config
```
r = 64,
target_modules = ['v_proj', 'down_proj', 'up_proj',
'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
lora_alpha = 128, #weight_scaling
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = True,#False,#
random_state = 3407,
max_seq_length = 1024,
```
Training args
```
per_device_train_batch_size = 6,
gradient_accumulation_steps = 6,
gradient_checkpointing=True,
# warmup_ratio = 0.1,
warmup_steps=4,
save_steps=150,
dataloader_num_workers = 2,
learning_rate = 2e-5,
fp16 = True,
logging_steps = 1,
num_train_epochs=2, ## use this for epoch
# max_steps=9, ## max steps over ride epochs
optim = "adamw_8bit",
weight_decay = 1e-3,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
packing=False,
# neftune_noise_alpha=10
```
Loss
`0.6182`
Training Results
[<img src="https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png" width="400"/>](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png)
[Wandb](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/Wandb-RPLake.csv)
**Interernce Code**
-Supports Alpaca , ChatML and maybe others too
```python
pip install -qU transformers accelerate bitsandbytes
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
model_name = "fhai50032/RolePlayLake-7B-Toxic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
# use accelerate to spread model across multiple GPUs
device_map="auto",
torch_dtype=torch.float16,
)
model.config.use_cache = False
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
```
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "datasets": ["Undi95/toxic-dpo-v0.1-NoWarning"], "base_model": "fhai50032/RolePlayLake-7B"} | text-generation | fhai50032/RolePlayLake-7B-Toxic | [
"transformers",
"pytorch",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"dataset:Undi95/toxic-dpo-v0.1-NoWarning",
"base_model:fhai50032/RolePlayLake-7B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-06T22:56:41+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #en #dataset-Undi95/toxic-dpo-v0.1-NoWarning #base_model-fhai50032/RolePlayLake-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: fhai50032
- License: apache-2.0
- Finetuned from model : fhai50032/RolePlayLake-7B
More Uncensored out of the gate without any prompting;
trained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset
Trained on P100 GPU on Kaggle for 1h(approx..)
QLoRA (4bit)
Params to replicate training
Peft Config
Training args
Loss
'0.6182'
Training Results
<img src="URL width="400"/>
Wandb
Interernce Code
-Supports Alpaca , ChatML and maybe others too
| [
"# Uploaded model\n\n- Developed by: fhai50032\n- License: apache-2.0\n- Finetuned from model : fhai50032/RolePlayLake-7B\n\n\nMore Uncensored out of the gate without any prompting;\ntrained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset\nTrained on P100 GPU on Kaggle for 1h(approx..)\n\n\nQLoRA (4bit)\n\nParams to replicate training\n\nPeft Config\n\n\n\nTraining args\n\nLoss\n'0.6182'\n\nTraining Results\n<img src=\"URL width=\"400\"/>\n\nWandb\n\n\n\nInterernce Code\n-Supports Alpaca , ChatML and maybe others too"
] | [
"TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #en #dataset-Undi95/toxic-dpo-v0.1-NoWarning #base_model-fhai50032/RolePlayLake-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: fhai50032\n- License: apache-2.0\n- Finetuned from model : fhai50032/RolePlayLake-7B\n\n\nMore Uncensored out of the gate without any prompting;\ntrained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset\nTrained on P100 GPU on Kaggle for 1h(approx..)\n\n\nQLoRA (4bit)\n\nParams to replicate training\n\nPeft Config\n\n\n\nTraining args\n\nLoss\n'0.6182'\n\nTraining Results\n<img src=\"URL width=\"400\"/>\n\nWandb\n\n\n\nInterernce Code\n-Supports Alpaca , ChatML and maybe others too"
] | [
99,
158
] | [
"passage: TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #en #dataset-Undi95/toxic-dpo-v0.1-NoWarning #base_model-fhai50032/RolePlayLake-7B #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: fhai50032\n- License: apache-2.0\n- Finetuned from model : fhai50032/RolePlayLake-7B\n\n\nMore Uncensored out of the gate without any prompting;\ntrained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset\nTrained on P100 GPU on Kaggle for 1h(approx..)\n\n\nQLoRA (4bit)\n\nParams to replicate training\n\nPeft Config\n\n\n\nTraining args\n\nLoss\n'0.6182'\n\nTraining Results\n<img src=\"URL width=\"400\"/>\n\nWandb\n\n\n\nInterernce Code\n-Supports Alpaca , ChatML and maybe others too"
] | [
-0.15370050072669983,
0.06817445904016495,
-0.002810069592669606,
0.09667118638753891,
0.12022670358419418,
0.05141027271747589,
0.13804084062576294,
0.1509559601545334,
-0.05551105737686157,
-0.011129388585686684,
0.06587562710046768,
0.1595626026391983,
0.09263903647661209,
0.11597056686878204,
-0.026578808203339577,
-0.10018416494131088,
0.035203780978918076,
-0.01805787719786167,
-0.024549640715122223,
0.1014605239033699,
0.07330027967691422,
-0.0025191311724483967,
0.04367120936512947,
0.05891072005033493,
-0.1157892718911171,
-0.005480831488966942,
0.037322305142879486,
-0.06955739855766296,
0.08805616199970245,
0.04233627766370773,
0.07487767934799194,
0.013758060522377491,
0.04157431423664093,
-0.1276552975177765,
0.031502921134233475,
0.11851741373538971,
0.010846275836229324,
0.09955906122922897,
0.08492106199264526,
0.06599690765142441,
0.008378386497497559,
0.02369236946105957,
0.021950025111436844,
0.08695503324270248,
-0.050416089594364166,
-0.2046879529953003,
-0.12840807437896729,
0.08596411347389221,
0.07912593334913254,
0.104951873421669,
0.018360909074544907,
0.15319468080997467,
-0.015179128386080265,
0.06440924853086472,
0.12612619996070862,
-0.26267194747924805,
-0.02508632279932499,
0.12875153124332428,
-0.04304490238428116,
-0.0407099723815918,
-0.070115827023983,
-0.031346771866083145,
0.02410026453435421,
0.023856274783611298,
0.0007541117956861854,
-0.005400373600423336,
-0.09067030251026154,
-0.04986227676272392,
-0.06563711911439896,
-0.01973123289644718,
0.09822511672973633,
0.04295337200164795,
-0.08983670920133591,
-0.08097437769174576,
-0.08077718317508698,
-0.06549280136823654,
-0.019466863945126534,
0.030767980962991714,
-0.011918595060706139,
0.043899055570364,
0.015205332078039646,
-0.058503203094005585,
-0.0708923414349556,
-0.09716053307056427,
-0.019452322274446487,
-0.027116592973470688,
0.07737523317337036,
0.07199890166521072,
-0.023484449833631516,
0.1290934830904007,
0.006168289575725794,
-0.056231822818517685,
-0.06762438267469406,
-0.09865280985832214,
-0.04038240760564804,
0.023600496351718903,
-0.03795763477683067,
-0.08944506198167801,
0.01382256206125021,
0.15260829031467438,
-0.048873092979192734,
0.07281311601400375,
-0.024271057918667793,
0.046857573091983795,
-0.09390072524547577,
0.04148246347904205,
-0.07252688705921173,
0.07516982406377792,
0.11643511056900024,
0.10349514335393906,
0.015237300656735897,
0.0005673912819474936,
0.0025552331935614347,
-0.06635250896215439,
0.0759231448173523,
0.033194541931152344,
-0.014785553328692913,
0.05316783860325813,
-0.0580286830663681,
-0.039088331162929535,
0.14458045363426208,
-0.06276661157608032,
-0.043637715280056,
0.011789923533797264,
-0.08949262648820877,
0.10073057562112808,
0.1636890470981598,
-0.00025126704713329673,
-0.06140785664319992,
-0.038789935410022736,
-0.029953591525554657,
-0.0011685548815876245,
-0.07558418810367584,
-0.03072548285126686,
0.020683446899056435,
0.021431351080536842,
-0.040382035076618195,
-0.15257234871387482,
-0.24288952350616455,
-0.034081846475601196,
0.055719368159770966,
-0.007490744348615408,
0.014261973090469837,
-0.03808851167559624,
-0.03524650260806084,
0.0004859523323830217,
0.014152863062918186,
0.008952878415584564,
0.0013638369273394346,
0.05704735219478607,
-0.021090872585773468,
0.04940466582775116,
-0.08179029822349548,
0.03574516251683235,
-0.06468340754508972,
0.01729833148419857,
-0.1477864384651184,
0.11714226007461548,
-0.102558933198452,
0.010762643069028854,
-0.10094714164733887,
-0.05471963435411453,
-0.009212602861225605,
-0.039634399116039276,
0.09647492319345474,
0.17682243883609772,
-0.166749969124794,
-0.00586781557649374,
0.20733554661273956,
-0.07616020739078522,
-0.06525371223688126,
0.102073535323143,
-0.02982279099524021,
0.010568377561867237,
0.049901966005563736,
0.0956265851855278,
0.040656499564647675,
-0.10926663875579834,
-0.04482393339276314,
0.04664728790521622,
-0.02320992387831211,
-0.051098309457302094,
0.03536482900381088,
-0.0073376907967031,
-0.015425087884068489,
0.053015369921922684,
0.04356685280799866,
0.045640092343091965,
-0.03187316283583641,
-0.0887102410197258,
-0.076520174741745,
-0.09809095412492752,
-0.00045278132893145084,
0.00500056566670537,
0.0858730673789978,
-0.00362485577352345,
-0.09327500313520432,
-0.0724160298705101,
0.18161819875240326,
-0.05308457091450691,
0.023839233443140984,
-0.07226711511611938,
0.03952951729297638,
-0.02407972328364849,
0.048280131071805954,
-0.13577942550182343,
-0.062461502850055695,
0.0029341166373342276,
-0.0714903250336647,
-0.011056789197027683,
0.01295611821115017,
0.05907468870282173,
0.054500989615917206,
-0.029795881360769272,
-0.032243479043245316,
-0.029689840972423553,
-0.04415082931518555,
-0.08689718693494797,
-0.1441630870103836,
-0.012202096171677113,
-0.004879465326666832,
0.1906280219554901,
-0.1740414947271347,
0.058086659759283066,
-0.06193135306239128,
0.10370781272649765,
-0.005162411369383335,
-0.06746891140937805,
0.05454953387379646,
-0.04319794848561287,
-0.00831058993935585,
-0.08288897573947906,
0.07152261584997177,
0.04593586176633835,
-0.07523424178361893,
0.008218292146921158,
-0.060283463448286057,
-0.010459765791893005,
0.11874374747276306,
0.032593823969364166,
-0.0929204523563385,
-0.017883287742733955,
-0.059657614678144455,
-0.031012604013085365,
0.008669866248965263,
0.004483839496970177,
0.13518665730953217,
0.05718636512756348,
0.17310497164726257,
-0.06779350340366364,
-0.02389073185622692,
-0.002091959584504366,
-0.038896333426237106,
0.01593470573425293,
0.04508425295352936,
-0.011196027509868145,
-0.11406078189611435,
0.04884986951947212,
0.038202203810214996,
-0.08419007807970047,
0.1172557920217514,
-0.02470773458480835,
-0.06165395677089691,
0.010743453167378902,
0.05313743278384209,
0.05436509847640991,
0.0783982053399086,
0.030147546902298927,
0.08446948230266571,
0.06168845668435097,
-0.007529994938522577,
0.03832723945379257,
-0.1628526896238327,
-0.005974902305752039,
-0.038016170263290405,
-0.05307871103286743,
-0.08545585721731186,
0.08196225017309189,
0.018697697669267654,
0.09243164956569672,
-0.050338149070739746,
-0.0226412545889616,
0.07682916522026062,
-0.009555714204907417,
-0.06653352081775665,
0.17730632424354553,
-0.15402531623840332,
-0.15971408784389496,
-0.12220434844493866,
0.07890526950359344,
-0.09084000438451767,
-0.04394335672259331,
-0.00007805839413776994,
-0.11625461280345917,
-0.03213125094771385,
-0.04766085371375084,
-0.07278628647327423,
0.0009322672267444432,
-0.03369841352105141,
0.062274642288684845,
0.033462684601545334,
0.13181741535663605,
-0.12707486748695374,
0.014316199347376823,
0.006471026223152876,
-0.10785931348800659,
0.06836796551942825,
-0.014409874565899372,
0.004657837562263012,
0.09675399214029312,
0.015145214274525642,
0.010968757793307304,
0.023721300065517426,
0.21703188121318817,
-0.030534958466887474,
0.03048054315149784,
0.19374428689479828,
0.027184942737221718,
0.08672383427619934,
0.013446984812617302,
0.027947332710027695,
-0.07504788786172867,
0.009286632761359215,
0.05707443132996559,
-0.03501373901963234,
-0.28483617305755615,
0.016014959663152695,
-0.043736863881349564,
-0.004462947137653828,
0.014693928882479668,
0.03413616493344307,
0.06751042604446411,
0.11278244853019714,
-0.055028241127729416,
0.09084120392799377,
-0.0016714485827833414,
0.06951738893985748,
0.04285484179854393,
0.01991138979792595,
0.07712747156620026,
-0.06205057352781296,
0.05184055492281914,
0.09733746945858002,
0.10208392143249512,
0.23158684372901917,
-0.10078068822622299,
0.028401261195540428,
0.07025498896837234,
0.20026138424873352,
-0.005621050484478474,
0.0517931766808033,
-0.02767643705010414,
-0.006667252164334059,
-0.00973483081907034,
-0.0418161079287529,
-0.07630982249975204,
0.04210915416479111,
-0.09229451417922974,
0.031051894649863243,
-0.05345667898654938,
0.10722170025110245,
0.01675128936767578,
0.2500675618648529,
0.008295632898807526,
-0.2597828507423401,
-0.0621604397892952,
-0.014267672784626484,
-0.005434377118945122,
-0.0856495276093483,
0.015472318977117538,
0.004052446689456701,
-0.15918266773223877,
0.06489021331071854,
-0.11043193191289902,
0.0876331552863121,
-0.07688586413860321,
0.005026419181376696,
0.03076443076133728,
0.1400778591632843,
0.0007809297530911863,
0.048719920217990875,
-0.22968323528766632,
0.08823776990175247,
0.03610963746905327,
0.10226431488990784,
-0.05549567937850952,
0.04147462919354439,
0.12994490563869476,
0.04649506136775017,
0.09258416295051575,
-0.003977817948907614,
0.005850212648510933,
-0.1574777215719223,
-0.08299071341753006,
-0.005908876191824675,
-0.007380348164588213,
0.08223361521959305,
0.0081742312759161,
-0.03214362636208534,
0.002194267464801669,
0.016363218426704407,
-0.0041292523965239525,
-0.22990109026432037,
-0.11208633333444595,
0.05549120903015137,
0.1308048963546753,
-0.011757130734622478,
-0.10561952739953995,
-0.04807678610086441,
-0.03684883192181587,
0.14532560110092163,
-0.0310777947306633,
-0.09820733964443207,
-0.10013625025749207,
0.023011600598692894,
0.10945573449134827,
-0.049939077347517014,
0.04455479234457016,
-0.06511468440294266,
0.04342857003211975,
-0.027081139385700226,
-0.1357695311307907,
0.03605067357420921,
-0.12855879962444305,
-0.1327037364244461,
-0.052079446613788605,
0.04593031480908394,
0.013450009748339653,
0.03070247732102871,
0.041269510984420776,
-0.08377798646688461,
-0.021190481260418892,
-0.09608091413974762,
0.006105026695877314,
0.10824199765920639,
0.04966607317328453,
0.020060943439602852,
-0.08552466332912445,
0.023189552128314972,
-0.04633592814207077,
-0.03892868757247925,
0.0800621509552002,
0.21592114865779877,
-0.03999495133757591,
0.05113143101334572,
0.0706900879740715,
-0.021867889910936356,
-0.16111770272254944,
0.018071917816996574,
0.08984050899744034,
-0.009201466105878353,
-0.03713526949286461,
-0.17394384741783142,
0.010190616361796856,
0.10968615859746933,
-0.044893551617860794,
0.1347857117652893,
-0.22788724303245544,
-0.10020248591899872,
0.1176736056804657,
0.09702271223068237,
0.13057786226272583,
-0.09054727107286453,
-0.013799148611724377,
-0.07058324664831161,
-0.11675774306058884,
0.0655541643500328,
-0.10779276490211487,
0.13619592785835266,
-0.04262571409344673,
0.056301627308130264,
0.0030770464800298214,
-0.07140928506851196,
0.11252298951148987,
0.016451366245746613,
0.1045449823141098,
-0.041755277663469315,
0.15534666180610657,
0.0886574387550354,
-0.060494814068078995,
0.10608337819576263,
-0.026954153552651405,
0.10036293417215347,
-0.12978725135326385,
0.02525152638554573,
-0.08714871853590012,
0.015304135158658028,
-0.029259443283081055,
-0.038305215537548065,
-0.01950939930975437,
0.06740506738424301,
0.03800630569458008,
-0.0073547568172216415,
0.011220372281968594,
0.0421794056892395,
0.04792286455631256,
0.1563686579465866,
0.021532606333494186,
-0.006000730209052563,
-0.10799526423215866,
-0.021251000463962555,
-0.014136509969830513,
0.09712757915258408,
-0.10693047940731049,
0.027060523629188538,
0.06765860319137573,
-0.02637132816016674,
0.05295698344707489,
0.04289393872022629,
-0.10013103485107422,
0.04048282280564308,
0.0398753322660923,
-0.0876433253288269,
-0.00011909361637663096,
-0.01715555228292942,
0.09651467204093933,
-0.04563675448298454,
0.04701297730207443,
0.14544826745986938,
-0.04581330344080925,
0.00033593212720006704,
0.022129571065306664,
-0.00042799231596291065,
-0.04676904156804085,
0.16908049583435059,
0.05597034469246864,
0.023908311501145363,
-0.09613581746816635,
0.1251174360513687,
-0.0014290295075625181,
0.05700269713997841,
0.05135434493422508,
0.03449103236198425,
-0.1363946944475174,
-0.058546509593725204,
-0.05061919614672661,
0.07544919848442078,
-0.08177581429481506,
-0.06574148684740067,
-0.0902329757809639,
-0.031104592606425285,
0.028843367472290993,
-0.08447262644767761,
0.01621617190539837,
0.02870497666299343,
-0.01885412447154522,
-0.05338979512453079,
-0.10198104381561279,
0.019436592236161232,
0.05568868666887283,
0.0305702555924654,
-0.13759583234786987,
0.08482247591018677,
-0.005683961324393749,
0.045502692461013794,
-0.0005947491736151278,
0.0384141243994236,
-0.0845039039850235,
0.001908327336423099,
-0.187020942568779,
-0.00895171519368887,
-0.015738416463136673,
-0.022170959040522575,
-0.019780907779932022,
0.02764865942299366,
0.01450076699256897,
0.08351036161184311,
-0.07412762939929962,
-0.05322970077395439,
0.024032006040215492,
0.02168676070868969,
-0.10471212863922119,
-0.05970866605639458,
-0.014111493714153767,
-0.06386036425828934,
0.07364151626825333,
0.09436995536088943,
-0.03465713933110237,
-0.004196453373879194,
-0.1514187604188919,
-0.04369645565748215,
0.01084064319729805,
0.051801227033138275,
0.009134902618825436,
-0.014767556451261044,
0.05372457578778267,
-0.03047042340040207,
0.007652765605598688,
0.007025578059256077,
0.08818281441926956,
-0.10710646957159042,
-0.09650356322526932,
-0.06614451855421066,
0.03400902822613716,
-0.08678498864173889,
0.028783520683646202,
0.1026608869433403,
0.07671917974948883,
0.12957234680652618,
-0.07578479498624802,
0.05216902494430542,
-0.163959339261055,
-0.015954332426190376,
0.020275544375181198,
-0.06401533633470535,
0.004617000930011272,
-0.022132162004709244,
0.06687312573194504,
-0.03195594996213913,
0.05226558819413185,
-0.09563396126031876,
-0.0031572473235428333,
0.007910050451755524,
-0.0476992167532444,
-0.018716253340244293,
-0.04587371274828911,
0.09617973119020462,
0.059240397065877914,
0.047369327396154404,
0.05564791336655617,
0.004306011833250523,
0.0825715884566307,
-0.006603785790503025,
0.09136747568845749,
0.09420868754386902,
-0.038790807127952576,
0.1242234855890274,
0.001051585073582828,
-0.07647193968296051,
-0.0543016642332077,
0.11419085413217545,
-0.07749024033546448,
0.11156903207302094,
-0.07303089648485184,
0.05360433831810951,
0.1167803481221199,
-0.08997440338134766,
0.0447317510843277,
-0.014291874133050442,
-0.09398671984672546,
-0.1455925703048706,
-0.08229926228523254,
-0.021643877029418945,
-0.11370135098695755,
0.0703001394867897,
-0.03702310100197792,
0.011884590610861778,
0.08342940360307693,
0.05483604967594147,
-0.033616792410612106,
0.12287627905607224,
-0.00494366092607379,
-0.028656624257564545,
0.08218330889940262,
0.007013687398284674,
-0.08197443187236786,
0.006736948620527983,
-0.09405500441789627,
0.09251779317855835,
-0.0160505548119545,
0.05507977306842804,
-0.028093647211790085,
0.016623709350824356,
0.0949287936091423,
0.03914419561624527,
-0.06477194279432297,
-0.01635250821709633,
0.03722124174237251,
0.09430669993162155,
0.15332478284835815,
0.05580504983663559,
0.03804328292608261,
-0.023352334275841713,
0.13546860218048096,
-0.05721365287899971,
-0.02653704583644867,
-0.16059881448745728,
0.07495196163654327,
-0.020528260618448257,
-0.050269439816474915,
0.004180749878287315,
-0.07226570695638657,
-0.02002558298408985,
0.20832183957099915,
0.14456936717033386,
-0.12484385818243027,
-0.031389303505420685,
-0.007613133639097214,
-0.028981488198041916,
-0.0837450623512268,
0.17648863792419434,
0.11099932342767715,
-0.007285394240170717,
-0.05891493707895279,
0.010510914959013462,
0.0015632883878424764,
-0.018304459750652313,
-0.0643254742026329,
0.11399006098508835,
-0.03436065465211868,
0.0031148020643740892,
0.02468365617096424,
0.015584958717226982,
-0.05715777352452278,
-0.07015790790319443,
-0.021991482004523277,
0.002063812455162406,
-0.13308021426200867,
-0.04417365416884422,
-0.05330726131796837,
0.006295694969594479,
0.02763538993895054,
-0.050272200256586075,
0.08476823568344116,
0.22158683836460114,
-0.08051658421754837,
-0.037824466824531555,
-0.10041540861129761,
0.020103033632040024,
-0.0018880595453083515,
0.17233030498027802,
0.011545203626155853,
0.09144457429647446,
0.10913672298192978,
-0.02586951106786728,
-0.10531456768512726,
0.03294806182384491,
-0.012886992655694485,
-0.05330687016248703,
-0.0014340697089210153,
0.1008945181965828,
-0.003358326153829694,
0.07087693363428116,
0.005894899368286133,
-0.0565236397087574,
-0.0052359323017299175,
0.0020929533056914806,
-0.048556849360466,
-0.08747779577970505,
0.08230853080749512,
-0.06325436383485794,
0.12395258247852325,
0.16570329666137695,
-0.06265661120414734,
-0.0047868285328149796,
-0.08242947608232498,
0.05415049567818642,
0.043635375797748566,
-0.07056770473718643,
-0.009330169297754765,
-0.11177992820739746,
0.04847630485892296,
-0.021037882193922997,
0.013883953914046288,
-0.19285768270492554,
-0.0715859904885292,
-0.07954011857509613,
-0.11896906793117523,
-0.09131351858377457,
0.07655344903469086,
-0.020551558583974838,
0.06435322761535645,
-0.0009556078002788126,
-0.007005209568887949,
-0.059740595519542694,
0.04694695398211479,
-0.08822423964738846,
-0.07049155980348587
] |
null | null | transformers | # merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter)
* [Gryphe/MythoMax-L2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: KoboldAI/LLaMA2-13B-Tiefighter
dtype: float16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 40]
model:
model:
path: Gryphe/MythoMax-L2-13b
- layer_range: [0, 40]
model:
model:
path: KoboldAI/LLaMA2-13B-Tiefighter
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["KoboldAI/LLaMA2-13B-Tiefighter", "Gryphe/MythoMax-L2-13b"]} | text-generation | gotchu/season-8-13bmerge | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"base_model:KoboldAI/LLaMA2-13B-Tiefighter",
"base_model:Gryphe/MythoMax-L2-13b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T23:02:36+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #base_model-KoboldAI/LLaMA2-13B-Tiefighter #base_model-Gryphe/MythoMax-L2-13b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # merged
This is a merge of pre-trained language models created using mergekit.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* KoboldAI/LLaMA2-13B-Tiefighter
* Gryphe/MythoMax-L2-13b
### Configuration
The following YAML configuration was used to produce this model:
| [
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* KoboldAI/LLaMA2-13B-Tiefighter\n* Gryphe/MythoMax-L2-13b",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #base_model-KoboldAI/LLaMA2-13B-Tiefighter #base_model-Gryphe/MythoMax-L2-13b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* KoboldAI/LLaMA2-13B-Tiefighter\n* Gryphe/MythoMax-L2-13b",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
89,
19,
4,
18,
41,
17
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #base_model-KoboldAI/LLaMA2-13B-Tiefighter #base_model-Gryphe/MythoMax-L2-13b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merged\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* KoboldAI/LLaMA2-13B-Tiefighter\n* Gryphe/MythoMax-L2-13b### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.06502660363912582,
-0.02328161709010601,
-0.00005008614607504569,
0.01678658276796341,
0.08085872232913971,
0.034332916140556335,
0.1856587827205658,
0.05324757099151611,
0.08311958611011505,
-0.025406474247574806,
0.04632062837481499,
0.04478089138865471,
0.04574946314096451,
0.21525965631008148,
-0.021622685715556145,
-0.22861018776893616,
0.054372984915971756,
-0.04189744219183922,
-0.1422199159860611,
0.10489440709352493,
0.10245117545127869,
-0.02795470878481865,
0.11935919523239136,
0.049596481025218964,
-0.18094514310359955,
0.056711748242378235,
-0.014565647579729557,
-0.026492666453123093,
0.12687808275222778,
0.11515364050865173,
0.05224444344639778,
-0.01861669309437275,
0.014620904810726643,
-0.18112054467201233,
0.05199822410941124,
-0.02319381572306156,
-0.011790853925049305,
0.03112960048019886,
0.021380003541707993,
-0.016634996980428696,
0.12004430592060089,
-0.04506397619843483,
0.019665589556097984,
0.07414483278989792,
-0.11502435803413391,
-0.015225996263325214,
-0.1087966039776802,
0.11315403133630753,
0.1799302101135254,
0.044094014912843704,
-0.0005485563888214529,
0.016783734783530235,
0.0013208958553150296,
0.06056589260697365,
0.011486959643661976,
-0.21887704730033875,
-0.030090900138020515,
0.17652888596057892,
0.06891777366399765,
-0.13447478413581848,
0.0069403937086462975,
0.05451088398694992,
0.05873793736100197,
-0.025015121325850487,
-0.0066060153767466545,
-0.08773165196180344,
0.08731113374233246,
-0.07676901668310165,
-0.11496717482805252,
-0.015788715332746506,
0.1071307361125946,
0.0038993151392787695,
-0.017503097653388977,
-0.08661672472953796,
-0.07226069271564484,
0.07161594182252884,
-0.0134087223559618,
-0.05356202274560928,
-0.014606552198529243,
-0.001432883902452886,
0.10225747525691986,
-0.11840616166591644,
-0.04616239294409752,
-0.054919447749853134,
-0.12472294270992279,
0.2741986811161041,
0.006442468613386154,
0.04338596761226654,
-0.07654915004968643,
0.07835280150175095,
-0.25237905979156494,
-0.10962275415658951,
0.021852415055036545,
-0.04513712599873543,
-0.060020726174116135,
-0.0046854265965521336,
-0.10709680616855621,
-0.10158321261405945,
0.07363850623369217,
0.2377128154039383,
-0.08601607382297516,
0.0106529975309968,
0.11368830502033234,
0.06922484934329987,
0.013913176953792572,
0.004802572540938854,
-0.09951600432395935,
-0.17115068435668945,
0.062099020928144455,
0.014449574053287506,
0.07409252226352692,
-0.00627197977155447,
-0.15067806839942932,
-0.02719278819859028,
-0.0772082507610321,
-0.039772190153598785,
0.011275035329163074,
0.10559868067502975,
-0.04285244643688202,
-0.04266396909952164,
0.11844219267368317,
-0.08502356708049774,
0.002979808486998081,
-0.06300928443670273,
-0.020830588415265083,
-0.09571009129285812,
0.13403593003749847,
0.09406262636184692,
0.046939678490161896,
0.057945366948843,
-0.049874987453222275,
0.0020754460711032152,
-0.053318530321121216,
-0.06955452263355255,
0.00803324580192566,
-0.05312537029385567,
-0.024134526029229164,
-0.08701202273368835,
-0.2525661587715149,
-0.03471548110246658,
0.0311801228672266,
-0.02765284851193428,
-0.07216595113277435,
-0.06378857791423798,
0.025066209957003593,
0.017205860465765,
0.02307373657822609,
-0.05515582486987114,
-0.026990177109837532,
-0.058172136545181274,
-0.003452421398833394,
0.06890291720628738,
-0.17478486895561218,
0.018219389021396637,
-0.11163189262151718,
0.10844464600086212,
-0.20394712686538696,
0.09437288343906403,
-0.024162793532013893,
0.04887904226779938,
-0.07605540007352829,
0.023043204098939896,
-0.028789186850190163,
0.05385105311870575,
0.05767887458205223,
0.1754744052886963,
-0.1242021769285202,
-0.09446533769369125,
0.11083599925041199,
-0.14912979304790497,
-0.08824805170297623,
0.08196162432432175,
-0.021854039281606674,
0.11416756361722946,
0.04145682603120804,
0.21556635200977325,
0.21758796274662018,
0.003323914483189583,
0.018616750836372375,
0.017380366101861,
-0.001794111100025475,
-0.01915532723069191,
0.05745565518736839,
-0.02367800660431385,
-0.1344994157552719,
0.06601792573928833,
0.00832279957830906,
0.1508275717496872,
-0.012361585162580013,
-0.06371194869279861,
-0.03368799388408661,
-0.0614817775785923,
0.12430014461278915,
-0.03601614385843277,
0.0357322096824646,
-0.07846327126026154,
0.0066316816955804825,
0.08485793322324753,
0.10614002496004105,
-0.011480171233415604,
0.0009024047758430243,
-0.0036932530347257853,
0.07743256539106369,
-0.12762464582920074,
0.022115301340818405,
-0.08170896768569946,
-0.10679102689027786,
-0.06622728705406189,
-0.0034214728511869907,
0.06827203184366226,
0.007860027253627777,
0.06191433221101761,
0.0338134691119194,
-0.05414802208542824,
-0.012067249044775963,
0.07172655314207077,
0.03457345440983772,
-0.04708578810095787,
-0.15643952786922455,
-0.06748421490192413,
-0.08537451177835464,
0.25416457653045654,
-0.07170197367668152,
0.09569733589887619,
-0.049758970737457275,
0.2191752791404724,
-0.05994720011949539,
0.014402183704078197,
0.05725774168968201,
0.04756540060043335,
-0.04289281740784645,
0.008981903083622456,
0.06070452183485031,
0.009465239942073822,
-0.17851898074150085,
0.18700432777404785,
-0.11870875954627991,
0.03334411233663559,
0.09617479890584946,
0.012910478748381138,
-0.06616794317960739,
-0.11587763577699661,
-0.029696177691221237,
-0.07245785742998123,
0.034859247505664825,
-0.07356990873813629,
0.17332997918128967,
0.01188972033560276,
0.12257777899503708,
-0.024836573749780655,
-0.05936634540557861,
0.009917977266013622,
-0.08175650984048843,
-0.051789071410894394,
0.02819489873945713,
0.02977064810693264,
-0.1698247641324997,
0.16610753536224365,
0.15562403202056885,
0.008778628893196583,
0.1551859974861145,
0.0492730438709259,
0.03931998088955879,
-0.06366236507892609,
-0.03305863216519356,
-0.03066633641719818,
0.04252827912569046,
-0.05061551555991173,
0.01028592512011528,
0.035105686634778976,
-0.02621155045926571,
0.059454407542943954,
-0.12684328854084015,
-0.006193825975060463,
0.037675775587558746,
0.0014734312426298857,
0.11444206535816193,
0.0984666720032692,
-0.012195728719234467,
0.08257518708705902,
0.027742180973291397,
-0.040017131716012955,
0.027835313230752945,
-0.006318307481706142,
-0.0895664319396019,
0.18489426374435425,
-0.11375753581523895,
-0.24277329444885254,
-0.20149078965187073,
-0.08333741873502731,
-0.1635107696056366,
0.0021008767653256655,
0.023338114842772484,
-0.08102219551801682,
-0.02160022407770157,
-0.07396889477968216,
0.09095659106969833,
0.03025148995220661,
-0.006066723261028528,
0.0024907884653657675,
-0.04192348197102547,
0.025324106216430664,
-0.08688801527023315,
-0.050752975046634674,
0.008054427802562714,
0.0025061145424842834,
0.04731259122490883,
-0.010052326135337353,
0.12648870050907135,
0.1461818367242813,
-0.03386138007044792,
-0.006009761244058609,
-0.047089651226997375,
0.18289045989513397,
-0.04233416169881821,
0.08632420003414154,
0.15296858549118042,
-0.12673568725585938,
0.06148219853639603,
0.21718858182430267,
0.02610543929040432,
-0.04891784489154816,
0.017502494156360626,
-0.0020708944648504257,
-0.0990055501461029,
-0.10710211098194122,
-0.13654635846614838,
-0.08070839941501617,
0.01748306304216385,
0.028257468715310097,
0.03774431720376015,
0.08101225644350052,
0.0733347162604332,
-0.053745802491903305,
0.022610412910580635,
0.03509092703461647,
0.05369982123374939,
0.211229145526886,
-0.014605330303311348,
0.09050485491752625,
-0.015619892627000809,
-0.04885344207286835,
0.044616732746362686,
0.07403367012739182,
0.03702418878674507,
0.05905136466026306,
0.0230710506439209,
0.0759059488773346,
0.0065090046264231205,
0.04173710569739342,
0.06524476408958435,
-0.04029324650764465,
-0.0007984256953932345,
-0.017511799931526184,
-0.06858692318201065,
0.013389705680310726,
0.09332923591136932,
-0.07209701091051102,
0.12228560447692871,
-0.08076025545597076,
0.00993614736944437,
0.053707294166088104,
0.13535363972187042,
0.12123546749353409,
-0.24632816016674042,
-0.11033523827791214,
0.05350465700030327,
0.004432559013366699,
0.0011013015173375607,
-0.028567515313625336,
0.03233615681529045,
-0.09913907200098038,
0.22988839447498322,
-0.035300083458423615,
0.08301769942045212,
0.0552678145468235,
0.0020141948480159044,
-0.0035831404384225607,
0.11737656593322754,
-0.0036264483351260424,
0.05421687290072441,
-0.13515561819076538,
0.1865757554769516,
0.018000369891524315,
-0.05976351723074913,
-0.005567309912294149,
0.05264647305011749,
0.08346656709909439,
0.15766769647598267,
0.061444126069545746,
0.022936996072530746,
-0.0009075294947251678,
-0.06425987184047699,
-0.10264857113361359,
-0.009649130515754223,
-0.002773800864815712,
-0.11270066350698471,
0.1067233756184578,
-0.03816046565771103,
-0.032894816249608994,
-0.0015478894347324967,
0.05713801458477974,
-0.08036806434392929,
-0.15651528537273407,
0.04955682158470154,
0.056784067302942276,
-0.00508628087118268,
-0.05675888434052467,
-0.061663154512643814,
-0.07774385064840317,
0.3101605474948883,
0.07778291404247284,
-0.07910475879907608,
-0.1224590316414833,
0.005403297021985054,
0.10935807228088379,
-0.06926984339952469,
0.07628133893013,
-0.02001851797103882,
0.06847436726093292,
-0.1180681362748146,
-0.1607113629579544,
0.08114799112081528,
-0.10961999744176865,
-0.07648981362581253,
-0.0109722213819623,
0.1316918432712555,
-0.04240880161523819,
0.038292668759822845,
0.012210041284561157,
0.04109741002321243,
-0.018076874315738678,
-0.06861324608325958,
-0.015863552689552307,
0.1979321390390396,
-0.03214910998940468,
0.12511177361011505,
0.008222412317991257,
-0.11471334099769592,
-0.021597571671009064,
-0.012874281965196133,
0.18586118519306183,
0.24059690535068512,
-0.05671001225709915,
0.10149475932121277,
0.07178954035043716,
-0.09068036079406738,
-0.23891668021678925,
-0.01959330216050148,
-0.012480034492909908,
0.05626503378152847,
-0.020820287987589836,
0.019051237031817436,
0.06370694935321808,
0.08401995897293091,
-0.011188218370079994,
0.08023707568645477,
-0.26320523023605347,
-0.17837269604206085,
0.056724514812231064,
0.028046952560544014,
0.3180290758609772,
-0.062012068927288055,
-0.06761707365512848,
-0.08133412152528763,
-0.1297924518585205,
0.009243015199899673,
-0.10294079035520554,
0.05553102120757103,
-0.0384606197476387,
0.020366735756397247,
0.018089784309267998,
-0.04538034275174141,
0.14976876974105835,
-0.02747814543545246,
0.03355595842003822,
-0.12953083217144012,
-0.06305591017007828,
0.04549757391214371,
-0.07404682785272598,
0.0925951674580574,
-0.09544879198074341,
-0.014474260620772839,
-0.11227523535490036,
-0.03806217014789581,
-0.053728699684143066,
0.0882265567779541,
-0.025980480015277863,
-0.05665628984570503,
-0.06382545828819275,
0.04510810226202011,
-0.010361937806010246,
-0.0004797542642336339,
0.098472461104393,
-0.03709160536527634,
0.16580243408679962,
0.1847873479127884,
0.10581108927726746,
-0.015218916349112988,
0.006362025160342455,
0.06460534781217575,
-0.06585615873336792,
0.05295680835843086,
-0.09215253591537476,
-0.03469633683562279,
0.10252264887094498,
0.003178812563419342,
0.09263034909963608,
0.022127997130155563,
-0.0450727716088295,
0.030670374631881714,
0.10686233639717102,
-0.1727311611175537,
-0.21029308438301086,
-0.05176365375518799,
-0.07910870015621185,
-0.025298884138464928,
0.042855195701122284,
0.20480307936668396,
-0.09884469956159592,
-0.011826387606561184,
0.005577930249273777,
0.019377706572413445,
-0.1312902569770813,
0.11088827252388,
0.03260413557291031,
0.016876135021448135,
-0.07659904658794403,
0.08049117028713226,
0.006008313037455082,
-0.053494252264499664,
0.023332126438617706,
0.09230399131774902,
-0.10171795636415482,
-0.0873803198337555,
-0.10150599479675293,
0.213719442486763,
-0.09668534249067307,
-0.061515260487794876,
-0.11500243842601776,
-0.12644866108894348,
0.005667160730808973,
0.18083947896957397,
0.07815445959568024,
-0.02025720290839672,
-0.008280893787741661,
-0.03612171486020088,
-0.03375106677412987,
0.05792565271258354,
0.07836102694272995,
0.07934316992759705,
-0.10827400535345078,
0.07646399736404419,
-0.016046427190303802,
0.10864625126123428,
-0.052600499242544174,
-0.023794129490852356,
-0.13849693536758423,
-0.025717351585626602,
-0.12951889634132385,
-0.044134702533483505,
-0.17145118117332458,
-0.026875298470258713,
-0.01961653120815754,
-0.04475795477628708,
0.009667855687439442,
0.003954811487346888,
-0.04624144360423088,
-0.025553816929459572,
-0.036875370889902115,
0.018297677859663963,
-0.0433395653963089,
-0.04657592251896858,
0.02960996702313423,
-0.014955510385334492,
0.04646878316998482,
0.014381182380020618,
-0.020428763702511787,
-0.028147682547569275,
-0.1273895502090454,
-0.03150378540158272,
0.10403142869472504,
-0.012789717875421047,
0.02749781124293804,
-0.08437976986169815,
-0.019572224467992783,
-0.007669141516089439,
0.01144490484148264,
-0.0014850415755063295,
0.06208503618836403,
-0.052187513560056686,
-0.016006864607334137,
0.022296400740742683,
-0.053447090089321136,
-0.040127258747816086,
-0.04006284102797508,
0.09273020923137665,
0.07680810987949371,
0.1192018911242485,
-0.07311537116765976,
0.08336956053972244,
-0.18209971487522125,
-0.020734641700983047,
-0.02355172298848629,
-0.10981857776641846,
-0.025890791788697243,
-0.10829376429319382,
0.0028435580898076296,
0.0177711620926857,
0.16566021740436554,
0.03611283004283905,
-0.023880410939455032,
0.011324001476168633,
-0.05944982171058655,
0.07387878000736237,
0.05719481036067009,
0.16582918167114258,
0.029724720865488052,
0.011199196800589561,
-0.08448679745197296,
0.08810155838727951,
0.04118147864937782,
-0.09322719275951385,
0.05864719673991203,
0.024061692878603935,
0.05574331805109978,
0.11109458655118942,
0.13941529393196106,
0.017511337995529175,
-0.017449907958507538,
-0.22303441166877747,
-0.06205609440803528,
0.019093818962574005,
-0.030447326600551605,
0.08789923042058945,
0.13718107342720032,
-0.18825477361679077,
0.09871798008680344,
0.04309649392962456,
-0.03436445817351341,
-0.09613005816936493,
-0.12943561375141144,
-0.08054038137197495,
-0.10982215404510498,
-0.03839787468314171,
-0.0836142972111702,
-0.03065798431634903,
0.02354564145207405,
-0.011668031103909016,
0.010247654281556606,
0.18967750668525696,
-0.04024754837155342,
-0.037781208753585815,
0.046562351286411285,
0.00008896212966646999,
0.018413783982396126,
-0.03867312893271446,
-0.002566518494859338,
0.02152390219271183,
-0.018236884847283363,
-0.012689022347331047,
0.013439911417663097,
0.023806476965546608,
0.046257853507995605,
-0.025939451530575752,
-0.08833741396665573,
-0.00781065970659256,
0.05709344521164894,
0.09616739302873611,
-0.060591280460357666,
0.06568821519613266,
-0.016964592039585114,
-0.013478920795023441,
0.0373745821416378,
-0.06137166917324066,
-0.12335649877786636,
-0.08463137596845627,
0.252109557390213,
-0.044151827692985535,
0.04195220768451691,
-0.03516439348459244,
-0.08374536782503128,
0.031191570684313774,
0.1523134559392929,
0.3498654067516327,
-0.02249516174197197,
0.023070907220244408,
-0.034100595861673355,
0.027485817670822144,
0.050485897809267044,
0.06490252912044525,
0.021163318306207657,
0.14808425307273865,
-0.06269297003746033,
0.05389911308884621,
-0.010252412408590317,
-0.09017369896173477,
-0.012086940929293633,
0.019510291516780853,
-0.0028581968508660793,
-0.02949279546737671,
0.008691338822245598,
0.0607425682246685,
-0.04352930560708046,
0.0038574624340981245,
0.048588622361421585,
-0.18557080626487732,
-0.09163989871740341,
-0.05558851733803749,
0.028759535402059555,
0.006035638507455587,
0.0646035373210907,
-0.03611350059509277,
0.008992239832878113,
0.13367551565170288,
-0.005719026084989309,
-0.11447252333164215,
-0.13745075464248657,
0.034938737750053406,
-0.009636948816478252,
0.008578737266361713,
-0.04520978406071663,
0.02983948215842247,
0.10293088853359222,
-0.0001031978172250092,
-0.08137798309326172,
-0.009049936197698116,
0.01763477362692356,
0.058913588523864746,
-0.004831934813410044,
0.029014023020863533,
-0.021507665514945984,
0.02079916000366211,
0.03945797681808472,
-0.17790459096431732,
0.06579697877168655,
-0.021116843447089195,
-0.05361899733543396,
-0.06208266690373421,
0.0910702720284462,
-0.054417554289102554,
0.1693711280822754,
0.17240010201931,
-0.04457734152674675,
0.02245994284749031,
0.000767523655667901,
0.03115873411297798,
0.04804085195064545,
0.10517732799053192,
-0.05789180099964142,
-0.15262293815612793,
-0.02062685787677765,
0.039648935198783875,
0.025316493585705757,
-0.261606365442276,
-0.11903300881385803,
-0.12669549882411957,
-0.027306701987981796,
-0.017171578481793404,
0.10858339816331863,
0.1609886884689331,
0.035102345049381256,
-0.010835216380655766,
-0.21030883491039276,
-0.0010984200052917004,
0.09905122220516205,
-0.10232197493314743,
-0.0887056365609169
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama_questioner_DPO_DC
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1749
- Rewards/chosen: -4.0403
- Rewards/rejected: -13.0634
- Rewards/accuracies: 0.9248
- Rewards/margins: 9.0231
- Logps/rejected: -203.5093
- Logps/chosen: -129.2496
- Logits/rejected: 0.1034
- Logits/chosen: 0.0622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4775 | 1.0 | 7603 | 0.1749 | -4.0403 | -13.0634 | 0.9248 | 9.0231 | -203.5093 | -129.2496 | 0.1034 | 0.0622 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "llama_questioner_DPO_DC", "results": []}]} | null | mazzaqq/llama_questioner_DPO_DC | [
"peft",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"region:us"
] | 2024-02-06T23:05:03+00:00 | [] | [] | TAGS
#peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us
| llama\_questioner\_DPO\_DC
==========================
This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1749
* Rewards/chosen: -4.0403
* Rewards/rejected: -13.0634
* Rewards/accuracies: 0.9248
* Rewards/margins: 9.0231
* Logps/rejected: -203.5093
* Logps/chosen: -129.2496
* Logits/rejected: 0.1034
* Logits/chosen: 0.0622
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 2
* eval\_batch\_size: 1
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.7.1
* Transformers 4.36.2
* Pytorch 2.1.2
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
47,
144,
4,
36
] | [
"passage: TAGS\n#peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 1\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.12815460562705994,
0.07362678647041321,
-0.0030387050937861204,
0.09397165477275848,
0.13555864989757538,
0.008106213994324207,
0.11708234995603561,
0.12782886624336243,
-0.12658336758613586,
0.0822305828332901,
0.12045231461524963,
0.09862366318702698,
0.03968842327594757,
0.21553269028663635,
-0.05761728063225746,
-0.25948667526245117,
0.022048208862543106,
-0.018482090905308723,
-0.08903668075799942,
0.11944059282541275,
0.08411248028278351,
-0.129569873213768,
0.08156486600637436,
-0.02364373952150345,
-0.17302487790584564,
-0.0028785758186131716,
-0.016635721549391747,
-0.036760084331035614,
0.1097821518778801,
-0.006169354543089867,
0.12922990322113037,
0.04526415839791298,
0.10848353058099747,
-0.18451227247714996,
0.007711556740105152,
0.08200474083423615,
0.02123616263270378,
0.08528686314821243,
0.0746433362364769,
-0.01885032281279564,
0.10002977401018143,
-0.10525348782539368,
0.06787969172000885,
0.017859280109405518,
-0.14706026017665863,
-0.2773507535457611,
-0.1126742735505104,
0.04781769961118698,
0.10392667353153229,
0.07026933133602142,
-0.016554437577724457,
0.1615411788225174,
-0.06229695305228233,
0.08477776497602463,
0.30566614866256714,
-0.2768784463405609,
-0.07452896237373352,
0.05150538682937622,
0.0022126506082713604,
0.0921148955821991,
-0.10607907176017761,
-0.02180144190788269,
0.06284728646278381,
0.03495626524090767,
0.11665500700473785,
-0.004495580215007067,
-0.01965779811143875,
-0.0032199432607740164,
-0.14694693684577942,
-0.031375665217638016,
0.13177518546581268,
0.0407976470887661,
-0.03934904560446739,
-0.02005075290799141,
-0.07226730138063431,
-0.21722565591335297,
-0.042063191533088684,
-0.026253847405314445,
0.05780734121799469,
-0.06118124723434448,
-0.07749133557081223,
0.027758704498410225,
-0.07181244343519211,
-0.0886830985546112,
-0.007547182962298393,
0.17631441354751587,
0.05949152261018753,
0.016322962939739227,
-0.023983435705304146,
0.12703554332256317,
-0.02236039564013481,
-0.163008451461792,
-0.013784730806946754,
0.008697688579559326,
-0.03778577595949173,
-0.05532708019018173,
-0.04921555146574974,
-0.01768074370920658,
0.017198756337165833,
0.14920149743556976,
-0.14701946079730988,
0.0730580985546112,
-0.0004137398791499436,
0.017353223636746407,
-0.07049303501844406,
0.12601104378700256,
-0.0764818862080574,
0.007830953225493431,
-0.008835075423121452,
0.0996699184179306,
0.025446465238928795,
-0.0015814426587894559,
-0.07024600356817245,
0.043493255972862244,
0.11381616443395615,
0.035837266594171524,
-0.05900844186544418,
0.03629574179649353,
-0.041540563106536865,
-0.01660413108766079,
0.05454833060503006,
-0.11661184579133987,
0.03598529100418091,
0.021459167823195457,
-0.09227722138166428,
-0.03405699506402016,
0.0026341930497437716,
0.010352976620197296,
0.006624537520110607,
0.12599864602088928,
-0.0888635441660881,
0.027860142290592194,
-0.07448730617761612,
-0.11188007146120071,
0.010479873977601528,
-0.06533174961805344,
-0.0023890468291938305,
-0.0943414717912674,
-0.14688575267791748,
-0.035020969808101654,
0.04058248549699783,
-0.06926972419023514,
-0.02361157350242138,
-0.06240348890423775,
-0.10413254797458649,
0.011004723608493805,
-0.014903126284480095,
0.1060418114066124,
-0.07722140103578568,
0.1097428947687149,
0.031839679926633835,
0.07029137760400772,
-0.022768449038267136,
0.02927134931087494,
-0.08040245622396469,
0.04916730150580406,
-0.270273357629776,
0.04720216989517212,
-0.06263130903244019,
0.06022047996520996,
-0.10419008135795593,
-0.10047989338636398,
-0.015556419268250465,
-0.03069470450282097,
0.11300768703222275,
0.14241379499435425,
-0.1824197620153427,
-0.06024164706468582,
0.21517229080200195,
-0.10305672883987427,
-0.12336238473653793,
0.11052368581295013,
-0.04122283309698105,
0.0017800128553062677,
0.057879578322172165,
0.2028845101594925,
0.04355251416563988,
-0.13892091810703278,
-0.018141580745577812,
-0.062254440039396286,
0.07994980365037918,
-0.009232563897967339,
0.07678795605897903,
-0.009582139551639557,
0.029621116816997528,
0.0079771364107728,
-0.027956360951066017,
0.033886928111314774,
-0.12023397535085678,
-0.07479296624660492,
-0.03418627381324768,
-0.09079082310199738,
0.03611348196864128,
0.05484182760119438,
0.056624092161655426,
-0.12424726784229279,
-0.08512856811285019,
0.04817549139261246,
0.10918882489204407,
-0.05773639306426048,
0.03348131477832794,
-0.056921862065792084,
0.09246339648962021,
-0.05475451052188873,
-0.021429602056741714,
-0.1792852282524109,
-0.07011336088180542,
0.024861305952072144,
0.015804778784513474,
-0.011052154935896397,
-0.045626603066921234,
0.08974310755729675,
0.08939719945192337,
-0.07660000771284103,
-0.035662390291690826,
-0.06498496234416962,
-0.003246423089876771,
-0.1182502806186676,
-0.24159957468509674,
-0.04132038727402687,
-0.041814856231212616,
0.1352064609527588,
-0.21116849780082703,
0.026612496003508568,
0.018731703981757164,
0.13644951581954956,
0.038687873631715775,
-0.04831773042678833,
-0.021129218861460686,
0.06027855724096298,
-0.018056336790323257,
-0.08334333449602127,
0.027914294973015785,
-0.001622346811927855,
-0.05410292372107506,
-0.036345869302749634,
-0.13904449343681335,
0.14976435899734497,
0.12125619500875473,
0.001929301070049405,
-0.12095958739519119,
-0.025295160710811615,
-0.07803943008184433,
-0.03386100381612778,
-0.06692134588956833,
0.029338320717215538,
0.11991428583860397,
0.009690065868198872,
0.12601053714752197,
-0.10093986988067627,
-0.043349891901016235,
0.03855733945965767,
-0.029554393142461777,
0.023165956139564514,
0.11592953652143478,
0.06207852438092232,
-0.09944874048233032,
0.1358334720134735,
0.1304982602596283,
-0.05251271650195122,
0.11702899634838104,
-0.06323662400245667,
-0.09393627941608429,
-0.035723794251680374,
0.025334354490041733,
0.01004878431558609,
0.15680791437625885,
-0.024813560768961906,
0.016271300613880157,
0.006461238954216242,
0.03942129388451576,
0.006841535214334726,
-0.19934433698654175,
-0.031583819538354874,
0.024883560836315155,
-0.05893126502633095,
-0.0342080295085907,
-0.03319765627384186,
0.02528122067451477,
0.1258375346660614,
0.011791164055466652,
-0.07973025739192963,
-0.008969657123088837,
0.010489558801054955,
-0.07015760242938995,
0.20755191147327423,
-0.08896929025650024,
-0.08596935868263245,
-0.046116676181554794,
-0.0017099056858569384,
-0.04548783600330353,
0.002444992773234844,
0.05327117070555687,
-0.10339123010635376,
-0.018679017201066017,
-0.10273021459579468,
-0.010030215606093407,
0.01395424921065569,
0.04528404772281647,
0.02880004420876503,
-0.002601724350824952,
0.0786251425743103,
-0.09363963454961777,
-0.004730171523988247,
-0.05757514387369156,
-0.022427493706345558,
0.04754025861620903,
0.030942430719733238,
0.09619182348251343,
0.15392516553401947,
-0.008661038242280483,
0.0454120896756649,
-0.03301789611577988,
0.2113577425479889,
-0.07959870249032974,
-0.03078470192849636,
0.06400551646947861,
0.00822838582098484,
0.06297493726015091,
0.1447756141424179,
0.05272936448454857,
-0.12036184221506119,
0.0162550937384367,
0.050010547041893005,
-0.04208998382091522,
-0.20404702425003052,
-0.04205765202641487,
-0.02091904915869236,
0.0026556134689599276,
0.09308330714702606,
0.0344749353826046,
-0.005907199811190367,
0.03212855011224747,
0.0021745767444372177,
0.005430043209344149,
-0.008567546494305134,
0.07183487713336945,
-0.004341259133070707,
0.052557170391082764,
0.11070147156715393,
-0.03358035907149315,
-0.04111628234386444,
0.03606261685490608,
-0.016818320378661156,
0.2205241471529007,
-0.03713330999016762,
0.06703437119722366,
0.038300395011901855,
0.1756211817264557,
-0.027401411905884743,
0.07059792429208755,
0.02310744673013687,
-0.04424504190683365,
0.0025211486499756575,
-0.06273103505373001,
-0.009984423406422138,
0.033570583909749985,
-0.03669935092329979,
0.04501033201813698,
-0.13596589863300323,
0.02252715639770031,
0.06647506356239319,
0.2970607280731201,
0.08111522346735,
-0.35316991806030273,
-0.06717296689748764,
-0.0019717898685485125,
0.007061347831040621,
-0.020522553473711014,
0.011685597710311413,
0.1265006959438324,
-0.060448478907346725,
0.07698798179626465,
-0.06222688779234886,
0.07297693192958832,
-0.024876505136489868,
0.020728852599859238,
0.0551469549536705,
0.09852895885705948,
-0.03157133236527443,
0.028491223230957985,
-0.2416187971830368,
0.2969662845134735,
0.023716973140835762,
0.07516492903232574,
-0.03534187376499176,
-0.011764745227992535,
0.016516992822289467,
0.06021052598953247,
0.06861584633588791,
-0.005756249651312828,
-0.0836476981639862,
-0.20504635572433472,
-0.11460769921541214,
0.026673728600144386,
0.13646887242794037,
-0.045434463769197464,
0.11786063015460968,
0.004144873935729265,
-0.004803422372788191,
0.05026169493794441,
-0.05300217866897583,
-0.09712270647287369,
-0.029423531144857407,
0.007308517582714558,
0.0022929315455257893,
-0.017877379432320595,
-0.07577882707118988,
-0.10772490501403809,
-0.08310288190841675,
0.14812806248664856,
0.026623573154211044,
-0.04693519324064255,
-0.13634620606899261,
0.09256470948457718,
0.10419019311666489,
-0.07355309277772903,
0.018275946378707886,
0.03166705742478371,
0.07202830165624619,
0.026637282222509384,
-0.04928148165345192,
0.13472944498062134,
-0.05293550342321396,
-0.21074381470680237,
-0.051014117896556854,
0.13363271951675415,
0.0691148042678833,
0.05008889362215996,
-0.020309844985604286,
0.03112432360649109,
0.029963841661810875,
-0.085725337266922,
0.05170325189828873,
-0.0004115856718271971,
0.08093354105949402,
0.04338978976011276,
-0.017964035272598267,
0.058536361902952194,
-0.06441080570220947,
-0.01369527354836464,
0.10776825249195099,
0.35191088914871216,
-0.08643871545791626,
0.02405436895787716,
0.03269442543387413,
-0.04075344651937485,
-0.1692400723695755,
0.04445899650454521,
0.08584247529506683,
-0.010424620471894741,
0.036294806748628616,
-0.16120392084121704,
0.05763848498463631,
0.11954793334007263,
-0.031708378344774246,
0.10893747955560684,
-0.3269921839237213,
-0.13133926689624786,
0.10111726820468903,
0.13157090544700623,
0.06944505870342255,
-0.17483343183994293,
-0.03105556219816208,
-0.006320709828287363,
-0.10358957946300507,
0.08531705290079117,
-0.152948260307312,
0.10085760802030563,
-0.01650884561240673,
0.038813136518001556,
0.028114542365074158,
-0.05303697660565376,
0.14387701451778412,
0.015934854745864868,
0.11308296024799347,
-0.043208763003349304,
0.02002156525850296,
0.04864125698804855,
-0.07886751741170883,
0.036757685244083405,
-0.036159541457891464,
0.04550966992974281,
-0.07088126987218857,
-0.004681841004639864,
-0.09499665349721909,
0.014393148943781853,
-0.03376278281211853,
-0.057465147227048874,
-0.05384421721100807,
0.035961467772722244,
0.05839407444000244,
-0.01713414490222931,
0.162702277302742,
0.011967498809099197,
0.18008072674274445,
0.14592105150222778,
0.040928762406110764,
-0.05801137909293175,
-0.02226145751774311,
0.022254807874560356,
-0.01538444310426712,
0.047447569668293,
-0.1620238572359085,
0.042768243700265884,
0.13807545602321625,
0.03127158805727959,
0.1066330075263977,
0.0736905038356781,
-0.07266639173030853,
0.004127119667828083,
0.06705775111913681,
-0.16949105262756348,
-0.100782111287117,
0.012248777784407139,
-0.00808768067508936,
-0.12335273623466492,
0.08440060913562775,
0.12282007187604904,
-0.06924551725387573,
-0.01193036325275898,
-0.008237814530730247,
0.03891265019774437,
-0.04840519279241562,
0.23856417834758759,
0.05964931845664978,
0.06491803377866745,
-0.10845424234867096,
0.10216810554265976,
0.04262043535709381,
-0.06997863203287125,
0.04382619634270668,
0.09299077838659286,
-0.08116447180509567,
-0.0100668640807271,
0.09421084821224213,
0.14896337687969208,
-0.023071542382240295,
-0.036038853228092194,
-0.1659618616104126,
-0.12102407217025757,
0.0785081535577774,
0.16386345028877258,
0.07043556123971939,
0.025105619803071022,
0.014056647196412086,
0.018948694691061974,
-0.14484372735023499,
0.09154517203569412,
0.0684390738606453,
0.09156564623117447,
-0.1449739784002304,
0.15543211996555328,
-0.019733870401978493,
0.03957009315490723,
-0.0239461250603199,
0.03077472187578678,
-0.13504792749881744,
0.02073228545486927,
-0.11655038595199585,
-0.0315263532102108,
-0.03757891803979874,
-0.013425040990114212,
-0.0033347143325954676,
-0.05500873178243637,
-0.054496560245752335,
0.015860963612794876,
-0.1252361536026001,
-0.029628999531269073,
0.008457738906145096,
0.015636898577213287,
-0.1449986845254898,
-0.038555510342121124,
0.011418025940656662,
-0.08968399465084076,
0.08509315550327301,
0.06849101185798645,
0.03280850499868393,
0.03696967288851738,
-0.09866730868816376,
0.009557805955410004,
0.06770771741867065,
-0.031676117330789566,
0.07513058185577393,
-0.11819200217723846,
-0.028475970029830933,
-0.028662947937846184,
0.04661983996629715,
0.029181301593780518,
0.09069652110338211,
-0.12622231245040894,
0.013107101432979107,
-0.03656245768070221,
-0.05468517914414406,
-0.036917999386787415,
0.02026619389653206,
0.07088299840688705,
0.027873264625668526,
0.12713198363780975,
-0.08622768521308899,
0.02876957505941391,
-0.2276880145072937,
-0.02901955135166645,
-0.005835325922816992,
-0.08154791593551636,
-0.0492398776113987,
-0.0051063005812466145,
0.09854290634393692,
-0.060456376522779465,
0.08630543947219849,
-0.004568955861032009,
0.05878615379333496,
0.043291933834552765,
-0.07112406194210052,
0.014037096872925758,
0.05036575347185135,
0.1540221869945526,
0.025709278881549835,
-0.04968743026256561,
0.07675717025995255,
0.04353906586766243,
0.11523886770009995,
0.10509803891181946,
0.25196948647499084,
0.13869813084602356,
0.011442589573562145,
0.08427704870700836,
0.036153752356767654,
-0.11623647063970566,
-0.13100402057170868,
0.04825935140252113,
-0.05187327414751053,
0.0917176827788353,
-0.011983255855739117,
0.15192191302776337,
0.11203102022409439,
-0.17799167335033417,
0.016204513609409332,
-0.05278609320521355,
-0.09110420197248459,
-0.12278232723474503,
-0.003140074899420142,
-0.08666501194238663,
-0.1872594654560089,
0.0043540834449231625,
-0.11834164708852768,
0.03118344396352768,
0.11839000880718231,
0.021572742611169815,
0.03418305888772011,
0.17317081987857819,
0.04816411808133125,
0.03477327525615692,
0.05136646330356598,
0.02258443273603916,
-0.021645013242959976,
-0.034270983189344406,
-0.09942011535167694,
0.029359301552176476,
-0.02785157784819603,
0.0350375659763813,
-0.04839786887168884,
-0.05835321918129921,
0.06064651161432266,
0.009766141884028912,
-0.10928505659103394,
0.024540336802601814,
0.023166488856077194,
0.061001043766736984,
0.031085684895515442,
0.025375615805387497,
0.006509930361062288,
-0.025012196972966194,
0.23640796542167664,
-0.08224663883447647,
-0.03464516997337341,
-0.12000130116939545,
0.2850354313850403,
0.04730920121073723,
-0.00098715303465724,
0.031289998441934586,
-0.10772386938333511,
-0.022356020286679268,
0.13448068499565125,
0.17755542695522308,
-0.06366295367479324,
-0.002959158970043063,
-0.034354325383901596,
-0.011339518241584301,
-0.03426269441843033,
0.09860413521528244,
0.11920071393251419,
0.012937894091010094,
-0.09133054316043854,
-0.020140329375863075,
-0.04232707619667053,
-0.02350965142250061,
-0.041769567877054214,
0.042074497789144516,
0.03105233982205391,
0.02049855701625347,
-0.056167446076869965,
0.07927470654249191,
-0.04695768654346466,
-0.11457512527704239,
0.07317181676626205,
-0.20763865113258362,
-0.17215824127197266,
-0.02103712037205696,
0.04049118235707283,
-0.0019640550017356873,
0.07277167588472366,
-0.029221363365650177,
-0.023969219997525215,
0.10306789726018906,
-0.026912668719887733,
-0.059487052261829376,
-0.1524602174758911,
0.07212530821561813,
-0.1389092057943344,
0.21362940967082977,
-0.03854179009795189,
0.03644988313317299,
0.11903737485408783,
0.025389844551682472,
-0.10777517408132553,
0.04074074327945709,
0.061650991439819336,
-0.09115119278430939,
-0.009466529823839664,
0.1465923935174942,
-0.056727681308984756,
0.08162271231412888,
0.049476027488708496,
-0.12992402911186218,
-0.01701592467725277,
-0.039825424551963806,
-0.02819862775504589,
-0.049031730741262436,
-0.04176529496908188,
-0.04924864321947098,
0.12241266667842865,
0.1978878676891327,
-0.04895790293812752,
0.05311164632439613,
-0.05462437868118286,
0.034980323165655136,
0.06190609559416771,
0.0390169695019722,
-0.02757609635591507,
-0.2832527458667755,
0.03600379452109337,
0.10167541354894638,
-0.007862573489546776,
-0.22686976194381714,
-0.07376221567392349,
0.03206394612789154,
-0.05985661968588829,
-0.07733139395713806,
0.10214199125766754,
0.043869633227586746,
0.059335626661777496,
-0.06470576673746109,
-0.08997514098882675,
-0.07297512143850327,
0.1777927130460739,
-0.15683118999004364,
-0.09433213621377945
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-bn-adapter-895K-snli-model3
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8363
- Accuracy: 0.685
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 74
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5043 | 1.0 | 8584 | 0.4377 | 0.8348 |
| 0.461 | 2.0 | 17168 | 0.4008 | 0.8492 |
| 0.4536 | 3.0 | 25752 | 0.3925 | 0.8522 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-base-cased", "model-index": [{"name": "bert-base-cased-bn-adapter-895K-snli-model3", "results": []}]} | null | varun-v-rao/bert-base-cased-bn-adapter-895K-snli-model3 | [
"tensorboard",
"generated_from_trainer",
"base_model:bert-base-cased",
"license:apache-2.0",
"region:us"
] | 2024-02-06T23:06:47+00:00 | [] | [] | TAGS
#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us
| bert-base-cased-bn-adapter-895K-snli-model3
===========================================
This model is a fine-tuned version of bert-base-cased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8363
* Accuracy: 0.685
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 74
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.1+cu121
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
36,
98,
4,
33
] | [
"passage: TAGS\n#tensorboard #generated_from_trainer #base_model-bert-base-cased #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 74\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
-0.08748777955770493,
0.005646399222314358,
-0.0004353908298071474,
0.10363420099020004,
0.1713157594203949,
0.036204949021339417,
0.14455662667751312,
0.08607631176710129,
-0.12799134850502014,
0.015443927608430386,
0.09676755964756012,
0.11172565072774887,
0.007690217345952988,
0.07246015965938568,
-0.024984555318951607,
-0.24470792710781097,
-0.013032913208007812,
0.04282119497656822,
-0.1238342896103859,
0.12232126295566559,
0.08900826424360275,
-0.13505183160305023,
0.06801063567399979,
0.0032519581727683544,
-0.2710694968700409,
0.050913210958242416,
0.02493630163371563,
-0.0535067617893219,
0.1322779655456543,
-0.0033818993251770735,
0.1632954627275467,
-0.006322097033262253,
0.1300939917564392,
-0.1479543000459671,
0.01272523868829012,
0.08255220204591751,
0.004310895688831806,
0.08343025296926498,
0.05253841355443001,
0.02534964121878147,
0.1221630871295929,
-0.06904421746730804,
0.05655018985271454,
0.023233799263834953,
-0.12275891751050949,
-0.26680323481559753,
-0.08302944153547287,
0.014017420820891857,
0.06335577368736267,
0.08139600604772568,
-0.0026402880903333426,
0.14739874005317688,
-0.08206578344106674,
0.08064804971218109,
0.26125216484069824,
-0.2712884545326233,
-0.08178163319826126,
0.09262493252754211,
0.015501584857702255,
0.09845124930143356,
-0.10213454812765121,
-0.029089313000440598,
0.0769742950797081,
0.04720300808548927,
0.11356517672538757,
-0.029209066182374954,
-0.14965076744556427,
0.04291197285056114,
-0.15139272809028625,
0.008383432403206825,
0.10261595994234085,
0.03691846877336502,
-0.02463495172560215,
0.03426826745271683,
-0.07739367336034775,
-0.1336323618888855,
-0.05266954004764557,
-0.025372684001922607,
0.0794195681810379,
-0.03687727823853493,
-0.10674341022968292,
-0.034782588481903076,
-0.10564631968736649,
-0.10965117812156677,
-0.05270380899310112,
0.17512384057044983,
0.04459034278988838,
0.048949483782052994,
-0.06666430085897446,
0.11623892188072205,
-0.06026386469602585,
-0.13762463629245758,
0.04680675268173218,
0.03803923353552818,
-0.0012226533144712448,
-0.051606085151433945,
-0.07859654724597931,
-0.0814981684088707,
0.019549623131752014,
0.1333358883857727,
-0.07236699759960175,
0.05043218284845352,
0.0314444936811924,
0.053852710872888565,
-0.11136296391487122,
0.17402631044387817,
-0.06422945111989975,
0.02311609499156475,
0.0041445898823440075,
0.05969500169157982,
0.010166729800403118,
-0.003727088449522853,
-0.11892624944448471,
0.033200185745954514,
0.08126316219568253,
0.00040333307697437704,
-0.08414182811975479,
0.02911393530666828,
-0.03155728802084923,
-0.01104820892214775,
-0.024073800072073936,
-0.0898791253566742,
0.04154137521982193,
-0.004199085757136345,
-0.10211322456598282,
-0.013973576948046684,
0.014088676311075687,
0.027130328118801117,
0.018264101818203926,
0.12207414954900742,
-0.10036013275384903,
0.06554514169692993,
-0.14161977171897888,
-0.10872089862823486,
0.011395045556128025,
-0.029772741720080376,
0.020428892225027084,
-0.06568051874637604,
-0.1643347591161728,
-0.0056752050295472145,
0.0839640349149704,
-0.04425990208983421,
-0.020768972113728523,
-0.02562868595123291,
-0.09639650583267212,
-0.002910047536715865,
-0.018323350697755814,
0.19828277826309204,
-0.05016173794865608,
0.09588397294282913,
0.05489489808678627,
0.06509533524513245,
-0.09943246841430664,
0.04255480319261551,
-0.09033095836639404,
0.005756968166679144,
-0.25802457332611084,
0.001942504313774407,
-0.07131756097078323,
0.06440302729606628,
-0.08217708021402359,
-0.08553414046764374,
0.007354874163866043,
0.004322507418692112,
0.10614246129989624,
0.057892948389053345,
-0.2071586549282074,
-0.07208346575498581,
0.11999829113483429,
-0.0761280506849289,
-0.09468592703342438,
0.085540771484375,
-0.055229175835847855,
0.06815855950117111,
0.06422830373048782,
0.17648321390151978,
-0.028912091627717018,
-0.11127014458179474,
0.028161900117993355,
-0.012874309904873371,
0.07046699523925781,
-0.09199217706918716,
0.05309145152568817,
-0.022902963683009148,
0.002062334446236491,
0.029893824830651283,
-0.05557922273874283,
0.054348599165678024,
-0.11084286123514175,
-0.08474444597959518,
-0.06052003055810928,
-0.1083921566605568,
0.005387569777667522,
0.07337243109941483,
0.0852273553609848,
-0.09971357136964798,
-0.08205541968345642,
0.1564062535762787,
0.08587003499269485,
-0.05682931840419769,
0.030781619250774384,
-0.04908192530274391,
0.0698009580373764,
-0.0762193351984024,
-0.03438449651002884,
-0.18666890263557434,
-0.03863886371254921,
0.008337362669408321,
-0.00658856937661767,
0.054874684661626816,
-0.0008163441671058536,
0.0859881266951561,
0.06493882834911346,
-0.07144691050052643,
0.008707043714821339,
-0.08227495849132538,
-0.005900753661990166,
-0.13031165301799774,
-0.2212047278881073,
-0.04938509315252304,
-0.007174526806920767,
0.07540874928236008,
-0.19097642600536346,
0.023870576173067093,
-0.032652903348207474,
0.09554476290941238,
0.005306009668856859,
-0.011518253944814205,
-0.07210852950811386,
0.09338967502117157,
0.0023138215765357018,
-0.06899380683898926,
0.04609544947743416,
-0.013343765400350094,
-0.06213086098432541,
-0.08180742710828781,
-0.07357360422611237,
0.15605925023555756,
0.14475904405117035,
-0.14021430909633636,
-0.07130648195743561,
0.043531082570552826,
-0.06226947158575058,
-0.03252021595835686,
-0.05405442416667938,
0.05352893844246864,
0.16588221490383148,
-0.010338714346289635,
0.13085180521011353,
-0.09439555555582047,
-0.038183052092790604,
0.003507886314764619,
-0.02963067963719368,
0.06089350953698158,
0.07598309963941574,
0.19036367535591125,
-0.03850054368376732,
0.1147305890917778,
0.16494134068489075,
-0.155497208237648,
0.10995938628911972,
-0.07341673225164413,
-0.0944124087691307,
-0.028610587120056152,
-0.036916352808475494,
-0.016201140359044075,
0.1727423071861267,
-0.06672059744596481,
0.010356954298913479,
-0.00218174047768116,
0.014238962903618813,
0.04926995187997818,
-0.2482661008834839,
-0.03933706507086754,
0.006987030152231455,
-0.042563311755657196,
-0.016292013227939606,
-0.03283774107694626,
0.005630107130855322,
0.09886100888252258,
-0.033174823969602585,
-0.07564619928598404,
0.019630970433354378,
0.007218940183520317,
-0.05668311193585396,
0.20977598428726196,
-0.07702220231294632,
-0.036175649613142014,
-0.11096713691949844,
-0.03343446925282478,
-0.054153162986040115,
-0.02507004514336586,
0.03369807079434395,
-0.12040547281503677,
-0.02981892041862011,
-0.050066813826560974,
0.03783351927995682,
0.018769871443510056,
0.03706929460167885,
0.014037824235856533,
0.003517140168696642,
0.0993402749300003,
-0.14080581068992615,
0.022594496607780457,
-0.08159367740154266,
-0.09615156054496765,
0.015004066750407219,
0.07998429983854294,
0.1072523444890976,
0.16679100692272186,
-0.028545012697577477,
0.0051800282672047615,
-0.009755339473485947,
0.2653849720954895,
-0.0586007721722126,
-0.035659145563840866,
0.11285347491502762,
-0.007593302521854639,
0.05124044045805931,
0.09675321727991104,
0.10804443061351776,
-0.11104648560285568,
-0.002398688578978181,
0.0591815710067749,
-0.03760002925992012,
-0.23161518573760986,
-0.011924246326088905,
-0.025592349469661713,
-0.0852043479681015,
0.07012450695037842,
0.037945911288261414,
0.04627770185470581,
0.058313872665166855,
0.05984831601381302,
0.10635435581207275,
-0.0666043609380722,
0.04235927388072014,
0.062452491372823715,
0.06224331259727478,
0.11400806158781052,
-0.053237102925777435,
-0.059265416115522385,
0.027389179915189743,
-0.012364283204078674,
0.25087761878967285,
0.008375142700970173,
0.11825359612703323,
0.06941516697406769,
0.18636468052864075,
-0.008073970675468445,
0.08955647051334381,
-0.02395259216427803,
-0.05985907092690468,
-0.00034749749465845525,
-0.06070302426815033,
0.022139376029372215,
0.01445008721202612,
-0.08948365598917007,
0.06986913084983826,
-0.0721501037478447,
-0.017695419490337372,
0.05576971545815468,
0.2434167116880417,
0.003924698568880558,
-0.29568740725517273,
-0.036854442209005356,
-0.0030684699304401875,
-0.009004444815218449,
-0.00914869736880064,
0.011342233046889305,
0.11564863473176956,
-0.03677841275930405,
0.005825654603540897,
-0.04842028766870499,
0.0970323383808136,
0.011625858955085278,
0.022648850455880165,
0.08027154207229614,
0.1643800288438797,
-0.003296701470389962,
0.05421566218137741,
-0.292370468378067,
0.27871373295783997,
0.03117991052567959,
0.11540810018777847,
-0.04804575443267822,
-0.004965814761817455,
0.03394549340009689,
0.023959385231137276,
0.009849149733781815,
-0.02187243103981018,
-0.04922180995345116,
-0.17061607539653778,
-0.052951838821172714,
0.050052460283041,
0.11628730595111847,
0.00031627120915800333,
0.08222431689500809,
-0.008197068236768246,
0.011286169290542603,
0.10396341234445572,
-0.05979415401816368,
-0.13909411430358887,
-0.04333282262086868,
-0.05314052850008011,
0.020622074604034424,
-0.08619717508554459,
-0.08018342405557632,
-0.11741059273481369,
-0.096486397087574,
0.09231896698474884,
0.029434524476528168,
-0.023562466725707054,
-0.11248771846294403,
0.11084030568599701,
0.1229403167963028,
-0.04701300710439682,
0.0447286032140255,
0.027084579691290855,
0.052559297531843185,
0.03877831995487213,
-0.0756995901465416,
0.11252839118242264,
-0.051420994102954865,
-0.14761145412921906,
-0.04875781387090683,
0.06464844942092896,
0.04889080673456192,
0.05284964665770531,
-0.0348767526447773,
0.01819722168147564,
-0.012286657467484474,
-0.10162275284528732,
0.008132985793054104,
-0.05916035547852516,
0.031415898352861404,
-0.004018469713628292,
-0.03647485747933388,
0.03663649037480354,
-0.04337068647146225,
-0.018546901643276215,
0.11565764248371124,
0.2705347537994385,
-0.08054790645837784,
-0.021666398271918297,
0.06219320744276047,
-0.07005588710308075,
-0.16605493426322937,
0.09453734010457993,
0.06993653625249863,
-0.008690771646797657,
0.057168006896972656,
-0.18046917021274567,
0.17086230218410492,
0.12598061561584473,
-0.02262687496840954,
0.13209901750087738,
-0.3171848952770233,
-0.15096567571163177,
0.10784148424863815,
0.1815262734889984,
0.11328773200511932,
-0.15824514627456665,
-0.026625778526067734,
-0.029521826654672623,
-0.11537415534257889,
0.10995864868164062,
-0.16506017744541168,
0.09206241369247437,
-0.010868624784052372,
0.09923673421144485,
-0.01563725620508194,
-0.05871744826436043,
0.13598617911338806,
0.018118759617209435,
0.13426977396011353,
-0.03654075041413307,
-0.003909881226718426,
0.11584247648715973,
-0.017871977761387825,
0.002682875841856003,
-0.048567358404397964,
0.01859065517783165,
-0.03734256699681282,
0.001508941175416112,
-0.0779360979795456,
0.03807000815868378,
-0.04348229989409447,
-0.06148200482130051,
-0.04465789347887039,
0.01177044678479433,
-0.016253622248768806,
-0.02980683371424675,
0.12939192354679108,
0.0552838072180748,
0.15339532494544983,
0.11366931349039078,
0.019427688792347908,
-0.07909472286701202,
-0.06294320523738861,
0.026926610618829727,
-0.01782519370317459,
0.08730253577232361,
-0.1842917799949646,
-0.001181187224574387,
0.12069913744926453,
0.0278603658080101,
0.0974554792046547,
0.08852313458919525,
-0.06576108932495117,
0.014863178133964539,
0.07757187634706497,
-0.1432071030139923,
-0.08371582627296448,
0.011569572612643242,
-0.0521991141140461,
-0.09008917212486267,
0.0665057897567749,
0.06884262710809708,
-0.08332164585590363,
-0.006894764956086874,
-0.002669826615601778,
-0.024975568056106567,
-0.09880261868238449,
0.2117314487695694,
0.10646997392177582,
0.0424700565636158,
-0.11277295649051666,
0.10047048330307007,
0.0522933192551136,
-0.03420025110244751,
-0.0024132556281983852,
0.06502779573202133,
-0.04789447784423828,
0.004072654061019421,
0.14600983262062073,
0.22520262002944946,
-0.07014623284339905,
-0.05980164185166359,
-0.16966933012008667,
-0.08966846019029617,
0.04995160922408104,
0.1938094198703766,
0.11337124556303024,
-0.017884399741888046,
-0.029331199824810028,
0.04429382085800171,
-0.13435585796833038,
0.06586672365665436,
0.0165849756449461,
0.08237766474485397,
-0.1272309422492981,
0.13193584978580475,
0.041041433811187744,
0.018455155193805695,
-0.0277225524187088,
0.04739045724272728,
-0.12308366596698761,
0.02597029134631157,
-0.14745400846004486,
-0.06338965892791748,
0.021630819886922836,
-0.005842722952365875,
0.01430445071309805,
-0.0762258917093277,
-0.09178181737661362,
0.03670541197061539,
-0.14559243619441986,
-0.017357822507619858,
0.058096181601285934,
0.02870689146220684,
-0.1481454074382782,
-0.012030909769237041,
0.024378743022680283,
-0.04827932268381119,
0.015551730059087276,
0.04529089853167534,
0.039599210023880005,
0.10390524566173553,
-0.17445562779903412,
-0.01152836624532938,
0.047838691622018814,
0.006065532099455595,
0.08881564438343048,
-0.026333147659897804,
-0.02736460603773594,
-0.015063432045280933,
0.12807735800743103,
-0.0016999732470139861,
0.06234708055853844,
-0.13387759029865265,
-0.019896849989891052,
-0.057136330753564835,
-0.08215007930994034,
-0.03804797679185867,
0.006978990510106087,
0.09703270345926285,
0.03349747508764267,
0.17734843492507935,
-0.06280694156885147,
0.005030845757573843,
-0.2304709553718567,
0.0008158515556715429,
-0.016484946012496948,
-0.0804724246263504,
-0.10808071494102478,
-0.051916804164648056,
0.05604957416653633,
-0.06669532507658005,
0.1489970088005066,
0.033093467354774475,
0.05083562433719635,
0.0339384563267231,
-0.002667020307853818,
-0.0003936054708901793,
0.037640493363142014,
0.24429602921009064,
0.04159518703818321,
0.004034980665892363,
0.05829440802335739,
0.07335709035396576,
0.1133483275771141,
0.0817415788769722,
0.20034724473953247,
0.14601433277130127,
-0.03462047502398491,
0.1046476885676384,
0.0723198652267456,
-0.06700830906629562,
-0.10443413257598877,
0.09232977777719498,
-0.031494878232479095,
0.07211137562990189,
-0.030309097841382027,
0.22638334333896637,
0.08288372308015823,
-0.15734046697616577,
0.03633861988782883,
-0.041302286088466644,
-0.08768322318792343,
-0.11122936010360718,
0.020119329914450645,
-0.0733773410320282,
-0.20187203586101532,
0.027600539848208427,
-0.10831329971551895,
0.013067386113107204,
0.1623660773038864,
0.0019851631950587034,
0.006073303986340761,
0.1837807297706604,
0.05579474940896034,
0.0497710295021534,
0.025883300229907036,
-0.007874458096921444,
-0.044492222368717194,
-0.09990836679935455,
-0.07168671488761902,
-0.01321921031922102,
-0.017463011667132378,
0.026842087507247925,
-0.06390661746263504,
-0.09031166136264801,
0.04460355266928673,
0.004668053705245256,
-0.0920209139585495,
0.024212457239627838,
0.01774049550294876,
0.06506983190774918,
0.018160108476877213,
-0.0005280168843455613,
0.021448565647006035,
-0.027209337800741196,
0.214651957154274,
-0.08272664248943329,
-0.1056886538863182,
-0.08658940345048904,
0.2220073938369751,
0.013998454436659813,
-0.007341086398810148,
0.013852053321897984,
-0.08975210785865784,
-0.014476937241852283,
0.2019713968038559,
0.1690661758184433,
-0.10706902295351028,
-0.031171340495347977,
-0.0015190516132861376,
-0.025917787104845047,
-0.09470999240875244,
0.13497915863990784,
0.12033333629369736,
0.0201156847178936,
-0.12130507826805115,
-0.0523693822324276,
-0.05738620460033417,
-0.02298298478126526,
-0.04696440324187279,
0.036796893924474716,
0.04848949983716011,
-0.003449728013947606,
-0.047665271908044815,
0.06831728667020798,
-0.055166635662317276,
-0.11434590071439743,
0.08143774420022964,
-0.16142567992210388,
-0.17581620812416077,
-0.013183627277612686,
0.15916708111763,
-0.026841342449188232,
0.05353764817118645,
-0.04833245649933815,
0.007146024145185947,
0.04898480325937271,
-0.04131031036376953,
-0.08685862272977829,
-0.143270343542099,
0.11555713415145874,
-0.13845396041870117,
0.21917834877967834,
-0.03874396160244942,
0.10700639337301254,
0.10993997007608414,
0.04795107617974281,
-0.07082747668027878,
0.05254922807216644,
0.03571636974811554,
-0.14024397730827332,
-0.013200878165662289,
0.10392493009567261,
-0.03711361810564995,
0.060999974608421326,
0.013626284897327423,
-0.11663340777158737,
0.019529541954398155,
-0.04630076140165329,
-0.047844137996435165,
-0.05086829885840416,
-0.08404377102851868,
-0.08308935165405273,
0.09747808426618576,
0.18818879127502441,
-0.018363388255238533,
0.03788460046052933,
-0.08943426609039307,
0.04350961744785309,
0.07476538419723511,
0.040975961834192276,
-0.06981485337018967,
-0.23795846104621887,
0.028515178710222244,
0.1142413318157196,
-0.06653526425361633,
-0.21185629069805145,
-0.07453389465808868,
0.0326511524617672,
-0.077926404774189,
-0.08381368964910507,
0.07015515118837357,
0.13228753209114075,
0.0675167590379715,
-0.0509844534099102,
-0.12952640652656555,
-0.09675667434930801,
0.13731975853443146,
-0.1666489839553833,
-0.09527509659528732
] |
null | null | null |
<img src="" />
These are GGUF quantized versions of [sophosympatheia/Midnight-Rose-70B-v2.0.3](https://huggingface.co/sophosympatheia/Midnight-Rose-70B-v2.0.3).
The importance matrix was trained for 100K tokens (200 batches of 512 tokens) using `wiki.train.raw`.
The IQ2_XXS and IQ2_XS versions are compatible with llama.cpp, version `147b17a` or later. The IQ3_XXS requires version `f4d7e54` or later.
Some model files above 50GB are split into smaller files. To concatenate them, use the `cat` command (on Windows, use PowerShell): `cat foo-Q6_K.gguf.* > foo-Q6_K.gguf` | {"language": ["en"], "license": "llama2"} | null | Artefact2/Midnight-Rose-70B-v2.0.3-GGUF | [
"gguf",
"en",
"license:llama2",
"region:us"
] | 2024-02-06T23:07:00+00:00 | [] | [
"en"
] | TAGS
#gguf #en #license-llama2 #region-us
|
<img src="" />
These are GGUF quantized versions of sophosympatheia/Midnight-Rose-70B-v2.0.3.
The importance matrix was trained for 100K tokens (200 batches of 512 tokens) using 'URL'.
The IQ2_XXS and IQ2_XS versions are compatible with URL, version '147b17a' or later. The IQ3_XXS requires version 'f4d7e54' or later.
Some model files above 50GB are split into smaller files. To concatenate them, use the 'cat' command (on Windows, use PowerShell): 'cat foo-Q6_K.gguf.* > foo-Q6_K.gguf' | [] | [
"TAGS\n#gguf #en #license-llama2 #region-us \n"
] | [
18
] | [
"passage: TAGS\n#gguf #en #license-llama2 #region-us \n"
] | [
0.01458431500941515,
0.08434592932462692,
-0.009268369525671005,
0.009793519973754883,
0.017607325688004494,
0.04338233172893524,
0.14284180104732513,
0.0552712045609951,
0.209089994430542,
-0.01576414704322815,
0.14461874961853027,
0.05985064432024956,
0.024944931268692017,
-0.021291697397828102,
0.010095552541315556,
-0.16610512137413025,
0.042862169444561005,
-0.05684001371264458,
0.01628948003053665,
0.021563466638326645,
0.00456277746707201,
-0.026591695845127106,
0.03203010931611061,
-0.021446090191602707,
-0.11433105915784836,
0.028978610411286354,
0.029754213988780975,
-0.024654986336827278,
0.1011904776096344,
0.0974891409277916,
0.042689014226198196,
0.028210686519742012,
-0.024167686700820923,
-0.20137952268123627,
0.024873925372958183,
-0.09065628051757812,
-0.1255165934562683,
0.026239831000566483,
0.018915044143795967,
-0.0168700460344553,
0.10520438849925995,
0.1443997472524643,
-0.09198002517223358,
0.04748821631073952,
-0.23156528174877167,
-0.18160870671272278,
-0.08222167938947678,
0.02248441055417061,
0.016412632539868355,
0.019905611872673035,
0.06330125778913498,
0.043636973947286606,
-0.17465287446975708,
-0.02455078810453415,
0.11936412006616592,
-0.3238057792186737,
0.04851958528161049,
0.19231992959976196,
0.022032035514712334,
0.010015081614255905,
-0.05975247919559479,
0.14970922470092773,
0.046917058527469635,
-0.05240972340106964,
-0.14407597482204437,
-0.05892137438058853,
0.002618253231048584,
0.14786463975906372,
-0.03316662833094597,
-0.07204631716012955,
0.19344617426395416,
0.03248254954814911,
-0.043850384652614594,
0.10444409400224686,
0.004017919301986694,
0.03313533961772919,
0.027526045218110085,
0.037427060306072235,
0.035575561225414276,
0.16918224096298218,
0.1537325084209442,
-0.07701042294502258,
-0.1336517482995987,
-0.046591952443122864,
-0.253684401512146,
0.18945631384849548,
-0.007457092870026827,
0.11955955624580383,
-0.1514299064874649,
0.021906647831201553,
-0.21033748984336853,
-0.0038271350786089897,
-0.08078791946172714,
-0.005357483401894569,
0.08787157386541367,
0.02979125827550888,
-0.0065450710244476795,
0.13957302272319794,
0.14668409526348114,
0.1284436285495758,
-0.03546590730547905,
0.004615480545908213,
-0.027155382558703423,
0.17223159968852997,
-0.0032339373137801886,
0.030219202861189842,
0.08157157897949219,
0.12675589323043823,
0.01287071779370308,
-0.1871967315673828,
0.03415171056985855,
-0.02347322180867195,
-0.1441206932067871,
-0.013953003101050854,
-0.19468368589878082,
0.1388089656829834,
-0.04168093577027321,
-0.07358991354703903,
-0.060845863074064255,
0.0712476447224617,
0.044055018573999405,
-0.013791954144835472,
-0.0036826336290687323,
-0.012964528985321522,
0.007212789263576269,
-0.08957300335168839,
-0.07867918908596039,
0.05103391036391258,
0.1306554675102234,
0.07683435082435608,
-0.14121104776859283,
0.0034633041359484196,
0.0186125747859478,
0.08403589576482773,
0.09375163912773132,
-0.06275239586830139,
0.06532483547925949,
-0.10550694167613983,
-0.15082992613315582,
0.03305753320455551,
0.012957002967596054,
-0.04235371574759483,
0.07254041731357574,
0.07056479901075363,
0.036506280303001404,
-0.03613525629043579,
-0.07161363959312439,
-0.05571906268596649,
-0.07388292998075485,
0.10776121914386749,
0.006689324975013733,
0.004640217404812574,
-0.23353199660778046,
-0.020609457045793533,
-0.056121792644262314,
0.0738057866692543,
0.02560926042497158,
-0.04721159115433693,
-0.07208402454853058,
0.12085351347923279,
-0.0008123117149807513,
0.06390052288770676,
-0.1205034926533699,
0.029996050521731377,
-0.053047336637973785,
0.11454637348651886,
-0.08115223050117493,
-0.08956246078014374,
0.17309913039207458,
-0.1068609207868576,
-0.08660770952701569,
0.03037279285490513,
0.02583053894340992,
0.049685850739479065,
0.06444989889860153,
0.38248932361602783,
-0.07500705122947693,
-0.18014207482337952,
0.05647965893149376,
0.15104728937149048,
-0.14279967546463013,
-0.19690249860286713,
0.14989332854747772,
-0.15131793916225433,
-0.12378821521997452,
0.020946817472577095,
-0.032066460698843,
0.1346261203289032,
-0.0443246103823185,
-0.07348263263702393,
0.030930304899811745,
-0.021740343421697617,
-0.04516526311635971,
0.012118499726057053,
0.07904214411973953,
-0.05977845564484596,
0.049802616238594055,
-0.027754832059144974,
0.02103937231004238,
0.13947728276252747,
-0.015196103602647781,
-0.09286203235387802,
0.08767744898796082,
0.0132595244795084,
0.004837267100811005,
0.028722085058689117,
-0.11222784221172333,
-0.019514670595526695,
-0.04235436022281647,
0.09033655375242233,
0.09138181060552597,
0.05544203147292137,
-0.006525972858071327,
0.00825593713670969,
0.06745786964893341,
0.0553600899875164,
0.018968569114804268,
0.0160166397690773,
-0.06302067637443542,
0.09883245825767517,
-0.00706482632085681,
-0.018713973462581635,
-0.07430853694677353,
-0.0232284776866436,
0.19040913879871368,
-0.04542062059044838,
-0.015949716791510582,
-0.008456333540380001,
-0.0029405541718006134,
-0.04137203469872475,
0.06763722747564316,
0.0028599933721125126,
0.11988086998462677,
0.005138587672263384,
-0.07176801562309265,
0.17590676248073578,
0.01043525617569685,
0.28701478242874146,
0.12852437794208527,
-0.0017019577790051699,
0.008183220401406288,
-0.1060502752661705,
-0.03071022219955921,
0.019050581380724907,
0.031292080879211426,
0.005773591808974743,
0.03329024091362953,
-0.06204013526439667,
0.015764452517032623,
-0.01803630404174328,
0.0002847415453288704,
-0.01893170364201069,
-0.057481277734041214,
-0.0952266976237297,
0.06408187747001648,
0.199689581990242,
-0.17190895974636078,
0.1474643349647522,
0.31873971223831177,
0.14750529825687408,
0.2060229629278183,
-0.09668216109275818,
0.0025237167719751596,
-0.09113204479217529,
0.04669132083654404,
-0.017203478142619133,
0.1785486340522766,
-0.09156183898448944,
0.004110575653612614,
0.022883323952555656,
0.010765115730464458,
0.06650561094284058,
-0.18839424848556519,
-0.17706960439682007,
-0.03342807665467262,
-0.05927766487002373,
-0.10643649101257324,
0.105231374502182,
-0.13932381570339203,
0.027477623894810677,
0.04046785831451416,
-0.07791835814714432,
0.13419856131076813,
0.002900349209085107,
-0.04148774594068527,
0.06815344840288162,
-0.11275801062583923,
-0.13312003016471863,
-0.10137765854597092,
-0.08430317044258118,
0.004452012944966555,
0.03997904807329178,
0.05685780942440033,
-0.0921773612499237,
-0.026174824684858322,
0.08129411190748215,
-0.009087040089070797,
-0.1395903378725052,
0.005804635118693113,
0.026211310178041458,
0.042532406747341156,
-0.08112794905900955,
-0.07242053002119064,
-0.08337188512086868,
-0.07316337525844574,
-0.0763804018497467,
0.06620950996875763,
-0.03427880257368088,
0.08231082558631897,
0.10454253852367401,
0.07020100951194763,
0.10220681875944138,
-0.021506406366825104,
0.18079876899719238,
-0.0697936937212944,
-0.09674565494060516,
0.09290099143981934,
0.029747789725661278,
0.035604700446128845,
0.14565320312976837,
0.10861071944236755,
-0.14245694875717163,
-0.05102531611919403,
-0.023455267772078514,
-0.1460912674665451,
-0.15266302227973938,
-0.02172681875526905,
-0.06855618208646774,
0.09719023108482361,
-0.04841291904449463,
0.1190214678645134,
0.11791384965181351,
0.044835444539785385,
0.10564205795526505,
-0.06789946556091309,
-0.03436776623129845,
-0.005324356257915497,
0.1860184222459793,
-0.062194421887397766,
-0.022384030744433403,
-0.1155323013663292,
-0.02635113149881363,
0.14897167682647705,
0.12982533872127533,
0.07474424690008163,
0.2575359642505646,
0.03437628969550133,
0.14510589838027954,
0.07835007458925247,
0.11430666595697403,
-0.035205502063035965,
0.006272444501519203,
-0.060473427176475525,
-0.0395575650036335,
-0.02623988315463066,
0.024525368586182594,
0.042833056300878525,
0.056086231023073196,
-0.20774994790554047,
0.057203684002161026,
-0.27026674151420593,
0.03262872248888016,
-0.1076294481754303,
0.07438451796770096,
0.05138014256954193,
0.06945361942052841,
0.09301567077636719,
0.028652353212237358,
0.005526861175894737,
0.10084594041109085,
0.01030427124351263,
-0.09862153232097626,
0.005730409640818834,
0.05410616099834442,
0.035669125616550446,
0.04070807248353958,
0.05774235725402832,
-0.07998373359441757,
-0.11770572513341904,
0.028760598972439766,
0.10464176535606384,
-0.22327369451522827,
0.26613548398017883,
0.04583270475268364,
-0.0587354451417923,
-0.014667532406747341,
-0.05383841693401337,
0.028559543192386627,
0.0968891903758049,
0.16691854596138,
0.07736717909574509,
-0.08775565773248672,
-0.0936344787478447,
0.0053152902983129025,
0.03614959865808487,
0.08586730808019638,
-0.04932248219847679,
-0.14717477560043335,
-0.03102908283472061,
0.05712655559182167,
-0.007285830099135637,
0.10753697901964188,
-0.08232912421226501,
-0.08007606863975525,
0.042124707251787186,
0.07663571089506149,
0.029377419501543045,
-0.05673008784651756,
0.03663329407572746,
-0.08031424134969711,
0.09440327435731888,
-0.10004642605781555,
0.008191659115254879,
-0.09167511016130447,
-0.12289812415838242,
-0.008971664123237133,
-0.0672789141535759,
-0.0022984780371189117,
-0.06085599958896637,
-0.16573382914066315,
-0.09270897507667542,
-0.1555309295654297,
0.11844262480735779,
-0.03247426822781563,
0.049982085824012756,
-0.04142683371901512,
0.1544748693704605,
-0.03881668671965599,
0.02279958315193653,
-0.020910663530230522,
0.033979639410972595,
0.006478816736489534,
-0.16617874801158905,
0.14431427419185638,
-0.09885453432798386,
-0.03137322887778282,
0.010374151170253754,
0.011171550489962101,
0.10216248780488968,
0.06793341040611267,
-0.12626224756240845,
0.1952085942029953,
0.33994239568710327,
-0.01950755901634693,
0.22550465166568756,
0.23284488916397095,
-0.0968107059597969,
-0.21017146110534668,
-0.14180245995521545,
-0.2432573437690735,
-0.06120385229587555,
0.067589171230793,
-0.19266968965530396,
0.039802178740501404,
0.20053452253341675,
-0.12318257987499237,
0.33673545718193054,
-0.296798437833786,
-0.041155993938446045,
0.11822488903999329,
-0.016748324036598206,
0.576466977596283,
-0.16674655675888062,
-0.14130601286888123,
0.025306731462478638,
-0.20256809890270233,
0.15101875364780426,
0.007771516218781471,
0.09844409674406052,
-0.024392755702137947,
-0.0011716620065271854,
0.0000756877416279167,
-0.02016238309442997,
0.24019581079483032,
0.005500881467014551,
0.061259303241968155,
-0.08679521083831787,
-0.1457449346780777,
0.1479499191045761,
0.03923865407705307,
-0.02154659852385521,
-0.07026037573814392,
-0.04374326020479202,
-0.09548331052064896,
-0.0010786476777866483,
-0.03743177652359009,
0.0991755947470665,
0.044575322419404984,
-0.09213924407958984,
-0.10350413620471954,
0.0354401171207428,
-0.1190873309969902,
-0.01872106082737446,
0.17418985068798065,
-0.05458986386656761,
0.07897404581308365,
0.014037907123565674,
-0.08967205137014389,
-0.13774318993091583,
-0.03281891345977783,
-0.10170430690050125,
-0.0451284721493721,
0.07449878007173538,
-0.1488187164068222,
-0.028957676142454147,
0.09399508684873581,
0.03192247450351715,
0.08324625343084335,
0.07392752915620804,
-0.08004812151193619,
0.06524527817964554,
0.16948218643665314,
-0.12988296151161194,
-0.17202335596084595,
0.0027487180195748806,
-0.05925402417778969,
0.22578315436840057,
0.014271345920860767,
0.035160988569259644,
0.07943542301654816,
0.02714933641254902,
0.010786979459226131,
0.018609581515192986,
-0.13608573377132416,
-0.03119758330285549,
0.05847389996051788,
-0.03809298202395439,
-0.10866542160511017,
0.10939159989356995,
0.04572486877441406,
0.07563590258359909,
-0.03631028160452843,
0.11924855411052704,
-0.015607858076691628,
-0.05591491609811783,
-0.25974416732788086,
0.04214727506041527,
-0.2311234474182129,
-0.0652097687125206,
0.04825547710061073,
-0.06560459733009338,
-0.024094104766845703,
0.1327267587184906,
0.013583719730377197,
0.14819782972335815,
0.02926996536552906,
0.009058590978384018,
0.11730421334505081,
-0.07454925030469894,
-0.1841064989566803,
-0.016484178602695465,
-0.09379255026578903,
-0.09051335602998734,
0.005452330689877272,
0.10826826095581055,
-0.06572922319173813,
-0.0928327813744545,
-0.2207174301147461,
0.06013983115553856,
-0.07309122383594513,
-0.05736219882965088,
-0.0698370635509491,
-0.02322736382484436,
0.05751919746398926,
-0.08046234399080276,
-0.028732581064105034,
-0.007937329821288586,
-0.13830791413784027,
0.03935946524143219,
0.06345152854919434,
0.0703909620642662,
-0.07862753421068192,
-0.03629240021109581,
0.1269073337316513,
0.06660051643848419,
0.1276112198829651,
0.10979475826025009,
0.08419124037027359,
0.15229977667331696,
-0.2335677146911621,
-0.021040840074419975,
0.1068965494632721,
-0.05434458330273628,
-0.002546619391068816,
0.06398714333772659,
-0.015035436488687992,
0.019506774842739105,
-0.027841083705425262,
0.07469093799591064,
-0.051462531089782715,
-0.12484095245599747,
-0.07844550162553787,
0.007900100201368332,
-0.14798259735107422,
0.020637160167098045,
-0.1315762847661972,
0.13134147226810455,
0.01812727004289627,
0.033741164952516556,
0.05509987846016884,
-0.009362542070448399,
0.01943977177143097,
0.005340513773262501,
-0.0011933225905522704,
-0.09909356385469437,
-0.059867728501558304,
-0.049009133130311966,
-0.08091933280229568,
-0.006328684277832508,
0.3435326814651489,
0.025306371971964836,
-0.1955006718635559,
0.016416653990745544,
0.11822612583637238,
0.09302368760108948,
-0.03576837107539177,
0.22894716262817383,
0.08285029977560043,
0.0003757876402232796,
-0.14443063735961914,
0.07782109081745148,
-0.07214603573083878,
-0.2438344955444336,
0.07725241780281067,
0.007907823659479618,
-0.038023099303245544,
0.003282605204731226,
0.09102689474821091,
-0.09958919882774353,
0.012325126677751541,
-0.04272748902440071,
0.03289645537734032,
-0.059487950056791306,
-0.02764136716723442,
0.026221085339784622,
0.21871085464954376,
-0.038259003311395645,
0.03305941820144653,
-0.015608280897140503,
0.016675394028425217,
-0.1546177715063095,
-0.12931779026985168,
0.03051883541047573,
-0.06622979789972305,
0.09847982227802277,
0.01666761003434658,
0.07890394330024719,
0.16915112733840942,
0.023432068526744843,
-0.021772734820842743,
-0.0034733996726572514,
-0.08070841431617737,
-0.062064625322818756,
-0.030715692788362503,
-0.034240446984767914,
0.01908469758927822,
-0.1540229171514511,
-0.04389691352844238,
-0.05509566143155098,
-0.12093424052000046,
-0.054821815341711044,
0.01943705603480339,
0.016553116962313652,
-0.059323713183403015,
-0.14609387516975403,
-0.0017405017279088497,
-0.07152874022722244,
0.1031937524676323,
-0.003094445914030075,
0.10621099919080734,
0.0018951002275571227,
0.008881249465048313,
0.04889002814888954,
0.09092361479997635,
0.027694277465343475,
-0.023862779140472412,
0.051881205290555954,
0.07821010053157806,
-0.04700857028365135,
0.1228480339050293,
-0.09107072651386261,
0.013037968426942825,
0.01867125742137432,
0.1906658560037613,
0.22027045488357544,
-0.1029195711016655,
0.02614074945449829,
-0.009898480959236622,
0.02771131508052349,
0.1313040554523468,
0.10202908515930176,
-0.007387522142380476,
0.3163275420665741,
-0.09465846419334412,
-0.01570342294871807,
0.011589106172323227,
0.027785690501332283,
-0.08593259006738663,
0.07546678185462952,
0.03526066988706589,
-0.03552946820855141,
-0.0891578271985054,
0.09749231487512589,
-0.15119554102420807,
0.10803454369306564,
0.11025199294090271,
-0.13515260815620422,
0.01917191594839096,
-0.017631568014621735,
0.02292725443840027,
0.01687791757285595,
0.08360285311937332,
-0.11133115738630295,
-0.1023745983839035,
-0.1514255702495575,
0.07182151824235916,
-0.3911384642124176,
-0.15592175722122192,
0.07563590258359909,
0.16998320817947388,
0.16403980553150177,
-0.03926442191004753,
0.06077404320240021,
0.013084598816931248,
0.031498897820711136,
-0.04819604381918907,
0.12872262299060822,
0.023215679451823235,
-0.060945842415094376,
-0.1738712191581726,
-0.15582714974880219,
0.04534824192523956,
-0.09529974311590195,
0.04439106956124306,
0.08589724451303482,
0.017693214118480682,
0.1203799918293953,
-0.05884632095694542,
-0.006651341915130615,
0.01414959505200386,
-0.14283519983291626,
0.05514967069029808,
-0.03629087284207344,
0.028888113796710968,
-0.050834331661462784,
-0.06063567474484444,
0.017730388790369034,
0.12355423718690872,
-0.17706412076950073,
-0.07380229979753494,
0.15591110289096832,
0.013306032866239548,
0.15236790478229523,
-0.03600028529763222,
-0.07800198346376419,
-0.03129742667078972,
-0.09976473450660706,
0.12448111176490784,
-0.06676173955202103,
0.041990976780653,
0.2006271332502365,
0.015357578173279762,
0.030572669580578804,
-0.3317980468273163,
0.05549360439181328,
-0.052386607974767685,
-0.01681847684085369,
-0.051656946539878845
] |
null | null | transformers | # miquliz-120b

- EXL2: [2.4bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.4bpw-h6-exl2) | [2.65bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.65bpw-h6-exl2) | [2.9bpw](https://huggingface.co/LoneStriker/miquliz-120b-2.9bpw-h6-exl2) | 4.0bpw
- GGUF: [IQ3_XXS](https://huggingface.co/wolfram/miquliz-120b-GGUF) | [Q4_K_S+Q4_K_M](https://huggingface.co/NanoByte/miquliz-120b-Q4-GGUF)
- HF: [wolfram/miquliz-120b](https://huggingface.co/wolfram/miquliz-120b)
This is a 120b frankenmerge created by interleaving layers of [miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) with [lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) using [mergekit](https://github.com/cg123/mergekit).
Inspired by [goliath-120b](https://huggingface.co/alpindale/goliath-120b).
Thanks for the support, [CopilotKit](https://github.com/CopilotKit/CopilotKit) - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, [Lone Striker](https://huggingface.co/LoneStriker) and [NanoByte](https://huggingface.co/NanoByte)!
## Prompt template: Mistral
```
<s>[INST] {prompt} [/INST]
```
See also: [🐺🐦⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with **17** different instruct templates : LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/comments/18ljvxb/llm_prompt_format_comparisontest_mixtral_8x7b/)
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 16]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [8, 24]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [17, 32]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [25, 40]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [33, 48]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [41, 56]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [49, 64]
model: 152334H/miqu-1-70b-sf
- sources:
- layer_range: [57, 72]
model: lizpreciatior/lzlv_70b_fp16_hf
- sources:
- layer_range: [65, 80]
model: 152334H/miqu-1-70b-sf
```
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: [mistralai (Mistral AI_)](https://huggingface.co/mistralai)
- leaked model: [miqudev/miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b)
- f16 model: [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf)
- 2nd model: [lizpreciatior/lzlv_70b_fp16_hf](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf)
- mergekit: [arcee-ai/mergekit: Tools for merging pretrained large language models.](https://github.com/arcee-ai/mergekit)
- mergekit_config.yml: [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b)
### Support
- [My Ko-fi page](https://ko-fi.com/wolframravenwolf) if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS [BASED ON A LEAKED ASSET](https://huggingface.co/miqudev/miqu-1-70b/discussions/10) AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| {"language": ["en", "de", "fr", "es", "it"], "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["152334H/miqu-1-70b-sf", "lizpreciatior/lzlv_70b_fp16_hf"]} | text-generation | LoneStriker/miquliz-120b-4.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"en",
"de",
"fr",
"es",
"it",
"base_model:152334H/miqu-1-70b-sf",
"base_model:lizpreciatior/lzlv_70b_fp16_hf",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-06T23:08:22+00:00 | [] | [
"en",
"de",
"fr",
"es",
"it"
] | TAGS
#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # miquliz-120b
!image/jpeg
- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw
- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M
- HF: wolfram/miquliz-120b
This is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.
Inspired by goliath-120b.
Thanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.
Thanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!
## Prompt template: Mistral
See also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA
## Model Details
- Max Context: 32768 tokens
- Layers: 137
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
- 152334H/miqu-1-70b-sf
- lizpreciatior/lzlv_70b_fp16_hf
### Configuration
The following YAML configuration was used to produce this model:
## Credits & Special Thanks
- 1st model:
- original (unreleased) model: mistralai (Mistral AI_)
- leaked model: miqudev/miqu-1-70b
- f16 model: 152334H/miqu-1-70b-sf
- 2nd model: lizpreciatior/lzlv_70b_fp16_hf
- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.
- mergekit_config.yml: alpindale/goliath-120b
### Support
- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!
#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK.
| [
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!",
"## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA",
"## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the passthrough merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf",
"### Configuration\n\nThe following YAML configuration was used to produce this model:",
"## Credits & Special Thanks\n\n- 1st model:\n - original (unreleased) model: mistralai (Mistral AI_)\n - leaked model: miqudev/miqu-1-70b\n - f16 model: 152334H/miqu-1-70b-sf\n- 2nd model: lizpreciatior/lzlv_70b_fp16_hf\n- mergekit: arcee-ai/mergekit: Tools for merging pretrained large language models.\n- mergekit_config.yml: alpindale/goliath-120b",
"### Support\n\n- My Ko-fi page if you'd like to tip me to say thanks or request specific models to be tested or merged with priority. Also consider supporting your favorite model creators, quantizers, or frontend/backend devs if you can afford to do so. They deserve it!",
"#### DISCLAIMER: THIS IS BASED ON A LEAKED ASSET AND HAS NO LICENSE ASSOCIATED WITH IT. USE AT YOUR OWN RISK."
] | [
108,
193,
44,
18,
4,
17,
48,
17,
128,
69,
43
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #mergekit #merge #conversational #en #de #fr #es #it #base_model-152334H/miqu-1-70b-sf #base_model-lizpreciatior/lzlv_70b_fp16_hf #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# miquliz-120b\n\n!image/jpeg\n\n- EXL2: 2.4bpw | 2.65bpw | 2.9bpw | 4.0bpw\n- GGUF: IQ3_XXS | Q4_K_S+Q4_K_M\n- HF: wolfram/miquliz-120b\n\nThis is a 120b frankenmerge created by interleaving layers of miqu-1-70b-sf with lzlv_70b_fp16_hf using mergekit.\n\nInspired by goliath-120b.\n\nThanks for the support, CopilotKit - the open-source platform for building in-app AI Copilots into any product, with any LLM model. Check out their GitHub.\n\nThanks for the EXL2 and GGUF quants, Lone Striker and NanoByte!## Prompt template: Mistral\n\n\n\nSee also: ⬛ LLM Prompt Format Comparison/Test: Mixtral 8x7B Instruct with 17 different instruct templates : LocalLLaMA## Model Details\n\n- Max Context: 32768 tokens\n- Layers: 137## Merge Details### Merge Method\n\nThis model was merged using the passthrough merge method.### Models Merged\n\nThe following models were included in the merge:\n\n- 152334H/miqu-1-70b-sf\n- lizpreciatior/lzlv_70b_fp16_hf### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.12368366122245789,
0.12789610028266907,
-0.004829886835068464,
0.07118041813373566,
0.008432804606854916,
0.030466794967651367,
0.15808768570423126,
0.1408398449420929,
0.12250641733407974,
0.11074402928352356,
-0.0003772966156248003,
0.059276167303323746,
0.0867873802781105,
0.16237597167491913,
-0.01879403181374073,
-0.09192074835300446,
0.023846887052059174,
-0.03254108875989914,
-0.016614433377981186,
0.08230546861886978,
0.06071207672357559,
-0.04489263892173767,
0.06874342262744904,
0.05266686528921127,
-0.1173800379037857,
-0.0025762326549738646,
-0.019535329192876816,
-0.0035260901786386967,
0.08725646883249283,
0.090943343937397,
0.03682366758584976,
0.047848619520664215,
0.013767924159765244,
-0.14496155083179474,
0.03160346671938896,
0.04793968051671982,
-0.03261971473693848,
0.08455878496170044,
0.11339690536260605,
-0.032416824251413345,
0.0792437195777893,
-0.04937126114964485,
-0.024935640394687653,
0.09329741448163986,
-0.10145971179008484,
-0.18160124123096466,
-0.17187398672103882,
0.1256534308195114,
0.037529584020376205,
0.023336073383688927,
-0.02024589292705059,
0.11190760880708694,
0.0369829423725605,
0.08653295785188675,
0.24754253029823303,
-0.17050236463546753,
-0.05275990068912506,
0.04109650105237961,
0.017943190410733223,
-0.09884168952703476,
-0.02588641084730625,
0.037537846714258194,
0.02536020427942276,
-0.013790946453809738,
0.0470578595995903,
-0.06060151010751724,
0.07586272805929184,
-0.05851813033223152,
-0.14439910650253296,
-0.011108231730759144,
0.0699799656867981,
0.051052119582891464,
-0.04237183555960655,
-0.15585270524024963,
-0.07426974177360535,
0.011751646175980568,
-0.0058364905416965485,
-0.012671277858316898,
-0.026297500357031822,
-0.03774981573224068,
0.07239900529384613,
-0.06227460131049156,
-0.027483807876706123,
-0.041599247604608536,
-0.030472077429294586,
0.1456686556339264,
0.03454676270484924,
0.016460439190268517,
0.0009482491295784712,
0.07474207133054733,
-0.11470949649810791,
-0.14837470650672913,
-0.04670407250523567,
-0.023340268060564995,
-0.10872059315443039,
-0.03630848973989487,
0.0027755394112318754,
-0.04055022448301315,
0.060745719820261,
0.20719100534915924,
-0.11167024075984955,
0.058465491980314255,
0.02167990617454052,
0.03042621538043022,
0.0022220457904040813,
0.05014816299080849,
-0.05429374426603317,
-0.06990977376699448,
0.024466900154948235,
0.043704770505428314,
0.04189739376306534,
-0.011906677857041359,
-0.00637865299358964,
-0.005814081989228725,
-0.025086048990488052,
0.04248442500829697,
0.057028356939554214,
0.00006505353667307645,
-0.06931952387094498,
-0.05062215030193329,
0.1558380275964737,
-0.12208744138479233,
0.05983341857790947,
0.027952637523412704,
-0.02203182876110077,
-0.03659253567457199,
0.07147088646888733,
-0.036103203892707825,
-0.06757796555757523,
0.003653585212305188,
-0.05460790544748306,
0.01350486185401678,
-0.03342496603727341,
-0.06830274313688278,
0.03372606262564659,
-0.030463969334959984,
-0.049800045788288116,
-0.13874182105064392,
-0.11608945578336716,
-0.05686583369970322,
0.039471741765737534,
-0.07531989365816116,
0.03137357160449028,
0.0206131674349308,
-0.06815514713525772,
0.016908833757042885,
0.04215963929891586,
-0.02309141494333744,
-0.014663412235677242,
-0.008669499307870865,
0.026837516576051712,
0.04982210323214531,
0.011029177345335484,
-0.00849899835884571,
-0.03755652904510498,
0.08720458298921585,
-0.13124476373195648,
0.11570584774017334,
-0.10697617381811142,
-0.0175891425460577,
-0.14562152326107025,
-0.021388312801718712,
0.02837793342769146,
-0.014576669782400131,
0.06801756471395493,
0.15541520714759827,
-0.11956251412630081,
-0.057199627161026,
0.14212393760681152,
-0.10452718287706375,
-0.08326901495456696,
0.0896964743733406,
-0.001530867419205606,
0.004996958654373884,
0.023222999647259712,
0.15921443700790405,
0.2206583321094513,
-0.09496251493692398,
-0.03753845393657684,
-0.041817598044872284,
0.02606145292520523,
0.10511910915374756,
0.04245214909315109,
-0.04663945734500885,
0.041522711515426636,
-0.007779768668115139,
-0.033237650990486145,
-0.017682453617453575,
-0.009546971879899502,
-0.07089126110076904,
-0.06520862132310867,
-0.06327446550130844,
0.00790522713214159,
-0.029427755624055862,
-0.009285880252718925,
-0.031943242996931076,
-0.06854052096605301,
-0.03167993202805519,
0.13503709435462952,
-0.045838870108127594,
-0.014511617831885815,
-0.07795076072216034,
0.13901136815547943,
-0.02076946385204792,
0.019529197365045547,
-0.1386507749557495,
-0.10085764527320862,
0.06192042678594589,
-0.2569917142391205,
0.0288861021399498,
-0.024994120001792908,
0.033609483391046524,
0.09510236233472824,
-0.022114844992756844,
-0.04090216010808945,
-0.0036946572363376617,
-0.02901856228709221,
-0.01620562933385372,
-0.13861826062202454,
-0.09312329441308975,
-0.021515900269150734,
0.16482308506965637,
-0.10285954922437668,
0.060498472303152084,
0.05872023105621338,
0.177692711353302,
-0.0010935618774965405,
-0.0495661161839962,
0.04133046418428421,
0.014076328836381435,
-0.00933940801769495,
-0.06117941439151764,
0.03129934147000313,
-0.017155325040221214,
-0.07683154195547104,
0.0230487659573555,
-0.09522220492362976,
-0.06828600913286209,
0.0454079769551754,
0.1084422916173935,
-0.08888481557369232,
-0.045977573841810226,
-0.010482335463166237,
-0.02788333222270012,
-0.05628563091158867,
-0.05581507459282875,
0.08716053515672684,
0.0313115268945694,
0.06286195665597916,
-0.07583241164684296,
-0.12060359865427017,
0.011962266638875008,
0.00497860461473465,
-0.03765784949064255,
0.136618509888649,
0.0008419781224802136,
-0.1441844403743744,
0.09529437869787216,
0.0573565848171711,
0.02403576485812664,
0.15169063210487366,
0.010673169046640396,
-0.03464016318321228,
-0.09475518018007278,
0.06382697820663452,
0.04144428297877312,
0.09565594792366028,
0.016134966164827347,
0.0277025755494833,
0.051495399326086044,
-0.013188540004193783,
0.014995002187788486,
-0.11568167805671692,
0.028803836554288864,
0.02679041586816311,
-0.04290289059281349,
0.016975726932287216,
0.06925228238105774,
-0.006320801563560963,
0.06676694005727768,
-0.015466314740478992,
0.061539020389318466,
-0.03364915773272514,
-0.058776941150426865,
-0.1265030950307846,
0.1567183881998062,
-0.08924178034067154,
-0.1561521589756012,
-0.15872417390346527,
-0.019933052361011505,
-0.11261028796434402,
-0.04740180820226669,
0.03474276140332222,
-0.026875589042901993,
-0.04287160560488701,
-0.09326061606407166,
0.05285726115107536,
0.07770129293203354,
-0.05764682963490486,
0.029928429052233696,
-0.01687181368470192,
0.06855647265911102,
-0.11296849697828293,
-0.023465275764465332,
0.060048799961805344,
0.02526327408850193,
0.028736509382724762,
0.05163873732089996,
0.09489382058382034,
0.08398807793855667,
0.0362507700920105,
0.015089208260178566,
0.013857324607670307,
0.2598232924938202,
-0.09863453358411789,
0.08720748126506805,
0.16616471111774445,
0.0034785973839461803,
0.07429353147745132,
0.13056929409503937,
0.07720997929573059,
-0.06613697111606598,
-0.023135513067245483,
0.02194489724934101,
-0.024997616186738014,
-0.158270925283432,
-0.07069829851388931,
-0.055327292531728745,
0.003951964899897575,
0.05960322916507721,
0.048116009682416916,
-0.007396707311272621,
0.054213475435972214,
-0.052058011293411255,
-0.038888148963451385,
0.04421881586313248,
0.07643278688192368,
0.06988003104925156,
0.04795686528086662,
0.0641406998038292,
-0.019555028527975082,
0.01910572312772274,
0.09517364203929901,
0.01043457631021738,
0.10210463404655457,
-0.02330624684691429,
0.18152542412281036,
0.06063041090965271,
0.10171207040548325,
0.009897595271468163,
0.0423230305314064,
0.019875910133123398,
0.014567595906555653,
0.037878766655921936,
-0.09714611619710922,
0.03497471660375595,
0.04005565494298935,
-0.038389697670936584,
0.06132099777460098,
-0.029189273715019226,
-0.029169373214244843,
0.06890357285737991,
0.23063409328460693,
0.08791407197713852,
-0.23662646114826202,
-0.06820894032716751,
0.028633689507842064,
-0.01798653043806553,
-0.02710089273750782,
-0.07196102291345596,
0.08232519030570984,
-0.1499929130077362,
0.12502896785736084,
-0.02664428949356079,
0.08723902702331543,
-0.05597300082445145,
-0.03246639296412468,
0.023017756640911102,
0.13063931465148926,
0.007563863415271044,
0.021590637043118477,
-0.08814773708581924,
0.13470914959907532,
0.03742704913020134,
0.03612137585878372,
-0.048384156078100204,
0.04792026802897453,
0.05386565625667572,
0.03256596624851227,
0.12723557651042938,
0.03399898111820221,
-0.04833051189780235,
-0.1234588697552681,
-0.06502183526754379,
-0.011905249208211899,
0.07326267659664154,
-0.11644229292869568,
0.1085549145936966,
0.0008896282524801791,
-0.05773821100592613,
-0.06975867599248886,
0.04854271560907364,
-0.1246747151017189,
-0.1326695680618286,
0.09270588308572769,
0.019206488505005836,
-0.004347942303866148,
-0.08910027891397476,
-0.02384672500193119,
-0.07720056921243668,
0.17835187911987305,
-0.13138552010059357,
-0.10424366593360901,
-0.14623430371284485,
0.019838901236653328,
0.12011423707008362,
-0.09586021304130554,
0.04952145740389824,
-0.054908137768507004,
0.13131214678287506,
-0.08491016179323196,
-0.10803071409463882,
0.0031110455747693777,
-0.10406436771154404,
-0.15895523130893707,
-0.016845667734742165,
0.18804065883159637,
0.06841174513101578,
0.01998257078230381,
0.04636812582612038,
0.033293623477220535,
0.0006021942244842649,
-0.10974181443452835,
0.0050140367820858955,
0.12546297907829285,
0.006240382324904203,
0.09202331304550171,
-0.04566655680537224,
-0.04445214569568634,
-0.09057268500328064,
-0.04287262633442879,
0.05312792956829071,
0.306938499212265,
-0.07398373633623123,
0.057277124375104904,
0.06801817566156387,
-0.04662609472870827,
-0.13315193355083466,
-0.019342564046382904,
0.06505969911813736,
0.019270027056336403,
0.025498589500784874,
-0.10378386825323105,
0.05618932843208313,
0.08659297972917557,
-0.003092100378125906,
0.15438351035118103,
-0.28497934341430664,
-0.12206729501485825,
0.014736184850335121,
0.054704729467630386,
-0.10833261907100677,
-0.13666997849941254,
-0.11265040189027786,
-0.05001175031065941,
-0.18979574739933014,
0.07308121025562286,
-0.03530014306306839,
0.05785314366221428,
-0.02325328253209591,
0.038133639842271805,
0.025217236950993538,
-0.037785958498716354,
0.19537271559238434,
-0.00041987834265455604,
0.05685656517744064,
-0.06840397417545319,
0.07129933685064316,
0.009667005389928818,
-0.07543710619211197,
0.08063114434480667,
-0.016769062727689743,
0.057787660509347916,
-0.07750823348760605,
-0.0037023189943283796,
-0.09891999512910843,
0.08838903158903122,
-0.06746514141559601,
-0.003480901475995779,
-0.068965382874012,
0.08907764405012131,
0.04152337461709976,
-0.016935698688030243,
-0.010590536519885063,
-0.03918278589844704,
0.12641924619674683,
0.22624219954013824,
0.08268904685974121,
-0.021522628143429756,
-0.08541391789913177,
-0.0028606210835278034,
-0.02340327389538288,
0.03568483144044876,
-0.05007392168045044,
0.030080698430538177,
0.09638979285955429,
0.07416202127933502,
0.11765220761299133,
0.007687520235776901,
-0.13749492168426514,
-0.025064611807465553,
0.05596223101019859,
-0.1590513288974762,
-0.1764783412218094,
-0.04164158180356026,
0.018489325419068336,
-0.043415963649749756,
0.0011119890259578824,
0.2094741314649582,
-0.01564190536737442,
-0.04446769133210182,
0.032563433051109314,
0.03490924462676048,
-0.03007512353360653,
0.17149731516838074,
0.02123425342142582,
0.07249967008829117,
-0.07722723484039307,
0.061947356909513474,
0.030385101214051247,
0.01590743474662304,
-0.007486291229724884,
0.16145873069763184,
-0.09378024935722351,
-0.09352295100688934,
-0.05824456736445427,
0.07370655238628387,
-0.076044961810112,
-0.022184815257787704,
-0.021405579522252083,
-0.08294608443975449,
0.021521613001823425,
0.14948487281799316,
0.04223942011594772,
-0.029807860031723976,
0.06489751487970352,
-0.022353671491146088,
-0.01262697670608759,
0.07513593137264252,
0.039529748260974884,
0.06516161561012268,
-0.064303457736969,
0.07645869255065918,
-0.018901096656918526,
0.057515405118465424,
-0.009405039250850677,
0.006718489807099104,
-0.14400263130664825,
-0.045528147369623184,
-0.09107623994350433,
0.0010434531141072512,
-0.1279691606760025,
-0.012957594357430935,
-0.02937966212630272,
-0.01140217762440443,
-0.025888843461871147,
0.045904770493507385,
-0.060938358306884766,
-0.09193648397922516,
-0.06444298475980759,
0.07826902717351913,
-0.1475367248058319,
0.009270556271076202,
0.04979900270700455,
-0.07672209292650223,
0.09466429054737091,
0.0037219945807009935,
0.0019856125582009554,
0.005022512748837471,
-0.058107685297727585,
-0.017707034945487976,
-0.015370056964457035,
0.014712527394294739,
0.03841640055179596,
-0.2599083185195923,
0.011125855147838593,
-0.04668840765953064,
-0.049365609884262085,
-0.0039966413751244545,
0.0883522555232048,
-0.0780402198433876,
-0.045397866517305374,
-0.01794837787747383,
-0.011920806020498276,
-0.09755246341228485,
0.054385263472795486,
0.09318234771490097,
0.03412151709198952,
0.07688449323177338,
-0.03006233647465706,
0.07344099879264832,
-0.18182457983493805,
-0.04424624145030975,
0.02999134548008442,
-0.05988047271966934,
0.0637851133942604,
-0.028003206476569176,
0.07074891775846481,
-0.034066688269376755,
0.0678243488073349,
-0.046109482645988464,
0.007584958337247372,
0.013275442644953728,
-0.046227503567934036,
-0.0583421066403389,
0.008887110278010368,
0.05411682277917862,
0.007681099697947502,
0.013896060176193714,
0.01718263141810894,
0.013841814361512661,
-0.03844862058758736,
-0.03254514932632446,
0.08677802234888077,
0.10292897373437881,
0.0019177087815478444,
0.03871221840381622,
0.09347283095121384,
-0.10394598543643951,
-0.00770309055224061,
0.016344331204891205,
-0.03223894536495209,
0.08392903208732605,
-0.06932943314313889,
0.06159314885735512,
0.10241761803627014,
-0.18410246074199677,
0.12296594679355621,
0.03679967299103737,
-0.043706249445676804,
-0.0891125425696373,
-0.21334221959114075,
-0.045117102563381195,
-0.048360999673604965,
-0.022531423717737198,
-0.08107305318117142,
0.04106675833463669,
-0.0223915446549654,
0.013382375240325928,
-0.00431291526183486,
0.15338565409183502,
-0.06828607618808746,
-0.07131311297416687,
0.06271100044250488,
0.023739539086818695,
-0.04255959391593933,
0.0186128169298172,
-0.007370177656412125,
0.0280170738697052,
0.044481273740530014,
0.04065921530127525,
0.034952398389577866,
0.008677106350660324,
0.011015135794878006,
-0.04583385959267616,
-0.08386383205652237,
-0.009981885552406311,
-0.018855948001146317,
0.0022483908105641603,
0.04748959466814995,
0.05323795601725578,
0.010519832372665405,
-0.015437587164342403,
0.1065712571144104,
-0.0388643741607666,
-0.03411516174674034,
-0.1333073228597641,
0.1729545295238495,
-0.0884871631860733,
-0.013233300298452377,
-0.002624036045745015,
-0.08557087928056717,
-0.001440701656974852,
0.18324314057826996,
0.1605691760778427,
-0.039348162710666656,
0.043843336403369904,
0.011063226498663425,
0.006158569362014532,
0.013256123289465904,
0.024207735434174538,
0.03296574577689171,
0.09810876101255417,
-0.02288897894322872,
0.09398314356803894,
-0.0317111611366272,
-0.06202622130513191,
-0.07543383538722992,
0.0866965726017952,
-0.019786138087511063,
0.012943508103489876,
-0.01467861421406269,
0.0688600167632103,
-0.004709766712039709,
-0.15824270248413086,
0.05247723311185837,
-0.10000913590192795,
-0.13650010526180267,
-0.011311225593090057,
-0.07559972256422043,
-0.029222870245575905,
0.058672528713941574,
-0.02281065098941326,
0.005110166966915131,
0.18161675333976746,
0.0018605180084705353,
-0.04716502130031586,
-0.10844589024782181,
0.039931196719408035,
-0.10910598933696747,
0.11147446185350418,
-0.013411503285169601,
0.03250350430607796,
0.13634388148784637,
-0.034907348453998566,
-0.12645463645458221,
0.051742274314165115,
0.08569781482219696,
-0.10352301597595215,
0.0018046568147838116,
0.20331788063049316,
0.004622191656380892,
0.034741874784231186,
0.056502580642700195,
-0.08139484375715256,
0.009915951639413834,
0.0622529499232769,
0.04897496849298477,
-0.09269192814826965,
0.07155569642782211,
-0.09523096680641174,
0.1415766328573227,
0.19516132771968842,
-0.03245047479867935,
0.004381112288683653,
-0.04549586400389671,
0.0795249342918396,
0.04511290788650513,
0.07024716585874557,
-0.01037550251930952,
-0.18170195817947388,
0.08128581196069717,
-0.04013247787952423,
0.03869382664561272,
-0.14531628787517548,
-0.10904447734355927,
-0.0074611627496778965,
-0.031184248626232147,
0.026880715042352676,
0.12320626527070999,
0.08135218173265457,
0.032344263046979904,
-0.012878159992396832,
-0.23100483417510986,
-0.011181864887475967,
0.0913306251168251,
-0.09959501773118973,
-0.024197351187467575
] |
null | null | null |
## Exllama v2 Quantizations of DeepMagic-Coder-7b
Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization.
# The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/rombodawg/DeepMagic-Coder-7b
No GQA - VRAM requirements will be higher
| Branch | Bits | lm_head bits | Size (4k) | Size (16k) | Description |
| -------------------------------------------------------------- | ---- | ------------ | --------- | ---------- | ----------- |
| [8_0](https://huggingface.co/Bartowski/DeepMagic-Coder-7b-exl2/tree/8_0) | 8.0 | 8.0 | 9.4 GB | 15.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/Bartowski/DeepMagic-Coder-7b-exl2/tree/6_5) | 6.5 | 8.0 | 8.6 GB | 14.8 GB | Near unquantized performance at vastly reduced size, **recommended**. |
| [5_0](https://huggingface.co/Bartowski/DeepMagic-Coder-7b-exl2/tree/5_0) | 5.0 | 6.0 | 7.2 GB | 13.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards with 4k context. |
| [4_25](https://huggingface.co/Bartowski/DeepMagic-Coder-7b-exl2/tree/4_25) | 4.25 | 6.0 | 6.5 GB | 12.7 GB | GPTQ equivalent bits per weight. |
| [3_5](https://huggingface.co/Bartowski/DeepMagic-Coder-7b-exl2/tree/3_5) | 3.5 | 6.0 | 5.9 GB | 12.1 GB | Lower quality, not recommended. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/DeepMagic-Coder-7b-exl2 DeepMagic-Coder-7b-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `DeepMagic-Coder-7b-exl2`:
```shell
mkdir DeepMagic-Coder-7b-exl2
huggingface-cli download bartowski/DeepMagic-Coder-7b-exl2 --local-dir DeepMagic-Coder-7b-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir DeepMagic-Coder-7b-exl2-6_5
huggingface-cli download bartowski/DeepMagic-Coder-7b-exl2 --revision 6_5 --local-dir DeepMagic-Coder-7b-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir DeepMagic-Coder-7b-exl2-6.5
huggingface-cli download bartowski/DeepMagic-Coder-7b-exl2 --revision 6_5 --local-dir DeepMagic-Coder-7b-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski | {"license": "other", "license_name": "deepseek", "license_link": "https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL", "quantized_by": "bartowski", "pipeline_tag": "text-generation"} | text-generation | bartowski/DeepMagic-Coder-7b-exl2 | [
"text-generation",
"license:other",
"region:us"
] | 2024-02-06T23:11:09+00:00 | [] | [] | TAGS
#text-generation #license-other #region-us
| Exllama v2 Quantizations of DeepMagic-Coder-7b
----------------------------------------------
Using <a href="URL ExLlamaV2 v0.0.13 for quantization.
The "main" branch only contains the URL, download one of the other branches for the model (see below)
=====================================================================================================
Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions.
Original model: URL
No GQA - VRAM requirements will be higher
Download instructions
---------------------
With git:
With huggingface hub (credit to TheBloke for instructions):
To download the 'main' (only useful if you only care about URL) branch to a folder called 'DeepMagic-Coder-7b-exl2':
To download from a different branch, add the '--revision' parameter:
Linux:
Windows (which apparently doesn't like \_ in folders sometimes?):
Want to support my work? Visit my ko-fi page here: URL
| [] | [
"TAGS\n#text-generation #license-other #region-us \n"
] | [
16
] | [
"passage: TAGS\n#text-generation #license-other #region-us \n"
] | [
0.051113277673721313,
0.07280271500349045,
-0.00824133213609457,
-0.029258456081151962,
0.05186934024095535,
0.05759657546877861,
0.26173263788223267,
0.052013128995895386,
0.16024252772331238,
-0.07162679731845856,
0.12387923151254654,
0.07674521952867508,
-0.010968969203531742,
-0.01746911182999611,
-0.008756989613175392,
-0.22287139296531677,
0.0332915298640728,
-0.041559215635061264,
0.08592100441455841,
0.031569451093673706,
0.015975257381796837,
-0.03128349781036377,
0.04749593883752823,
-0.019296273589134216,
-0.0547066330909729,
0.032732438296079636,
0.018436387181282043,
-0.0695817768573761,
0.11244364827871323,
0.025361454114317894,
0.08041546493768692,
0.04953852668404579,
-0.012904427945613861,
-0.23848390579223633,
0.01538369245827198,
-0.0567067451775074,
-0.14665944874286652,
0.012070606462657452,
0.11147847026586533,
-0.061152487993240356,
0.13792045414447784,
0.1737603396177292,
-0.0370553657412529,
0.08578582853078842,
-0.217189222574234,
-0.1445237100124359,
-0.053230296820402145,
-0.032334793359041214,
-0.0013099279021844268,
0.04982665181159973,
0.031117966398596764,
0.07717971503734589,
-0.10258638858795166,
0.002489553764462471,
0.07947617024183273,
-0.3823585510253906,
0.07169760763645172,
0.2283337116241455,
0.10137321054935455,
0.1176414042711258,
-0.08240504562854767,
0.1276022344827652,
0.0662834420800209,
-0.027175921946763992,
-0.11095832288265228,
-0.0720171257853508,
-0.005188196897506714,
0.13030612468719482,
-0.029301542788743973,
-0.09465056657791138,
0.3160237669944763,
-0.016224956139922142,
0.015271675772964954,
0.023694399744272232,
-0.010424119420349598,
0.006242743227630854,
0.03231469914317131,
0.09077271074056625,
0.009869622066617012,
0.18970972299575806,
0.15150140225887299,
-0.07814399898052216,
-0.1741591989994049,
-0.0247694943100214,
-0.22449561953544617,
0.09269101917743683,
-0.021027302369475365,
0.09018143266439438,
-0.1774020493030548,
0.018116425722837448,
-0.10580021142959595,
-0.02777145244181156,
-0.012132232077419758,
-0.10826212167739868,
0.07296755909919739,
0.004261552356183529,
-0.07343943417072296,
0.007886625826358795,
0.10201885551214218,
0.16097334027290344,
-0.018134545534849167,
-0.003449894953519106,
-0.14739274978637695,
0.18373046815395355,
0.07524828612804413,
-0.03453337401151657,
0.1257171332836151,
0.07018397003412247,
-0.024713413789868355,
-0.20516863465309143,
0.023036299273371696,
-0.054628968238830566,
-0.18145932257175446,
0.03261454403400421,
-0.17747576534748077,
0.12347130477428436,
-0.025986110791563988,
-0.016476087272167206,
-0.07626064121723175,
0.08179588615894318,
0.03667543828487396,
-0.009868769906461239,
-0.04568319022655487,
0.0036325708497315645,
0.03738816827535629,
-0.0043860869482159615,
-0.06194043904542923,
0.021748172119259834,
0.04213834926486015,
0.05603456497192383,
-0.09250175952911377,
-0.03715076297521591,
-0.02635471150279045,
0.02884920872747898,
0.10209540277719498,
-0.09726572036743164,
0.031015712767839432,
-0.05478508397936821,
-0.1821698546409607,
0.018972070887684822,
0.03591609001159668,
-0.01113453134894371,
0.052826762199401855,
-0.007784395013004541,
0.03258811682462692,
-0.019211703911423683,
-0.07846705615520477,
-0.07647065818309784,
-0.11812679469585419,
0.11317005008459091,
-0.10571415722370148,
-0.004494717810302973,
-0.2701650559902191,
-0.0008982017752714455,
-0.11863019317388535,
0.02906479313969612,
0.038022108376026154,
-0.01813790574669838,
-0.10403364896774292,
0.11481624841690063,
0.018568115308880806,
0.05824549123644829,
-0.13299670815467834,
0.08691953122615814,
-0.15734142065048218,
0.1283365786075592,
-0.16916656494140625,
-0.07631196081638336,
0.20524397492408752,
-0.10203299671411514,
-0.15625625848770142,
0.04170994088053703,
-0.027474243193864822,
0.10201277583837509,
0.06893005222082138,
0.41612130403518677,
-0.10395314544439316,
-0.08273299783468246,
0.11567328870296478,
0.20339176058769226,
-0.1102835163474083,
-0.13431215286254883,
0.09049348533153534,
-0.1184685081243515,
-0.10845805704593658,
0.018977632746100426,
0.0034886798821389675,
0.02323778346180916,
-0.02162548527121544,
-0.05909184738993645,
0.00801000650972128,
0.019373372197151184,
0.022377584129571915,
-0.0006920546293258667,
0.08470432460308075,
-0.05436784029006958,
0.044512789696455,
0.04089782387018204,
-0.008062923327088356,
0.08917564898729324,
0.014055371284484863,
0.0009400799754075706,
0.03900320082902908,
0.09713059663772583,
0.032443124800920486,
-0.10719595104455948,
-0.06988978385925293,
0.005831758491694927,
0.050291966646909714,
0.13584309816360474,
0.17612941563129425,
0.009959245100617409,
-0.04035770893096924,
0.011752489022910595,
0.0636662170290947,
0.050591349601745605,
0.013055491261184216,
0.032411716878414154,
-0.10684516280889511,
0.05765881389379501,
-0.03766191750764847,
-0.050920404493808746,
-0.11110757291316986,
-0.013807008974254131,
0.09427113085985184,
-0.044332779943943024,
-0.024098146706819534,
0.06753901392221451,
-0.026393771171569824,
0.009204035624861717,
-0.059557270258665085,
0.00891201850026846,
0.11837812513113022,
-0.042906470596790314,
-0.12022952735424042,
0.22972746193408966,
-0.11212354898452759,
0.13253340125083923,
0.17882251739501953,
-0.18217578530311584,
0.05405988544225693,
-0.19564756751060486,
-0.017932027578353882,
0.02679428458213806,
0.056160520762205124,
-0.022795427590608597,
0.017561059445142746,
-0.00632089888677001,
0.05738860368728638,
-0.08604484051465988,
-0.00505826948210597,
-0.06072509288787842,
-0.013321819715201855,
-0.10242893546819687,
0.07660426199436188,
0.22747068107128143,
-0.12425224483013153,
0.19238869845867157,
0.3892194330692291,
0.1676650047302246,
0.26362308859825134,
-0.12268207967281342,
-0.009216098114848137,
0.013546036556363106,
0.009355847723782063,
-0.036455295979976654,
0.05066202953457832,
-0.10135640949010849,
0.004963153041899204,
0.06392151862382889,
0.05706522613763809,
0.08463390171527863,
-0.16253194212913513,
-0.17021819949150085,
-0.03080006316304207,
-0.05405097454786301,
-0.15067742764949799,
0.060297269374132156,
-0.023324115201830864,
0.05560477823019028,
-0.03955763578414917,
-0.020785417407751083,
0.1483377367258072,
-0.026320308446884155,
-0.041783519089221954,
0.12454652786254883,
-0.17054054141044617,
-0.14009051024913788,
-0.21937227249145508,
-0.14806059002876282,
-0.02930319868028164,
0.07123185694217682,
0.10384712368249893,
-0.02189370058476925,
-0.026123011484742165,
0.00460547860711813,
-0.0008056126534938812,
-0.1523934304714203,
-0.06740467250347137,
-0.06429791450500488,
0.15101270377635956,
-0.1143912523984909,
-0.08738101273775101,
-0.04034104198217392,
-0.020819691941142082,
-0.03508289158344269,
0.09215255826711655,
-0.1155828982591629,
0.08634547889232635,
0.1235690712928772,
0.07498941570520401,
0.05444188043475151,
-0.09023185819387436,
0.13956019282341003,
-0.0792599692940712,
-0.10389330238103867,
0.12542828917503357,
-0.020058315247297287,
0.038570720702409744,
0.1677549183368683,
0.09100469201803207,
-0.13182814419269562,
-0.012684282846748829,
-0.05151563882827759,
-0.11626579612493515,
-0.2776685357093811,
-0.07961693406105042,
-0.0819220021367073,
0.15102580189704895,
0.013064580969512463,
0.10704316943883896,
0.11642955243587494,
-0.027703214436769485,
0.030562926083803177,
-0.021161040291190147,
0.08460357785224915,
0.05968623608350754,
0.21604979038238525,
-0.04026753827929497,
0.030423175543546677,
-0.11795999854803085,
-0.011704323813319206,
0.1330971121788025,
0.13934634625911713,
0.17068812251091003,
0.2776764929294586,
0.2027359902858734,
0.14586374163627625,
0.040925946086645126,
0.11567799001932144,
0.02521907165646553,
0.07925485074520111,
0.003445366397500038,
-0.07605946063995361,
-0.049234092235565186,
0.05948914214968681,
0.05621029809117317,
-0.021614382043480873,
-0.28480464220046997,
0.026623183861374855,
-0.2179100066423416,
0.008950499817728996,
-0.04815905541181564,
0.047702111303806305,
-0.007959261536598206,
0.15887567400932312,
0.09963452070951462,
0.05410312861204147,
-0.06358467787504196,
0.17280563712120056,
-0.00785810686647892,
-0.07394306361675262,
0.08640656620264053,
0.03742746636271477,
0.13141979277133942,
0.04538501799106598,
0.09633691608905792,
-0.1424817144870758,
-0.2101137638092041,
0.04085096716880798,
0.16390931606292725,
-0.17421174049377441,
0.32019275426864624,
0.016432035714387894,
-0.0805930569767952,
-0.06303185224533081,
-0.07582203298807144,
-0.02669195830821991,
0.1780855804681778,
0.13905420899391174,
0.0070540583692491055,
-0.19999825954437256,
-0.037003833800554276,
0.009432291612029076,
0.003801796119660139,
0.1480748951435089,
-0.0640290230512619,
-0.11209350824356079,
-0.04438619688153267,
0.052100688219070435,
-0.03326769173145294,
0.06123061850667,
-0.04626648500561714,
-0.17302148044109344,
-0.007822507992386818,
0.037032343447208405,
0.038436807692050934,
-0.029434943571686745,
0.06401388347148895,
-0.07786919176578522,
0.019633343443274498,
-0.12278435379266739,
0.021172670647501945,
-0.09150189161300659,
-0.1841532289981842,
0.03427326679229736,
0.007423440460115671,
-0.04157282039523125,
-0.0780501738190651,
-0.049627501517534256,
-0.18709217011928558,
-0.2156693935394287,
0.0762651190161705,
-0.015355338342487812,
0.013042271137237549,
-0.047672469168901443,
0.16922590136528015,
-0.09288360178470612,
0.023147594183683395,
0.014403603971004486,
0.01641439087688923,
-0.05183055251836777,
-0.12896092236042023,
0.05349568650126457,
-0.10350839793682098,
0.03209145739674568,
0.02126792073249817,
-0.13694500923156738,
0.014980402775108814,
0.04030625894665718,
-0.12208738178014755,
0.16527363657951355,
0.41341954469680786,
0.002004407113417983,
0.2869876027107239,
0.30313003063201904,
-0.18988239765167236,
-0.25911352038383484,
-0.1529323011636734,
-0.24904227256774902,
-0.09933856129646301,
0.2194807082414627,
-0.23590919375419617,
0.030198728665709496,
0.12825123965740204,
-0.07724212110042572,
0.19067294895648956,
-0.25205811858177185,
-0.05993475764989853,
0.08650796115398407,
-0.06583404541015625,
0.3914451003074646,
-0.14396697282791138,
-0.15762607753276825,
-0.07532897591590881,
-0.12155516445636749,
0.20231977105140686,
-0.06032327562570572,
0.10459005832672119,
0.017959753051400185,
0.006156530696898699,
-0.020413372665643692,
0.007687891833484173,
0.16557231545448303,
-0.02731385827064514,
0.12039194256067276,
-0.07805566489696503,
-0.06241440027952194,
0.23256750404834747,
0.025685781612992287,
-0.03536086529493332,
-0.15016105771064758,
-0.04722944647073746,
-0.0719594806432724,
-0.02089524269104004,
-0.04720233008265495,
0.08229599893093109,
-0.0012422397267073393,
-0.07447262108325958,
-0.06582468748092651,
-0.005101153161376715,
-0.1398579180240631,
-0.01918935775756836,
0.3671685457229614,
-0.04535582289099693,
0.1186198815703392,
0.07892081886529922,
0.04012256860733032,
-0.09970346838235855,
0.07172047346830368,
-0.11886956542730331,
-0.04559750109910965,
0.033694613724946976,
-0.16475287079811096,
-0.0399850532412529,
0.10029137134552002,
-0.0556812658905983,
0.08674351871013641,
0.09390465170145035,
-0.04871673509478569,
0.025482062250375748,
0.15383252501487732,
-0.121867835521698,
-0.1810571849346161,
-0.023636754602193832,
0.03012617491185665,
0.16588625311851501,
-0.015637414529919624,
0.06775834411382675,
0.07140350341796875,
0.00865251012146473,
0.026013558730483055,
-0.011932969093322754,
-0.06223458796739578,
-0.11102662235498428,
-0.033089667558670044,
-0.019617905840277672,
-0.11087963730096817,
0.1916974037885666,
0.09305498749017715,
-0.020921019837260246,
-0.044223252683877945,
0.14426079392433167,
-0.0707283541560173,
-0.08492685854434967,
-0.13230445981025696,
0.10024173557758331,
-0.12664638459682465,
-0.04875042289495468,
0.03254886344075203,
-0.0918443500995636,
0.002430184744298458,
0.13279929757118225,
0.027186531573534012,
0.1319728046655655,
0.021164346486330032,
-0.032574526965618134,
0.18355399370193481,
-0.04524102807044983,
-0.20850244164466858,
0.009407669305801392,
-0.058543480932712555,
-0.042749661952257156,
-0.012820111587643623,
0.07452286779880524,
-0.05846269801259041,
-0.11399035155773163,
-0.19080695509910583,
0.07458802312612534,
-0.1115003377199173,
-0.026408139616250992,
-0.07697312533855438,
-0.04022041708230972,
0.041520752012729645,
0.0052133481949567795,
-0.053644098341464996,
-0.06648391485214233,
-0.1793327033519745,
0.02686886489391327,
0.0265081524848938,
0.12986384332180023,
-0.09362731873989105,
-0.021305114030838013,
0.11811412870883942,
0.05614163726568222,
0.10702965408563614,
0.05382893234491348,
-0.008954410441219807,
0.1817544400691986,
-0.23414048552513123,
-0.02765231765806675,
0.10758350789546967,
0.01855950430035591,
-0.025194372981786728,
0.20125994086265564,
-0.06381778419017792,
0.05680418759584427,
-0.018838975578546524,
0.05359051376581192,
-0.214382141828537,
-0.151635080575943,
-0.06773028522729874,
0.02908042073249817,
-0.19476480782032013,
0.05022423341870308,
-0.12321760505437851,
0.16009506583213806,
-0.011485403403639793,
0.14703325927257538,
0.04024649038910866,
0.03752363473176956,
0.009975356049835682,
0.02670394815504551,
0.02340896800160408,
-0.12715643644332886,
-0.0871133878827095,
-0.1383061408996582,
-0.10871311277151108,
-0.012851173058152199,
0.40002745389938354,
0.05667657405138016,
-0.12921050190925598,
0.03463326022028923,
0.14608488976955414,
0.0049714138731360435,
0.0031385482288897038,
0.3185957968235016,
0.08978645503520966,
-0.022541925311088562,
-0.14219549298286438,
0.03576738387346268,
-0.06028951331973076,
-0.0982302576303482,
0.05978638678789139,
0.08235056698322296,
-0.0025104545056819916,
0.03977803885936737,
0.1539304405450821,
-0.0021260627545416355,
0.010878694243729115,
-0.09044335782527924,
0.15918925404548645,
0.03920920938253403,
-0.03468666598200798,
0.07447294890880585,
0.17062604427337646,
-0.015660172328352928,
0.07527946680784225,
-0.02319367229938507,
-0.023038258776068687,
-0.1602908819913864,
-0.20290572941303253,
0.022667700424790382,
-0.06812679767608643,
0.06805329024791718,
-0.019303012639284134,
0.10481838881969452,
0.1553175002336502,
0.0729072317481041,
-0.06109250336885452,
-0.030676955357193947,
-0.0642445906996727,
-0.12789960205554962,
-0.0173016544431448,
-0.06055523827672005,
0.05984283611178398,
-0.13693790137767792,
-0.09356412291526794,
-0.02185431867837906,
-0.13969303667545319,
-0.08052770793437958,
0.06057370826601982,
0.022471562027931213,
-0.05090975761413574,
-0.21456405520439148,
-0.0645330399274826,
-0.027264073491096497,
0.08318336308002472,
-0.05190209671854973,
0.21002164483070374,
0.0038530495949089527,
-0.014382446184754372,
0.08169036358594894,
0.1731843650341034,
0.02911439538002014,
-0.05880949646234512,
0.07685626298189163,
0.1232185810804367,
0.00005320906711858697,
0.1312958151102066,
-0.09769661724567413,
0.00903122965246439,
-0.024665724486112595,
0.21574661135673523,
0.3156037926673889,
-0.059593815356492996,
-0.02242070622742176,
-0.008918319828808308,
0.03892570734024048,
0.13255974650382996,
0.1688331663608551,
-0.029028672724962234,
0.20702791213989258,
-0.06112537533044815,
0.06509410589933395,
-0.018792826682329178,
0.06892839819192886,
-0.15150488913059235,
0.10976265370845795,
0.05003737285733223,
-0.12215645611286163,
-0.03778800368309021,
0.1806681901216507,
-0.237721249461174,
0.1446874886751175,
-0.0069007365964353085,
-0.0965697318315506,
0.007822769694030285,
-0.03824380785226822,
0.16155000030994415,
-0.02736365795135498,
0.043149031698703766,
-0.07432909309864044,
-0.11396221816539764,
-0.09085571765899658,
0.02265099249780178,
-0.3289490342140198,
-0.10560089349746704,
0.05958804488182068,
0.04829184338450432,
0.10282204300165176,
-0.006378531455993652,
0.03351665288209915,
-0.015334057621657848,
0.054687123745679855,
-0.012484274804592133,
0.08700809627771378,
0.04354175552725792,
0.050465572625398636,
-0.0944799855351448,
-0.1121637225151062,
-0.0027239799965173006,
-0.04963240027427673,
0.05358462408185005,
0.031767286360263824,
0.04253755882382393,
0.10081110149621964,
-0.10490889847278595,
0.00925770215690136,
0.017357412725687027,
-0.1410870999097824,
0.02549704536795616,
-0.027906913310289383,
0.034466128796339035,
-0.06366417557001114,
-0.04577085003256798,
-0.02078104391694069,
0.07299362123012543,
-0.19491559267044067,
-0.06872610747814178,
0.10733165591955185,
-0.09155190736055374,
0.22525925934314728,
0.008236642926931381,
-0.17803332209587097,
0.05482809618115425,
-0.06568421423435211,
0.12095781415700912,
-0.14252886176109314,
0.044272251427173615,
0.17977146804332733,
-0.015139179304242134,
0.019438134506344795,
-0.2554084360599518,
0.10831646621227264,
-0.05342736840248108,
-0.01328936219215393,
-0.04361620917916298
] |
null | null | diffusers |
# SDXL LoRA DreamBooth - yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1
<Gallery />
## Model description
These are yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of MDDL man to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1/tree/main) them in the Files & versions tab.
## Training properties
- max_train_steps: 5
- learning_rate: 0.01
- base_model_name: stabilityai/stable-diffusion-xl-base-1.0
- class_name: man
- training_images_urls = - https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FY7nFiafx8co1nK6cnjWJ.jpg?alt=media&token=a1fe8c9a-4d5e-4043-9a82-9304fd430569
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fz8D9WdMIx4mXcsDGAZm4.jpg?alt=media&token=fded9422-eb7c-4757-8c1f-cb436a348579
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F6JW19SVZPczh5B2DEqKD.jpg?alt=media&token=0e0dc94f-957d-4b51-8979-0216c0849cf6
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2Fcn54hvM4ahi3MzpCQN5D.jpg?alt=media&token=e096f4dc-e7c5-4e14-88fc-a5562d103127
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2F82McawlxnTeA2vBc4bZg.jpg?alt=media&token=f7cfacb2-2186-4005-9211-b7ef762dafad
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FVYOVRhojKt30NzjWRXL0.jpg?alt=media&token=5a3a2afb-4b83-4488-92e5-6651f5173cc0
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FWF2NGBPUFgu9eyaCYAwB.jpg?alt=media&token=97c1e215-0a96-4fdf-b292-9ee0e497ba72
- https://firebasestorage.googleapis.com/v0/b/axonic-looks.appspot.com/o/models%2FSBGA9KzaKdSZWWzsvHMP%2FSBGA9KzaKdSZWWzsvHMP%2FDAk5k1hGzP9q9y0jpGoO.jpg?alt=media&token=01ed67d1-938a-4f60-bc1a-e1b91412b97e
- gradient_accumulation_steps = 3
- GPU = T4
- duration =
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of MDDL man"} | text-to-image | yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | 2024-02-06T23:19:25+00:00 | [] | [] | TAGS
#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
|
# SDXL LoRA DreamBooth - yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1
<Gallery />
## Model description
These are yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using DreamBooth.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of MDDL man to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
## Training properties
- max_train_steps: 5
- learning_rate: 0.01
- base_model_name: stabilityai/stable-diffusion-xl-base-1.0
- class_name: man
- training_images_urls = - URL
- URL
- URL
- URL
- URL
- URL
- URL
- URL
- gradient_accumulation_steps = 3
- GPU = T4
- duration =
| [
"# SDXL LoRA DreamBooth - yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1\n\n<Gallery />",
"## Model description\n\nThese are yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.",
"## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration ="
] | [
"TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n",
"# SDXL LoRA DreamBooth - yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1\n\n<Gallery />",
"## Model description\n\nThese are yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.",
"## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration ="
] | [
78,
54,
119,
19,
28,
94
] | [
"passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1\n\n<Gallery />## Model description\n\nThese are yaneq/jan_DEg0sbWx5du09Seezr0O_SDXL_LoRA_5_1e5_9d94_dZO1 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of MDDL man to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Training properties\n- max_train_steps: 5\n- learning_rate: 0.01\n- base_model_name: stabilityai/stable-diffusion-xl-base-1.0\n- class_name: man\n- training_images_urls = - URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- URL\n- gradient_accumulation_steps = 3\n- GPU = T4\n- duration ="
] | [
-0.08056915551424026,
0.16840825974941254,
-0.0015759349334985018,
0.057724520564079285,
0.14649876952171326,
0.058413755148649216,
0.15312206745147705,
0.13479210436344147,
0.045913029462099075,
0.11398785561323166,
0.02642710506916046,
0.07804527133703232,
0.09683173149824142,
0.17111140489578247,
-0.0002766597317531705,
-0.14120927453041077,
0.022068481892347336,
-0.056050386279821396,
0.003246170934289694,
0.035922933369874954,
0.02956569753587246,
-0.06446453928947449,
0.08243884891271591,
-0.028185954317450523,
-0.04583226516842842,
0.056622039526700974,
-0.01987350732088089,
-0.02024499699473381,
0.01323479413986206,
0.06095164269208908,
0.04452717676758766,
0.060667380690574646,
0.10752399265766144,
-0.27838200330734253,
0.016715453937649727,
0.10767344385385513,
-0.04308971017599106,
0.04134058952331543,
0.02264402061700821,
-0.04201450198888779,
0.013430995866656303,
-0.1458413451910019,
0.0748070552945137,
0.06439881026744843,
-0.040928300470113754,
-0.2142132967710495,
-0.10080856084823608,
0.03169136866927147,
0.07274743914604187,
0.1138484925031662,
0.0022109546698629856,
0.018855681642889977,
0.06483683735132217,
0.0483110286295414,
0.21596600115299225,
-0.09585285931825638,
-0.01984562911093235,
0.11603231728076935,
0.026935391128063202,
0.09602523595094681,
-0.02920084074139595,
-0.004727039486169815,
0.07678727060556412,
-0.02002767100930214,
0.06406236439943314,
-0.041268281638622284,
0.035000335425138474,
-0.06804374605417252,
-0.09174320846796036,
-0.018018819391727448,
0.17523913085460663,
0.03740089386701584,
-0.09494931995868683,
-0.11783081293106079,
-0.022804932668805122,
0.024308886379003525,
-0.0018640033667907119,
0.011452951468527317,
0.021352939307689667,
-0.013611831702291965,
0.0050714220851659775,
-0.1134563535451889,
-0.026942916214466095,
-0.05710025876760483,
0.07235026359558105,
0.19737249612808228,
0.026541711762547493,
-0.004334283992648125,
0.005479436367750168,
0.06350414454936981,
-0.018054144456982613,
-0.1211443692445755,
-0.05924559757113457,
-0.026677055284380913,
-0.0571361742913723,
0.01792406290769577,
-0.013497743755578995,
-0.07887653261423111,
0.024814937263727188,
0.09998269379138947,
-0.06334644556045532,
0.06100952997803688,
-0.029585473239421844,
0.023841941729187965,
-0.05296856537461281,
0.11569623649120331,
-0.0345081128180027,
-0.05271463468670845,
0.02976182848215103,
0.09536195546388626,
0.08715568482875824,
-0.03175703063607216,
-0.13174113631248474,
-0.013230469077825546,
-0.08854465186595917,
0.07443813234567642,
0.007578107062727213,
-0.013908220455050468,
-0.08592255413532257,
-0.04704255610704422,
0.14722883701324463,
-0.09336721152067184,
0.02590956538915634,
0.013791344128549099,
-0.09017298370599747,
0.041885390877723694,
0.10317989438772202,
-0.018160521984100342,
-0.048448409885168076,
0.09389594942331314,
-0.03526506572961807,
0.015257892198860645,
-0.05953672528266907,
-0.14796943962574005,
0.025439821183681488,
-0.13275566697120667,
-0.010562066920101643,
-0.10747648030519485,
-0.22273744642734528,
-0.0686187744140625,
0.008602234534919262,
-0.010344517417252064,
0.04295780509710312,
-0.09053207188844681,
-0.08262792229652405,
0.014315688982605934,
0.035540174692869186,
-0.041478365659713745,
-0.01872802898287773,
0.05322073772549629,
-0.04661421477794647,
0.10926041752099991,
-0.007489319890737534,
0.020159922540187836,
-0.043818116188049316,
0.01600225269794464,
-0.09695697575807571,
0.14345888793468475,
-0.08322994410991669,
0.033697571605443954,
-0.1048564687371254,
-0.0866188257932663,
0.021744636818766594,
0.002526121214032173,
0.06084407866001129,
0.10439151525497437,
-0.198381707072258,
-0.0718846395611763,
0.15123571455478668,
-0.14623698592185974,
-0.07642325758934021,
0.003756261430680752,
-0.028503527864813805,
0.054819196462631226,
0.06237083300948143,
0.10077232122421265,
0.16737395524978638,
-0.17538490891456604,
-0.07934174686670303,
-0.01843259297311306,
0.02474888414144516,
0.07121647894382477,
0.04742983356118202,
-0.016442015767097473,
-0.003497717436403036,
0.017718041315674782,
-0.04402942955493927,
0.04105058312416077,
0.010836242698132992,
-0.052489060908555984,
-0.0197637677192688,
-0.08069447427988052,
0.03171885758638382,
-0.012535546906292439,
-0.03030291013419628,
-0.006599601358175278,
-0.08773858845233917,
0.02368796430528164,
0.1367582380771637,
-0.09663643687963486,
0.02638588845729828,
-0.05589737743139267,
-0.028225023299455643,
-0.03271184861660004,
0.015378540381789207,
-0.10425030440092087,
-0.12122131139039993,
0.05958057567477226,
-0.13252699375152588,
0.009939787909388542,
-0.11891592293977737,
0.051882050931453705,
0.06413085758686066,
-0.051006980240345,
-0.1007654219865799,
-0.057310715317726135,
-0.029870325699448586,
0.009289916604757309,
-0.1295866072177887,
-0.05013147369027138,
-0.05394208803772926,
0.08038358390331268,
-0.17286288738250732,
0.06421712040901184,
0.019760290160775185,
0.07026252150535583,
0.056907769292593,
-0.04706968367099762,
0.04210513085126877,
0.031303588300943375,
-0.03509698063135147,
-0.10185828059911728,
-0.011739110574126244,
-0.021834654733538628,
-0.14763116836547852,
0.02735741063952446,
-0.16575832664966583,
-0.06403468549251556,
0.08863281458616257,
0.10726408660411835,
-0.06906911730766296,
-0.022565949708223343,
-0.004458412993699312,
-0.025128711014986038,
-0.07483770698308945,
-0.058097392320632935,
0.07588477432727814,
0.010947216302156448,
0.09086176753044128,
-0.0658649429678917,
-0.014765310101211071,
0.03370608016848564,
0.007817803882062435,
-0.04460602253675461,
0.08587219566106796,
0.017977621406316757,
-0.0065874396823346615,
0.052255354821681976,
0.010743199847638607,
-0.05447956174612045,
0.15000997483730316,
0.054193202406167984,
-0.058852557092905045,
-0.013852439820766449,
0.037297364324331284,
0.06980685889720917,
0.07737686485052109,
0.08205366134643555,
0.06948424130678177,
0.007444936782121658,
-0.0173749141395092,
-0.01597379893064499,
-0.13739806413650513,
-0.02981415018439293,
0.03293003886938095,
-0.080928735435009,
0.028941990807652473,
0.014110872521996498,
-0.04163770377635956,
0.05107635632157326,
-0.043244313448667526,
0.09770645201206207,
0.009629699401557446,
-0.049559086561203,
-0.11115600913763046,
0.1447283774614334,
-0.1307293176651001,
-0.19826866686344147,
-0.1376037746667862,
0.008284179493784904,
-0.0553310289978981,
-0.01098301075398922,
0.07339665293693542,
-0.1365458369255066,
-0.06328325718641281,
-0.10158830881118774,
-0.011579823680222034,
-0.013356302864849567,
-0.028006386011838913,
0.039417117834091187,
0.012013389728963375,
0.0987185686826706,
-0.1049066036939621,
0.007911710999906063,
0.0240731593221426,
-0.05104010924696922,
-0.005714593920856714,
0.024430913850665092,
0.10308994352817535,
0.053753361105918884,
0.0492825023829937,
0.033227209001779556,
-0.026101145893335342,
0.1905495673418045,
-0.0385131798684597,
0.1007305160164833,
0.19684894382953644,
0.061376724392175674,
0.11557251214981079,
0.13701745867729187,
0.016805564984679222,
-0.06137343496084213,
0.04965144768357277,
0.03936907276511192,
-0.09156081825494766,
-0.22336605191230774,
-0.09554361552000046,
-0.04084823280572891,
-0.05502087622880936,
0.1500307023525238,
0.062266916036605835,
0.0983722135424614,
0.09831526130437851,
-0.08391216397285461,
0.07564635574817657,
0.06413409858942032,
0.12313845753669739,
0.030498385429382324,
0.05897774174809456,
0.025330569595098495,
-0.06923209130764008,
0.0325952023267746,
0.08298290520906448,
0.041728630661964417,
0.19950681924819946,
-0.08349483460187912,
0.06204097345471382,
-0.0009449593489989638,
0.021562926471233368,
-0.007980618625879288,
0.02209932543337345,
-0.007953437976539135,
0.017073269933462143,
0.014748302288353443,
-0.12770429253578186,
0.06443803012371063,
0.14823101460933685,
-0.047946929931640625,
0.017238615080714226,
-0.033549319952726364,
0.030169468373060226,
0.020854078233242035,
0.0626886785030365,
0.03616498410701752,
-0.2655350863933563,
-0.017802508547902107,
0.04601714015007019,
0.11501085013151169,
-0.01227901503443718,
-0.0149808619171381,
0.15394829213619232,
-0.06559725105762482,
0.13262613117694855,
-0.02324371412396431,
0.09146107733249664,
-0.04533040151000023,
-0.05920914188027382,
0.1160736083984375,
0.1943054050207138,
0.0006032005185261369,
0.029522785916924477,
-0.18154098093509674,
0.049903687089681625,
0.02426312491297722,
0.11813077330589294,
-0.03816089406609535,
0.055546339601278305,
0.04147404804825783,
0.0027478409465402365,
0.14042213559150696,
0.016136137768626213,
-0.04513619467616081,
-0.18421770632266998,
-0.05673135817050934,
-0.018749378621578217,
0.09682666510343552,
-0.0766742005944252,
0.07317750155925751,
0.0345732718706131,
-0.028412070125341415,
-0.003469557734206319,
-0.006288322154432535,
-0.1639101803302765,
-0.1615210771560669,
0.009993516840040684,
0.13883091509342194,
0.052617672830820084,
-0.07312555611133575,
-0.049196407198905945,
-0.05026504024863243,
0.08662321418523788,
-0.12024881690740585,
-0.11457167565822601,
-0.10588859766721725,
-0.006705237086862326,
0.09105870872735977,
-0.0645594522356987,
0.015987250953912735,
0.013184675946831703,
0.1231699287891388,
-0.09565699845552444,
-0.10590597987174988,
0.008578557521104813,
-0.08042864501476288,
-0.181598961353302,
-0.08400940150022507,
0.0904306098818779,
0.04511904716491699,
-0.01287952158600092,
-0.02049683779478073,
-0.004248190671205521,
0.04119535908102989,
-0.1328178197145462,
0.059014853090047836,
0.24075937271118164,
-0.0001453074801247567,
0.13473941385746002,
-0.04986598342657089,
-0.05894217640161514,
-0.07599008828401566,
0.0063859825022518635,
0.03060862608253956,
0.25577065348625183,
-0.10663748532533646,
0.06719604134559631,
0.06151352822780609,
-0.10200177878141403,
-0.15357856452465057,
0.05280978977680206,
0.0953487753868103,
-0.015291670337319374,
-0.012750495225191116,
-0.25994476675987244,
0.05384085699915886,
0.055306509137153625,
0.00246499665081501,
0.10713964700698853,
-0.3448421061038971,
-0.13674376904964447,
-0.0767182782292366,
0.11507067084312439,
0.019351884722709656,
-0.1186073049902916,
-0.05871884524822235,
-0.12473344802856445,
-0.045265186578035355,
0.12374187260866165,
-0.022250793874263763,
0.07197935879230499,
0.01642276719212532,
0.0042830272577703,
0.02128487639129162,
-0.05268353968858719,
0.1372717022895813,
0.005323023069649935,
0.06044900417327881,
-0.031400665640830994,
0.05837087705731392,
0.09243587404489517,
-0.08178305625915527,
0.08222471922636032,
-0.11119474470615387,
0.05185827240347862,
-0.07649463415145874,
-0.020504875108599663,
-0.01057609636336565,
0.04729956015944481,
-0.037421803921461105,
-0.05253778398036957,
-0.07063644379377365,
0.05278996378183365,
0.15073727071285248,
-0.007831943221390247,
-0.040630634874105453,
-0.00883855577558279,
0.04715346917510033,
0.11736242473125458,
0.02215677686035633,
0.1477062851190567,
-0.09693516045808792,
0.005172263365238905,
-0.04929082840681076,
0.09913812577724457,
-0.15686199069023132,
0.020619986578822136,
0.07837436348199844,
0.03461522236466408,
0.1494978964328766,
0.015713613480329514,
-0.09915682673454285,
0.06864470988512039,
0.02969955839216709,
-0.06681420654058456,
-0.11419019848108292,
-0.036518264561891556,
0.014893272891640663,
-0.05981896445155144,
0.004040020518004894,
0.11700139939785004,
-0.05149450898170471,
0.020565439015626907,
-0.0075019667856395245,
0.05927617475390434,
-0.010232112370431423,
0.11385681480169296,
0.04581760987639427,
0.0251872967928648,
-0.06987756490707397,
0.12330978363752365,
0.050888270139694214,
-0.06745875626802444,
0.08532430976629257,
0.10821937769651413,
-0.0781409814953804,
-0.0030334647744894028,
-0.10670869797468185,
0.046406880021095276,
-0.0694255605340004,
-0.04666360467672348,
-0.03158299997448921,
-0.07192353904247284,
0.01484744343906641,
0.10177215933799744,
0.0033786874264478683,
-0.007886942476034164,
0.021176928654313087,
-0.011637554503977299,
-0.11310475319623947,
0.058670297265052795,
-0.0026477263309061527,
0.06442199647426605,
-0.1475260704755783,
-0.00488741509616375,
0.060130760073661804,
-0.009132414124906063,
0.003984741400927305,
-0.01943924091756344,
-0.12239140272140503,
-0.01878850720822811,
-0.08516956120729446,
0.12223848700523376,
-0.07782717794179916,
0.01076758187264204,
-0.03285723179578781,
0.0035688981879502535,
-0.0007287943153642118,
0.0634322538971901,
-0.03171004727482796,
-0.1030656024813652,
0.006213060114532709,
0.07010705024003983,
-0.12094840407371521,
-0.04528503492474556,
-0.025271253660321236,
-0.09354268014431,
0.05471291393041611,
-0.0034613781608641148,
-0.055477410554885864,
-0.010403272695839405,
-0.15849906206130981,
0.04748589172959328,
0.06533637642860413,
0.03187847509980202,
-0.013762266375124454,
-0.06727347522974014,
0.012758085504174232,
-0.03492821753025055,
-0.06879626959562302,
-0.017961006611585617,
-0.010503516532480717,
-0.10052843391895294,
0.04085751622915268,
-0.04177163913846016,
0.026801619678735733,
-0.0729103833436966,
0.07461009919643402,
0.11817290633916855,
0.04051885008811951,
0.10266988724470139,
-0.08374083787202835,
0.09647947549819946,
-0.15985700488090515,
-0.03924785181879997,
0.023245403543114662,
-0.018811168149113655,
-0.051231928169727325,
-0.021985145285725594,
0.0736176073551178,
-0.016413763165473938,
0.10131658613681793,
-0.06059189885854721,
0.055266693234443665,
-0.007904516533017159,
-0.026894325390458107,
-0.03439629450440407,
0.001606874167919159,
0.15781551599502563,
0.009120569564402103,
0.005159497726708651,
0.016294455155730247,
-0.01645895466208458,
0.08299436420202255,
0.10738073289394379,
0.060977753251791,
0.09674886614084244,
0.10199251025915146,
0.062100838869810104,
0.022515220567584038,
-0.06340006738901138,
-0.053677674382925034,
0.12429612874984741,
-0.03182096406817436,
0.07078149914741516,
-0.046982236206531525,
0.04462091997265816,
0.08041767030954361,
-0.13919878005981445,
0.012161941267549992,
0.09637421369552612,
-0.06274884194135666,
-0.09371238946914673,
-0.15865826606750488,
-0.07787136733531952,
-0.1261853277683258,
0.02144777588546276,
-0.09832301735877991,
0.055219247937202454,
-0.01770464889705181,
-0.02302120253443718,
0.021592456847429276,
0.09982579946517944,
-0.01425956841558218,
-0.03319777175784111,
0.03261931613087654,
-0.01498024445027113,
-0.0024971789680421352,
0.06940118968486786,
-0.05247475206851959,
0.1331208497285843,
-0.015126967802643776,
0.04231740161776543,
0.05006267502903938,
0.05778693035244942,
0.057515792548656464,
-0.014376980252563953,
-0.06495292484760284,
0.011106394231319427,
0.03775889798998833,
0.0051421718671917915,
0.17111562192440033,
0.0870804712176323,
0.007131445221602917,
-0.029240401461720467,
0.14295896887779236,
-0.07517317682504654,
-0.01696360670030117,
-0.09974227845668793,
0.06958416849374771,
0.01591772399842739,
0.011694625951349735,
0.00498511316254735,
-0.09876634925603867,
-0.048607949167490005,
0.10013419389724731,
0.10079294443130493,
0.021356677636504173,
0.01936236210167408,
-0.04897349700331688,
-0.0017359806224703789,
-0.050497088581323624,
0.07144373655319214,
0.049226779490709305,
0.11155250668525696,
-0.010996389202773571,
0.037938665598630905,
-0.022341148927807808,
-0.030121879652142525,
-0.016274597495794296,
0.0036798608489334583,
-0.06473305821418762,
-0.031790271401405334,
-0.04403330758213997,
0.0675177350640297,
-0.07228618860244751,
-0.14848142862319946,
0.1827523410320282,
-0.0976044163107872,
-0.04854660853743553,
-0.01940017007291317,
0.08053916692733765,
0.02792360819876194,
0.00005238756421022117,
-0.014023225754499435,
-0.028521394357085228,
0.11685922741889954,
-0.04327898845076561,
-0.07891681790351868,
-0.10285681486129761,
-0.04921610280871391,
-0.16786669194698334,
0.21836259961128235,
-0.019245252013206482,
0.05388125777244568,
0.07499828189611435,
0.035214751958847046,
-0.126562237739563,
0.0848822221159935,
0.011331954970955849,
-0.1127178966999054,
-0.012238731607794762,
0.1713625192642212,
-0.08535020053386688,
0.19758014380931854,
0.04172885790467262,
-0.060435786843299866,
0.027549711987376213,
0.0784263014793396,
-0.026425233110785484,
-0.07892686128616333,
-0.0014140435960143805,
-0.10486675053834915,
0.11447910219430923,
0.13500961661338806,
-0.028565101325511932,
-0.01153267826884985,
0.0019461389165371656,
0.020082006230950356,
0.015097731724381447,
0.09698855131864548,
0.03538239374756813,
-0.0966387391090393,
0.005342316813766956,
0.008873098529875278,
0.11237913370132446,
-0.17130401730537415,
-0.056101784110069275,
-0.05643058940768242,
-0.05142617225646973,
-0.004399602301418781,
0.09546299278736115,
0.0791207104921341,
0.03524484112858772,
-0.04195550084114075,
-0.2065977156162262,
0.011039110831916332,
0.15441100299358368,
-0.09405922144651413,
-0.0813949853181839
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.