body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def GETorHEAD(self, req): 'Handler for HTTP GET/HEAD requests.' length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp partition = self.app.account_ring.get_part(self.account_name) concurrency = (self.app.account_ring.replica_count if self.app.get_policy_options(None).concurrent_gets else 1) node_iter = self.app.iter_nodes(self.app.account_ring, partition) params = req.params params['format'] = 'json' req.params = params resp = self.GETorHEAD_base(req, _('Account'), node_iter, partition, req.swift_entity_path.rstrip('/'), concurrency) if (resp.status_int == HTTP_NOT_FOUND): if (resp.headers.get('X-Account-Status', '').lower() == 'deleted'): resp.status = HTTP_GONE elif self.app.account_autocreate: resp = account_listing_response(self.account_name, req, listing_formats.get_listing_content_type(req)) resp.headers['X-Backend-Fake-Account-Listing'] = 'yes' resp.headers['X-Backend-Recheck-Account-Existence'] = str(self.app.recheck_account_existence) set_info_cache(self.app, req.environ, self.account_name, None, resp) if req.environ.get('swift_owner'): self.add_acls_from_sys_metadata(resp) else: for header in self.app.swift_owner_headers: resp.headers.pop(header, None) return resp
-2,028,738,259,296,392,200
Handler for HTTP GET/HEAD requests.
swift/proxy/controllers/account.py
GETorHEAD
AymericDu/swift
python
def GETorHEAD(self, req): length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp partition = self.app.account_ring.get_part(self.account_name) concurrency = (self.app.account_ring.replica_count if self.app.get_policy_options(None).concurrent_gets else 1) node_iter = self.app.iter_nodes(self.app.account_ring, partition) params = req.params params['format'] = 'json' req.params = params resp = self.GETorHEAD_base(req, _('Account'), node_iter, partition, req.swift_entity_path.rstrip('/'), concurrency) if (resp.status_int == HTTP_NOT_FOUND): if (resp.headers.get('X-Account-Status', ).lower() == 'deleted'): resp.status = HTTP_GONE elif self.app.account_autocreate: resp = account_listing_response(self.account_name, req, listing_formats.get_listing_content_type(req)) resp.headers['X-Backend-Fake-Account-Listing'] = 'yes' resp.headers['X-Backend-Recheck-Account-Existence'] = str(self.app.recheck_account_existence) set_info_cache(self.app, req.environ, self.account_name, None, resp) if req.environ.get('swift_owner'): self.add_acls_from_sys_metadata(resp) else: for header in self.app.swift_owner_headers: resp.headers.pop(header, None) return resp
@public def PUT(self, req): 'HTTP PUT request handler.' if (not self.app.allow_account_management): return HTTPMethodNotAllowed(request=req, headers={'Allow': ', '.join(self.allowed_methods)}) error_response = check_metadata(req, 'account') if error_response: return error_response length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'PUT', req.swift_entity_path, ([headers] * len(accounts))) self.add_acls_from_sys_metadata(resp) return resp
-8,082,433,754,177,956,000
HTTP PUT request handler.
swift/proxy/controllers/account.py
PUT
AymericDu/swift
python
@public def PUT(self, req): if (not self.app.allow_account_management): return HTTPMethodNotAllowed(request=req, headers={'Allow': ', '.join(self.allowed_methods)}) error_response = check_metadata(req, 'account') if error_response: return error_response length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'PUT', req.swift_entity_path, ([headers] * len(accounts))) self.add_acls_from_sys_metadata(resp) return resp
@public def POST(self, req): 'HTTP POST request handler.' length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp error_response = check_metadata(req, 'account') if error_response: return error_response (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, ([headers] * len(accounts))) if ((resp.status_int == HTTP_NOT_FOUND) and self.app.account_autocreate): self.autocreate_account(req, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, ([headers] * len(accounts))) self.add_acls_from_sys_metadata(resp) return resp
-7,641,809,301,346,970,000
HTTP POST request handler.
swift/proxy/controllers/account.py
POST
AymericDu/swift
python
@public def POST(self, req): length_limit = self.get_name_length_limit() if (len(self.account_name) > length_limit): resp = HTTPBadRequest(request=req) resp.body = (b'Account name length of %d longer than %d' % (len(self.account_name), length_limit)) return resp error_response = check_metadata(req, 'account') if error_response: return error_response (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, ([headers] * len(accounts))) if ((resp.status_int == HTTP_NOT_FOUND) and self.app.account_autocreate): self.autocreate_account(req, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'POST', req.swift_entity_path, ([headers] * len(accounts))) self.add_acls_from_sys_metadata(resp) return resp
@public def DELETE(self, req): 'HTTP DELETE request handler.' if req.query_string: return HTTPBadRequest(request=req) if (not self.app.allow_account_management): return HTTPMethodNotAllowed(request=req, headers={'Allow': ', '.join(self.allowed_methods)}) (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'DELETE', req.swift_entity_path, ([headers] * len(accounts))) return resp
8,040,606,574,105,074,000
HTTP DELETE request handler.
swift/proxy/controllers/account.py
DELETE
AymericDu/swift
python
@public def DELETE(self, req): if req.query_string: return HTTPBadRequest(request=req) if (not self.app.allow_account_management): return HTTPMethodNotAllowed(request=req, headers={'Allow': ', '.join(self.allowed_methods)}) (account_partition, accounts) = self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests(req, self.app.account_ring, account_partition, 'DELETE', req.swift_entity_path, ([headers] * len(accounts))) return resp
def section_text(text): 'Splits text into sections.\n\n Assumes text is in a radiology report format, e.g.:\n\n COMPARISON: Chest radiograph dated XYZ.\n\n IMPRESSION: ABC...\n\n Given text like this, it will output text from each section, \n where the section type is determined by the all caps header.\n\n Returns a three element tuple:\n sections - list containing the text of each section\n section_names - a normalized version of the section name\n section_idx - list of start indices of the text in the section\n ' p_section = re.compile('\\n ([A-Z ()/,-]+):\\s', re.DOTALL) sections = list() section_names = list() section_idx = list() idx = 0 s = p_section.search(text, idx) if s: sections.append(text[0:s.start(1)]) section_names.append('preamble') section_idx.append(0) while s: current_section = s.group(1).lower() idx_start = s.end() idx_skip = text[idx_start:].find('\n') if (idx_skip == (- 1)): idx_skip = 0 s = p_section.search(text, (idx_start + idx_skip)) if (s is None): idx_end = len(text) else: idx_end = s.start() sections.append(text[idx_start:idx_end]) section_names.append(current_section) section_idx.append(idx_start) else: sections.append(text) section_names.append('full report') section_idx.append(0) section_names = normalize_section_names(section_names) for i in reversed(range(len(section_names))): if (section_names[i] in ('impression', 'findings')): if (sections[i].strip() == ''): sections.pop(i) section_names.pop(i) section_idx.pop(i) if (('impression' not in section_names) & ('findings' not in section_names)): if ('\n \n' in sections[(- 1)]): sections.append('\n \n'.join(sections[(- 1)].split('\n \n')[1:])) sections[(- 2)] = sections[(- 2)].split('\n \n')[0] section_names.append('last_paragraph') section_idx.append((section_idx[(- 1)] + len(sections[(- 2)]))) return (sections, section_names, section_idx)
7,319,260,994,792,756,000
Splits text into sections. Assumes text is in a radiology report format, e.g.: COMPARISON: Chest radiograph dated XYZ. IMPRESSION: ABC... Given text like this, it will output text from each section, where the section type is determined by the all caps header. Returns a three element tuple: sections - list containing the text of each section section_names - a normalized version of the section name section_idx - list of start indices of the text in the section
src/data/datasets/mimic_cxr/section_parser.py
section_text
philip-mueller/lovt
python
def section_text(text): 'Splits text into sections.\n\n Assumes text is in a radiology report format, e.g.:\n\n COMPARISON: Chest radiograph dated XYZ.\n\n IMPRESSION: ABC...\n\n Given text like this, it will output text from each section, \n where the section type is determined by the all caps header.\n\n Returns a three element tuple:\n sections - list containing the text of each section\n section_names - a normalized version of the section name\n section_idx - list of start indices of the text in the section\n ' p_section = re.compile('\\n ([A-Z ()/,-]+):\\s', re.DOTALL) sections = list() section_names = list() section_idx = list() idx = 0 s = p_section.search(text, idx) if s: sections.append(text[0:s.start(1)]) section_names.append('preamble') section_idx.append(0) while s: current_section = s.group(1).lower() idx_start = s.end() idx_skip = text[idx_start:].find('\n') if (idx_skip == (- 1)): idx_skip = 0 s = p_section.search(text, (idx_start + idx_skip)) if (s is None): idx_end = len(text) else: idx_end = s.start() sections.append(text[idx_start:idx_end]) section_names.append(current_section) section_idx.append(idx_start) else: sections.append(text) section_names.append('full report') section_idx.append(0) section_names = normalize_section_names(section_names) for i in reversed(range(len(section_names))): if (section_names[i] in ('impression', 'findings')): if (sections[i].strip() == ): sections.pop(i) section_names.pop(i) section_idx.pop(i) if (('impression' not in section_names) & ('findings' not in section_names)): if ('\n \n' in sections[(- 1)]): sections.append('\n \n'.join(sections[(- 1)].split('\n \n')[1:])) sections[(- 2)] = sections[(- 2)].split('\n \n')[0] section_names.append('last_paragraph') section_idx.append((section_idx[(- 1)] + len(sections[(- 2)]))) return (sections, section_names, section_idx)
@_rewrite_parameters(body_name='text_files') def find_structure(self, *, text_files: t.Union[(t.List[t.Any], t.Tuple[(t.Any, ...)])], charset: t.Optional[str]=None, column_names: t.Optional[str]=None, delimiter: t.Optional[str]=None, explain: t.Optional[bool]=None, format: t.Optional[str]=None, grok_pattern: t.Optional[str]=None, has_header_row: t.Optional[bool]=None, line_merge_size_limit: t.Optional[int]=None, lines_to_sample: t.Optional[int]=None, quote: t.Optional[str]=None, should_trim_fields: t.Optional[bool]=None, timeout: t.Optional[t.Union[(int, str)]]=None, timestamp_field: t.Optional[str]=None, timestamp_format: t.Optional[str]=None) -> ObjectApiResponse[t.Any]: '\n Finds the structure of a text file. The text file must contain data that is suitable\n to be ingested into Elasticsearch.\n\n `<https://www.elastic.co/guide/en/elasticsearch/reference/current/find-structure.html>`_\n\n :param text_files:\n :param charset: The text’s character set. It must be a character set that is\n supported by the JVM that Elasticsearch uses. For example, UTF-8, UTF-16LE,\n windows-1252, or EUC-JP. If this parameter is not specified, the structure\n finder chooses an appropriate character set.\n :param column_names: If you have set format to delimited, you can specify the\n column names in a comma-separated list. If this parameter is not specified,\n the structure finder uses the column names from the header row of the text.\n If the text does not have a header role, columns are named "column1", "column2",\n "column3", etc.\n :param delimiter: If you have set format to delimited, you can specify the character\n used to delimit the values in each row. Only a single character is supported;\n the delimiter cannot have multiple characters. By default, the API considers\n the following possibilities: comma, tab, semi-colon, and pipe (|). In this\n default scenario, all rows must have the same number of fields for the delimited\n format to be detected. If you specify a delimiter, up to 10% of the rows\n can have a different number of columns than the first row.\n :param explain: If this parameter is set to true, the response includes a field\n named explanation, which is an array of strings that indicate how the structure\n finder produced its result.\n :param format: The high level structure of the text. Valid values are ndjson,\n xml, delimited, and semi_structured_text. By default, the API chooses the\n format. In this default scenario, all rows must have the same number of fields\n for a delimited format to be detected. If the format is set to delimited\n and the delimiter is not set, however, the API tolerates up to 5% of rows\n that have a different number of columns than the first row.\n :param grok_pattern: If you have set format to semi_structured_text, you can\n specify a Grok pattern that is used to extract fields from every message\n in the text. The name of the timestamp field in the Grok pattern must match\n what is specified in the timestamp_field parameter. If that parameter is\n not specified, the name of the timestamp field in the Grok pattern must match\n "timestamp". If grok_pattern is not specified, the structure finder creates\n a Grok pattern.\n :param has_header_row: If you have set format to delimited, you can use this\n parameter to indicate whether the column names are in the first row of the\n text. If this parameter is not specified, the structure finder guesses based\n on the similarity of the first row of the text to other rows.\n :param line_merge_size_limit: The maximum number of characters in a message when\n lines are merged to form messages while analyzing semi-structured text. If\n you have extremely long messages you may need to increase this, but be aware\n that this may lead to very long processing times if the way to group lines\n into messages is misdetected.\n :param lines_to_sample: The number of lines to include in the structural analysis,\n starting from the beginning of the text. The minimum is 2; If the value of\n this parameter is greater than the number of lines in the text, the analysis\n proceeds (as long as there are at least two lines in the text) for all of\n the lines.\n :param quote: If you have set format to delimited, you can specify the character\n used to quote the values in each row if they contain newlines or the delimiter\n character. Only a single character is supported. If this parameter is not\n specified, the default value is a double quote ("). If your delimited text\n format does not use quoting, a workaround is to set this argument to a character\n that does not appear anywhere in the sample.\n :param should_trim_fields: If you have set format to delimited, you can specify\n whether values between delimiters should have whitespace trimmed from them.\n If this parameter is not specified and the delimiter is pipe (|), the default\n value is true. Otherwise, the default value is false.\n :param timeout: Sets the maximum amount of time that the structure analysis make\n take. If the analysis is still running when the timeout expires then it will\n be aborted.\n :param timestamp_field: Optional parameter to specify the timestamp field in\n the file\n :param timestamp_format: The Java time format of the timestamp field in the text.\n ' if (text_files is None): raise ValueError("Empty value passed for parameter 'text_files'") __path = '/_text_structure/find_structure' __query: t.Dict[(str, t.Any)] = {} if (charset is not None): __query['charset'] = charset if (column_names is not None): __query['column_names'] = column_names if (delimiter is not None): __query['delimiter'] = delimiter if (explain is not None): __query['explain'] = explain if (format is not None): __query['format'] = format if (grok_pattern is not None): __query['grok_pattern'] = grok_pattern if (has_header_row is not None): __query['has_header_row'] = has_header_row if (line_merge_size_limit is not None): __query['line_merge_size_limit'] = line_merge_size_limit if (lines_to_sample is not None): __query['lines_to_sample'] = lines_to_sample if (quote is not None): __query['quote'] = quote if (should_trim_fields is not None): __query['should_trim_fields'] = should_trim_fields if (timeout is not None): __query['timeout'] = timeout if (timestamp_field is not None): __query['timestamp_field'] = timestamp_field if (timestamp_format is not None): __query['timestamp_format'] = timestamp_format __body = text_files __headers = {'accept': 'application/json', 'content-type': 'application/x-ndjson'} return self.perform_request('POST', __path, params=__query, headers=__headers, body=__body)
6,677,154,515,690,402,000
Finds the structure of a text file. The text file must contain data that is suitable to be ingested into Elasticsearch. `<https://www.elastic.co/guide/en/elasticsearch/reference/current/find-structure.html>`_ :param text_files: :param charset: The text’s character set. It must be a character set that is supported by the JVM that Elasticsearch uses. For example, UTF-8, UTF-16LE, windows-1252, or EUC-JP. If this parameter is not specified, the structure finder chooses an appropriate character set. :param column_names: If you have set format to delimited, you can specify the column names in a comma-separated list. If this parameter is not specified, the structure finder uses the column names from the header row of the text. If the text does not have a header role, columns are named "column1", "column2", "column3", etc. :param delimiter: If you have set format to delimited, you can specify the character used to delimit the values in each row. Only a single character is supported; the delimiter cannot have multiple characters. By default, the API considers the following possibilities: comma, tab, semi-colon, and pipe (|). In this default scenario, all rows must have the same number of fields for the delimited format to be detected. If you specify a delimiter, up to 10% of the rows can have a different number of columns than the first row. :param explain: If this parameter is set to true, the response includes a field named explanation, which is an array of strings that indicate how the structure finder produced its result. :param format: The high level structure of the text. Valid values are ndjson, xml, delimited, and semi_structured_text. By default, the API chooses the format. In this default scenario, all rows must have the same number of fields for a delimited format to be detected. If the format is set to delimited and the delimiter is not set, however, the API tolerates up to 5% of rows that have a different number of columns than the first row. :param grok_pattern: If you have set format to semi_structured_text, you can specify a Grok pattern that is used to extract fields from every message in the text. The name of the timestamp field in the Grok pattern must match what is specified in the timestamp_field parameter. If that parameter is not specified, the name of the timestamp field in the Grok pattern must match "timestamp". If grok_pattern is not specified, the structure finder creates a Grok pattern. :param has_header_row: If you have set format to delimited, you can use this parameter to indicate whether the column names are in the first row of the text. If this parameter is not specified, the structure finder guesses based on the similarity of the first row of the text to other rows. :param line_merge_size_limit: The maximum number of characters in a message when lines are merged to form messages while analyzing semi-structured text. If you have extremely long messages you may need to increase this, but be aware that this may lead to very long processing times if the way to group lines into messages is misdetected. :param lines_to_sample: The number of lines to include in the structural analysis, starting from the beginning of the text. The minimum is 2; If the value of this parameter is greater than the number of lines in the text, the analysis proceeds (as long as there are at least two lines in the text) for all of the lines. :param quote: If you have set format to delimited, you can specify the character used to quote the values in each row if they contain newlines or the delimiter character. Only a single character is supported. If this parameter is not specified, the default value is a double quote ("). If your delimited text format does not use quoting, a workaround is to set this argument to a character that does not appear anywhere in the sample. :param should_trim_fields: If you have set format to delimited, you can specify whether values between delimiters should have whitespace trimmed from them. If this parameter is not specified and the delimiter is pipe (|), the default value is true. Otherwise, the default value is false. :param timeout: Sets the maximum amount of time that the structure analysis make take. If the analysis is still running when the timeout expires then it will be aborted. :param timestamp_field: Optional parameter to specify the timestamp field in the file :param timestamp_format: The Java time format of the timestamp field in the text.
elasticsearch/_sync/client/text_structure.py
find_structure
neubloc/elasticsearch-py
python
@_rewrite_parameters(body_name='text_files') def find_structure(self, *, text_files: t.Union[(t.List[t.Any], t.Tuple[(t.Any, ...)])], charset: t.Optional[str]=None, column_names: t.Optional[str]=None, delimiter: t.Optional[str]=None, explain: t.Optional[bool]=None, format: t.Optional[str]=None, grok_pattern: t.Optional[str]=None, has_header_row: t.Optional[bool]=None, line_merge_size_limit: t.Optional[int]=None, lines_to_sample: t.Optional[int]=None, quote: t.Optional[str]=None, should_trim_fields: t.Optional[bool]=None, timeout: t.Optional[t.Union[(int, str)]]=None, timestamp_field: t.Optional[str]=None, timestamp_format: t.Optional[str]=None) -> ObjectApiResponse[t.Any]: '\n Finds the structure of a text file. The text file must contain data that is suitable\n to be ingested into Elasticsearch.\n\n `<https://www.elastic.co/guide/en/elasticsearch/reference/current/find-structure.html>`_\n\n :param text_files:\n :param charset: The text’s character set. It must be a character set that is\n supported by the JVM that Elasticsearch uses. For example, UTF-8, UTF-16LE,\n windows-1252, or EUC-JP. If this parameter is not specified, the structure\n finder chooses an appropriate character set.\n :param column_names: If you have set format to delimited, you can specify the\n column names in a comma-separated list. If this parameter is not specified,\n the structure finder uses the column names from the header row of the text.\n If the text does not have a header role, columns are named "column1", "column2",\n "column3", etc.\n :param delimiter: If you have set format to delimited, you can specify the character\n used to delimit the values in each row. Only a single character is supported;\n the delimiter cannot have multiple characters. By default, the API considers\n the following possibilities: comma, tab, semi-colon, and pipe (|). In this\n default scenario, all rows must have the same number of fields for the delimited\n format to be detected. If you specify a delimiter, up to 10% of the rows\n can have a different number of columns than the first row.\n :param explain: If this parameter is set to true, the response includes a field\n named explanation, which is an array of strings that indicate how the structure\n finder produced its result.\n :param format: The high level structure of the text. Valid values are ndjson,\n xml, delimited, and semi_structured_text. By default, the API chooses the\n format. In this default scenario, all rows must have the same number of fields\n for a delimited format to be detected. If the format is set to delimited\n and the delimiter is not set, however, the API tolerates up to 5% of rows\n that have a different number of columns than the first row.\n :param grok_pattern: If you have set format to semi_structured_text, you can\n specify a Grok pattern that is used to extract fields from every message\n in the text. The name of the timestamp field in the Grok pattern must match\n what is specified in the timestamp_field parameter. If that parameter is\n not specified, the name of the timestamp field in the Grok pattern must match\n "timestamp". If grok_pattern is not specified, the structure finder creates\n a Grok pattern.\n :param has_header_row: If you have set format to delimited, you can use this\n parameter to indicate whether the column names are in the first row of the\n text. If this parameter is not specified, the structure finder guesses based\n on the similarity of the first row of the text to other rows.\n :param line_merge_size_limit: The maximum number of characters in a message when\n lines are merged to form messages while analyzing semi-structured text. If\n you have extremely long messages you may need to increase this, but be aware\n that this may lead to very long processing times if the way to group lines\n into messages is misdetected.\n :param lines_to_sample: The number of lines to include in the structural analysis,\n starting from the beginning of the text. The minimum is 2; If the value of\n this parameter is greater than the number of lines in the text, the analysis\n proceeds (as long as there are at least two lines in the text) for all of\n the lines.\n :param quote: If you have set format to delimited, you can specify the character\n used to quote the values in each row if they contain newlines or the delimiter\n character. Only a single character is supported. If this parameter is not\n specified, the default value is a double quote ("). If your delimited text\n format does not use quoting, a workaround is to set this argument to a character\n that does not appear anywhere in the sample.\n :param should_trim_fields: If you have set format to delimited, you can specify\n whether values between delimiters should have whitespace trimmed from them.\n If this parameter is not specified and the delimiter is pipe (|), the default\n value is true. Otherwise, the default value is false.\n :param timeout: Sets the maximum amount of time that the structure analysis make\n take. If the analysis is still running when the timeout expires then it will\n be aborted.\n :param timestamp_field: Optional parameter to specify the timestamp field in\n the file\n :param timestamp_format: The Java time format of the timestamp field in the text.\n ' if (text_files is None): raise ValueError("Empty value passed for parameter 'text_files'") __path = '/_text_structure/find_structure' __query: t.Dict[(str, t.Any)] = {} if (charset is not None): __query['charset'] = charset if (column_names is not None): __query['column_names'] = column_names if (delimiter is not None): __query['delimiter'] = delimiter if (explain is not None): __query['explain'] = explain if (format is not None): __query['format'] = format if (grok_pattern is not None): __query['grok_pattern'] = grok_pattern if (has_header_row is not None): __query['has_header_row'] = has_header_row if (line_merge_size_limit is not None): __query['line_merge_size_limit'] = line_merge_size_limit if (lines_to_sample is not None): __query['lines_to_sample'] = lines_to_sample if (quote is not None): __query['quote'] = quote if (should_trim_fields is not None): __query['should_trim_fields'] = should_trim_fields if (timeout is not None): __query['timeout'] = timeout if (timestamp_field is not None): __query['timestamp_field'] = timestamp_field if (timestamp_format is not None): __query['timestamp_format'] = timestamp_format __body = text_files __headers = {'accept': 'application/json', 'content-type': 'application/x-ndjson'} return self.perform_request('POST', __path, params=__query, headers=__headers, body=__body)
def test_now_in_utc(): 'now_in_utc() should return the current time set to the UTC time zone' now = now_in_utc() assert is_near_now(now) assert (now.tzinfo == pytz.UTC)
1,980,469,855,028,686,800
now_in_utc() should return the current time set to the UTC time zone
main/utils_test.py
test_now_in_utc
mitodl/bootcamp-ecommerce
python
def test_now_in_utc(): now = now_in_utc() assert is_near_now(now) assert (now.tzinfo == pytz.UTC)
def test_is_near_now(): '\n Test is_near_now for now\n ' now = datetime.datetime.now(tz=pytz.UTC) assert (is_near_now(now) is True) later = (now + datetime.timedelta(0, 6)) assert (is_near_now(later) is False) earlier = (now - datetime.timedelta(0, 6)) assert (is_near_now(earlier) is False)
5,014,501,646,750,768,000
Test is_near_now for now
main/utils_test.py
test_is_near_now
mitodl/bootcamp-ecommerce
python
def test_is_near_now(): '\n \n ' now = datetime.datetime.now(tz=pytz.UTC) assert (is_near_now(now) is True) later = (now + datetime.timedelta(0, 6)) assert (is_near_now(later) is False) earlier = (now - datetime.timedelta(0, 6)) assert (is_near_now(earlier) is False)
def test_first_or_none(): '\n Assert that first_or_none returns the first item in an iterable or None\n ' assert (first_or_none([]) is None) assert (first_or_none(set()) is None) assert (first_or_none([1, 2, 3]) == 1) assert (first_or_none(range(1, 5)) == 1)
-2,245,960,498,571,180,800
Assert that first_or_none returns the first item in an iterable or None
main/utils_test.py
test_first_or_none
mitodl/bootcamp-ecommerce
python
def test_first_or_none(): '\n \n ' assert (first_or_none([]) is None) assert (first_or_none(set()) is None) assert (first_or_none([1, 2, 3]) == 1) assert (first_or_none(range(1, 5)) == 1)
def test_first_matching_item(): 'first_matching_item should return the first item where the predicate function returns true' assert (first_matching_item([1, 2, 3, 4, 5], (lambda x: ((x % 2) == 0))) == 2) assert (first_matching_item([], (lambda x: True)) is None) assert (first_matching_item(['x', 'y', 'z'], (lambda x: False)) is None)
-6,679,562,110,484,070,000
first_matching_item should return the first item where the predicate function returns true
main/utils_test.py
test_first_matching_item
mitodl/bootcamp-ecommerce
python
def test_first_matching_item(): assert (first_matching_item([1, 2, 3, 4, 5], (lambda x: ((x % 2) == 0))) == 2) assert (first_matching_item([], (lambda x: True)) is None) assert (first_matching_item(['x', 'y', 'z'], (lambda x: False)) is None)
def test_max_or_none(): '\n Assert that max_or_none returns the max of some iterable, or None if the iterable has no items\n ' assert (max_or_none((i for i in [5, 4, 3, 2, 1])) == 5) assert (max_or_none([1, 3, 5, 4, 2]) == 5) assert (max_or_none([]) is None)
5,047,917,916,077,396,000
Assert that max_or_none returns the max of some iterable, or None if the iterable has no items
main/utils_test.py
test_max_or_none
mitodl/bootcamp-ecommerce
python
def test_max_or_none(): '\n \n ' assert (max_or_none((i for i in [5, 4, 3, 2, 1])) == 5) assert (max_or_none([1, 3, 5, 4, 2]) == 5) assert (max_or_none([]) is None)
def test_unique(): '\n Assert that unique() returns a generator of unique elements from a provided iterable\n ' assert (list(unique([1, 2, 2, 3, 3, 0, 3])) == [1, 2, 3, 0]) assert (list(unique(('a', 'b', 'a', 'c', 'C', None))) == ['a', 'b', 'c', 'C', None])
986,328,228,094,812,800
Assert that unique() returns a generator of unique elements from a provided iterable
main/utils_test.py
test_unique
mitodl/bootcamp-ecommerce
python
def test_unique(): '\n \n ' assert (list(unique([1, 2, 2, 3, 3, 0, 3])) == [1, 2, 3, 0]) assert (list(unique(('a', 'b', 'a', 'c', 'C', None))) == ['a', 'b', 'c', 'C', None])
def test_unique_ignore_case(): '\n Assert that unique_ignore_case() returns a generator of unique lowercase strings from a\n provided iterable\n ' assert (list(unique_ignore_case(['ABC', 'def', 'AbC', 'DEf'])) == ['abc', 'def'])
-9,212,515,244,537,056,000
Assert that unique_ignore_case() returns a generator of unique lowercase strings from a provided iterable
main/utils_test.py
test_unique_ignore_case
mitodl/bootcamp-ecommerce
python
def test_unique_ignore_case(): '\n Assert that unique_ignore_case() returns a generator of unique lowercase strings from a\n provided iterable\n ' assert (list(unique_ignore_case(['ABC', 'def', 'AbC', 'DEf'])) == ['abc', 'def'])
def test_item_at_index_or_none(): "\n Assert that item_at_index_or_none returns an item at a given index, or None if that index\n doesn't exist\n " arr = [1, 2, 3] assert (item_at_index_or_none(arr, 1) == 2) assert (item_at_index_or_none(arr, 10) is None)
9,027,047,907,124,018,000
Assert that item_at_index_or_none returns an item at a given index, or None if that index doesn't exist
main/utils_test.py
test_item_at_index_or_none
mitodl/bootcamp-ecommerce
python
def test_item_at_index_or_none(): "\n Assert that item_at_index_or_none returns an item at a given index, or None if that index\n doesn't exist\n " arr = [1, 2, 3] assert (item_at_index_or_none(arr, 1) == 2) assert (item_at_index_or_none(arr, 10) is None)
def test_all_equal(): '\n Assert that all_equal returns True if all of the provided args are equal to each other\n ' assert (all_equal(1, 1, 1) is True) assert (all_equal(1, 2, 1) is False) assert (all_equal() is True)
6,843,933,897,489,577,000
Assert that all_equal returns True if all of the provided args are equal to each other
main/utils_test.py
test_all_equal
mitodl/bootcamp-ecommerce
python
def test_all_equal(): '\n \n ' assert (all_equal(1, 1, 1) is True) assert (all_equal(1, 2, 1) is False) assert (all_equal() is True)
def test_all_unique(): '\n Assert that all_unique returns True if all of the items in the iterable argument are unique\n ' assert (all_unique([1, 2, 3, 4]) is True) assert (all_unique((1, 2, 3, 4)) is True) assert (all_unique([1, 2, 3, 1]) is False)
-4,191,406,065,421,053,000
Assert that all_unique returns True if all of the items in the iterable argument are unique
main/utils_test.py
test_all_unique
mitodl/bootcamp-ecommerce
python
def test_all_unique(): '\n \n ' assert (all_unique([1, 2, 3, 4]) is True) assert (all_unique((1, 2, 3, 4)) is True) assert (all_unique([1, 2, 3, 1]) is False)
def test_has_all_keys(): '\n Assert that has_all_keys returns True if the given dict has all of the specified keys\n ' d = {'a': 1, 'b': 2, 'c': 3} assert (has_all_keys(d, ['a', 'c']) is True) assert (has_all_keys(d, ['a', 'z']) is False)
-3,950,808,303,279,116,000
Assert that has_all_keys returns True if the given dict has all of the specified keys
main/utils_test.py
test_has_all_keys
mitodl/bootcamp-ecommerce
python
def test_has_all_keys(): '\n \n ' d = {'a': 1, 'b': 2, 'c': 3} assert (has_all_keys(d, ['a', 'c']) is True) assert (has_all_keys(d, ['a', 'z']) is False)
def test_is_blank(): '\n Assert that is_blank returns True if the given value is None or a blank string\n ' assert (is_blank('') is True) assert (is_blank(None) is True) assert (is_blank(0) is False) assert (is_blank(' ') is False) assert (is_blank(False) is False) assert (is_blank('value') is False)
-20,777,822,704,435,870
Assert that is_blank returns True if the given value is None or a blank string
main/utils_test.py
test_is_blank
mitodl/bootcamp-ecommerce
python
def test_is_blank(): '\n \n ' assert (is_blank() is True) assert (is_blank(None) is True) assert (is_blank(0) is False) assert (is_blank(' ') is False) assert (is_blank(False) is False) assert (is_blank('value') is False)
def test_group_into_dict(): '\n Assert that group_into_dict takes an iterable of items and returns a dictionary of those items\n grouped by generated keys\n ' class Car(): def __init__(self, make, model): self.make = make self.model = model cars = [Car(make='Honda', model='Civic'), Car(make='Honda', model='Accord'), Car(make='Ford', model='F150'), Car(make='Ford', model='Focus'), Car(make='Jeep', model='Wrangler')] grouped_cars = group_into_dict(cars, key_fn=op.attrgetter('make')) assert (set(grouped_cars.keys()) == {'Honda', 'Ford', 'Jeep'}) assert (set(grouped_cars['Honda']) == set(cars[0:2])) assert (set(grouped_cars['Ford']) == set(cars[2:4])) assert (grouped_cars['Jeep'] == [cars[4]]) nums = [1, 2, 3, 4, 5, 6] grouped_nums = group_into_dict(nums, key_fn=(lambda num: ((num % 2) == 0))) assert (grouped_nums.keys() == {True, False}) assert (set(grouped_nums[True]) == {2, 4, 6}) assert (set(grouped_nums[False]) == {1, 3, 5})
-6,935,898,489,097,271,000
Assert that group_into_dict takes an iterable of items and returns a dictionary of those items grouped by generated keys
main/utils_test.py
test_group_into_dict
mitodl/bootcamp-ecommerce
python
def test_group_into_dict(): '\n Assert that group_into_dict takes an iterable of items and returns a dictionary of those items\n grouped by generated keys\n ' class Car(): def __init__(self, make, model): self.make = make self.model = model cars = [Car(make='Honda', model='Civic'), Car(make='Honda', model='Accord'), Car(make='Ford', model='F150'), Car(make='Ford', model='Focus'), Car(make='Jeep', model='Wrangler')] grouped_cars = group_into_dict(cars, key_fn=op.attrgetter('make')) assert (set(grouped_cars.keys()) == {'Honda', 'Ford', 'Jeep'}) assert (set(grouped_cars['Honda']) == set(cars[0:2])) assert (set(grouped_cars['Ford']) == set(cars[2:4])) assert (grouped_cars['Jeep'] == [cars[4]]) nums = [1, 2, 3, 4, 5, 6] grouped_nums = group_into_dict(nums, key_fn=(lambda num: ((num % 2) == 0))) assert (grouped_nums.keys() == {True, False}) assert (set(grouped_nums[True]) == {2, 4, 6}) assert (set(grouped_nums[False]) == {1, 3, 5})
def test_filter_dict_by_key_set(): '\n Test that filter_dict_by_key_set returns a dict with only the given keys\n ' d = {'a': 1, 'b': 2, 'c': 3, 'd': 4} assert (filter_dict_by_key_set(d, {'a', 'c'}) == {'a': 1, 'c': 3}) assert (filter_dict_by_key_set(d, {'a', 'c', 'nonsense'}) == {'a': 1, 'c': 3}) assert (filter_dict_by_key_set(d, {'nonsense'}) == {})
-1,523,572,021,128,611,600
Test that filter_dict_by_key_set returns a dict with only the given keys
main/utils_test.py
test_filter_dict_by_key_set
mitodl/bootcamp-ecommerce
python
def test_filter_dict_by_key_set(): '\n \n ' d = {'a': 1, 'b': 2, 'c': 3, 'd': 4} assert (filter_dict_by_key_set(d, {'a', 'c'}) == {'a': 1, 'c': 3}) assert (filter_dict_by_key_set(d, {'a', 'c', 'nonsense'}) == {'a': 1, 'c': 3}) assert (filter_dict_by_key_set(d, {'nonsense'}) == {})
def test_partition_to_lists(): '\n Assert that partition_to_lists splits an iterable into two lists according to a condition\n ' nums = [1, 2, 1, 3, 1, 4, 0, None, None] (not_ones, ones) = partition_to_lists(nums, (lambda n: (n == 1))) assert (not_ones == [2, 3, 4, 0, None, None]) assert (ones == [1, 1, 1]) (falsey, truthy) = partition_to_lists(nums) assert (falsey == [0, None, None]) assert (truthy == [1, 2, 1, 3, 1, 4])
8,380,860,281,203,333,000
Assert that partition_to_lists splits an iterable into two lists according to a condition
main/utils_test.py
test_partition_to_lists
mitodl/bootcamp-ecommerce
python
def test_partition_to_lists(): '\n \n ' nums = [1, 2, 1, 3, 1, 4, 0, None, None] (not_ones, ones) = partition_to_lists(nums, (lambda n: (n == 1))) assert (not_ones == [2, 3, 4, 0, None, None]) assert (ones == [1, 1, 1]) (falsey, truthy) = partition_to_lists(nums) assert (falsey == [0, None, None]) assert (truthy == [1, 2, 1, 3, 1, 4])
def test_partition_around_index(): 'partition_around_index should split a list into two lists around an index' assert (partition_around_index([1, 2, 3, 4], 2) == ([1, 2], [4])) assert (partition_around_index([1, 2, 3, 4], 0) == ([], [2, 3, 4])) assert (partition_around_index([1, 2, 3, 4], 3) == ([1, 2, 3], [])) with pytest.raises(ValueError): partition_around_index([1, 2, 3, 4], 4)
8,945,775,255,869,581,000
partition_around_index should split a list into two lists around an index
main/utils_test.py
test_partition_around_index
mitodl/bootcamp-ecommerce
python
def test_partition_around_index(): assert (partition_around_index([1, 2, 3, 4], 2) == ([1, 2], [4])) assert (partition_around_index([1, 2, 3, 4], 0) == ([], [2, 3, 4])) assert (partition_around_index([1, 2, 3, 4], 3) == ([1, 2, 3], [])) with pytest.raises(ValueError): partition_around_index([1, 2, 3, 4], 4)
@pytest.mark.parametrize('content,content_type,exp_summary_content,exp_url_in_summary', [['{"bad": "response"}', 'application/json', '{"bad": "response"}', False], ['plain text', 'text/plain', 'plain text', False], ['<div>HTML content</div>', 'text/html; charset=utf-8', '(HTML body ignored)', True]]) def test_get_error_response_summary(content, content_type, exp_summary_content, exp_url_in_summary): '\n get_error_response_summary should provide a summary of an error HTTP response object with the correct bits of\n information depending on the type of content.\n ' status_code = 400 url = 'http://example.com' mock_response = MockResponse(status_code=status_code, content=content, content_type=content_type, url=url) summary = get_error_response_summary(mock_response) assert (f'Response - code: {status_code}' in summary) assert (f'content: {exp_summary_content}' in summary) assert ((f'url: {url}' in summary) is exp_url_in_summary)
3,631,322,079,011,886,600
get_error_response_summary should provide a summary of an error HTTP response object with the correct bits of information depending on the type of content.
main/utils_test.py
test_get_error_response_summary
mitodl/bootcamp-ecommerce
python
@pytest.mark.parametrize('content,content_type,exp_summary_content,exp_url_in_summary', [['{"bad": "response"}', 'application/json', '{"bad": "response"}', False], ['plain text', 'text/plain', 'plain text', False], ['<div>HTML content</div>', 'text/html; charset=utf-8', '(HTML body ignored)', True]]) def test_get_error_response_summary(content, content_type, exp_summary_content, exp_url_in_summary): '\n get_error_response_summary should provide a summary of an error HTTP response object with the correct bits of\n information depending on the type of content.\n ' status_code = 400 url = 'http://example.com' mock_response = MockResponse(status_code=status_code, content=content, content_type=content_type, url=url) summary = get_error_response_summary(mock_response) assert (f'Response - code: {status_code}' in summary) assert (f'content: {exp_summary_content}' in summary) assert ((f'url: {url}' in summary) is exp_url_in_summary)
@pytest.mark.django_db def test_jsonfield(settings): '\n Test a model with a JSONField is handled correctly\n ' settings.CYBERSOURCE_SECURITY_KEY = 'asdf' receipt = ReceiptFactory.create() assert (serialize_model_object(receipt) == {'created_on': format_as_iso8601(receipt.created_on), 'data': receipt.data, 'id': receipt.id, 'updated_on': format_as_iso8601(receipt.updated_on), 'order': receipt.order.id})
-4,728,769,654,445,678,000
Test a model with a JSONField is handled correctly
main/utils_test.py
test_jsonfield
mitodl/bootcamp-ecommerce
python
@pytest.mark.django_db def test_jsonfield(settings): '\n \n ' settings.CYBERSOURCE_SECURITY_KEY = 'asdf' receipt = ReceiptFactory.create() assert (serialize_model_object(receipt) == {'created_on': format_as_iso8601(receipt.created_on), 'data': receipt.data, 'id': receipt.id, 'updated_on': format_as_iso8601(receipt.updated_on), 'order': receipt.order.id})
def test_get_field_names(): '\n Assert that get_field_names does not include related fields\n ' assert (set(get_field_names(Order)) == {'user', 'status', 'total_price_paid', 'application', 'created_on', 'updated_on', 'payment_type'})
-7,139,863,925,248,950,000
Assert that get_field_names does not include related fields
main/utils_test.py
test_get_field_names
mitodl/bootcamp-ecommerce
python
def test_get_field_names(): '\n \n ' assert (set(get_field_names(Order)) == {'user', 'status', 'total_price_paid', 'application', 'created_on', 'updated_on', 'payment_type'})
def test_is_empty_file(): 'is_empty_file should return True if the given object is None or has a blank name property' fake_file = None assert (is_empty_file(fake_file) is True) fake_file = SimpleNamespace(name='') assert (is_empty_file(fake_file) is True) fake_file = SimpleNamespace(name='path/to/file.txt') assert (is_empty_file(fake_file) is False)
8,666,167,418,031,092,000
is_empty_file should return True if the given object is None or has a blank name property
main/utils_test.py
test_is_empty_file
mitodl/bootcamp-ecommerce
python
def test_is_empty_file(): fake_file = None assert (is_empty_file(fake_file) is True) fake_file = SimpleNamespace(name=) assert (is_empty_file(fake_file) is True) fake_file = SimpleNamespace(name='path/to/file.txt') assert (is_empty_file(fake_file) is False)
def test_chunks(): '\n test for chunks\n ' input_list = list(range(113)) output_list = [] for nums in chunks(input_list): output_list += nums assert (output_list == input_list) output_list = [] for nums in chunks(input_list, chunk_size=1): output_list += nums assert (output_list == input_list) output_list = [] for nums in chunks(input_list, chunk_size=124): output_list += nums assert (output_list == input_list)
-6,628,668,773,888,255,000
test for chunks
main/utils_test.py
test_chunks
mitodl/bootcamp-ecommerce
python
def test_chunks(): '\n \n ' input_list = list(range(113)) output_list = [] for nums in chunks(input_list): output_list += nums assert (output_list == input_list) output_list = [] for nums in chunks(input_list, chunk_size=1): output_list += nums assert (output_list == input_list) output_list = [] for nums in chunks(input_list, chunk_size=124): output_list += nums assert (output_list == input_list)
def test_chunks_iterable(): '\n test that chunks works on non-list iterables too\n ' count = 113 input_range = range(count) chunk_output = [] for chunk in chunks(input_range, chunk_size=10): chunk_output.append(chunk) assert (len(chunk_output) == ceil((113 / 10))) range_list = [] for chunk in chunk_output: range_list += chunk assert (range_list == list(range(count)))
5,628,105,431,535,348,000
test that chunks works on non-list iterables too
main/utils_test.py
test_chunks_iterable
mitodl/bootcamp-ecommerce
python
def test_chunks_iterable(): '\n \n ' count = 113 input_range = range(count) chunk_output = [] for chunk in chunks(input_range, chunk_size=10): chunk_output.append(chunk) assert (len(chunk_output) == ceil((113 / 10))) range_list = [] for chunk in chunk_output: range_list += chunk assert (range_list == list(range(count)))
def test_format_month_day(): '\n format_month_day should format the month and day from a datetime\n ' dt = datetime.datetime(year=2020, month=1, day=1, tzinfo=pytz.UTC) assert (format_month_day(dt) == 'Jan 1') assert (format_month_day(dt, month_fmt='%b') == 'Jan 1') assert (format_month_day(dt, month_fmt='%B') == 'January 1')
-5,556,454,043,159,934,000
format_month_day should format the month and day from a datetime
main/utils_test.py
test_format_month_day
mitodl/bootcamp-ecommerce
python
def test_format_month_day(): '\n \n ' dt = datetime.datetime(year=2020, month=1, day=1, tzinfo=pytz.UTC) assert (format_month_day(dt) == 'Jan 1') assert (format_month_day(dt, month_fmt='%b') == 'Jan 1') assert (format_month_day(dt, month_fmt='%B') == 'January 1')
def test_has_equal_properties(): '\n Assert that has_equal_properties returns True if an object has equivalent properties to a given dict\n ' obj = SimpleNamespace(a=1, b=2, c=3) assert (has_equal_properties(obj, {}) is True) assert (has_equal_properties(obj, dict(a=1, b=2)) is True) assert (has_equal_properties(obj, dict(a=1, b=2, c=3)) is True) assert (has_equal_properties(obj, dict(a=2)) is False) assert (has_equal_properties(obj, dict(d=4)) is False)
-3,059,819,990,250,566,000
Assert that has_equal_properties returns True if an object has equivalent properties to a given dict
main/utils_test.py
test_has_equal_properties
mitodl/bootcamp-ecommerce
python
def test_has_equal_properties(): '\n \n ' obj = SimpleNamespace(a=1, b=2, c=3) assert (has_equal_properties(obj, {}) is True) assert (has_equal_properties(obj, dict(a=1, b=2)) is True) assert (has_equal_properties(obj, dict(a=1, b=2, c=3)) is True) assert (has_equal_properties(obj, dict(a=2)) is False) assert (has_equal_properties(obj, dict(d=4)) is False)
def __init__(self, file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, buffer_size=DEFAULT_READ_BUFFER_SIZE, validate=True, skip_header_lines=0, header_processor_fns=(None, None)): 'Initialize a _TextSource\n\n Args:\n header_processor_fns (tuple): a tuple of a `header_matcher` function\n and a `header_processor` function. The `header_matcher` should\n return `True` for all lines at the start of the file that are part\n of the file header and `False` otherwise. These header lines will\n not be yielded when reading records and instead passed into\n `header_processor` to be handled. If `skip_header_lines` and a\n `header_matcher` are both provided, the value of `skip_header_lines`\n lines will be skipped and the header will be processed from\n there.\n Raises:\n ValueError: if skip_lines is negative.\n\n Please refer to documentation in class `ReadFromText` for the rest\n of the arguments.\n ' super(_TextSource, self).__init__(file_pattern, min_bundle_size, compression_type=compression_type, validate=validate) self._strip_trailing_newlines = strip_trailing_newlines self._compression_type = compression_type self._coder = coder self._buffer_size = buffer_size if (skip_header_lines < 0): raise ValueError(('Cannot skip negative number of header lines: %d' % skip_header_lines)) elif (skip_header_lines > 10): _LOGGER.warning('Skipping %d header lines. Skipping large number of header lines might significantly slow down processing.') self._skip_header_lines = skip_header_lines (self._header_matcher, self._header_processor) = header_processor_fns
7,102,111,700,206,611,000
Initialize a _TextSource Args: header_processor_fns (tuple): a tuple of a `header_matcher` function and a `header_processor` function. The `header_matcher` should return `True` for all lines at the start of the file that are part of the file header and `False` otherwise. These header lines will not be yielded when reading records and instead passed into `header_processor` to be handled. If `skip_header_lines` and a `header_matcher` are both provided, the value of `skip_header_lines` lines will be skipped and the header will be processed from there. Raises: ValueError: if skip_lines is negative. Please refer to documentation in class `ReadFromText` for the rest of the arguments.
sdks/python/apache_beam/io/textio.py
__init__
AhnLab-OSS/beam
python
def __init__(self, file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, buffer_size=DEFAULT_READ_BUFFER_SIZE, validate=True, skip_header_lines=0, header_processor_fns=(None, None)): 'Initialize a _TextSource\n\n Args:\n header_processor_fns (tuple): a tuple of a `header_matcher` function\n and a `header_processor` function. The `header_matcher` should\n return `True` for all lines at the start of the file that are part\n of the file header and `False` otherwise. These header lines will\n not be yielded when reading records and instead passed into\n `header_processor` to be handled. If `skip_header_lines` and a\n `header_matcher` are both provided, the value of `skip_header_lines`\n lines will be skipped and the header will be processed from\n there.\n Raises:\n ValueError: if skip_lines is negative.\n\n Please refer to documentation in class `ReadFromText` for the rest\n of the arguments.\n ' super(_TextSource, self).__init__(file_pattern, min_bundle_size, compression_type=compression_type, validate=validate) self._strip_trailing_newlines = strip_trailing_newlines self._compression_type = compression_type self._coder = coder self._buffer_size = buffer_size if (skip_header_lines < 0): raise ValueError(('Cannot skip negative number of header lines: %d' % skip_header_lines)) elif (skip_header_lines > 10): _LOGGER.warning('Skipping %d header lines. Skipping large number of header lines might significantly slow down processing.') self._skip_header_lines = skip_header_lines (self._header_matcher, self._header_processor) = header_processor_fns
def _skip_lines(self, file_to_read, read_buffer, num_lines): 'Skip num_lines from file_to_read, return num_lines+1 start position.' if (file_to_read.tell() > 0): file_to_read.seek(0) position = 0 for _ in range(num_lines): (_, num_bytes_to_next_record) = self._read_record(file_to_read, read_buffer) if (num_bytes_to_next_record < 0): break position += num_bytes_to_next_record return position
-6,993,979,125,286,766,000
Skip num_lines from file_to_read, return num_lines+1 start position.
sdks/python/apache_beam/io/textio.py
_skip_lines
AhnLab-OSS/beam
python
def _skip_lines(self, file_to_read, read_buffer, num_lines): if (file_to_read.tell() > 0): file_to_read.seek(0) position = 0 for _ in range(num_lines): (_, num_bytes_to_next_record) = self._read_record(file_to_read, read_buffer) if (num_bytes_to_next_record < 0): break position += num_bytes_to_next_record return position
def __init__(self, file_path_prefix, file_name_suffix='', append_trailing_newlines=True, num_shards=0, shard_name_template=None, coder=coders.ToStringCoder(), compression_type=CompressionTypes.AUTO, header=None): "Initialize a _TextSink.\n\n Args:\n file_path_prefix: The file path to write to. The files written will begin\n with this prefix, followed by a shard identifier (see num_shards), and\n end in a common extension, if given by file_name_suffix. In most cases,\n only this argument is specified and num_shards, shard_name_template, and\n file_name_suffix use default values.\n file_name_suffix: Suffix for the files written.\n append_trailing_newlines: indicate whether this sink should write an\n additional newline char after writing each element.\n num_shards: The number of files (shards) used for output. If not set, the\n service will decide on the optimal number of shards.\n Constraining the number of shards is likely to reduce\n the performance of a pipeline. Setting this value is not recommended\n unless you require a specific number of output files.\n shard_name_template: A template string containing placeholders for\n the shard number and shard count. When constructing a filename for a\n particular shard number, the upper-case letters 'S' and 'N' are\n replaced with the 0-padded shard number and shard count respectively.\n This argument can be '' in which case it behaves as if num_shards was\n set to 1 and only one file will be generated. The default pattern used\n is '-SSSSS-of-NNNNN' if None is passed as the shard_name_template.\n coder: Coder used to encode each line.\n compression_type: Used to handle compressed output files. Typical value\n is CompressionTypes.AUTO, in which case the final file path's\n extension (as determined by file_path_prefix, file_name_suffix,\n num_shards and shard_name_template) will be used to detect the\n compression.\n header: String to write at beginning of file as a header. If not None and\n append_trailing_newlines is set, '\n' will be added.\n\n Returns:\n A _TextSink object usable for writing.\n " super(_TextSink, self).__init__(file_path_prefix, file_name_suffix=file_name_suffix, num_shards=num_shards, shard_name_template=shard_name_template, coder=coder, mime_type='text/plain', compression_type=compression_type) self._append_trailing_newlines = append_trailing_newlines self._header = header
2,864,030,333,706,770,000
Initialize a _TextSink. Args: file_path_prefix: The file path to write to. The files written will begin with this prefix, followed by a shard identifier (see num_shards), and end in a common extension, if given by file_name_suffix. In most cases, only this argument is specified and num_shards, shard_name_template, and file_name_suffix use default values. file_name_suffix: Suffix for the files written. append_trailing_newlines: indicate whether this sink should write an additional newline char after writing each element. num_shards: The number of files (shards) used for output. If not set, the service will decide on the optimal number of shards. Constraining the number of shards is likely to reduce the performance of a pipeline. Setting this value is not recommended unless you require a specific number of output files. shard_name_template: A template string containing placeholders for the shard number and shard count. When constructing a filename for a particular shard number, the upper-case letters 'S' and 'N' are replaced with the 0-padded shard number and shard count respectively. This argument can be '' in which case it behaves as if num_shards was set to 1 and only one file will be generated. The default pattern used is '-SSSSS-of-NNNNN' if None is passed as the shard_name_template. coder: Coder used to encode each line. compression_type: Used to handle compressed output files. Typical value is CompressionTypes.AUTO, in which case the final file path's extension (as determined by file_path_prefix, file_name_suffix, num_shards and shard_name_template) will be used to detect the compression. header: String to write at beginning of file as a header. If not None and append_trailing_newlines is set, ' ' will be added. Returns: A _TextSink object usable for writing.
sdks/python/apache_beam/io/textio.py
__init__
AhnLab-OSS/beam
python
def __init__(self, file_path_prefix, file_name_suffix=, append_trailing_newlines=True, num_shards=0, shard_name_template=None, coder=coders.ToStringCoder(), compression_type=CompressionTypes.AUTO, header=None): "Initialize a _TextSink.\n\n Args:\n file_path_prefix: The file path to write to. The files written will begin\n with this prefix, followed by a shard identifier (see num_shards), and\n end in a common extension, if given by file_name_suffix. In most cases,\n only this argument is specified and num_shards, shard_name_template, and\n file_name_suffix use default values.\n file_name_suffix: Suffix for the files written.\n append_trailing_newlines: indicate whether this sink should write an\n additional newline char after writing each element.\n num_shards: The number of files (shards) used for output. If not set, the\n service will decide on the optimal number of shards.\n Constraining the number of shards is likely to reduce\n the performance of a pipeline. Setting this value is not recommended\n unless you require a specific number of output files.\n shard_name_template: A template string containing placeholders for\n the shard number and shard count. When constructing a filename for a\n particular shard number, the upper-case letters 'S' and 'N' are\n replaced with the 0-padded shard number and shard count respectively.\n This argument can be in which case it behaves as if num_shards was\n set to 1 and only one file will be generated. The default pattern used\n is '-SSSSS-of-NNNNN' if None is passed as the shard_name_template.\n coder: Coder used to encode each line.\n compression_type: Used to handle compressed output files. Typical value\n is CompressionTypes.AUTO, in which case the final file path's\n extension (as determined by file_path_prefix, file_name_suffix,\n num_shards and shard_name_template) will be used to detect the\n compression.\n header: String to write at beginning of file as a header. If not None and\n append_trailing_newlines is set, '\n' will be added.\n\n Returns:\n A _TextSink object usable for writing.\n " super(_TextSink, self).__init__(file_path_prefix, file_name_suffix=file_name_suffix, num_shards=num_shards, shard_name_template=shard_name_template, coder=coder, mime_type='text/plain', compression_type=compression_type) self._append_trailing_newlines = append_trailing_newlines self._header = header
def write_encoded_record(self, file_handle, encoded_value): 'Writes a single encoded record.' file_handle.write(encoded_value) if self._append_trailing_newlines: file_handle.write(b'\n')
-7,928,732,276,254,415,000
Writes a single encoded record.
sdks/python/apache_beam/io/textio.py
write_encoded_record
AhnLab-OSS/beam
python
def write_encoded_record(self, file_handle, encoded_value): file_handle.write(encoded_value) if self._append_trailing_newlines: file_handle.write(b'\n')
def __init__(self, min_bundle_size=0, desired_bundle_size=DEFAULT_DESIRED_BUNDLE_SIZE, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), skip_header_lines=0, **kwargs): "Initialize the ``ReadAllFromText`` transform.\n\n Args:\n min_bundle_size: Minimum size of bundles that should be generated when\n splitting this source into bundles. See ``FileBasedSource`` for more\n details.\n desired_bundle_size: Desired size of bundles that should be generated when\n splitting this source into bundles. See ``FileBasedSource`` for more\n details.\n compression_type: Used to handle compressed input files. Typical value\n is ``CompressionTypes.AUTO``, in which case the underlying file_path's\n extension will be used to detect the compression.\n strip_trailing_newlines: Indicates whether this source should remove\n the newline char in each line it reads before decoding that line.\n validate: flag to verify that the files exist during the pipeline\n creation time.\n skip_header_lines: Number of header lines to skip. Same number is skipped\n from each source file. Must be 0 or higher. Large number of skipped\n lines might impact performance.\n coder: Coder used to decode each line.\n " super(ReadAllFromText, self).__init__(**kwargs) source_from_file = partial(_create_text_source, min_bundle_size=min_bundle_size, compression_type=compression_type, strip_trailing_newlines=strip_trailing_newlines, coder=coder, skip_header_lines=skip_header_lines) self._desired_bundle_size = desired_bundle_size self._min_bundle_size = min_bundle_size self._compression_type = compression_type self._read_all_files = ReadAllFiles(True, compression_type, desired_bundle_size, min_bundle_size, source_from_file)
6,986,434,036,015,012,000
Initialize the ``ReadAllFromText`` transform. Args: min_bundle_size: Minimum size of bundles that should be generated when splitting this source into bundles. See ``FileBasedSource`` for more details. desired_bundle_size: Desired size of bundles that should be generated when splitting this source into bundles. See ``FileBasedSource`` for more details. compression_type: Used to handle compressed input files. Typical value is ``CompressionTypes.AUTO``, in which case the underlying file_path's extension will be used to detect the compression. strip_trailing_newlines: Indicates whether this source should remove the newline char in each line it reads before decoding that line. validate: flag to verify that the files exist during the pipeline creation time. skip_header_lines: Number of header lines to skip. Same number is skipped from each source file. Must be 0 or higher. Large number of skipped lines might impact performance. coder: Coder used to decode each line.
sdks/python/apache_beam/io/textio.py
__init__
AhnLab-OSS/beam
python
def __init__(self, min_bundle_size=0, desired_bundle_size=DEFAULT_DESIRED_BUNDLE_SIZE, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), skip_header_lines=0, **kwargs): "Initialize the ``ReadAllFromText`` transform.\n\n Args:\n min_bundle_size: Minimum size of bundles that should be generated when\n splitting this source into bundles. See ``FileBasedSource`` for more\n details.\n desired_bundle_size: Desired size of bundles that should be generated when\n splitting this source into bundles. See ``FileBasedSource`` for more\n details.\n compression_type: Used to handle compressed input files. Typical value\n is ``CompressionTypes.AUTO``, in which case the underlying file_path's\n extension will be used to detect the compression.\n strip_trailing_newlines: Indicates whether this source should remove\n the newline char in each line it reads before decoding that line.\n validate: flag to verify that the files exist during the pipeline\n creation time.\n skip_header_lines: Number of header lines to skip. Same number is skipped\n from each source file. Must be 0 or higher. Large number of skipped\n lines might impact performance.\n coder: Coder used to decode each line.\n " super(ReadAllFromText, self).__init__(**kwargs) source_from_file = partial(_create_text_source, min_bundle_size=min_bundle_size, compression_type=compression_type, strip_trailing_newlines=strip_trailing_newlines, coder=coder, skip_header_lines=skip_header_lines) self._desired_bundle_size = desired_bundle_size self._min_bundle_size = min_bundle_size self._compression_type = compression_type self._read_all_files = ReadAllFiles(True, compression_type, desired_bundle_size, min_bundle_size, source_from_file)
def __init__(self, file_pattern=None, min_bundle_size=0, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), validate=True, skip_header_lines=0, **kwargs): "Initialize the :class:`ReadFromText` transform.\n\n Args:\n file_pattern (str): The file path to read from as a local file path or a\n GCS ``gs://`` path. The path can contain glob characters\n (``*``, ``?``, and ``[...]`` sets).\n min_bundle_size (int): Minimum size of bundles that should be generated\n when splitting this source into bundles. See\n :class:`~apache_beam.io.filebasedsource.FileBasedSource` for more\n details.\n compression_type (str): Used to handle compressed input files.\n Typical value is :attr:`CompressionTypes.AUTO\n <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the\n underlying file_path's extension will be used to detect the compression.\n strip_trailing_newlines (bool): Indicates whether this source should\n remove the newline char in each line it reads before decoding that line.\n validate (bool): flag to verify that the files exist during the pipeline\n creation time.\n skip_header_lines (int): Number of header lines to skip. Same number is\n skipped from each source file. Must be 0 or higher. Large number of\n skipped lines might impact performance.\n coder (~apache_beam.coders.coders.Coder): Coder used to decode each line.\n " super(ReadFromText, self).__init__(**kwargs) self._source = self._source_class(file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, validate=validate, skip_header_lines=skip_header_lines)
7,339,110,293,041,342,000
Initialize the :class:`ReadFromText` transform. Args: file_pattern (str): The file path to read from as a local file path or a GCS ``gs://`` path. The path can contain glob characters (``*``, ``?``, and ``[...]`` sets). min_bundle_size (int): Minimum size of bundles that should be generated when splitting this source into bundles. See :class:`~apache_beam.io.filebasedsource.FileBasedSource` for more details. compression_type (str): Used to handle compressed input files. Typical value is :attr:`CompressionTypes.AUTO <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the underlying file_path's extension will be used to detect the compression. strip_trailing_newlines (bool): Indicates whether this source should remove the newline char in each line it reads before decoding that line. validate (bool): flag to verify that the files exist during the pipeline creation time. skip_header_lines (int): Number of header lines to skip. Same number is skipped from each source file. Must be 0 or higher. Large number of skipped lines might impact performance. coder (~apache_beam.coders.coders.Coder): Coder used to decode each line.
sdks/python/apache_beam/io/textio.py
__init__
AhnLab-OSS/beam
python
def __init__(self, file_pattern=None, min_bundle_size=0, compression_type=CompressionTypes.AUTO, strip_trailing_newlines=True, coder=coders.StrUtf8Coder(), validate=True, skip_header_lines=0, **kwargs): "Initialize the :class:`ReadFromText` transform.\n\n Args:\n file_pattern (str): The file path to read from as a local file path or a\n GCS ``gs://`` path. The path can contain glob characters\n (``*``, ``?``, and ``[...]`` sets).\n min_bundle_size (int): Minimum size of bundles that should be generated\n when splitting this source into bundles. See\n :class:`~apache_beam.io.filebasedsource.FileBasedSource` for more\n details.\n compression_type (str): Used to handle compressed input files.\n Typical value is :attr:`CompressionTypes.AUTO\n <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the\n underlying file_path's extension will be used to detect the compression.\n strip_trailing_newlines (bool): Indicates whether this source should\n remove the newline char in each line it reads before decoding that line.\n validate (bool): flag to verify that the files exist during the pipeline\n creation time.\n skip_header_lines (int): Number of header lines to skip. Same number is\n skipped from each source file. Must be 0 or higher. Large number of\n skipped lines might impact performance.\n coder (~apache_beam.coders.coders.Coder): Coder used to decode each line.\n " super(ReadFromText, self).__init__(**kwargs) self._source = self._source_class(file_pattern, min_bundle_size, compression_type, strip_trailing_newlines, coder, validate=validate, skip_header_lines=skip_header_lines)
def __init__(self, file_path_prefix, file_name_suffix='', append_trailing_newlines=True, num_shards=0, shard_name_template=None, coder=coders.ToStringCoder(), compression_type=CompressionTypes.AUTO, header=None): "Initialize a :class:`WriteToText` transform.\n\n Args:\n file_path_prefix (str): The file path to write to. The files written will\n begin with this prefix, followed by a shard identifier (see\n **num_shards**), and end in a common extension, if given by\n **file_name_suffix**. In most cases, only this argument is specified and\n **num_shards**, **shard_name_template**, and **file_name_suffix** use\n default values.\n file_name_suffix (str): Suffix for the files written.\n append_trailing_newlines (bool): indicate whether this sink should write\n an additional newline char after writing each element.\n num_shards (int): The number of files (shards) used for output.\n If not set, the service will decide on the optimal number of shards.\n Constraining the number of shards is likely to reduce\n the performance of a pipeline. Setting this value is not recommended\n unless you require a specific number of output files.\n shard_name_template (str): A template string containing placeholders for\n the shard number and shard count. Currently only ``''`` and\n ``'-SSSSS-of-NNNNN'`` are patterns accepted by the service.\n When constructing a filename for a particular shard number, the\n upper-case letters ``S`` and ``N`` are replaced with the ``0``-padded\n shard number and shard count respectively. This argument can be ``''``\n in which case it behaves as if num_shards was set to 1 and only one file\n will be generated. The default pattern used is ``'-SSSSS-of-NNNNN'``.\n coder (~apache_beam.coders.coders.Coder): Coder used to encode each line.\n compression_type (str): Used to handle compressed output files.\n Typical value is :class:`CompressionTypes.AUTO\n <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the\n final file path's extension (as determined by **file_path_prefix**,\n **file_name_suffix**, **num_shards** and **shard_name_template**) will\n be used to detect the compression.\n header (str): String to write at beginning of file as a header.\n If not :data:`None` and **append_trailing_newlines** is set, ``\\n`` will\n be added.\n " self._sink = _TextSink(file_path_prefix, file_name_suffix, append_trailing_newlines, num_shards, shard_name_template, coder, compression_type, header)
1,442,425,946,996,938,800
Initialize a :class:`WriteToText` transform. Args: file_path_prefix (str): The file path to write to. The files written will begin with this prefix, followed by a shard identifier (see **num_shards**), and end in a common extension, if given by **file_name_suffix**. In most cases, only this argument is specified and **num_shards**, **shard_name_template**, and **file_name_suffix** use default values. file_name_suffix (str): Suffix for the files written. append_trailing_newlines (bool): indicate whether this sink should write an additional newline char after writing each element. num_shards (int): The number of files (shards) used for output. If not set, the service will decide on the optimal number of shards. Constraining the number of shards is likely to reduce the performance of a pipeline. Setting this value is not recommended unless you require a specific number of output files. shard_name_template (str): A template string containing placeholders for the shard number and shard count. Currently only ``''`` and ``'-SSSSS-of-NNNNN'`` are patterns accepted by the service. When constructing a filename for a particular shard number, the upper-case letters ``S`` and ``N`` are replaced with the ``0``-padded shard number and shard count respectively. This argument can be ``''`` in which case it behaves as if num_shards was set to 1 and only one file will be generated. The default pattern used is ``'-SSSSS-of-NNNNN'``. coder (~apache_beam.coders.coders.Coder): Coder used to encode each line. compression_type (str): Used to handle compressed output files. Typical value is :class:`CompressionTypes.AUTO <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the final file path's extension (as determined by **file_path_prefix**, **file_name_suffix**, **num_shards** and **shard_name_template**) will be used to detect the compression. header (str): String to write at beginning of file as a header. If not :data:`None` and **append_trailing_newlines** is set, ``\n`` will be added.
sdks/python/apache_beam/io/textio.py
__init__
AhnLab-OSS/beam
python
def __init__(self, file_path_prefix, file_name_suffix=, append_trailing_newlines=True, num_shards=0, shard_name_template=None, coder=coders.ToStringCoder(), compression_type=CompressionTypes.AUTO, header=None): "Initialize a :class:`WriteToText` transform.\n\n Args:\n file_path_prefix (str): The file path to write to. The files written will\n begin with this prefix, followed by a shard identifier (see\n **num_shards**), and end in a common extension, if given by\n **file_name_suffix**. In most cases, only this argument is specified and\n **num_shards**, **shard_name_template**, and **file_name_suffix** use\n default values.\n file_name_suffix (str): Suffix for the files written.\n append_trailing_newlines (bool): indicate whether this sink should write\n an additional newline char after writing each element.\n num_shards (int): The number of files (shards) used for output.\n If not set, the service will decide on the optimal number of shards.\n Constraining the number of shards is likely to reduce\n the performance of a pipeline. Setting this value is not recommended\n unless you require a specific number of output files.\n shard_name_template (str): A template string containing placeholders for\n the shard number and shard count. Currently only ```` and\n ``'-SSSSS-of-NNNNN'`` are patterns accepted by the service.\n When constructing a filename for a particular shard number, the\n upper-case letters ``S`` and ``N`` are replaced with the ``0``-padded\n shard number and shard count respectively. This argument can be ````\n in which case it behaves as if num_shards was set to 1 and only one file\n will be generated. The default pattern used is ``'-SSSSS-of-NNNNN'``.\n coder (~apache_beam.coders.coders.Coder): Coder used to encode each line.\n compression_type (str): Used to handle compressed output files.\n Typical value is :class:`CompressionTypes.AUTO\n <apache_beam.io.filesystem.CompressionTypes.AUTO>`, in which case the\n final file path's extension (as determined by **file_path_prefix**,\n **file_name_suffix**, **num_shards** and **shard_name_template**) will\n be used to detect the compression.\n header (str): String to write at beginning of file as a header.\n If not :data:`None` and **append_trailing_newlines** is set, ``\\n`` will\n be added.\n " self._sink = _TextSink(file_path_prefix, file_name_suffix, append_trailing_newlines, num_shards, shard_name_template, coder, compression_type, header)
def register_extensions(app: Flask): '注册需要的扩展程序包到 Flask 程序实例 app 中' db.init_app(app) login_manager.init_app(app) csrf.init_app(app) moment.init_app(app)
8,959,475,275,388,297,000
注册需要的扩展程序包到 Flask 程序实例 app 中
telechat/__init__.py
register_extensions
Sefank/telechat
python
def register_extensions(app: Flask): db.init_app(app) login_manager.init_app(app) csrf.init_app(app) moment.init_app(app)
def register_blueprints(app: Flask): '注册需要的蓝图程序包到 Flask 程序实例 app 中' app.register_blueprint(auth_bp) app.register_blueprint(oauth_bp) app.register_blueprint(chat_bp) app.register_blueprint(admin_bp)
7,145,644,853,949,605,000
注册需要的蓝图程序包到 Flask 程序实例 app 中
telechat/__init__.py
register_blueprints
Sefank/telechat
python
def register_blueprints(app: Flask): app.register_blueprint(auth_bp) app.register_blueprint(oauth_bp) app.register_blueprint(chat_bp) app.register_blueprint(admin_bp)
def register_errors(app: Flask): '注册需要的错误处理程序包到 Flask 程序实例 app 中' @app.errorhandler(400) def bad_request(e): return (render_template('error.html', description=e.description, code=e.code), 400) @app.errorhandler(404) def page_not_found(e): return (render_template('error.html', description=e.description, code=e.code), 404) @app.errorhandler(500) def internal_server_error(e): return (render_template('error.html', description='服务器内部错误,无法完成请求!', code='500'), 500) @app.errorhandler(CSRFError) def csrf_error_handle(e): return (render_template('error.html', description=e.description, code=e.code), 400)
1,824,958,579,672,288,500
注册需要的错误处理程序包到 Flask 程序实例 app 中
telechat/__init__.py
register_errors
Sefank/telechat
python
def register_errors(app: Flask): @app.errorhandler(400) def bad_request(e): return (render_template('error.html', description=e.description, code=e.code), 400) @app.errorhandler(404) def page_not_found(e): return (render_template('error.html', description=e.description, code=e.code), 404) @app.errorhandler(500) def internal_server_error(e): return (render_template('error.html', description='服务器内部错误,无法完成请求!', code='500'), 500) @app.errorhandler(CSRFError) def csrf_error_handle(e): return (render_template('error.html', description=e.description, code=e.code), 400)
def register_commands(app: Flask): '注册需要的CLI命令程序包到 Flask 程序实例 app 中' @app.cli.command() @click.option('--drop', is_flag=True, help='创建之前销毁数据库') def initdb(drop: bool): '初始化数据库结构' if drop: pass pass @app.cli.command() @click.option('--num', default=300, help='消息数量,默认为300') def forge(num: int): '生成虚拟数据' pass
1,707,144,654,204,815,000
注册需要的CLI命令程序包到 Flask 程序实例 app 中
telechat/__init__.py
register_commands
Sefank/telechat
python
def register_commands(app: Flask): @app.cli.command() @click.option('--drop', is_flag=True, help='创建之前销毁数据库') def initdb(drop: bool): '初始化数据库结构' if drop: pass pass @app.cli.command() @click.option('--num', default=300, help='消息数量,默认为300') def forge(num: int): '生成虚拟数据' pass
def create_app(config_name=None): '程序工厂:创建 Flask 程序,加载配置,注册扩展、蓝图等程序包' if (config_name is None): config_name = os.getenv('FLASK_CONFIG', 'development') app = Flask('telechat') app.config.from_object(config[config_name]) register_extensions(app) register_blueprints(app) register_errors(app) register_commands(app) return app
-5,401,803,342,700,037,000
程序工厂:创建 Flask 程序,加载配置,注册扩展、蓝图等程序包
telechat/__init__.py
create_app
Sefank/telechat
python
def create_app(config_name=None): if (config_name is None): config_name = os.getenv('FLASK_CONFIG', 'development') app = Flask('telechat') app.config.from_object(config[config_name]) register_extensions(app) register_blueprints(app) register_errors(app) register_commands(app) return app
@app.cli.command() @click.option('--drop', is_flag=True, help='创建之前销毁数据库') def initdb(drop: bool): '初始化数据库结构' if drop: pass pass
-6,779,515,592,460,771,000
初始化数据库结构
telechat/__init__.py
initdb
Sefank/telechat
python
@app.cli.command() @click.option('--drop', is_flag=True, help='创建之前销毁数据库') def initdb(drop: bool): if drop: pass pass
@app.cli.command() @click.option('--num', default=300, help='消息数量,默认为300') def forge(num: int): '生成虚拟数据' pass
-5,643,895,302,043,924,000
生成虚拟数据
telechat/__init__.py
forge
Sefank/telechat
python
@app.cli.command() @click.option('--num', default=300, help='消息数量,默认为300') def forge(num: int): pass
def load_configuration(configuration_file_path, parameters_file_path, bundles): 'Combines the configuration and parameters and build the configuration object' mappings = {} for bundle in bundles: if hasattr(bundle, 'config_mapping'): mappings.update(bundle.config_mapping) loader = YmlLoader() return loader.build_config(mappings, config_source=configuration_file_path, parameters_source=parameters_file_path)
259,998,891,701,529,540
Combines the configuration and parameters and build the configuration object
applauncher/configuration.py
load_configuration
applauncher-team/applauncher
python
def load_configuration(configuration_file_path, parameters_file_path, bundles): mappings = {} for bundle in bundles: if hasattr(bundle, 'config_mapping'): mappings.update(bundle.config_mapping) loader = YmlLoader() return loader.build_config(mappings, config_source=configuration_file_path, parameters_source=parameters_file_path)
def is_string(value): 'Check if the value is actually a string or not' try: float(value) return False except ValueError: if (value.lower() in ['true', 'false']): return False return True
3,238,916,346,945,022,500
Check if the value is actually a string or not
applauncher/configuration.py
is_string
applauncher-team/applauncher
python
def is_string(value): try: float(value) return False except ValueError: if (value.lower() in ['true', 'false']): return False return True
@abstractmethod def load_parameters(self, source): 'Convert the source into a dictionary'
-4,875,817,250,234,026,000
Convert the source into a dictionary
applauncher/configuration.py
load_parameters
applauncher-team/applauncher
python
@abstractmethod def load_parameters(self, source):
@abstractmethod def load_config(self, config_source, parameters_source): 'Prase the config file and build a dictionary'
-2,837,957,084,366,495,000
Prase the config file and build a dictionary
applauncher/configuration.py
load_config
applauncher-team/applauncher
python
@abstractmethod def load_config(self, config_source, parameters_source):
def build_config(self, config_mappings, config_source, parameters_source): 'By using the loaded parameters and loaded config, build the final configuration object' configuration_class = create_model('Configuration', **{k: (v, ...) for (k, v) in config_mappings.items()}) return configuration_class(**self.load_config(config_source, parameters_source))
311,806,605,572,668,300
By using the loaded parameters and loaded config, build the final configuration object
applauncher/configuration.py
build_config
applauncher-team/applauncher
python
def build_config(self, config_mappings, config_source, parameters_source): configuration_class = create_model('Configuration', **{k: (v, ...) for (k, v) in config_mappings.items()}) return configuration_class(**self.load_config(config_source, parameters_source))
def load_parameters(self, source): 'For YML, the source it the file path' with open(source, encoding=locale.getpreferredencoding(False)) as parameters_source: loaded = yaml.safe_load(parameters_source.read()) if loaded: for (key, value) in loaded.items(): if isinstance(value, str): loaded[key] = (("'" + value) + "'") return loaded return {}
9,100,939,142,661,697,000
For YML, the source it the file path
applauncher/configuration.py
load_parameters
applauncher-team/applauncher
python
def load_parameters(self, source): with open(source, encoding=locale.getpreferredencoding(False)) as parameters_source: loaded = yaml.safe_load(parameters_source.read()) if loaded: for (key, value) in loaded.items(): if isinstance(value, str): loaded[key] = (("'" + value) + "'") return loaded return {}
def load_config(self, config_source, parameters_source): 'For YML, the source it the file path' with open(config_source, encoding=locale.getpreferredencoding(False)) as config_source_file: config_raw = config_source_file.read() parameters = {} if os.path.isfile(parameters_source): params = self.load_parameters(parameters_source) if (params is not None): parameters.update(params) env_params = {} env_params.update(os.environ) for (key, value) in env_params.items(): if is_string(value): env_params[key] = (("'" + value) + "'") parameters.update(env_params) final_configuration = config_raw.format(**parameters) final_configuration = yaml.safe_load(final_configuration) return (final_configuration if (final_configuration is not None) else {})
-1,562,659,037,624,938,800
For YML, the source it the file path
applauncher/configuration.py
load_config
applauncher-team/applauncher
python
def load_config(self, config_source, parameters_source): with open(config_source, encoding=locale.getpreferredencoding(False)) as config_source_file: config_raw = config_source_file.read() parameters = {} if os.path.isfile(parameters_source): params = self.load_parameters(parameters_source) if (params is not None): parameters.update(params) env_params = {} env_params.update(os.environ) for (key, value) in env_params.items(): if is_string(value): env_params[key] = (("'" + value) + "'") parameters.update(env_params) final_configuration = config_raw.format(**parameters) final_configuration = yaml.safe_load(final_configuration) return (final_configuration if (final_configuration is not None) else {})
def test_insert_heterogeneous_params(self): 'test that executemany parameters are asserted to match the\n parameter set of the first.' users = self.tables.users assert_raises_message(exc.StatementError, "\\(sqlalchemy.exc.InvalidRequestError\\) A value is required for bind parameter 'user_name', in parameter group 2\n\\[SQL: u?INSERT INTO users", users.insert().execute, {'user_id': 7, 'user_name': 'jack'}, {'user_id': 8, 'user_name': 'ed'}, {'user_id': 9}) users.insert().execute({'user_id': 7}, {'user_id': 8, 'user_name': 'ed'}, {'user_id': 9})
-7,232,828,510,795,666,000
test that executemany parameters are asserted to match the parameter set of the first.
test/sql/test_insert_exec.py
test_insert_heterogeneous_params
AngelLiang/hacking-sqlalchemy
python
def test_insert_heterogeneous_params(self): 'test that executemany parameters are asserted to match the\n parameter set of the first.' users = self.tables.users assert_raises_message(exc.StatementError, "\\(sqlalchemy.exc.InvalidRequestError\\) A value is required for bind parameter 'user_name', in parameter group 2\n\\[SQL: u?INSERT INTO users", users.insert().execute, {'user_id': 7, 'user_name': 'jack'}, {'user_id': 8, 'user_name': 'ed'}, {'user_id': 9}) users.insert().execute({'user_id': 7}, {'user_id': 8, 'user_name': 'ed'}, {'user_id': 9})
def _test_lastrow_accessor(self, table_, values, assertvalues): 'Tests the inserted_primary_key and lastrow_has_id() functions.' def insert_values(engine, table_, values): '\n Inserts a row into a table, returns the full list of values\n INSERTed including defaults that fired off on the DB side and\n detects rows that had defaults and post-fetches.\n ' if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if (not set(values).issuperset((c.key for c in table_.primary_key))): is_(bool(comp.returning), True) result = engine.execute(table_.insert(), **values) ret = values.copy() for (col, id_) in zip(table_.primary_key, result.inserted_primary_key): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_(*[(col == id_) for (col, id_) in zip(table_.primary_key, result.inserted_primary_key)]) row = engine.execute(table_.select(criterion)).first() for c in table_.c: ret[c.key] = row[c] return ret if testing.against('firebird', 'postgresql', 'oracle', 'mssql'): assert testing.db.dialect.implicit_returning if testing.db.dialect.implicit_returning: test_engines = [engines.testing_engine(options={'implicit_returning': False}), engines.testing_engine(options={'implicit_returning': True})] else: test_engines = [testing.db] for engine in test_engines: try: table_.create(bind=engine, checkfirst=True) i = insert_values(engine, table_, values) eq_(i, assertvalues) finally: table_.drop(bind=engine)
-6,284,793,476,165,940,000
Tests the inserted_primary_key and lastrow_has_id() functions.
test/sql/test_insert_exec.py
_test_lastrow_accessor
AngelLiang/hacking-sqlalchemy
python
def _test_lastrow_accessor(self, table_, values, assertvalues): def insert_values(engine, table_, values): '\n Inserts a row into a table, returns the full list of values\n INSERTed including defaults that fired off on the DB side and\n detects rows that had defaults and post-fetches.\n ' if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if (not set(values).issuperset((c.key for c in table_.primary_key))): is_(bool(comp.returning), True) result = engine.execute(table_.insert(), **values) ret = values.copy() for (col, id_) in zip(table_.primary_key, result.inserted_primary_key): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_(*[(col == id_) for (col, id_) in zip(table_.primary_key, result.inserted_primary_key)]) row = engine.execute(table_.select(criterion)).first() for c in table_.c: ret[c.key] = row[c] return ret if testing.against('firebird', 'postgresql', 'oracle', 'mssql'): assert testing.db.dialect.implicit_returning if testing.db.dialect.implicit_returning: test_engines = [engines.testing_engine(options={'implicit_returning': False}), engines.testing_engine(options={'implicit_returning': True})] else: test_engines = [testing.db] for engine in test_engines: try: table_.create(bind=engine, checkfirst=True) i = insert_values(engine, table_, values) eq_(i, assertvalues) finally: table_.drop(bind=engine)
def insert_values(engine, table_, values): '\n Inserts a row into a table, returns the full list of values\n INSERTed including defaults that fired off on the DB side and\n detects rows that had defaults and post-fetches.\n ' if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if (not set(values).issuperset((c.key for c in table_.primary_key))): is_(bool(comp.returning), True) result = engine.execute(table_.insert(), **values) ret = values.copy() for (col, id_) in zip(table_.primary_key, result.inserted_primary_key): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_(*[(col == id_) for (col, id_) in zip(table_.primary_key, result.inserted_primary_key)]) row = engine.execute(table_.select(criterion)).first() for c in table_.c: ret[c.key] = row[c] return ret
1,840,504,308,974,259,000
Inserts a row into a table, returns the full list of values INSERTed including defaults that fired off on the DB side and detects rows that had defaults and post-fetches.
test/sql/test_insert_exec.py
insert_values
AngelLiang/hacking-sqlalchemy
python
def insert_values(engine, table_, values): '\n Inserts a row into a table, returns the full list of values\n INSERTed including defaults that fired off on the DB side and\n detects rows that had defaults and post-fetches.\n ' if engine.dialect.implicit_returning: ins = table_.insert() comp = ins.compile(engine, column_keys=list(values)) if (not set(values).issuperset((c.key for c in table_.primary_key))): is_(bool(comp.returning), True) result = engine.execute(table_.insert(), **values) ret = values.copy() for (col, id_) in zip(table_.primary_key, result.inserted_primary_key): ret[col.key] = id_ if result.lastrow_has_defaults(): criterion = and_(*[(col == id_) for (col, id_) in zip(table_.primary_key, result.inserted_primary_key)]) row = engine.execute(table_.select(criterion)).first() for c in table_.c: ret[c.key] = row[c] return ret
@pytest.fixture def start_south(self, add_south, remove_data_file, remove_directories, south_branch, fledge_url): ' This fixture clone a south repo and starts south instance\n add_south: Fixture that starts any south service with given configuration\n remove_data_file: Fixture that remove data file created during the tests\n remove_directories: Fixture that remove directories created during the tests ' fogbench_template_path = self.prepare_template_reading_from_fogbench() add_south(self.SOUTH_PLUGIN_NAME, south_branch, fledge_url, service_name=self.SOUTH_PLUGIN_NAME) (yield self.start_south) remove_data_file(fogbench_template_path) remove_directories('/tmp/fledge-south-{}'.format(self.SOUTH_PLUGIN_NAME))
-5,151,229,683,836,889,000
This fixture clone a south repo and starts south instance add_south: Fixture that starts any south service with given configuration remove_data_file: Fixture that remove data file created during the tests remove_directories: Fixture that remove directories created during the tests
tests/system/python/e2e/test_e2e_notification_service_with_plugins.py
start_south
YashTatkondawar/fledge
python
@pytest.fixture def start_south(self, add_south, remove_data_file, remove_directories, south_branch, fledge_url): ' This fixture clone a south repo and starts south instance\n add_south: Fixture that starts any south service with given configuration\n remove_data_file: Fixture that remove data file created during the tests\n remove_directories: Fixture that remove directories created during the tests ' fogbench_template_path = self.prepare_template_reading_from_fogbench() add_south(self.SOUTH_PLUGIN_NAME, south_branch, fledge_url, service_name=self.SOUTH_PLUGIN_NAME) (yield self.start_south) remove_data_file(fogbench_template_path) remove_directories('/tmp/fledge-south-{}'.format(self.SOUTH_PLUGIN_NAME))
def prepare_template_reading_from_fogbench(self): ' Define the template file for fogbench readings ' fogbench_template_path = os.path.join(os.path.expandvars('${FLEDGE_ROOT}'), 'data/{}'.format(self.FOGBENCH_TEMPLATE)) with open(fogbench_template_path, 'w') as f: f.write(('[{"name": "%s", "sensor_values": [{"name": "sensor", "type": "number", "min": %d, "max": %d, "precision": 0}]}]' % (self.ASSET_NAME, self.SENSOR_VALUE, self.SENSOR_VALUE))) return fogbench_template_path
-4,634,762,238,000,365,000
Define the template file for fogbench readings
tests/system/python/e2e/test_e2e_notification_service_with_plugins.py
prepare_template_reading_from_fogbench
YashTatkondawar/fledge
python
def prepare_template_reading_from_fogbench(self): ' ' fogbench_template_path = os.path.join(os.path.expandvars('${FLEDGE_ROOT}'), 'data/{}'.format(self.FOGBENCH_TEMPLATE)) with open(fogbench_template_path, 'w') as f: f.write(('[{"name": "%s", "sensor_values": [{"name": "sensor", "type": "number", "min": %d, "max": %d, "precision": 0}]}]' % (self.ASSET_NAME, self.SENSOR_VALUE, self.SENSOR_VALUE))) return fogbench_template_path
def get_ratio_data(vocabpath, sizecap, ratio, tags4positive, tags4negative, excludebelow=0, excludeabove=3000): " Loads metadata, selects instances for the positive\n and negative classes (using a ratio to dilute the positive\n class with negative instances), creates a lexicon if one doesn't\n already exist, and creates a pandas dataframe storing\n texts as rows and words/features as columns. A refactored\n and simplified version of get_data_for_model().\n " holdout_authors = True freqs_already_normalized = True verbose = False datecols = ['firstpub'] indexcol = ['docid'] extension = '.tsv' genrecol = 'tags' numfeatures = 8000 sourcefolder = '../data/' metadatapath = '../metadata/mastermetadata.csv' allthefiles = os.listdir(sourcefolder) volumeIDsinfolder = list() volumepaths = list() numchars2trim = len(extension) for filename in allthefiles: if filename.endswith(extension): volID = filename[0:(- numchars2trim)] volumeIDsinfolder.append(volID) metadata = metaselector.load_metadata(metadatapath, volumeIDsinfolder, excludebelow, excludeabove, indexcol=indexcol, datecols=datecols, genrecol=genrecol) (orderedIDs, classdictionary) = metaselector.dilute_positive_class(metadata, sizecap, tags4positive, tags4negative, ratio) metadata = metadata.loc[orderedIDs] volspresent = [(x, ((sourcefolder + x) + extension)) for x in orderedIDs] print(len(volspresent)) print('Building vocabulary.') vocablist = versatiletrainer2.get_vocablist(vocabpath, volspresent, n=numfeatures) numfeatures = len(vocablist) print() print(('Number of features: ' + str(numfeatures))) authormatches = [[] for x in orderedIDs] if holdout_authors: for (idx1, anid) in enumerate(orderedIDs): thisauthor = metadata.loc[(anid, 'author')] authormatches[idx1] = list(np.flatnonzero((metadata['author'] == thisauthor))) for alist in authormatches: alist.sort(reverse=True) print() print('Authors matched.') print() (masterdata, classvector) = versatiletrainer2.get_dataframe(volspresent, classdictionary, vocablist, freqs_already_normalized) return (metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist)
2,959,876,061,134,097,000
Loads metadata, selects instances for the positive and negative classes (using a ratio to dilute the positive class with negative instances), creates a lexicon if one doesn't already exist, and creates a pandas dataframe storing texts as rows and words/features as columns. A refactored and simplified version of get_data_for_model().
variation/methodological_experiment.py
get_ratio_data
tedunderwood/fiction
python
def get_ratio_data(vocabpath, sizecap, ratio, tags4positive, tags4negative, excludebelow=0, excludeabove=3000): " Loads metadata, selects instances for the positive\n and negative classes (using a ratio to dilute the positive\n class with negative instances), creates a lexicon if one doesn't\n already exist, and creates a pandas dataframe storing\n texts as rows and words/features as columns. A refactored\n and simplified version of get_data_for_model().\n " holdout_authors = True freqs_already_normalized = True verbose = False datecols = ['firstpub'] indexcol = ['docid'] extension = '.tsv' genrecol = 'tags' numfeatures = 8000 sourcefolder = '../data/' metadatapath = '../metadata/mastermetadata.csv' allthefiles = os.listdir(sourcefolder) volumeIDsinfolder = list() volumepaths = list() numchars2trim = len(extension) for filename in allthefiles: if filename.endswith(extension): volID = filename[0:(- numchars2trim)] volumeIDsinfolder.append(volID) metadata = metaselector.load_metadata(metadatapath, volumeIDsinfolder, excludebelow, excludeabove, indexcol=indexcol, datecols=datecols, genrecol=genrecol) (orderedIDs, classdictionary) = metaselector.dilute_positive_class(metadata, sizecap, tags4positive, tags4negative, ratio) metadata = metadata.loc[orderedIDs] volspresent = [(x, ((sourcefolder + x) + extension)) for x in orderedIDs] print(len(volspresent)) print('Building vocabulary.') vocablist = versatiletrainer2.get_vocablist(vocabpath, volspresent, n=numfeatures) numfeatures = len(vocablist) print() print(('Number of features: ' + str(numfeatures))) authormatches = [[] for x in orderedIDs] if holdout_authors: for (idx1, anid) in enumerate(orderedIDs): thisauthor = metadata.loc[(anid, 'author')] authormatches[idx1] = list(np.flatnonzero((metadata['author'] == thisauthor))) for alist in authormatches: alist.sort(reverse=True) print() print('Authors matched.') print() (masterdata, classvector) = versatiletrainer2.get_dataframe(volspresent, classdictionary, vocablist, freqs_already_normalized) return (metadata, masterdata, classvector, classdictionary, orderedIDs, authormatches, vocablist)
def kldivergence(p, q): 'Kullback-Leibler divergence D(P || Q) for discrete distributions\n Parameters\n ----------\n p, q : array-like, dtype=float, shape=n\n Discrete probability distributions.\n ' p = np.asarray(p, dtype=np.float) q = np.asarray(q, dtype=np.float) return np.sum(np.where((p != 0), (p * np.log((p / q))), 0))
-3,483,818,306,852,924,400
Kullback-Leibler divergence D(P || Q) for discrete distributions Parameters ---------- p, q : array-like, dtype=float, shape=n Discrete probability distributions.
variation/methodological_experiment.py
kldivergence
tedunderwood/fiction
python
def kldivergence(p, q): 'Kullback-Leibler divergence D(P || Q) for discrete distributions\n Parameters\n ----------\n p, q : array-like, dtype=float, shape=n\n Discrete probability distributions.\n ' p = np.asarray(p, dtype=np.float) q = np.asarray(q, dtype=np.float) return np.sum(np.where((p != 0), (p * np.log((p / q))), 0))
def get_divergences(gold, testname, itera, size, pct): '\n This function gets several possible measures of divergence\n between two models.\n ' model1 = (('../measuredivergence/modeloutput/' + gold) + '.pkl') meta1 = (('../measuredivergence/modeloutput/' + gold) + '.csv') testpath = ('../measuredivergence/modeloutput/' + testname) model2 = (testpath + '.pkl') meta2 = (testpath + '.csv') model1on2 = versatiletrainer2.apply_pickled_model(model1, '../data/', '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, '../data/', '.tsv', meta1) pearson1on2 = stats.pearsonr(model1on2.probability, model1on2.alien_model)[0] pearson2on1 = stats.pearsonr(model2on1.probability, model2on1.alien_model)[0] pearson = averagecorr(pearson1on2, pearson2on1) spearman1on2 = stats.spearmanr(model1on2.probability, model1on2.alien_model)[0] spearman2on1 = stats.spearmanr(model2on1.probability, model2on1.alien_model)[0] spearman = averagecorr(spearman1on2, spearman2on1) loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = ((loss1on2 + loss2on1) / 2) kl1on2 = kldivergence(model1on2.probability, model1on2.alien_model) kl2on1 = kldivergence(model2on1.probability, model2on1.alien_model) kl = ((kl1on2 + kl2on1) / 2) return (pearson, spearman, loss, kl, spearman1on2, spearman2on1, loss1on2, loss2on1)
-5,795,583,140,593,156,000
This function gets several possible measures of divergence between two models.
variation/methodological_experiment.py
get_divergences
tedunderwood/fiction
python
def get_divergences(gold, testname, itera, size, pct): '\n This function gets several possible measures of divergence\n between two models.\n ' model1 = (('../measuredivergence/modeloutput/' + gold) + '.pkl') meta1 = (('../measuredivergence/modeloutput/' + gold) + '.csv') testpath = ('../measuredivergence/modeloutput/' + testname) model2 = (testpath + '.pkl') meta2 = (testpath + '.csv') model1on2 = versatiletrainer2.apply_pickled_model(model1, '../data/', '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, '../data/', '.tsv', meta1) pearson1on2 = stats.pearsonr(model1on2.probability, model1on2.alien_model)[0] pearson2on1 = stats.pearsonr(model2on1.probability, model2on1.alien_model)[0] pearson = averagecorr(pearson1on2, pearson2on1) spearman1on2 = stats.spearmanr(model1on2.probability, model1on2.alien_model)[0] spearman2on1 = stats.spearmanr(model2on1.probability, model2on1.alien_model)[0] spearman = averagecorr(spearman1on2, spearman2on1) loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = ((loss1on2 + loss2on1) / 2) kl1on2 = kldivergence(model1on2.probability, model1on2.alien_model) kl2on1 = kldivergence(model2on1.probability, model2on1.alien_model) kl = ((kl1on2 + kl2on1) / 2) return (pearson, spearman, loss, kl, spearman1on2, spearman2on1, loss1on2, loss2on1)
def get_divergence(sampleA, sampleB, twodatafolder='../data/', onedatafolder='../data/'): '\n This function applies model a to b, and vice versa, and returns\n a couple of measures of divergence: notably lost accuracy and\n z-tranformed spearman correlation.\n ' model1 = (('../measuredivergence/newmodeloutput/' + sampleA) + '.pkl') meta1 = (('../measuredivergence/newmodeloutput/' + sampleA) + '.csv') model2 = (('../measuredivergence/newmodeloutput/' + sampleB) + '.pkl') meta2 = (('../measuredivergence/newmodeloutput/' + sampleB) + '.csv') model1on2 = versatiletrainer2.apply_pickled_model(model1, twodatafolder, '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, onedatafolder, '.tsv', meta1) spearman1on2 = np.arctanh(stats.spearmanr(model1on2.probability, model1on2.alien_model)[0]) spearman2on1 = np.arctanh(stats.spearmanr(model2on1.probability, model2on1.alien_model)[0]) spearman = ((spearman1on2 + spearman2on1) / 2) loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = ((loss1on2 + loss2on1) / 2) alienacc2 = accuracy(model1on2, 'alien_model') alienacc1 = accuracy(model2on1, 'alien_model') acc2 = accuracy(model1on2, 'probability') acc1 = accuracy(model2on1, 'probability') meandate2 = np.mean(model1on2.std_date) meandate1 = np.mean(model2on1.std_date) return (spearman, loss, spearman1on2, spearman2on1, loss1on2, loss2on1, acc1, acc2, alienacc1, alienacc2, meandate1, meandate2)
2,197,540,136,824,818,000
This function applies model a to b, and vice versa, and returns a couple of measures of divergence: notably lost accuracy and z-tranformed spearman correlation.
variation/methodological_experiment.py
get_divergence
tedunderwood/fiction
python
def get_divergence(sampleA, sampleB, twodatafolder='../data/', onedatafolder='../data/'): '\n This function applies model a to b, and vice versa, and returns\n a couple of measures of divergence: notably lost accuracy and\n z-tranformed spearman correlation.\n ' model1 = (('../measuredivergence/newmodeloutput/' + sampleA) + '.pkl') meta1 = (('../measuredivergence/newmodeloutput/' + sampleA) + '.csv') model2 = (('../measuredivergence/newmodeloutput/' + sampleB) + '.pkl') meta2 = (('../measuredivergence/newmodeloutput/' + sampleB) + '.csv') model1on2 = versatiletrainer2.apply_pickled_model(model1, twodatafolder, '.tsv', meta2) model2on1 = versatiletrainer2.apply_pickled_model(model2, onedatafolder, '.tsv', meta1) spearman1on2 = np.arctanh(stats.spearmanr(model1on2.probability, model1on2.alien_model)[0]) spearman2on1 = np.arctanh(stats.spearmanr(model2on1.probability, model2on1.alien_model)[0]) spearman = ((spearman1on2 + spearman2on1) / 2) loss1on2 = accuracy_loss(model1on2) loss2on1 = accuracy_loss(model2on1) loss = ((loss1on2 + loss2on1) / 2) alienacc2 = accuracy(model1on2, 'alien_model') alienacc1 = accuracy(model2on1, 'alien_model') acc2 = accuracy(model1on2, 'probability') acc1 = accuracy(model2on1, 'probability') meandate2 = np.mean(model1on2.std_date) meandate1 = np.mean(model2on1.std_date) return (spearman, loss, spearman1on2, spearman2on1, loss1on2, loss2on1, acc1, acc2, alienacc1, alienacc2, meandate1, meandate2)
@pytest.fixture def start_of_recurrence(future_date): '\n Date object representing the first day of a record with recurrence\n ' return future_date
5,637,887,532,328,062,000
Date object representing the first day of a record with recurrence
moneyforecast/tests/records/fixtures.py
start_of_recurrence
curaloucura/money-forecast
python
@pytest.fixture def start_of_recurrence(future_date): '\n \n ' return future_date
@pytest.fixture def end_of_recurrence(future_date): '\n Return a date which is used to determine the end month the recurrence\n should occur\n ' date = (future_date + relativedelta(months=6)) return date
-4,469,297,031,474,214,400
Return a date which is used to determine the end month the recurrence should occur
moneyforecast/tests/records/fixtures.py
end_of_recurrence
curaloucura/money-forecast
python
@pytest.fixture def end_of_recurrence(future_date): '\n Return a date which is used to determine the end month the recurrence\n should occur\n ' date = (future_date + relativedelta(months=6)) return date
@pytest.fixture def month_control(user, current_date): '\n Return a MonthControl object for the current date.\n\n Important: currently any Record fixture should come before month_control\n ' month_control = MonthControl(user, current_date.month, current_date.year, cache={}) return month_control
6,479,720,257,097,776,000
Return a MonthControl object for the current date. Important: currently any Record fixture should come before month_control
moneyforecast/tests/records/fixtures.py
month_control
curaloucura/money-forecast
python
@pytest.fixture def month_control(user, current_date): '\n Return a MonthControl object for the current date.\n\n Important: currently any Record fixture should come before month_control\n ' month_control = MonthControl(user, current_date.month, current_date.year, cache={}) return month_control
@pytest.fixture def month_control_with_budget(user, current_date): '\n Return a MonthControlWithBudget object for the current date.\n\n Important: currently any Record fixture should come before month_control\n ' month_control = MonthControlWithBudget(user, current_date.month, current_date.year, cache={}) return month_control
5,738,756,399,209,524,000
Return a MonthControlWithBudget object for the current date. Important: currently any Record fixture should come before month_control
moneyforecast/tests/records/fixtures.py
month_control_with_budget
curaloucura/money-forecast
python
@pytest.fixture def month_control_with_budget(user, current_date): '\n Return a MonthControlWithBudget object for the current date.\n\n Important: currently any Record fixture should come before month_control\n ' month_control = MonthControlWithBudget(user, current_date.month, current_date.year, cache={}) return month_control
@pytest.fixture def outcome(user): '\n Main category of outcome type\n ' category = Category.objects.create(name='outcome', type_category=OUTCOME, user=user) return category
6,987,829,848,362,085,000
Main category of outcome type
moneyforecast/tests/records/fixtures.py
outcome
curaloucura/money-forecast
python
@pytest.fixture def outcome(user): '\n \n ' category = Category.objects.create(name='outcome', type_category=OUTCOME, user=user) return category
@pytest.fixture def income(user): '\n Main category of income type\n ' category = Category.objects.create(name='income', type_category=INCOME, user=user) return category
4,078,536,843,082,901,500
Main category of income type
moneyforecast/tests/records/fixtures.py
income
curaloucura/money-forecast
python
@pytest.fixture def income(user): '\n \n ' category = Category.objects.create(name='income', type_category=INCOME, user=user) return category
@pytest.fixture def savings(user): '\n Category of Savings\n ' category = Category.objects.create(name='savings', type_category=SAVINGS, user=user) return category
-7,184,796,791,208,873,000
Category of Savings
moneyforecast/tests/records/fixtures.py
savings
curaloucura/money-forecast
python
@pytest.fixture def savings(user): '\n \n ' category = Category.objects.create(name='savings', type_category=SAVINGS, user=user) return category
@pytest.fixture def outcome_current(user, outcome, current_date): '\n Record of type Outcome set to today (current date)\n ' record = Record.objects.create(category=outcome, amount=1, start_date=current_date, user=user) return record
4,778,692,088,416,692,000
Record of type Outcome set to today (current date)
moneyforecast/tests/records/fixtures.py
outcome_current
curaloucura/money-forecast
python
@pytest.fixture def outcome_current(user, outcome, current_date): '\n \n ' record = Record.objects.create(category=outcome, amount=1, start_date=current_date, user=user) return record
@pytest.fixture def outcome_future(user, outcome, future_date): '\n Record of type Outcome set in the future\n ' record = Record.objects.create(category=outcome, amount=1, start_date=future_date, user=user) return record
2,979,084,224,250,077,700
Record of type Outcome set in the future
moneyforecast/tests/records/fixtures.py
outcome_future
curaloucura/money-forecast
python
@pytest.fixture def outcome_future(user, outcome, future_date): '\n \n ' record = Record.objects.create(category=outcome, amount=1, start_date=future_date, user=user) return record
@pytest.fixture def outcome_recurrent(user, outcome, start_of_recurrence): '\n Record of type Outcome set in the future with a day of the month set\n to create a recurring record\n\n This fixture should not be used with outcome_recurrent_limited and\n outcome_with_parent since they change the instance of this own record\n ' record = Record.objects.create(category=outcome, amount=1, start_date=start_of_recurrence, user=user, day_of_month=start_of_recurrence.day) return record
-1,136,533,490,107,749,800
Record of type Outcome set in the future with a day of the month set to create a recurring record This fixture should not be used with outcome_recurrent_limited and outcome_with_parent since they change the instance of this own record
moneyforecast/tests/records/fixtures.py
outcome_recurrent
curaloucura/money-forecast
python
@pytest.fixture def outcome_recurrent(user, outcome, start_of_recurrence): '\n Record of type Outcome set in the future with a day of the month set\n to create a recurring record\n\n This fixture should not be used with outcome_recurrent_limited and\n outcome_with_parent since they change the instance of this own record\n ' record = Record.objects.create(category=outcome, amount=1, start_date=start_of_recurrence, user=user, day_of_month=start_of_recurrence.day) return record
@pytest.fixture def outcome_recurrent_limited(user, outcome_recurrent, end_of_recurrence): '\n Record of type Outcome set in the future with a recurring day of the month\n set and limited to a certain time\n ' outcome_recurrent.end_date = end_of_recurrence outcome_recurrent.save() return outcome_recurrent
-463,034,850,628,568,500
Record of type Outcome set in the future with a recurring day of the month set and limited to a certain time
moneyforecast/tests/records/fixtures.py
outcome_recurrent_limited
curaloucura/money-forecast
python
@pytest.fixture def outcome_recurrent_limited(user, outcome_recurrent, end_of_recurrence): '\n Record of type Outcome set in the future with a recurring day of the month\n set and limited to a certain time\n ' outcome_recurrent.end_date = end_of_recurrence outcome_recurrent.save() return outcome_recurrent
@pytest.fixture def savings_current(request, user, savings, current_date): '\n Record of type Outcome set in the future\n ' record = Record.objects.create(category=savings, amount=1, start_date=current_date, user=user) return record
-8,849,889,830,254,215,000
Record of type Outcome set in the future
moneyforecast/tests/records/fixtures.py
savings_current
curaloucura/money-forecast
python
@pytest.fixture def savings_current(request, user, savings, current_date): '\n \n ' record = Record.objects.create(category=savings, amount=1, start_date=current_date, user=user) return record
def __init__(self, weight=1.0): 'Constructor for this class does following tasks, if not already downloaded , it first downloads text detector dnn weights file from public URL ands save it at USER_HOME/.katna directory, or /tmp/.katna directory. After this initializer code initializes internal parameter: min_confidence (for text detection)\n ' super().__init__(weight) self.min_confidence = config.TextDetector.min_confidence self.merge_threshold = config.TextDetector.merge_threshold self.layerNames = config.TextDetector.layerNames self.frozen_weights = config.TextDetector.frozen_weights self.cache_subdir = config.TextDetector.cache_subdir try: self.network_folder_path = os.path.join(os.path.expanduser('~'), '.katna') if (not os.access(self.network_folder_path, os.W_OK)): self.network_folder_path = os.path.join('/tmp', '.katna') self.datadir = os.path.join(self.network_folder_path, self.cache_subdir) if (not os.path.exists(self.datadir)): os.makedirs(self.datadir) self.network_file_path = os.path.join(self.datadir, self.frozen_weights) if (not os.path.exists(self.network_file_path)): self.download_data() self.net = cv2.dnn.readNet(self.network_file_path) except Exception: raise FileNotFoundError((self.frozen_weights + ' seems to be missing. Download the file and specify the full path while initializing TextDetector class'))
8,590,788,004,543,124,000
Constructor for this class does following tasks, if not already downloaded , it first downloads text detector dnn weights file from public URL ands save it at USER_HOME/.katna directory, or /tmp/.katna directory. After this initializer code initializes internal parameter: min_confidence (for text detection)
Katna/image_filters/text_detector.py
__init__
jibinmathew69/katna
python
def __init__(self, weight=1.0): '\n ' super().__init__(weight) self.min_confidence = config.TextDetector.min_confidence self.merge_threshold = config.TextDetector.merge_threshold self.layerNames = config.TextDetector.layerNames self.frozen_weights = config.TextDetector.frozen_weights self.cache_subdir = config.TextDetector.cache_subdir try: self.network_folder_path = os.path.join(os.path.expanduser('~'), '.katna') if (not os.access(self.network_folder_path, os.W_OK)): self.network_folder_path = os.path.join('/tmp', '.katna') self.datadir = os.path.join(self.network_folder_path, self.cache_subdir) if (not os.path.exists(self.datadir)): os.makedirs(self.datadir) self.network_file_path = os.path.join(self.datadir, self.frozen_weights) if (not os.path.exists(self.network_file_path)): self.download_data() self.net = cv2.dnn.readNet(self.network_file_path) except Exception: raise FileNotFoundError((self.frozen_weights + ' seems to be missing. Download the file and specify the full path while initializing TextDetector class'))
def download_data(self): 'Public function for downloading the network weight from the URL link, to be used for\n text detection functionality. \n Troubleshooting tip: If you get FileNotFound error during text detector initialization,\n initialize the text detector and call this function directly to download the model file from public URL link.\n ' link = config.TextDetector.model_download_link r = requests.get(link, stream=True) print('Downloading model file...') with open(os.path.join(self.datadir, self.frozen_weights), 'wb') as f: for chunk in r.iter_content(chunk_size=(1024 * 1024)): if chunk: f.write(chunk) print('Model file downloaded.')
8,059,587,863,676,840,000
Public function for downloading the network weight from the URL link, to be used for text detection functionality. Troubleshooting tip: If you get FileNotFound error during text detector initialization, initialize the text detector and call this function directly to download the model file from public URL link.
Katna/image_filters/text_detector.py
download_data
jibinmathew69/katna
python
def download_data(self): 'Public function for downloading the network weight from the URL link, to be used for\n text detection functionality. \n Troubleshooting tip: If you get FileNotFound error during text detector initialization,\n initialize the text detector and call this function directly to download the model file from public URL link.\n ' link = config.TextDetector.model_download_link r = requests.get(link, stream=True) print('Downloading model file...') with open(os.path.join(self.datadir, self.frozen_weights), 'wb') as f: for chunk in r.iter_content(chunk_size=(1024 * 1024)): if chunk: f.write(chunk) print('Model file downloaded.')
def __decode_predictions(self, scores, geometry): 'Internal Function for getting bounding box and confidence values \n from text detector dnn network output (scores, geometry)\n function takes the number of rows and columns from the scores volume, then\n initializes set of bounding box rectangles and corresponding confidence scores\n ' (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] for y in range(0, numRows): scoresData = scores[(0, 0, y)] xData0 = geometry[(0, 0, y)] xData1 = geometry[(0, 1, y)] xData2 = geometry[(0, 2, y)] xData3 = geometry[(0, 3, y)] anglesData = geometry[(0, 4, y)] for x in range(0, numCols): if (scoresData[x] < self.min_confidence): continue (offsetX, offsetY) = ((x * 4.0), (y * 4.0)) angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) h = (xData0[x] + xData2[x]) w = (xData1[x] + xData3[x]) endX = int(((offsetX + (cos * xData1[x])) + (sin * xData2[x]))) endY = int(((offsetY - (sin * xData1[x])) + (cos * xData2[x]))) startX = int((endX - w)) startY = int((endY - h)) rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) return (rects, confidences)
4,351,937,684,898,817,500
Internal Function for getting bounding box and confidence values from text detector dnn network output (scores, geometry) function takes the number of rows and columns from the scores volume, then initializes set of bounding box rectangles and corresponding confidence scores
Katna/image_filters/text_detector.py
__decode_predictions
jibinmathew69/katna
python
def __decode_predictions(self, scores, geometry): 'Internal Function for getting bounding box and confidence values \n from text detector dnn network output (scores, geometry)\n function takes the number of rows and columns from the scores volume, then\n initializes set of bounding box rectangles and corresponding confidence scores\n ' (numRows, numCols) = scores.shape[2:4] rects = [] confidences = [] for y in range(0, numRows): scoresData = scores[(0, 0, y)] xData0 = geometry[(0, 0, y)] xData1 = geometry[(0, 1, y)] xData2 = geometry[(0, 2, y)] xData3 = geometry[(0, 3, y)] anglesData = geometry[(0, 4, y)] for x in range(0, numCols): if (scoresData[x] < self.min_confidence): continue (offsetX, offsetY) = ((x * 4.0), (y * 4.0)) angle = anglesData[x] cos = np.cos(angle) sin = np.sin(angle) h = (xData0[x] + xData2[x]) w = (xData1[x] + xData3[x]) endX = int(((offsetX + (cos * xData1[x])) + (sin * xData2[x]))) endY = int(((offsetY - (sin * xData1[x])) + (cos * xData2[x]))) startX = int((endX - w)) startY = int((endY - h)) rects.append((startX, startY, endX, endY)) confidences.append(scoresData[x]) return (rects, confidences)
def __merge_boxes(self, rects): 'main function to detect text boxes from image\n\n :param rects: list of \n :type rects: numpy array\n :param rectsUsed: image file in numpy array/opencv format\n :type rectsUsed: numpy array\n\n :return: output image with the list of text boxes\n :rtype: file, list\n ' def grouper(iterable, interval=2): prev = None group = [] for item in iterable: if ((not prev) or (abs((item[1] - prev[1])) <= interval)): group.append(item) else: (yield group) group = [item] prev = item if group: (yield group) rects_used = [] heights = list() for bbox in rects: heights.append((bbox[3] - bbox[1])) heights = sorted(heights) median_height = (heights[(len(heights) // 2)] / 2) bboxes_list = sorted(rects, key=(lambda k: k[1])) combined_bboxes = grouper(bboxes_list, median_height) for group in combined_bboxes: x_min = min(group, key=(lambda k: k[0]))[0] x_max = max(group, key=(lambda k: k[2]))[2] y_min = min(group, key=(lambda k: k[1]))[1] y_max = max(group, key=(lambda k: k[3]))[3] rects_used.append([x_min, y_min, x_max, y_max]) return rects_used
-9,106,895,150,870,533,000
main function to detect text boxes from image :param rects: list of :type rects: numpy array :param rectsUsed: image file in numpy array/opencv format :type rectsUsed: numpy array :return: output image with the list of text boxes :rtype: file, list
Katna/image_filters/text_detector.py
__merge_boxes
jibinmathew69/katna
python
def __merge_boxes(self, rects): 'main function to detect text boxes from image\n\n :param rects: list of \n :type rects: numpy array\n :param rectsUsed: image file in numpy array/opencv format\n :type rectsUsed: numpy array\n\n :return: output image with the list of text boxes\n :rtype: file, list\n ' def grouper(iterable, interval=2): prev = None group = [] for item in iterable: if ((not prev) or (abs((item[1] - prev[1])) <= interval)): group.append(item) else: (yield group) group = [item] prev = item if group: (yield group) rects_used = [] heights = list() for bbox in rects: heights.append((bbox[3] - bbox[1])) heights = sorted(heights) median_height = (heights[(len(heights) // 2)] / 2) bboxes_list = sorted(rects, key=(lambda k: k[1])) combined_bboxes = grouper(bboxes_list, median_height) for group in combined_bboxes: x_min = min(group, key=(lambda k: k[0]))[0] x_max = max(group, key=(lambda k: k[2]))[2] y_min = min(group, key=(lambda k: k[1]))[1] y_max = max(group, key=(lambda k: k[3]))[3] rects_used.append([x_min, y_min, x_max, y_max]) return rects_used
def __detect_text(self): 'Internal function to detect text bounding boxes from input image.\n Returns list of bounding boxes of each detected text field in input image.\n\n :param image: image file in numpy array/opencv format\n :type image: numpy array\n :param output_image: image file in numpy array/opencv format\n :type output_image: numpy array\n\n :return: output image with the list of text boxes\n :rtype: file, list\n ' (H, W) = self.image.shape[:2] rW = (W / 320) rH = (H / 320) image = cv2.resize(self.image, (320, 320)) (H, W) = image.shape[:2] blob = cv2.dnn.blobFromImage(self.image, 1.0, (W, H), (123.68, 116.78, 103.94), swapRB=True, crop=False) self.net.setInput(blob) (scores, geometry) = self.net.forward(self.layerNames) (rects, confidences) = self.__decode_predictions(scores, geometry) boxes = non_max_suppression(np.array(rects), probs=confidences) text_rects = [] for (startX, startY, endX, endY) in boxes: startX = int((startX * rW)) startY = int((startY * rH)) endX = int((endX * rW)) endY = int((endY * rH)) cv2.rectangle(self.image, (startX, startY), (endX, endY), (0, 0, 255), 3) text_rects.append([startX, startY, endX, endY]) text_rects = sorted(text_rects, key=(lambda item: item[0])) final_rects = text_rects if (len(text_rects) > 0): final_rects = self.__merge_boxes(text_rects) return final_rects
-8,224,508,995,595,900,000
Internal function to detect text bounding boxes from input image. Returns list of bounding boxes of each detected text field in input image. :param image: image file in numpy array/opencv format :type image: numpy array :param output_image: image file in numpy array/opencv format :type output_image: numpy array :return: output image with the list of text boxes :rtype: file, list
Katna/image_filters/text_detector.py
__detect_text
jibinmathew69/katna
python
def __detect_text(self): 'Internal function to detect text bounding boxes from input image.\n Returns list of bounding boxes of each detected text field in input image.\n\n :param image: image file in numpy array/opencv format\n :type image: numpy array\n :param output_image: image file in numpy array/opencv format\n :type output_image: numpy array\n\n :return: output image with the list of text boxes\n :rtype: file, list\n ' (H, W) = self.image.shape[:2] rW = (W / 320) rH = (H / 320) image = cv2.resize(self.image, (320, 320)) (H, W) = image.shape[:2] blob = cv2.dnn.blobFromImage(self.image, 1.0, (W, H), (123.68, 116.78, 103.94), swapRB=True, crop=False) self.net.setInput(blob) (scores, geometry) = self.net.forward(self.layerNames) (rects, confidences) = self.__decode_predictions(scores, geometry) boxes = non_max_suppression(np.array(rects), probs=confidences) text_rects = [] for (startX, startY, endX, endY) in boxes: startX = int((startX * rW)) startY = int((startY * rH)) endX = int((endX * rW)) endY = int((endY * rH)) cv2.rectangle(self.image, (startX, startY), (endX, endY), (0, 0, 255), 3) text_rects.append([startX, startY, endX, endY]) text_rects = sorted(text_rects, key=(lambda item: item[0])) final_rects = text_rects if (len(text_rects) > 0): final_rects = self.__merge_boxes(text_rects) return final_rects
def set_image(self, image): 'Public set_image function, This will detect all text boxes in input image and\n will saves them as internal list of text_rect to be used in get_filter_result\n\n :param image: input image from which needs to be cropped\n :type image: numpy array(opencv)\n ' if (image is None): return None self.image = image self.text_rects = self.__detect_text()
-6,723,038,099,207,040,000
Public set_image function, This will detect all text boxes in input image and will saves them as internal list of text_rect to be used in get_filter_result :param image: input image from which needs to be cropped :type image: numpy array(opencv)
Katna/image_filters/text_detector.py
set_image
jibinmathew69/katna
python
def set_image(self, image): 'Public set_image function, This will detect all text boxes in input image and\n will saves them as internal list of text_rect to be used in get_filter_result\n\n :param image: input image from which needs to be cropped\n :type image: numpy array(opencv)\n ' if (image is None): return None self.image = image self.text_rects = self.__detect_text()
def get_filter_result(self, crop): 'Main public function of TextDetector filter class,\n this filter Returns false if crop contains no text, additionally\n checks for overlap between input crop rectangle and the detected\n text bounding box, returns True if No overlap (Filter will not discard input crop)\n otherwise returns False (signal for discarding input crop).\n \n :param crop: input crop rectangle to test\n :type crop: crop_rect\n :return: True if No overlap (Filter will not discard input crop) otherwise returns False \n :rtype: bool\n ' if ((self.text_rects is None) or (len(self.text_rects) == 0)): return True for rect in self.text_rects: if (not ((rect[2] <= (crop.x + crop.w)) and (rect[0] >= crop.x) and (rect[1] >= crop.y) and (rect[3] <= (crop.y + crop.h)))): return False else: return True return True
9,027,545,007,575,559,000
Main public function of TextDetector filter class, this filter Returns false if crop contains no text, additionally checks for overlap between input crop rectangle and the detected text bounding box, returns True if No overlap (Filter will not discard input crop) otherwise returns False (signal for discarding input crop). :param crop: input crop rectangle to test :type crop: crop_rect :return: True if No overlap (Filter will not discard input crop) otherwise returns False :rtype: bool
Katna/image_filters/text_detector.py
get_filter_result
jibinmathew69/katna
python
def get_filter_result(self, crop): 'Main public function of TextDetector filter class,\n this filter Returns false if crop contains no text, additionally\n checks for overlap between input crop rectangle and the detected\n text bounding box, returns True if No overlap (Filter will not discard input crop)\n otherwise returns False (signal for discarding input crop).\n \n :param crop: input crop rectangle to test\n :type crop: crop_rect\n :return: True if No overlap (Filter will not discard input crop) otherwise returns False \n :rtype: bool\n ' if ((self.text_rects is None) or (len(self.text_rects) == 0)): return True for rect in self.text_rects: if (not ((rect[2] <= (crop.x + crop.w)) and (rect[0] >= crop.x) and (rect[1] >= crop.y) and (rect[3] <= (crop.y + crop.h)))): return False else: return True return True
def english_filter(tokens): '\n Given a list of tokens, remove a small list of English stopwords.\n ' non_stopwords = [token for token in tokens if (token not in STOPWORDS)] while (non_stopwords and (non_stopwords[0] in DROP_FIRST)): non_stopwords = non_stopwords[1:] if non_stopwords: return non_stopwords else: return tokens
-5,594,310,101,230,834,000
Given a list of tokens, remove a small list of English stopwords.
lightning_conceptnet/nodes.py
english_filter
ldtoolkit/lightning-conceptnet
python
def english_filter(tokens): '\n \n ' non_stopwords = [token for token in tokens if (token not in STOPWORDS)] while (non_stopwords and (non_stopwords[0] in DROP_FIRST)): non_stopwords = non_stopwords[1:] if non_stopwords: return non_stopwords else: return tokens
def standardized_concept_uri(lang, text, *more): "\n Make the appropriate URI for a concept in a particular language, including\n removing English stopwords, normalizing the text in a way appropriate\n to that language (using the text normalization from wordfreq), and joining\n its tokens with underscores in a concept URI.\n\n This text normalization can smooth over some writing differences: for\n example, it removes vowel points from Arabic words, and it transliterates\n Serbian written in the Cyrillic alphabet to the Latin alphabet so that it\n can match other words written in Latin letters.\n\n 'more' contains information to distinguish word senses, such as a part\n of speech or a WordNet domain. The items in 'more' get lowercased and\n joined with underscores, but skip many of the other steps -- for example,\n they won't have stopwords removed.\n\n >>> standardized_concept_uri('en', 'this is a test')\n '/c/en/this_is_test'\n >>> standardized_concept_uri('en', 'this is a test', 'n', 'example phrase')\n '/c/en/this_is_test/n/example_phrase'\n >>> standardized_concept_uri('sh', 'симетрија')\n '/c/sh/simetrija'\n " lang = lang.lower() if (lang == 'en'): token_filter = english_filter else: token_filter = None text = preprocess_text(text.replace('_', ' '), lang) tokens = simple_tokenize(text) if (token_filter is not None): tokens = token_filter(tokens) norm_text = '_'.join(tokens) more_text = [] for item in more: if (item is not None): tokens = simple_tokenize(item.replace('_', ' ')) if (token_filter is not None): tokens = token_filter(tokens) more_text.append('_'.join(tokens)) return concept_uri(lang, norm_text, *more_text)
-705,133,688,007,534,700
Make the appropriate URI for a concept in a particular language, including removing English stopwords, normalizing the text in a way appropriate to that language (using the text normalization from wordfreq), and joining its tokens with underscores in a concept URI. This text normalization can smooth over some writing differences: for example, it removes vowel points from Arabic words, and it transliterates Serbian written in the Cyrillic alphabet to the Latin alphabet so that it can match other words written in Latin letters. 'more' contains information to distinguish word senses, such as a part of speech or a WordNet domain. The items in 'more' get lowercased and joined with underscores, but skip many of the other steps -- for example, they won't have stopwords removed. >>> standardized_concept_uri('en', 'this is a test') '/c/en/this_is_test' >>> standardized_concept_uri('en', 'this is a test', 'n', 'example phrase') '/c/en/this_is_test/n/example_phrase' >>> standardized_concept_uri('sh', 'симетрија') '/c/sh/simetrija'
lightning_conceptnet/nodes.py
standardized_concept_uri
ldtoolkit/lightning-conceptnet
python
def standardized_concept_uri(lang, text, *more): "\n Make the appropriate URI for a concept in a particular language, including\n removing English stopwords, normalizing the text in a way appropriate\n to that language (using the text normalization from wordfreq), and joining\n its tokens with underscores in a concept URI.\n\n This text normalization can smooth over some writing differences: for\n example, it removes vowel points from Arabic words, and it transliterates\n Serbian written in the Cyrillic alphabet to the Latin alphabet so that it\n can match other words written in Latin letters.\n\n 'more' contains information to distinguish word senses, such as a part\n of speech or a WordNet domain. The items in 'more' get lowercased and\n joined with underscores, but skip many of the other steps -- for example,\n they won't have stopwords removed.\n\n >>> standardized_concept_uri('en', 'this is a test')\n '/c/en/this_is_test'\n >>> standardized_concept_uri('en', 'this is a test', 'n', 'example phrase')\n '/c/en/this_is_test/n/example_phrase'\n >>> standardized_concept_uri('sh', 'симетрија')\n '/c/sh/simetrija'\n " lang = lang.lower() if (lang == 'en'): token_filter = english_filter else: token_filter = None text = preprocess_text(text.replace('_', ' '), lang) tokens = simple_tokenize(text) if (token_filter is not None): tokens = token_filter(tokens) norm_text = '_'.join(tokens) more_text = [] for item in more: if (item is not None): tokens = simple_tokenize(item.replace('_', ' ')) if (token_filter is not None): tokens = token_filter(tokens) more_text.append('_'.join(tokens)) return concept_uri(lang, norm_text, *more_text)
def get_sources_string_names(sources): '\n For the specified list of @sources which can be strings, Files, or targets,\n get all the output basenames.\n ' names = [] for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, str): names.append(s) elif isinstance(s, (BuildTarget, CustomTarget, CustomTargetIndex, GeneratedList)): names += s.get_outputs() elif isinstance(s, File): names.append(s.fname) else: raise AssertionError('Unknown source type: {!r}'.format(s)) return names
-1,150,719,354,015,871,500
For the specified list of @sources which can be strings, Files, or targets, get all the output basenames.
mesonbuild/build.py
get_sources_string_names
jmesmon/meson
python
def get_sources_string_names(sources): '\n For the specified list of @sources which can be strings, Files, or targets,\n get all the output basenames.\n ' names = [] for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, str): names.append(s) elif isinstance(s, (BuildTarget, CustomTarget, CustomTargetIndex, GeneratedList)): names += s.get_outputs() elif isinstance(s, File): names.append(s.fname) else: raise AssertionError('Unknown source type: {!r}'.format(s)) return names
@staticmethod def construct_id_from_path(subdir, name, type_suffix): 'Construct target ID from subdir, name and type suffix.\n\n This helper function is made public mostly for tests.' name_part = name.replace('/', '@').replace('\\', '@') assert (not has_path_sep(type_suffix)) my_id = (name_part + type_suffix) if subdir: subdir_part = Target._get_id_hash(subdir) return ((subdir_part + '@@') + my_id) return my_id
30,134,380,908,118,936
Construct target ID from subdir, name and type suffix. This helper function is made public mostly for tests.
mesonbuild/build.py
construct_id_from_path
jmesmon/meson
python
@staticmethod def construct_id_from_path(subdir, name, type_suffix): 'Construct target ID from subdir, name and type suffix.\n\n This helper function is made public mostly for tests.' name_part = name.replace('/', '@').replace('\\', '@') assert (not has_path_sep(type_suffix)) my_id = (name_part + type_suffix) if subdir: subdir_part = Target._get_id_hash(subdir) return ((subdir_part + '@@') + my_id) return my_id
def process_compilers_late(self): "Processes additional compilers after kwargs have been evaluated.\n\n This can add extra compilers that might be required by keyword\n arguments, such as link_with or dependencies. It will also try to guess\n which compiler to use if one hasn't been selected already.\n " if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers if (self.link_targets or self.link_whole_targets): extra = set() for t in itertools.chain(self.link_targets, self.link_whole_targets): for (name, compiler) in t.compilers.items(): if (name in clink_langs): extra.add((name, compiler)) for (name, compiler) in sorted(extra, key=(lambda p: sort_clink(p[0]))): self.compilers[name] = compiler if (not self.compilers): for lang in clink_langs: if (lang in compilers): self.compilers[lang] = compilers[lang] break
-5,047,288,703,176,062,000
Processes additional compilers after kwargs have been evaluated. This can add extra compilers that might be required by keyword arguments, such as link_with or dependencies. It will also try to guess which compiler to use if one hasn't been selected already.
mesonbuild/build.py
process_compilers_late
jmesmon/meson
python
def process_compilers_late(self): "Processes additional compilers after kwargs have been evaluated.\n\n This can add extra compilers that might be required by keyword\n arguments, such as link_with or dependencies. It will also try to guess\n which compiler to use if one hasn't been selected already.\n " if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers if (self.link_targets or self.link_whole_targets): extra = set() for t in itertools.chain(self.link_targets, self.link_whole_targets): for (name, compiler) in t.compilers.items(): if (name in clink_langs): extra.add((name, compiler)) for (name, compiler) in sorted(extra, key=(lambda p: sort_clink(p[0]))): self.compilers[name] = compiler if (not self.compilers): for lang in clink_langs: if (lang in compilers): self.compilers[lang] = compilers[lang] break
def process_compilers(self): '\n Populate self.compilers, which is the list of compilers that this\n target will use for compiling all its sources.\n We also add compilers that were used by extracted objects to simplify\n dynamic linker determination.\n ' if ((not self.sources) and (not self.generated) and (not self.objects)): return if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers sources = list(self.sources) for gensrc in self.generated: for s in gensrc.get_outputs(): if (not is_object(s)): sources.append(s) for d in self.external_deps: if hasattr(d, 'held_object'): d = d.held_object for s in d.sources: if isinstance(s, (str, File)): sources.append(s) for o in self.objects: if (not isinstance(o, ExtractedObjects)): continue for s in o.srclist: if (not s.endswith(lang_suffixes['vala'])): sources.append(s) if sources: for s in sources: for (lang, compiler) in compilers.items(): if compiler.can_compile(s): if (lang not in self.compilers): self.compilers[lang] = compiler break self.compilers = OrderedDict(sorted(self.compilers.items(), key=(lambda t: sort_clink(t[0])))) if (('vala' in self.compilers) and ('c' not in self.compilers)): self.compilers['c'] = compilers['c']
5,489,087,880,487,695,000
Populate self.compilers, which is the list of compilers that this target will use for compiling all its sources. We also add compilers that were used by extracted objects to simplify dynamic linker determination.
mesonbuild/build.py
process_compilers
jmesmon/meson
python
def process_compilers(self): '\n Populate self.compilers, which is the list of compilers that this\n target will use for compiling all its sources.\n We also add compilers that were used by extracted objects to simplify\n dynamic linker determination.\n ' if ((not self.sources) and (not self.generated) and (not self.objects)): return if self.is_cross: compilers = self.environment.coredata.cross_compilers else: compilers = self.environment.coredata.compilers sources = list(self.sources) for gensrc in self.generated: for s in gensrc.get_outputs(): if (not is_object(s)): sources.append(s) for d in self.external_deps: if hasattr(d, 'held_object'): d = d.held_object for s in d.sources: if isinstance(s, (str, File)): sources.append(s) for o in self.objects: if (not isinstance(o, ExtractedObjects)): continue for s in o.srclist: if (not s.endswith(lang_suffixes['vala'])): sources.append(s) if sources: for s in sources: for (lang, compiler) in compilers.items(): if compiler.can_compile(s): if (lang not in self.compilers): self.compilers[lang] = compiler break self.compilers = OrderedDict(sorted(self.compilers.items(), key=(lambda t: sort_clink(t[0])))) if (('vala' in self.compilers) and ('c' not in self.compilers)): self.compilers['c'] = compilers['c']
def process_link_depends(self, sources, environment): "Process the link_depends keyword argument.\n\n This is designed to handle strings, Files, and the output of Custom\n Targets. Notably it doesn't handle generator() returned objects, since\n adding them as a link depends would inherently cause them to be\n generated twice, since the output needs to be passed to the ld_args and\n link_depends.\n " sources = listify(sources) for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, File): self.link_depends.append(s) elif isinstance(s, str): self.link_depends.append(File.from_source_file(environment.source_dir, self.subdir, s)) elif hasattr(s, 'get_outputs'): self.link_depends.extend([File.from_built_file(s.subdir, p) for p in s.get_outputs()]) else: raise InvalidArguments('Link_depends arguments must be strings, Files, or a Custom Target, or lists thereof.')
6,275,296,070,609,094,000
Process the link_depends keyword argument. This is designed to handle strings, Files, and the output of Custom Targets. Notably it doesn't handle generator() returned objects, since adding them as a link depends would inherently cause them to be generated twice, since the output needs to be passed to the ld_args and link_depends.
mesonbuild/build.py
process_link_depends
jmesmon/meson
python
def process_link_depends(self, sources, environment): "Process the link_depends keyword argument.\n\n This is designed to handle strings, Files, and the output of Custom\n Targets. Notably it doesn't handle generator() returned objects, since\n adding them as a link depends would inherently cause them to be\n generated twice, since the output needs to be passed to the ld_args and\n link_depends.\n " sources = listify(sources) for s in sources: if hasattr(s, 'held_object'): s = s.held_object if isinstance(s, File): self.link_depends.append(s) elif isinstance(s, str): self.link_depends.append(File.from_source_file(environment.source_dir, self.subdir, s)) elif hasattr(s, 'get_outputs'): self.link_depends.extend([File.from_built_file(s.subdir, p) for p in s.get_outputs()]) else: raise InvalidArguments('Link_depends arguments must be strings, Files, or a Custom Target, or lists thereof.')
def get_langs_used_by_deps(self): '\n Sometimes you want to link to a C++ library that exports C API, which\n means the linker must link in the C++ stdlib, and we must use a C++\n compiler for linking. The same is also applicable for objc/objc++, etc,\n so we can keep using clink_langs for the priority order.\n\n See: https://github.com/mesonbuild/meson/issues/1653\n ' langs = [] for dep in self.external_deps: if (dep.language is None): continue if (dep.language not in langs): langs.append(dep.language) for link_target in itertools.chain(self.link_targets, self.link_whole_targets): for language in link_target.compilers: if (language not in langs): langs.append(language) return langs
5,184,799,372,204,265,000
Sometimes you want to link to a C++ library that exports C API, which means the linker must link in the C++ stdlib, and we must use a C++ compiler for linking. The same is also applicable for objc/objc++, etc, so we can keep using clink_langs for the priority order. See: https://github.com/mesonbuild/meson/issues/1653
mesonbuild/build.py
get_langs_used_by_deps
jmesmon/meson
python
def get_langs_used_by_deps(self): '\n Sometimes you want to link to a C++ library that exports C API, which\n means the linker must link in the C++ stdlib, and we must use a C++\n compiler for linking. The same is also applicable for objc/objc++, etc,\n so we can keep using clink_langs for the priority order.\n\n See: https://github.com/mesonbuild/meson/issues/1653\n ' langs = [] for dep in self.external_deps: if (dep.language is None): continue if (dep.language not in langs): langs.append(dep.language) for link_target in itertools.chain(self.link_targets, self.link_whole_targets): for language in link_target.compilers: if (language not in langs): langs.append(language) return langs
def get_clink_dynamic_linker_and_stdlibs(self): "\n We use the order of languages in `clink_langs` to determine which\n linker to use in case the target has sources compiled with multiple\n compilers. All languages other than those in this list have their own\n linker.\n Note that Vala outputs C code, so Vala sources can use any linker\n that can link compiled C. We don't actually need to add an exception\n for Vala here because of that.\n " if self.is_cross: all_compilers = self.environment.coredata.cross_compilers else: all_compilers = self.environment.coredata.compilers dep_langs = self.get_langs_used_by_deps() for l in clink_langs: if ((l in self.compilers) or (l in dep_langs)): try: linker = all_compilers[l] except KeyError: raise MesonException('Could not get a dynamic linker for build target {!r}. Requires a linker for language "{}", but that is not a project language.'.format(self.name, l)) stdlib_args = [] added_languages = set() for dl in itertools.chain(self.compilers, dep_langs): if (dl != linker.language): stdlib_args += all_compilers[dl].language_stdlib_only_link_flags() added_languages.add(dl) return (linker, stdlib_args) m = 'Could not get a dynamic linker for build target {!r}' raise AssertionError(m.format(self.name))
8,917,164,519,977,908,000
We use the order of languages in `clink_langs` to determine which linker to use in case the target has sources compiled with multiple compilers. All languages other than those in this list have their own linker. Note that Vala outputs C code, so Vala sources can use any linker that can link compiled C. We don't actually need to add an exception for Vala here because of that.
mesonbuild/build.py
get_clink_dynamic_linker_and_stdlibs
jmesmon/meson
python
def get_clink_dynamic_linker_and_stdlibs(self): "\n We use the order of languages in `clink_langs` to determine which\n linker to use in case the target has sources compiled with multiple\n compilers. All languages other than those in this list have their own\n linker.\n Note that Vala outputs C code, so Vala sources can use any linker\n that can link compiled C. We don't actually need to add an exception\n for Vala here because of that.\n " if self.is_cross: all_compilers = self.environment.coredata.cross_compilers else: all_compilers = self.environment.coredata.compilers dep_langs = self.get_langs_used_by_deps() for l in clink_langs: if ((l in self.compilers) or (l in dep_langs)): try: linker = all_compilers[l] except KeyError: raise MesonException('Could not get a dynamic linker for build target {!r}. Requires a linker for language "{}", but that is not a project language.'.format(self.name, l)) stdlib_args = [] added_languages = set() for dl in itertools.chain(self.compilers, dep_langs): if (dl != linker.language): stdlib_args += all_compilers[dl].language_stdlib_only_link_flags() added_languages.add(dl) return (linker, stdlib_args) m = 'Could not get a dynamic linker for build target {!r}' raise AssertionError(m.format(self.name))
def get_using_msvc(self): "\n Check if the dynamic linker is MSVC. Used by Executable, StaticLibrary,\n and SharedLibrary for deciding when to use MSVC-specific file naming\n and debug filenames.\n\n If at least some code is built with MSVC and the final library is\n linked with MSVC, we can be sure that some debug info will be\n generated. We only check the dynamic linker here because the static\n linker is guaranteed to be of the same type.\n\n Interesting cases:\n 1. The Vala compiler outputs C code to be compiled by whatever\n C compiler we're using, so all objects will still be created by the\n MSVC compiler.\n 2. If the target contains only objects, process_compilers guesses and\n picks the first compiler that smells right.\n " (linker, _) = self.get_clink_dynamic_linker_and_stdlibs() if (linker and (linker.get_id() in ['msvc', 'clang-cl', 'llvm', 'dmd'])): return True return False
5,777,500,192,533,684,000
Check if the dynamic linker is MSVC. Used by Executable, StaticLibrary, and SharedLibrary for deciding when to use MSVC-specific file naming and debug filenames. If at least some code is built with MSVC and the final library is linked with MSVC, we can be sure that some debug info will be generated. We only check the dynamic linker here because the static linker is guaranteed to be of the same type. Interesting cases: 1. The Vala compiler outputs C code to be compiled by whatever C compiler we're using, so all objects will still be created by the MSVC compiler. 2. If the target contains only objects, process_compilers guesses and picks the first compiler that smells right.
mesonbuild/build.py
get_using_msvc
jmesmon/meson
python
def get_using_msvc(self): "\n Check if the dynamic linker is MSVC. Used by Executable, StaticLibrary,\n and SharedLibrary for deciding when to use MSVC-specific file naming\n and debug filenames.\n\n If at least some code is built with MSVC and the final library is\n linked with MSVC, we can be sure that some debug info will be\n generated. We only check the dynamic linker here because the static\n linker is guaranteed to be of the same type.\n\n Interesting cases:\n 1. The Vala compiler outputs C code to be compiled by whatever\n C compiler we're using, so all objects will still be created by the\n MSVC compiler.\n 2. If the target contains only objects, process_compilers guesses and\n picks the first compiler that smells right.\n " (linker, _) = self.get_clink_dynamic_linker_and_stdlibs() if (linker and (linker.get_id() in ['msvc', 'clang-cl', 'llvm', 'dmd'])): return True return False
def check_module_linking(self): '\n Warn if shared modules are linked with target: (link_with) #2865\n ' for link_target in self.link_targets: if isinstance(link_target, SharedModule): if for_darwin(self.is_cross, self.environment): raise MesonException('target links against shared modules.\nThis is not permitted on OSX') else: mlog.warning('target links against shared modules. This is not\nrecommended as it is not supported on some platforms') return
-970,886,122,344,748,200
Warn if shared modules are linked with target: (link_with) #2865
mesonbuild/build.py
check_module_linking
jmesmon/meson
python
def check_module_linking(self): '\n \n ' for link_target in self.link_targets: if isinstance(link_target, SharedModule): if for_darwin(self.is_cross, self.environment): raise MesonException('target links against shared modules.\nThis is not permitted on OSX') else: mlog.warning('target links against shared modules. This is not\nrecommended as it is not supported on some platforms') return
def description(self): 'Human friendly description of the executable' return self.name
4,660,257,787,278,046,000
Human friendly description of the executable
mesonbuild/build.py
description
jmesmon/meson
python
def description(self): return self.name
def get_import_filename(self): '\n The name of the import library that will be outputted by the compiler\n\n Returns None if there is no import library required for this platform\n ' return self.import_filename
-6,530,916,317,056,780,000
The name of the import library that will be outputted by the compiler Returns None if there is no import library required for this platform
mesonbuild/build.py
get_import_filename
jmesmon/meson
python
def get_import_filename(self): '\n The name of the import library that will be outputted by the compiler\n\n Returns None if there is no import library required for this platform\n ' return self.import_filename
def determine_filenames(self, is_cross, env): '\n See https://github.com/mesonbuild/meson/pull/417 for details.\n\n First we determine the filename template (self.filename_tpl), then we\n set the output filename (self.filename).\n\n The template is needed while creating aliases (self.get_aliases),\n which are needed while generating .so shared libraries for Linux.\n\n Besides this, there\'s also the import library name, which is only used\n on Windows since on that platform the linker uses a separate library\n called the "import library" during linking instead of the shared\n library (DLL). The toolchain will output an import library in one of\n two formats: GCC or Visual Studio.\n\n When we\'re building with Visual Studio, the import library that will be\n generated by the toolchain is self.vs_import_filename, and with\n MinGW/GCC, it\'s self.gcc_import_filename. self.import_filename will\n always contain the import library name this target will generate.\n ' prefix = '' suffix = '' self.filename_tpl = self.basic_filename_tpl if ('cs' in self.compilers): prefix = '' suffix = 'dll' self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_windows(is_cross, env): suffix = 'dll' self.vs_import_filename = '{0}{1}.lib'.format((self.prefix if (self.prefix is not None) else ''), self.name) self.gcc_import_filename = '{0}{1}.dll.a'.format((self.prefix if (self.prefix is not None) else 'lib'), self.name) if self.get_using_msvc(): prefix = '' self.import_filename = self.vs_import_filename else: prefix = 'lib' self.import_filename = self.gcc_import_filename if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_cygwin(is_cross, env): suffix = 'dll' self.gcc_import_filename = '{0}{1}.dll.a'.format((self.prefix if (self.prefix is not None) else 'lib'), self.name) prefix = 'cyg' self.import_filename = self.gcc_import_filename if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_darwin(is_cross, env): prefix = 'lib' suffix = 'dylib' if self.soversion: self.filename_tpl = '{0.prefix}{0.name}.{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_android(is_cross, env): prefix = 'lib' suffix = 'so' self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' else: prefix = 'lib' suffix = 'so' if self.ltversion: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.ltversion}' elif self.soversion: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.soversion}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' if (self.prefix is None): self.prefix = prefix if (self.suffix is None): self.suffix = suffix self.filename = self.filename_tpl.format(self) self.outputs = [self.filename]
-7,801,708,533,714,602,000
See https://github.com/mesonbuild/meson/pull/417 for details. First we determine the filename template (self.filename_tpl), then we set the output filename (self.filename). The template is needed while creating aliases (self.get_aliases), which are needed while generating .so shared libraries for Linux. Besides this, there's also the import library name, which is only used on Windows since on that platform the linker uses a separate library called the "import library" during linking instead of the shared library (DLL). The toolchain will output an import library in one of two formats: GCC or Visual Studio. When we're building with Visual Studio, the import library that will be generated by the toolchain is self.vs_import_filename, and with MinGW/GCC, it's self.gcc_import_filename. self.import_filename will always contain the import library name this target will generate.
mesonbuild/build.py
determine_filenames
jmesmon/meson
python
def determine_filenames(self, is_cross, env): '\n See https://github.com/mesonbuild/meson/pull/417 for details.\n\n First we determine the filename template (self.filename_tpl), then we\n set the output filename (self.filename).\n\n The template is needed while creating aliases (self.get_aliases),\n which are needed while generating .so shared libraries for Linux.\n\n Besides this, there\'s also the import library name, which is only used\n on Windows since on that platform the linker uses a separate library\n called the "import library" during linking instead of the shared\n library (DLL). The toolchain will output an import library in one of\n two formats: GCC or Visual Studio.\n\n When we\'re building with Visual Studio, the import library that will be\n generated by the toolchain is self.vs_import_filename, and with\n MinGW/GCC, it\'s self.gcc_import_filename. self.import_filename will\n always contain the import library name this target will generate.\n ' prefix = suffix = self.filename_tpl = self.basic_filename_tpl if ('cs' in self.compilers): prefix = suffix = 'dll' self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_windows(is_cross, env): suffix = 'dll' self.vs_import_filename = '{0}{1}.lib'.format((self.prefix if (self.prefix is not None) else ), self.name) self.gcc_import_filename = '{0}{1}.dll.a'.format((self.prefix if (self.prefix is not None) else 'lib'), self.name) if self.get_using_msvc(): prefix = self.import_filename = self.vs_import_filename else: prefix = 'lib' self.import_filename = self.gcc_import_filename if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_cygwin(is_cross, env): suffix = 'dll' self.gcc_import_filename = '{0}{1}.dll.a'.format((self.prefix if (self.prefix is not None) else 'lib'), self.name) prefix = 'cyg' self.import_filename = self.gcc_import_filename if self.soversion: self.filename_tpl = '{0.prefix}{0.name}-{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_darwin(is_cross, env): prefix = 'lib' suffix = 'dylib' if self.soversion: self.filename_tpl = '{0.prefix}{0.name}.{0.soversion}.{0.suffix}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' elif for_android(is_cross, env): prefix = 'lib' suffix = 'so' self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' else: prefix = 'lib' suffix = 'so' if self.ltversion: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.ltversion}' elif self.soversion: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}.{0.soversion}' else: self.filename_tpl = '{0.prefix}{0.name}.{0.suffix}' if (self.prefix is None): self.prefix = prefix if (self.suffix is None): self.suffix = suffix self.filename = self.filename_tpl.format(self) self.outputs = [self.filename]
def get_import_filename(self): '\n The name of the import library that will be outputted by the compiler\n\n Returns None if there is no import library required for this platform\n ' return self.import_filename
-6,530,916,317,056,780,000
The name of the import library that will be outputted by the compiler Returns None if there is no import library required for this platform
mesonbuild/build.py
get_import_filename
jmesmon/meson
python
def get_import_filename(self): '\n The name of the import library that will be outputted by the compiler\n\n Returns None if there is no import library required for this platform\n ' return self.import_filename
def get_aliases(self): '\n If the versioned library name is libfoo.so.0.100.0, aliases are:\n * libfoo.so.0 (soversion) -> libfoo.so.0.100.0\n * libfoo.so (unversioned; for linking) -> libfoo.so.0\n Same for dylib:\n * libfoo.dylib (unversioned; for linking) -> libfoo.0.dylib\n ' aliases = {} if ((self.suffix not in ('so', 'dylib')) or (not self.soversion)): return {} if ((self.suffix == 'so') and self.ltversion and (self.ltversion != self.soversion)): alias_tpl = self.filename_tpl.replace('ltversion', 'soversion') ltversion_filename = alias_tpl.format(self) aliases[ltversion_filename] = self.filename else: ltversion_filename = self.filename aliases[self.basic_filename_tpl.format(self)] = ltversion_filename return aliases
-5,496,365,589,624,999,000
If the versioned library name is libfoo.so.0.100.0, aliases are: * libfoo.so.0 (soversion) -> libfoo.so.0.100.0 * libfoo.so (unversioned; for linking) -> libfoo.so.0 Same for dylib: * libfoo.dylib (unversioned; for linking) -> libfoo.0.dylib
mesonbuild/build.py
get_aliases
jmesmon/meson
python
def get_aliases(self): '\n If the versioned library name is libfoo.so.0.100.0, aliases are:\n * libfoo.so.0 (soversion) -> libfoo.so.0.100.0\n * libfoo.so (unversioned; for linking) -> libfoo.so.0\n Same for dylib:\n * libfoo.dylib (unversioned; for linking) -> libfoo.0.dylib\n ' aliases = {} if ((self.suffix not in ('so', 'dylib')) or (not self.soversion)): return {} if ((self.suffix == 'so') and self.ltversion and (self.ltversion != self.soversion)): alias_tpl = self.filename_tpl.replace('ltversion', 'soversion') ltversion_filename = alias_tpl.format(self) aliases[ltversion_filename] = self.filename else: ltversion_filename = self.filename aliases[self.basic_filename_tpl.format(self)] = ltversion_filename return aliases
def get_transitive_build_target_deps(self): '\n Recursively fetch the build targets that this custom target depends on,\n whether through `command:`, `depends:`, or `sources:` The recursion is\n only performed on custom targets.\n This is useful for setting PATH on Windows for finding required DLLs.\n F.ex, if you have a python script that loads a C module that links to\n other DLLs in your project.\n ' bdeps = set() deps = self.get_target_dependencies() for d in deps: if isinstance(d, BuildTarget): bdeps.add(d) elif isinstance(d, CustomTarget): bdeps.update(d.get_transitive_build_target_deps()) return bdeps
8,326,607,069,530,100,000
Recursively fetch the build targets that this custom target depends on, whether through `command:`, `depends:`, or `sources:` The recursion is only performed on custom targets. This is useful for setting PATH on Windows for finding required DLLs. F.ex, if you have a python script that loads a C module that links to other DLLs in your project.
mesonbuild/build.py
get_transitive_build_target_deps
jmesmon/meson
python
def get_transitive_build_target_deps(self): '\n Recursively fetch the build targets that this custom target depends on,\n whether through `command:`, `depends:`, or `sources:` The recursion is\n only performed on custom targets.\n This is useful for setting PATH on Windows for finding required DLLs.\n F.ex, if you have a python script that loads a C module that links to\n other DLLs in your project.\n ' bdeps = set() deps = self.get_target_dependencies() for d in deps: if isinstance(d, BuildTarget): bdeps.add(d) elif isinstance(d, CustomTarget): bdeps.update(d.get_transitive_build_target_deps()) return bdeps
def oauth_url(client_id: Union[(int, str)], *, permissions: Permissions=MISSING, guild: Snowflake=MISSING, redirect_uri: str=MISSING, scopes: Iterable[str]=MISSING, disable_guild_select: bool=False) -> str: "A helper function that returns the OAuth2 URL for inviting the bot\n into guilds.\n\n Parameters\n -----------\n client_id: Union[:class:`int`, :class:`str`]\n The client ID for your bot.\n permissions: :class:`~discord.Permissions`\n The permissions you're requesting. If not given then you won't be requesting any\n permissions.\n guild: :class:`~discord.abc.Snowflake`\n The guild to pre-select in the authorization screen, if available.\n redirect_uri: :class:`str`\n An optional valid redirect URI.\n scopes: Iterable[:class:`str`]\n An optional valid list of scopes. Defaults to ``('bot',)``.\n\n .. versionadded:: 1.7\n disable_guild_select: :class:`bool`\n Whether to disallow the user from changing the guild dropdown.\n\n .. versionadded:: 2.0\n\n Returns\n --------\n :class:`str`\n The OAuth2 URL for inviting the bot into guilds.\n " url = f'https://discord.com/oauth2/authorize?client_id={client_id}' url += ('&scope=' + '+'.join((scopes or ('bot',)))) if (permissions is not MISSING): url += f'&permissions={permissions.value}' if (guild is not MISSING): url += f'&guild_id={guild.id}' if (redirect_uri is not MISSING): from urllib.parse import urlencode url += ('&response_type=code&' + urlencode({'redirect_uri': redirect_uri})) if disable_guild_select: url += '&disable_guild_select=true' return url
-5,366,905,059,735,044,000
A helper function that returns the OAuth2 URL for inviting the bot into guilds. Parameters ----------- client_id: Union[:class:`int`, :class:`str`] The client ID for your bot. permissions: :class:`~discord.Permissions` The permissions you're requesting. If not given then you won't be requesting any permissions. guild: :class:`~discord.abc.Snowflake` The guild to pre-select in the authorization screen, if available. redirect_uri: :class:`str` An optional valid redirect URI. scopes: Iterable[:class:`str`] An optional valid list of scopes. Defaults to ``('bot',)``. .. versionadded:: 1.7 disable_guild_select: :class:`bool` Whether to disallow the user from changing the guild dropdown. .. versionadded:: 2.0 Returns -------- :class:`str` The OAuth2 URL for inviting the bot into guilds.
discord/utils.py
oauth_url
Astrea49/enhanced-discord.py
python
def oauth_url(client_id: Union[(int, str)], *, permissions: Permissions=MISSING, guild: Snowflake=MISSING, redirect_uri: str=MISSING, scopes: Iterable[str]=MISSING, disable_guild_select: bool=False) -> str: "A helper function that returns the OAuth2 URL for inviting the bot\n into guilds.\n\n Parameters\n -----------\n client_id: Union[:class:`int`, :class:`str`]\n The client ID for your bot.\n permissions: :class:`~discord.Permissions`\n The permissions you're requesting. If not given then you won't be requesting any\n permissions.\n guild: :class:`~discord.abc.Snowflake`\n The guild to pre-select in the authorization screen, if available.\n redirect_uri: :class:`str`\n An optional valid redirect URI.\n scopes: Iterable[:class:`str`]\n An optional valid list of scopes. Defaults to ``('bot',)``.\n\n .. versionadded:: 1.7\n disable_guild_select: :class:`bool`\n Whether to disallow the user from changing the guild dropdown.\n\n .. versionadded:: 2.0\n\n Returns\n --------\n :class:`str`\n The OAuth2 URL for inviting the bot into guilds.\n " url = f'https://discord.com/oauth2/authorize?client_id={client_id}' url += ('&scope=' + '+'.join((scopes or ('bot',)))) if (permissions is not MISSING): url += f'&permissions={permissions.value}' if (guild is not MISSING): url += f'&guild_id={guild.id}' if (redirect_uri is not MISSING): from urllib.parse import urlencode url += ('&response_type=code&' + urlencode({'redirect_uri': redirect_uri})) if disable_guild_select: url += '&disable_guild_select=true' return url
def snowflake_time(id: int) -> datetime.datetime: '\n Parameters\n -----------\n id: :class:`int`\n The snowflake ID.\n\n Returns\n --------\n :class:`datetime.datetime`\n An aware datetime in UTC representing the creation time of the snowflake.\n ' timestamp = (((id >> 22) + DISCORD_EPOCH) / 1000) return datetime.datetime.fromtimestamp(timestamp, tz=datetime.timezone.utc)
-8,368,037,869,531,534,000
Parameters ----------- id: :class:`int` The snowflake ID. Returns -------- :class:`datetime.datetime` An aware datetime in UTC representing the creation time of the snowflake.
discord/utils.py
snowflake_time
Astrea49/enhanced-discord.py
python
def snowflake_time(id: int) -> datetime.datetime: '\n Parameters\n -----------\n id: :class:`int`\n The snowflake ID.\n\n Returns\n --------\n :class:`datetime.datetime`\n An aware datetime in UTC representing the creation time of the snowflake.\n ' timestamp = (((id >> 22) + DISCORD_EPOCH) / 1000) return datetime.datetime.fromtimestamp(timestamp, tz=datetime.timezone.utc)
def time_snowflake(dt: datetime.datetime, high: bool=False) -> int: 'Returns a numeric snowflake pretending to be created at the given date.\n\n When using as the lower end of a range, use ``time_snowflake(high=False) - 1``\n to be inclusive, ``high=True`` to be exclusive.\n\n When using as the higher end of a range, use ``time_snowflake(high=True) + 1``\n to be inclusive, ``high=False`` to be exclusive\n\n Parameters\n -----------\n dt: :class:`datetime.datetime`\n A datetime object to convert to a snowflake.\n If naive, the timezone is assumed to be local time.\n high: :class:`bool`\n Whether or not to set the lower 22 bit to high or low.\n\n Returns\n --------\n :class:`int`\n The snowflake representing the time given.\n ' discord_millis = int(((dt.timestamp() * 1000) - DISCORD_EPOCH)) return ((discord_millis << 22) + (((2 ** 22) - 1) if high else 0))
-2,900,649,015,111,074,300
Returns a numeric snowflake pretending to be created at the given date. When using as the lower end of a range, use ``time_snowflake(high=False) - 1`` to be inclusive, ``high=True`` to be exclusive. When using as the higher end of a range, use ``time_snowflake(high=True) + 1`` to be inclusive, ``high=False`` to be exclusive Parameters ----------- dt: :class:`datetime.datetime` A datetime object to convert to a snowflake. If naive, the timezone is assumed to be local time. high: :class:`bool` Whether or not to set the lower 22 bit to high or low. Returns -------- :class:`int` The snowflake representing the time given.
discord/utils.py
time_snowflake
Astrea49/enhanced-discord.py
python
def time_snowflake(dt: datetime.datetime, high: bool=False) -> int: 'Returns a numeric snowflake pretending to be created at the given date.\n\n When using as the lower end of a range, use ``time_snowflake(high=False) - 1``\n to be inclusive, ``high=True`` to be exclusive.\n\n When using as the higher end of a range, use ``time_snowflake(high=True) + 1``\n to be inclusive, ``high=False`` to be exclusive\n\n Parameters\n -----------\n dt: :class:`datetime.datetime`\n A datetime object to convert to a snowflake.\n If naive, the timezone is assumed to be local time.\n high: :class:`bool`\n Whether or not to set the lower 22 bit to high or low.\n\n Returns\n --------\n :class:`int`\n The snowflake representing the time given.\n ' discord_millis = int(((dt.timestamp() * 1000) - DISCORD_EPOCH)) return ((discord_millis << 22) + (((2 ** 22) - 1) if high else 0))
def find(predicate: Callable[([T], Any)], seq: Iterable[T]) -> Optional[T]: "A helper to return the first element found in the sequence\n that meets the predicate. For example: ::\n\n member = discord.utils.find(lambda m: m.name == 'Mighty', channel.guild.members)\n\n would find the first :class:`~discord.Member` whose name is 'Mighty' and return it.\n If an entry is not found, then ``None`` is returned.\n\n This is different from :func:`py:filter` due to the fact it stops the moment it finds\n a valid entry.\n\n Parameters\n -----------\n predicate\n A function that returns a boolean-like result.\n seq: :class:`collections.abc.Iterable`\n The iterable to search through.\n " for element in seq: if predicate(element): return element return None
8,747,360,362,780,973,000
A helper to return the first element found in the sequence that meets the predicate. For example: :: member = discord.utils.find(lambda m: m.name == 'Mighty', channel.guild.members) would find the first :class:`~discord.Member` whose name is 'Mighty' and return it. If an entry is not found, then ``None`` is returned. This is different from :func:`py:filter` due to the fact it stops the moment it finds a valid entry. Parameters ----------- predicate A function that returns a boolean-like result. seq: :class:`collections.abc.Iterable` The iterable to search through.
discord/utils.py
find
Astrea49/enhanced-discord.py
python
def find(predicate: Callable[([T], Any)], seq: Iterable[T]) -> Optional[T]: "A helper to return the first element found in the sequence\n that meets the predicate. For example: ::\n\n member = discord.utils.find(lambda m: m.name == 'Mighty', channel.guild.members)\n\n would find the first :class:`~discord.Member` whose name is 'Mighty' and return it.\n If an entry is not found, then ``None`` is returned.\n\n This is different from :func:`py:filter` due to the fact it stops the moment it finds\n a valid entry.\n\n Parameters\n -----------\n predicate\n A function that returns a boolean-like result.\n seq: :class:`collections.abc.Iterable`\n The iterable to search through.\n " for element in seq: if predicate(element): return element return None