sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
sequencelengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
sequencelengths
0
25
languages
sequencelengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
sequencelengths
0
352
processed_texts
sequencelengths
1
353
2686b0d4a10f365b8e51c3dc4941937c95b07ca7
# Dataset Card for `codesearchnet/challenge` The `codesearchnet/challenge` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/codesearchnet#codesearchnet/challenge). # Data This dataset provides: - `queries` (i.e., topics); count=99 - `qrels`: (relevance assessments); count=4,006 - For `docs`, use [`irds/codesearchnet`](https://huggingface.co/datasets/irds/codesearchnet) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/codesearchnet_challenge', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/codesearchnet_challenge', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'note': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} } ```
irds/codesearchnet_challenge
[ "task_categories:text-retrieval", "source_datasets:irds/codesearchnet", "region:us" ]
2023-01-05T03:03:31+00:00
{"source_datasets": ["irds/codesearchnet"], "task_categories": ["text-retrieval"], "pretty_name": "`codesearchnet/challenge`", "viewer": false}
2023-01-05T03:03:37+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us
# Dataset Card for 'codesearchnet/challenge' The 'codesearchnet/challenge' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=99 - 'qrels': (relevance assessments); count=4,006 - For 'docs', use 'irds/codesearchnet' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'codesearchnet/challenge'\n\nThe 'codesearchnet/challenge' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=99\n - 'qrels': (relevance assessments); count=4,006\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us \n", "# Dataset Card for 'codesearchnet/challenge'\n\nThe 'codesearchnet/challenge' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=99\n - 'qrels': (relevance assessments); count=4,006\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
853bf8f7923e1d3f916fecf38d4a437bb64ec18c
# Dataset Card for `codesearchnet/test` The `codesearchnet/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/codesearchnet#codesearchnet/test). # Data This dataset provides: - `queries` (i.e., topics); count=100,529 - `qrels`: (relevance assessments); count=100,529 - For `docs`, use [`irds/codesearchnet`](https://huggingface.co/datasets/irds/codesearchnet) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/codesearchnet_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/codesearchnet_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} } ```
irds/codesearchnet_test
[ "task_categories:text-retrieval", "source_datasets:irds/codesearchnet", "region:us" ]
2023-01-05T03:03:42+00:00
{"source_datasets": ["irds/codesearchnet"], "task_categories": ["text-retrieval"], "pretty_name": "`codesearchnet/test`", "viewer": false}
2023-01-05T03:03:48+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us
# Dataset Card for 'codesearchnet/test' The 'codesearchnet/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=100,529 - 'qrels': (relevance assessments); count=100,529 - For 'docs', use 'irds/codesearchnet' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'codesearchnet/test'\n\nThe 'codesearchnet/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=100,529\n - 'qrels': (relevance assessments); count=100,529\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us \n", "# Dataset Card for 'codesearchnet/test'\n\nThe 'codesearchnet/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=100,529\n - 'qrels': (relevance assessments); count=100,529\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
2387d7238e065304190aa0b769c9e7256e29e6d9
# Dataset Card for `codesearchnet/train` The `codesearchnet/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/codesearchnet#codesearchnet/train). # Data This dataset provides: - `queries` (i.e., topics); count=1,880,853 - `qrels`: (relevance assessments); count=1,880,853 - For `docs`, use [`irds/codesearchnet`](https://huggingface.co/datasets/irds/codesearchnet) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/codesearchnet_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/codesearchnet_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} } ```
irds/codesearchnet_train
[ "task_categories:text-retrieval", "source_datasets:irds/codesearchnet", "region:us" ]
2023-01-05T03:03:53+00:00
{"source_datasets": ["irds/codesearchnet"], "task_categories": ["text-retrieval"], "pretty_name": "`codesearchnet/train`", "viewer": false}
2023-01-05T03:03:59+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us
# Dataset Card for 'codesearchnet/train' The 'codesearchnet/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,880,853 - 'qrels': (relevance assessments); count=1,880,853 - For 'docs', use 'irds/codesearchnet' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'codesearchnet/train'\n\nThe 'codesearchnet/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,880,853\n - 'qrels': (relevance assessments); count=1,880,853\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us \n", "# Dataset Card for 'codesearchnet/train'\n\nThe 'codesearchnet/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,880,853\n - 'qrels': (relevance assessments); count=1,880,853\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
20e11b36196452db968cf0e9aa62203728c7c9b1
# Dataset Card for `codesearchnet/valid` The `codesearchnet/valid` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/codesearchnet#codesearchnet/valid). # Data This dataset provides: - `queries` (i.e., topics); count=89,154 - `qrels`: (relevance assessments); count=89,154 - For `docs`, use [`irds/codesearchnet`](https://huggingface.co/datasets/irds/codesearchnet) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/codesearchnet_valid', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/codesearchnet_valid', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} } ```
irds/codesearchnet_valid
[ "task_categories:text-retrieval", "source_datasets:irds/codesearchnet", "region:us" ]
2023-01-05T03:04:05+00:00
{"source_datasets": ["irds/codesearchnet"], "task_categories": ["text-retrieval"], "pretty_name": "`codesearchnet/valid`", "viewer": false}
2023-01-05T03:04:10+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us
# Dataset Card for 'codesearchnet/valid' The 'codesearchnet/valid' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=89,154 - 'qrels': (relevance assessments); count=89,154 - For 'docs', use 'irds/codesearchnet' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'codesearchnet/valid'\n\nThe 'codesearchnet/valid' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=89,154\n - 'qrels': (relevance assessments); count=89,154\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/codesearchnet #region-us \n", "# Dataset Card for 'codesearchnet/valid'\n\nThe 'codesearchnet/valid' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=89,154\n - 'qrels': (relevance assessments); count=89,154\n\n - For 'docs', use 'irds/codesearchnet'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
f6b24444633ecf2c5790e7bef324c304ea186e6d
# Dataset Card for `gov` The `gov` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,247,753 This dataset is used by: [`gov_trec-web-2002`](https://huggingface.co/datasets/irds/gov_trec-web-2002), [`gov_trec-web-2002_named-page`](https://huggingface.co/datasets/irds/gov_trec-web-2002_named-page), [`gov_trec-web-2003`](https://huggingface.co/datasets/irds/gov_trec-web-2003), [`gov_trec-web-2003_named-page`](https://huggingface.co/datasets/irds/gov_trec-web-2003_named-page), [`gov_trec-web-2004`](https://huggingface.co/datasets/irds/gov_trec-web-2004) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/gov', 'docs') for record in docs: record # {'doc_id': ..., 'url': ..., 'http_headers': ..., 'body': ..., 'body_content_type': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/gov
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:04:16+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`gov`", "viewer": false}
2023-01-05T03:04:22+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'gov' The 'gov' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,247,753 This dataset is used by: 'gov_trec-web-2002', 'gov_trec-web-2002_named-page', 'gov_trec-web-2003', 'gov_trec-web-2003_named-page', 'gov_trec-web-2004' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov'\n\nThe 'gov' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,247,753\n\n\nThis dataset is used by: 'gov_trec-web-2002', 'gov_trec-web-2002_named-page', 'gov_trec-web-2003', 'gov_trec-web-2003_named-page', 'gov_trec-web-2004'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'gov'\n\nThe 'gov' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,247,753\n\n\nThis dataset is used by: 'gov_trec-web-2002', 'gov_trec-web-2002_named-page', 'gov_trec-web-2003', 'gov_trec-web-2003_named-page', 'gov_trec-web-2004'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
503f29b4667d239494c65d0f5cd938780c471914
# Dataset Card for `gov/trec-web-2002` The `gov/trec-web-2002` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov/trec-web-2002). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=56,650 - For `docs`, use [`irds/gov`](https://huggingface.co/datasets/irds/gov) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov_trec-web-2002', 'queries') for record in queries: record # {'query_id': ..., 'title': ..., 'description': ..., 'narrative': ...} qrels = load_dataset('irds/gov_trec-web-2002', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Craswell2002TrecWeb, title={Overview of the TREC-2002 Web Track}, author={Nick Craswell and David Hawking}, booktitle={TREC}, year={2002} } ```
irds/gov_trec-web-2002
[ "task_categories:text-retrieval", "source_datasets:irds/gov", "region:us" ]
2023-01-05T03:04:27+00:00
{"source_datasets": ["irds/gov"], "task_categories": ["text-retrieval"], "pretty_name": "`gov/trec-web-2002`", "viewer": false}
2023-01-05T03:04:33+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov #region-us
# Dataset Card for 'gov/trec-web-2002' The 'gov/trec-web-2002' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=56,650 - For 'docs', use 'irds/gov' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov/trec-web-2002'\n\nThe 'gov/trec-web-2002' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=56,650\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov #region-us \n", "# Dataset Card for 'gov/trec-web-2002'\n\nThe 'gov/trec-web-2002' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=56,650\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e78f05cb38dbfac1c3b0c50546cb475b49a229e6
# Dataset Card for `gov/trec-web-2002/named-page` The `gov/trec-web-2002/named-page` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov/trec-web-2002/named-page). # Data This dataset provides: - `queries` (i.e., topics); count=150 - `qrels`: (relevance assessments); count=170 - For `docs`, use [`irds/gov`](https://huggingface.co/datasets/irds/gov) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov_trec-web-2002_named-page', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov_trec-web-2002_named-page', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Craswell2002TrecWeb, title={Overview of the TREC-2002 Web Track}, author={Nick Craswell and David Hawking}, booktitle={TREC}, year={2002} } ```
irds/gov_trec-web-2002_named-page
[ "task_categories:text-retrieval", "source_datasets:irds/gov", "region:us" ]
2023-01-05T03:04:38+00:00
{"source_datasets": ["irds/gov"], "task_categories": ["text-retrieval"], "pretty_name": "`gov/trec-web-2002/named-page`", "viewer": false}
2023-01-05T03:04:44+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov #region-us
# Dataset Card for 'gov/trec-web-2002/named-page' The 'gov/trec-web-2002/named-page' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=150 - 'qrels': (relevance assessments); count=170 - For 'docs', use 'irds/gov' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov/trec-web-2002/named-page'\n\nThe 'gov/trec-web-2002/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=150\n - 'qrels': (relevance assessments); count=170\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov #region-us \n", "# Dataset Card for 'gov/trec-web-2002/named-page'\n\nThe 'gov/trec-web-2002/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=150\n - 'qrels': (relevance assessments); count=170\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
35a75500ca891fa8f537320972c1cfa5936682ba
# Dataset Card for `gov/trec-web-2003` The `gov/trec-web-2003` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov/trec-web-2003). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=51,062 - For `docs`, use [`irds/gov`](https://huggingface.co/datasets/irds/gov) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov_trec-web-2003', 'queries') for record in queries: record # {'query_id': ..., 'title': ..., 'description': ...} qrels = load_dataset('irds/gov_trec-web-2003', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Craswell2003TrecWeb, title={Overview of the TREC 2003 Web Track}, author={Nick Craswell and David Hawking and Ross Wilkinson and Mingfang Wu}, booktitle={TREC}, year={2003} } ```
irds/gov_trec-web-2003
[ "task_categories:text-retrieval", "source_datasets:irds/gov", "region:us" ]
2023-01-05T03:04:49+00:00
{"source_datasets": ["irds/gov"], "task_categories": ["text-retrieval"], "pretty_name": "`gov/trec-web-2003`", "viewer": false}
2023-01-05T03:04:55+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov #region-us
# Dataset Card for 'gov/trec-web-2003' The 'gov/trec-web-2003' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=51,062 - For 'docs', use 'irds/gov' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov/trec-web-2003'\n\nThe 'gov/trec-web-2003' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=51,062\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov #region-us \n", "# Dataset Card for 'gov/trec-web-2003'\n\nThe 'gov/trec-web-2003' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=51,062\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
daf17aca06f2fbd03694fdbc0ad5d94d4fe53ff8
# Dataset Card for `gov/trec-web-2003/named-page` The `gov/trec-web-2003/named-page` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov/trec-web-2003/named-page). # Data This dataset provides: - `queries` (i.e., topics); count=300 - `qrels`: (relevance assessments); count=352 - For `docs`, use [`irds/gov`](https://huggingface.co/datasets/irds/gov) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov_trec-web-2003_named-page', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov_trec-web-2003_named-page', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Craswell2003TrecWeb, title={Overview of the TREC 2003 Web Track}, author={Nick Craswell and David Hawking and Ross Wilkinson and Mingfang Wu}, booktitle={TREC}, year={2003} } ```
irds/gov_trec-web-2003_named-page
[ "task_categories:text-retrieval", "source_datasets:irds/gov", "region:us" ]
2023-01-05T03:05:01+00:00
{"source_datasets": ["irds/gov"], "task_categories": ["text-retrieval"], "pretty_name": "`gov/trec-web-2003/named-page`", "viewer": false}
2023-01-05T03:05:06+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov #region-us
# Dataset Card for 'gov/trec-web-2003/named-page' The 'gov/trec-web-2003/named-page' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=300 - 'qrels': (relevance assessments); count=352 - For 'docs', use 'irds/gov' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov/trec-web-2003/named-page'\n\nThe 'gov/trec-web-2003/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=300\n - 'qrels': (relevance assessments); count=352\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov #region-us \n", "# Dataset Card for 'gov/trec-web-2003/named-page'\n\nThe 'gov/trec-web-2003/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=300\n - 'qrels': (relevance assessments); count=352\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d1352d159cb6c228181be05870570321b028abbe
# Dataset Card for `gov/trec-web-2004` The `gov/trec-web-2004` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov#gov/trec-web-2004). # Data This dataset provides: - `queries` (i.e., topics); count=225 - `qrels`: (relevance assessments); count=88,566 - For `docs`, use [`irds/gov`](https://huggingface.co/datasets/irds/gov) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov_trec-web-2004', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov_trec-web-2004', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Craswell2004TrecWeb, title={Overview of the TREC-2004 Web Track}, author={Nick Craswell and David Hawking}, booktitle={TREC}, year={2004} } ```
irds/gov_trec-web-2004
[ "task_categories:text-retrieval", "source_datasets:irds/gov", "region:us" ]
2023-01-05T03:05:12+00:00
{"source_datasets": ["irds/gov"], "task_categories": ["text-retrieval"], "pretty_name": "`gov/trec-web-2004`", "viewer": false}
2023-01-05T03:05:17+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov #region-us
# Dataset Card for 'gov/trec-web-2004' The 'gov/trec-web-2004' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=225 - 'qrels': (relevance assessments); count=88,566 - For 'docs', use 'irds/gov' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov/trec-web-2004'\n\nThe 'gov/trec-web-2004' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=225\n - 'qrels': (relevance assessments); count=88,566\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov #region-us \n", "# Dataset Card for 'gov/trec-web-2004'\n\nThe 'gov/trec-web-2004' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=225\n - 'qrels': (relevance assessments); count=88,566\n\n - For 'docs', use 'irds/gov'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a6e2d7fc839582490032cf2d4f3ae10161fd4beb
# Dataset Card for `gov2` The `gov2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=25,205,179 This dataset is used by: [`gov2_trec-tb-2004`](https://huggingface.co/datasets/irds/gov2_trec-tb-2004), [`gov2_trec-tb-2005`](https://huggingface.co/datasets/irds/gov2_trec-tb-2005), [`gov2_trec-tb-2005_efficiency`](https://huggingface.co/datasets/irds/gov2_trec-tb-2005_efficiency), [`gov2_trec-tb-2005_named-page`](https://huggingface.co/datasets/irds/gov2_trec-tb-2005_named-page), [`gov2_trec-tb-2006`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006), [`gov2_trec-tb-2006_efficiency`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency), [`gov2_trec-tb-2006_efficiency_10k`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency_10k), [`gov2_trec-tb-2006_efficiency_stream1`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency_stream1), [`gov2_trec-tb-2006_efficiency_stream2`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency_stream2), [`gov2_trec-tb-2006_efficiency_stream3`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency_stream3), [`gov2_trec-tb-2006_efficiency_stream4`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_efficiency_stream4), [`gov2_trec-tb-2006_named-page`](https://huggingface.co/datasets/irds/gov2_trec-tb-2006_named-page) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/gov2', 'docs') for record in docs: record # {'doc_id': ..., 'url': ..., 'http_headers': ..., 'body': ..., 'body_content_type': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/gov2
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:05:23+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`gov2`", "viewer": false}
2023-01-05T03:05:28+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'gov2' The 'gov2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=25,205,179 This dataset is used by: 'gov2_trec-tb-2004', 'gov2_trec-tb-2005', 'gov2_trec-tb-2005_efficiency', 'gov2_trec-tb-2005_named-page', 'gov2_trec-tb-2006', 'gov2_trec-tb-2006_efficiency', 'gov2_trec-tb-2006_efficiency_10k', 'gov2_trec-tb-2006_efficiency_stream1', 'gov2_trec-tb-2006_efficiency_stream2', 'gov2_trec-tb-2006_efficiency_stream3', 'gov2_trec-tb-2006_efficiency_stream4', 'gov2_trec-tb-2006_named-page' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2'\n\nThe 'gov2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=25,205,179\n\n\nThis dataset is used by: 'gov2_trec-tb-2004', 'gov2_trec-tb-2005', 'gov2_trec-tb-2005_efficiency', 'gov2_trec-tb-2005_named-page', 'gov2_trec-tb-2006', 'gov2_trec-tb-2006_efficiency', 'gov2_trec-tb-2006_efficiency_10k', 'gov2_trec-tb-2006_efficiency_stream1', 'gov2_trec-tb-2006_efficiency_stream2', 'gov2_trec-tb-2006_efficiency_stream3', 'gov2_trec-tb-2006_efficiency_stream4', 'gov2_trec-tb-2006_named-page'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'gov2'\n\nThe 'gov2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=25,205,179\n\n\nThis dataset is used by: 'gov2_trec-tb-2004', 'gov2_trec-tb-2005', 'gov2_trec-tb-2005_efficiency', 'gov2_trec-tb-2005_named-page', 'gov2_trec-tb-2006', 'gov2_trec-tb-2006_efficiency', 'gov2_trec-tb-2006_efficiency_10k', 'gov2_trec-tb-2006_efficiency_stream1', 'gov2_trec-tb-2006_efficiency_stream2', 'gov2_trec-tb-2006_efficiency_stream3', 'gov2_trec-tb-2006_efficiency_stream4', 'gov2_trec-tb-2006_named-page'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9afbbc7f7fe33a8317f1ffa590c7cb8822d47b43
# Dataset Card for `gov2/trec-tb-2004` The `gov2/trec-tb-2004` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2004). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=58,077 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2004', 'queries') for record in queries: record # {'query_id': ..., 'title': ..., 'description': ..., 'narrative': ...} qrels = load_dataset('irds/gov2_trec-tb-2004', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Clarke2004TrecTerabyte, title={Overview of the TREC 2004 Terabyte Track}, author={Charles Clarke and Nick Craswell and Ian Soboroff}, booktitle={TREC}, year={2004} } ```
irds/gov2_trec-tb-2004
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:05:34+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2004`", "viewer": false}
2023-01-05T03:05:40+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2004' The 'gov2/trec-tb-2004' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=58,077 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2004'\n\nThe 'gov2/trec-tb-2004' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=58,077\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2004'\n\nThe 'gov2/trec-tb-2004' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=58,077\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
ed007f5ae9e94b1ff6413897824f9f006648d38b
# Dataset Card for `gov2/trec-tb-2005` The `gov2/trec-tb-2005` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2005). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=45,291 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2005', 'queries') for record in queries: record # {'query_id': ..., 'title': ..., 'description': ..., 'narrative': ...} qrels = load_dataset('irds/gov2_trec-tb-2005', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} } ```
irds/gov2_trec-tb-2005
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:05:45+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2005`", "viewer": false}
2023-01-05T03:05:51+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2005' The 'gov2/trec-tb-2005' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=45,291 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2005'\n\nThe 'gov2/trec-tb-2005' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=45,291\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2005'\n\nThe 'gov2/trec-tb-2005' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=45,291\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0c7faf9df24d33af823cfa8243e9315b67d9add6
# Dataset Card for `gov2/trec-tb-2005/efficiency` The `gov2/trec-tb-2005/efficiency` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2005/efficiency). # Data This dataset provides: - `queries` (i.e., topics); count=50,000 - `qrels`: (relevance assessments); count=45,291 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2005_efficiency', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov2_trec-tb-2005_efficiency', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} } ```
irds/gov2_trec-tb-2005_efficiency
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:05:56+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2005/efficiency`", "viewer": false}
2023-01-05T03:06:02+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2005/efficiency' The 'gov2/trec-tb-2005/efficiency' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50,000 - 'qrels': (relevance assessments); count=45,291 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2005/efficiency'\n\nThe 'gov2/trec-tb-2005/efficiency' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50,000\n - 'qrels': (relevance assessments); count=45,291\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2005/efficiency'\n\nThe 'gov2/trec-tb-2005/efficiency' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50,000\n - 'qrels': (relevance assessments); count=45,291\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
cb1e910defebf5653c29c7d2f99871e81b982399
# Dataset Card for `gov2/trec-tb-2005/named-page` The `gov2/trec-tb-2005/named-page` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2005/named-page). # Data This dataset provides: - `queries` (i.e., topics); count=252 - `qrels`: (relevance assessments); count=11,729 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2005_named-page', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov2_trec-tb-2005_named-page', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Clarke2005TrecTerabyte, title={The TREC 2005 Terabyte Track}, author={Charles L. A. Clark and Falk Scholer and Ian Soboroff}, booktitle={TREC}, year={2005} } ```
irds/gov2_trec-tb-2005_named-page
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:06:07+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2005/named-page`", "viewer": false}
2023-01-05T03:06:13+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2005/named-page' The 'gov2/trec-tb-2005/named-page' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=252 - 'qrels': (relevance assessments); count=11,729 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2005/named-page'\n\nThe 'gov2/trec-tb-2005/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=252\n - 'qrels': (relevance assessments); count=11,729\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2005/named-page'\n\nThe 'gov2/trec-tb-2005/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=252\n - 'qrels': (relevance assessments); count=11,729\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
41b52f39f0d0c1bcc7ad6523e93099129fc19e8b
# Dataset Card for `gov2/trec-tb-2006` The `gov2/trec-tb-2006` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=31,984 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006', 'queries') for record in queries: record # {'query_id': ..., 'title': ..., 'description': ..., 'narrative': ...} qrels = load_dataset('irds/gov2_trec-tb-2006', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:06:19+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006`", "viewer": false}
2023-01-05T03:06:24+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006' The 'gov2/trec-tb-2006' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=31,984 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006'\n\nThe 'gov2/trec-tb-2006' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006'\n\nThe 'gov2/trec-tb-2006' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
19243bade1eb835e274d190116b39e1530902d9d
# Dataset Card for `gov2/trec-tb-2006/efficiency` The `gov2/trec-tb-2006/efficiency` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency). # Data This dataset provides: - `queries` (i.e., topics); count=100,000 - `qrels`: (relevance assessments); count=31,984 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov2_trec-tb-2006_efficiency', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:06:30+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency`", "viewer": false}
2023-01-05T03:06:35+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency' The 'gov2/trec-tb-2006/efficiency' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=100,000 - 'qrels': (relevance assessments); count=31,984 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency'\n\nThe 'gov2/trec-tb-2006/efficiency' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=100,000\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency'\n\nThe 'gov2/trec-tb-2006/efficiency' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=100,000\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e3d756ae76572fe72ae3892800e5e0a52990cede
# Dataset Card for `gov2/trec-tb-2006/efficiency/10k` The `gov2/trec-tb-2006/efficiency/10k` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency/10k). # Data This dataset provides: - `queries` (i.e., topics); count=10,000 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency_10k', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency_10k
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:06:41+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency/10k`", "viewer": false}
2023-01-05T03:06:47+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency/10k' The 'gov2/trec-tb-2006/efficiency/10k' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10,000 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency/10k'\n\nThe 'gov2/trec-tb-2006/efficiency/10k' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency/10k'\n\nThe 'gov2/trec-tb-2006/efficiency/10k' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fd52750a3f6be643229b03bd1e639f17cbf4e9cc
# Dataset Card for `gov2/trec-tb-2006/efficiency/stream1` The `gov2/trec-tb-2006/efficiency/stream1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency/stream1). # Data This dataset provides: - `queries` (i.e., topics); count=25,000 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency_stream1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency_stream1
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:06:52+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency/stream1`", "viewer": false}
2023-01-05T03:06:58+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream1' The 'gov2/trec-tb-2006/efficiency/stream1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=25,000 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream1'\n\nThe 'gov2/trec-tb-2006/efficiency/stream1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream1'\n\nThe 'gov2/trec-tb-2006/efficiency/stream1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
3e3164cff2535e08413aaf0176ef560864c138bf
# Dataset Card for `gov2/trec-tb-2006/efficiency/stream2` The `gov2/trec-tb-2006/efficiency/stream2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency/stream2). # Data This dataset provides: - `queries` (i.e., topics); count=25,000 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency_stream2', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency_stream2
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:07:03+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency/stream2`", "viewer": false}
2023-01-05T03:07:09+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream2' The 'gov2/trec-tb-2006/efficiency/stream2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=25,000 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream2'\n\nThe 'gov2/trec-tb-2006/efficiency/stream2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream2'\n\nThe 'gov2/trec-tb-2006/efficiency/stream2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
2abe54278e42abfb1eed006b2762636d4b9e50e4
# Dataset Card for `gov2/trec-tb-2006/efficiency/stream3` The `gov2/trec-tb-2006/efficiency/stream3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency/stream3). # Data This dataset provides: - `queries` (i.e., topics); count=25,000 - `qrels`: (relevance assessments); count=31,984 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency_stream3', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov2_trec-tb-2006_efficiency_stream3', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency_stream3
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:07:14+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency/stream3`", "viewer": false}
2023-01-05T03:07:20+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream3' The 'gov2/trec-tb-2006/efficiency/stream3' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=25,000 - 'qrels': (relevance assessments); count=31,984 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream3'\n\nThe 'gov2/trec-tb-2006/efficiency/stream3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream3'\n\nThe 'gov2/trec-tb-2006/efficiency/stream3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n - 'qrels': (relevance assessments); count=31,984\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
2fa71fc9278da58fb24782a6d2f45fcb08aca99a
# Dataset Card for `gov2/trec-tb-2006/efficiency/stream4` The `gov2/trec-tb-2006/efficiency/stream4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/efficiency/stream4). # Data This dataset provides: - `queries` (i.e., topics); count=25,000 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_efficiency_stream4', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_efficiency_stream4
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:07:26+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/efficiency/stream4`", "viewer": false}
2023-01-05T03:07:31+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream4' The 'gov2/trec-tb-2006/efficiency/stream4' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=25,000 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream4'\n\nThe 'gov2/trec-tb-2006/efficiency/stream4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/efficiency/stream4'\n\nThe 'gov2/trec-tb-2006/efficiency/stream4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=25,000\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fe821b56dfd5271b0dfa32f13ed7336929e5a9cc
# Dataset Card for `gov2/trec-tb-2006/named-page` The `gov2/trec-tb-2006/named-page` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/gov2#gov2/trec-tb-2006/named-page). # Data This dataset provides: - `queries` (i.e., topics); count=181 - `qrels`: (relevance assessments); count=2,361 - For `docs`, use [`irds/gov2`](https://huggingface.co/datasets/irds/gov2) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/gov2_trec-tb-2006_named-page', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/gov2_trec-tb-2006_named-page', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Buttcher2006TrecTerabyte, title={The TREC 2006 Terabyte Track}, author={Stefan B\"uttcher and Charles L. A. Clarke and Ian Soboroff}, booktitle={TREC}, year={2006} } ```
irds/gov2_trec-tb-2006_named-page
[ "task_categories:text-retrieval", "source_datasets:irds/gov2", "region:us" ]
2023-01-05T03:07:37+00:00
{"source_datasets": ["irds/gov2"], "task_categories": ["text-retrieval"], "pretty_name": "`gov2/trec-tb-2006/named-page`", "viewer": false}
2023-01-05T03:07:43+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/gov2 #region-us
# Dataset Card for 'gov2/trec-tb-2006/named-page' The 'gov2/trec-tb-2006/named-page' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=181 - 'qrels': (relevance assessments); count=2,361 - For 'docs', use 'irds/gov2' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'gov2/trec-tb-2006/named-page'\n\nThe 'gov2/trec-tb-2006/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=181\n - 'qrels': (relevance assessments); count=2,361\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/gov2 #region-us \n", "# Dataset Card for 'gov2/trec-tb-2006/named-page'\n\nThe 'gov2/trec-tb-2006/named-page' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=181\n - 'qrels': (relevance assessments); count=2,361\n\n - For 'docs', use 'irds/gov2'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
f6394b2a7d0fdf89462ab4fa26ca909543e89647
# Dataset Card for `istella22` The `istella22` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,421,456 This dataset is used by: [`istella22_test`](https://huggingface.co/datasets/irds/istella22_test), [`istella22_test_fold1`](https://huggingface.co/datasets/irds/istella22_test_fold1), [`istella22_test_fold2`](https://huggingface.co/datasets/irds/istella22_test_fold2), [`istella22_test_fold3`](https://huggingface.co/datasets/irds/istella22_test_fold3), [`istella22_test_fold4`](https://huggingface.co/datasets/irds/istella22_test_fold4), [`istella22_test_fold5`](https://huggingface.co/datasets/irds/istella22_test_fold5) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/istella22', 'docs') for record in docs: record # {'doc_id': ..., 'title': ..., 'url': ..., 'text': ..., 'extra_text': ..., 'lang': ..., 'lang_pct': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Dato2022Istella, title={The Istella22 Dataset: Bridging Traditional and Neural Learning to Rank Evaluation}, author={Domenico Dato, Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto}, booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} } ```
irds/istella22
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:07:48+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`istella22`", "viewer": false}
2023-01-05T03:07:54+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'istella22' The 'istella22' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,421,456 This dataset is used by: 'istella22_test', 'istella22_test_fold1', 'istella22_test_fold2', 'istella22_test_fold3', 'istella22_test_fold4', 'istella22_test_fold5' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22'\n\nThe 'istella22' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,421,456\n\n\nThis dataset is used by: 'istella22_test', 'istella22_test_fold1', 'istella22_test_fold2', 'istella22_test_fold3', 'istella22_test_fold4', 'istella22_test_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'istella22'\n\nThe 'istella22' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,421,456\n\n\nThis dataset is used by: 'istella22_test', 'istella22_test_fold1', 'istella22_test_fold2', 'istella22_test_fold3', 'istella22_test_fold4', 'istella22_test_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
1d99a336dad14d72c13df9cb7d5e3c4ef410be80
# Dataset Card for `istella22/test` The `istella22/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test). # Data This dataset provides: - `queries` (i.e., topics); count=2,198 - `qrels`: (relevance assessments); count=10,693 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:07:59+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test`", "viewer": false}
2023-01-05T03:08:05+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test' The 'istella22/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,198 - 'qrels': (relevance assessments); count=10,693 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test'\n\nThe 'istella22/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,198\n - 'qrels': (relevance assessments); count=10,693\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test'\n\nThe 'istella22/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,198\n - 'qrels': (relevance assessments); count=10,693\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9fc16f431ab78b78285726b01aec91953f01dbc3
# Dataset Card for `istella22/test/fold1` The `istella22/test/fold1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test/fold1). # Data This dataset provides: - `queries` (i.e., topics); count=440 - `qrels`: (relevance assessments); count=2,164 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test_fold1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test_fold1', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test_fold1
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:08:10+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test/fold1`", "viewer": false}
2023-01-05T03:08:18+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test/fold1' The 'istella22/test/fold1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=440 - 'qrels': (relevance assessments); count=2,164 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test/fold1'\n\nThe 'istella22/test/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,164\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test/fold1'\n\nThe 'istella22/test/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,164\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fbac99676c8676cf704f3bfb9f783ade1bb6b8ee
# Dataset Card for `istella22/test/fold2` The `istella22/test/fold2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test/fold2). # Data This dataset provides: - `queries` (i.e., topics); count=440 - `qrels`: (relevance assessments); count=2,140 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test_fold2', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test_fold2', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test_fold2
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:08:23+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test/fold2`", "viewer": false}
2023-01-05T03:08:29+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test/fold2' The 'istella22/test/fold2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=440 - 'qrels': (relevance assessments); count=2,140 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test/fold2'\n\nThe 'istella22/test/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,140\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test/fold2'\n\nThe 'istella22/test/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,140\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5d9c994c889eef5ccb629632d91a8559ae72bf8d
# Dataset Card for `istella22/test/fold3` The `istella22/test/fold3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test/fold3). # Data This dataset provides: - `queries` (i.e., topics); count=440 - `qrels`: (relevance assessments); count=2,197 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test_fold3', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test_fold3', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test_fold3
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:08:34+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test/fold3`", "viewer": false}
2023-01-05T03:08:40+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test/fold3' The 'istella22/test/fold3' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=440 - 'qrels': (relevance assessments); count=2,197 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test/fold3'\n\nThe 'istella22/test/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,197\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test/fold3'\n\nThe 'istella22/test/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=440\n - 'qrels': (relevance assessments); count=2,197\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
78bdf9e0e6c3326cd5275c28ce7a301bd969d566
# Dataset Card for `istella22/test/fold4` The `istella22/test/fold4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test/fold4). # Data This dataset provides: - `queries` (i.e., topics); count=439 - `qrels`: (relevance assessments); count=2,098 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test_fold4', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test_fold4', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test_fold4
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:08:45+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test/fold4`", "viewer": false}
2023-01-05T03:08:51+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test/fold4' The 'istella22/test/fold4' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=439 - 'qrels': (relevance assessments); count=2,098 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test/fold4'\n\nThe 'istella22/test/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=439\n - 'qrels': (relevance assessments); count=2,098\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test/fold4'\n\nThe 'istella22/test/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=439\n - 'qrels': (relevance assessments); count=2,098\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
f19766cf5aaccbfd9ca38eb5f7914e0349fb8e76
# Dataset Card for `istella22/test/fold5` The `istella22/test/fold5` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/istella22#istella22/test/fold5). # Data This dataset provides: - `queries` (i.e., topics); count=439 - `qrels`: (relevance assessments); count=2,094 - For `docs`, use [`irds/istella22`](https://huggingface.co/datasets/irds/istella22) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/istella22_test_fold5', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/istella22_test_fold5', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format.
irds/istella22_test_fold5
[ "task_categories:text-retrieval", "source_datasets:irds/istella22", "region:us" ]
2023-01-05T03:08:57+00:00
{"source_datasets": ["irds/istella22"], "task_categories": ["text-retrieval"], "pretty_name": "`istella22/test/fold5`", "viewer": false}
2023-01-05T03:09:02+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/istella22 #region-us
# Dataset Card for 'istella22/test/fold5' The 'istella22/test/fold5' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=439 - 'qrels': (relevance assessments); count=2,094 - For 'docs', use 'irds/istella22' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'istella22/test/fold5'\n\nThe 'istella22/test/fold5' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=439\n - 'qrels': (relevance assessments); count=2,094\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/istella22 #region-us \n", "# Dataset Card for 'istella22/test/fold5'\n\nThe 'istella22/test/fold5' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=439\n - 'qrels': (relevance assessments); count=2,094\n\n - For 'docs', use 'irds/istella22'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
4b138571b1401911836b428a82441d66f95019f6
# Dataset Card for `kilt/codec` The `kilt/codec` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/kilt#kilt/codec). # Data This dataset provides: - `queries` (i.e., topics); count=42 - `qrels`: (relevance assessments); count=11,323 ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/kilt_codec', 'queries') for record in queries: record # {'query_id': ..., 'query': ..., 'domain': ..., 'guidelines': ...} qrels = load_dataset('irds/kilt_codec', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} } ```
irds/kilt_codec
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:09:08+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`kilt/codec`", "viewer": false}
2023-01-05T03:09:13+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'kilt/codec' The 'kilt/codec' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=42 - 'qrels': (relevance assessments); count=11,323 ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'kilt/codec'\n\nThe 'kilt/codec' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=42\n - 'qrels': (relevance assessments); count=11,323", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'kilt/codec'\n\nThe 'kilt/codec' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=42\n - 'qrels': (relevance assessments); count=11,323", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
c8bf6a2a6f8154011fafc511f01ebde3ddc1b175
# Dataset Card for `kilt/codec/economics` The `kilt/codec/economics` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/kilt#kilt/codec/economics). # Data This dataset provides: - `queries` (i.e., topics); count=14 - `qrels`: (relevance assessments); count=1,970 ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/kilt_codec_economics', 'queries') for record in queries: record # {'query_id': ..., 'query': ..., 'domain': ..., 'guidelines': ...} qrels = load_dataset('irds/kilt_codec_economics', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} } ```
irds/kilt_codec_economics
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:09:19+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`kilt/codec/economics`", "viewer": false}
2023-01-05T03:09:25+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'kilt/codec/economics' The 'kilt/codec/economics' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=14 - 'qrels': (relevance assessments); count=1,970 ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'kilt/codec/economics'\n\nThe 'kilt/codec/economics' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=1,970", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'kilt/codec/economics'\n\nThe 'kilt/codec/economics' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=1,970", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6eb7b3780a1f1fa18250eab2203f49e0b42ae1f0
# Dataset Card for `kilt/codec/history` The `kilt/codec/history` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/kilt#kilt/codec/history). # Data This dataset provides: - `queries` (i.e., topics); count=14 - `qrels`: (relevance assessments); count=2,024 ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/kilt_codec_history', 'queries') for record in queries: record # {'query_id': ..., 'query': ..., 'domain': ..., 'guidelines': ...} qrels = load_dataset('irds/kilt_codec_history', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} } ```
irds/kilt_codec_history
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:09:30+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`kilt/codec/history`", "viewer": false}
2023-01-05T03:09:36+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'kilt/codec/history' The 'kilt/codec/history' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=14 - 'qrels': (relevance assessments); count=2,024 ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'kilt/codec/history'\n\nThe 'kilt/codec/history' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=2,024", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'kilt/codec/history'\n\nThe 'kilt/codec/history' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=2,024", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
148a3ea35e68f11b2e4e47c879cc4aad0fc4aa9e
# Dataset Card for `kilt/codec/politics` The `kilt/codec/politics` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/kilt#kilt/codec/politics). # Data This dataset provides: - `queries` (i.e., topics); count=14 - `qrels`: (relevance assessments); count=2,192 ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/kilt_codec_politics', 'queries') for record in queries: record # {'query_id': ..., 'query': ..., 'domain': ..., 'guidelines': ...} qrels = load_dataset('irds/kilt_codec_politics', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{mackie2022codec, title={CODEC: Complex Document and Entity Collection}, author={Mackie, Iain and Owoicho, Paul and Gemmell, Carlos and Fischer, Sophie and MacAvaney, Sean and Dalton, Jeffery}, booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, year={2022} } ```
irds/kilt_codec_politics
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:09:41+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`kilt/codec/politics`", "viewer": false}
2023-01-05T03:09:47+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'kilt/codec/politics' The 'kilt/codec/politics' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=14 - 'qrels': (relevance assessments); count=2,192 ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'kilt/codec/politics'\n\nThe 'kilt/codec/politics' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=2,192", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'kilt/codec/politics'\n\nThe 'kilt/codec/politics' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=14\n - 'qrels': (relevance assessments); count=2,192", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8d45e5f830cd9fc636096112f75810cd36e98d2c
# Dataset Card for `lotte/lifestyle/dev` The `lotte/lifestyle/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=268,893 This dataset is used by: [`lotte_lifestyle_dev_forum`](https://huggingface.co/datasets/irds/lotte_lifestyle_dev_forum), [`lotte_lifestyle_dev_search`](https://huggingface.co/datasets/irds/lotte_lifestyle_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_lifestyle_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:09:52+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/dev`", "viewer": false}
2023-01-05T03:09:58+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/dev' The 'lotte/lifestyle/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=268,893 This dataset is used by: 'lotte_lifestyle_dev_forum', 'lotte_lifestyle_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/dev'\n\nThe 'lotte/lifestyle/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=268,893\n\n\nThis dataset is used by: 'lotte_lifestyle_dev_forum', 'lotte_lifestyle_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/dev'\n\nThe 'lotte/lifestyle/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=268,893\n\n\nThis dataset is used by: 'lotte_lifestyle_dev_forum', 'lotte_lifestyle_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0bde24be728cf96f9f3fe015eff26bf55b4567bb
# Dataset Card for `lotte/lifestyle/dev/forum` The `lotte/lifestyle/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,076 - `qrels`: (relevance assessments); count=12,823 - For `docs`, use [`irds/lotte_lifestyle_dev`](https://huggingface.co/datasets/irds/lotte_lifestyle_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_lifestyle_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_lifestyle_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_lifestyle_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:10:04+00:00
{"source_datasets": ["irds/lotte_lifestyle_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/dev/forum`", "viewer": false}
2023-01-05T03:10:09+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/dev/forum' The 'lotte/lifestyle/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,076 - 'qrels': (relevance assessments); count=12,823 - For 'docs', use 'irds/lotte_lifestyle_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/dev/forum'\n\nThe 'lotte/lifestyle/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,076\n - 'qrels': (relevance assessments); count=12,823\n\n - For 'docs', use 'irds/lotte_lifestyle_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/dev/forum'\n\nThe 'lotte/lifestyle/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,076\n - 'qrels': (relevance assessments); count=12,823\n\n - For 'docs', use 'irds/lotte_lifestyle_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0d09b2703d15e805c03c5dce1a589b3329d1d9d4
# Dataset Card for `lotte/lifestyle/dev/search` The `lotte/lifestyle/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=417 - `qrels`: (relevance assessments); count=1,376 - For `docs`, use [`irds/lotte_lifestyle_dev`](https://huggingface.co/datasets/irds/lotte_lifestyle_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_lifestyle_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_lifestyle_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_lifestyle_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:10:15+00:00
{"source_datasets": ["irds/lotte_lifestyle_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/dev/search`", "viewer": false}
2023-01-05T03:10:21+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/dev/search' The 'lotte/lifestyle/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=417 - 'qrels': (relevance assessments); count=1,376 - For 'docs', use 'irds/lotte_lifestyle_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/dev/search'\n\nThe 'lotte/lifestyle/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=417\n - 'qrels': (relevance assessments); count=1,376\n\n - For 'docs', use 'irds/lotte_lifestyle_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/dev/search'\n\nThe 'lotte/lifestyle/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=417\n - 'qrels': (relevance assessments); count=1,376\n\n - For 'docs', use 'irds/lotte_lifestyle_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
b2c5c2e7b956f0d0af5eca72717f3375d8b5bbf8
# Dataset Card for `lotte/lifestyle/test` The `lotte/lifestyle/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=119,461 This dataset is used by: [`lotte_lifestyle_test_forum`](https://huggingface.co/datasets/irds/lotte_lifestyle_test_forum), [`lotte_lifestyle_test_search`](https://huggingface.co/datasets/irds/lotte_lifestyle_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_lifestyle_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:10:26+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/test`", "viewer": false}
2023-01-05T03:10:32+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/test' The 'lotte/lifestyle/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=119,461 This dataset is used by: 'lotte_lifestyle_test_forum', 'lotte_lifestyle_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/test'\n\nThe 'lotte/lifestyle/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=119,461\n\n\nThis dataset is used by: 'lotte_lifestyle_test_forum', 'lotte_lifestyle_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/test'\n\nThe 'lotte/lifestyle/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=119,461\n\n\nThis dataset is used by: 'lotte_lifestyle_test_forum', 'lotte_lifestyle_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6fcb1bd0505f734da8f2b638297338b57bd1ad49
# Dataset Card for `lotte/lifestyle/test/forum` The `lotte/lifestyle/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,002 - `qrels`: (relevance assessments); count=10,278 - For `docs`, use [`irds/lotte_lifestyle_test`](https://huggingface.co/datasets/irds/lotte_lifestyle_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_lifestyle_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_lifestyle_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_lifestyle_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:10:38+00:00
{"source_datasets": ["irds/lotte_lifestyle_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/test/forum`", "viewer": false}
2023-01-05T03:10:45+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/test/forum' The 'lotte/lifestyle/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,002 - 'qrels': (relevance assessments); count=10,278 - For 'docs', use 'irds/lotte_lifestyle_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/test/forum'\n\nThe 'lotte/lifestyle/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=10,278\n\n - For 'docs', use 'irds/lotte_lifestyle_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/test/forum'\n\nThe 'lotte/lifestyle/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=10,278\n\n - For 'docs', use 'irds/lotte_lifestyle_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d4624d3500a39c861da3a99bc0e59ab332ec03da
# Dataset Card for `lotte/lifestyle/test/search` The `lotte/lifestyle/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/lifestyle/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=661 - `qrels`: (relevance assessments); count=1,804 - For `docs`, use [`irds/lotte_lifestyle_test`](https://huggingface.co/datasets/irds/lotte_lifestyle_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_lifestyle_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_lifestyle_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_lifestyle_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_lifestyle_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:10:51+00:00
{"source_datasets": ["irds/lotte_lifestyle_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/lifestyle/test/search`", "viewer": false}
2023-01-05T03:10:56+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/lifestyle/test/search' The 'lotte/lifestyle/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=661 - 'qrels': (relevance assessments); count=1,804 - For 'docs', use 'irds/lotte_lifestyle_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/lifestyle/test/search'\n\nThe 'lotte/lifestyle/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=661\n - 'qrels': (relevance assessments); count=1,804\n\n - For 'docs', use 'irds/lotte_lifestyle_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_lifestyle_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/lifestyle/test/search'\n\nThe 'lotte/lifestyle/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=661\n - 'qrels': (relevance assessments); count=1,804\n\n - For 'docs', use 'irds/lotte_lifestyle_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
386a3c998811da2c3e1be0a26eeccc4f8501b047
# Dataset Card for `lotte/pooled/dev` The `lotte/pooled/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=2,428,854 This dataset is used by: [`lotte_pooled_dev_forum`](https://huggingface.co/datasets/irds/lotte_pooled_dev_forum), [`lotte_pooled_dev_search`](https://huggingface.co/datasets/irds/lotte_pooled_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_pooled_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:02+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/dev`", "viewer": false}
2023-01-05T03:11:08+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/dev' The 'lotte/pooled/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=2,428,854 This dataset is used by: 'lotte_pooled_dev_forum', 'lotte_pooled_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/dev'\n\nThe 'lotte/pooled/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,428,854\n\n\nThis dataset is used by: 'lotte_pooled_dev_forum', 'lotte_pooled_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/dev'\n\nThe 'lotte/pooled/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,428,854\n\n\nThis dataset is used by: 'lotte_pooled_dev_forum', 'lotte_pooled_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
127dfc62ed16c3b1333ab5da0acc1b8b549953db
# Dataset Card for `lotte/pooled/dev/forum` The `lotte/pooled/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=10,097 - `qrels`: (relevance assessments); count=68,685 - For `docs`, use [`irds/lotte_pooled_dev`](https://huggingface.co/datasets/irds/lotte_pooled_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_pooled_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_pooled_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_pooled_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:13+00:00
{"source_datasets": ["irds/lotte_pooled_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/dev/forum`", "viewer": false}
2023-01-05T03:11:19+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_pooled_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/dev/forum' The 'lotte/pooled/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10,097 - 'qrels': (relevance assessments); count=68,685 - For 'docs', use 'irds/lotte_pooled_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/dev/forum'\n\nThe 'lotte/pooled/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,097\n - 'qrels': (relevance assessments); count=68,685\n\n - For 'docs', use 'irds/lotte_pooled_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_pooled_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/dev/forum'\n\nThe 'lotte/pooled/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,097\n - 'qrels': (relevance assessments); count=68,685\n\n - For 'docs', use 'irds/lotte_pooled_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
cfbe6f21d7ddfb6d2ecae29a28492f01bf9be7e6
# Dataset Card for `lotte/pooled/dev/search` The `lotte/pooled/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=2,931 - `qrels`: (relevance assessments); count=8,573 - For `docs`, use [`irds/lotte_pooled_dev`](https://huggingface.co/datasets/irds/lotte_pooled_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_pooled_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_pooled_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_pooled_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:24+00:00
{"source_datasets": ["irds/lotte_pooled_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/dev/search`", "viewer": false}
2023-01-05T03:11:30+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_pooled_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/dev/search' The 'lotte/pooled/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,931 - 'qrels': (relevance assessments); count=8,573 - For 'docs', use 'irds/lotte_pooled_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/dev/search'\n\nThe 'lotte/pooled/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,931\n - 'qrels': (relevance assessments); count=8,573\n\n - For 'docs', use 'irds/lotte_pooled_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_pooled_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/dev/search'\n\nThe 'lotte/pooled/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,931\n - 'qrels': (relevance assessments); count=8,573\n\n - For 'docs', use 'irds/lotte_pooled_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
91603bc7ba09a81c628f3b2d9f1a782143f40ce3
# Dataset Card for `lotte/pooled/test` The `lotte/pooled/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=2,819,103 This dataset is used by: [`lotte_pooled_test_forum`](https://huggingface.co/datasets/irds/lotte_pooled_test_forum), [`lotte_pooled_test_search`](https://huggingface.co/datasets/irds/lotte_pooled_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_pooled_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:35+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/test`", "viewer": false}
2023-01-05T03:11:41+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/test' The 'lotte/pooled/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=2,819,103 This dataset is used by: 'lotte_pooled_test_forum', 'lotte_pooled_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/test'\n\nThe 'lotte/pooled/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,819,103\n\n\nThis dataset is used by: 'lotte_pooled_test_forum', 'lotte_pooled_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/test'\n\nThe 'lotte/pooled/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=2,819,103\n\n\nThis dataset is used by: 'lotte_pooled_test_forum', 'lotte_pooled_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a0912b9914a6c53212691633b21328283b6cebfc
# Dataset Card for `lotte/pooled/test/forum` The `lotte/pooled/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=10,025 - `qrels`: (relevance assessments); count=61,536 - For `docs`, use [`irds/lotte_pooled_test`](https://huggingface.co/datasets/irds/lotte_pooled_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_pooled_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_pooled_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_pooled_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:47+00:00
{"source_datasets": ["irds/lotte_pooled_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/test/forum`", "viewer": false}
2023-01-05T03:11:52+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_pooled_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/test/forum' The 'lotte/pooled/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10,025 - 'qrels': (relevance assessments); count=61,536 - For 'docs', use 'irds/lotte_pooled_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/test/forum'\n\nThe 'lotte/pooled/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,025\n - 'qrels': (relevance assessments); count=61,536\n\n - For 'docs', use 'irds/lotte_pooled_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_pooled_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/test/forum'\n\nThe 'lotte/pooled/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10,025\n - 'qrels': (relevance assessments); count=61,536\n\n - For 'docs', use 'irds/lotte_pooled_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5ee27e33ba7515cfdd0845c2792186d4f1ef1e65
# Dataset Card for `lotte/pooled/test/search` The `lotte/pooled/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/pooled/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=3,869 - `qrels`: (relevance assessments); count=11,124 - For `docs`, use [`irds/lotte_pooled_test`](https://huggingface.co/datasets/irds/lotte_pooled_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_pooled_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_pooled_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_pooled_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_pooled_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:11:58+00:00
{"source_datasets": ["irds/lotte_pooled_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/pooled/test/search`", "viewer": false}
2023-01-05T03:12:03+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_pooled_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/pooled/test/search' The 'lotte/pooled/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=3,869 - 'qrels': (relevance assessments); count=11,124 - For 'docs', use 'irds/lotte_pooled_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/pooled/test/search'\n\nThe 'lotte/pooled/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,869\n - 'qrels': (relevance assessments); count=11,124\n\n - For 'docs', use 'irds/lotte_pooled_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_pooled_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/pooled/test/search'\n\nThe 'lotte/pooled/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=3,869\n - 'qrels': (relevance assessments); count=11,124\n\n - For 'docs', use 'irds/lotte_pooled_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
192ef68528f6dc82a600c33417e35201770b174d
# Dataset Card for `lotte/recreation/dev` The `lotte/recreation/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=263,025 This dataset is used by: [`lotte_recreation_dev_forum`](https://huggingface.co/datasets/irds/lotte_recreation_dev_forum), [`lotte_recreation_dev_search`](https://huggingface.co/datasets/irds/lotte_recreation_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_recreation_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:12:09+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/dev`", "viewer": false}
2023-01-05T03:12:15+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/dev' The 'lotte/recreation/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=263,025 This dataset is used by: 'lotte_recreation_dev_forum', 'lotte_recreation_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/dev'\n\nThe 'lotte/recreation/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=263,025\n\n\nThis dataset is used by: 'lotte_recreation_dev_forum', 'lotte_recreation_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/dev'\n\nThe 'lotte/recreation/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=263,025\n\n\nThis dataset is used by: 'lotte_recreation_dev_forum', 'lotte_recreation_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7079c9382a7a969d3aeb1f0bdb30343b3a76c9ce
# Dataset Card for `lotte/recreation/dev/forum` The `lotte/recreation/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,002 - `qrels`: (relevance assessments); count=12,752 - For `docs`, use [`irds/lotte_recreation_dev`](https://huggingface.co/datasets/irds/lotte_recreation_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_recreation_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_recreation_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_recreation_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:12:20+00:00
{"source_datasets": ["irds/lotte_recreation_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/dev/forum`", "viewer": false}
2023-01-05T03:12:26+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_recreation_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/dev/forum' The 'lotte/recreation/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,002 - 'qrels': (relevance assessments); count=12,752 - For 'docs', use 'irds/lotte_recreation_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/dev/forum'\n\nThe 'lotte/recreation/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=12,752\n\n - For 'docs', use 'irds/lotte_recreation_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_recreation_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/dev/forum'\n\nThe 'lotte/recreation/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=12,752\n\n - For 'docs', use 'irds/lotte_recreation_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5fb2538e25d71328028783ff9fa647ef69a9a06c
# Dataset Card for `lotte/recreation/dev/search` The `lotte/recreation/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=563 - `qrels`: (relevance assessments); count=1,754 - For `docs`, use [`irds/lotte_recreation_dev`](https://huggingface.co/datasets/irds/lotte_recreation_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_recreation_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_recreation_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_recreation_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:12:31+00:00
{"source_datasets": ["irds/lotte_recreation_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/dev/search`", "viewer": false}
2023-01-05T03:12:37+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_recreation_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/dev/search' The 'lotte/recreation/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=563 - 'qrels': (relevance assessments); count=1,754 - For 'docs', use 'irds/lotte_recreation_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/dev/search'\n\nThe 'lotte/recreation/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=563\n - 'qrels': (relevance assessments); count=1,754\n\n - For 'docs', use 'irds/lotte_recreation_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_recreation_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/dev/search'\n\nThe 'lotte/recreation/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=563\n - 'qrels': (relevance assessments); count=1,754\n\n - For 'docs', use 'irds/lotte_recreation_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9bc24e76ed6b96b5cee6f99e09caccfa7dca1915
# Dataset Card for `lotte/recreation/test` The `lotte/recreation/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=166,975 This dataset is used by: [`lotte_recreation_test_forum`](https://huggingface.co/datasets/irds/lotte_recreation_test_forum), [`lotte_recreation_test_search`](https://huggingface.co/datasets/irds/lotte_recreation_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_recreation_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:12:42+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/test`", "viewer": false}
2023-01-05T03:12:48+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/test' The 'lotte/recreation/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=166,975 This dataset is used by: 'lotte_recreation_test_forum', 'lotte_recreation_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/test'\n\nThe 'lotte/recreation/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=166,975\n\n\nThis dataset is used by: 'lotte_recreation_test_forum', 'lotte_recreation_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/test'\n\nThe 'lotte/recreation/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=166,975\n\n\nThis dataset is used by: 'lotte_recreation_test_forum', 'lotte_recreation_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6176527b4e32c49bb0b84e6940bd621753bf2000
# Dataset Card for `lotte/recreation/test/forum` The `lotte/recreation/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,002 - `qrels`: (relevance assessments); count=6,947 - For `docs`, use [`irds/lotte_recreation_test`](https://huggingface.co/datasets/irds/lotte_recreation_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_recreation_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_recreation_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_recreation_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:12:53+00:00
{"source_datasets": ["irds/lotte_recreation_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/test/forum`", "viewer": false}
2023-01-05T03:12:59+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_recreation_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/test/forum' The 'lotte/recreation/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,002 - 'qrels': (relevance assessments); count=6,947 - For 'docs', use 'irds/lotte_recreation_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/test/forum'\n\nThe 'lotte/recreation/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=6,947\n\n - For 'docs', use 'irds/lotte_recreation_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_recreation_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/test/forum'\n\nThe 'lotte/recreation/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,002\n - 'qrels': (relevance assessments); count=6,947\n\n - For 'docs', use 'irds/lotte_recreation_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e7ac4a98a196497f7c525868d34dc0dbd568802b
# Dataset Card for `lotte/recreation/test/search` The `lotte/recreation/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/recreation/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=924 - `qrels`: (relevance assessments); count=1,991 - For `docs`, use [`irds/lotte_recreation_test`](https://huggingface.co/datasets/irds/lotte_recreation_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_recreation_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_recreation_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_recreation_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_recreation_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:13:04+00:00
{"source_datasets": ["irds/lotte_recreation_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/recreation/test/search`", "viewer": false}
2023-01-05T03:13:10+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_recreation_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/recreation/test/search' The 'lotte/recreation/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=924 - 'qrels': (relevance assessments); count=1,991 - For 'docs', use 'irds/lotte_recreation_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/recreation/test/search'\n\nThe 'lotte/recreation/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=924\n - 'qrels': (relevance assessments); count=1,991\n\n - For 'docs', use 'irds/lotte_recreation_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_recreation_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/recreation/test/search'\n\nThe 'lotte/recreation/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=924\n - 'qrels': (relevance assessments); count=1,991\n\n - For 'docs', use 'irds/lotte_recreation_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7e9d0fba97c5553fe1e84f07b681383b7078b662
# Dataset Card for `lotte/science/dev` The `lotte/science/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=343,642 This dataset is used by: [`lotte_science_dev_forum`](https://huggingface.co/datasets/irds/lotte_science_dev_forum), [`lotte_science_dev_search`](https://huggingface.co/datasets/irds/lotte_science_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_science_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:13:16+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/dev`", "viewer": false}
2023-01-05T03:13:21+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/dev' The 'lotte/science/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=343,642 This dataset is used by: 'lotte_science_dev_forum', 'lotte_science_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/dev'\n\nThe 'lotte/science/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=343,642\n\n\nThis dataset is used by: 'lotte_science_dev_forum', 'lotte_science_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/dev'\n\nThe 'lotte/science/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=343,642\n\n\nThis dataset is used by: 'lotte_science_dev_forum', 'lotte_science_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
feb4f854a3b8fb64c0dd0ded0653b30c2e92d9df
# Dataset Card for `lotte/science/dev/forum` The `lotte/science/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,013 - `qrels`: (relevance assessments); count=12,271 - For `docs`, use [`irds/lotte_science_dev`](https://huggingface.co/datasets/irds/lotte_science_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_science_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_science_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_science_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:13:27+00:00
{"source_datasets": ["irds/lotte_science_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/dev/forum`", "viewer": false}
2023-01-05T03:13:32+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_science_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/dev/forum' The 'lotte/science/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,013 - 'qrels': (relevance assessments); count=12,271 - For 'docs', use 'irds/lotte_science_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/dev/forum'\n\nThe 'lotte/science/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,013\n - 'qrels': (relevance assessments); count=12,271\n\n - For 'docs', use 'irds/lotte_science_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_science_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/dev/forum'\n\nThe 'lotte/science/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,013\n - 'qrels': (relevance assessments); count=12,271\n\n - For 'docs', use 'irds/lotte_science_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
53364075c982cbc9b3f3ad72eb7047977c8f3323
# Dataset Card for `lotte/science/dev/search` The `lotte/science/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=538 - `qrels`: (relevance assessments); count=1,480 - For `docs`, use [`irds/lotte_science_dev`](https://huggingface.co/datasets/irds/lotte_science_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_science_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_science_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_science_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:13:38+00:00
{"source_datasets": ["irds/lotte_science_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/dev/search`", "viewer": false}
2023-01-05T03:13:44+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_science_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/dev/search' The 'lotte/science/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=538 - 'qrels': (relevance assessments); count=1,480 - For 'docs', use 'irds/lotte_science_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/dev/search'\n\nThe 'lotte/science/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=538\n - 'qrels': (relevance assessments); count=1,480\n\n - For 'docs', use 'irds/lotte_science_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_science_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/dev/search'\n\nThe 'lotte/science/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=538\n - 'qrels': (relevance assessments); count=1,480\n\n - For 'docs', use 'irds/lotte_science_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
4059e65b15287127004aa66b766fc71f5409dd12
# Dataset Card for `lotte/science/test` The `lotte/science/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,694,164 This dataset is used by: [`lotte_science_test_forum`](https://huggingface.co/datasets/irds/lotte_science_test_forum), [`lotte_science_test_search`](https://huggingface.co/datasets/irds/lotte_science_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_science_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:13:49+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/test`", "viewer": false}
2023-01-05T03:13:55+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/test' The 'lotte/science/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,694,164 This dataset is used by: 'lotte_science_test_forum', 'lotte_science_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/test'\n\nThe 'lotte/science/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,694,164\n\n\nThis dataset is used by: 'lotte_science_test_forum', 'lotte_science_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/test'\n\nThe 'lotte/science/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,694,164\n\n\nThis dataset is used by: 'lotte_science_test_forum', 'lotte_science_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
72766e322efb20dfea29cc70907c5d1b517b8508
# Dataset Card for `lotte/science/test/forum` The `lotte/science/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,017 - `qrels`: (relevance assessments); count=15,515 - For `docs`, use [`irds/lotte_science_test`](https://huggingface.co/datasets/irds/lotte_science_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_science_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_science_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_science_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:00+00:00
{"source_datasets": ["irds/lotte_science_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/test/forum`", "viewer": false}
2023-01-05T03:14:06+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_science_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/test/forum' The 'lotte/science/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,017 - 'qrels': (relevance assessments); count=15,515 - For 'docs', use 'irds/lotte_science_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/test/forum'\n\nThe 'lotte/science/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,017\n - 'qrels': (relevance assessments); count=15,515\n\n - For 'docs', use 'irds/lotte_science_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_science_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/test/forum'\n\nThe 'lotte/science/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,017\n - 'qrels': (relevance assessments); count=15,515\n\n - For 'docs', use 'irds/lotte_science_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d48e8ba8cd88b2e05ef4e8c641d6048913630f13
# Dataset Card for `lotte/science/test/search` The `lotte/science/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/science/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=617 - `qrels`: (relevance assessments); count=1,738 - For `docs`, use [`irds/lotte_science_test`](https://huggingface.co/datasets/irds/lotte_science_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_science_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_science_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_science_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_science_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:11+00:00
{"source_datasets": ["irds/lotte_science_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/science/test/search`", "viewer": false}
2023-01-05T03:14:17+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_science_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/science/test/search' The 'lotte/science/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=617 - 'qrels': (relevance assessments); count=1,738 - For 'docs', use 'irds/lotte_science_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/science/test/search'\n\nThe 'lotte/science/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=617\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/lotte_science_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_science_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/science/test/search'\n\nThe 'lotte/science/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=617\n - 'qrels': (relevance assessments); count=1,738\n\n - For 'docs', use 'irds/lotte_science_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5633be42bae0d79cd1e695c9adba7c7db7765675
# Dataset Card for `lotte/technology/dev` The `lotte/technology/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=1,276,222 This dataset is used by: [`lotte_technology_dev_forum`](https://huggingface.co/datasets/irds/lotte_technology_dev_forum), [`lotte_technology_dev_search`](https://huggingface.co/datasets/irds/lotte_technology_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_technology_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:22+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/dev`", "viewer": false}
2023-01-05T03:14:28+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/dev' The 'lotte/technology/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=1,276,222 This dataset is used by: 'lotte_technology_dev_forum', 'lotte_technology_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/dev'\n\nThe 'lotte/technology/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,276,222\n\n\nThis dataset is used by: 'lotte_technology_dev_forum', 'lotte_technology_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/dev'\n\nThe 'lotte/technology/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=1,276,222\n\n\nThis dataset is used by: 'lotte_technology_dev_forum', 'lotte_technology_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a88b3bbcce8322c4164cafccb9e1f4e45c70b90f
# Dataset Card for `lotte/technology/dev/forum` The `lotte/technology/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,003 - `qrels`: (relevance assessments); count=15,741 - For `docs`, use [`irds/lotte_technology_dev`](https://huggingface.co/datasets/irds/lotte_technology_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_technology_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_technology_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_technology_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:34+00:00
{"source_datasets": ["irds/lotte_technology_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/dev/forum`", "viewer": false}
2023-01-05T03:14:40+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_technology_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/dev/forum' The 'lotte/technology/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,003 - 'qrels': (relevance assessments); count=15,741 - For 'docs', use 'irds/lotte_technology_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/dev/forum'\n\nThe 'lotte/technology/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,003\n - 'qrels': (relevance assessments); count=15,741\n\n - For 'docs', use 'irds/lotte_technology_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_technology_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/dev/forum'\n\nThe 'lotte/technology/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,003\n - 'qrels': (relevance assessments); count=15,741\n\n - For 'docs', use 'irds/lotte_technology_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
daae9c829591e515e2f214b6116f595c2bb99011
# Dataset Card for `lotte/technology/dev/search` The `lotte/technology/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=916 - `qrels`: (relevance assessments); count=2,676 - For `docs`, use [`irds/lotte_technology_dev`](https://huggingface.co/datasets/irds/lotte_technology_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_technology_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_technology_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_technology_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:45+00:00
{"source_datasets": ["irds/lotte_technology_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/dev/search`", "viewer": false}
2023-01-05T03:14:51+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_technology_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/dev/search' The 'lotte/technology/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=916 - 'qrels': (relevance assessments); count=2,676 - For 'docs', use 'irds/lotte_technology_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/dev/search'\n\nThe 'lotte/technology/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=916\n - 'qrels': (relevance assessments); count=2,676\n\n - For 'docs', use 'irds/lotte_technology_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_technology_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/dev/search'\n\nThe 'lotte/technology/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=916\n - 'qrels': (relevance assessments); count=2,676\n\n - For 'docs', use 'irds/lotte_technology_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
bca4f7c1356530ab45196bfe991c138142961db5
# Dataset Card for `lotte/technology/test` The `lotte/technology/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=638,509 This dataset is used by: [`lotte_technology_test_forum`](https://huggingface.co/datasets/irds/lotte_technology_test_forum), [`lotte_technology_test_search`](https://huggingface.co/datasets/irds/lotte_technology_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_technology_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:14:56+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/test`", "viewer": false}
2023-01-05T03:15:02+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/test' The 'lotte/technology/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=638,509 This dataset is used by: 'lotte_technology_test_forum', 'lotte_technology_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/test'\n\nThe 'lotte/technology/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=638,509\n\n\nThis dataset is used by: 'lotte_technology_test_forum', 'lotte_technology_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/test'\n\nThe 'lotte/technology/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=638,509\n\n\nThis dataset is used by: 'lotte_technology_test_forum', 'lotte_technology_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
35ad62166a3d2daf366df949a86a3ab511c34deb
# Dataset Card for `lotte/technology/test/forum` The `lotte/technology/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,004 - `qrels`: (relevance assessments); count=15,890 - For `docs`, use [`irds/lotte_technology_test`](https://huggingface.co/datasets/irds/lotte_technology_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_technology_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_technology_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_technology_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:15:07+00:00
{"source_datasets": ["irds/lotte_technology_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/test/forum`", "viewer": false}
2023-01-05T03:15:13+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_technology_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/test/forum' The 'lotte/technology/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,004 - 'qrels': (relevance assessments); count=15,890 - For 'docs', use 'irds/lotte_technology_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/test/forum'\n\nThe 'lotte/technology/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,004\n - 'qrels': (relevance assessments); count=15,890\n\n - For 'docs', use 'irds/lotte_technology_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_technology_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/test/forum'\n\nThe 'lotte/technology/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,004\n - 'qrels': (relevance assessments); count=15,890\n\n - For 'docs', use 'irds/lotte_technology_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
20dcea7394f3b955ada24c19e6cbe332592e9cc8
# Dataset Card for `lotte/technology/test/search` The `lotte/technology/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/technology/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=596 - `qrels`: (relevance assessments); count=2,045 - For `docs`, use [`irds/lotte_technology_test`](https://huggingface.co/datasets/irds/lotte_technology_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_technology_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_technology_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_technology_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_technology_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:15:18+00:00
{"source_datasets": ["irds/lotte_technology_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/technology/test/search`", "viewer": false}
2023-01-05T03:15:24+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_technology_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/technology/test/search' The 'lotte/technology/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=596 - 'qrels': (relevance assessments); count=2,045 - For 'docs', use 'irds/lotte_technology_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/technology/test/search'\n\nThe 'lotte/technology/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=596\n - 'qrels': (relevance assessments); count=2,045\n\n - For 'docs', use 'irds/lotte_technology_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_technology_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/technology/test/search'\n\nThe 'lotte/technology/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=596\n - 'qrels': (relevance assessments); count=2,045\n\n - For 'docs', use 'irds/lotte_technology_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
246bfbafd2636eb22716863a659ea11f6ca95319
# Dataset Card for `lotte/writing/dev` The `lotte/writing/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=277,072 This dataset is used by: [`lotte_writing_dev_forum`](https://huggingface.co/datasets/irds/lotte_writing_dev_forum), [`lotte_writing_dev_search`](https://huggingface.co/datasets/irds/lotte_writing_dev_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_writing_dev', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_dev
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:15:29+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/dev`", "viewer": false}
2023-01-05T03:15:35+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/dev' The 'lotte/writing/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=277,072 This dataset is used by: 'lotte_writing_dev_forum', 'lotte_writing_dev_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/dev'\n\nThe 'lotte/writing/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=277,072\n\n\nThis dataset is used by: 'lotte_writing_dev_forum', 'lotte_writing_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/dev'\n\nThe 'lotte/writing/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=277,072\n\n\nThis dataset is used by: 'lotte_writing_dev_forum', 'lotte_writing_dev_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
4a76341cc5d41f67ec0870886a6dac234bb22f91
# Dataset Card for `lotte/writing/dev/forum` The `lotte/writing/dev/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,003 - `qrels`: (relevance assessments); count=15,098 - For `docs`, use [`irds/lotte_writing_dev`](https://huggingface.co/datasets/irds/lotte_writing_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_writing_dev_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_writing_dev_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_dev_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_writing_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:15:41+00:00
{"source_datasets": ["irds/lotte_writing_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/dev/forum`", "viewer": false}
2023-01-05T03:15:46+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_writing_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/dev/forum' The 'lotte/writing/dev/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,003 - 'qrels': (relevance assessments); count=15,098 - For 'docs', use 'irds/lotte_writing_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/dev/forum'\n\nThe 'lotte/writing/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,003\n - 'qrels': (relevance assessments); count=15,098\n\n - For 'docs', use 'irds/lotte_writing_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_writing_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/dev/forum'\n\nThe 'lotte/writing/dev/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,003\n - 'qrels': (relevance assessments); count=15,098\n\n - For 'docs', use 'irds/lotte_writing_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9d041d8753acfd4c26ae53cb609a544ce0ef76ad
# Dataset Card for `lotte/writing/dev/search` The `lotte/writing/dev/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/dev/search). # Data This dataset provides: - `queries` (i.e., topics); count=497 - `qrels`: (relevance assessments); count=1,287 - For `docs`, use [`irds/lotte_writing_dev`](https://huggingface.co/datasets/irds/lotte_writing_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_writing_dev_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_writing_dev_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_dev_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_writing_dev", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:15:52+00:00
{"source_datasets": ["irds/lotte_writing_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/dev/search`", "viewer": false}
2023-01-05T03:15:57+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_writing_dev #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/dev/search' The 'lotte/writing/dev/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=497 - 'qrels': (relevance assessments); count=1,287 - For 'docs', use 'irds/lotte_writing_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/dev/search'\n\nThe 'lotte/writing/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=497\n - 'qrels': (relevance assessments); count=1,287\n\n - For 'docs', use 'irds/lotte_writing_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_writing_dev #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/dev/search'\n\nThe 'lotte/writing/dev/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=497\n - 'qrels': (relevance assessments); count=1,287\n\n - For 'docs', use 'irds/lotte_writing_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
de44627f761d60dd2769ad90e2c98ea8a9fcd028
# Dataset Card for `lotte/writing/test` The `lotte/writing/test` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/test). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=199,994 This dataset is used by: [`lotte_writing_test_forum`](https://huggingface.co/datasets/irds/lotte_writing_test_forum), [`lotte_writing_test_search`](https://huggingface.co/datasets/irds/lotte_writing_test_search) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/lotte_writing_test', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_test
[ "task_categories:text-retrieval", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:16:03+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/test`", "viewer": false}
2023-01-05T03:16:09+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/test' The 'lotte/writing/test' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=199,994 This dataset is used by: 'lotte_writing_test_forum', 'lotte_writing_test_search' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/test'\n\nThe 'lotte/writing/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=199,994\n\n\nThis dataset is used by: 'lotte_writing_test_forum', 'lotte_writing_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/test'\n\nThe 'lotte/writing/test' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=199,994\n\n\nThis dataset is used by: 'lotte_writing_test_forum', 'lotte_writing_test_search'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
85c7c48d74c90c327785119dfcaf941809841631
# Dataset Card for `lotte/writing/test/forum` The `lotte/writing/test/forum` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/test/forum). # Data This dataset provides: - `queries` (i.e., topics); count=2,000 - `qrels`: (relevance assessments); count=12,906 - For `docs`, use [`irds/lotte_writing_test`](https://huggingface.co/datasets/irds/lotte_writing_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_writing_test_forum', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_writing_test_forum', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_test_forum
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_writing_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:16:14+00:00
{"source_datasets": ["irds/lotte_writing_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/test/forum`", "viewer": false}
2023-01-05T03:16:21+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_writing_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/test/forum' The 'lotte/writing/test/forum' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=2,000 - 'qrels': (relevance assessments); count=12,906 - For 'docs', use 'irds/lotte_writing_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/test/forum'\n\nThe 'lotte/writing/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,000\n - 'qrels': (relevance assessments); count=12,906\n\n - For 'docs', use 'irds/lotte_writing_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_writing_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/test/forum'\n\nThe 'lotte/writing/test/forum' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=2,000\n - 'qrels': (relevance assessments); count=12,906\n\n - For 'docs', use 'irds/lotte_writing_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8fdc4cc96dc63ab67aa866752b207e5f7038d15d
# Dataset Card for `lotte/writing/test/search` The `lotte/writing/test/search` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/lotte#lotte/writing/test/search). # Data This dataset provides: - `queries` (i.e., topics); count=1,071 - `qrels`: (relevance assessments); count=3,546 - For `docs`, use [`irds/lotte_writing_test`](https://huggingface.co/datasets/irds/lotte_writing_test) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/lotte_writing_test_search', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/lotte_writing_test_search', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Santhanam2021ColBERTv2, title = "ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction", author = "Keshav Santhanam and Omar Khattab and Jon Saad-Falcon and Christopher Potts and Matei Zaharia", journal= "arXiv preprint arXiv:2112.01488", year = "2021", url = "https://arxiv.org/abs/2112.01488" } ```
irds/lotte_writing_test_search
[ "task_categories:text-retrieval", "source_datasets:irds/lotte_writing_test", "arxiv:2112.01488", "region:us" ]
2023-01-05T03:16:27+00:00
{"source_datasets": ["irds/lotte_writing_test"], "task_categories": ["text-retrieval"], "pretty_name": "`lotte/writing/test/search`", "viewer": false}
2023-01-05T03:16:33+00:00
[ "2112.01488" ]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/lotte_writing_test #arxiv-2112.01488 #region-us
# Dataset Card for 'lotte/writing/test/search' The 'lotte/writing/test/search' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=1,071 - 'qrels': (relevance assessments); count=3,546 - For 'docs', use 'irds/lotte_writing_test' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'lotte/writing/test/search'\n\nThe 'lotte/writing/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,071\n - 'qrels': (relevance assessments); count=3,546\n\n - For 'docs', use 'irds/lotte_writing_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/lotte_writing_test #arxiv-2112.01488 #region-us \n", "# Dataset Card for 'lotte/writing/test/search'\n\nThe 'lotte/writing/test/search' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=1,071\n - 'qrels': (relevance assessments); count=3,546\n\n - For 'docs', use 'irds/lotte_writing_test'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8945d071d1c2e1a986e9c4c8e23d413d1607456b
# Dataset Card for `msmarco-passage` The `msmarco-passage` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`msmarco-passage_dev`](https://huggingface.co/datasets/irds/msmarco-passage_dev), [`msmarco-passage_dev_judged`](https://huggingface.co/datasets/irds/msmarco-passage_dev_judged), [`msmarco-passage_eval`](https://huggingface.co/datasets/irds/msmarco-passage_eval), [`msmarco-passage_train_triples-small`](https://huggingface.co/datasets/irds/msmarco-passage_train_triples-small), [`msmarco-passage_train_triples-v2`](https://huggingface.co/datasets/irds/msmarco-passage_train_triples-v2), [`msmarco-passage_trec-dl-hard`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard), [`msmarco-passage_trec-dl-hard_fold1`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard_fold1), [`msmarco-passage_trec-dl-hard_fold2`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard_fold2), [`msmarco-passage_trec-dl-hard_fold3`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard_fold3), [`msmarco-passage_trec-dl-hard_fold4`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard_fold4), [`msmarco-passage_trec-dl-hard_fold5`](https://huggingface.co/datasets/irds/msmarco-passage_trec-dl-hard_fold5) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/msmarco-passage', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:16:38+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage`", "viewer": false}
2023-01-05T03:16:44+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'msmarco-passage' The 'msmarco-passage' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'msmarco-passage_dev', 'msmarco-passage_dev_judged', 'msmarco-passage_eval', 'msmarco-passage_train_triples-small', 'msmarco-passage_train_triples-v2', 'msmarco-passage_trec-dl-hard', 'msmarco-passage_trec-dl-hard_fold1', 'msmarco-passage_trec-dl-hard_fold2', 'msmarco-passage_trec-dl-hard_fold3', 'msmarco-passage_trec-dl-hard_fold4', 'msmarco-passage_trec-dl-hard_fold5' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage'\n\nThe 'msmarco-passage' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'msmarco-passage_dev', 'msmarco-passage_dev_judged', 'msmarco-passage_eval', 'msmarco-passage_train_triples-small', 'msmarco-passage_train_triples-v2', 'msmarco-passage_trec-dl-hard', 'msmarco-passage_trec-dl-hard_fold1', 'msmarco-passage_trec-dl-hard_fold2', 'msmarco-passage_trec-dl-hard_fold3', 'msmarco-passage_trec-dl-hard_fold4', 'msmarco-passage_trec-dl-hard_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'msmarco-passage'\n\nThe 'msmarco-passage' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'msmarco-passage_dev', 'msmarco-passage_dev_judged', 'msmarco-passage_eval', 'msmarco-passage_train_triples-small', 'msmarco-passage_train_triples-v2', 'msmarco-passage_trec-dl-hard', 'msmarco-passage_trec-dl-hard_fold1', 'msmarco-passage_trec-dl-hard_fold2', 'msmarco-passage_trec-dl-hard_fold3', 'msmarco-passage_trec-dl-hard_fold4', 'msmarco-passage_trec-dl-hard_fold5'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
404be20e8d8c396c2c82a101ea9a9ecbf8e2cfdb
# Dataset Card for `msmarco-passage/dev` The `msmarco-passage/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) This dataset is used by: [`msmarco-passage_dev_judged`](https://huggingface.co/datasets/irds/msmarco-passage_dev_judged) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_dev
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:16:49+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/dev`", "viewer": false}
2023-01-05T03:16:55+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/dev' The 'msmarco-passage/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/msmarco-passage' This dataset is used by: 'msmarco-passage_dev_judged' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/dev'\n\nThe 'msmarco-passage/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/msmarco-passage'\n\nThis dataset is used by: 'msmarco-passage_dev_judged'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/dev'\n\nThe 'msmarco-passage/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/msmarco-passage'\n\nThis dataset is used by: 'msmarco-passage_dev_judged'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8c074d85e7f17547f7b13a0c9e19ec7bc5b007b5
# Dataset Card for `msmarco-passage/dev/judged` The `msmarco-passage/dev/judged` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/dev/judged). # Data This dataset provides: - `queries` (i.e., topics); count=55,578 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) - For `qrels`, use [`irds/msmarco-passage_dev`](https://huggingface.co/datasets/irds/msmarco-passage_dev) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_dev_judged', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_dev_judged
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "source_datasets:irds/msmarco-passage_dev", "region:us" ]
2023-01-05T03:17:01+00:00
{"source_datasets": ["irds/msmarco-passage", "irds/msmarco-passage_dev"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/dev/judged`", "viewer": false}
2023-01-05T03:17:08+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #source_datasets-irds/msmarco-passage_dev #region-us
# Dataset Card for 'msmarco-passage/dev/judged' The 'msmarco-passage/dev/judged' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=55,578 - For 'docs', use 'irds/msmarco-passage' - For 'qrels', use 'irds/msmarco-passage_dev' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/dev/judged'\n\nThe 'msmarco-passage/dev/judged' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=55,578\n\n - For 'docs', use 'irds/msmarco-passage'\n - For 'qrels', use 'irds/msmarco-passage_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #source_datasets-irds/msmarco-passage_dev #region-us \n", "# Dataset Card for 'msmarco-passage/dev/judged'\n\nThe 'msmarco-passage/dev/judged' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=55,578\n\n - For 'docs', use 'irds/msmarco-passage'\n - For 'qrels', use 'irds/msmarco-passage_dev'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d2321bf1ed1207ee9afba00880809436b43fc0cc
# Dataset Card for `msmarco-passage/eval` The `msmarco-passage/eval` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/eval). # Data This dataset provides: - `queries` (i.e., topics); count=101,092 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_eval', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_eval
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:13+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/eval`", "viewer": false}
2023-01-05T03:17:19+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/eval' The 'msmarco-passage/eval' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,092 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/eval'\n\nThe 'msmarco-passage/eval' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,092\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/eval'\n\nThe 'msmarco-passage/eval' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,092\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
de45da64bde97a5f1f91e59ebb0f1afc64a4c988
# Dataset Card for `msmarco-passage/train/triples-small` The `msmarco-passage/train/triples-small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/train/triples-small). # Data This dataset provides: - `docpairs`; count=39,780,811 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset docpairs = load_dataset('irds/msmarco-passage_train_triples-small', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_train_triples-small
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:25+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/train/triples-small`", "viewer": false}
2023-01-05T03:17:31+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/train/triples-small' The 'msmarco-passage/train/triples-small' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/train/triples-small'\n\nThe 'msmarco-passage/train/triples-small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/train/triples-small'\n\nThe 'msmarco-passage/train/triples-small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7ffed33f9c1e1f94dd4d8e816ff253f4dc335ef9
# Dataset Card for `msmarco-passage/train/triples-v2` The `msmarco-passage/train/triples-v2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/train/triples-v2). # Data This dataset provides: - `docpairs`; count=397,768,673 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset docpairs = load_dataset('irds/msmarco-passage_train_triples-v2', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_train_triples-v2
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:36+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/train/triples-v2`", "viewer": false}
2023-01-05T03:17:42+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/train/triples-v2' The 'msmarco-passage/train/triples-v2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docpairs'; count=397,768,673 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/train/triples-v2'\n\nThe 'msmarco-passage/train/triples-v2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docpairs'; count=397,768,673\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/train/triples-v2'\n\nThe 'msmarco-passage/train/triples-v2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docpairs'; count=397,768,673\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
b1129fe39c9a242ff4f864aa9b8dc6d2d23bec25
# Dataset Card for `msmarco-passage/trec-dl-hard` The `msmarco-passage/trec-dl-hard` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard). # Data This dataset provides: - `queries` (i.e., topics); count=50 - `qrels`: (relevance assessments); count=4,256 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:47+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard`", "viewer": false}
2023-01-05T03:17:54+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard' The 'msmarco-passage/trec-dl-hard' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=50 - 'qrels': (relevance assessments); count=4,256 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard'\n\nThe 'msmarco-passage/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=4,256\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard'\n\nThe 'msmarco-passage/trec-dl-hard' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=50\n - 'qrels': (relevance assessments); count=4,256\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0d1c5543ae8c9d7c9a844ca272c1b9794216f7ea
# Dataset Card for `msmarco-passage/trec-dl-hard/fold1` The `msmarco-passage/trec-dl-hard/fold1` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold1). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,072 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold1', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold1', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold1
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:17:59+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold1`", "viewer": false}
2023-01-05T03:18:05+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard/fold1' The 'msmarco-passage/trec-dl-hard/fold1' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=1,072 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold1'\n\nThe 'msmarco-passage/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,072\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold1'\n\nThe 'msmarco-passage/trec-dl-hard/fold1' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,072\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
28f16fc5228f9fb890b1e089ab6c77317c20aef2
# Dataset Card for `msmarco-passage/trec-dl-hard/fold2` The `msmarco-passage/trec-dl-hard/fold2` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold2). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=898 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold2', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold2', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold2
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:10+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold2`", "viewer": false}
2023-01-05T03:18:16+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard/fold2' The 'msmarco-passage/trec-dl-hard/fold2' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=898 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold2'\n\nThe 'msmarco-passage/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=898\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold2'\n\nThe 'msmarco-passage/trec-dl-hard/fold2' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=898\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9328cd2381826e6c4f4720f1b045ba75a4124f61
# Dataset Card for `msmarco-passage/trec-dl-hard/fold3` The `msmarco-passage/trec-dl-hard/fold3` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold3). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=444 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold3', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold3', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold3
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:22+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold3`", "viewer": false}
2023-01-05T03:18:28+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard/fold3' The 'msmarco-passage/trec-dl-hard/fold3' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=444 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold3'\n\nThe 'msmarco-passage/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=444\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold3'\n\nThe 'msmarco-passage/trec-dl-hard/fold3' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=444\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e05f315864a95239e4d0b39ce54fdc79b25dffb2
# Dataset Card for `msmarco-passage/trec-dl-hard/fold4` The `msmarco-passage/trec-dl-hard/fold4` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold4). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=716 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold4', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold4', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold4
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:33+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold4`", "viewer": false}
2023-01-05T03:18:39+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard/fold4' The 'msmarco-passage/trec-dl-hard/fold4' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=716 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold4'\n\nThe 'msmarco-passage/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=716\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold4'\n\nThe 'msmarco-passage/trec-dl-hard/fold4' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=716\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
7f96a0dfde501b9cb37db2482b6efbf357a317db
# Dataset Card for `msmarco-passage/trec-dl-hard/fold5` The `msmarco-passage/trec-dl-hard/fold5` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/msmarco-passage#msmarco-passage/trec-dl-hard/fold5). # Data This dataset provides: - `queries` (i.e., topics); count=10 - `qrels`: (relevance assessments); count=1,126 - For `docs`, use [`irds/msmarco-passage`](https://huggingface.co/datasets/irds/msmarco-passage) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/msmarco-passage_trec-dl-hard_fold5', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/msmarco-passage_trec-dl-hard_fold5', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Mackie2021DlHard, title={How Deep is your Learning: the DL-HARD Annotated Deep Learning Dataset}, author={Iain Mackie and Jeffrey Dalton and Andrew Yates}, journal={ArXiv}, year={2021}, volume={abs/2105.07975} } @inproceedings{Bajaj2016Msmarco, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, Tong Wang}, booktitle={InCoCo@NIPS}, year={2016} } ```
irds/msmarco-passage_trec-dl-hard_fold5
[ "task_categories:text-retrieval", "source_datasets:irds/msmarco-passage", "region:us" ]
2023-01-05T03:18:45+00:00
{"source_datasets": ["irds/msmarco-passage"], "task_categories": ["text-retrieval"], "pretty_name": "`msmarco-passage/trec-dl-hard/fold5`", "viewer": false}
2023-01-05T03:18:51+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us
# Dataset Card for 'msmarco-passage/trec-dl-hard/fold5' The 'msmarco-passage/trec-dl-hard/fold5' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=10 - 'qrels': (relevance assessments); count=1,126 - For 'docs', use 'irds/msmarco-passage' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold5'\n\nThe 'msmarco-passage/trec-dl-hard/fold5' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,126\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/msmarco-passage #region-us \n", "# Dataset Card for 'msmarco-passage/trec-dl-hard/fold5'\n\nThe 'msmarco-passage/trec-dl-hard/fold5' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=10\n - 'qrels': (relevance assessments); count=1,126\n\n - For 'docs', use 'irds/msmarco-passage'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
913b4b74161e8b0da4594bfd2b35d311f93bc461
# Dataset Card for `mmarco/de` The `mmarco/de` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_de_dev`](https://huggingface.co/datasets/irds/mmarco_de_dev), [`mmarco_de_train`](https://huggingface.co/datasets/irds/mmarco_de_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_de', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:18:56+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de`", "viewer": false}
2023-01-05T03:19:02+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/de' The 'mmarco/de' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_de_dev', 'mmarco_de_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/de'\n\nThe 'mmarco/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_de_dev', 'mmarco_de_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/de'\n\nThe 'mmarco/de' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_de_dev', 'mmarco_de_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
5318697117a4dd1f182ab0f84c8169d9f77fd8f4
# Dataset Card for `mmarco/de/dev` The `mmarco/de/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_de`](https://huggingface.co/datasets/irds/mmarco_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_de_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_de_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_de", "region:us" ]
2023-01-05T03:19:07+00:00
{"source_datasets": ["irds/mmarco_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de/dev`", "viewer": false}
2023-01-05T03:19:14+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_de #region-us
# Dataset Card for 'mmarco/de/dev' The 'mmarco/de/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_de' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/de/dev'\n\nThe 'mmarco/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_de #region-us \n", "# Dataset Card for 'mmarco/de/dev'\n\nThe 'mmarco/de/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
39560409ee079e73867791aa2836b00d7b105121
# Dataset Card for `mmarco/de/train` The `mmarco/de/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/de/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_de`](https://huggingface.co/datasets/irds/mmarco_de) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_de_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_de_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_de_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_de_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_de", "region:us" ]
2023-01-05T03:19:19+00:00
{"source_datasets": ["irds/mmarco_de"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/de/train`", "viewer": false}
2023-01-05T03:19:25+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_de #region-us
# Dataset Card for 'mmarco/de/train' The 'mmarco/de/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_de' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/de/train'\n\nThe 'mmarco/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_de #region-us \n", "# Dataset Card for 'mmarco/de/train'\n\nThe 'mmarco/de/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_de'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
3e18dee28ad468246a5280b641c1a7f59d2286ac
# Dataset Card for `mmarco/es` The `mmarco/es` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_es_dev`](https://huggingface.co/datasets/irds/mmarco_es_dev), [`mmarco_es_train`](https://huggingface.co/datasets/irds/mmarco_es_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_es', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:19:31+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es`", "viewer": false}
2023-01-05T03:19:37+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/es' The 'mmarco/es' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_es_dev', 'mmarco_es_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/es'\n\nThe 'mmarco/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_es_dev', 'mmarco_es_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/es'\n\nThe 'mmarco/es' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_es_dev', 'mmarco_es_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
d2ae92f49e7c11f60a7551ad2e4733343daa21c5
# Dataset Card for `mmarco/es/dev` The `mmarco/es/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,092 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_es`](https://huggingface.co/datasets/irds/mmarco_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_es_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_es_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_es", "region:us" ]
2023-01-05T03:19:42+00:00
{"source_datasets": ["irds/mmarco_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es/dev`", "viewer": false}
2023-01-05T03:19:48+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_es #region-us
# Dataset Card for 'mmarco/es/dev' The 'mmarco/es/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,092 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_es' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/es/dev'\n\nThe 'mmarco/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,092\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_es #region-us \n", "# Dataset Card for 'mmarco/es/dev'\n\nThe 'mmarco/es/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,092\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
224ef56d6b405ccf0d1d0b16d72b6cabd078c93d
# Dataset Card for `mmarco/es/train` The `mmarco/es/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/es/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_es`](https://huggingface.co/datasets/irds/mmarco_es) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_es_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_es_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_es_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_es_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_es", "region:us" ]
2023-01-05T03:19:54+00:00
{"source_datasets": ["irds/mmarco_es"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/es/train`", "viewer": false}
2023-01-05T03:19:59+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_es #region-us
# Dataset Card for 'mmarco/es/train' The 'mmarco/es/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_es' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/es/train'\n\nThe 'mmarco/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_es #region-us \n", "# Dataset Card for 'mmarco/es/train'\n\nThe 'mmarco/es/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_es'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9be96a7ba7c9b3c875234cc6502e3265e3fca1c4
# Dataset Card for `mmarco/fr` The `mmarco/fr` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_fr_dev`](https://huggingface.co/datasets/irds/mmarco_fr_dev), [`mmarco_fr_train`](https://huggingface.co/datasets/irds/mmarco_fr_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_fr', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:20:05+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr`", "viewer": false}
2023-01-05T03:20:11+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/fr' The 'mmarco/fr' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_fr_dev', 'mmarco_fr_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/fr'\n\nThe 'mmarco/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_fr_dev', 'mmarco_fr_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/fr'\n\nThe 'mmarco/fr' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_fr_dev', 'mmarco_fr_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8ce34210d36d56a3699310cb6c46887a695dd2bf
# Dataset Card for `mmarco/fr/dev` The `mmarco/fr/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_fr`](https://huggingface.co/datasets/irds/mmarco_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_fr_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_fr_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_fr", "region:us" ]
2023-01-05T03:20:16+00:00
{"source_datasets": ["irds/mmarco_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr/dev`", "viewer": false}
2023-01-05T03:20:22+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_fr #region-us
# Dataset Card for 'mmarco/fr/dev' The 'mmarco/fr/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_fr' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/fr/dev'\n\nThe 'mmarco/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_fr #region-us \n", "# Dataset Card for 'mmarco/fr/dev'\n\nThe 'mmarco/fr/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
e1ebd14d7bb66bad1f0c37581ecb3fbc74c89c42
# Dataset Card for `mmarco/fr/train` The `mmarco/fr/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/fr/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_fr`](https://huggingface.co/datasets/irds/mmarco_fr) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_fr_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_fr_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_fr_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_fr_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_fr", "region:us" ]
2023-01-05T03:20:28+00:00
{"source_datasets": ["irds/mmarco_fr"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/fr/train`", "viewer": false}
2023-01-05T03:20:35+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_fr #region-us
# Dataset Card for 'mmarco/fr/train' The 'mmarco/fr/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_fr' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/fr/train'\n\nThe 'mmarco/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_fr #region-us \n", "# Dataset Card for 'mmarco/fr/train'\n\nThe 'mmarco/fr/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_fr'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
121d66064395028f03b0c2eb1c2e78a71d8d5772
# Dataset Card for `mmarco/id` The `mmarco/id` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_id_dev`](https://huggingface.co/datasets/irds/mmarco_id_dev), [`mmarco_id_train`](https://huggingface.co/datasets/irds/mmarco_id_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_id', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:20:40+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id`", "viewer": false}
2023-01-05T03:20:46+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/id' The 'mmarco/id' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_id_dev', 'mmarco_id_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/id'\n\nThe 'mmarco/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_id_dev', 'mmarco_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/id'\n\nThe 'mmarco/id' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_id_dev', 'mmarco_id_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
a024cb2ae75bbcd0fa6c3cac7fb14ebcf1f5e206
# Dataset Card for `mmarco/id/dev` The `mmarco/id/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_id`](https://huggingface.co/datasets/irds/mmarco_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_id_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_id_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_id", "region:us" ]
2023-01-05T03:20:51+00:00
{"source_datasets": ["irds/mmarco_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id/dev`", "viewer": false}
2023-01-05T03:20:57+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_id #region-us
# Dataset Card for 'mmarco/id/dev' The 'mmarco/id/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/id/dev'\n\nThe 'mmarco/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_id #region-us \n", "# Dataset Card for 'mmarco/id/dev'\n\nThe 'mmarco/id/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
8ed13a03e20df3f825e3819af6924db5ffdeb207
# Dataset Card for `mmarco/id/train` The `mmarco/id/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/id/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_id`](https://huggingface.co/datasets/irds/mmarco_id) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_id_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_id_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_id_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_id_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_id", "region:us" ]
2023-01-05T03:21:03+00:00
{"source_datasets": ["irds/mmarco_id"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/id/train`", "viewer": false}
2023-01-05T03:21:09+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_id #region-us
# Dataset Card for 'mmarco/id/train' The 'mmarco/id/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_id' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/id/train'\n\nThe 'mmarco/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_id #region-us \n", "# Dataset Card for 'mmarco/id/train'\n\nThe 'mmarco/id/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_id'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
6911b71cabc9c941677f0b6f2ff11d36c0cc897b
# Dataset Card for `mmarco/it` The `mmarco/it` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_it_dev`](https://huggingface.co/datasets/irds/mmarco_it_dev), [`mmarco_it_train`](https://huggingface.co/datasets/irds/mmarco_it_train) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_it', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:21:14+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it`", "viewer": false}
2023-01-05T03:21:20+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/it' The 'mmarco/it' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_it_dev', 'mmarco_it_train' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/it'\n\nThe 'mmarco/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_it_dev', 'mmarco_it_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/it'\n\nThe 'mmarco/it' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_it_dev', 'mmarco_it_train'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
9041a86a6faf53429176be84cb19064891334ed5
# Dataset Card for `mmarco/it/dev` The `mmarco/it/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,093 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_it`](https://huggingface.co/datasets/irds/mmarco_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_it_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_it_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_it", "region:us" ]
2023-01-05T03:21:25+00:00
{"source_datasets": ["irds/mmarco_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it/dev`", "viewer": false}
2023-01-05T03:21:31+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_it #region-us
# Dataset Card for 'mmarco/it/dev' The 'mmarco/it/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,093 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_it' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/it/dev'\n\nThe 'mmarco/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_it #region-us \n", "# Dataset Card for 'mmarco/it/dev'\n\nThe 'mmarco/it/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,093\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
ed816a1fc65c82f46a2cd1eb029e7432d4032c13
# Dataset Card for `mmarco/it/train` The `mmarco/it/train` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/it/train). # Data This dataset provides: - `queries` (i.e., topics); count=808,731 - `qrels`: (relevance assessments); count=532,761 - `docpairs`; count=39,780,811 - For `docs`, use [`irds/mmarco_it`](https://huggingface.co/datasets/irds/mmarco_it) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_it_train', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_it_train', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} docpairs = load_dataset('irds/mmarco_it_train', 'docpairs') for record in docpairs: record # {'query_id': ..., 'doc_id_a': ..., 'doc_id_b': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_it_train
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_it", "region:us" ]
2023-01-05T03:21:37+00:00
{"source_datasets": ["irds/mmarco_it"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/it/train`", "viewer": false}
2023-01-05T03:21:42+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_it #region-us
# Dataset Card for 'mmarco/it/train' The 'mmarco/it/train' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=808,731 - 'qrels': (relevance assessments); count=532,761 - 'docpairs'; count=39,780,811 - For 'docs', use 'irds/mmarco_it' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/it/train'\n\nThe 'mmarco/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_it #region-us \n", "# Dataset Card for 'mmarco/it/train'\n\nThe 'mmarco/it/train' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=808,731\n - 'qrels': (relevance assessments); count=532,761\n - 'docpairs'; count=39,780,811\n\n - For 'docs', use 'irds/mmarco_it'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
0d5b98409b96ddb651dd383b19a955fd285ba41c
# Dataset Card for `mmarco/pt` The `mmarco/pt` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt). # Data This dataset provides: - `docs` (documents, i.e., the corpus); count=8,841,823 This dataset is used by: [`mmarco_pt_dev`](https://huggingface.co/datasets/irds/mmarco_pt_dev), [`mmarco_pt_dev_small`](https://huggingface.co/datasets/irds/mmarco_pt_dev_small), [`mmarco_pt_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_dev_v1.1), [`mmarco_pt_train`](https://huggingface.co/datasets/irds/mmarco_pt_train), [`mmarco_pt_train_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_train_v1.1) ## Usage ```python from datasets import load_dataset docs = load_dataset('irds/mmarco_pt', 'docs') for record in docs: record # {'doc_id': ..., 'text': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt
[ "task_categories:text-retrieval", "region:us" ]
2023-01-05T03:21:48+00:00
{"source_datasets": [], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt`", "viewer": false}
2023-01-05T03:21:53+00:00
[]
[]
TAGS #task_categories-text-retrieval #region-us
# Dataset Card for 'mmarco/pt' The 'mmarco/pt' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'docs' (documents, i.e., the corpus); count=8,841,823 This dataset is used by: 'mmarco_pt_dev', 'mmarco_pt_dev_small', 'mmarco_pt_dev_v1.1', 'mmarco_pt_train', 'mmarco_pt_train_v1.1' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt'\n\nThe 'mmarco/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_pt_dev', 'mmarco_pt_dev_small', 'mmarco_pt_dev_v1.1', 'mmarco_pt_train', 'mmarco_pt_train_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #region-us \n", "# Dataset Card for 'mmarco/pt'\n\nThe 'mmarco/pt' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'docs' (documents, i.e., the corpus); count=8,841,823\n\n\nThis dataset is used by: 'mmarco_pt_dev', 'mmarco_pt_dev_small', 'mmarco_pt_dev_v1.1', 'mmarco_pt_train', 'mmarco_pt_train_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
fd0b5ecc91d7554363318d22452441ace17ef00a
# Dataset Card for `mmarco/pt/dev` The `mmarco/pt/dev` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev). # Data This dataset provides: - `queries` (i.e., topics); count=101,619 - `qrels`: (relevance assessments); count=59,273 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) This dataset is used by: [`mmarco_pt_dev_v1.1`](https://huggingface.co/datasets/irds/mmarco_pt_dev_v1.1) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_dev', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:21:59+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev`", "viewer": false}
2023-01-05T03:22:05+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us
# Dataset Card for 'mmarco/pt/dev' The 'mmarco/pt/dev' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=101,619 - 'qrels': (relevance assessments); count=59,273 - For 'docs', use 'irds/mmarco_pt' This dataset is used by: 'mmarco_pt_dev_v1.1' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt/dev'\n\nThe 'mmarco/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,619\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_dev_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us \n", "# Dataset Card for 'mmarco/pt/dev'\n\nThe 'mmarco/pt/dev' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=101,619\n - 'qrels': (relevance assessments); count=59,273\n\n - For 'docs', use 'irds/mmarco_pt'\n\nThis dataset is used by: 'mmarco_pt_dev_v1.1'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
dc6503ba07a3359edd9d8f8721cb2ea7b4513a6d
# Dataset Card for `mmarco/pt/dev/small` The `mmarco/pt/dev/small` dataset, provided by the [ir-datasets](https://ir-datasets.com/) package. For more information about the dataset, see the [documentation](https://ir-datasets.com/mmarco#mmarco/pt/dev/small). # Data This dataset provides: - `queries` (i.e., topics); count=7,000 - `qrels`: (relevance assessments); count=7,437 - For `docs`, use [`irds/mmarco_pt`](https://huggingface.co/datasets/irds/mmarco_pt) ## Usage ```python from datasets import load_dataset queries = load_dataset('irds/mmarco_pt_dev_small', 'queries') for record in queries: record # {'query_id': ..., 'text': ...} qrels = load_dataset('irds/mmarco_pt_dev_small', 'qrels') for record in qrels: record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...} ``` Note that calling `load_dataset` will download the dataset (or provide access instructions when it's not public) and make a copy of the data in πŸ€— Dataset format. ## Citation Information ``` @article{Bonifacio2021MMarco, title={{mMARCO}: A Multilingual Version of {MS MARCO} Passage Ranking Dataset}, author={Luiz Henrique Bonifacio and Israel Campiotti and Roberto Lotufo and Rodrigo Nogueira}, year={2021}, journal={arXiv:2108.13897} } ```
irds/mmarco_pt_dev_small
[ "task_categories:text-retrieval", "source_datasets:irds/mmarco_pt", "region:us" ]
2023-01-05T03:22:10+00:00
{"source_datasets": ["irds/mmarco_pt"], "task_categories": ["text-retrieval"], "pretty_name": "`mmarco/pt/dev/small`", "viewer": false}
2023-01-05T03:22:16+00:00
[]
[]
TAGS #task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us
# Dataset Card for 'mmarco/pt/dev/small' The 'mmarco/pt/dev/small' dataset, provided by the ir-datasets package. For more information about the dataset, see the documentation. # Data This dataset provides: - 'queries' (i.e., topics); count=7,000 - 'qrels': (relevance assessments); count=7,437 - For 'docs', use 'irds/mmarco_pt' ## Usage Note that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the data in Dataset format.
[ "# Dataset Card for 'mmarco/pt/dev/small'\n\nThe 'mmarco/pt/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=7,000\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]
[ "TAGS\n#task_categories-text-retrieval #source_datasets-irds/mmarco_pt #region-us \n", "# Dataset Card for 'mmarco/pt/dev/small'\n\nThe 'mmarco/pt/dev/small' dataset, provided by the ir-datasets package.\nFor more information about the dataset, see the documentation.", "# Data\n\nThis dataset provides:\n - 'queries' (i.e., topics); count=7,000\n - 'qrels': (relevance assessments); count=7,437\n\n - For 'docs', use 'irds/mmarco_pt'", "## Usage\n\n\n\nNote that calling 'load_dataset' will download the dataset (or provide access instructions when it's not public) and make a copy of the\ndata in Dataset format." ]