sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
sequencelengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
sequencelengths
0
25
languages
sequencelengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
sequencelengths
0
352
processed_texts
sequencelengths
1
353
da1c91489c6eb056422972f1f5e8c07f022c25ea
# Dataset Card for `mmarco/pt/dev/v1.1` The `mmarco/pt/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) - For `qrels`, use [`irds/mmarco_pt_dev`](https://huggingface.co/datasets/irds/mmarco_pt_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "source_datasets:irds/mmarco_pt_dev", "region:us" ]
2023-01-05T03:22:21+00:00
{"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev/v1.1`", "viewer": false}
2023-01-05T03:22:27+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_dev #region-us
# Dataset Card for 'mmarco/pt/dev/v1.1' The 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - For 'docs', use 'irds/mmarco_pt' - For 'qrels', use 'irds/mmarco_pt_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt/dev/v1.1'\n\nThe 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_dev #region-us \n", "# Dataset Card for 'mmarco/pt/dev/v1.1'\n\nThe 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5d4cf64899999da4ed32d43b226395439548d865
# Dataset Card for `mmarco/pt/train` The `mmarco/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train). # Data This dataset provides: - `queries` (i.e., topics); count=811,690 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) This dataset is used by: [`mmarco_pt_train_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_train_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_pt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:22:32+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train`", "viewer": false}
2023-01-05T03:22:38+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us
# Dataset Card for 'mmarco/pt/train' The 'mmarco/pt/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=811,690 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_pt' This dataset is used by: 'mmarco_pt_train_v1.1' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt/train'\n\nThe 'mmarco/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=811,690\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_train_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us \n", "# Dataset Card for 'mmarco/pt/train'\n\nThe 'mmarco/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=811,690\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_train_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
00857b925e6581b887e42c57add9bb865666ff79
# Dataset Card for `mmarco/pt/train/v1.1` The `mmarco/pt/train/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) - For `qrels`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train) - For `docpairs`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_train_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_train_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "source_datasets:irds/mmarco_pt_train", "region:us" ]
2023-01-05T03:22:43+00:00
{"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_train"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train/v1.1`", "viewer": false}
2023-01-05T03:22:49+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_train #region-us
# Dataset Card for 'mmarco/pt/train/v1.1' The 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - For 'docs', use 'irds/mmarco_pt' - For 'qrels', use 'irds/mmarco_pt_train' - For 'docpairs', use 'irds/mmarco_pt_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt/train/v1.1'\n\nThe 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_train'\n - For 'docpairs', use 'irds/mmarco_pt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_train #region-us \n", "# Dataset Card for 'mmarco/pt/train/v1.1'\n\nThe 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_train'\n - For 'docpairs', use 'irds/mmarco_pt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
302ec30bd28f6e934b2be22f26c6469902df3f18
# Dataset Card for `mmarco/ru` The `mmarco/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_ru_dev`](https://huggingface.co/datasets/irds/mmarco_ru_dev), [`mmarco_ru_train`](https://huggingface.co/datasets/irds/mmarco_ru_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_ru', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:22:54+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru`", "viewer": false}
2023-01-05T03:23:00+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/ru' The 'mmarco/ru' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/ru'\n\nThe 'mmarco/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/ru'\n\nThe 'mmarco/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
396f5d096f7d354cfa20f28225cf3f1077a9e72d
# Dataset Card for `mmarco/ru/dev` The `mmarco/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_ru_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_ru_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_ru", "region:us" ]
2023-01-05T03:23:06+00:00
{"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/dev`", "viewer": false}
2023-01-05T03:23:11+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us
# Dataset Card for 'mmarco/ru/dev' The 'mmarco/ru/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/ru/dev'\n\nThe 'mmarco/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us \n", "# Dataset Card for 'mmarco/ru/dev'\n\nThe 'mmarco/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
99dbbec8730c9bc682b9f0831b1ab146fe87787b
# Dataset Card for `mmarco/ru/train` The `mmarco/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_ru_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_ru_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_ru_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_ru_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_ru", "region:us" ]
2023-01-05T03:23:17+00:00
{"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/train`", "viewer": false}
2023-01-05T03:23:22+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us
# Dataset Card for 'mmarco/ru/train' The 'mmarco/ru/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/ru/train'\n\nThe 'mmarco/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us \n", "# Dataset Card for 'mmarco/ru/train'\n\nThe 'mmarco/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9ba54124147f5d9e6ec7297445e3f96c0a20244b
# Dataset Card for `mmarco/v2/ar` The `mmarco/v2/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ar_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ar_dev), [`mmarco_v2_ar_train`](https://huggingface.co/datasets/irds/mmarco_v2_ar_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ar', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:23:28+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar`", "viewer": false}
2023-01-05T03:23:34+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/ar' The 'mmarco/v2/ar' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ar'\n\nThe 'mmarco/v2/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/ar'\n\nThe 'mmarco/v2/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
55b93d3088b4564bba7b51e4a1a9973c89cc137d
# Dataset Card for `mmarco/v2/ar/dev` The `mmarco/v2/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ar_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ar_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ar", "region:us" ]
2023-01-05T03:23:39+00:00
{"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/dev`", "viewer": false}
2023-01-05T03:23:45+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us
# Dataset Card for 'mmarco/v2/ar/dev' The 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_ar' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ar/dev'\n\nThe 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us \n", "# Dataset Card for 'mmarco/v2/ar/dev'\n\nThe 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
220bb4a55bb9f7ffe064ed30934761bc90e34b80
# Dataset Card for `mmarco/v2/ar/train` The `mmarco/v2/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ar_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ar_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ar_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ar_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ar", "region:us" ]
2023-01-05T03:23:50+00:00
{"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/train`", "viewer": false}
2023-01-05T03:23:56+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us
# Dataset Card for 'mmarco/v2/ar/train' The 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_ar' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ar/train'\n\nThe 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us \n", "# Dataset Card for 'mmarco/v2/ar/train'\n\nThe 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
025cc71d4ecfe1f78fd4a92a271b365ca207d68c
# Dataset Card for `mmarco/v2/de` The `mmarco/v2/de` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_de_dev`](https://huggingface.co/datasets/irds/mmarco_v2_de_dev), [`mmarco_v2_de_train`](https://huggingface.co/datasets/irds/mmarco_v2_de_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_de', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:24:01+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de`", "viewer": false}
2023-01-05T03:24:07+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/de' The 'mmarco/v2/de' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/de'\n\nThe 'mmarco/v2/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/de'\n\nThe 'mmarco/v2/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
775820735e29f81f97bd323f9e42da15d75a7399
# Dataset Card for `mmarco/v2/de/dev` The `mmarco/v2/de/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_de_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_de_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_de", "region:us" ]
2023-01-05T03:24:12+00:00
{"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/dev`", "viewer": false}
2023-01-05T03:24:18+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us
# Dataset Card for 'mmarco/v2/de/dev' The 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_de' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/de/dev'\n\nThe 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us \n", "# Dataset Card for 'mmarco/v2/de/dev'\n\nThe 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
06296b9d2a33c8eaa737bf43a0d0ad4ec6f989c6
# Dataset Card for `mmarco/v2/de/train` The `mmarco/v2/de/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_de_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_de_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_de_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_de_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_de", "region:us" ]
2023-01-05T03:24:23+00:00
{"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/train`", "viewer": false}
2023-01-05T03:24:29+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us
# Dataset Card for 'mmarco/v2/de/train' The 'mmarco/v2/de/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_de' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/de/train'\n\nThe 'mmarco/v2/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us \n", "# Dataset Card for 'mmarco/v2/de/train'\n\nThe 'mmarco/v2/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8852c8ee2a3f9a4c186d0f3af18655f8715717a4
# Dataset Card for `mmarco/v2/dt` The `mmarco/v2/dt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_dt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_dt_dev), [`mmarco_v2_dt_train`](https://huggingface.co/datasets/irds/mmarco_v2_dt_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_dt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:24:34+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt`", "viewer": false}
2023-01-05T03:24:40+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/dt' The 'mmarco/v2/dt' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/dt'\n\nThe 'mmarco/v2/dt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/dt'\n\nThe 'mmarco/v2/dt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5992a038543122ae908c19c2bf71dd9e1572bb76
# Dataset Card for `mmarco/v2/dt/dev` The `mmarco/v2/dt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_dt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_dt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_dt", "region:us" ]
2023-01-05T03:24:46+00:00
{"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/dev`", "viewer": false}
2023-01-05T03:24:51+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us
# Dataset Card for 'mmarco/v2/dt/dev' The 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_dt' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/dt/dev'\n\nThe 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_dt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us \n", "# Dataset Card for 'mmarco/v2/dt/dev'\n\nThe 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_dt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
4dcdc7ea954e937a4f4fb21eff71ad33946caab3
# Dataset Card for `mmarco/v2/dt/train` The `mmarco/v2/dt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_dt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_dt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_dt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_dt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_dt", "region:us" ]
2023-01-05T03:24:57+00:00
{"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/train`", "viewer": false}
2023-01-05T03:25:03+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us
# Dataset Card for 'mmarco/v2/dt/train' The 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_dt' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/dt/train'\n\nThe 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_dt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us \n", "# Dataset Card for 'mmarco/v2/dt/train'\n\nThe 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_dt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
1f59f33da3fdeaa1a99f599522cd5dada0bac269
# Dataset Card for `mmarco/v2/es` The `mmarco/v2/es` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_es_dev`](https://huggingface.co/datasets/irds/mmarco_v2_es_dev), [`mmarco_v2_es_train`](https://huggingface.co/datasets/irds/mmarco_v2_es_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_es', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:25:08+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es`", "viewer": false}
2023-01-05T03:25:14+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/es' The 'mmarco/v2/es' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/es'\n\nThe 'mmarco/v2/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/es'\n\nThe 'mmarco/v2/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
56f0cb61ca641e603ad81830a16b30870b9d50be
# Dataset Card for `mmarco/v2/es/dev` The `mmarco/v2/es/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_es_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_es_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_es", "region:us" ]
2023-01-05T03:25:19+00:00
{"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/dev`", "viewer": false}
2023-01-05T03:25:25+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us
# Dataset Card for 'mmarco/v2/es/dev' The 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_es' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/es/dev'\n\nThe 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us \n", "# Dataset Card for 'mmarco/v2/es/dev'\n\nThe 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
651b9d0d9b949874c4cf759e3d6b69c0199da772
# Dataset Card for `mmarco/v2/es/train` The `mmarco/v2/es/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_es_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_es_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_es_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_es_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_es", "region:us" ]
2023-01-05T03:25:30+00:00
{"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/train`", "viewer": false}
2023-01-05T03:25:36+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us
# Dataset Card for 'mmarco/v2/es/train' The 'mmarco/v2/es/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_es' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/es/train'\n\nThe 'mmarco/v2/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us \n", "# Dataset Card for 'mmarco/v2/es/train'\n\nThe 'mmarco/v2/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
ce88693e3db6b50e721a57ea8ba9bab032288a7b
# Dataset Card for `mmarco/v2/fr` The `mmarco/v2/fr` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_fr_dev`](https://huggingface.co/datasets/irds/mmarco_v2_fr_dev), [`mmarco_v2_fr_train`](https://huggingface.co/datasets/irds/mmarco_v2_fr_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_fr', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:25:41+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr`", "viewer": false}
2023-01-05T03:25:47+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/fr' The 'mmarco/v2/fr' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/fr'\n\nThe 'mmarco/v2/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/fr'\n\nThe 'mmarco/v2/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fdbe12aff10816aaf7155c18c41b789ffef690fc
# Dataset Card for `mmarco/v2/fr/dev` The `mmarco/v2/fr/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_fr_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_fr_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_fr", "region:us" ]
2023-01-05T03:25:52+00:00
{"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/dev`", "viewer": false}
2023-01-05T03:25:58+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us
# Dataset Card for 'mmarco/v2/fr/dev' The 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_fr' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/fr/dev'\n\nThe 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us \n", "# Dataset Card for 'mmarco/v2/fr/dev'\n\nThe 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
963eb6d5d2b12cccc3f393c55f8a8c066d46fbd3
# Dataset Card for `mmarco/v2/fr/train` The `mmarco/v2/fr/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_fr_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_fr_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_fr_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_fr_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_fr", "region:us" ]
2023-01-05T03:26:03+00:00
{"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/train`", "viewer": false}
2023-01-05T03:26:09+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us
# Dataset Card for 'mmarco/v2/fr/train' The 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_fr' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/fr/train'\n\nThe 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us \n", "# Dataset Card for 'mmarco/v2/fr/train'\n\nThe 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
c36fafdb8684f28430b5013cece64fb14debb449
# Dataset Card for `mmarco/v2/hi` The `mmarco/v2/hi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_hi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_hi_dev), [`mmarco_v2_hi_train`](https://huggingface.co/datasets/irds/mmarco_v2_hi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_hi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:26:14+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi`", "viewer": false}
2023-01-05T03:26:20+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/hi' The 'mmarco/v2/hi' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/hi'\n\nThe 'mmarco/v2/hi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/hi'\n\nThe 'mmarco/v2/hi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a51c0764a63a7f644e3aa474442cf6bed41b91b7
# Dataset Card for `mmarco/v2/hi/dev` The `mmarco/v2/hi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_hi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_hi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_hi", "region:us" ]
2023-01-05T03:26:26+00:00
{"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/dev`", "viewer": false}
2023-01-05T03:26:31+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us
# Dataset Card for 'mmarco/v2/hi/dev' The 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_hi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/hi/dev'\n\nThe 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_hi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us \n", "# Dataset Card for 'mmarco/v2/hi/dev'\n\nThe 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_hi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a63e5ec3dbf14df93dd249bb874a5eed2a74b1e5
# Dataset Card for `mmarco/v2/hi/train` The `mmarco/v2/hi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_hi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_hi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_hi_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_hi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_hi", "region:us" ]
2023-01-05T03:26:37+00:00
{"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/train`", "viewer": false}
2023-01-05T03:26:42+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us
# Dataset Card for 'mmarco/v2/hi/train' The 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_hi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/hi/train'\n\nThe 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_hi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us \n", "# Dataset Card for 'mmarco/v2/hi/train'\n\nThe 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_hi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
63a8e90a554c7673b908774dea617b7312e725d9
# Dataset Card for `mmarco/v2/id` The `mmarco/v2/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_id_dev`](https://huggingface.co/datasets/irds/mmarco_v2_id_dev), [`mmarco_v2_id_train`](https://huggingface.co/datasets/irds/mmarco_v2_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:26:48+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id`", "viewer": false}
2023-01-05T03:26:53+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/id' The 'mmarco/v2/id' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/id'\n\nThe 'mmarco/v2/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/id'\n\nThe 'mmarco/v2/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
feb53944fe08e3b192c908aa24ba935b2c372bca
# Dataset Card for `mmarco/v2/id/dev` The `mmarco/v2/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_id", "region:us" ]
2023-01-05T03:26:59+00:00
{"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/dev`", "viewer": false}
2023-01-05T03:27:05+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us
# Dataset Card for 'mmarco/v2/id/dev' The 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/id/dev'\n\nThe 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us \n", "# Dataset Card for 'mmarco/v2/id/dev'\n\nThe 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
f893909ae46738fb4abc510ae09bd456942c1dd2
# Dataset Card for `mmarco/v2/id/train` The `mmarco/v2/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_id_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_id", "region:us" ]
2023-01-05T03:27:10+00:00
{"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/train`", "viewer": false}
2023-01-05T03:27:16+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us
# Dataset Card for 'mmarco/v2/id/train' The 'mmarco/v2/id/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/id/train'\n\nThe 'mmarco/v2/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us \n", "# Dataset Card for 'mmarco/v2/id/train'\n\nThe 'mmarco/v2/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fea94875097d6e7e5981a0248b76d38bd7cf7927
# Dataset Card for `mmarco/v2/it` The `mmarco/v2/it` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_it_dev`](https://huggingface.co/datasets/irds/mmarco_v2_it_dev), [`mmarco_v2_it_train`](https://huggingface.co/datasets/irds/mmarco_v2_it_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_it', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:27:21+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it`", "viewer": false}
2023-01-05T03:27:27+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/it' The 'mmarco/v2/it' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/it'\n\nThe 'mmarco/v2/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/it'\n\nThe 'mmarco/v2/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d4a4b740e65f57fb103c681260429c1f0a73c198
# Dataset Card for `mmarco/v2/it/dev` The `mmarco/v2/it/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_it_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_it_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_it", "region:us" ]
2023-01-05T03:27:32+00:00
{"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/dev`", "viewer": false}
2023-01-05T03:27:38+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us
# Dataset Card for 'mmarco/v2/it/dev' The 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_it' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/it/dev'\n\nThe 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us \n", "# Dataset Card for 'mmarco/v2/it/dev'\n\nThe 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7ccf7e05af3e19adc9229c939a06e743f0f354db
# Dataset Card for `mmarco/v2/it/train` The `mmarco/v2/it/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_it_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_it_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_it_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_it_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_it", "region:us" ]
2023-01-05T03:27:44+00:00
{"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/train`", "viewer": false}
2023-01-05T03:27:49+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us
# Dataset Card for 'mmarco/v2/it/train' The 'mmarco/v2/it/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_it' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/it/train'\n\nThe 'mmarco/v2/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us \n", "# Dataset Card for 'mmarco/v2/it/train'\n\nThe 'mmarco/v2/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0de1fbfd7c9c175c5605cf3c74100e57335b7990
# Dataset Card for `mmarco/v2/ja` The `mmarco/v2/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ja_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ja_dev), [`mmarco_v2_ja_train`](https://huggingface.co/datasets/irds/mmarco_v2_ja_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ja', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:27:55+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja`", "viewer": false}
2023-01-05T03:28:00+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/ja' The 'mmarco/v2/ja' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ja'\n\nThe 'mmarco/v2/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/ja'\n\nThe 'mmarco/v2/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
81b384fff5bab1c0cf04303b48954ca35d5012d0
# Dataset Card for `mmarco/v2/ja/dev` The `mmarco/v2/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ja_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ja_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ja", "region:us" ]
2023-01-05T03:28:06+00:00
{"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/dev`", "viewer": false}
2023-01-05T03:28:11+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us
# Dataset Card for 'mmarco/v2/ja/dev' The 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_ja' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ja/dev'\n\nThe 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us \n", "# Dataset Card for 'mmarco/v2/ja/dev'\n\nThe 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
019f1bc1bc08562ed1fc3dd95bd2750bb66bfb3f
# Dataset Card for `mmarco/v2/ja/train` The `mmarco/v2/ja/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ja_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ja_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ja_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ja_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ja", "region:us" ]
2023-01-05T03:28:18+00:00
{"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/train`", "viewer": false}
2023-01-05T03:28:24+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us
# Dataset Card for 'mmarco/v2/ja/train' The 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_ja' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ja/train'\n\nThe 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us \n", "# Dataset Card for 'mmarco/v2/ja/train'\n\nThe 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
f657b5c613d6cf8b4c76c0c346cf788d095e0ab9
# Dataset Card for `mmarco/v2/pt` The `mmarco/v2/pt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_pt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_pt_dev), [`mmarco_v2_pt_train`](https://huggingface.co/datasets/irds/mmarco_v2_pt_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_pt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:28:29+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt`", "viewer": false}
2023-01-05T03:28:35+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/pt' The 'mmarco/v2/pt' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/pt'\n\nThe 'mmarco/v2/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/pt'\n\nThe 'mmarco/v2/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
80c6924eca6c275fb63f87f1edb7d1254f553197
# Dataset Card for `mmarco/v2/pt/dev` The `mmarco/v2/pt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_pt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_pt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_pt", "region:us" ]
2023-01-05T03:28:40+00:00
{"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/dev`", "viewer": false}
2023-01-05T03:28:46+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us
# Dataset Card for 'mmarco/v2/pt/dev' The 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_pt' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/pt/dev'\n\nThe 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us \n", "# Dataset Card for 'mmarco/v2/pt/dev'\n\nThe 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a182535672ccc70b49df8e95cdfcde91e75e6a8a
# Dataset Card for `mmarco/v2/pt/train` The `mmarco/v2/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_pt_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_pt_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_pt_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_pt_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_pt", "region:us" ]
2023-01-05T03:28:51+00:00
{"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/train`", "viewer": false}
2023-01-05T03:28:57+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us
# Dataset Card for 'mmarco/v2/pt/train' The 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_pt' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/pt/train'\n\nThe 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us \n", "# Dataset Card for 'mmarco/v2/pt/train'\n\nThe 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9139938dfdff672f1e6041f2ae539d572102a7c7
# Dataset Card for `mmarco/v2/ru` The `mmarco/v2/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_ru_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ru_dev), [`mmarco_v2_ru_train`](https://huggingface.co/datasets/irds/mmarco_v2_ru_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_ru', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:29:03+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru`", "viewer": false}
2023-01-05T03:29:08+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/ru' The 'mmarco/v2/ru' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ru'\n\nThe 'mmarco/v2/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/ru'\n\nThe 'mmarco/v2/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
b2470571ef0729b660765abe4c46cd3cae23c178
# Dataset Card for `mmarco/v2/ru/dev` The `mmarco/v2/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ru_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ru_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ru", "region:us" ]
2023-01-05T03:29:14+00:00
{"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/dev`", "viewer": false}
2023-01-05T03:29:19+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us
# Dataset Card for 'mmarco/v2/ru/dev' The 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ru/dev'\n\nThe 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us \n", "# Dataset Card for 'mmarco/v2/ru/dev'\n\nThe 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
57c370fb695cbdbdcd461ac5174eb2b14cac6ce6
# Dataset Card for `mmarco/v2/ru/train` The `mmarco/v2/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_ru_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_ru_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_ru_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_ru_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_ru", "region:us" ]
2023-01-05T03:29:25+00:00
{"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/train`", "viewer": false}
2023-01-05T03:29:30+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us
# Dataset Card for 'mmarco/v2/ru/train' The 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/ru/train'\n\nThe 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us \n", "# Dataset Card for 'mmarco/v2/ru/train'\n\nThe 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
1e1c186e28642f5368e484e50e4763dc7771794a
# Dataset Card for `mmarco/v2/vi` The `mmarco/v2/vi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_vi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_vi_dev), [`mmarco_v2_vi_train`](https://huggingface.co/datasets/irds/mmarco_v2_vi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_vi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:29:36+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi`", "viewer": false}
2023-01-05T03:29:42+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/vi' The 'mmarco/v2/vi' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/vi'\n\nThe 'mmarco/v2/vi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/vi'\n\nThe 'mmarco/v2/vi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a3a85f41d0fc827cf6ec0279324876b81d7e6f40
# Dataset Card for `mmarco/v2/vi/dev` The `mmarco/v2/vi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_vi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_vi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_vi", "region:us" ]
2023-01-05T03:29:47+00:00
{"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/dev`", "viewer": false}
2023-01-05T03:29:53+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us
# Dataset Card for 'mmarco/v2/vi/dev' The 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_vi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/vi/dev'\n\nThe 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_vi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us \n", "# Dataset Card for 'mmarco/v2/vi/dev'\n\nThe 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_vi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
118c5fc9012fdf927d1ddfe86fc1b8ea0e01bd39
# Dataset Card for `mmarco/v2/vi/train` The `mmarco/v2/vi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_vi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_vi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_vi_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_vi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_vi", "region:us" ]
2023-01-05T03:29:58+00:00
{"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/train`", "viewer": false}
2023-01-05T03:30:04+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us
# Dataset Card for 'mmarco/v2/vi/train' The 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_vi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/vi/train'\n\nThe 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_vi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us \n", "# Dataset Card for 'mmarco/v2/vi/train'\n\nThe 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_vi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9deac9ddcbad386ae7f5790bd31f60a82ca9350f
# Dataset Card for `mmarco/v2/zh` The `mmarco/v2/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_v2_zh_dev`](https://huggingface.co/datasets/irds/mmarco_v2_zh_dev), [`mmarco_v2_zh_train`](https://huggingface.co/datasets/irds/mmarco_v2_zh_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_v2_zh', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:30:10+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh`", "viewer": false}
2023-01-05T03:30:15+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/v2/zh' The 'mmarco/v2/zh' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/zh'\n\nThe 'mmarco/v2/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/v2/zh'\n\nThe 'mmarco/v2/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8dda454ab13ffc9292f910d94d54bea669940adb
# Dataset Card for `mmarco/v2/zh/dev` The `mmarco/v2/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_zh_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_zh_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_zh", "region:us" ]
2023-01-05T03:30:21+00:00
{"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/dev`", "viewer": false}
2023-01-05T03:30:26+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us
# Dataset Card for 'mmarco/v2/zh/dev' The 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_v2_zh' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/zh/dev'\n\nThe 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us \n", "# Dataset Card for 'mmarco/v2/zh/dev'\n\nThe 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d3ef087d03f6a09c9241aec41224881ab88bff95
# Dataset Card for `mmarco/v2/zh/train` The `mmarco/v2/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_v2_zh_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_v2_zh_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_v2_zh_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_v2_zh_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_v2_zh", "region:us" ]
2023-01-05T03:30:32+00:00
{"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/train`", "viewer": false}
2023-01-05T03:30:37+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us
# Dataset Card for 'mmarco/v2/zh/train' The 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_v2_zh' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/v2/zh/train'\n\nThe 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us \n", "# Dataset Card for 'mmarco/v2/zh/train'\n\nThe 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d8e4203011b1116de9d9738a8988a451861665a2
# Dataset Card for `mmarco/zh` The `mmarco/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev), [`mmarco_zh_dev_small`](https://huggingface.co/datasets/irds/mmarco_zh_dev_small), [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1), [`mmarco_zh_train`](https://huggingface.co/datasets/irds/mmarco_zh_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_zh', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:30:43+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh`", "viewer": false}
2023-01-05T03:30:49+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/zh' The 'mmarco/zh' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/zh'\n\nThe 'mmarco/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/zh'\n\nThe 'mmarco/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a8eeb0f8a9dee7c850da4151ca03edfdac83901e
# Dataset Card for `mmarco/zh/dev` The `mmarco/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) This dataset is used by: [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:30:54+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev`", "viewer": false}
2023-01-05T03:31:00+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
# Dataset Card for 'mmarco/zh/dev' The 'mmarco/zh/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_zh' This dataset is used by: 'mmarco_zh_dev_v1.1' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/zh/dev'\n\nThe 'mmarco/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_zh'\n\nThis dataset is used by: 'mmarco_zh_dev_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n", "# Dataset Card for 'mmarco/zh/dev'\n\nThe 'mmarco/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_zh'\n\nThis dataset is used by: 'mmarco_zh_dev_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
c474a1fafa872b760cd9ab484f6c7423f7a546d2
# Dataset Card for `mmarco/zh/dev/small` The `mmarco/zh/dev/small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/small). # Data This dataset provides: - `queries` (i.e., topics); count=6,980 - `qrels`: (relevance assessments); count=7,437 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev_small', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_dev_small', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev_small
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:31:05+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/small`", "viewer": false}
2023-01-05T03:31:11+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
# Dataset Card for 'mmarco/zh/dev/small' The 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=6,980 - 'qrels': (relevance assessments); count=7,437 - For 'docs', use 'irds/mmarco_zh' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/zh/dev/small'\n\nThe 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,980\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n", "# Dataset Card for 'mmarco/zh/dev/small'\n\nThe 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,980\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
1fafbbeaf298d8e192277bca84e9d82bcf37e54d
# Dataset Card for `mmarco/zh/dev/v1.1` The `mmarco/zh/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/v1.1). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) - For `qrels`, use [`irds/mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_dev_v1.1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_dev_v1.1
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "source_datasets:irds/mmarco_zh_dev", "region:us" ]
2023-01-05T03:31:16+00:00
{"source_datasets": ["irds/mmarco_zh", "irds/mmarco_zh_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/v1.1`", "viewer": false}
2023-01-05T03:31:22+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_zh #source_datasets-irds/mmarco_zh_dev #region-us
# Dataset Card for 'mmarco/zh/dev/v1.1' The 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - For 'docs', use 'irds/mmarco_zh' - For 'qrels', use 'irds/mmarco_zh_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/zh/dev/v1.1'\n\nThe 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_zh'\n - For 'qrels', use 'irds/mmarco_zh_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #source_datasets-irds/mmarco_zh_dev #region-us \n", "# Dataset Card for 'mmarco/zh/dev/v1.1'\n\nThe 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_zh'\n - For 'qrels', use 'irds/mmarco_zh_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9baf31ce58f4720ea71c70479f5dc2a6ff90942a
# Dataset Card for `mmarco/zh/train` The `mmarco/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_zh_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_zh_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_zh_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_zh_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_zh", "region:us" ]
2023-01-05T03:31:28+00:00
{"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/train`", "viewer": false}
2023-01-05T03:31:33+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
# Dataset Card for 'mmarco/zh/train' The 'mmarco/zh/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_zh' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/zh/train'\n\nThe 'mmarco/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n", "# Dataset Card for 'mmarco/zh/train'\n\nThe 'mmarco/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_zh'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
2b33c9015daa0a100a121e5d364109bc7971b424
# Dataset Card for `mr-tydi/ar` The `mr-tydi/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=2,106,586 - `queries` (i.e., topics); count=16,595 - `qrels`: (relevance assessments); count=16,749 This dataset is used by: [`mr-tydi_ar_dev`](https://huggingface.co/datasets/irds/mr-tydi_ar_dev), [`mr-tydi_ar_test`](https://huggingface.co/datasets/irds/mr-tydi_ar_test), [`mr-tydi_ar_train`](https://huggingface.co/datasets/irds/mr-tydi_ar_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ar', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ar', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:31:39+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar`", "viewer": false}
2023-01-05T03:31:44+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/ar' The 'mr-tydi/ar' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=2,106,586 - 'queries' (i.e., topics); count=16,595 - 'qrels': (relevance assessments); count=16,749 This dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ar'\n\nThe 'mr-tydi/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,106,586\n - 'queries' (i.e., topics); count=16,595\n - 'qrels': (relevance assessments); count=16,749\n\n\nThis dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/ar'\n\nThe 'mr-tydi/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,106,586\n - 'queries' (i.e., topics); count=16,595\n - 'qrels': (relevance assessments); count=16,749\n\n\nThis dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
116977c3b67189c26496ae6c113f160f8c012a89
# Dataset Card for `mr-tydi/ar/dev` The `mr-tydi/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/dev). # Data This dataset provides: - `queries` (i.e., topics); count=3,115 - `qrels`: (relevance assessments); count=3,115 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:31:50+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/dev`", "viewer": false}
2023-01-05T03:31:55+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
# Dataset Card for 'mr-tydi/ar/dev' The 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,115 - 'qrels': (relevance assessments); count=3,115 - For 'docs', use 'irds/mr-tydi_ar' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ar/dev'\n\nThe 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,115\n - 'qrels': (relevance assessments); count=3,115\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n", "# Dataset Card for 'mr-tydi/ar/dev'\n\nThe 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,115\n - 'qrels': (relevance assessments); count=3,115\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
ea56f4317930f205647148b0b2c582a74764ea4f
# Dataset Card for `mr-tydi/ar/test` The `mr-tydi/ar/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/test). # Data This dataset provides: - `queries` (i.e., topics); count=1,081 - `qrels`: (relevance assessments); count=1,257 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:32:01+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/test`", "viewer": false}
2023-01-05T03:32:07+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
# Dataset Card for 'mr-tydi/ar/test' The 'mr-tydi/ar/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,081 - 'qrels': (relevance assessments); count=1,257 - For 'docs', use 'irds/mr-tydi_ar' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ar/test'\n\nThe 'mr-tydi/ar/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,081\n - 'qrels': (relevance assessments); count=1,257\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n", "# Dataset Card for 'mr-tydi/ar/test'\n\nThe 'mr-tydi/ar/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,081\n - 'qrels': (relevance assessments); count=1,257\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
82af0d4efac40a0c34be26552f1139519702e64a
# Dataset Card for `mr-tydi/ar/train` The `mr-tydi/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/train). # Data This dataset provides: - `queries` (i.e., topics); count=12,377 - `qrels`: (relevance assessments); count=12,377 - For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ar_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ar_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ar_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ar", "region:us" ]
2023-01-05T03:32:12+00:00
{"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/train`", "viewer": false}
2023-01-05T03:32:18+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
# Dataset Card for 'mr-tydi/ar/train' The 'mr-tydi/ar/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=12,377 - 'qrels': (relevance assessments); count=12,377 - For 'docs', use 'irds/mr-tydi_ar' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ar/train'\n\nThe 'mr-tydi/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=12,377\n - 'qrels': (relevance assessments); count=12,377\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n", "# Dataset Card for 'mr-tydi/ar/train'\n\nThe 'mr-tydi/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=12,377\n - 'qrels': (relevance assessments); count=12,377\n\n - For 'docs', use 'irds/mr-tydi_ar'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
3d05169ef6d1fa01da83b6f5b80aa3d79dcb5792
# Dataset Card for `mr-tydi/bn` The `mr-tydi/bn` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=304,059 - `queries` (i.e., topics); count=2,264 - `qrels`: (relevance assessments); count=2,292 This dataset is used by: [`mr-tydi_bn_dev`](https://huggingface.co/datasets/irds/mr-tydi_bn_dev), [`mr-tydi_bn_test`](https://huggingface.co/datasets/irds/mr-tydi_bn_test), [`mr-tydi_bn_train`](https://huggingface.co/datasets/irds/mr-tydi_bn_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_bn', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_bn', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:32:23+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn`", "viewer": false}
2023-01-05T03:32:29+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/bn' The 'mr-tydi/bn' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=304,059 - 'queries' (i.e., topics); count=2,264 - 'qrels': (relevance assessments); count=2,292 This dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/bn'\n\nThe 'mr-tydi/bn' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=304,059\n - 'queries' (i.e., topics); count=2,264\n - 'qrels': (relevance assessments); count=2,292\n\n\nThis dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/bn'\n\nThe 'mr-tydi/bn' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=304,059\n - 'queries' (i.e., topics); count=2,264\n - 'qrels': (relevance assessments); count=2,292\n\n\nThis dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8c20e0907ac51fde8f7ba8de23137696c4406352
# Dataset Card for `mr-tydi/bn/dev` The `mr-tydi/bn/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/dev). # Data This dataset provides: - `queries` (i.e., topics); count=440 - `qrels`: (relevance assessments); count=443 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:34+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/dev`", "viewer": false}
2023-01-05T03:32:40+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
# Dataset Card for 'mr-tydi/bn/dev' The 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=440 - 'qrels': (relevance assessments); count=443 - For 'docs', use 'irds/mr-tydi_bn' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/bn/dev'\n\nThe 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=443\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n", "# Dataset Card for 'mr-tydi/bn/dev'\n\nThe 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=443\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
ef8865b143d065f164cee924e1b24fe612a32daa
# Dataset Card for `mr-tydi/bn/test` The `mr-tydi/bn/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/test). # Data This dataset provides: - `queries` (i.e., topics); count=111 - `qrels`: (relevance assessments); count=130 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:45+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/test`", "viewer": false}
2023-01-05T03:32:51+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
# Dataset Card for 'mr-tydi/bn/test' The 'mr-tydi/bn/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=111 - 'qrels': (relevance assessments); count=130 - For 'docs', use 'irds/mr-tydi_bn' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/bn/test'\n\nThe 'mr-tydi/bn/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=111\n - 'qrels': (relevance assessments); count=130\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n", "# Dataset Card for 'mr-tydi/bn/test'\n\nThe 'mr-tydi/bn/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=111\n - 'qrels': (relevance assessments); count=130\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
215a725e6ed16c8f82cfdbe4d3e93338517f60cb
# Dataset Card for `mr-tydi/bn/train` The `mr-tydi/bn/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/train). # Data This dataset provides: - `queries` (i.e., topics); count=1,713 - `qrels`: (relevance assessments); count=1,719 - For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_bn_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_bn_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_bn_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_bn", "region:us" ]
2023-01-05T03:32:56+00:00
{"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/train`", "viewer": false}
2023-01-05T03:33:02+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
# Dataset Card for 'mr-tydi/bn/train' The 'mr-tydi/bn/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,713 - 'qrels': (relevance assessments); count=1,719 - For 'docs', use 'irds/mr-tydi_bn' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/bn/train'\n\nThe 'mr-tydi/bn/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,713\n - 'qrels': (relevance assessments); count=1,719\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n", "# Dataset Card for 'mr-tydi/bn/train'\n\nThe 'mr-tydi/bn/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,713\n - 'qrels': (relevance assessments); count=1,719\n\n - For 'docs', use 'irds/mr-tydi_bn'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e97158d8f7045f844dcfcc9a623ed080400e190c
# Dataset Card for `mr-tydi/en` The `mr-tydi/en` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=32,907,100 - `queries` (i.e., topics); count=5,194 - `qrels`: (relevance assessments); count=5,360 This dataset is used by: [`mr-tydi_en_dev`](https://huggingface.co/datasets/irds/mr-tydi_en_dev), [`mr-tydi_en_test`](https://huggingface.co/datasets/irds/mr-tydi_en_test), [`mr-tydi_en_train`](https://huggingface.co/datasets/irds/mr-tydi_en_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_en', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_en', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:33:08+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en`", "viewer": false}
2023-01-05T03:33:13+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/en' The 'mr-tydi/en' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=32,907,100 - 'queries' (i.e., topics); count=5,194 - 'qrels': (relevance assessments); count=5,360 This dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/en'\n\nThe 'mr-tydi/en' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=32,907,100\n - 'queries' (i.e., topics); count=5,194\n - 'qrels': (relevance assessments); count=5,360\n\n\nThis dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/en'\n\nThe 'mr-tydi/en' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=32,907,100\n - 'queries' (i.e., topics); count=5,194\n - 'qrels': (relevance assessments); count=5,360\n\n\nThis dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7810f17d9eae686e0a3777bebe55454484f4f579
# Dataset Card for `mr-tydi/en/dev` The `mr-tydi/en/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/dev). # Data This dataset provides: - `queries` (i.e., topics); count=878 - `qrels`: (relevance assessments); count=878 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:19+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/dev`", "viewer": false}
2023-01-05T03:33:24+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
# Dataset Card for 'mr-tydi/en/dev' The 'mr-tydi/en/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=878 - 'qrels': (relevance assessments); count=878 - For 'docs', use 'irds/mr-tydi_en' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/en/dev'\n\nThe 'mr-tydi/en/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=878\n - 'qrels': (relevance assessments); count=878\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n", "# Dataset Card for 'mr-tydi/en/dev'\n\nThe 'mr-tydi/en/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=878\n - 'qrels': (relevance assessments); count=878\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0c580e618d980b6d995940ee0d4d437531fd5fc7
# Dataset Card for `mr-tydi/en/test` The `mr-tydi/en/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/test). # Data This dataset provides: - `queries` (i.e., topics); count=744 - `qrels`: (relevance assessments); count=935 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:30+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/test`", "viewer": false}
2023-01-05T03:33:36+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
# Dataset Card for 'mr-tydi/en/test' The 'mr-tydi/en/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=744 - 'qrels': (relevance assessments); count=935 - For 'docs', use 'irds/mr-tydi_en' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/en/test'\n\nThe 'mr-tydi/en/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=744\n - 'qrels': (relevance assessments); count=935\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n", "# Dataset Card for 'mr-tydi/en/test'\n\nThe 'mr-tydi/en/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=744\n - 'qrels': (relevance assessments); count=935\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e7adc0010e9a25265ff0a34dbe4aa949601f35db
# Dataset Card for `mr-tydi/en/train` The `mr-tydi/en/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/train). # Data This dataset provides: - `queries` (i.e., topics); count=3,547 - `qrels`: (relevance assessments); count=3,547 - For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_en_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_en_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_en_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_en", "region:us" ]
2023-01-05T03:33:41+00:00
{"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/train`", "viewer": false}
2023-01-05T03:33:47+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
# Dataset Card for 'mr-tydi/en/train' The 'mr-tydi/en/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,547 - 'qrels': (relevance assessments); count=3,547 - For 'docs', use 'irds/mr-tydi_en' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/en/train'\n\nThe 'mr-tydi/en/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,547\n - 'qrels': (relevance assessments); count=3,547\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n", "# Dataset Card for 'mr-tydi/en/train'\n\nThe 'mr-tydi/en/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,547\n - 'qrels': (relevance assessments); count=3,547\n\n - For 'docs', use 'irds/mr-tydi_en'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6fd3f05fad94fa1f76c8b200bf713b18e313ec2b
# Dataset Card for `mr-tydi/fi` The `mr-tydi/fi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,908,757 - `queries` (i.e., topics); count=9,572 - `qrels`: (relevance assessments); count=9,750 This dataset is used by: [`mr-tydi_fi_dev`](https://huggingface.co/datasets/irds/mr-tydi_fi_dev), [`mr-tydi_fi_test`](https://huggingface.co/datasets/irds/mr-tydi_fi_test), [`mr-tydi_fi_train`](https://huggingface.co/datasets/irds/mr-tydi_fi_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_fi', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_fi', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:33:52+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi`", "viewer": false}
2023-01-05T03:33:58+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/fi' The 'mr-tydi/fi' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,908,757 - 'queries' (i.e., topics); count=9,572 - 'qrels': (relevance assessments); count=9,750 This dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/fi'\n\nThe 'mr-tydi/fi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,908,757\n - 'queries' (i.e., topics); count=9,572\n - 'qrels': (relevance assessments); count=9,750\n\n\nThis dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/fi'\n\nThe 'mr-tydi/fi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,908,757\n - 'queries' (i.e., topics); count=9,572\n - 'qrels': (relevance assessments); count=9,750\n\n\nThis dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
27aca1999a1a6338fd80316ca76567e21ea1b2ed
# Dataset Card for `mr-tydi/fi/dev` The `mr-tydi/fi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/dev). # Data This dataset provides: - `queries` (i.e., topics); count=1,738 - `qrels`: (relevance assessments); count=1,738 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:03+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/dev`", "viewer": false}
2023-01-05T03:34:09+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
# Dataset Card for 'mr-tydi/fi/dev' The 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,738 - 'qrels': (relevance assessments); count=1,738 - For 'docs', use 'irds/mr-tydi_fi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/fi/dev'\n\nThe 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,738\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n", "# Dataset Card for 'mr-tydi/fi/dev'\n\nThe 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,738\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d7a1fb0eb29da74a2131cf6fb729be32ad6fd13a
# Dataset Card for `mr-tydi/fi/test` The `mr-tydi/fi/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/test). # Data This dataset provides: - `queries` (i.e., topics); count=1,254 - `qrels`: (relevance assessments); count=1,451 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:15+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/test`", "viewer": false}
2023-01-05T03:34:20+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
# Dataset Card for 'mr-tydi/fi/test' The 'mr-tydi/fi/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,254 - 'qrels': (relevance assessments); count=1,451 - For 'docs', use 'irds/mr-tydi_fi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/fi/test'\n\nThe 'mr-tydi/fi/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,254\n - 'qrels': (relevance assessments); count=1,451\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n", "# Dataset Card for 'mr-tydi/fi/test'\n\nThe 'mr-tydi/fi/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,254\n - 'qrels': (relevance assessments); count=1,451\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
da4363cbc02ab541845b6fe1765a416f1947e063
# Dataset Card for `mr-tydi/fi/train` The `mr-tydi/fi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/train). # Data This dataset provides: - `queries` (i.e., topics); count=6,561 - `qrels`: (relevance assessments); count=6,561 - For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_fi_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_fi_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_fi_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_fi", "region:us" ]
2023-01-05T03:34:26+00:00
{"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/train`", "viewer": false}
2023-01-05T03:34:31+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
# Dataset Card for 'mr-tydi/fi/train' The 'mr-tydi/fi/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=6,561 - 'qrels': (relevance assessments); count=6,561 - For 'docs', use 'irds/mr-tydi_fi' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/fi/train'\n\nThe 'mr-tydi/fi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,561\n - 'qrels': (relevance assessments); count=6,561\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n", "# Dataset Card for 'mr-tydi/fi/train'\n\nThe 'mr-tydi/fi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,561\n - 'qrels': (relevance assessments); count=6,561\n\n - For 'docs', use 'irds/mr-tydi_fi'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
52fa3f74fba6e8df5ed50368faadf723b826b77e
# Dataset Card for `mr-tydi/id` The `mr-tydi/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,469,399 - `queries` (i.e., topics); count=6,977 - `qrels`: (relevance assessments); count=7,087 This dataset is used by: [`mr-tydi_id_dev`](https://huggingface.co/datasets/irds/mr-tydi_id_dev), [`mr-tydi_id_test`](https://huggingface.co/datasets/irds/mr-tydi_id_test), [`mr-tydi_id_train`](https://huggingface.co/datasets/irds/mr-tydi_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_id', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:34:37+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id`", "viewer": false}
2023-01-05T03:34:43+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/id' The 'mr-tydi/id' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,469,399 - 'queries' (i.e., topics); count=6,977 - 'qrels': (relevance assessments); count=7,087 This dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/id'\n\nThe 'mr-tydi/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,469,399\n - 'queries' (i.e., topics); count=6,977\n - 'qrels': (relevance assessments); count=7,087\n\n\nThis dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/id'\n\nThe 'mr-tydi/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,469,399\n - 'queries' (i.e., topics); count=6,977\n - 'qrels': (relevance assessments); count=7,087\n\n\nThis dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0bc171fb2cf461c7bdc5cc09c206d5abdd319605
# Dataset Card for `mr-tydi/id/dev` The `mr-tydi/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=1,224 - `qrels`: (relevance assessments); count=1,224 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:34:48+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/dev`", "viewer": false}
2023-01-05T03:34:54+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
# Dataset Card for 'mr-tydi/id/dev' The 'mr-tydi/id/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,224 - 'qrels': (relevance assessments); count=1,224 - For 'docs', use 'irds/mr-tydi_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/id/dev'\n\nThe 'mr-tydi/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,224\n - 'qrels': (relevance assessments); count=1,224\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n", "# Dataset Card for 'mr-tydi/id/dev'\n\nThe 'mr-tydi/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,224\n - 'qrels': (relevance assessments); count=1,224\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6742bbe73521c9c48ddc8b9d20759a5adfe6f215
# Dataset Card for `mr-tydi/id/test` The `mr-tydi/id/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/test). # Data This dataset provides: - `queries` (i.e., topics); count=829 - `qrels`: (relevance assessments); count=961 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:34:59+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/test`", "viewer": false}
2023-01-05T03:35:05+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
# Dataset Card for 'mr-tydi/id/test' The 'mr-tydi/id/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=829 - 'qrels': (relevance assessments); count=961 - For 'docs', use 'irds/mr-tydi_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/id/test'\n\nThe 'mr-tydi/id/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=829\n - 'qrels': (relevance assessments); count=961\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n", "# Dataset Card for 'mr-tydi/id/test'\n\nThe 'mr-tydi/id/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=829\n - 'qrels': (relevance assessments); count=961\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a77f581e55790621d489d5efe98e850e12ce6e39
# Dataset Card for `mr-tydi/id/train` The `mr-tydi/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=4,902 - `qrels`: (relevance assessments); count=4,902 - For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_id", "region:us" ]
2023-01-05T03:35:10+00:00
{"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/train`", "viewer": false}
2023-01-05T03:35:16+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
# Dataset Card for 'mr-tydi/id/train' The 'mr-tydi/id/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=4,902 - 'qrels': (relevance assessments); count=4,902 - For 'docs', use 'irds/mr-tydi_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/id/train'\n\nThe 'mr-tydi/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=4,902\n - 'qrels': (relevance assessments); count=4,902\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n", "# Dataset Card for 'mr-tydi/id/train'\n\nThe 'mr-tydi/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=4,902\n - 'qrels': (relevance assessments); count=4,902\n\n - For 'docs', use 'irds/mr-tydi_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fb0ed00b09554d1aac88efb7ee4274bbc4bd88e3
# Dataset Card for `mr-tydi/ja` The `mr-tydi/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=7,000,027 - `queries` (i.e., topics); count=5,353 - `qrels`: (relevance assessments); count=5,548 This dataset is used by: [`mr-tydi_ja_dev`](https://huggingface.co/datasets/irds/mr-tydi_ja_dev), [`mr-tydi_ja_test`](https://huggingface.co/datasets/irds/mr-tydi_ja_test), [`mr-tydi_ja_train`](https://huggingface.co/datasets/irds/mr-tydi_ja_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ja', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ja', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:35:22+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja`", "viewer": false}
2023-01-05T03:35:27+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/ja' The 'mr-tydi/ja' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=7,000,027 - 'queries' (i.e., topics); count=5,353 - 'qrels': (relevance assessments); count=5,548 This dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ja'\n\nThe 'mr-tydi/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=7,000,027\n - 'queries' (i.e., topics); count=5,353\n - 'qrels': (relevance assessments); count=5,548\n\n\nThis dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/ja'\n\nThe 'mr-tydi/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=7,000,027\n - 'queries' (i.e., topics); count=5,353\n - 'qrels': (relevance assessments); count=5,548\n\n\nThis dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
bb8500a049bedc507eae40fa893bc6acdb97e1d2
# Dataset Card for `mr-tydi/ja/dev` The `mr-tydi/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/dev). # Data This dataset provides: - `queries` (i.e., topics); count=928 - `qrels`: (relevance assessments); count=928 - For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ja_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ja", "region:us" ]
2023-01-05T03:35:33+00:00
{"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/dev`", "viewer": false}
2023-01-05T03:35:38+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
# Dataset Card for 'mr-tydi/ja/dev' The 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=928 - 'qrels': (relevance assessments); count=928 - For 'docs', use 'irds/mr-tydi_ja' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ja/dev'\n\nThe 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=928\n - 'qrels': (relevance assessments); count=928\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n", "# Dataset Card for 'mr-tydi/ja/dev'\n\nThe 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=928\n - 'qrels': (relevance assessments); count=928\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
81d197db47cb6d78960d14c6f731a1c9be52aedf
# Dataset Card for `mr-tydi/ja/test` The `mr-tydi/ja/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/test). # Data This dataset provides: - `queries` (i.e., topics); count=720 - `qrels`: (relevance assessments); count=923 - For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ja_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ja", "region:us" ]
2023-01-05T03:35:44+00:00
{"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/test`", "viewer": false}
2023-01-05T03:35:50+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
# Dataset Card for 'mr-tydi/ja/test' The 'mr-tydi/ja/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=720 - 'qrels': (relevance assessments); count=923 - For 'docs', use 'irds/mr-tydi_ja' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ja/test'\n\nThe 'mr-tydi/ja/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=720\n - 'qrels': (relevance assessments); count=923\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n", "# Dataset Card for 'mr-tydi/ja/test'\n\nThe 'mr-tydi/ja/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=720\n - 'qrels': (relevance assessments); count=923\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
87989a49e98945c2be5bc022392bc40a97d6311b
# Dataset Card for `mr-tydi/ja/train` The `mr-tydi/ja/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/train). # Data This dataset provides: - `queries` (i.e., topics); count=3,697 - `qrels`: (relevance assessments); count=3,697 - For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ja_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ja_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ja_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ja", "region:us" ]
2023-01-05T03:35:55+00:00
{"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/train`", "viewer": false}
2023-01-05T03:36:01+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
# Dataset Card for 'mr-tydi/ja/train' The 'mr-tydi/ja/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,697 - 'qrels': (relevance assessments); count=3,697 - For 'docs', use 'irds/mr-tydi_ja' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ja/train'\n\nThe 'mr-tydi/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,697\n - 'qrels': (relevance assessments); count=3,697\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n", "# Dataset Card for 'mr-tydi/ja/train'\n\nThe 'mr-tydi/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,697\n - 'qrels': (relevance assessments); count=3,697\n\n - For 'docs', use 'irds/mr-tydi_ja'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
19d49b07a7ca272e41bdf4a611d03afb80da86a4
# Dataset Card for `mr-tydi/ko` The `mr-tydi/ko` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,496,126 - `queries` (i.e., topics); count=2,019 - `qrels`: (relevance assessments); count=2,116 This dataset is used by: [`mr-tydi_ko_dev`](https://huggingface.co/datasets/irds/mr-tydi_ko_dev), [`mr-tydi_ko_test`](https://huggingface.co/datasets/irds/mr-tydi_ko_test), [`mr-tydi_ko_train`](https://huggingface.co/datasets/irds/mr-tydi_ko_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ko', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ko', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ko', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ko
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:36:06+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko`", "viewer": false}
2023-01-05T03:36:12+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/ko' The 'mr-tydi/ko' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,496,126 - 'queries' (i.e., topics); count=2,019 - 'qrels': (relevance assessments); count=2,116 This dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ko'\n\nThe 'mr-tydi/ko' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,496,126\n - 'queries' (i.e., topics); count=2,019\n - 'qrels': (relevance assessments); count=2,116\n\n\nThis dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/ko'\n\nThe 'mr-tydi/ko' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,496,126\n - 'queries' (i.e., topics); count=2,019\n - 'qrels': (relevance assessments); count=2,116\n\n\nThis dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
50fbf3dc790d69f8223a40f7b507d1c9c83560d1
# Dataset Card for `mr-tydi/ko/dev` The `mr-tydi/ko/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/dev). # Data This dataset provides: - `queries` (i.e., topics); count=303 - `qrels`: (relevance assessments); count=307 - For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ko_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ko_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ko_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ko", "region:us" ]
2023-01-05T03:36:17+00:00
{"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/dev`", "viewer": false}
2023-01-05T03:36:23+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
# Dataset Card for 'mr-tydi/ko/dev' The 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=303 - 'qrels': (relevance assessments); count=307 - For 'docs', use 'irds/mr-tydi_ko' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ko/dev'\n\nThe 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=303\n - 'qrels': (relevance assessments); count=307\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n", "# Dataset Card for 'mr-tydi/ko/dev'\n\nThe 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=303\n - 'qrels': (relevance assessments); count=307\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e4ad9adfe178042d250dbd9e7a41933aad34c331
# Dataset Card for `mr-tydi/ko/test` The `mr-tydi/ko/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/test). # Data This dataset provides: - `queries` (i.e., topics); count=421 - `qrels`: (relevance assessments); count=492 - For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ko_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ko_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ko_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ko", "region:us" ]
2023-01-05T03:36:28+00:00
{"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/test`", "viewer": false}
2023-01-05T03:36:34+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
# Dataset Card for 'mr-tydi/ko/test' The 'mr-tydi/ko/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=421 - 'qrels': (relevance assessments); count=492 - For 'docs', use 'irds/mr-tydi_ko' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ko/test'\n\nThe 'mr-tydi/ko/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=421\n - 'qrels': (relevance assessments); count=492\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n", "# Dataset Card for 'mr-tydi/ko/test'\n\nThe 'mr-tydi/ko/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=421\n - 'qrels': (relevance assessments); count=492\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
b003a7ba3223a88f771eb72917da601b429f7793
# Dataset Card for `mr-tydi/ko/train` The `mr-tydi/ko/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/train). # Data This dataset provides: - `queries` (i.e., topics); count=1,295 - `qrels`: (relevance assessments); count=1,317 - For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ko_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ko_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ko_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ko", "region:us" ]
2023-01-05T03:36:40+00:00
{"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/train`", "viewer": false}
2023-01-05T03:36:45+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
# Dataset Card for 'mr-tydi/ko/train' The 'mr-tydi/ko/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,295 - 'qrels': (relevance assessments); count=1,317 - For 'docs', use 'irds/mr-tydi_ko' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ko/train'\n\nThe 'mr-tydi/ko/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,295\n - 'qrels': (relevance assessments); count=1,317\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n", "# Dataset Card for 'mr-tydi/ko/train'\n\nThe 'mr-tydi/ko/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,295\n - 'qrels': (relevance assessments); count=1,317\n\n - For 'docs', use 'irds/mr-tydi_ko'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
921f7bc8537c94f8922de61012d2c2a1b6ef0210
# Dataset Card for `mr-tydi/ru` The `mr-tydi/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=9,597,504 - `queries` (i.e., topics); count=7,763 - `qrels`: (relevance assessments); count=7,909 This dataset is used by: [`mr-tydi_ru_dev`](https://huggingface.co/datasets/irds/mr-tydi_ru_dev), [`mr-tydi_ru_test`](https://huggingface.co/datasets/irds/mr-tydi_ru_test), [`mr-tydi_ru_train`](https://huggingface.co/datasets/irds/mr-tydi_ru_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_ru', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_ru', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ru', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ru
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:36:51+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru`", "viewer": false}
2023-01-05T03:36:56+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/ru' The 'mr-tydi/ru' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=9,597,504 - 'queries' (i.e., topics); count=7,763 - 'qrels': (relevance assessments); count=7,909 This dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ru'\n\nThe 'mr-tydi/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=9,597,504\n - 'queries' (i.e., topics); count=7,763\n - 'qrels': (relevance assessments); count=7,909\n\n\nThis dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/ru'\n\nThe 'mr-tydi/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=9,597,504\n - 'queries' (i.e., topics); count=7,763\n - 'qrels': (relevance assessments); count=7,909\n\n\nThis dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a8ee1a892b77782a131f506ff02d1fc77e8729e4
# Dataset Card for `mr-tydi/ru/dev` The `mr-tydi/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/dev). # Data This dataset provides: - `queries` (i.e., topics); count=1,375 - `qrels`: (relevance assessments); count=1,375 - For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ru_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ru_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ru_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ru", "region:us" ]
2023-01-05T03:37:02+00:00
{"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/dev`", "viewer": false}
2023-01-05T03:37:08+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
# Dataset Card for 'mr-tydi/ru/dev' The 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,375 - 'qrels': (relevance assessments); count=1,375 - For 'docs', use 'irds/mr-tydi_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ru/dev'\n\nThe 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,375\n - 'qrels': (relevance assessments); count=1,375\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n", "# Dataset Card for 'mr-tydi/ru/dev'\n\nThe 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,375\n - 'qrels': (relevance assessments); count=1,375\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
dc72ad423ea653df9a152901e94b70459b867200
# Dataset Card for `mr-tydi/ru/test` The `mr-tydi/ru/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/test). # Data This dataset provides: - `queries` (i.e., topics); count=995 - `qrels`: (relevance assessments); count=1,168 - For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ru_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ru_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ru_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ru", "region:us" ]
2023-01-05T03:37:13+00:00
{"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/test`", "viewer": false}
2023-01-05T03:37:19+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
# Dataset Card for 'mr-tydi/ru/test' The 'mr-tydi/ru/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=995 - 'qrels': (relevance assessments); count=1,168 - For 'docs', use 'irds/mr-tydi_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ru/test'\n\nThe 'mr-tydi/ru/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=995\n - 'qrels': (relevance assessments); count=1,168\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n", "# Dataset Card for 'mr-tydi/ru/test'\n\nThe 'mr-tydi/ru/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=995\n - 'qrels': (relevance assessments); count=1,168\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fba320652c0956c9cc9ae9c329a595f4edf5907e
# Dataset Card for `mr-tydi/ru/train` The `mr-tydi/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/train). # Data This dataset provides: - `queries` (i.e., topics); count=5,366 - `qrels`: (relevance assessments); count=5,366 - For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_ru_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_ru_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_ru_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_ru", "region:us" ]
2023-01-05T03:37:24+00:00
{"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/train`", "viewer": false}
2023-01-05T03:37:30+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
# Dataset Card for 'mr-tydi/ru/train' The 'mr-tydi/ru/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=5,366 - 'qrels': (relevance assessments); count=5,366 - For 'docs', use 'irds/mr-tydi_ru' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/ru/train'\n\nThe 'mr-tydi/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=5,366\n - 'qrels': (relevance assessments); count=5,366\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n", "# Dataset Card for 'mr-tydi/ru/train'\n\nThe 'mr-tydi/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=5,366\n - 'qrels': (relevance assessments); count=5,366\n\n - For 'docs', use 'irds/mr-tydi_ru'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e2b0c8a8bd1c0ab385155db752a5a4b617c0acd3
# Dataset Card for `mr-tydi/sw` The `mr-tydi/sw` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=136,689 - `queries` (i.e., topics); count=3,271 - `qrels`: (relevance assessments); count=3,767 This dataset is used by: [`mr-tydi_sw_dev`](https://huggingface.co/datasets/irds/mr-tydi_sw_dev), [`mr-tydi_sw_test`](https://huggingface.co/datasets/irds/mr-tydi_sw_test), [`mr-tydi_sw_train`](https://huggingface.co/datasets/irds/mr-tydi_sw_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_sw', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_sw', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_sw', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_sw
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:37:35+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw`", "viewer": false}
2023-01-05T03:37:41+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/sw' The 'mr-tydi/sw' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=136,689 - 'queries' (i.e., topics); count=3,271 - 'qrels': (relevance assessments); count=3,767 This dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/sw'\n\nThe 'mr-tydi/sw' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=136,689\n - 'queries' (i.e., topics); count=3,271\n - 'qrels': (relevance assessments); count=3,767\n\n\nThis dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/sw'\n\nThe 'mr-tydi/sw' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=136,689\n - 'queries' (i.e., topics); count=3,271\n - 'qrels': (relevance assessments); count=3,767\n\n\nThis dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7d5afad39aae315f9b7791f43125af82bd71d691
# Dataset Card for `mr-tydi/sw/dev` The `mr-tydi/sw/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/dev). # Data This dataset provides: - `queries` (i.e., topics); count=526 - `qrels`: (relevance assessments); count=623 - For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_sw_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_sw_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_sw_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_sw", "region:us" ]
2023-01-05T03:37:46+00:00
{"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/dev`", "viewer": false}
2023-01-05T03:37:52+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
# Dataset Card for 'mr-tydi/sw/dev' The 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=526 - 'qrels': (relevance assessments); count=623 - For 'docs', use 'irds/mr-tydi_sw' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/sw/dev'\n\nThe 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=526\n - 'qrels': (relevance assessments); count=623\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n", "# Dataset Card for 'mr-tydi/sw/dev'\n\nThe 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=526\n - 'qrels': (relevance assessments); count=623\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
516c5036fd3342954acbb1d68a7d4d01372a5bbf
# Dataset Card for `mr-tydi/sw/test` The `mr-tydi/sw/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/test). # Data This dataset provides: - `queries` (i.e., topics); count=670 - `qrels`: (relevance assessments); count=743 - For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_sw_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_sw_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_sw_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_sw", "region:us" ]
2023-01-05T03:37:57+00:00
{"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/test`", "viewer": false}
2023-01-05T03:38:03+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
# Dataset Card for 'mr-tydi/sw/test' The 'mr-tydi/sw/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=670 - 'qrels': (relevance assessments); count=743 - For 'docs', use 'irds/mr-tydi_sw' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/sw/test'\n\nThe 'mr-tydi/sw/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=670\n - 'qrels': (relevance assessments); count=743\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n", "# Dataset Card for 'mr-tydi/sw/test'\n\nThe 'mr-tydi/sw/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=670\n - 'qrels': (relevance assessments); count=743\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
46fff70c898d5f126547e7441e476b0e85261fca
# Dataset Card for `mr-tydi/sw/train` The `mr-tydi/sw/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/train). # Data This dataset provides: - `queries` (i.e., topics); count=2,072 - `qrels`: (relevance assessments); count=2,401 - For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_sw_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_sw_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_sw_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_sw", "region:us" ]
2023-01-05T03:38:09+00:00
{"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/train`", "viewer": false}
2023-01-05T03:38:14+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
# Dataset Card for 'mr-tydi/sw/train' The 'mr-tydi/sw/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,072 - 'qrels': (relevance assessments); count=2,401 - For 'docs', use 'irds/mr-tydi_sw' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/sw/train'\n\nThe 'mr-tydi/sw/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,072\n - 'qrels': (relevance assessments); count=2,401\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n", "# Dataset Card for 'mr-tydi/sw/train'\n\nThe 'mr-tydi/sw/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,072\n - 'qrels': (relevance assessments); count=2,401\n\n - For 'docs', use 'irds/mr-tydi_sw'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
639e860df1f9b34602230f4318d0fbf898bd960c
# Dataset Card for `mr-tydi/te` The `mr-tydi/te` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=548,224 - `queries` (i.e., topics); count=5,517 - `qrels`: (relevance assessments); count=5,540 This dataset is used by: [`mr-tydi_te_dev`](https://huggingface.co/datasets/irds/mr-tydi_te_dev), [`mr-tydi_te_test`](https://huggingface.co/datasets/irds/mr-tydi_te_test), [`mr-tydi_te_train`](https://huggingface.co/datasets/irds/mr-tydi_te_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_te', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_te', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_te', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_te
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:38:20+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te`", "viewer": false}
2023-01-05T03:38:25+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/te' The 'mr-tydi/te' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=548,224 - 'queries' (i.e., topics); count=5,517 - 'qrels': (relevance assessments); count=5,540 This dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/te'\n\nThe 'mr-tydi/te' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=548,224\n - 'queries' (i.e., topics); count=5,517\n - 'qrels': (relevance assessments); count=5,540\n\n\nThis dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/te'\n\nThe 'mr-tydi/te' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=548,224\n - 'queries' (i.e., topics); count=5,517\n - 'qrels': (relevance assessments); count=5,540\n\n\nThis dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
968e3f3407be0e6883971ff27778f4178c3fd370
# Dataset Card for `mr-tydi/te/dev` The `mr-tydi/te/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/dev). # Data This dataset provides: - `queries` (i.e., topics); count=983 - `qrels`: (relevance assessments); count=983 - For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_te_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_te_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_te_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_te", "region:us" ]
2023-01-05T03:38:31+00:00
{"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/dev`", "viewer": false}
2023-01-05T03:38:36+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
# Dataset Card for 'mr-tydi/te/dev' The 'mr-tydi/te/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=983 - 'qrels': (relevance assessments); count=983 - For 'docs', use 'irds/mr-tydi_te' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/te/dev'\n\nThe 'mr-tydi/te/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=983\n - 'qrels': (relevance assessments); count=983\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n", "# Dataset Card for 'mr-tydi/te/dev'\n\nThe 'mr-tydi/te/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=983\n - 'qrels': (relevance assessments); count=983\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
43fba1a998336cc7d576b25d65e6b89e4c482ba5
# Dataset Card for `mr-tydi/te/test` The `mr-tydi/te/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/test). # Data This dataset provides: - `queries` (i.e., topics); count=646 - `qrels`: (relevance assessments); count=677 - For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_te_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_te_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_te_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_te", "region:us" ]
2023-01-05T03:38:42+00:00
{"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/test`", "viewer": false}
2023-01-05T03:38:48+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
# Dataset Card for 'mr-tydi/te/test' The 'mr-tydi/te/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=646 - 'qrels': (relevance assessments); count=677 - For 'docs', use 'irds/mr-tydi_te' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/te/test'\n\nThe 'mr-tydi/te/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=646\n - 'qrels': (relevance assessments); count=677\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n", "# Dataset Card for 'mr-tydi/te/test'\n\nThe 'mr-tydi/te/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=646\n - 'qrels': (relevance assessments); count=677\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9c297c01a47429ac07ce6a478f064e4311109e0a
# Dataset Card for `mr-tydi/te/train` The `mr-tydi/te/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/train). # Data This dataset provides: - `queries` (i.e., topics); count=3,880 - `qrels`: (relevance assessments); count=3,880 - For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_te_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_te_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_te_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_te", "region:us" ]
2023-01-05T03:38:53+00:00
{"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/train`", "viewer": false}
2023-01-05T03:38:59+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
# Dataset Card for 'mr-tydi/te/train' The 'mr-tydi/te/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,880 - 'qrels': (relevance assessments); count=3,880 - For 'docs', use 'irds/mr-tydi_te' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/te/train'\n\nThe 'mr-tydi/te/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,880\n - 'qrels': (relevance assessments); count=3,880\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n", "# Dataset Card for 'mr-tydi/te/train'\n\nThe 'mr-tydi/te/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,880\n - 'qrels': (relevance assessments); count=3,880\n\n - For 'docs', use 'irds/mr-tydi_te'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
95331d87066c62a0c61a298d0e3d66c113bd3967
# Dataset Card for `mr-tydi/th` The `mr-tydi/th` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=568,855 - `queries` (i.e., topics); count=5,322 - `qrels`: (relevance assessments); count=5,545 This dataset is used by: [`mr-tydi_th_dev`](https://huggingface.co/datasets/irds/mr-tydi_th_dev), [`mr-tydi_th_test`](https://huggingface.co/datasets/irds/mr-tydi_th_test), [`mr-tydi_th_train`](https://huggingface.co/datasets/irds/mr-tydi_th_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mr-tydi_th', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} queries = load_dataset('irds/mr-tydi_th', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_th', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_th
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:39:04+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th`", "viewer": false}
2023-01-05T03:39:10+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mr-tydi/th' The 'mr-tydi/th' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=568,855 - 'queries' (i.e., topics); count=5,322 - 'qrels': (relevance assessments); count=5,545 This dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/th'\n\nThe 'mr-tydi/th' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=568,855\n - 'queries' (i.e., topics); count=5,322\n - 'qrels': (relevance assessments); count=5,545\n\n\nThis dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mr-tydi/th'\n\nThe 'mr-tydi/th' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=568,855\n - 'queries' (i.e., topics); count=5,322\n - 'qrels': (relevance assessments); count=5,545\n\n\nThis dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
3b5294ae5f504da36b7db4a6c5aef560ef131d0e
# Dataset Card for `mr-tydi/th/dev` The `mr-tydi/th/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/dev). # Data This dataset provides: - `queries` (i.e., topics); count=807 - `qrels`: (relevance assessments); count=817 - For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_th_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_th_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_th_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_th", "region:us" ]
2023-01-05T03:39:15+00:00
{"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/dev`", "viewer": false}
2023-01-05T03:39:21+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
# Dataset Card for 'mr-tydi/th/dev' The 'mr-tydi/th/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=807 - 'qrels': (relevance assessments); count=817 - For 'docs', use 'irds/mr-tydi_th' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/th/dev'\n\nThe 'mr-tydi/th/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=807\n - 'qrels': (relevance assessments); count=817\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n", "# Dataset Card for 'mr-tydi/th/dev'\n\nThe 'mr-tydi/th/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=807\n - 'qrels': (relevance assessments); count=817\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
188293dbdf922e1eef8f4f9c16e72dc9c93f603f
# Dataset Card for `mr-tydi/th/test` The `mr-tydi/th/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/test). # Data This dataset provides: - `queries` (i.e., topics); count=1,190 - `qrels`: (relevance assessments); count=1,368 - For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_th_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_th_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_th_test
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_th", "region:us" ]
2023-01-05T03:39:26+00:00
{"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/test`", "viewer": false}
2023-01-05T03:39:32+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
# Dataset Card for 'mr-tydi/th/test' The 'mr-tydi/th/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,190 - 'qrels': (relevance assessments); count=1,368 - For 'docs', use 'irds/mr-tydi_th' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/th/test'\n\nThe 'mr-tydi/th/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,190\n - 'qrels': (relevance assessments); count=1,368\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n", "# Dataset Card for 'mr-tydi/th/test'\n\nThe 'mr-tydi/th/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,190\n - 'qrels': (relevance assessments); count=1,368\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7a1c0d528c5af261b3bf83d78d17162197b7f784
# Dataset Card for `mr-tydi/th/train` The `mr-tydi/th/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/train). # Data This dataset provides: - `queries` (i.e., topics); count=3,319 - `qrels`: (relevance assessments); count=3,360 - For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mr-tydi_th_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mr-tydi_th_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Zhang2021MrTyDi, title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, year={2021}, journal={arXiv:2108.08787}, } @article{Clark2020TyDiQa, title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}, year={2020}, journal={Transactions of the Association for Computational Linguistics} } ```
irds/mr-tydi_th_train
[ "task_categories:text-retrieval", "source_datasets:irds/mr-tydi_th", "region:us" ]
2023-01-05T03:39:37+00:00
{"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/train`", "viewer": false}
2023-01-05T03:39:43+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
# Dataset Card for 'mr-tydi/th/train' The 'mr-tydi/th/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,319 - 'qrels': (relevance assessments); count=3,360 - For 'docs', use 'irds/mr-tydi_th' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mr-tydi/th/train'\n\nThe 'mr-tydi/th/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,319\n - 'qrels': (relevance assessments); count=3,360\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n", "# Dataset Card for 'mr-tydi/th/train'\n\nThe 'mr-tydi/th/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,319\n - 'qrels': (relevance assessments); count=3,360\n\n - For 'docs', use 'irds/mr-tydi_th'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
956bce82788ff308635d06327bb0bd48cd56a3be
# Dataset Card for `msmarco-document` The `msmarco-document` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=3,213,835 This dataset is used by: [`msmarco-document_trec-dl-hard`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard), [`msmarco-document_trec-dl-hard_fold1`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold1), [`msmarco-document_trec-dl-hard_fold2`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold2), [`msmarco-document_trec-dl-hard_fold3`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold3), [`msmarco-document_trec-dl-hard_fold4`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold4), [`msmarco-document_trec-dl-hard_fold5`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold5) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/msmarco-document', 'docs') for record in docs: record # {'doc_id': ..., 'url': ..., 'title': ..., 'body': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:39:49+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document`", "viewer": false}
2023-01-05T03:39:55+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'msmarco-document' The 'msmarco-document' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=3,213,835 This dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document'\n\nThe 'msmarco-document' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=3,213,835\n\n\nThis dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'msmarco-document'\n\nThe 'msmarco-document' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=3,213,835\n\n\nThis dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
35ededfdecf541b9a9249f636035c6b302387e0c
# Dataset Card for `msmarco-document/trec-dl-hard` The `msmarco-document/trec-dl-hard` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=8,544 - For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-document_trec-dl-hard', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-document_trec-dl-hard', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document_trec-dl-hard
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-document", "region:us" ]
2023-01-05T03:40:00+00:00
{"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard`", "viewer": false}
2023-01-05T03:40:06+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
# Dataset Card for 'msmarco-document/trec-dl-hard' The 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=8,544 - For 'docs', use 'irds/msmarco-document' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document/trec-dl-hard'\n\nThe 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=8,544\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n", "# Dataset Card for 'msmarco-document/trec-dl-hard'\n\nThe 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=8,544\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
13ab0f3901a4a6e210e786a2edb7a5af8be22233
# Dataset Card for `msmarco-document/trec-dl-hard/fold1` The `msmarco-document/trec-dl-hard/fold1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold1). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,557 - For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold1', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document_trec-dl-hard_fold1
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-document", "region:us" ]
2023-01-05T03:40:11+00:00
{"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold1`", "viewer": false}
2023-01-05T03:40:17+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
# Dataset Card for 'msmarco-document/trec-dl-hard/fold1' The 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=1,557 - For 'docs', use 'irds/msmarco-document' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document/trec-dl-hard/fold1'\n\nThe 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,557\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n", "# Dataset Card for 'msmarco-document/trec-dl-hard/fold1'\n\nThe 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,557\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
b7a4726f6a41d14709243cf99043230d44a86480
# Dataset Card for `msmarco-document/trec-dl-hard/fold2` The `msmarco-document/trec-dl-hard/fold2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold2). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,345 - For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold2', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold2', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document_trec-dl-hard_fold2
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-document", "region:us" ]
2023-01-05T03:40:22+00:00
{"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold2`", "viewer": false}
2023-01-05T03:40:28+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
# Dataset Card for 'msmarco-document/trec-dl-hard/fold2' The 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=1,345 - For 'docs', use 'irds/msmarco-document' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document/trec-dl-hard/fold2'\n\nThe 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,345\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n", "# Dataset Card for 'msmarco-document/trec-dl-hard/fold2'\n\nThe 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,345\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
488b004ede7268c778980a695ff5b731ddb14e68
# Dataset Card for `msmarco-document/trec-dl-hard/fold3` The `msmarco-document/trec-dl-hard/fold3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold3). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=474 - For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold3', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold3', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document_trec-dl-hard_fold3
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-document", "region:us" ]
2023-01-05T03:40:33+00:00
{"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold3`", "viewer": false}
2023-01-05T03:40:39+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
# Dataset Card for 'msmarco-document/trec-dl-hard/fold3' The 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=474 - For 'docs', use 'irds/msmarco-document' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document/trec-dl-hard/fold3'\n\nThe 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=474\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n", "# Dataset Card for 'msmarco-document/trec-dl-hard/fold3'\n\nThe 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=474\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d4729675ebbbfd4ee7f2d129d2283a28726d2eda
# Dataset Card for `msmarco-document/trec-dl-hard/fold4` The `msmarco-document/trec-dl-hard/fold4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold4). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,054 - For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold4', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold4', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-document_trec-dl-hard_fold4
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-document", "region:us" ]
2023-01-05T03:40:45+00:00
{"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold4`", "viewer": false}
2023-01-05T03:40:50+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
# Dataset Card for 'msmarco-document/trec-dl-hard/fold4' The 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=1,054 - For 'docs', use 'irds/msmarco-document' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-document/trec-dl-hard/fold4'\n\nThe 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,054\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n", "# Dataset Card for 'msmarco-document/trec-dl-hard/fold4'\n\nThe 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,054\n\n - For 'docs', use 'irds/msmarco-document'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]