sha
stringlengths 40
40
| text
stringlengths 1
13.4M
| id
stringlengths 2
117
| tags
sequencelengths 1
7.91k
| created_at
stringlengths 25
25
| metadata
stringlengths 2
875k
| last_modified
stringlengths 25
25
| arxiv
sequencelengths 0
25
| languages
sequencelengths 0
7.91k
| tags_str
stringlengths 17
159k
| text_str
stringlengths 1
447k
| text_lists
sequencelengths 0
352
| processed_texts
sequencelengths 1
353
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
da1c91489c6eb056422972f1f5e8c07f022c25ea |
# Dataset Card for `mmarco/pt/dev/v1.1`
The `mmarco/pt/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev/v1.1).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt)
- For `qrels`, use [`irds/mmarco_pt_dev`](https://huggingface.co/datasets/irds/mmarco_pt_dev)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_pt_dev_v1.1', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_pt_dev_v1.1 | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_pt",
"source_datasets:irds/mmarco_pt_dev",
"region:us"
] | 2023-01-05T03:22:21+00:00 | {"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev/v1.1`", "viewer": false} | 2023-01-05T03:22:27+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_dev #region-us
|
# Dataset Card for 'mmarco/pt/dev/v1.1'
The 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- For 'docs', use 'irds/mmarco_pt'
- For 'qrels', use 'irds/mmarco_pt_dev'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/pt/dev/v1.1'\n\nThe 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_dev'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_dev #region-us \n",
"# Dataset Card for 'mmarco/pt/dev/v1.1'\n\nThe 'mmarco/pt/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_dev'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
5d4cf64899999da4ed32d43b226395439548d865 |
# Dataset Card for `mmarco/pt/train`
The `mmarco/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=811,690
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt)
This dataset is used by: [`mmarco_pt_train_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_train_v1.1)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_pt_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_pt_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_pt_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_pt_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_pt",
"region:us"
] | 2023-01-05T03:22:32+00:00 | {"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train`", "viewer": false} | 2023-01-05T03:22:38+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us
|
# Dataset Card for 'mmarco/pt/train'
The 'mmarco/pt/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=811,690
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_pt'
This dataset is used by: 'mmarco_pt_train_v1.1'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/pt/train'\n\nThe 'mmarco/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=811,690\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_train_v1.1'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us \n",
"# Dataset Card for 'mmarco/pt/train'\n\nThe 'mmarco/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=811,690\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_train_v1.1'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
00857b925e6581b887e42c57add9bb865666ff79 |
# Dataset Card for `mmarco/pt/train/v1.1`
The `mmarco/pt/train/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/train/v1.1).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt)
- For `qrels`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train)
- For `docpairs`, use [`irds/mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_pt_train_v1.1', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_pt_train_v1.1 | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_pt",
"source_datasets:irds/mmarco_pt_train",
"region:us"
] | 2023-01-05T03:22:43+00:00 | {"source_datasets": ["irds/mmarco_pt", "irds/mmarco_pt_train"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/train/v1.1`", "viewer": false} | 2023-01-05T03:22:49+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_train #region-us
|
# Dataset Card for 'mmarco/pt/train/v1.1'
The 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- For 'docs', use 'irds/mmarco_pt'
- For 'qrels', use 'irds/mmarco_pt_train'
- For 'docpairs', use 'irds/mmarco_pt_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/pt/train/v1.1'\n\nThe 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_train'\n - For 'docpairs', use 'irds/mmarco_pt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #source_datasets-irds/mmarco_pt_train #region-us \n",
"# Dataset Card for 'mmarco/pt/train/v1.1'\n\nThe 'mmarco/pt/train/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n\n - For 'docs', use 'irds/mmarco_pt'\n - For 'qrels', use 'irds/mmarco_pt_train'\n - For 'docpairs', use 'irds/mmarco_pt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
302ec30bd28f6e934b2be22f26c6469902df3f18 |
# Dataset Card for `mmarco/ru`
The `mmarco/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_ru_dev`](https://huggingface.co/datasets/irds/mmarco_ru_dev), [`mmarco_ru_train`](https://huggingface.co/datasets/irds/mmarco_ru_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_ru', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_ru | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:22:54+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru`", "viewer": false} | 2023-01-05T03:23:00+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/ru'
The 'mmarco/ru' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/ru'\n\nThe 'mmarco/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/ru'\n\nThe 'mmarco/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_ru_dev', 'mmarco_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
396f5d096f7d354cfa20f28225cf3f1077a9e72d |
# Dataset Card for `mmarco/ru/dev`
The `mmarco/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_ru_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_ru_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_ru_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_ru",
"region:us"
] | 2023-01-05T03:23:06+00:00 | {"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/dev`", "viewer": false} | 2023-01-05T03:23:11+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us
|
# Dataset Card for 'mmarco/ru/dev'
The 'mmarco/ru/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/ru/dev'\n\nThe 'mmarco/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us \n",
"# Dataset Card for 'mmarco/ru/dev'\n\nThe 'mmarco/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
99dbbec8730c9bc682b9f0831b1ab146fe87787b |
# Dataset Card for `mmarco/ru/train`
The `mmarco/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/ru/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_ru`](https://huggingface.co/datasets/irds/mmarco_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_ru_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_ru_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_ru_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_ru_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_ru",
"region:us"
] | 2023-01-05T03:23:17+00:00 | {"source_datasets": ["irds/mmarco_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/ru/train`", "viewer": false} | 2023-01-05T03:23:22+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us
|
# Dataset Card for 'mmarco/ru/train'
The 'mmarco/ru/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/ru/train'\n\nThe 'mmarco/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_ru #region-us \n",
"# Dataset Card for 'mmarco/ru/train'\n\nThe 'mmarco/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
9ba54124147f5d9e6ec7297445e3f96c0a20244b |
# Dataset Card for `mmarco/v2/ar`
The `mmarco/v2/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_ar_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ar_dev), [`mmarco_v2_ar_train`](https://huggingface.co/datasets/irds/mmarco_v2_ar_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_ar', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ar | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:23:28+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar`", "viewer": false} | 2023-01-05T03:23:34+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/ar'
The 'mmarco/v2/ar' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ar'\n\nThe 'mmarco/v2/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/ar'\n\nThe 'mmarco/v2/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ar_dev', 'mmarco_v2_ar_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
55b93d3088b4564bba7b51e4a1a9973c89cc137d |
# Dataset Card for `mmarco/v2/ar/dev`
The `mmarco/v2/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ar_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ar_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ar_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ar",
"region:us"
] | 2023-01-05T03:23:39+00:00 | {"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/dev`", "viewer": false} | 2023-01-05T03:23:45+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us
|
# Dataset Card for 'mmarco/v2/ar/dev'
The 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_ar'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ar/dev'\n\nThe 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us \n",
"# Dataset Card for 'mmarco/v2/ar/dev'\n\nThe 'mmarco/v2/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
220bb4a55bb9f7ffe064ed30934761bc90e34b80 |
# Dataset Card for `mmarco/v2/ar/train`
The `mmarco/v2/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ar/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_ar`](https://huggingface.co/datasets/irds/mmarco_v2_ar)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ar_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ar_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_ar_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ar_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ar",
"region:us"
] | 2023-01-05T03:23:50+00:00 | {"source_datasets": ["irds/mmarco_v2_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ar/train`", "viewer": false} | 2023-01-05T03:23:56+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us
|
# Dataset Card for 'mmarco/v2/ar/train'
The 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_ar'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ar/train'\n\nThe 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ar #region-us \n",
"# Dataset Card for 'mmarco/v2/ar/train'\n\nThe 'mmarco/v2/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
025cc71d4ecfe1f78fd4a92a271b365ca207d68c |
# Dataset Card for `mmarco/v2/de`
The `mmarco/v2/de` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_de_dev`](https://huggingface.co/datasets/irds/mmarco_v2_de_dev), [`mmarco_v2_de_train`](https://huggingface.co/datasets/irds/mmarco_v2_de_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_de', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_de | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:24:01+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de`", "viewer": false} | 2023-01-05T03:24:07+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/de'
The 'mmarco/v2/de' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/de'\n\nThe 'mmarco/v2/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/de'\n\nThe 'mmarco/v2/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_de_dev', 'mmarco_v2_de_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
775820735e29f81f97bd323f9e42da15d75a7399 |
# Dataset Card for `mmarco/v2/de/dev`
The `mmarco/v2/de/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_de_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_de_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_de_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_de",
"region:us"
] | 2023-01-05T03:24:12+00:00 | {"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/dev`", "viewer": false} | 2023-01-05T03:24:18+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us
|
# Dataset Card for 'mmarco/v2/de/dev'
The 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_de'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/de/dev'\n\nThe 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_de'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us \n",
"# Dataset Card for 'mmarco/v2/de/dev'\n\nThe 'mmarco/v2/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_de'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
06296b9d2a33c8eaa737bf43a0d0ad4ec6f989c6 |
# Dataset Card for `mmarco/v2/de/train`
The `mmarco/v2/de/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/de/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_de`](https://huggingface.co/datasets/irds/mmarco_v2_de)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_de_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_de_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_de_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_de_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_de",
"region:us"
] | 2023-01-05T03:24:23+00:00 | {"source_datasets": ["irds/mmarco_v2_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/de/train`", "viewer": false} | 2023-01-05T03:24:29+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us
|
# Dataset Card for 'mmarco/v2/de/train'
The 'mmarco/v2/de/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_de'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/de/train'\n\nThe 'mmarco/v2/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_de'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_de #region-us \n",
"# Dataset Card for 'mmarco/v2/de/train'\n\nThe 'mmarco/v2/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_de'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
8852c8ee2a3f9a4c186d0f3af18655f8715717a4 |
# Dataset Card for `mmarco/v2/dt`
The `mmarco/v2/dt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_dt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_dt_dev), [`mmarco_v2_dt_train`](https://huggingface.co/datasets/irds/mmarco_v2_dt_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_dt', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_dt | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:24:34+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt`", "viewer": false} | 2023-01-05T03:24:40+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/dt'
The 'mmarco/v2/dt' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/dt'\n\nThe 'mmarco/v2/dt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/dt'\n\nThe 'mmarco/v2/dt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_dt_dev', 'mmarco_v2_dt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
5992a038543122ae908c19c2bf71dd9e1572bb76 |
# Dataset Card for `mmarco/v2/dt/dev`
The `mmarco/v2/dt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_dt_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_dt_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_dt_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_dt",
"region:us"
] | 2023-01-05T03:24:46+00:00 | {"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/dev`", "viewer": false} | 2023-01-05T03:24:51+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us
|
# Dataset Card for 'mmarco/v2/dt/dev'
The 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_dt'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/dt/dev'\n\nThe 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_dt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us \n",
"# Dataset Card for 'mmarco/v2/dt/dev'\n\nThe 'mmarco/v2/dt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_dt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
4dcdc7ea954e937a4f4fb21eff71ad33946caab3 |
# Dataset Card for `mmarco/v2/dt/train`
The `mmarco/v2/dt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/dt/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_dt`](https://huggingface.co/datasets/irds/mmarco_v2_dt)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_dt_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_dt_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_dt_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_dt_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_dt",
"region:us"
] | 2023-01-05T03:24:57+00:00 | {"source_datasets": ["irds/mmarco_v2_dt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/dt/train`", "viewer": false} | 2023-01-05T03:25:03+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us
|
# Dataset Card for 'mmarco/v2/dt/train'
The 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_dt'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/dt/train'\n\nThe 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_dt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_dt #region-us \n",
"# Dataset Card for 'mmarco/v2/dt/train'\n\nThe 'mmarco/v2/dt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_dt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
1f59f33da3fdeaa1a99f599522cd5dada0bac269 |
# Dataset Card for `mmarco/v2/es`
The `mmarco/v2/es` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_es_dev`](https://huggingface.co/datasets/irds/mmarco_v2_es_dev), [`mmarco_v2_es_train`](https://huggingface.co/datasets/irds/mmarco_v2_es_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_es', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_es | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:25:08+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es`", "viewer": false} | 2023-01-05T03:25:14+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/es'
The 'mmarco/v2/es' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/es'\n\nThe 'mmarco/v2/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/es'\n\nThe 'mmarco/v2/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_es_dev', 'mmarco_v2_es_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
56f0cb61ca641e603ad81830a16b30870b9d50be |
# Dataset Card for `mmarco/v2/es/dev`
The `mmarco/v2/es/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_es_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_es_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_es_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_es",
"region:us"
] | 2023-01-05T03:25:19+00:00 | {"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/dev`", "viewer": false} | 2023-01-05T03:25:25+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us
|
# Dataset Card for 'mmarco/v2/es/dev'
The 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_es'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/es/dev'\n\nThe 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_es'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us \n",
"# Dataset Card for 'mmarco/v2/es/dev'\n\nThe 'mmarco/v2/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_es'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
651b9d0d9b949874c4cf759e3d6b69c0199da772 |
# Dataset Card for `mmarco/v2/es/train`
The `mmarco/v2/es/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/es/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_es`](https://huggingface.co/datasets/irds/mmarco_v2_es)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_es_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_es_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_es_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_es_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_es",
"region:us"
] | 2023-01-05T03:25:30+00:00 | {"source_datasets": ["irds/mmarco_v2_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/es/train`", "viewer": false} | 2023-01-05T03:25:36+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us
|
# Dataset Card for 'mmarco/v2/es/train'
The 'mmarco/v2/es/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_es'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/es/train'\n\nThe 'mmarco/v2/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_es'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_es #region-us \n",
"# Dataset Card for 'mmarco/v2/es/train'\n\nThe 'mmarco/v2/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_es'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
ce88693e3db6b50e721a57ea8ba9bab032288a7b |
# Dataset Card for `mmarco/v2/fr`
The `mmarco/v2/fr` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_fr_dev`](https://huggingface.co/datasets/irds/mmarco_v2_fr_dev), [`mmarco_v2_fr_train`](https://huggingface.co/datasets/irds/mmarco_v2_fr_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_fr', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_fr | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:25:41+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr`", "viewer": false} | 2023-01-05T03:25:47+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/fr'
The 'mmarco/v2/fr' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/fr'\n\nThe 'mmarco/v2/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/fr'\n\nThe 'mmarco/v2/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_fr_dev', 'mmarco_v2_fr_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
fdbe12aff10816aaf7155c18c41b789ffef690fc |
# Dataset Card for `mmarco/v2/fr/dev`
The `mmarco/v2/fr/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_fr_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_fr_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_fr_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_fr",
"region:us"
] | 2023-01-05T03:25:52+00:00 | {"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/dev`", "viewer": false} | 2023-01-05T03:25:58+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us
|
# Dataset Card for 'mmarco/v2/fr/dev'
The 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_fr'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/fr/dev'\n\nThe 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_fr'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us \n",
"# Dataset Card for 'mmarco/v2/fr/dev'\n\nThe 'mmarco/v2/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_fr'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
963eb6d5d2b12cccc3f393c55f8a8c066d46fbd3 |
# Dataset Card for `mmarco/v2/fr/train`
The `mmarco/v2/fr/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/fr/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_fr`](https://huggingface.co/datasets/irds/mmarco_v2_fr)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_fr_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_fr_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_fr_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_fr_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_fr",
"region:us"
] | 2023-01-05T03:26:03+00:00 | {"source_datasets": ["irds/mmarco_v2_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/fr/train`", "viewer": false} | 2023-01-05T03:26:09+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us
|
# Dataset Card for 'mmarco/v2/fr/train'
The 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_fr'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/fr/train'\n\nThe 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_fr'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_fr #region-us \n",
"# Dataset Card for 'mmarco/v2/fr/train'\n\nThe 'mmarco/v2/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_fr'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
c36fafdb8684f28430b5013cece64fb14debb449 |
# Dataset Card for `mmarco/v2/hi`
The `mmarco/v2/hi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_hi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_hi_dev), [`mmarco_v2_hi_train`](https://huggingface.co/datasets/irds/mmarco_v2_hi_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_hi', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_hi | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:26:14+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi`", "viewer": false} | 2023-01-05T03:26:20+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/hi'
The 'mmarco/v2/hi' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/hi'\n\nThe 'mmarco/v2/hi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/hi'\n\nThe 'mmarco/v2/hi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_hi_dev', 'mmarco_v2_hi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a51c0764a63a7f644e3aa474442cf6bed41b91b7 |
# Dataset Card for `mmarco/v2/hi/dev`
The `mmarco/v2/hi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_hi_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_hi_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_hi_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_hi",
"region:us"
] | 2023-01-05T03:26:26+00:00 | {"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/dev`", "viewer": false} | 2023-01-05T03:26:31+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us
|
# Dataset Card for 'mmarco/v2/hi/dev'
The 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_hi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/hi/dev'\n\nThe 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_hi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us \n",
"# Dataset Card for 'mmarco/v2/hi/dev'\n\nThe 'mmarco/v2/hi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_hi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a63e5ec3dbf14df93dd249bb874a5eed2a74b1e5 |
# Dataset Card for `mmarco/v2/hi/train`
The `mmarco/v2/hi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/hi/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_hi`](https://huggingface.co/datasets/irds/mmarco_v2_hi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_hi_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_hi_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_hi_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_hi_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_hi",
"region:us"
] | 2023-01-05T03:26:37+00:00 | {"source_datasets": ["irds/mmarco_v2_hi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/hi/train`", "viewer": false} | 2023-01-05T03:26:42+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us
|
# Dataset Card for 'mmarco/v2/hi/train'
The 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_hi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/hi/train'\n\nThe 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_hi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_hi #region-us \n",
"# Dataset Card for 'mmarco/v2/hi/train'\n\nThe 'mmarco/v2/hi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_hi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
63a8e90a554c7673b908774dea617b7312e725d9 |
# Dataset Card for `mmarco/v2/id`
The `mmarco/v2/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_id_dev`](https://huggingface.co/datasets/irds/mmarco_v2_id_dev), [`mmarco_v2_id_train`](https://huggingface.co/datasets/irds/mmarco_v2_id_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_id', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_id | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:26:48+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id`", "viewer": false} | 2023-01-05T03:26:53+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/id'
The 'mmarco/v2/id' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/id'\n\nThe 'mmarco/v2/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/id'\n\nThe 'mmarco/v2/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_id_dev', 'mmarco_v2_id_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
feb53944fe08e3b192c908aa24ba935b2c372bca |
# Dataset Card for `mmarco/v2/id/dev`
The `mmarco/v2/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_id_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_id_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_id_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_id",
"region:us"
] | 2023-01-05T03:26:59+00:00 | {"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/dev`", "viewer": false} | 2023-01-05T03:27:05+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us
|
# Dataset Card for 'mmarco/v2/id/dev'
The 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_id'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/id/dev'\n\nThe 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us \n",
"# Dataset Card for 'mmarco/v2/id/dev'\n\nThe 'mmarco/v2/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
f893909ae46738fb4abc510ae09bd456942c1dd2 |
# Dataset Card for `mmarco/v2/id/train`
The `mmarco/v2/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/id/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_id`](https://huggingface.co/datasets/irds/mmarco_v2_id)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_id_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_id_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_id_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_id_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_id",
"region:us"
] | 2023-01-05T03:27:10+00:00 | {"source_datasets": ["irds/mmarco_v2_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/id/train`", "viewer": false} | 2023-01-05T03:27:16+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us
|
# Dataset Card for 'mmarco/v2/id/train'
The 'mmarco/v2/id/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_id'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/id/train'\n\nThe 'mmarco/v2/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_id #region-us \n",
"# Dataset Card for 'mmarco/v2/id/train'\n\nThe 'mmarco/v2/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
fea94875097d6e7e5981a0248b76d38bd7cf7927 |
# Dataset Card for `mmarco/v2/it`
The `mmarco/v2/it` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_it_dev`](https://huggingface.co/datasets/irds/mmarco_v2_it_dev), [`mmarco_v2_it_train`](https://huggingface.co/datasets/irds/mmarco_v2_it_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_it', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_it | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:27:21+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it`", "viewer": false} | 2023-01-05T03:27:27+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/it'
The 'mmarco/v2/it' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/it'\n\nThe 'mmarco/v2/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/it'\n\nThe 'mmarco/v2/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_it_dev', 'mmarco_v2_it_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
d4a4b740e65f57fb103c681260429c1f0a73c198 |
# Dataset Card for `mmarco/v2/it/dev`
The `mmarco/v2/it/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_it_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_it_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_it_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_it",
"region:us"
] | 2023-01-05T03:27:32+00:00 | {"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/dev`", "viewer": false} | 2023-01-05T03:27:38+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us
|
# Dataset Card for 'mmarco/v2/it/dev'
The 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_it'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/it/dev'\n\nThe 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_it'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us \n",
"# Dataset Card for 'mmarco/v2/it/dev'\n\nThe 'mmarco/v2/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_it'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
7ccf7e05af3e19adc9229c939a06e743f0f354db |
# Dataset Card for `mmarco/v2/it/train`
The `mmarco/v2/it/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/it/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_it`](https://huggingface.co/datasets/irds/mmarco_v2_it)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_it_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_it_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_it_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_it_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_it",
"region:us"
] | 2023-01-05T03:27:44+00:00 | {"source_datasets": ["irds/mmarco_v2_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/it/train`", "viewer": false} | 2023-01-05T03:27:49+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us
|
# Dataset Card for 'mmarco/v2/it/train'
The 'mmarco/v2/it/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_it'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/it/train'\n\nThe 'mmarco/v2/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_it'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_it #region-us \n",
"# Dataset Card for 'mmarco/v2/it/train'\n\nThe 'mmarco/v2/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_it'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
0de1fbfd7c9c175c5605cf3c74100e57335b7990 |
# Dataset Card for `mmarco/v2/ja`
The `mmarco/v2/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_ja_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ja_dev), [`mmarco_v2_ja_train`](https://huggingface.co/datasets/irds/mmarco_v2_ja_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_ja', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ja | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:27:55+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja`", "viewer": false} | 2023-01-05T03:28:00+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/ja'
The 'mmarco/v2/ja' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ja'\n\nThe 'mmarco/v2/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/ja'\n\nThe 'mmarco/v2/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ja_dev', 'mmarco_v2_ja_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
81b384fff5bab1c0cf04303b48954ca35d5012d0 |
# Dataset Card for `mmarco/v2/ja/dev`
The `mmarco/v2/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ja_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ja_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ja_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ja",
"region:us"
] | 2023-01-05T03:28:06+00:00 | {"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/dev`", "viewer": false} | 2023-01-05T03:28:11+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us
|
# Dataset Card for 'mmarco/v2/ja/dev'
The 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_ja'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ja/dev'\n\nThe 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us \n",
"# Dataset Card for 'mmarco/v2/ja/dev'\n\nThe 'mmarco/v2/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
019f1bc1bc08562ed1fc3dd95bd2750bb66bfb3f |
# Dataset Card for `mmarco/v2/ja/train`
The `mmarco/v2/ja/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ja/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_ja`](https://huggingface.co/datasets/irds/mmarco_v2_ja)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ja_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ja_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_ja_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ja_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ja",
"region:us"
] | 2023-01-05T03:28:18+00:00 | {"source_datasets": ["irds/mmarco_v2_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ja/train`", "viewer": false} | 2023-01-05T03:28:24+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us
|
# Dataset Card for 'mmarco/v2/ja/train'
The 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_ja'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ja/train'\n\nThe 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ja #region-us \n",
"# Dataset Card for 'mmarco/v2/ja/train'\n\nThe 'mmarco/v2/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
f657b5c613d6cf8b4c76c0c346cf788d095e0ab9 |
# Dataset Card for `mmarco/v2/pt`
The `mmarco/v2/pt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_pt_dev`](https://huggingface.co/datasets/irds/mmarco_v2_pt_dev), [`mmarco_v2_pt_train`](https://huggingface.co/datasets/irds/mmarco_v2_pt_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_pt', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_pt | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:28:29+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt`", "viewer": false} | 2023-01-05T03:28:35+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/pt'
The 'mmarco/v2/pt' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/pt'\n\nThe 'mmarco/v2/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/pt'\n\nThe 'mmarco/v2/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_pt_dev', 'mmarco_v2_pt_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
80c6924eca6c275fb63f87f1edb7d1254f553197 |
# Dataset Card for `mmarco/v2/pt/dev`
The `mmarco/v2/pt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_pt_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_pt_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_pt_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_pt",
"region:us"
] | 2023-01-05T03:28:40+00:00 | {"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/dev`", "viewer": false} | 2023-01-05T03:28:46+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us
|
# Dataset Card for 'mmarco/v2/pt/dev'
The 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_pt'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/pt/dev'\n\nThe 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_pt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us \n",
"# Dataset Card for 'mmarco/v2/pt/dev'\n\nThe 'mmarco/v2/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_pt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a182535672ccc70b49df8e95cdfcde91e75e6a8a |
# Dataset Card for `mmarco/v2/pt/train`
The `mmarco/v2/pt/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/pt/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_pt`](https://huggingface.co/datasets/irds/mmarco_v2_pt)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_pt_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_pt_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_pt_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_pt_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_pt",
"region:us"
] | 2023-01-05T03:28:51+00:00 | {"source_datasets": ["irds/mmarco_v2_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/pt/train`", "viewer": false} | 2023-01-05T03:28:57+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us
|
# Dataset Card for 'mmarco/v2/pt/train'
The 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_pt'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/pt/train'\n\nThe 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_pt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_pt #region-us \n",
"# Dataset Card for 'mmarco/v2/pt/train'\n\nThe 'mmarco/v2/pt/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_pt'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
9139938dfdff672f1e6041f2ae539d572102a7c7 |
# Dataset Card for `mmarco/v2/ru`
The `mmarco/v2/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_ru_dev`](https://huggingface.co/datasets/irds/mmarco_v2_ru_dev), [`mmarco_v2_ru_train`](https://huggingface.co/datasets/irds/mmarco_v2_ru_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_ru', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ru | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:29:03+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru`", "viewer": false} | 2023-01-05T03:29:08+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/ru'
The 'mmarco/v2/ru' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ru'\n\nThe 'mmarco/v2/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/ru'\n\nThe 'mmarco/v2/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_ru_dev', 'mmarco_v2_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
b2470571ef0729b660765abe4c46cd3cae23c178 |
# Dataset Card for `mmarco/v2/ru/dev`
The `mmarco/v2/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ru_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ru_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ru_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ru",
"region:us"
] | 2023-01-05T03:29:14+00:00 | {"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/dev`", "viewer": false} | 2023-01-05T03:29:19+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us
|
# Dataset Card for 'mmarco/v2/ru/dev'
The 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ru/dev'\n\nThe 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us \n",
"# Dataset Card for 'mmarco/v2/ru/dev'\n\nThe 'mmarco/v2/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
57c370fb695cbdbdcd461ac5174eb2b14cac6ce6 |
# Dataset Card for `mmarco/v2/ru/train`
The `mmarco/v2/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/ru/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_ru`](https://huggingface.co/datasets/irds/mmarco_v2_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_ru_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_ru_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_ru_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_ru_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_ru",
"region:us"
] | 2023-01-05T03:29:25+00:00 | {"source_datasets": ["irds/mmarco_v2_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/ru/train`", "viewer": false} | 2023-01-05T03:29:30+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us
|
# Dataset Card for 'mmarco/v2/ru/train'
The 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/ru/train'\n\nThe 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_ru #region-us \n",
"# Dataset Card for 'mmarco/v2/ru/train'\n\nThe 'mmarco/v2/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
1e1c186e28642f5368e484e50e4763dc7771794a |
# Dataset Card for `mmarco/v2/vi`
The `mmarco/v2/vi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_vi_dev`](https://huggingface.co/datasets/irds/mmarco_v2_vi_dev), [`mmarco_v2_vi_train`](https://huggingface.co/datasets/irds/mmarco_v2_vi_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_vi', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_vi | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:29:36+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi`", "viewer": false} | 2023-01-05T03:29:42+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/vi'
The 'mmarco/v2/vi' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/vi'\n\nThe 'mmarco/v2/vi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/vi'\n\nThe 'mmarco/v2/vi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_vi_dev', 'mmarco_v2_vi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a3a85f41d0fc827cf6ec0279324876b81d7e6f40 |
# Dataset Card for `mmarco/v2/vi/dev`
The `mmarco/v2/vi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_vi_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_vi_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_vi_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_vi",
"region:us"
] | 2023-01-05T03:29:47+00:00 | {"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/dev`", "viewer": false} | 2023-01-05T03:29:53+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us
|
# Dataset Card for 'mmarco/v2/vi/dev'
The 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_vi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/vi/dev'\n\nThe 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_vi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us \n",
"# Dataset Card for 'mmarco/v2/vi/dev'\n\nThe 'mmarco/v2/vi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_vi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
118c5fc9012fdf927d1ddfe86fc1b8ea0e01bd39 |
# Dataset Card for `mmarco/v2/vi/train`
The `mmarco/v2/vi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/vi/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_vi`](https://huggingface.co/datasets/irds/mmarco_v2_vi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_vi_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_vi_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_vi_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_vi_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_vi",
"region:us"
] | 2023-01-05T03:29:58+00:00 | {"source_datasets": ["irds/mmarco_v2_vi"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/vi/train`", "viewer": false} | 2023-01-05T03:30:04+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us
|
# Dataset Card for 'mmarco/v2/vi/train'
The 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_vi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/vi/train'\n\nThe 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_vi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_vi #region-us \n",
"# Dataset Card for 'mmarco/v2/vi/train'\n\nThe 'mmarco/v2/vi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_vi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
9deac9ddcbad386ae7f5790bd31f60a82ca9350f |
# Dataset Card for `mmarco/v2/zh`
The `mmarco/v2/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_v2_zh_dev`](https://huggingface.co/datasets/irds/mmarco_v2_zh_dev), [`mmarco_v2_zh_train`](https://huggingface.co/datasets/irds/mmarco_v2_zh_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_v2_zh', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_zh | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:30:10+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh`", "viewer": false} | 2023-01-05T03:30:15+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/v2/zh'
The 'mmarco/v2/zh' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/zh'\n\nThe 'mmarco/v2/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/v2/zh'\n\nThe 'mmarco/v2/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_v2_zh_dev', 'mmarco_v2_zh_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
8dda454ab13ffc9292f910d94d54bea669940adb |
# Dataset Card for `mmarco/v2/zh/dev`
The `mmarco/v2/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_zh_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_zh_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_zh_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_zh",
"region:us"
] | 2023-01-05T03:30:21+00:00 | {"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/dev`", "viewer": false} | 2023-01-05T03:30:26+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us
|
# Dataset Card for 'mmarco/v2/zh/dev'
The 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_v2_zh'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/zh/dev'\n\nThe 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us \n",
"# Dataset Card for 'mmarco/v2/zh/dev'\n\nThe 'mmarco/v2/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_v2_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
d3ef087d03f6a09c9241aec41224881ab88bff95 |
# Dataset Card for `mmarco/v2/zh/train`
The `mmarco/v2/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/v2/zh/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_v2_zh`](https://huggingface.co/datasets/irds/mmarco_v2_zh)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_v2_zh_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_v2_zh_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_v2_zh_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_v2_zh_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_v2_zh",
"region:us"
] | 2023-01-05T03:30:32+00:00 | {"source_datasets": ["irds/mmarco_v2_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/v2/zh/train`", "viewer": false} | 2023-01-05T03:30:37+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us
|
# Dataset Card for 'mmarco/v2/zh/train'
The 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_v2_zh'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/v2/zh/train'\n\nThe 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_v2_zh #region-us \n",
"# Dataset Card for 'mmarco/v2/zh/train'\n\nThe 'mmarco/v2/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_v2_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
d8e4203011b1116de9d9738a8988a451861665a2 |
# Dataset Card for `mmarco/zh`
The `mmarco/zh` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=8,841,823
This dataset is used by: [`mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev), [`mmarco_zh_dev_small`](https://huggingface.co/datasets/irds/mmarco_zh_dev_small), [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1), [`mmarco_zh_train`](https://huggingface.co/datasets/irds/mmarco_zh_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mmarco_zh', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_zh | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:30:43+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh`", "viewer": false} | 2023-01-05T03:30:49+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mmarco/zh'
The 'mmarco/zh' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=8,841,823
This dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/zh'\n\nThe 'mmarco/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mmarco/zh'\n\nThe 'mmarco/zh' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_zh_dev', 'mmarco_zh_dev_small', 'mmarco_zh_dev_v1.1', 'mmarco_zh_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a8eeb0f8a9dee7c850da4151ca03edfdac83901e |
# Dataset Card for `mmarco/zh/dev`
The `mmarco/zh/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- `qrels`: (relevance assessments); count=59,273
- For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh)
This dataset is used by: [`mmarco_zh_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_zh_dev_v1.1)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_zh_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_zh_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_zh_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_zh",
"region:us"
] | 2023-01-05T03:30:54+00:00 | {"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev`", "viewer": false} | 2023-01-05T03:31:00+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
|
# Dataset Card for 'mmarco/zh/dev'
The 'mmarco/zh/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- 'qrels': (relevance assessments); count=59,273
- For 'docs', use 'irds/mmarco_zh'
This dataset is used by: 'mmarco_zh_dev_v1.1'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/zh/dev'\n\nThe 'mmarco/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_zh'\n\nThis dataset is used by: 'mmarco_zh_dev_v1.1'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n",
"# Dataset Card for 'mmarco/zh/dev'\n\nThe 'mmarco/zh/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_zh'\n\nThis dataset is used by: 'mmarco_zh_dev_v1.1'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
c474a1fafa872b760cd9ab484f6c7423f7a546d2 |
# Dataset Card for `mmarco/zh/dev/small`
The `mmarco/zh/dev/small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/small).
# Data
This dataset provides:
- `queries` (i.e., topics); count=6,980
- `qrels`: (relevance assessments); count=7,437
- For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_zh_dev_small', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_zh_dev_small', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_zh_dev_small | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_zh",
"region:us"
] | 2023-01-05T03:31:05+00:00 | {"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/small`", "viewer": false} | 2023-01-05T03:31:11+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
|
# Dataset Card for 'mmarco/zh/dev/small'
The 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=6,980
- 'qrels': (relevance assessments); count=7,437
- For 'docs', use 'irds/mmarco_zh'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/zh/dev/small'\n\nThe 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,980\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n",
"# Dataset Card for 'mmarco/zh/dev/small'\n\nThe 'mmarco/zh/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,980\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
1fafbbeaf298d8e192277bca84e9d82bcf37e54d |
# Dataset Card for `mmarco/zh/dev/v1.1`
The `mmarco/zh/dev/v1.1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/dev/v1.1).
# Data
This dataset provides:
- `queries` (i.e., topics); count=101,093
- For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh)
- For `qrels`, use [`irds/mmarco_zh_dev`](https://huggingface.co/datasets/irds/mmarco_zh_dev)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_zh_dev_v1.1', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_zh_dev_v1.1 | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_zh",
"source_datasets:irds/mmarco_zh_dev",
"region:us"
] | 2023-01-05T03:31:16+00:00 | {"source_datasets": ["irds/mmarco_zh", "irds/mmarco_zh_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/dev/v1.1`", "viewer": false} | 2023-01-05T03:31:22+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #source_datasets-irds/mmarco_zh_dev #region-us
|
# Dataset Card for 'mmarco/zh/dev/v1.1'
The 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=101,093
- For 'docs', use 'irds/mmarco_zh'
- For 'qrels', use 'irds/mmarco_zh_dev'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/zh/dev/v1.1'\n\nThe 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_zh'\n - For 'qrels', use 'irds/mmarco_zh_dev'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #source_datasets-irds/mmarco_zh_dev #region-us \n",
"# Dataset Card for 'mmarco/zh/dev/v1.1'\n\nThe 'mmarco/zh/dev/v1.1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n\n - For 'docs', use 'irds/mmarco_zh'\n - For 'qrels', use 'irds/mmarco_zh_dev'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
9baf31ce58f4720ea71c70479f5dc2a6ff90942a |
# Dataset Card for `mmarco/zh/train`
The `mmarco/zh/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/zh/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=808,731
- `qrels`: (relevance assessments); count=532,761
- `docpairs`; count=39,780,811
- For `docs`, use [`irds/mmarco_zh`](https://huggingface.co/datasets/irds/mmarco_zh)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mmarco_zh_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mmarco_zh_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
docpairs = load_dataset('irds/mmarco_zh_train', 'docpairs')
for record in docpairs:
record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Bonifacio2021MMarco,
title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset},
author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira},
year={2021},
journal={arXiv:2108.13897}
}
```
| irds/mmarco_zh_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mmarco_zh",
"region:us"
] | 2023-01-05T03:31:28+00:00 | {"source_datasets": ["irds/mmarco_zh"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/zh/train`", "viewer": false} | 2023-01-05T03:31:33+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us
|
# Dataset Card for 'mmarco/zh/train'
The 'mmarco/zh/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=808,731
- 'qrels': (relevance assessments); count=532,761
- 'docpairs'; count=39,780,811
- For 'docs', use 'irds/mmarco_zh'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mmarco/zh/train'\n\nThe 'mmarco/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_zh #region-us \n",
"# Dataset Card for 'mmarco/zh/train'\n\nThe 'mmarco/zh/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_zh'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
2b33c9015daa0a100a121e5d364109bc7971b424 |
# Dataset Card for `mr-tydi/ar`
The `mr-tydi/ar` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=2,106,586
- `queries` (i.e., topics); count=16,595
- `qrels`: (relevance assessments); count=16,749
This dataset is used by: [`mr-tydi_ar_dev`](https://huggingface.co/datasets/irds/mr-tydi_ar_dev), [`mr-tydi_ar_test`](https://huggingface.co/datasets/irds/mr-tydi_ar_test), [`mr-tydi_ar_train`](https://huggingface.co/datasets/irds/mr-tydi_ar_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_ar', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_ar', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ar', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ar | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:31:39+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar`", "viewer": false} | 2023-01-05T03:31:44+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/ar'
The 'mr-tydi/ar' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=2,106,586
- 'queries' (i.e., topics); count=16,595
- 'qrels': (relevance assessments); count=16,749
This dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ar'\n\nThe 'mr-tydi/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,106,586\n - 'queries' (i.e., topics); count=16,595\n - 'qrels': (relevance assessments); count=16,749\n\n\nThis dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/ar'\n\nThe 'mr-tydi/ar' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,106,586\n - 'queries' (i.e., topics); count=16,595\n - 'qrels': (relevance assessments); count=16,749\n\n\nThis dataset is used by: 'mr-tydi_ar_dev', 'mr-tydi_ar_test', 'mr-tydi_ar_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
116977c3b67189c26496ae6c113f160f8c012a89 |
# Dataset Card for `mr-tydi/ar/dev`
The `mr-tydi/ar/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=3,115
- `qrels`: (relevance assessments); count=3,115
- For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ar_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ar_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ar_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ar",
"region:us"
] | 2023-01-05T03:31:50+00:00 | {"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/dev`", "viewer": false} | 2023-01-05T03:31:55+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
|
# Dataset Card for 'mr-tydi/ar/dev'
The 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=3,115
- 'qrels': (relevance assessments); count=3,115
- For 'docs', use 'irds/mr-tydi_ar'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ar/dev'\n\nThe 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,115\n - 'qrels': (relevance assessments); count=3,115\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n",
"# Dataset Card for 'mr-tydi/ar/dev'\n\nThe 'mr-tydi/ar/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,115\n - 'qrels': (relevance assessments); count=3,115\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
ea56f4317930f205647148b0b2c582a74764ea4f |
# Dataset Card for `mr-tydi/ar/test`
The `mr-tydi/ar/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,081
- `qrels`: (relevance assessments); count=1,257
- For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ar_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ar_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ar_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ar",
"region:us"
] | 2023-01-05T03:32:01+00:00 | {"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/test`", "viewer": false} | 2023-01-05T03:32:07+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
|
# Dataset Card for 'mr-tydi/ar/test'
The 'mr-tydi/ar/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,081
- 'qrels': (relevance assessments); count=1,257
- For 'docs', use 'irds/mr-tydi_ar'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ar/test'\n\nThe 'mr-tydi/ar/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,081\n - 'qrels': (relevance assessments); count=1,257\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n",
"# Dataset Card for 'mr-tydi/ar/test'\n\nThe 'mr-tydi/ar/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,081\n - 'qrels': (relevance assessments); count=1,257\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
82af0d4efac40a0c34be26552f1139519702e64a |
# Dataset Card for `mr-tydi/ar/train`
The `mr-tydi/ar/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ar/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=12,377
- `qrels`: (relevance assessments); count=12,377
- For `docs`, use [`irds/mr-tydi_ar`](https://huggingface.co/datasets/irds/mr-tydi_ar)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ar_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ar_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ar_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ar",
"region:us"
] | 2023-01-05T03:32:12+00:00 | {"source_datasets": ["irds/mr-tydi_ar"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ar/train`", "viewer": false} | 2023-01-05T03:32:18+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us
|
# Dataset Card for 'mr-tydi/ar/train'
The 'mr-tydi/ar/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=12,377
- 'qrels': (relevance assessments); count=12,377
- For 'docs', use 'irds/mr-tydi_ar'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ar/train'\n\nThe 'mr-tydi/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=12,377\n - 'qrels': (relevance assessments); count=12,377\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ar #region-us \n",
"# Dataset Card for 'mr-tydi/ar/train'\n\nThe 'mr-tydi/ar/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=12,377\n - 'qrels': (relevance assessments); count=12,377\n\n - For 'docs', use 'irds/mr-tydi_ar'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
3d05169ef6d1fa01da83b6f5b80aa3d79dcb5792 |
# Dataset Card for `mr-tydi/bn`
The `mr-tydi/bn` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=304,059
- `queries` (i.e., topics); count=2,264
- `qrels`: (relevance assessments); count=2,292
This dataset is used by: [`mr-tydi_bn_dev`](https://huggingface.co/datasets/irds/mr-tydi_bn_dev), [`mr-tydi_bn_test`](https://huggingface.co/datasets/irds/mr-tydi_bn_test), [`mr-tydi_bn_train`](https://huggingface.co/datasets/irds/mr-tydi_bn_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_bn', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_bn', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_bn', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_bn | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:32:23+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn`", "viewer": false} | 2023-01-05T03:32:29+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/bn'
The 'mr-tydi/bn' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=304,059
- 'queries' (i.e., topics); count=2,264
- 'qrels': (relevance assessments); count=2,292
This dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/bn'\n\nThe 'mr-tydi/bn' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=304,059\n - 'queries' (i.e., topics); count=2,264\n - 'qrels': (relevance assessments); count=2,292\n\n\nThis dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/bn'\n\nThe 'mr-tydi/bn' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=304,059\n - 'queries' (i.e., topics); count=2,264\n - 'qrels': (relevance assessments); count=2,292\n\n\nThis dataset is used by: 'mr-tydi_bn_dev', 'mr-tydi_bn_test', 'mr-tydi_bn_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
8c20e0907ac51fde8f7ba8de23137696c4406352 |
# Dataset Card for `mr-tydi/bn/dev`
The `mr-tydi/bn/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=440
- `qrels`: (relevance assessments); count=443
- For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_bn_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_bn_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_bn_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_bn",
"region:us"
] | 2023-01-05T03:32:34+00:00 | {"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/dev`", "viewer": false} | 2023-01-05T03:32:40+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
|
# Dataset Card for 'mr-tydi/bn/dev'
The 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=440
- 'qrels': (relevance assessments); count=443
- For 'docs', use 'irds/mr-tydi_bn'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/bn/dev'\n\nThe 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=443\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n",
"# Dataset Card for 'mr-tydi/bn/dev'\n\nThe 'mr-tydi/bn/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=443\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
ef8865b143d065f164cee924e1b24fe612a32daa |
# Dataset Card for `mr-tydi/bn/test`
The `mr-tydi/bn/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=111
- `qrels`: (relevance assessments); count=130
- For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_bn_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_bn_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_bn_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_bn",
"region:us"
] | 2023-01-05T03:32:45+00:00 | {"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/test`", "viewer": false} | 2023-01-05T03:32:51+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
|
# Dataset Card for 'mr-tydi/bn/test'
The 'mr-tydi/bn/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=111
- 'qrels': (relevance assessments); count=130
- For 'docs', use 'irds/mr-tydi_bn'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/bn/test'\n\nThe 'mr-tydi/bn/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=111\n - 'qrels': (relevance assessments); count=130\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n",
"# Dataset Card for 'mr-tydi/bn/test'\n\nThe 'mr-tydi/bn/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=111\n - 'qrels': (relevance assessments); count=130\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
215a725e6ed16c8f82cfdbe4d3e93338517f60cb |
# Dataset Card for `mr-tydi/bn/train`
The `mr-tydi/bn/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/bn/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,713
- `qrels`: (relevance assessments); count=1,719
- For `docs`, use [`irds/mr-tydi_bn`](https://huggingface.co/datasets/irds/mr-tydi_bn)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_bn_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_bn_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_bn_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_bn",
"region:us"
] | 2023-01-05T03:32:56+00:00 | {"source_datasets": ["irds/mr-tydi_bn"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/bn/train`", "viewer": false} | 2023-01-05T03:33:02+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us
|
# Dataset Card for 'mr-tydi/bn/train'
The 'mr-tydi/bn/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,713
- 'qrels': (relevance assessments); count=1,719
- For 'docs', use 'irds/mr-tydi_bn'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/bn/train'\n\nThe 'mr-tydi/bn/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,713\n - 'qrels': (relevance assessments); count=1,719\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_bn #region-us \n",
"# Dataset Card for 'mr-tydi/bn/train'\n\nThe 'mr-tydi/bn/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,713\n - 'qrels': (relevance assessments); count=1,719\n\n - For 'docs', use 'irds/mr-tydi_bn'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
e97158d8f7045f844dcfcc9a623ed080400e190c |
# Dataset Card for `mr-tydi/en`
The `mr-tydi/en` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=32,907,100
- `queries` (i.e., topics); count=5,194
- `qrels`: (relevance assessments); count=5,360
This dataset is used by: [`mr-tydi_en_dev`](https://huggingface.co/datasets/irds/mr-tydi_en_dev), [`mr-tydi_en_test`](https://huggingface.co/datasets/irds/mr-tydi_en_test), [`mr-tydi_en_train`](https://huggingface.co/datasets/irds/mr-tydi_en_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_en', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_en', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_en', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_en | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:33:08+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en`", "viewer": false} | 2023-01-05T03:33:13+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/en'
The 'mr-tydi/en' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=32,907,100
- 'queries' (i.e., topics); count=5,194
- 'qrels': (relevance assessments); count=5,360
This dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/en'\n\nThe 'mr-tydi/en' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=32,907,100\n - 'queries' (i.e., topics); count=5,194\n - 'qrels': (relevance assessments); count=5,360\n\n\nThis dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/en'\n\nThe 'mr-tydi/en' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=32,907,100\n - 'queries' (i.e., topics); count=5,194\n - 'qrels': (relevance assessments); count=5,360\n\n\nThis dataset is used by: 'mr-tydi_en_dev', 'mr-tydi_en_test', 'mr-tydi_en_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
7810f17d9eae686e0a3777bebe55454484f4f579 |
# Dataset Card for `mr-tydi/en/dev`
The `mr-tydi/en/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=878
- `qrels`: (relevance assessments); count=878
- For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_en_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_en_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_en_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_en",
"region:us"
] | 2023-01-05T03:33:19+00:00 | {"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/dev`", "viewer": false} | 2023-01-05T03:33:24+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
|
# Dataset Card for 'mr-tydi/en/dev'
The 'mr-tydi/en/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=878
- 'qrels': (relevance assessments); count=878
- For 'docs', use 'irds/mr-tydi_en'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/en/dev'\n\nThe 'mr-tydi/en/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=878\n - 'qrels': (relevance assessments); count=878\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n",
"# Dataset Card for 'mr-tydi/en/dev'\n\nThe 'mr-tydi/en/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=878\n - 'qrels': (relevance assessments); count=878\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
0c580e618d980b6d995940ee0d4d437531fd5fc7 |
# Dataset Card for `mr-tydi/en/test`
The `mr-tydi/en/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=744
- `qrels`: (relevance assessments); count=935
- For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_en_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_en_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_en_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_en",
"region:us"
] | 2023-01-05T03:33:30+00:00 | {"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/test`", "viewer": false} | 2023-01-05T03:33:36+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
|
# Dataset Card for 'mr-tydi/en/test'
The 'mr-tydi/en/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=744
- 'qrels': (relevance assessments); count=935
- For 'docs', use 'irds/mr-tydi_en'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/en/test'\n\nThe 'mr-tydi/en/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=744\n - 'qrels': (relevance assessments); count=935\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n",
"# Dataset Card for 'mr-tydi/en/test'\n\nThe 'mr-tydi/en/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=744\n - 'qrels': (relevance assessments); count=935\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
e7adc0010e9a25265ff0a34dbe4aa949601f35db |
# Dataset Card for `mr-tydi/en/train`
The `mr-tydi/en/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/en/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=3,547
- `qrels`: (relevance assessments); count=3,547
- For `docs`, use [`irds/mr-tydi_en`](https://huggingface.co/datasets/irds/mr-tydi_en)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_en_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_en_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_en_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_en",
"region:us"
] | 2023-01-05T03:33:41+00:00 | {"source_datasets": ["irds/mr-tydi_en"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/en/train`", "viewer": false} | 2023-01-05T03:33:47+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us
|
# Dataset Card for 'mr-tydi/en/train'
The 'mr-tydi/en/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=3,547
- 'qrels': (relevance assessments); count=3,547
- For 'docs', use 'irds/mr-tydi_en'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/en/train'\n\nThe 'mr-tydi/en/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,547\n - 'qrels': (relevance assessments); count=3,547\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_en #region-us \n",
"# Dataset Card for 'mr-tydi/en/train'\n\nThe 'mr-tydi/en/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,547\n - 'qrels': (relevance assessments); count=3,547\n\n - For 'docs', use 'irds/mr-tydi_en'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
6fd3f05fad94fa1f76c8b200bf713b18e313ec2b |
# Dataset Card for `mr-tydi/fi`
The `mr-tydi/fi` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=1,908,757
- `queries` (i.e., topics); count=9,572
- `qrels`: (relevance assessments); count=9,750
This dataset is used by: [`mr-tydi_fi_dev`](https://huggingface.co/datasets/irds/mr-tydi_fi_dev), [`mr-tydi_fi_test`](https://huggingface.co/datasets/irds/mr-tydi_fi_test), [`mr-tydi_fi_train`](https://huggingface.co/datasets/irds/mr-tydi_fi_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_fi', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_fi', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_fi', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_fi | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:33:52+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi`", "viewer": false} | 2023-01-05T03:33:58+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/fi'
The 'mr-tydi/fi' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=1,908,757
- 'queries' (i.e., topics); count=9,572
- 'qrels': (relevance assessments); count=9,750
This dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/fi'\n\nThe 'mr-tydi/fi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,908,757\n - 'queries' (i.e., topics); count=9,572\n - 'qrels': (relevance assessments); count=9,750\n\n\nThis dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/fi'\n\nThe 'mr-tydi/fi' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,908,757\n - 'queries' (i.e., topics); count=9,572\n - 'qrels': (relevance assessments); count=9,750\n\n\nThis dataset is used by: 'mr-tydi_fi_dev', 'mr-tydi_fi_test', 'mr-tydi_fi_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
27aca1999a1a6338fd80316ca76567e21ea1b2ed |
# Dataset Card for `mr-tydi/fi/dev`
The `mr-tydi/fi/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,738
- `qrels`: (relevance assessments); count=1,738
- For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_fi_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_fi_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_fi_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_fi",
"region:us"
] | 2023-01-05T03:34:03+00:00 | {"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/dev`", "viewer": false} | 2023-01-05T03:34:09+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
|
# Dataset Card for 'mr-tydi/fi/dev'
The 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,738
- 'qrels': (relevance assessments); count=1,738
- For 'docs', use 'irds/mr-tydi_fi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/fi/dev'\n\nThe 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,738\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n",
"# Dataset Card for 'mr-tydi/fi/dev'\n\nThe 'mr-tydi/fi/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,738\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
d7a1fb0eb29da74a2131cf6fb729be32ad6fd13a |
# Dataset Card for `mr-tydi/fi/test`
The `mr-tydi/fi/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,254
- `qrels`: (relevance assessments); count=1,451
- For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_fi_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_fi_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_fi_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_fi",
"region:us"
] | 2023-01-05T03:34:15+00:00 | {"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/test`", "viewer": false} | 2023-01-05T03:34:20+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
|
# Dataset Card for 'mr-tydi/fi/test'
The 'mr-tydi/fi/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,254
- 'qrels': (relevance assessments); count=1,451
- For 'docs', use 'irds/mr-tydi_fi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/fi/test'\n\nThe 'mr-tydi/fi/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,254\n - 'qrels': (relevance assessments); count=1,451\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n",
"# Dataset Card for 'mr-tydi/fi/test'\n\nThe 'mr-tydi/fi/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,254\n - 'qrels': (relevance assessments); count=1,451\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
da4363cbc02ab541845b6fe1765a416f1947e063 |
# Dataset Card for `mr-tydi/fi/train`
The `mr-tydi/fi/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/fi/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=6,561
- `qrels`: (relevance assessments); count=6,561
- For `docs`, use [`irds/mr-tydi_fi`](https://huggingface.co/datasets/irds/mr-tydi_fi)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_fi_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_fi_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_fi_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_fi",
"region:us"
] | 2023-01-05T03:34:26+00:00 | {"source_datasets": ["irds/mr-tydi_fi"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/fi/train`", "viewer": false} | 2023-01-05T03:34:31+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us
|
# Dataset Card for 'mr-tydi/fi/train'
The 'mr-tydi/fi/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=6,561
- 'qrels': (relevance assessments); count=6,561
- For 'docs', use 'irds/mr-tydi_fi'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/fi/train'\n\nThe 'mr-tydi/fi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,561\n - 'qrels': (relevance assessments); count=6,561\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_fi #region-us \n",
"# Dataset Card for 'mr-tydi/fi/train'\n\nThe 'mr-tydi/fi/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=6,561\n - 'qrels': (relevance assessments); count=6,561\n\n - For 'docs', use 'irds/mr-tydi_fi'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
52fa3f74fba6e8df5ed50368faadf723b826b77e |
# Dataset Card for `mr-tydi/id`
The `mr-tydi/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=1,469,399
- `queries` (i.e., topics); count=6,977
- `qrels`: (relevance assessments); count=7,087
This dataset is used by: [`mr-tydi_id_dev`](https://huggingface.co/datasets/irds/mr-tydi_id_dev), [`mr-tydi_id_test`](https://huggingface.co/datasets/irds/mr-tydi_id_test), [`mr-tydi_id_train`](https://huggingface.co/datasets/irds/mr-tydi_id_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_id', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_id', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_id', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_id | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:34:37+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id`", "viewer": false} | 2023-01-05T03:34:43+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/id'
The 'mr-tydi/id' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=1,469,399
- 'queries' (i.e., topics); count=6,977
- 'qrels': (relevance assessments); count=7,087
This dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/id'\n\nThe 'mr-tydi/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,469,399\n - 'queries' (i.e., topics); count=6,977\n - 'qrels': (relevance assessments); count=7,087\n\n\nThis dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/id'\n\nThe 'mr-tydi/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,469,399\n - 'queries' (i.e., topics); count=6,977\n - 'qrels': (relevance assessments); count=7,087\n\n\nThis dataset is used by: 'mr-tydi_id_dev', 'mr-tydi_id_test', 'mr-tydi_id_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
0bc171fb2cf461c7bdc5cc09c206d5abdd319605 |
# Dataset Card for `mr-tydi/id/dev`
The `mr-tydi/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,224
- `qrels`: (relevance assessments); count=1,224
- For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_id_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_id_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_id_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_id",
"region:us"
] | 2023-01-05T03:34:48+00:00 | {"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/dev`", "viewer": false} | 2023-01-05T03:34:54+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
|
# Dataset Card for 'mr-tydi/id/dev'
The 'mr-tydi/id/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,224
- 'qrels': (relevance assessments); count=1,224
- For 'docs', use 'irds/mr-tydi_id'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/id/dev'\n\nThe 'mr-tydi/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,224\n - 'qrels': (relevance assessments); count=1,224\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n",
"# Dataset Card for 'mr-tydi/id/dev'\n\nThe 'mr-tydi/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,224\n - 'qrels': (relevance assessments); count=1,224\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
6742bbe73521c9c48ddc8b9d20759a5adfe6f215 |
# Dataset Card for `mr-tydi/id/test`
The `mr-tydi/id/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=829
- `qrels`: (relevance assessments); count=961
- For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_id_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_id_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_id_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_id",
"region:us"
] | 2023-01-05T03:34:59+00:00 | {"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/test`", "viewer": false} | 2023-01-05T03:35:05+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
|
# Dataset Card for 'mr-tydi/id/test'
The 'mr-tydi/id/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=829
- 'qrels': (relevance assessments); count=961
- For 'docs', use 'irds/mr-tydi_id'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/id/test'\n\nThe 'mr-tydi/id/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=829\n - 'qrels': (relevance assessments); count=961\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n",
"# Dataset Card for 'mr-tydi/id/test'\n\nThe 'mr-tydi/id/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=829\n - 'qrels': (relevance assessments); count=961\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a77f581e55790621d489d5efe98e850e12ce6e39 |
# Dataset Card for `mr-tydi/id/train`
The `mr-tydi/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/id/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=4,902
- `qrels`: (relevance assessments); count=4,902
- For `docs`, use [`irds/mr-tydi_id`](https://huggingface.co/datasets/irds/mr-tydi_id)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_id_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_id_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_id_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_id",
"region:us"
] | 2023-01-05T03:35:10+00:00 | {"source_datasets": ["irds/mr-tydi_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/id/train`", "viewer": false} | 2023-01-05T03:35:16+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us
|
# Dataset Card for 'mr-tydi/id/train'
The 'mr-tydi/id/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=4,902
- 'qrels': (relevance assessments); count=4,902
- For 'docs', use 'irds/mr-tydi_id'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/id/train'\n\nThe 'mr-tydi/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=4,902\n - 'qrels': (relevance assessments); count=4,902\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_id #region-us \n",
"# Dataset Card for 'mr-tydi/id/train'\n\nThe 'mr-tydi/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=4,902\n - 'qrels': (relevance assessments); count=4,902\n\n - For 'docs', use 'irds/mr-tydi_id'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
fb0ed00b09554d1aac88efb7ee4274bbc4bd88e3 |
# Dataset Card for `mr-tydi/ja`
The `mr-tydi/ja` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=7,000,027
- `queries` (i.e., topics); count=5,353
- `qrels`: (relevance assessments); count=5,548
This dataset is used by: [`mr-tydi_ja_dev`](https://huggingface.co/datasets/irds/mr-tydi_ja_dev), [`mr-tydi_ja_test`](https://huggingface.co/datasets/irds/mr-tydi_ja_test), [`mr-tydi_ja_train`](https://huggingface.co/datasets/irds/mr-tydi_ja_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_ja', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_ja', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ja', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ja | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:35:22+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja`", "viewer": false} | 2023-01-05T03:35:27+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/ja'
The 'mr-tydi/ja' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=7,000,027
- 'queries' (i.e., topics); count=5,353
- 'qrels': (relevance assessments); count=5,548
This dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ja'\n\nThe 'mr-tydi/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=7,000,027\n - 'queries' (i.e., topics); count=5,353\n - 'qrels': (relevance assessments); count=5,548\n\n\nThis dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/ja'\n\nThe 'mr-tydi/ja' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=7,000,027\n - 'queries' (i.e., topics); count=5,353\n - 'qrels': (relevance assessments); count=5,548\n\n\nThis dataset is used by: 'mr-tydi_ja_dev', 'mr-tydi_ja_test', 'mr-tydi_ja_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
bb8500a049bedc507eae40fa893bc6acdb97e1d2 |
# Dataset Card for `mr-tydi/ja/dev`
The `mr-tydi/ja/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=928
- `qrels`: (relevance assessments); count=928
- For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ja_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ja_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ja_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ja",
"region:us"
] | 2023-01-05T03:35:33+00:00 | {"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/dev`", "viewer": false} | 2023-01-05T03:35:38+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
|
# Dataset Card for 'mr-tydi/ja/dev'
The 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=928
- 'qrels': (relevance assessments); count=928
- For 'docs', use 'irds/mr-tydi_ja'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ja/dev'\n\nThe 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=928\n - 'qrels': (relevance assessments); count=928\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n",
"# Dataset Card for 'mr-tydi/ja/dev'\n\nThe 'mr-tydi/ja/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=928\n - 'qrels': (relevance assessments); count=928\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
81d197db47cb6d78960d14c6f731a1c9be52aedf |
# Dataset Card for `mr-tydi/ja/test`
The `mr-tydi/ja/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=720
- `qrels`: (relevance assessments); count=923
- For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ja_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ja_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ja_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ja",
"region:us"
] | 2023-01-05T03:35:44+00:00 | {"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/test`", "viewer": false} | 2023-01-05T03:35:50+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
|
# Dataset Card for 'mr-tydi/ja/test'
The 'mr-tydi/ja/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=720
- 'qrels': (relevance assessments); count=923
- For 'docs', use 'irds/mr-tydi_ja'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ja/test'\n\nThe 'mr-tydi/ja/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=720\n - 'qrels': (relevance assessments); count=923\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n",
"# Dataset Card for 'mr-tydi/ja/test'\n\nThe 'mr-tydi/ja/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=720\n - 'qrels': (relevance assessments); count=923\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
87989a49e98945c2be5bc022392bc40a97d6311b |
# Dataset Card for `mr-tydi/ja/train`
The `mr-tydi/ja/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ja/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=3,697
- `qrels`: (relevance assessments); count=3,697
- For `docs`, use [`irds/mr-tydi_ja`](https://huggingface.co/datasets/irds/mr-tydi_ja)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ja_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ja_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ja_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ja",
"region:us"
] | 2023-01-05T03:35:55+00:00 | {"source_datasets": ["irds/mr-tydi_ja"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ja/train`", "viewer": false} | 2023-01-05T03:36:01+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us
|
# Dataset Card for 'mr-tydi/ja/train'
The 'mr-tydi/ja/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=3,697
- 'qrels': (relevance assessments); count=3,697
- For 'docs', use 'irds/mr-tydi_ja'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ja/train'\n\nThe 'mr-tydi/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,697\n - 'qrels': (relevance assessments); count=3,697\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ja #region-us \n",
"# Dataset Card for 'mr-tydi/ja/train'\n\nThe 'mr-tydi/ja/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,697\n - 'qrels': (relevance assessments); count=3,697\n\n - For 'docs', use 'irds/mr-tydi_ja'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
19d49b07a7ca272e41bdf4a611d03afb80da86a4 |
# Dataset Card for `mr-tydi/ko`
The `mr-tydi/ko` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=1,496,126
- `queries` (i.e., topics); count=2,019
- `qrels`: (relevance assessments); count=2,116
This dataset is used by: [`mr-tydi_ko_dev`](https://huggingface.co/datasets/irds/mr-tydi_ko_dev), [`mr-tydi_ko_test`](https://huggingface.co/datasets/irds/mr-tydi_ko_test), [`mr-tydi_ko_train`](https://huggingface.co/datasets/irds/mr-tydi_ko_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_ko', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_ko', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ko', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ko | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:36:06+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko`", "viewer": false} | 2023-01-05T03:36:12+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/ko'
The 'mr-tydi/ko' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=1,496,126
- 'queries' (i.e., topics); count=2,019
- 'qrels': (relevance assessments); count=2,116
This dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ko'\n\nThe 'mr-tydi/ko' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,496,126\n - 'queries' (i.e., topics); count=2,019\n - 'qrels': (relevance assessments); count=2,116\n\n\nThis dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/ko'\n\nThe 'mr-tydi/ko' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,496,126\n - 'queries' (i.e., topics); count=2,019\n - 'qrels': (relevance assessments); count=2,116\n\n\nThis dataset is used by: 'mr-tydi_ko_dev', 'mr-tydi_ko_test', 'mr-tydi_ko_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
50fbf3dc790d69f8223a40f7b507d1c9c83560d1 |
# Dataset Card for `mr-tydi/ko/dev`
The `mr-tydi/ko/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=303
- `qrels`: (relevance assessments); count=307
- For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ko_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ko_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ko_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ko",
"region:us"
] | 2023-01-05T03:36:17+00:00 | {"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/dev`", "viewer": false} | 2023-01-05T03:36:23+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
|
# Dataset Card for 'mr-tydi/ko/dev'
The 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=303
- 'qrels': (relevance assessments); count=307
- For 'docs', use 'irds/mr-tydi_ko'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ko/dev'\n\nThe 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=303\n - 'qrels': (relevance assessments); count=307\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n",
"# Dataset Card for 'mr-tydi/ko/dev'\n\nThe 'mr-tydi/ko/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=303\n - 'qrels': (relevance assessments); count=307\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
e4ad9adfe178042d250dbd9e7a41933aad34c331 |
# Dataset Card for `mr-tydi/ko/test`
The `mr-tydi/ko/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=421
- `qrels`: (relevance assessments); count=492
- For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ko_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ko_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ko_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ko",
"region:us"
] | 2023-01-05T03:36:28+00:00 | {"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/test`", "viewer": false} | 2023-01-05T03:36:34+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
|
# Dataset Card for 'mr-tydi/ko/test'
The 'mr-tydi/ko/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=421
- 'qrels': (relevance assessments); count=492
- For 'docs', use 'irds/mr-tydi_ko'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ko/test'\n\nThe 'mr-tydi/ko/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=421\n - 'qrels': (relevance assessments); count=492\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n",
"# Dataset Card for 'mr-tydi/ko/test'\n\nThe 'mr-tydi/ko/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=421\n - 'qrels': (relevance assessments); count=492\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
b003a7ba3223a88f771eb72917da601b429f7793 |
# Dataset Card for `mr-tydi/ko/train`
The `mr-tydi/ko/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ko/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,295
- `qrels`: (relevance assessments); count=1,317
- For `docs`, use [`irds/mr-tydi_ko`](https://huggingface.co/datasets/irds/mr-tydi_ko)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ko_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ko_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ko_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ko",
"region:us"
] | 2023-01-05T03:36:40+00:00 | {"source_datasets": ["irds/mr-tydi_ko"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ko/train`", "viewer": false} | 2023-01-05T03:36:45+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us
|
# Dataset Card for 'mr-tydi/ko/train'
The 'mr-tydi/ko/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,295
- 'qrels': (relevance assessments); count=1,317
- For 'docs', use 'irds/mr-tydi_ko'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ko/train'\n\nThe 'mr-tydi/ko/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,295\n - 'qrels': (relevance assessments); count=1,317\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ko #region-us \n",
"# Dataset Card for 'mr-tydi/ko/train'\n\nThe 'mr-tydi/ko/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,295\n - 'qrels': (relevance assessments); count=1,317\n\n - For 'docs', use 'irds/mr-tydi_ko'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
921f7bc8537c94f8922de61012d2c2a1b6ef0210 |
# Dataset Card for `mr-tydi/ru`
The `mr-tydi/ru` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=9,597,504
- `queries` (i.e., topics); count=7,763
- `qrels`: (relevance assessments); count=7,909
This dataset is used by: [`mr-tydi_ru_dev`](https://huggingface.co/datasets/irds/mr-tydi_ru_dev), [`mr-tydi_ru_test`](https://huggingface.co/datasets/irds/mr-tydi_ru_test), [`mr-tydi_ru_train`](https://huggingface.co/datasets/irds/mr-tydi_ru_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_ru', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_ru', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ru', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ru | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:36:51+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru`", "viewer": false} | 2023-01-05T03:36:56+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/ru'
The 'mr-tydi/ru' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=9,597,504
- 'queries' (i.e., topics); count=7,763
- 'qrels': (relevance assessments); count=7,909
This dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ru'\n\nThe 'mr-tydi/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=9,597,504\n - 'queries' (i.e., topics); count=7,763\n - 'qrels': (relevance assessments); count=7,909\n\n\nThis dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/ru'\n\nThe 'mr-tydi/ru' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=9,597,504\n - 'queries' (i.e., topics); count=7,763\n - 'qrels': (relevance assessments); count=7,909\n\n\nThis dataset is used by: 'mr-tydi_ru_dev', 'mr-tydi_ru_test', 'mr-tydi_ru_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
a8ee1a892b77782a131f506ff02d1fc77e8729e4 |
# Dataset Card for `mr-tydi/ru/dev`
The `mr-tydi/ru/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,375
- `qrels`: (relevance assessments); count=1,375
- For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ru_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ru_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ru_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ru",
"region:us"
] | 2023-01-05T03:37:02+00:00 | {"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/dev`", "viewer": false} | 2023-01-05T03:37:08+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
|
# Dataset Card for 'mr-tydi/ru/dev'
The 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,375
- 'qrels': (relevance assessments); count=1,375
- For 'docs', use 'irds/mr-tydi_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ru/dev'\n\nThe 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,375\n - 'qrels': (relevance assessments); count=1,375\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n",
"# Dataset Card for 'mr-tydi/ru/dev'\n\nThe 'mr-tydi/ru/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,375\n - 'qrels': (relevance assessments); count=1,375\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
dc72ad423ea653df9a152901e94b70459b867200 |
# Dataset Card for `mr-tydi/ru/test`
The `mr-tydi/ru/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=995
- `qrels`: (relevance assessments); count=1,168
- For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ru_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ru_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ru_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ru",
"region:us"
] | 2023-01-05T03:37:13+00:00 | {"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/test`", "viewer": false} | 2023-01-05T03:37:19+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
|
# Dataset Card for 'mr-tydi/ru/test'
The 'mr-tydi/ru/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=995
- 'qrels': (relevance assessments); count=1,168
- For 'docs', use 'irds/mr-tydi_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ru/test'\n\nThe 'mr-tydi/ru/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=995\n - 'qrels': (relevance assessments); count=1,168\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n",
"# Dataset Card for 'mr-tydi/ru/test'\n\nThe 'mr-tydi/ru/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=995\n - 'qrels': (relevance assessments); count=1,168\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
fba320652c0956c9cc9ae9c329a595f4edf5907e |
# Dataset Card for `mr-tydi/ru/train`
The `mr-tydi/ru/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/ru/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=5,366
- `qrels`: (relevance assessments); count=5,366
- For `docs`, use [`irds/mr-tydi_ru`](https://huggingface.co/datasets/irds/mr-tydi_ru)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_ru_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_ru_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_ru_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_ru",
"region:us"
] | 2023-01-05T03:37:24+00:00 | {"source_datasets": ["irds/mr-tydi_ru"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/ru/train`", "viewer": false} | 2023-01-05T03:37:30+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us
|
# Dataset Card for 'mr-tydi/ru/train'
The 'mr-tydi/ru/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=5,366
- 'qrels': (relevance assessments); count=5,366
- For 'docs', use 'irds/mr-tydi_ru'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/ru/train'\n\nThe 'mr-tydi/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=5,366\n - 'qrels': (relevance assessments); count=5,366\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_ru #region-us \n",
"# Dataset Card for 'mr-tydi/ru/train'\n\nThe 'mr-tydi/ru/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=5,366\n - 'qrels': (relevance assessments); count=5,366\n\n - For 'docs', use 'irds/mr-tydi_ru'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
e2b0c8a8bd1c0ab385155db752a5a4b617c0acd3 |
# Dataset Card for `mr-tydi/sw`
The `mr-tydi/sw` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=136,689
- `queries` (i.e., topics); count=3,271
- `qrels`: (relevance assessments); count=3,767
This dataset is used by: [`mr-tydi_sw_dev`](https://huggingface.co/datasets/irds/mr-tydi_sw_dev), [`mr-tydi_sw_test`](https://huggingface.co/datasets/irds/mr-tydi_sw_test), [`mr-tydi_sw_train`](https://huggingface.co/datasets/irds/mr-tydi_sw_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_sw', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_sw', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_sw', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_sw | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:37:35+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw`", "viewer": false} | 2023-01-05T03:37:41+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/sw'
The 'mr-tydi/sw' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=136,689
- 'queries' (i.e., topics); count=3,271
- 'qrels': (relevance assessments); count=3,767
This dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/sw'\n\nThe 'mr-tydi/sw' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=136,689\n - 'queries' (i.e., topics); count=3,271\n - 'qrels': (relevance assessments); count=3,767\n\n\nThis dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/sw'\n\nThe 'mr-tydi/sw' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=136,689\n - 'queries' (i.e., topics); count=3,271\n - 'qrels': (relevance assessments); count=3,767\n\n\nThis dataset is used by: 'mr-tydi_sw_dev', 'mr-tydi_sw_test', 'mr-tydi_sw_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
7d5afad39aae315f9b7791f43125af82bd71d691 |
# Dataset Card for `mr-tydi/sw/dev`
The `mr-tydi/sw/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=526
- `qrels`: (relevance assessments); count=623
- For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_sw_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_sw_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_sw_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_sw",
"region:us"
] | 2023-01-05T03:37:46+00:00 | {"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/dev`", "viewer": false} | 2023-01-05T03:37:52+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
|
# Dataset Card for 'mr-tydi/sw/dev'
The 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=526
- 'qrels': (relevance assessments); count=623
- For 'docs', use 'irds/mr-tydi_sw'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/sw/dev'\n\nThe 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=526\n - 'qrels': (relevance assessments); count=623\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n",
"# Dataset Card for 'mr-tydi/sw/dev'\n\nThe 'mr-tydi/sw/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=526\n - 'qrels': (relevance assessments); count=623\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
516c5036fd3342954acbb1d68a7d4d01372a5bbf |
# Dataset Card for `mr-tydi/sw/test`
The `mr-tydi/sw/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=670
- `qrels`: (relevance assessments); count=743
- For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_sw_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_sw_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_sw_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_sw",
"region:us"
] | 2023-01-05T03:37:57+00:00 | {"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/test`", "viewer": false} | 2023-01-05T03:38:03+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
|
# Dataset Card for 'mr-tydi/sw/test'
The 'mr-tydi/sw/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=670
- 'qrels': (relevance assessments); count=743
- For 'docs', use 'irds/mr-tydi_sw'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/sw/test'\n\nThe 'mr-tydi/sw/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=670\n - 'qrels': (relevance assessments); count=743\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n",
"# Dataset Card for 'mr-tydi/sw/test'\n\nThe 'mr-tydi/sw/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=670\n - 'qrels': (relevance assessments); count=743\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
46fff70c898d5f126547e7441e476b0e85261fca |
# Dataset Card for `mr-tydi/sw/train`
The `mr-tydi/sw/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/sw/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=2,072
- `qrels`: (relevance assessments); count=2,401
- For `docs`, use [`irds/mr-tydi_sw`](https://huggingface.co/datasets/irds/mr-tydi_sw)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_sw_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_sw_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_sw_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_sw",
"region:us"
] | 2023-01-05T03:38:09+00:00 | {"source_datasets": ["irds/mr-tydi_sw"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/sw/train`", "viewer": false} | 2023-01-05T03:38:14+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us
|
# Dataset Card for 'mr-tydi/sw/train'
The 'mr-tydi/sw/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=2,072
- 'qrels': (relevance assessments); count=2,401
- For 'docs', use 'irds/mr-tydi_sw'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/sw/train'\n\nThe 'mr-tydi/sw/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,072\n - 'qrels': (relevance assessments); count=2,401\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_sw #region-us \n",
"# Dataset Card for 'mr-tydi/sw/train'\n\nThe 'mr-tydi/sw/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,072\n - 'qrels': (relevance assessments); count=2,401\n\n - For 'docs', use 'irds/mr-tydi_sw'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
639e860df1f9b34602230f4318d0fbf898bd960c |
# Dataset Card for `mr-tydi/te`
The `mr-tydi/te` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=548,224
- `queries` (i.e., topics); count=5,517
- `qrels`: (relevance assessments); count=5,540
This dataset is used by: [`mr-tydi_te_dev`](https://huggingface.co/datasets/irds/mr-tydi_te_dev), [`mr-tydi_te_test`](https://huggingface.co/datasets/irds/mr-tydi_te_test), [`mr-tydi_te_train`](https://huggingface.co/datasets/irds/mr-tydi_te_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_te', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_te', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_te', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_te | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:38:20+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te`", "viewer": false} | 2023-01-05T03:38:25+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/te'
The 'mr-tydi/te' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=548,224
- 'queries' (i.e., topics); count=5,517
- 'qrels': (relevance assessments); count=5,540
This dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/te'\n\nThe 'mr-tydi/te' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=548,224\n - 'queries' (i.e., topics); count=5,517\n - 'qrels': (relevance assessments); count=5,540\n\n\nThis dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/te'\n\nThe 'mr-tydi/te' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=548,224\n - 'queries' (i.e., topics); count=5,517\n - 'qrels': (relevance assessments); count=5,540\n\n\nThis dataset is used by: 'mr-tydi_te_dev', 'mr-tydi_te_test', 'mr-tydi_te_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
968e3f3407be0e6883971ff27778f4178c3fd370 |
# Dataset Card for `mr-tydi/te/dev`
The `mr-tydi/te/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=983
- `qrels`: (relevance assessments); count=983
- For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_te_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_te_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_te_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_te",
"region:us"
] | 2023-01-05T03:38:31+00:00 | {"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/dev`", "viewer": false} | 2023-01-05T03:38:36+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
|
# Dataset Card for 'mr-tydi/te/dev'
The 'mr-tydi/te/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=983
- 'qrels': (relevance assessments); count=983
- For 'docs', use 'irds/mr-tydi_te'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/te/dev'\n\nThe 'mr-tydi/te/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=983\n - 'qrels': (relevance assessments); count=983\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n",
"# Dataset Card for 'mr-tydi/te/dev'\n\nThe 'mr-tydi/te/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=983\n - 'qrels': (relevance assessments); count=983\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
43fba1a998336cc7d576b25d65e6b89e4c482ba5 |
# Dataset Card for `mr-tydi/te/test`
The `mr-tydi/te/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=646
- `qrels`: (relevance assessments); count=677
- For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_te_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_te_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_te_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_te",
"region:us"
] | 2023-01-05T03:38:42+00:00 | {"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/test`", "viewer": false} | 2023-01-05T03:38:48+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
|
# Dataset Card for 'mr-tydi/te/test'
The 'mr-tydi/te/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=646
- 'qrels': (relevance assessments); count=677
- For 'docs', use 'irds/mr-tydi_te'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/te/test'\n\nThe 'mr-tydi/te/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=646\n - 'qrels': (relevance assessments); count=677\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n",
"# Dataset Card for 'mr-tydi/te/test'\n\nThe 'mr-tydi/te/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=646\n - 'qrels': (relevance assessments); count=677\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
9c297c01a47429ac07ce6a478f064e4311109e0a |
# Dataset Card for `mr-tydi/te/train`
The `mr-tydi/te/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/te/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=3,880
- `qrels`: (relevance assessments); count=3,880
- For `docs`, use [`irds/mr-tydi_te`](https://huggingface.co/datasets/irds/mr-tydi_te)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_te_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_te_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_te_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_te",
"region:us"
] | 2023-01-05T03:38:53+00:00 | {"source_datasets": ["irds/mr-tydi_te"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/te/train`", "viewer": false} | 2023-01-05T03:38:59+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us
|
# Dataset Card for 'mr-tydi/te/train'
The 'mr-tydi/te/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=3,880
- 'qrels': (relevance assessments); count=3,880
- For 'docs', use 'irds/mr-tydi_te'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/te/train'\n\nThe 'mr-tydi/te/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,880\n - 'qrels': (relevance assessments); count=3,880\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_te #region-us \n",
"# Dataset Card for 'mr-tydi/te/train'\n\nThe 'mr-tydi/te/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,880\n - 'qrels': (relevance assessments); count=3,880\n\n - For 'docs', use 'irds/mr-tydi_te'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
95331d87066c62a0c61a298d0e3d66c113bd3967 |
# Dataset Card for `mr-tydi/th`
The `mr-tydi/th` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=568,855
- `queries` (i.e., topics); count=5,322
- `qrels`: (relevance assessments); count=5,545
This dataset is used by: [`mr-tydi_th_dev`](https://huggingface.co/datasets/irds/mr-tydi_th_dev), [`mr-tydi_th_test`](https://huggingface.co/datasets/irds/mr-tydi_th_test), [`mr-tydi_th_train`](https://huggingface.co/datasets/irds/mr-tydi_th_train)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/mr-tydi_th', 'docs')
for record in docs:
record # {'doc_id': ..., 'text': ...}
queries = load_dataset('irds/mr-tydi_th', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_th', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_th | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:39:04+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th`", "viewer": false} | 2023-01-05T03:39:10+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'mr-tydi/th'
The 'mr-tydi/th' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=568,855
- 'queries' (i.e., topics); count=5,322
- 'qrels': (relevance assessments); count=5,545
This dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/th'\n\nThe 'mr-tydi/th' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=568,855\n - 'queries' (i.e., topics); count=5,322\n - 'qrels': (relevance assessments); count=5,545\n\n\nThis dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'mr-tydi/th'\n\nThe 'mr-tydi/th' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=568,855\n - 'queries' (i.e., topics); count=5,322\n - 'qrels': (relevance assessments); count=5,545\n\n\nThis dataset is used by: 'mr-tydi_th_dev', 'mr-tydi_th_test', 'mr-tydi_th_train'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
3b5294ae5f504da36b7db4a6c5aef560ef131d0e |
# Dataset Card for `mr-tydi/th/dev`
The `mr-tydi/th/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/dev).
# Data
This dataset provides:
- `queries` (i.e., topics); count=807
- `qrels`: (relevance assessments); count=817
- For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_th_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_th_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_th_dev | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_th",
"region:us"
] | 2023-01-05T03:39:15+00:00 | {"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/dev`", "viewer": false} | 2023-01-05T03:39:21+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
|
# Dataset Card for 'mr-tydi/th/dev'
The 'mr-tydi/th/dev' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=807
- 'qrels': (relevance assessments); count=817
- For 'docs', use 'irds/mr-tydi_th'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/th/dev'\n\nThe 'mr-tydi/th/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=807\n - 'qrels': (relevance assessments); count=817\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n",
"# Dataset Card for 'mr-tydi/th/dev'\n\nThe 'mr-tydi/th/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=807\n - 'qrels': (relevance assessments); count=817\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
188293dbdf922e1eef8f4f9c16e72dc9c93f603f |
# Dataset Card for `mr-tydi/th/test`
The `mr-tydi/th/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/test).
# Data
This dataset provides:
- `queries` (i.e., topics); count=1,190
- `qrels`: (relevance assessments); count=1,368
- For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_th_test', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_th_test', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_th_test | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_th",
"region:us"
] | 2023-01-05T03:39:26+00:00 | {"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/test`", "viewer": false} | 2023-01-05T03:39:32+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
|
# Dataset Card for 'mr-tydi/th/test'
The 'mr-tydi/th/test' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=1,190
- 'qrels': (relevance assessments); count=1,368
- For 'docs', use 'irds/mr-tydi_th'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/th/test'\n\nThe 'mr-tydi/th/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,190\n - 'qrels': (relevance assessments); count=1,368\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n",
"# Dataset Card for 'mr-tydi/th/test'\n\nThe 'mr-tydi/th/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,190\n - 'qrels': (relevance assessments); count=1,368\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
7a1c0d528c5af261b3bf83d78d17162197b7f784 |
# Dataset Card for `mr-tydi/th/train`
The `mr-tydi/th/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/mr-tydi#mr-tydi/th/train).
# Data
This dataset provides:
- `queries` (i.e., topics); count=3,319
- `qrels`: (relevance assessments); count=3,360
- For `docs`, use [`irds/mr-tydi_th`](https://huggingface.co/datasets/irds/mr-tydi_th)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/mr-tydi_th_train', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/mr-tydi_th_train', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Zhang2021MrTyDi,
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval},
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin},
year={2021},
journal={arXiv:2108.08787},
}
@article{Clark2020TyDiQa,
title={{TyDi QA}: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki},
year={2020},
journal={Transactions of the Association for Computational Linguistics}
}
```
| irds/mr-tydi_th_train | [
"task_categories:text-retrieval",
"source_datasets:irds/mr-tydi_th",
"region:us"
] | 2023-01-05T03:39:37+00:00 | {"source_datasets": ["irds/mr-tydi_th"], "task_categories": ["text-retrieval"], "pretty_name": "`mr-tydi/th/train`", "viewer": false} | 2023-01-05T03:39:43+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us
|
# Dataset Card for 'mr-tydi/th/train'
The 'mr-tydi/th/train' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=3,319
- 'qrels': (relevance assessments); count=3,360
- For 'docs', use 'irds/mr-tydi_th'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'mr-tydi/th/train'\n\nThe 'mr-tydi/th/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,319\n - 'qrels': (relevance assessments); count=3,360\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/mr-tydi_th #region-us \n",
"# Dataset Card for 'mr-tydi/th/train'\n\nThe 'mr-tydi/th/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,319\n - 'qrels': (relevance assessments); count=3,360\n\n - For 'docs', use 'irds/mr-tydi_th'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
956bce82788ff308635d06327bb0bd48cd56a3be |
# Dataset Card for `msmarco-document`
The `msmarco-document` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document).
# Data
This dataset provides:
- `docs` (documents, i.e., the corpus); count=3,213,835
This dataset is used by: [`msmarco-document_trec-dl-hard`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard), [`msmarco-document_trec-dl-hard_fold1`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold1), [`msmarco-document_trec-dl-hard_fold2`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold2), [`msmarco-document_trec-dl-hard_fold3`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold3), [`msmarco-document_trec-dl-hard_fold4`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold4), [`msmarco-document_trec-dl-hard_fold5`](https://huggingface.co/datasets/irds/msmarco-document_trec-dl-hard_fold5)
## Usage
```python
from datasets import load_dataset
docs = load_dataset('irds/msmarco-document', 'docs')
for record in docs:
record # {'doc_id': ..., 'url': ..., 'title': ..., 'body': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document | [
"task_categories:text-retrieval",
"region:us"
] | 2023-01-05T03:39:49+00:00 | {"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document`", "viewer": false} | 2023-01-05T03:39:55+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #region-us
|
# Dataset Card for 'msmarco-document'
The 'msmarco-document' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'docs' (documents, i.e., the corpus); count=3,213,835
This dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document'\n\nThe 'msmarco-document' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=3,213,835\n\n\nThis dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #region-us \n",
"# Dataset Card for 'msmarco-document'\n\nThe 'msmarco-document' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=3,213,835\n\n\nThis dataset is used by: 'msmarco-document_trec-dl-hard', 'msmarco-document_trec-dl-hard_fold1', 'msmarco-document_trec-dl-hard_fold2', 'msmarco-document_trec-dl-hard_fold3', 'msmarco-document_trec-dl-hard_fold4', 'msmarco-document_trec-dl-hard_fold5'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
35ededfdecf541b9a9249f636035c6b302387e0c |
# Dataset Card for `msmarco-document/trec-dl-hard`
The `msmarco-document/trec-dl-hard` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard).
# Data
This dataset provides:
- `queries` (i.e., topics); count=50
- `qrels`: (relevance assessments); count=8,544
- For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/msmarco-document_trec-dl-hard', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/msmarco-document_trec-dl-hard', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Mackie2021DlHard,
title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset},
author={Iain Mackie and Jeffrey Dalton and Andrew Yates},
journal={ArXiv},
year={2021},
volume={abs/2105.07975}
}
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document_trec-dl-hard | [
"task_categories:text-retrieval",
"source_datasets:irds/msmarco-document",
"region:us"
] | 2023-01-05T03:40:00+00:00 | {"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard`", "viewer": false} | 2023-01-05T03:40:06+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
|
# Dataset Card for 'msmarco-document/trec-dl-hard'
The 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=50
- 'qrels': (relevance assessments); count=8,544
- For 'docs', use 'irds/msmarco-document'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document/trec-dl-hard'\n\nThe 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=8,544\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n",
"# Dataset Card for 'msmarco-document/trec-dl-hard'\n\nThe 'msmarco-document/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=8,544\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
13ab0f3901a4a6e210e786a2edb7a5af8be22233 |
# Dataset Card for `msmarco-document/trec-dl-hard/fold1`
The `msmarco-document/trec-dl-hard/fold1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold1).
# Data
This dataset provides:
- `queries` (i.e., topics); count=10
- `qrels`: (relevance assessments); count=1,557
- For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold1', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold1', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Mackie2021DlHard,
title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset},
author={Iain Mackie and Jeffrey Dalton and Andrew Yates},
journal={ArXiv},
year={2021},
volume={abs/2105.07975}
}
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document_trec-dl-hard_fold1 | [
"task_categories:text-retrieval",
"source_datasets:irds/msmarco-document",
"region:us"
] | 2023-01-05T03:40:11+00:00 | {"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold1`", "viewer": false} | 2023-01-05T03:40:17+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
|
# Dataset Card for 'msmarco-document/trec-dl-hard/fold1'
The 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=10
- 'qrels': (relevance assessments); count=1,557
- For 'docs', use 'irds/msmarco-document'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold1'\n\nThe 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,557\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n",
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold1'\n\nThe 'msmarco-document/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,557\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
b7a4726f6a41d14709243cf99043230d44a86480 |
# Dataset Card for `msmarco-document/trec-dl-hard/fold2`
The `msmarco-document/trec-dl-hard/fold2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold2).
# Data
This dataset provides:
- `queries` (i.e., topics); count=10
- `qrels`: (relevance assessments); count=1,345
- For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold2', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold2', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Mackie2021DlHard,
title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset},
author={Iain Mackie and Jeffrey Dalton and Andrew Yates},
journal={ArXiv},
year={2021},
volume={abs/2105.07975}
}
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document_trec-dl-hard_fold2 | [
"task_categories:text-retrieval",
"source_datasets:irds/msmarco-document",
"region:us"
] | 2023-01-05T03:40:22+00:00 | {"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold2`", "viewer": false} | 2023-01-05T03:40:28+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
|
# Dataset Card for 'msmarco-document/trec-dl-hard/fold2'
The 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=10
- 'qrels': (relevance assessments); count=1,345
- For 'docs', use 'irds/msmarco-document'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold2'\n\nThe 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,345\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n",
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold2'\n\nThe 'msmarco-document/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,345\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
488b004ede7268c778980a695ff5b731ddb14e68 |
# Dataset Card for `msmarco-document/trec-dl-hard/fold3`
The `msmarco-document/trec-dl-hard/fold3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold3).
# Data
This dataset provides:
- `queries` (i.e., topics); count=10
- `qrels`: (relevance assessments); count=474
- For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold3', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold3', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Mackie2021DlHard,
title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset},
author={Iain Mackie and Jeffrey Dalton and Andrew Yates},
journal={ArXiv},
year={2021},
volume={abs/2105.07975}
}
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document_trec-dl-hard_fold3 | [
"task_categories:text-retrieval",
"source_datasets:irds/msmarco-document",
"region:us"
] | 2023-01-05T03:40:33+00:00 | {"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold3`", "viewer": false} | 2023-01-05T03:40:39+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
|
# Dataset Card for 'msmarco-document/trec-dl-hard/fold3'
The 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=10
- 'qrels': (relevance assessments); count=474
- For 'docs', use 'irds/msmarco-document'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold3'\n\nThe 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=474\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n",
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold3'\n\nThe 'msmarco-document/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=474\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
d4729675ebbbfd4ee7f2d129d2283a28726d2eda |
# Dataset Card for `msmarco-document/trec-dl-hard/fold4`
The `msmarco-document/trec-dl-hard/fold4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package.
For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-document#msmarco-document/trec-dl-hard/fold4).
# Data
This dataset provides:
- `queries` (i.e., topics); count=10
- `qrels`: (relevance assessments); count=1,054
- For `docs`, use [`irds/msmarco-document`](https://huggingface.co/datasets/irds/msmarco-document)
## Usage
```python
from datasets import load_dataset
queries = load_dataset('irds/msmarco-document_trec-dl-hard_fold4', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/msmarco-document_trec-dl-hard_fold4', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ...}
```
Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in π€ Dataset format.
## Citation Information
```
@article{Mackie2021DlHard,
title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset},
author={Iain Mackie and Jeffrey Dalton and Andrew Yates},
journal={ArXiv},
year={2021},
volume={abs/2105.07975}
}
@inproceedings{Bajaj2016Msmarco,
title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset},
author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang},
booktitle={InCoCo@NIPS},
year={2016}
}
```
| irds/msmarco-document_trec-dl-hard_fold4 | [
"task_categories:text-retrieval",
"source_datasets:irds/msmarco-document",
"region:us"
] | 2023-01-05T03:40:45+00:00 | {"source_datasets": ["irds/msmarco-document"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-document/trec-dl-hard/fold4`", "viewer": false} | 2023-01-05T03:40:50+00:00 | [] | [] | TAGS
#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us
|
# Dataset Card for 'msmarco-document/trec-dl-hard/fold4'
The 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
# Data
This dataset provides:
- 'queries' (i.e., topics); count=10
- 'qrels': (relevance assessments); count=1,054
- For 'docs', use 'irds/msmarco-document'
## Usage
Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in Dataset format.
| [
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold4'\n\nThe 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,054\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] | [
"TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-document #region-us \n",
"# Dataset Card for 'msmarco-document/trec-dl-hard/fold4'\n\nThe 'msmarco-document/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.",
"# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,054\n\n - For 'docs', use 'irds/msmarco-document'",
"## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format."
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.