body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@property def rollout_lengths(self): ' Lengths of sub-rollouts. ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') bounds = self._rollout_bounds return (bounds[1:] - bounds[:(- 1)])
4,705,739,400,180,986,000
Lengths of sub-rollouts.
mushroom_rl/core/parallelization_tools/step_sequence.py
rollout_lengths
nifunk/GNNMushroomRL
python
@property def rollout_lengths(self): ' ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') bounds = self._rollout_bounds return (bounds[1:] - bounds[:(- 1)])
def __len__(self): " Get the step sequence's length. " return self.length
-953,459,290,759,964,000
Get the step sequence's length.
mushroom_rl/core/parallelization_tools/step_sequence.py
__len__
nifunk/GNNMushroomRL
python
def __len__(self): " " return self.length
def add_data(self, name: str, value=None, item_shape: tuple=None, with_after_last: Optional[bool]=False): '\n Add a new data field to the step sequence.\n\n :param name: string for the name\n :param value: the data\n :param item_shape: shape to store the data in\n :param with_after_last: `True` if there is one more element than the length (e.g. last observation)\n ' if (name in self._data_names): raise pyrado.KeyErr(msg=f'Trying to add a duplicate data field for {name}!') if (value is None): ro_length = self.length if with_after_last: ro_length += 1 if (self._data_format == 'torch'): value = to.zeros((to.Size([ro_length]) + to.Size(item_shape))) else: value = np.array(((ro_length,) + item_shape)) else: self._validate_data_size(name, value) if (not isinstance(value, (np.ndarray, to.Tensor))): value = stack_to_format(value, self._data_format) else: value = to_format(value, self._data_format) self._data_names.append(name) self.__dict__[name] = value
-2,198,449,852,763,759,900
Add a new data field to the step sequence. :param name: string for the name :param value: the data :param item_shape: shape to store the data in :param with_after_last: `True` if there is one more element than the length (e.g. last observation)
mushroom_rl/core/parallelization_tools/step_sequence.py
add_data
nifunk/GNNMushroomRL
python
def add_data(self, name: str, value=None, item_shape: tuple=None, with_after_last: Optional[bool]=False): '\n Add a new data field to the step sequence.\n\n :param name: string for the name\n :param value: the data\n :param item_shape: shape to store the data in\n :param with_after_last: `True` if there is one more element than the length (e.g. last observation)\n ' if (name in self._data_names): raise pyrado.KeyErr(msg=f'Trying to add a duplicate data field for {name}!') if (value is None): ro_length = self.length if with_after_last: ro_length += 1 if (self._data_format == 'torch'): value = to.zeros((to.Size([ro_length]) + to.Size(item_shape))) else: value = np.array(((ro_length,) + item_shape)) else: self._validate_data_size(name, value) if (not isinstance(value, (np.ndarray, to.Tensor))): value = stack_to_format(value, self._data_format) else: value = to_format(value, self._data_format) self._data_names.append(name) self.__dict__[name] = value
def get_data_values(self, name: str, truncate_last: Optional[bool]=False): '\n Return the data tensor stored under the given name.\n\n :param name: data name\n :param truncate_last: True to truncate the length+1 entry if present\n ' assert (name in self._data_names) entry = self.__dict__[name] if truncate_last: entry = self._truncate_after_last(entry) return entry
1,501,171,783,061,499,400
Return the data tensor stored under the given name. :param name: data name :param truncate_last: True to truncate the length+1 entry if present
mushroom_rl/core/parallelization_tools/step_sequence.py
get_data_values
nifunk/GNNMushroomRL
python
def get_data_values(self, name: str, truncate_last: Optional[bool]=False): '\n Return the data tensor stored under the given name.\n\n :param name: data name\n :param truncate_last: True to truncate the length+1 entry if present\n ' assert (name in self._data_names) entry = self.__dict__[name] if truncate_last: entry = self._truncate_after_last(entry) return entry
def numpy(self, data_type=None): '\n Convert data to numpy ndarrays.\n\n :param data_type: type to return data in. When None is passed, the data type is left unchanged.\n ' self.convert('numpy', data_type)
7,891,443,739,255,916,000
Convert data to numpy ndarrays. :param data_type: type to return data in. When None is passed, the data type is left unchanged.
mushroom_rl/core/parallelization_tools/step_sequence.py
numpy
nifunk/GNNMushroomRL
python
def numpy(self, data_type=None): '\n Convert data to numpy ndarrays.\n\n :param data_type: type to return data in. When None is passed, the data type is left unchanged.\n ' self.convert('numpy', data_type)
def torch(self, data_type=None): '\n Convert data to PyTorch Tensors.\n\n :param data_type: type to return data in. When None is passed, the data type is left unchanged.\n ' self.convert('torch', data_type)
9,121,887,788,393,913,000
Convert data to PyTorch Tensors. :param data_type: type to return data in. When None is passed, the data type is left unchanged.
mushroom_rl/core/parallelization_tools/step_sequence.py
torch
nifunk/GNNMushroomRL
python
def torch(self, data_type=None): '\n Convert data to PyTorch Tensors.\n\n :param data_type: type to return data in. When None is passed, the data type is left unchanged.\n ' self.convert('torch', data_type)
def convert(self, data_format: str, data_type=None): '\n Convert data to specified format.\n\n :param data_format: torch to use Tensors, numpy to use ndarrays\n :param data_type: optional torch/numpy dtype for data. When `None` is passed, the data type is left unchanged.\n ' if (data_format not in {'torch', 'numpy'}): raise pyrado.ValueErr(given=data_format, eq_constraint="'torch' or 'numpy'") if (self._data_format == data_format): return self._data_format = data_format for dn in self._data_names: self.__dict__[dn] = self.__map_tensors((lambda t: to_format(t, data_format, data_type)), self.__dict__[dn])
5,424,327,337,248,844,000
Convert data to specified format. :param data_format: torch to use Tensors, numpy to use ndarrays :param data_type: optional torch/numpy dtype for data. When `None` is passed, the data type is left unchanged.
mushroom_rl/core/parallelization_tools/step_sequence.py
convert
nifunk/GNNMushroomRL
python
def convert(self, data_format: str, data_type=None): '\n Convert data to specified format.\n\n :param data_format: torch to use Tensors, numpy to use ndarrays\n :param data_type: optional torch/numpy dtype for data. When `None` is passed, the data type is left unchanged.\n ' if (data_format not in {'torch', 'numpy'}): raise pyrado.ValueErr(given=data_format, eq_constraint="'torch' or 'numpy'") if (self._data_format == data_format): return self._data_format = data_format for dn in self._data_names: self.__dict__[dn] = self.__map_tensors((lambda t: to_format(t, data_format, data_type)), self.__dict__[dn])
def get_rollout(self, index): '\n Get an indexed sub-rollout.\n\n :param index: generic index of sub-rollout, negative values, slices and iterables are allowed\n :return: selected subset.\n ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') if isinstance(index, slice): (start, end, step) = index.indices(self.rollout_count) if (step == 1): bounds = self._rollout_bounds start_step = bounds[start] end_step = bounds[end] return self[start_step:end_step] index = range(start, end, step) if isinstance(index, Iterable): return StepSequence.concat([self.get_rollout(i) for i in index], self.data_format) index = _index_to_int(index, self.rollout_count) bounds = self._rollout_bounds start_step = bounds[index] end_step = bounds[(index + 1)] return self[start_step:end_step]
1,579,322,541,815,827,200
Get an indexed sub-rollout. :param index: generic index of sub-rollout, negative values, slices and iterables are allowed :return: selected subset.
mushroom_rl/core/parallelization_tools/step_sequence.py
get_rollout
nifunk/GNNMushroomRL
python
def get_rollout(self, index): '\n Get an indexed sub-rollout.\n\n :param index: generic index of sub-rollout, negative values, slices and iterables are allowed\n :return: selected subset.\n ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') if isinstance(index, slice): (start, end, step) = index.indices(self.rollout_count) if (step == 1): bounds = self._rollout_bounds start_step = bounds[start] end_step = bounds[end] return self[start_step:end_step] index = range(start, end, step) if isinstance(index, Iterable): return StepSequence.concat([self.get_rollout(i) for i in index], self.data_format) index = _index_to_int(index, self.rollout_count) bounds = self._rollout_bounds start_step = bounds[index] end_step = bounds[(index + 1)] return self[start_step:end_step]
def iterate_rollouts(self): ' Iterate over all sub-rollouts of a concatenated rollout. ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') bounds = self._rollout_bounds count = (len(bounds) - 1) if (count == 1): (yield self) else: for i in range(count): start_step = bounds[i] end_step = bounds[(i + 1)] (yield self[start_step:end_step])
3,715,250,394,928,838,000
Iterate over all sub-rollouts of a concatenated rollout.
mushroom_rl/core/parallelization_tools/step_sequence.py
iterate_rollouts
nifunk/GNNMushroomRL
python
def iterate_rollouts(self): ' ' if (not self.continuous): raise pyrado.ValueErr(msg='Sub-rollouts are only supported on continuous data.') bounds = self._rollout_bounds count = (len(bounds) - 1) if (count == 1): (yield self) else: for i in range(count): start_step = bounds[i] end_step = bounds[(i + 1)] (yield self[start_step:end_step])
def sample_w_next(self, batch_size: int) -> tuple: '\n Sample a random batch of steps from a together with the associated next steps.\n Similar to `split_shuffled_batches` with `complete_rollouts=False`\n\n :param batch_size: number of steps to sample\n :return: randomly sampled batch of steps\n ' if (not (self.length >= 2)): raise pyrado.ValueErr(given=self.length, ge_constraint='2') shuffled_idcs = random.sample(range((self.length - 2)), batch_size) shuffled_next_idcs = [(i + 1) for i in shuffled_idcs] steps = deepcopy(self[shuffled_idcs]) next_steps = deepcopy(self[shuffled_next_idcs]) return (steps, next_steps)
-3,061,683,762,915,780,600
Sample a random batch of steps from a together with the associated next steps. Similar to `split_shuffled_batches` with `complete_rollouts=False` :param batch_size: number of steps to sample :return: randomly sampled batch of steps
mushroom_rl/core/parallelization_tools/step_sequence.py
sample_w_next
nifunk/GNNMushroomRL
python
def sample_w_next(self, batch_size: int) -> tuple: '\n Sample a random batch of steps from a together with the associated next steps.\n Similar to `split_shuffled_batches` with `complete_rollouts=False`\n\n :param batch_size: number of steps to sample\n :return: randomly sampled batch of steps\n ' if (not (self.length >= 2)): raise pyrado.ValueErr(given=self.length, ge_constraint='2') shuffled_idcs = random.sample(range((self.length - 2)), batch_size) shuffled_next_idcs = [(i + 1) for i in shuffled_idcs] steps = deepcopy(self[shuffled_idcs]) next_steps = deepcopy(self[shuffled_next_idcs]) return (steps, next_steps)
def split_ordered_batches(self, batch_size: int=None, num_batches: int=None): '\n Batch generation. Split the step collection into ordered mini-batches of size batch_size.\n\n :param batch_size: number of steps per batch, i.e. variable number of batches\n :param num_batches: number of batches to split the rollout in, i.e. variable batch size\n\n .. note::\n Left out the option to return complete rollouts like for `split_shuffled_batches`.\n ' if (((batch_size is None) and (num_batches is None)) or ((batch_size is not None) and (num_batches is not None))): raise pyrado.ValueErr(msg='Either batch_size or num_batches must not be None, but not both or none!') elif ((batch_size is not None) and (batch_size < 1)): raise pyrado.ValueErr(given=batch_size, ge_constraint='1 (int)') elif ((num_batches is not None) and (num_batches < 1)): raise pyrado.ValueErr(given=num_batches, ge_constraint='1 (int)') if (num_batches is not None): batch_size = ceil((self.length / num_batches)) if (batch_size >= self.length): (yield self) else: for b in gen_ordered_batch_idcs(batch_size, self.length, sorted=True): (yield self[b])
-1,020,326,957,354,149,100
Batch generation. Split the step collection into ordered mini-batches of size batch_size. :param batch_size: number of steps per batch, i.e. variable number of batches :param num_batches: number of batches to split the rollout in, i.e. variable batch size .. note:: Left out the option to return complete rollouts like for `split_shuffled_batches`.
mushroom_rl/core/parallelization_tools/step_sequence.py
split_ordered_batches
nifunk/GNNMushroomRL
python
def split_ordered_batches(self, batch_size: int=None, num_batches: int=None): '\n Batch generation. Split the step collection into ordered mini-batches of size batch_size.\n\n :param batch_size: number of steps per batch, i.e. variable number of batches\n :param num_batches: number of batches to split the rollout in, i.e. variable batch size\n\n .. note::\n Left out the option to return complete rollouts like for `split_shuffled_batches`.\n ' if (((batch_size is None) and (num_batches is None)) or ((batch_size is not None) and (num_batches is not None))): raise pyrado.ValueErr(msg='Either batch_size or num_batches must not be None, but not both or none!') elif ((batch_size is not None) and (batch_size < 1)): raise pyrado.ValueErr(given=batch_size, ge_constraint='1 (int)') elif ((num_batches is not None) and (num_batches < 1)): raise pyrado.ValueErr(given=num_batches, ge_constraint='1 (int)') if (num_batches is not None): batch_size = ceil((self.length / num_batches)) if (batch_size >= self.length): (yield self) else: for b in gen_ordered_batch_idcs(batch_size, self.length, sorted=True): (yield self[b])
def split_shuffled_batches(self, batch_size: int, complete_rollouts: Optional[bool]=False): '\n Batch generation. Split the step collection into random mini-batches of size batch_size.\n\n :param batch_size: number of steps per batch\n :param complete_rollouts: if `complete_rollouts = True`, the batches will not contain partial rollouts.\n However, the size of the returned batches cannot be strictly maintained in this case.\n\n .. note::\n This method is also supposed to be called for recurrent networks, which have a different `evaluate()`\n method that recognized where the rollouts end within a batch.\n ' if (batch_size >= self.length): (yield self) elif (complete_rollouts and self.continuous): rollout_lengths = self.rollout_lengths shuffled_idcs = random.sample(range(len(rollout_lengths)), len(rollout_lengths)) batch = [] cur_batch_size = 0 for idx in shuffled_idcs: batch.append(idx) cur_batch_size += rollout_lengths[idx] if (cur_batch_size >= batch_size): (yield self.get_rollout(batch)) batch.clear() cur_batch_size = 0 if batch: (yield self.get_rollout(batch)) else: for b in gen_shuffled_batch_idcs(batch_size, self.length): (yield self[b])
1,159,818,307,064,741,400
Batch generation. Split the step collection into random mini-batches of size batch_size. :param batch_size: number of steps per batch :param complete_rollouts: if `complete_rollouts = True`, the batches will not contain partial rollouts. However, the size of the returned batches cannot be strictly maintained in this case. .. note:: This method is also supposed to be called for recurrent networks, which have a different `evaluate()` method that recognized where the rollouts end within a batch.
mushroom_rl/core/parallelization_tools/step_sequence.py
split_shuffled_batches
nifunk/GNNMushroomRL
python
def split_shuffled_batches(self, batch_size: int, complete_rollouts: Optional[bool]=False): '\n Batch generation. Split the step collection into random mini-batches of size batch_size.\n\n :param batch_size: number of steps per batch\n :param complete_rollouts: if `complete_rollouts = True`, the batches will not contain partial rollouts.\n However, the size of the returned batches cannot be strictly maintained in this case.\n\n .. note::\n This method is also supposed to be called for recurrent networks, which have a different `evaluate()`\n method that recognized where the rollouts end within a batch.\n ' if (batch_size >= self.length): (yield self) elif (complete_rollouts and self.continuous): rollout_lengths = self.rollout_lengths shuffled_idcs = random.sample(range(len(rollout_lengths)), len(rollout_lengths)) batch = [] cur_batch_size = 0 for idx in shuffled_idcs: batch.append(idx) cur_batch_size += rollout_lengths[idx] if (cur_batch_size >= batch_size): (yield self.get_rollout(batch)) batch.clear() cur_batch_size = 0 if batch: (yield self.get_rollout(batch)) else: for b in gen_shuffled_batch_idcs(batch_size, self.length): (yield self[b])
def undiscounted_return(self) -> float: '\n Compute the undiscounted return.\n\n :return: sum of rewards\n ' if (not (len(self._rollout_bounds) == 2)): raise pyrado.ShapeErr(msg='The StepSequence must be a single continuous rollout.') return self.rewards.sum()
-7,107,731,319,835,752,000
Compute the undiscounted return. :return: sum of rewards
mushroom_rl/core/parallelization_tools/step_sequence.py
undiscounted_return
nifunk/GNNMushroomRL
python
def undiscounted_return(self) -> float: '\n Compute the undiscounted return.\n\n :return: sum of rewards\n ' if (not (len(self._rollout_bounds) == 2)): raise pyrado.ShapeErr(msg='The StepSequence must be a single continuous rollout.') return self.rewards.sum()
def discounted_return(self, gamma: float) -> (to.Tensor, np.ndarray): '\n Compute the discounted return.\n\n :param gamma: temporal discount factor\n :return: exponentially weighted sum of rewards\n ' if (not (len(self._rollout_bounds) == 2)): raise pyrado.ShapeErr(msg='The StepSequence must be a single continuous rollout.') if (not (0 <= gamma <= 1)): raise pyrado.ValueErr(given=gamma, ge_constraint='0', le_constraint='1') if (self.data_format == 'torch'): return to.dot(self.rewards, (gamma ** to.arange(self.length))) else: return np.dot(self.rewards, (gamma ** np.arange(self.length)))
-144,263,897,106,388,860
Compute the discounted return. :param gamma: temporal discount factor :return: exponentially weighted sum of rewards
mushroom_rl/core/parallelization_tools/step_sequence.py
discounted_return
nifunk/GNNMushroomRL
python
def discounted_return(self, gamma: float) -> (to.Tensor, np.ndarray): '\n Compute the discounted return.\n\n :param gamma: temporal discount factor\n :return: exponentially weighted sum of rewards\n ' if (not (len(self._rollout_bounds) == 2)): raise pyrado.ShapeErr(msg='The StepSequence must be a single continuous rollout.') if (not (0 <= gamma <= 1)): raise pyrado.ValueErr(given=gamma, ge_constraint='0', le_constraint='1') if (self.data_format == 'torch'): return to.dot(self.rewards, (gamma ** to.arange(self.length))) else: return np.dot(self.rewards, (gamma ** np.arange(self.length)))
@classmethod def concat(cls, parts: Sequence['StepSequence'], data_format: Optional[str]=None, truncate_last: Optional[bool]=True): '\n Concatenate multiple step sequences into one, truncating the last observation.\n\n :param parts: batch of sequences to concatenate\n :param data_format: torch to use Tensors, numpy to use ndarrays, `None` to choose automatically\n :param truncate_last: remove the last step from each part, highly recommended to be `True`\n :return: concatenated sequence of `Steps`\n ' data_names = parts[0].data_names if (data_format is None): data_format = parts[0].data_format data = {name: cat_to_format([ro.get_data_values(name, truncate_last) for ro in parts], data_format) for name in data_names} done = np.concatenate([ro.done for ro in parts]) continuous = all((ro.continuous for ro in parts)) rollout_bounds = None if continuous: rollout_bounds = [0] acc_len = 0 for ro in parts: rollout_bounds.extend((ro.rollout_bounds[1:] + acc_len)) acc_len += ro.rollout_bounds[(- 1)] return StepSequence(data_format=data_format, done=done, continuous=continuous, rollout_bounds=rollout_bounds, **data)
-2,580,023,898,341,784,000
Concatenate multiple step sequences into one, truncating the last observation. :param parts: batch of sequences to concatenate :param data_format: torch to use Tensors, numpy to use ndarrays, `None` to choose automatically :param truncate_last: remove the last step from each part, highly recommended to be `True` :return: concatenated sequence of `Steps`
mushroom_rl/core/parallelization_tools/step_sequence.py
concat
nifunk/GNNMushroomRL
python
@classmethod def concat(cls, parts: Sequence['StepSequence'], data_format: Optional[str]=None, truncate_last: Optional[bool]=True): '\n Concatenate multiple step sequences into one, truncating the last observation.\n\n :param parts: batch of sequences to concatenate\n :param data_format: torch to use Tensors, numpy to use ndarrays, `None` to choose automatically\n :param truncate_last: remove the last step from each part, highly recommended to be `True`\n :return: concatenated sequence of `Steps`\n ' data_names = parts[0].data_names if (data_format is None): data_format = parts[0].data_format data = {name: cat_to_format([ro.get_data_values(name, truncate_last) for ro in parts], data_format) for name in data_names} done = np.concatenate([ro.done for ro in parts]) continuous = all((ro.continuous for ro in parts)) rollout_bounds = None if continuous: rollout_bounds = [0] acc_len = 0 for ro in parts: rollout_bounds.extend((ro.rollout_bounds[1:] + acc_len)) acc_len += ro.rollout_bounds[(- 1)] return StepSequence(data_format=data_format, done=done, continuous=continuous, rollout_bounds=rollout_bounds, **data)
@classmethod def process_data(cls, rollout: 'StepSequence', fcn: Callable, fcn_arg_name: str, fcn_arg_types: Union[(type, Tuple[type])]=np.ndarray, include_fields: Sequence[str]=None, exclude_fields: Sequence[str]=None, **process_fcn_kwargs): '\n Process all data fields of a rollouts using an arbitrary function. Optionally, some fields can be excluded.\n\n :param rollout: `StepSequence` holding the data\n :param fcn: function (of one remaining input) to used manipulate the data fields, e.g. `scipy.filtfilt()`\n :param fcn_arg_name: sting of the remaining input of `process_fcn()`, e.g. `x` for `scipy.filtfilt()`\n :param fcn_arg_types: type or tuple thereof which are expected as input to `fcn()`\n :param include_fields: list of field names to include for processing, pass `None` to not include everything.\n If specified, only fields from this selection will be considered\n :param exclude_fields: list of field names to exclude from processing, pass `None` to not exclude anything\n :param process_fcn_kwargs: keyword arguments forwarded to `process_fcn()`\n :return: new `StepSequence` instance with processed data\n ' @functools.wraps(fcn) def recursive_wrapper(inp, **kwargs): ' Wrap the processing function to call it recursivelyy for nested data structures. ' kwargs.update({fcn_arg_name: inp}) if isinstance(inp, fcn_arg_types): inp = fcn(**kwargs) elif isinstance(inp, dict): for (key, value) in inp.items(): if isinstance(value, fcn_arg_types): inp[key] = recursive_wrapper(value, **kwargs) else: inp[key] = value elif isinstance(inp, list): for (idx, item) in enumerate(inp): if isinstance(item, fcn_arg_types): inp[idx] = recursive_wrapper(item, **kwargs) else: inp[idx] = item return inp data_dict = dict() include_fields = (include_fields or rollout.data_names) exclude_fields = (exclude_fields or []) for name in rollout.data_names: data = rollout.get_data_values(name) if ((name in include_fields) and (name not in exclude_fields)): data = recursive_wrapper(data, **process_fcn_kwargs) data_dict[name] = data return StepSequence(**data_dict, rollout_info=rollout.rollout_info, continuous=rollout.continuous)
-3,135,531,648,346,896,400
Process all data fields of a rollouts using an arbitrary function. Optionally, some fields can be excluded. :param rollout: `StepSequence` holding the data :param fcn: function (of one remaining input) to used manipulate the data fields, e.g. `scipy.filtfilt()` :param fcn_arg_name: sting of the remaining input of `process_fcn()`, e.g. `x` for `scipy.filtfilt()` :param fcn_arg_types: type or tuple thereof which are expected as input to `fcn()` :param include_fields: list of field names to include for processing, pass `None` to not include everything. If specified, only fields from this selection will be considered :param exclude_fields: list of field names to exclude from processing, pass `None` to not exclude anything :param process_fcn_kwargs: keyword arguments forwarded to `process_fcn()` :return: new `StepSequence` instance with processed data
mushroom_rl/core/parallelization_tools/step_sequence.py
process_data
nifunk/GNNMushroomRL
python
@classmethod def process_data(cls, rollout: 'StepSequence', fcn: Callable, fcn_arg_name: str, fcn_arg_types: Union[(type, Tuple[type])]=np.ndarray, include_fields: Sequence[str]=None, exclude_fields: Sequence[str]=None, **process_fcn_kwargs): '\n Process all data fields of a rollouts using an arbitrary function. Optionally, some fields can be excluded.\n\n :param rollout: `StepSequence` holding the data\n :param fcn: function (of one remaining input) to used manipulate the data fields, e.g. `scipy.filtfilt()`\n :param fcn_arg_name: sting of the remaining input of `process_fcn()`, e.g. `x` for `scipy.filtfilt()`\n :param fcn_arg_types: type or tuple thereof which are expected as input to `fcn()`\n :param include_fields: list of field names to include for processing, pass `None` to not include everything.\n If specified, only fields from this selection will be considered\n :param exclude_fields: list of field names to exclude from processing, pass `None` to not exclude anything\n :param process_fcn_kwargs: keyword arguments forwarded to `process_fcn()`\n :return: new `StepSequence` instance with processed data\n ' @functools.wraps(fcn) def recursive_wrapper(inp, **kwargs): ' Wrap the processing function to call it recursivelyy for nested data structures. ' kwargs.update({fcn_arg_name: inp}) if isinstance(inp, fcn_arg_types): inp = fcn(**kwargs) elif isinstance(inp, dict): for (key, value) in inp.items(): if isinstance(value, fcn_arg_types): inp[key] = recursive_wrapper(value, **kwargs) else: inp[key] = value elif isinstance(inp, list): for (idx, item) in enumerate(inp): if isinstance(item, fcn_arg_types): inp[idx] = recursive_wrapper(item, **kwargs) else: inp[idx] = item return inp data_dict = dict() include_fields = (include_fields or rollout.data_names) exclude_fields = (exclude_fields or []) for name in rollout.data_names: data = rollout.get_data_values(name) if ((name in include_fields) and (name not in exclude_fields)): data = recursive_wrapper(data, **process_fcn_kwargs) data_dict[name] = data return StepSequence(**data_dict, rollout_info=rollout.rollout_info, continuous=rollout.continuous)
def _next_value(step: Step) -> float: ' Helper to return `next_value = 0` for last step ' if step.done: return 0.0 return step.next_value
-70,958,724,919,454,110
Helper to return `next_value = 0` for last step
mushroom_rl/core/parallelization_tools/step_sequence.py
_next_value
nifunk/GNNMushroomRL
python
def _next_value(step: Step) -> float: ' ' if step.done: return 0.0 return step.next_value
@functools.wraps(fcn) def recursive_wrapper(inp, **kwargs): ' Wrap the processing function to call it recursivelyy for nested data structures. ' kwargs.update({fcn_arg_name: inp}) if isinstance(inp, fcn_arg_types): inp = fcn(**kwargs) elif isinstance(inp, dict): for (key, value) in inp.items(): if isinstance(value, fcn_arg_types): inp[key] = recursive_wrapper(value, **kwargs) else: inp[key] = value elif isinstance(inp, list): for (idx, item) in enumerate(inp): if isinstance(item, fcn_arg_types): inp[idx] = recursive_wrapper(item, **kwargs) else: inp[idx] = item return inp
1,204,677,687,032,972,500
Wrap the processing function to call it recursivelyy for nested data structures.
mushroom_rl/core/parallelization_tools/step_sequence.py
recursive_wrapper
nifunk/GNNMushroomRL
python
@functools.wraps(fcn) def recursive_wrapper(inp, **kwargs): ' ' kwargs.update({fcn_arg_name: inp}) if isinstance(inp, fcn_arg_types): inp = fcn(**kwargs) elif isinstance(inp, dict): for (key, value) in inp.items(): if isinstance(value, fcn_arg_types): inp[key] = recursive_wrapper(value, **kwargs) else: inp[key] = value elif isinstance(inp, list): for (idx, item) in enumerate(inp): if isinstance(item, fcn_arg_types): inp[idx] = recursive_wrapper(item, **kwargs) else: inp[idx] = item return inp
def make_scoped_cache(scope): 'Create a new scoped cache.\n\n In most cases the global cache should not be used directly but rather\n with a scope depending on the module a cache is used for. This is\n especially important when passing user-provided data as the cache key\n to prevent reading other unrelated cache keys.\n ' return ScopedCache(cache, scope)
4,806,206,535,844,877,000
Create a new scoped cache. In most cases the global cache should not be used directly but rather with a scope depending on the module a cache is used for. This is especially important when passing user-provided data as the cache key to prevent reading other unrelated cache keys.
indico/core/cache.py
make_scoped_cache
errikos/indico
python
def make_scoped_cache(scope): 'Create a new scoped cache.\n\n In most cases the global cache should not be used directly but rather\n with a scope depending on the module a cache is used for. This is\n especially important when passing user-provided data as the cache key\n to prevent reading other unrelated cache keys.\n ' return ScopedCache(cache, scope)
def set_detector_value(self, kwargs_list: list): ' Only allow changes to confidence or the model ' try: for kwargs in kwargs_list: field = kwargs.get('field') value = kwargs.get('value') if (field in ['detector_confidence', 'detector_model']): logger.info(f'{self.detector_name}: setting value: {field}: {value}') self.monitor_config[field] = value except Exception as e: logger.error(f'{self.__class__.__name__}: Error setting value: {e}')
-4,545,308,264,092,963,000
Only allow changes to confidence or the model
traffic_monitor/services/detectors/detector_cvlib.py
set_detector_value
mcdomx/monitor
python
def set_detector_value(self, kwargs_list: list): ' ' try: for kwargs in kwargs_list: field = kwargs.get('field') value = kwargs.get('value') if (field in ['detector_confidence', 'detector_model']): logger.info(f'{self.detector_name}: setting value: {field}: {value}') self.monitor_config[field] = value except Exception as e: logger.error(f'{self.__class__.__name__}: Error setting value: {e}')
def fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.\n\n Reference: `"Faster R-CNN: Towards Real-Time Object Detection with\n Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.\n\n The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each\n image, and should be in ``0-1`` range. Different images can have different sizes.\n\n The behavior of the model changes depending if it is in training or evaluation mode.\n\n During training, the model expects both the input tensors, as well as a targets (list of dictionary),\n containing:\n\n - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with\n ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.\n - labels (``Int64Tensor[N]``): the class label for each ground-truth box\n\n The model returns a ``Dict[Tensor]`` during training, containing the classification and regression\n losses for both the RPN and the R-CNN.\n\n During inference, the model requires only the input tensors, and returns the post-processed\n predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as\n follows, where ``N`` is the number of detections:\n\n - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with\n ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.\n - labels (``Int64Tensor[N]``): the predicted labels for each detection\n - scores (``Tensor[N]``): the scores of each detection\n\n For more details on the output, you may refer to :ref:`instance_seg_output`.\n\n Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)\n >>> # For training\n >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)\n >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]\n >>> labels = torch.randint(1, 91, (4, 11))\n >>> images = list(image for image in images)\n >>> targets = []\n >>> for i in range(len(images)):\n >>> d = {}\n >>> d[\'boxes\'] = boxes[i]\n >>> d[\'labels\'] = labels[i]\n >>> targets.append(d)\n >>> output = model(images, targets)\n >>> # For inference\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n >>>\n >>> # optionally, if you want to export the model to ONNX:\n >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' is_trained = (pretrained or pretrained_backbone) trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = (misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d) if pretrained: pretrained_backbone = False backbone = resnet50(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = FasterRCNN(backbone, num_classes, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'], progress=progress) model.load_state_dict(state_dict) overwrite_eps(model, 0.0) return model
1,192,879,758,170,599,200
Constructs a Faster R-CNN model with a ResNet-50-FPN backbone. Reference: `"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_. The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each image, and should be in ``0-1`` range. Different images can have different sizes. The behavior of the model changes depending if it is in training or evaluation mode. During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the class label for each ground-truth box The model returns a ``Dict[Tensor]`` during training, containing the classification and regression losses for both the RPN and the R-CNN. During inference, the model requires only the input tensors, and returns the post-processed predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (``Int64Tensor[N]``): the predicted labels for each detection - scores (``Tensor[N]``): the scores of each detection For more details on the output, you may refer to :ref:`instance_seg_output`. Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size. Example:: >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) >>> # For training >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4) >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4] >>> labels = torch.randint(1, 91, (4, 11)) >>> images = list(image for image in images) >>> targets = [] >>> for i in range(len(images)): >>> d = {} >>> d['boxes'] = boxes[i] >>> d['labels'] = labels[i] >>> targets.append(d) >>> output = model(images, targets) >>> # For inference >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3.
torchvision/models/detection/faster_rcnn.py
fasterrcnn_resnet50_fpn
Bethhhh/vision
python
def fasterrcnn_resnet50_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.\n\n Reference: `"Faster R-CNN: Towards Real-Time Object Detection with\n Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.\n\n The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each\n image, and should be in ``0-1`` range. Different images can have different sizes.\n\n The behavior of the model changes depending if it is in training or evaluation mode.\n\n During training, the model expects both the input tensors, as well as a targets (list of dictionary),\n containing:\n\n - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with\n ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.\n - labels (``Int64Tensor[N]``): the class label for each ground-truth box\n\n The model returns a ``Dict[Tensor]`` during training, containing the classification and regression\n losses for both the RPN and the R-CNN.\n\n During inference, the model requires only the input tensors, and returns the post-processed\n predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as\n follows, where ``N`` is the number of detections:\n\n - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with\n ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.\n - labels (``Int64Tensor[N]``): the predicted labels for each detection\n - scores (``Tensor[N]``): the scores of each detection\n\n For more details on the output, you may refer to :ref:`instance_seg_output`.\n\n Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)\n >>> # For training\n >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)\n >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]\n >>> labels = torch.randint(1, 91, (4, 11))\n >>> images = list(image for image in images)\n >>> targets = []\n >>> for i in range(len(images)):\n >>> d = {}\n >>> d[\'boxes\'] = boxes[i]\n >>> d[\'labels\'] = labels[i]\n >>> targets.append(d)\n >>> output = model(images, targets)\n >>> # For inference\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n >>>\n >>> # optionally, if you want to export the model to ONNX:\n >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' is_trained = (pretrained or pretrained_backbone) trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3) norm_layer = (misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d) if pretrained: pretrained_backbone = False backbone = resnet50(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer) backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers) model = FasterRCNN(backbone, num_classes, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['fasterrcnn_resnet50_fpn_coco'], progress=progress) model.load_state_dict(state_dict) overwrite_eps(model, 0.0) return model
def fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.\n It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See\n :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more\n details.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' weights_name = 'fasterrcnn_mobilenet_v3_large_320_fpn_coco' defaults = {'min_size': 320, 'max_size': 640, 'rpn_pre_nms_top_n_test': 150, 'rpn_post_nms_top_n_test': 150, 'rpn_score_thresh': 0.05} kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs)
-6,396,726,167,147,814,000
Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3.
torchvision/models/detection/faster_rcnn.py
fasterrcnn_mobilenet_v3_large_320_fpn
Bethhhh/vision
python
def fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.\n It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See\n :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more\n details.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' weights_name = 'fasterrcnn_mobilenet_v3_large_320_fpn_coco' defaults = {'min_size': 320, 'max_size': 640, 'rpn_pre_nms_top_n_test': 150, 'rpn_post_nms_top_n_test': 150, 'rpn_score_thresh': 0.05} kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs)
def fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.\n It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See\n :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more\n details.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' weights_name = 'fasterrcnn_mobilenet_v3_large_fpn_coco' defaults = {'rpn_score_thresh': 0.05} kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs)
1,931,367,722,196,547,600
Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone. It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more details. Example:: >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True) >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is passed (the default) this value is set to 3.
torchvision/models/detection/faster_rcnn.py
fasterrcnn_mobilenet_v3_large_fpn
Bethhhh/vision
python
def fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs): '\n Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.\n It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See\n :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more\n details.\n\n Example::\n\n >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)\n >>> model.eval()\n >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]\n >>> predictions = model(x)\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on COCO train2017\n progress (bool): If True, displays a progress bar of the download to stderr\n num_classes (int): number of output classes of the model (including the background)\n pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet\n trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.\n Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is\n passed (the default) this value is set to 3.\n ' weights_name = 'fasterrcnn_mobilenet_v3_large_fpn_coco' defaults = {'rpn_score_thresh': 0.05} kwargs = {**defaults, **kwargs} return _fasterrcnn_mobilenet_v3_large_fpn(weights_name, pretrained=pretrained, progress=progress, num_classes=num_classes, pretrained_backbone=pretrained_backbone, trainable_backbone_layers=trainable_backbone_layers, **kwargs)
@extensions.expected_errors((404, 409)) @wsgi.action('pause') def _pause(self, req, id, body): 'Permit Admins to pause the server.' ctxt = req.environ['nova.context'] authorize(ctxt, 'pause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.pause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'pause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202)
-3,257,034,508,495,823,400
Permit Admins to pause the server.
nova/api/openstack/compute/plugins/v3/pause_server.py
_pause
PFZheng/nova
python
@extensions.expected_errors((404, 409)) @wsgi.action('pause') def _pause(self, req, id, body): ctxt = req.environ['nova.context'] authorize(ctxt, 'pause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.pause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'pause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202)
@extensions.expected_errors((404, 409)) @wsgi.action('unpause') def _unpause(self, req, id, body): 'Permit Admins to unpause the server.' ctxt = req.environ['nova.context'] authorize(ctxt, 'unpause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.unpause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'unpause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202)
8,663,507,411,384,678,000
Permit Admins to unpause the server.
nova/api/openstack/compute/plugins/v3/pause_server.py
_unpause
PFZheng/nova
python
@extensions.expected_errors((404, 409)) @wsgi.action('unpause') def _unpause(self, req, id, body): ctxt = req.environ['nova.context'] authorize(ctxt, 'unpause') server = common.get_instance(self.compute_api, ctxt, id, want_objects=True) try: self.compute_api.unpause(ctxt, server) except exception.InstanceIsLocked as e: raise exc.HTTPConflict(explanation=e.format_message()) except exception.InstanceInvalidState as state_error: common.raise_http_conflict_for_instance_invalid_state(state_error, 'unpause') except exception.InstanceNotFound as e: raise exc.HTTPNotFound(explanation=e.format_message()) return webob.Response(status_int=202)
def _wait_until(self, predicate, timeout=None, poll_frequency=0.5): "Wait until the value returned by predicate is not False or\n the timeout is elapsed.\n 'predicate' takes the driver as argument.\n " if (not timeout): timeout = self.explicit_wait wait.WebDriverWait(self.driver, timeout, poll_frequency).until(predicate)
3,087,956,966,512,135,000
Wait until the value returned by predicate is not False or the timeout is elapsed. 'predicate' takes the driver as argument.
openstack-dashboard/openstack_dashboard/test/integration_tests/basewebobject.py
_wait_until
JerryDog/horizon-f-road
python
def _wait_until(self, predicate, timeout=None, poll_frequency=0.5): "Wait until the value returned by predicate is not False or\n the timeout is elapsed.\n 'predicate' takes the driver as argument.\n " if (not timeout): timeout = self.explicit_wait wait.WebDriverWait(self.driver, timeout, poll_frequency).until(predicate)
def _wait_till_text_present_in_element(self, element, text, timeout=None): 'Waiting for a text to appear in a certain element very often is\n actually waiting for a _different_ element with a different text to\n appear in place of an old element. So a way to avoid capturing stale\n element reference should be provided for this use case.\n\n Better to wrap getting entity status cell in a lambda\n to avoid problems with cell being replaced with totally different\n element by Javascript\n ' def predicate(_): elt = (element() if hasattr(element, '__call__') else element) return self._is_text_visible(elt, text) self._wait_until(predicate, timeout)
6,722,385,146,241,805,000
Waiting for a text to appear in a certain element very often is actually waiting for a _different_ element with a different text to appear in place of an old element. So a way to avoid capturing stale element reference should be provided for this use case. Better to wrap getting entity status cell in a lambda to avoid problems with cell being replaced with totally different element by Javascript
openstack-dashboard/openstack_dashboard/test/integration_tests/basewebobject.py
_wait_till_text_present_in_element
JerryDog/horizon-f-road
python
def _wait_till_text_present_in_element(self, element, text, timeout=None): 'Waiting for a text to appear in a certain element very often is\n actually waiting for a _different_ element with a different text to\n appear in place of an old element. So a way to avoid capturing stale\n element reference should be provided for this use case.\n\n Better to wrap getting entity status cell in a lambda\n to avoid problems with cell being replaced with totally different\n element by Javascript\n ' def predicate(_): elt = (element() if hasattr(element, '__call__') else element) return self._is_text_visible(elt, text) self._wait_until(predicate, timeout)
def airflow_test_suite(): 'Test suite for Airflow tests' test_loader = unittest.TestLoader() test_suite = test_loader.discover(os.path.join(my_dir, 'tests'), pattern='test_*.py') return test_suite
-580,689,423,026,202,600
Test suite for Airflow tests
setup.py
airflow_test_suite
312day/airflow
python
def airflow_test_suite(): test_loader = unittest.TestLoader() test_suite = test_loader.discover(os.path.join(my_dir, 'tests'), pattern='test_*.py') return test_suite
def git_version(version_: str) -> str: '\n Return a version to identify the state of the underlying git repo. The version will\n indicate whether the head of the current git-backed working directory is tied to a\n release tag or not : it will indicate the former with a \'release:{version}\' prefix\n and the latter with a \'dev0\' prefix. Following the prefix will be a sha of the current\n branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted\n changes are present.\n\n :param str version_: Semver version\n :return: Found Airflow version in Git repo\n :rtype: str\n ' try: import git try: repo = git.Repo(os.path.join(*[my_dir, '.git'])) except git.NoSuchPathError: logger.warning('.git directory not found: Cannot compute the git version') return '' except git.InvalidGitRepositoryError: logger.warning('Invalid .git directory not found: Cannot compute the git version') return '' except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return '' if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return '.dev0+{sha}.dirty'.format(sha=sha) return '.release:{version}+{sha}'.format(version=version_, sha=sha) else: return 'no_git_version'
1,922,320,437,300,587,000
Return a version to identify the state of the underlying git repo. The version will indicate whether the head of the current git-backed working directory is tied to a release tag or not : it will indicate the former with a 'release:{version}' prefix and the latter with a 'dev0' prefix. Following the prefix will be a sha of the current branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted changes are present. :param str version_: Semver version :return: Found Airflow version in Git repo :rtype: str
setup.py
git_version
312day/airflow
python
def git_version(version_: str) -> str: '\n Return a version to identify the state of the underlying git repo. The version will\n indicate whether the head of the current git-backed working directory is tied to a\n release tag or not : it will indicate the former with a \'release:{version}\' prefix\n and the latter with a \'dev0\' prefix. Following the prefix will be a sha of the current\n branch head. Finally, a "dirty" suffix is appended to indicate that uncommitted\n changes are present.\n\n :param str version_: Semver version\n :return: Found Airflow version in Git repo\n :rtype: str\n ' try: import git try: repo = git.Repo(os.path.join(*[my_dir, '.git'])) except git.NoSuchPathError: logger.warning('.git directory not found: Cannot compute the git version') return except git.InvalidGitRepositoryError: logger.warning('Invalid .git directory not found: Cannot compute the git version') return except ImportError: logger.warning('gitpython not found: Cannot compute the git version.') return if repo: sha = repo.head.commit.hexsha if repo.is_dirty(): return '.dev0+{sha}.dirty'.format(sha=sha) return '.release:{version}+{sha}'.format(version=version_, sha=sha) else: return 'no_git_version'
def write_version(filename: str=os.path.join(*[my_dir, 'airflow', 'git_version'])): '\n Write the Semver version + git hash to file, e.g. ".dev0+2f635dc265e78db6708f59f68e8009abb92c1e65".\n\n :param str filename: Destination file to write\n ' text = '{}'.format(git_version(version)) with open(filename, 'w') as file: file.write(text)
2,068,128,176,971,055,900
Write the Semver version + git hash to file, e.g. ".dev0+2f635dc265e78db6708f59f68e8009abb92c1e65". :param str filename: Destination file to write
setup.py
write_version
312day/airflow
python
def write_version(filename: str=os.path.join(*[my_dir, 'airflow', 'git_version'])): '\n Write the Semver version + git hash to file, e.g. ".dev0+2f635dc265e78db6708f59f68e8009abb92c1e65".\n\n :param str filename: Destination file to write\n ' text = '{}'.format(git_version(version)) with open(filename, 'w') as file: file.write(text)
def is_package_excluded(package: str, exclusion_list: List[str]): '\n Checks if package should be excluded.\n :param package: package name (beginning of it)\n :param exclusion_list: list of excluded packages\n :return: true if package should be excluded\n ' return any([package.startswith(excluded_package) for excluded_package in exclusion_list])
-7,323,985,351,570,894,000
Checks if package should be excluded. :param package: package name (beginning of it) :param exclusion_list: list of excluded packages :return: true if package should be excluded
setup.py
is_package_excluded
312day/airflow
python
def is_package_excluded(package: str, exclusion_list: List[str]): '\n Checks if package should be excluded.\n :param package: package name (beginning of it)\n :param exclusion_list: list of excluded packages\n :return: true if package should be excluded\n ' return any([package.startswith(excluded_package) for excluded_package in exclusion_list])
def do_setup(): 'Perform the Airflow package setup.' write_version() setup(name='apache-airflow', description='Programmatically author, schedule and monitor data pipelines', long_description=long_description, long_description_content_type='text/markdown', license='Apache License 2.0', version=version, packages=find_packages(include=['airflow', 'airflow.*']), package_data={'airflow': ['py.typed'], '': ['airflow/alembic.ini', 'airflow/git_version', '*.ipynb', 'airflow/providers/cncf/kubernetes/example_dags/*.yaml'], 'airflow.api_connexion.openapi': ['*.yaml'], 'airflow.serialization': ['*.json']}, include_package_data=True, zip_safe=False, entry_points={'console_scripts': ['airflow = airflow.__main__:main']}, install_requires=INSTALL_REQUIREMENTS, setup_requires=['bowler', 'docutils', 'gitpython', 'setuptools', 'wheel'], extras_require=EXTRAS_REQUIREMENTS, classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System :: Monitoring'], author='Apache Software Foundation', author_email='[email protected]', url='http://airflow.apache.org/', download_url=('https://dist.apache.org/repos/dist/release/airflow/' + version), cmdclass={'extra_clean': CleanCommand, 'compile_assets': CompileAssets, 'list_extras': ListExtras}, test_suite='setup.airflow_test_suite', python_requires='~=3.6')
2,453,606,635,205,621,000
Perform the Airflow package setup.
setup.py
do_setup
312day/airflow
python
def do_setup(): write_version() setup(name='apache-airflow', description='Programmatically author, schedule and monitor data pipelines', long_description=long_description, long_description_content_type='text/markdown', license='Apache License 2.0', version=version, packages=find_packages(include=['airflow', 'airflow.*']), package_data={'airflow': ['py.typed'], : ['airflow/alembic.ini', 'airflow/git_version', '*.ipynb', 'airflow/providers/cncf/kubernetes/example_dags/*.yaml'], 'airflow.api_connexion.openapi': ['*.yaml'], 'airflow.serialization': ['*.json']}, include_package_data=True, zip_safe=False, entry_points={'console_scripts': ['airflow = airflow.__main__:main']}, install_requires=INSTALL_REQUIREMENTS, setup_requires=['bowler', 'docutils', 'gitpython', 'setuptools', 'wheel'], extras_require=EXTRAS_REQUIREMENTS, classifiers=['Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System :: Monitoring'], author='Apache Software Foundation', author_email='[email protected]', url='http://airflow.apache.org/', download_url=('https://dist.apache.org/repos/dist/release/airflow/' + version), cmdclass={'extra_clean': CleanCommand, 'compile_assets': CompileAssets, 'list_extras': ListExtras}, test_suite='setup.airflow_test_suite', python_requires='~=3.6')
def initialize_options(self): 'Set default values for options.'
953,287,520,272,231,300
Set default values for options.
setup.py
initialize_options
312day/airflow
python
def initialize_options(self):
def finalize_options(self): 'Set final values for options.'
1,898,983,747,956,181,200
Set final values for options.
setup.py
finalize_options
312day/airflow
python
def finalize_options(self):
def run(self): 'Run command to remove temporary files and directories.' os.chdir(my_dir) os.system('rm -vrf ./build ./dist ./*.pyc ./*.tgz ./*.egg-info')
-9,137,811,618,676,238,000
Run command to remove temporary files and directories.
setup.py
run
312day/airflow
python
def run(self): os.chdir(my_dir) os.system('rm -vrf ./build ./dist ./*.pyc ./*.tgz ./*.egg-info')
def initialize_options(self): 'Set default values for options.'
953,287,520,272,231,300
Set default values for options.
setup.py
initialize_options
312day/airflow
python
def initialize_options(self):
def finalize_options(self): 'Set final values for options.'
1,898,983,747,956,181,200
Set final values for options.
setup.py
finalize_options
312day/airflow
python
def finalize_options(self):
def run(self): 'Run a command to compile and build assets.' subprocess.check_call('./airflow/www/compile_assets.sh')
-811,770,318,344,817,200
Run a command to compile and build assets.
setup.py
run
312day/airflow
python
def run(self): subprocess.check_call('./airflow/www/compile_assets.sh')
def initialize_options(self): 'Set default values for options.'
953,287,520,272,231,300
Set default values for options.
setup.py
initialize_options
312day/airflow
python
def initialize_options(self):
def finalize_options(self): 'Set final values for options.'
1,898,983,747,956,181,200
Set final values for options.
setup.py
finalize_options
312day/airflow
python
def finalize_options(self):
def run(self): 'List extras.' print('\n'.join(wrap(', '.join(EXTRAS_REQUIREMENTS.keys()), 100)))
946,835,777,747,823,000
List extras.
setup.py
run
312day/airflow
python
def run(self): print('\n'.join(wrap(', '.join(EXTRAS_REQUIREMENTS.keys()), 100)))
def git_ignored(file: Path) -> bool: 'Returns true if this file is in a Git repo and ignored by that repo.\n\n Returns true for ignored files that were manually added to a repo.\n ' file = file.resolve() directory = file.parent while True: try: returncode = subprocess.run(['git', 'check-ignore', '--quiet', '--no-index', file], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, cwd=directory).returncode return (returncode in (0, 128)) except FileNotFoundError: if (directory == directory.parent): return False directory = directory.parent
-2,774,505,125,595,756,000
Returns true if this file is in a Git repo and ignored by that repo. Returns true for ignored files that were manually added to a repo.
pw_watch/py/pw_watch/watch.py
git_ignored
isabella232/pigweed
python
def git_ignored(file: Path) -> bool: 'Returns true if this file is in a Git repo and ignored by that repo.\n\n Returns true for ignored files that were manually added to a repo.\n ' file = file.resolve() directory = file.parent while True: try: returncode = subprocess.run(['git', 'check-ignore', '--quiet', '--no-index', file], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, cwd=directory).returncode return (returncode in (0, 128)) except FileNotFoundError: if (directory == directory.parent): return False directory = directory.parent
def add_parser_arguments(parser: argparse.ArgumentParser) -> None: 'Sets up an argument parser for pw watch.' parser.add_argument('--patterns', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to watch to trigger recompile'), default=_WATCH_PATTERN_DELIMITER.join(_WATCH_PATTERNS)) parser.add_argument('--ignore_patterns', dest='ignore_patterns_string', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to ignore events from')) parser.add_argument('--exclude_list', nargs='+', type=Path, help='directories to ignore during pw watch', default=[]) parser.add_argument('--no-restart', dest='restart', action='store_false', help='do not restart ongoing builds if files change') parser.add_argument('default_build_targets', nargs='*', metavar='target', default=[], help='Automatically locate a build directory and build these targets. For example, `host docs` searches for a Ninja build directory (starting with out/) and builds the `host` and `docs` targets. To specify one or more directories, ust the -C / --build_directory option.') parser.add_argument('-C', '--build_directory', dest='build_directories', nargs='+', action='append', default=[], metavar=('directory', 'target'), help='Specify a build directory and optionally targets to build. `pw watch -C out tgt` is equivalent to `ninja -C out tgt`')
8,633,480,375,014,321,000
Sets up an argument parser for pw watch.
pw_watch/py/pw_watch/watch.py
add_parser_arguments
isabella232/pigweed
python
def add_parser_arguments(parser: argparse.ArgumentParser) -> None: parser.add_argument('--patterns', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to watch to trigger recompile'), default=_WATCH_PATTERN_DELIMITER.join(_WATCH_PATTERNS)) parser.add_argument('--ignore_patterns', dest='ignore_patterns_string', help=(_WATCH_PATTERN_DELIMITER + '-delimited list of globs to ignore events from')) parser.add_argument('--exclude_list', nargs='+', type=Path, help='directories to ignore during pw watch', default=[]) parser.add_argument('--no-restart', dest='restart', action='store_false', help='do not restart ongoing builds if files change') parser.add_argument('default_build_targets', nargs='*', metavar='target', default=[], help='Automatically locate a build directory and build these targets. For example, `host docs` searches for a Ninja build directory (starting with out/) and builds the `host` and `docs` targets. To specify one or more directories, ust the -C / --build_directory option.') parser.add_argument('-C', '--build_directory', dest='build_directories', nargs='+', action='append', default=[], metavar=('directory', 'target'), help='Specify a build directory and optionally targets to build. `pw watch -C out tgt` is equivalent to `ninja -C out tgt`')
def minimal_watch_directories(to_watch: Path, to_exclude: Iterable[Path]): 'Determine which subdirectory to watch recursively' try: to_watch = Path(to_watch) except TypeError: assert False, 'Please watch one directory at a time.' directories_to_exclude: List[Path] = [to_watch.joinpath(directory_to_exclude) for directory_to_exclude in to_exclude if to_watch.joinpath(directory_to_exclude).is_dir()] exclude_dir_parents = {to_watch} for directory_to_exclude in directories_to_exclude: parts = list(Path(directory_to_exclude).relative_to(to_watch).parts)[:(- 1)] dir_tmp = to_watch for part in parts: dir_tmp = Path(dir_tmp, part) exclude_dir_parents.add(dir_tmp) for directory in exclude_dir_parents: dir_path = Path(directory) (yield (dir_path, False)) for item in Path(directory).iterdir(): if (item.is_dir() and (item not in exclude_dir_parents) and (item not in directories_to_exclude)): (yield (item, True))
8,227,061,236,398,482,000
Determine which subdirectory to watch recursively
pw_watch/py/pw_watch/watch.py
minimal_watch_directories
isabella232/pigweed
python
def minimal_watch_directories(to_watch: Path, to_exclude: Iterable[Path]): try: to_watch = Path(to_watch) except TypeError: assert False, 'Please watch one directory at a time.' directories_to_exclude: List[Path] = [to_watch.joinpath(directory_to_exclude) for directory_to_exclude in to_exclude if to_watch.joinpath(directory_to_exclude).is_dir()] exclude_dir_parents = {to_watch} for directory_to_exclude in directories_to_exclude: parts = list(Path(directory_to_exclude).relative_to(to_watch).parts)[:(- 1)] dir_tmp = to_watch for part in parts: dir_tmp = Path(dir_tmp, part) exclude_dir_parents.add(dir_tmp) for directory in exclude_dir_parents: dir_path = Path(directory) (yield (dir_path, False)) for item in Path(directory).iterdir(): if (item.is_dir() and (item not in exclude_dir_parents) and (item not in directories_to_exclude)): (yield (item, True))
def get_common_excludes() -> List[Path]: 'Find commonly excluded directories, and return them as a [Path]' exclude_list: List[Path] = [] typical_ignored_directories: List[str] = ['.environment', '.presubmit', '.git', '.mypy_cache', '.cargo', 'environment', 'out'] pw_root_dir = Path(os.environ['PW_ROOT']) exclude_list.extend(((pw_root_dir / ignored_directory) for ignored_directory in typical_ignored_directories)) pw_project_root_dir = Path(os.environ['PW_PROJECT_ROOT']) if (pw_project_root_dir != pw_root_dir): exclude_list.extend(((pw_project_root_dir / ignored_directory) for ignored_directory in typical_ignored_directories)) legacy_directories = ['.cipd', '.python3-venv'] found_legacy = False for legacy_directory in legacy_directories: full_legacy_directory = (pw_root_dir / legacy_directory) if full_legacy_directory.is_dir(): _LOG.warning('Legacy environment directory found: %s', str(full_legacy_directory)) exclude_list.append(full_legacy_directory) found_legacy = True if found_legacy: _LOG.warning('Found legacy environment directory(s); these should be deleted') return exclude_list
-5,883,953,771,426,845,000
Find commonly excluded directories, and return them as a [Path]
pw_watch/py/pw_watch/watch.py
get_common_excludes
isabella232/pigweed
python
def get_common_excludes() -> List[Path]: exclude_list: List[Path] = [] typical_ignored_directories: List[str] = ['.environment', '.presubmit', '.git', '.mypy_cache', '.cargo', 'environment', 'out'] pw_root_dir = Path(os.environ['PW_ROOT']) exclude_list.extend(((pw_root_dir / ignored_directory) for ignored_directory in typical_ignored_directories)) pw_project_root_dir = Path(os.environ['PW_PROJECT_ROOT']) if (pw_project_root_dir != pw_root_dir): exclude_list.extend(((pw_project_root_dir / ignored_directory) for ignored_directory in typical_ignored_directories)) legacy_directories = ['.cipd', '.python3-venv'] found_legacy = False for legacy_directory in legacy_directories: full_legacy_directory = (pw_root_dir / legacy_directory) if full_legacy_directory.is_dir(): _LOG.warning('Legacy environment directory found: %s', str(full_legacy_directory)) exclude_list.append(full_legacy_directory) found_legacy = True if found_legacy: _LOG.warning('Found legacy environment directory(s); these should be deleted') return exclude_list
def _find_build_dir(default_build_dir: Path=Path('out')) -> Optional[Path]: 'Searches for a build directory, returning the first it finds.' if default_build_dir.joinpath('build.ninja').exists(): return default_build_dir for path in default_build_dir.glob('**/build.ninja'): return path.parent for path in Path.cwd().glob('**/build.ninja'): return path.parent return None
3,079,257,728,143,472,600
Searches for a build directory, returning the first it finds.
pw_watch/py/pw_watch/watch.py
_find_build_dir
isabella232/pigweed
python
def _find_build_dir(default_build_dir: Path=Path('out')) -> Optional[Path]: if default_build_dir.joinpath('build.ninja').exists(): return default_build_dir for path in default_build_dir.glob('**/build.ninja'): return path.parent for path in Path.cwd().glob('**/build.ninja'): return path.parent return None
def watch(default_build_targets: List[str], build_directories: List[str], patterns: str, ignore_patterns_string: str, exclude_list: List[Path], restart: bool): 'Watches files and runs Ninja commands when they change.' _LOG.info('Starting Pigweed build watcher') if (os.environ['PW_ROOT'] is None): _exit_due_to_pigweed_not_installed() pw_root = Path(os.environ['PW_ROOT']).resolve() if (Path.cwd().resolve() not in [pw_root, *pw_root.parents]): _exit_due_to_pigweed_not_installed() exclude_list += get_common_excludes() build_commands = [BuildCommand(Path(build_dir[0]), tuple(build_dir[1:])) for build_dir in build_directories] if (default_build_targets or (not build_directories)): build_dir = _find_build_dir() if (build_dir is None): _die("No build dirs found. Did you forget to run 'gn gen out'?") build_commands.append(BuildCommand(build_dir, tuple(default_build_targets))) for (i, build_target) in enumerate(build_commands, 1): if (not build_target.build_dir.is_dir()): _die("Build directory doesn't exist: %s", build_target) else: _LOG.info('Will build [%d/%d]: %s', i, len(build_commands), build_target) _LOG.debug('Patterns: %s', patterns) path_to_log = str(Path().resolve()).replace(str(Path.home()), '$HOME') ignore_patterns = (ignore_patterns_string.split(_WATCH_PATTERN_DELIMITER) if ignore_patterns_string else []) env = pw_cli.env.pigweed_environment() if env.PW_EMOJI: charset = _EMOJI_CHARSET else: charset = _ASCII_CHARSET event_handler = PigweedBuildWatcher(patterns=patterns.split(_WATCH_PATTERN_DELIMITER), ignore_patterns=ignore_patterns, build_commands=build_commands, charset=charset, restart=restart) try: _LOG.info('Attaching filesystem watcher to %s/...', path_to_log) observers = [] for (path, rec) in minimal_watch_directories(Path.cwd(), exclude_list): observer = Observer() observer.schedule(event_handler, str(path), recursive=rec) observer.start() observers.append(observer) event_handler.debouncer.press('Triggering initial build...') for observer in observers: while observer.is_alive(): observer.join(1) except (KeyboardInterrupt, EOFError): _exit_due_to_interrupt() except OSError as err: if (err.args[0] == _ERRNO_INOTIFY_LIMIT_REACHED): _exit_due_to_inotify_limit() else: raise err _LOG.critical('Should never get here') observer.join()
-2,830,571,198,471,650,300
Watches files and runs Ninja commands when they change.
pw_watch/py/pw_watch/watch.py
watch
isabella232/pigweed
python
def watch(default_build_targets: List[str], build_directories: List[str], patterns: str, ignore_patterns_string: str, exclude_list: List[Path], restart: bool): _LOG.info('Starting Pigweed build watcher') if (os.environ['PW_ROOT'] is None): _exit_due_to_pigweed_not_installed() pw_root = Path(os.environ['PW_ROOT']).resolve() if (Path.cwd().resolve() not in [pw_root, *pw_root.parents]): _exit_due_to_pigweed_not_installed() exclude_list += get_common_excludes() build_commands = [BuildCommand(Path(build_dir[0]), tuple(build_dir[1:])) for build_dir in build_directories] if (default_build_targets or (not build_directories)): build_dir = _find_build_dir() if (build_dir is None): _die("No build dirs found. Did you forget to run 'gn gen out'?") build_commands.append(BuildCommand(build_dir, tuple(default_build_targets))) for (i, build_target) in enumerate(build_commands, 1): if (not build_target.build_dir.is_dir()): _die("Build directory doesn't exist: %s", build_target) else: _LOG.info('Will build [%d/%d]: %s', i, len(build_commands), build_target) _LOG.debug('Patterns: %s', patterns) path_to_log = str(Path().resolve()).replace(str(Path.home()), '$HOME') ignore_patterns = (ignore_patterns_string.split(_WATCH_PATTERN_DELIMITER) if ignore_patterns_string else []) env = pw_cli.env.pigweed_environment() if env.PW_EMOJI: charset = _EMOJI_CHARSET else: charset = _ASCII_CHARSET event_handler = PigweedBuildWatcher(patterns=patterns.split(_WATCH_PATTERN_DELIMITER), ignore_patterns=ignore_patterns, build_commands=build_commands, charset=charset, restart=restart) try: _LOG.info('Attaching filesystem watcher to %s/...', path_to_log) observers = [] for (path, rec) in minimal_watch_directories(Path.cwd(), exclude_list): observer = Observer() observer.schedule(event_handler, str(path), recursive=rec) observer.start() observers.append(observer) event_handler.debouncer.press('Triggering initial build...') for observer in observers: while observer.is_alive(): observer.join(1) except (KeyboardInterrupt, EOFError): _exit_due_to_interrupt() except OSError as err: if (err.args[0] == _ERRNO_INOTIFY_LIMIT_REACHED): _exit_due_to_inotify_limit() else: raise err _LOG.critical('Should never get here') observer.join()
def main() -> None: 'Watch files for changes and rebuild.' parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) add_parser_arguments(parser) watch(**vars(parser.parse_args()))
5,897,164,643,106,543,000
Watch files for changes and rebuild.
pw_watch/py/pw_watch/watch.py
main
isabella232/pigweed
python
def main() -> None: parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) add_parser_arguments(parser) watch(**vars(parser.parse_args()))
def _path_matches(self, path: Path) -> bool: 'Returns true if path matches according to the watcher patterns' return ((not any((path.match(x) for x in self.ignore_patterns))) and any((path.match(x) for x in self.patterns)))
4,431,571,565,773,947,000
Returns true if path matches according to the watcher patterns
pw_watch/py/pw_watch/watch.py
_path_matches
isabella232/pigweed
python
def _path_matches(self, path: Path) -> bool: return ((not any((path.match(x) for x in self.ignore_patterns))) and any((path.match(x) for x in self.patterns)))
def run(self) -> None: 'Run all the builds in serial and capture pass/fail for each.' print('\x1bc', end='') print(pw_cli.branding.banner()) print(_COLOR.green(' Watching for changes. Ctrl-C to exit; enter to rebuild')) print() _LOG.info('Change detected: %s', self.matching_path) self.builds_succeeded = [] num_builds = len(self.build_commands) _LOG.info('Starting build with %d directories', num_builds) env = os.environ.copy() env['PW_USE_COLOR'] = '1' for (i, cmd) in enumerate(self.build_commands, 1): _LOG.info('[%d/%d] Starting build: %s', i, num_builds, cmd) print() self._current_build = subprocess.Popen(['ninja', '-C', *cmd.args()], env=env) returncode = self._current_build.wait() print() build_ok = (returncode == 0) if build_ok: level = logging.INFO tag = '(OK)' else: level = logging.ERROR tag = '(FAIL)' _LOG.log(level, '[%d/%d] Finished build: %s %s', i, num_builds, cmd, tag) self.builds_succeeded.append(build_ok)
-7,174,389,099,788,953,000
Run all the builds in serial and capture pass/fail for each.
pw_watch/py/pw_watch/watch.py
run
isabella232/pigweed
python
def run(self) -> None: print('\x1bc', end=) print(pw_cli.branding.banner()) print(_COLOR.green(' Watching for changes. Ctrl-C to exit; enter to rebuild')) print() _LOG.info('Change detected: %s', self.matching_path) self.builds_succeeded = [] num_builds = len(self.build_commands) _LOG.info('Starting build with %d directories', num_builds) env = os.environ.copy() env['PW_USE_COLOR'] = '1' for (i, cmd) in enumerate(self.build_commands, 1): _LOG.info('[%d/%d] Starting build: %s', i, num_builds, cmd) print() self._current_build = subprocess.Popen(['ninja', '-C', *cmd.args()], env=env) returncode = self._current_build.wait() print() build_ok = (returncode == 0) if build_ok: level = logging.INFO tag = '(OK)' else: level = logging.ERROR tag = '(FAIL)' _LOG.log(level, '[%d/%d] Finished build: %s %s', i, num_builds, cmd, tag) self.builds_succeeded.append(build_ok)
def _JsonValueToPythonValue(json_value): 'Convert the given JsonValue to a json string.' util.Typecheck(json_value, JsonValue) _ValidateJsonValue(json_value) if json_value.is_null: return None entries = [(f, json_value.get_assigned_value(f.name)) for f in json_value.all_fields()] assigned_entries = [(f, value) for (f, value) in entries if (value is not None)] (field, value) = assigned_entries[0] if (not isinstance(field, messages.MessageField)): return value elif (field.message_type is JsonObject): return _JsonObjectToPythonValue(value) elif (field.message_type is JsonArray): return _JsonArrayToPythonValue(value)
231,432,454,391,992,060
Convert the given JsonValue to a json string.
.install/.backup/lib/apitools/base/py/extra_types.py
_JsonValueToPythonValue
Technology-Hatchery/google-cloud-sdk
python
def _JsonValueToPythonValue(json_value): util.Typecheck(json_value, JsonValue) _ValidateJsonValue(json_value) if json_value.is_null: return None entries = [(f, json_value.get_assigned_value(f.name)) for f in json_value.all_fields()] assigned_entries = [(f, value) for (f, value) in entries if (value is not None)] (field, value) = assigned_entries[0] if (not isinstance(field, messages.MessageField)): return value elif (field.message_type is JsonObject): return _JsonObjectToPythonValue(value) elif (field.message_type is JsonArray): return _JsonArrayToPythonValue(value)
def _PythonValueToJsonValue(py_value): 'Convert the given python value to a JsonValue.' if (py_value is None): return JsonValue(is_null=True) if isinstance(py_value, bool): return JsonValue(boolean_value=py_value) if isinstance(py_value, basestring): return JsonValue(string_value=py_value) if isinstance(py_value, numbers.Number): if isinstance(py_value, (int, long)): if (_MININT64 < py_value < _MAXINT64): return JsonValue(integer_value=py_value) return JsonValue(double_value=float(py_value)) if isinstance(py_value, dict): return JsonValue(object_value=_PythonValueToJsonObject(py_value)) if isinstance(py_value, collections.Iterable): return JsonValue(array_value=_PythonValueToJsonArray(py_value)) raise exceptions.InvalidDataError(('Cannot convert "%s" to JsonValue' % py_value))
-8,058,865,423,543,755,000
Convert the given python value to a JsonValue.
.install/.backup/lib/apitools/base/py/extra_types.py
_PythonValueToJsonValue
Technology-Hatchery/google-cloud-sdk
python
def _PythonValueToJsonValue(py_value): if (py_value is None): return JsonValue(is_null=True) if isinstance(py_value, bool): return JsonValue(boolean_value=py_value) if isinstance(py_value, basestring): return JsonValue(string_value=py_value) if isinstance(py_value, numbers.Number): if isinstance(py_value, (int, long)): if (_MININT64 < py_value < _MAXINT64): return JsonValue(integer_value=py_value) return JsonValue(double_value=float(py_value)) if isinstance(py_value, dict): return JsonValue(object_value=_PythonValueToJsonObject(py_value)) if isinstance(py_value, collections.Iterable): return JsonValue(array_value=_PythonValueToJsonArray(py_value)) raise exceptions.InvalidDataError(('Cannot convert "%s" to JsonValue' % py_value))
def _EncodeInt64Field(field, value): 'Handle the special case of int64 as a string.' capabilities = [messages.Variant.INT64, messages.Variant.UINT64] if (field.variant not in capabilities): return encoding.CodecResult(value=value, complete=False) if field.repeated: result = [str(x) for x in value] else: result = str(value) return encoding.CodecResult(value=result, complete=True)
6,361,198,810,250,222,000
Handle the special case of int64 as a string.
.install/.backup/lib/apitools/base/py/extra_types.py
_EncodeInt64Field
Technology-Hatchery/google-cloud-sdk
python
def _EncodeInt64Field(field, value): capabilities = [messages.Variant.INT64, messages.Variant.UINT64] if (field.variant not in capabilities): return encoding.CodecResult(value=value, complete=False) if field.repeated: result = [str(x) for x in value] else: result = str(value) return encoding.CodecResult(value=result, complete=True)
def vmin(*vectors): '\n Retrieve the minimum out of an iterable of Vectors.\n\n Raises\n ------\n TypeError\n If there are two incomparable Vectors.\n ValueError\n If an empty sequence is supplied\n ' if (not all((isinstance(i, Vector) for i in vectors))): raise TypeError('Expected an iterable of Vectors') if (len(vectors) == 0): raise ValueError('min() arg is an empty sequence') ret = vectors[0] for i in vectors[1:]: if ((i < ret) or (i <= ret)): ret = i return ret
1,086,249,124,194,980,200
Retrieve the minimum out of an iterable of Vectors. Raises ------ TypeError If there are two incomparable Vectors. ValueError If an empty sequence is supplied
devito/ir/support/vector.py
vmin
rhodrin/devito
python
def vmin(*vectors): '\n Retrieve the minimum out of an iterable of Vectors.\n\n Raises\n ------\n TypeError\n If there are two incomparable Vectors.\n ValueError\n If an empty sequence is supplied\n ' if (not all((isinstance(i, Vector) for i in vectors))): raise TypeError('Expected an iterable of Vectors') if (len(vectors) == 0): raise ValueError('min() arg is an empty sequence') ret = vectors[0] for i in vectors[1:]: if ((i < ret) or (i <= ret)): ret = i return ret
def vmax(*vectors): '\n Retrieve the maximum out of an iterable of Vectors.\n\n Raises\n ------\n TypeError\n If there are two incomparable Vectors.\n ValueError\n If an empty sequence is supplied\n ' if (not all((isinstance(i, Vector) for i in vectors))): raise TypeError('Expected an iterable of Vectors') if (len(vectors) == 0): raise ValueError('min() arg is an empty sequence') ret = vectors[0] for i in vectors[1:]: if ((i > ret) or (i >= ret)): ret = i return ret
4,997,967,146,906,403,000
Retrieve the maximum out of an iterable of Vectors. Raises ------ TypeError If there are two incomparable Vectors. ValueError If an empty sequence is supplied
devito/ir/support/vector.py
vmax
rhodrin/devito
python
def vmax(*vectors): '\n Retrieve the maximum out of an iterable of Vectors.\n\n Raises\n ------\n TypeError\n If there are two incomparable Vectors.\n ValueError\n If an empty sequence is supplied\n ' if (not all((isinstance(i, Vector) for i in vectors))): raise TypeError('Expected an iterable of Vectors') if (len(vectors) == 0): raise ValueError('min() arg is an empty sequence') ret = vectors[0] for i in vectors[1:]: if ((i > ret) or (i >= ret)): ret = i return ret
def distance(self, other): '\n Compute the distance from ``self`` to ``other``.\n\n The distance is a reflexive, transitive, and anti-symmetric relation,\n which establishes a total ordering amongst Vectors.\n\n The distance is a function [Vector x Vector --> D]. D is a tuple of length\n equal to the Vector ``rank``. The i-th entry of D, D_i, indicates whether\n the i-th component of ``self``, self_i, precedes (< 0), equals (== 0), or\n succeeds (> 0) the i-th component of ``other``, other_i.\n\n In particular, the *absolute value* of D_i represents the number of\n integer points that exist between self_i and sink_i.\n\n Examples\n --------\n | 3 | | 1 | | 2 |\n source = | 2 | , sink = | 4 | , distance => | -2 |\n | 1 | | 5 | | -4 |\n\n There are 2, 2, and 4 points between [3-2], [2-4], and [1-5], respectively.\n ' return (self - other)
-7,095,503,812,526,716,000
Compute the distance from ``self`` to ``other``. The distance is a reflexive, transitive, and anti-symmetric relation, which establishes a total ordering amongst Vectors. The distance is a function [Vector x Vector --> D]. D is a tuple of length equal to the Vector ``rank``. The i-th entry of D, D_i, indicates whether the i-th component of ``self``, self_i, precedes (< 0), equals (== 0), or succeeds (> 0) the i-th component of ``other``, other_i. In particular, the *absolute value* of D_i represents the number of integer points that exist between self_i and sink_i. Examples -------- | 3 | | 1 | | 2 | source = | 2 | , sink = | 4 | , distance => | -2 | | 1 | | 5 | | -4 | There are 2, 2, and 4 points between [3-2], [2-4], and [1-5], respectively.
devito/ir/support/vector.py
distance
rhodrin/devito
python
def distance(self, other): '\n Compute the distance from ``self`` to ``other``.\n\n The distance is a reflexive, transitive, and anti-symmetric relation,\n which establishes a total ordering amongst Vectors.\n\n The distance is a function [Vector x Vector --> D]. D is a tuple of length\n equal to the Vector ``rank``. The i-th entry of D, D_i, indicates whether\n the i-th component of ``self``, self_i, precedes (< 0), equals (== 0), or\n succeeds (> 0) the i-th component of ``other``, other_i.\n\n In particular, the *absolute value* of D_i represents the number of\n integer points that exist between self_i and sink_i.\n\n Examples\n --------\n | 3 | | 1 | | 2 |\n source = | 2 | , sink = | 4 | , distance => | -2 |\n | 1 | | 5 | | -4 |\n\n There are 2, 2, and 4 points between [3-2], [2-4], and [1-5], respectively.\n ' return (self - other)
@classmethod def transpose(cls, *vectors): '\n Transpose a matrix represented as an iterable of homogeneous LabeledVectors.\n ' if (len(vectors) == 0): return LabeledVector() if (not all((isinstance(v, LabeledVector) for v in vectors))): raise ValueError(('All items must be of type LabeledVector, got [%s]' % ','.join((i.__class__.__name__ for i in vectors)))) T = OrderedDict() for v in vectors: for (l, i) in zip(v.labels, v): T.setdefault(l, []).append(i) return tuple(((l, Vector(*i)) for (l, i) in T.items()))
4,527,107,071,712,793,000
Transpose a matrix represented as an iterable of homogeneous LabeledVectors.
devito/ir/support/vector.py
transpose
rhodrin/devito
python
@classmethod def transpose(cls, *vectors): '\n \n ' if (len(vectors) == 0): return LabeledVector() if (not all((isinstance(v, LabeledVector) for v in vectors))): raise ValueError(('All items must be of type LabeledVector, got [%s]' % ','.join((i.__class__.__name__ for i in vectors)))) T = OrderedDict() for v in vectors: for (l, i) in zip(v.labels, v): T.setdefault(l, []).append(i) return tuple(((l, Vector(*i)) for (l, i) in T.items()))
@memoized_meth def distance(self, other): '\n Compute the distance from ``self`` to ``other``.\n\n Parameters\n ----------\n other : LabeledVector\n The LabeledVector from which the distance is computed.\n ' if (not isinstance(other, LabeledVector)): raise TypeError('Cannot compute distance from obj of type %s', type(other)) if (self.labels != other.labels): raise TypeError('Cannot compute distance due to mismatching `labels`') return LabeledVector(list(zip(self.labels, (self - other))))
7,381,341,259,469,386,000
Compute the distance from ``self`` to ``other``. Parameters ---------- other : LabeledVector The LabeledVector from which the distance is computed.
devito/ir/support/vector.py
distance
rhodrin/devito
python
@memoized_meth def distance(self, other): '\n Compute the distance from ``self`` to ``other``.\n\n Parameters\n ----------\n other : LabeledVector\n The LabeledVector from which the distance is computed.\n ' if (not isinstance(other, LabeledVector)): raise TypeError('Cannot compute distance from obj of type %s', type(other)) if (self.labels != other.labels): raise TypeError('Cannot compute distance due to mismatching `labels`') return LabeledVector(list(zip(self.labels, (self - other))))
def generate_bin(): 'Generate bin files.' parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Data dir') parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training') parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation') parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test') parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='Result path') args = parser.parse_args() (feature, biases, _, _, _, _, y_test, test_mask) = load_and_process(args.data_dir, args.train_nodes_num, args.eval_nodes_num, args.test_nodes_num) feature_path = os.path.join(args.result_path, '00_data') biases_path = os.path.join(args.result_path, '01_data') y_test_path = os.path.join(args.result_path, 'y_test.npy') test_mask_path = os.path.join(args.result_path, 'test_mask.npy') os.makedirs(feature_path) os.makedirs(biases_path) feature.tofile(os.path.join(feature_path, 'feature.bin')) biases.tofile(os.path.join(biases_path, 'biases.bin')) np.save(y_test_path, y_test) np.save(test_mask_path, test_mask)
-6,830,304,606,836,681,000
Generate bin files.
model_zoo/official/gnn/gat/preprocess.py
generate_bin
233-puchi/mindspore
python
def generate_bin(): parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Data dir') parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training') parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation') parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test') parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='Result path') args = parser.parse_args() (feature, biases, _, _, _, _, y_test, test_mask) = load_and_process(args.data_dir, args.train_nodes_num, args.eval_nodes_num, args.test_nodes_num) feature_path = os.path.join(args.result_path, '00_data') biases_path = os.path.join(args.result_path, '01_data') y_test_path = os.path.join(args.result_path, 'y_test.npy') test_mask_path = os.path.join(args.result_path, 'test_mask.npy') os.makedirs(feature_path) os.makedirs(biases_path) feature.tofile(os.path.join(feature_path, 'feature.bin')) biases.tofile(os.path.join(biases_path, 'biases.bin')) np.save(y_test_path, y_test) np.save(test_mask_path, test_mask)
def test_encode_nibbles_variable_over_max() -> None: 'Variable field length is over maximum allowed' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': '1234'} with pytest.raises(iso8583.EncodeError, match='Field data is 8 nibbles, larger than maximum 4: field 2'): iso8583.encode(decoded, spec=spec)
-3,900,687,380,426,086,400
Variable field length is over maximum allowed
tests/test_nibbles.py
test_encode_nibbles_variable_over_max
knovichikhin/pyiso8583
python
def test_encode_nibbles_variable_over_max() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': '1234'} with pytest.raises(iso8583.EncodeError, match='Field data is 8 nibbles, larger than maximum 4: field 2'): iso8583.encode(decoded, spec=spec)
def test_encode_nibbles_fixed_partial() -> None: 'Fixed field is provided partially' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': '1'} with pytest.raises(iso8583.EncodeError, match='Field data is 2 nibbles, expecting 4: field 2'): iso8583.encode(decoded, spec=spec)
6,831,563,969,507,959,000
Fixed field is provided partially
tests/test_nibbles.py
test_encode_nibbles_fixed_partial
knovichikhin/pyiso8583
python
def test_encode_nibbles_fixed_partial() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': '1'} with pytest.raises(iso8583.EncodeError, match='Field data is 2 nibbles, expecting 4: field 2'): iso8583.encode(decoded, spec=spec)
def test_encode_nibbles_fixed_missing() -> None: 'Fixed field is missing' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': ''} with pytest.raises(iso8583.EncodeError, match='Field data is 0 nibbles, expecting 4: field 2'): iso8583.encode(decoded, spec=spec)
-2,089,517,104,892,656,000
Fixed field is missing
tests/test_nibbles.py
test_encode_nibbles_fixed_missing
knovichikhin/pyiso8583
python
def test_encode_nibbles_fixed_missing() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' decoded = {'t': '0200', '2': } with pytest.raises(iso8583.EncodeError, match='Field data is 0 nibbles, expecting 4: field 2'): iso8583.encode(decoded, spec=spec)
def test_decode_nibbles_variable_over_max() -> None: 'Variable field length is over maximum allowed' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000081234' with pytest.raises(iso8583.DecodeError, match='Field data is 8 nibbles, larger than maximum 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
-2,357,995,680,247,013,000
Variable field length is over maximum allowed
tests/test_nibbles.py
test_decode_nibbles_variable_over_max
knovichikhin/pyiso8583
python
def test_decode_nibbles_variable_over_max() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000081234' with pytest.raises(iso8583.DecodeError, match='Field data is 8 nibbles, larger than maximum 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
def test_decode_nibbles_variable_partial() -> None: 'Variable field is provided partially' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000041' with pytest.raises(iso8583.DecodeError, match='Field data is 2 nibbles, expecting 4: field 2 pos 22'): iso8583.decode(s, spec=spec)
3,606,540,515,098,440,700
Variable field is provided partially
tests/test_nibbles.py
test_decode_nibbles_variable_partial
knovichikhin/pyiso8583
python
def test_decode_nibbles_variable_partial() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000041' with pytest.raises(iso8583.DecodeError, match='Field data is 2 nibbles, expecting 4: field 2 pos 22'): iso8583.decode(s, spec=spec)
def test_decode_nibbles_variable_missing() -> None: 'Variable field is missing' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'0200400000000000000004' with pytest.raises(iso8583.DecodeError, match='Field data is 0 nibbles, expecting 4: field 2 pos 22'): iso8583.decode(s, spec=spec)
-7,780,357,992,181,737,000
Variable field is missing
tests/test_nibbles.py
test_decode_nibbles_variable_missing
knovichikhin/pyiso8583
python
def test_decode_nibbles_variable_missing() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 2 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'0200400000000000000004' with pytest.raises(iso8583.DecodeError, match='Field data is 0 nibbles, expecting 4: field 2 pos 22'): iso8583.decode(s, spec=spec)
def test_decode_nibbles_fixed_partial() -> None: 'Fixed field is provided partially' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'020040000000000000001' with pytest.raises(iso8583.DecodeError, match='Field data is 2 nibbles, expecting 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
-8,831,870,260,704,048,000
Fixed field is provided partially
tests/test_nibbles.py
test_decode_nibbles_fixed_partial
knovichikhin/pyiso8583
python
def test_decode_nibbles_fixed_partial() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'020040000000000000001' with pytest.raises(iso8583.DecodeError, match='Field data is 2 nibbles, expecting 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
def test_decode_nibbles_fixed_missing() -> None: 'Fixed field is missing' spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000' with pytest.raises(iso8583.DecodeError, match='Field data is 0 nibbles, expecting 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
7,520,147,214,975,566,000
Fixed field is missing
tests/test_nibbles.py
test_decode_nibbles_fixed_missing
knovichikhin/pyiso8583
python
def test_decode_nibbles_fixed_missing() -> None: spec = copy.deepcopy(iso8583.specs.default) spec['t']['data_enc'] = 'ascii' spec['p']['data_enc'] = 'ascii' spec['2']['data_enc'] = 'ascii' spec['2']['len_enc'] = 'ascii' spec['2']['len_type'] = 0 spec['2']['max_len'] = 4 spec['2']['len_count'] = 'nibbles' s = b'02004000000000000000' with pytest.raises(iso8583.DecodeError, match='Field data is 0 nibbles, expecting 4: field 2 pos 20'): iso8583.decode(s, spec=spec)
@property def energy_thresh_lo(self): 'Low energy threshold' return (self.meta['LO_THRES'] * u.TeV)
-6,215,233,484,041,799,000
Low energy threshold
gammapy/irf/psf/gauss.py
energy_thresh_lo
mdebony/gammapy
python
@property def energy_thresh_lo(self): return (self.meta['LO_THRES'] * u.TeV)
@property def energy_thresh_hi(self): 'High energy threshold' return (self.meta['HI_THRES'] * u.TeV)
4,512,721,132,327,294,000
High energy threshold
gammapy/irf/psf/gauss.py
energy_thresh_hi
mdebony/gammapy
python
@property def energy_thresh_hi(self): return (self.meta['HI_THRES'] * u.TeV)
@classmethod def read(cls, filename, hdu='PSF_2D_GAUSS'): 'Create `EnergyDependentMultiGaussPSF` from FITS file.\n\n Parameters\n ----------\n filename : str\n File name\n ' with fits.open(str(make_path(filename)), memmap=False) as hdulist: return cls.from_table_hdu(hdulist[hdu])
-1,094,260,843,814,858,400
Create `EnergyDependentMultiGaussPSF` from FITS file. Parameters ---------- filename : str File name
gammapy/irf/psf/gauss.py
read
mdebony/gammapy
python
@classmethod def read(cls, filename, hdu='PSF_2D_GAUSS'): 'Create `EnergyDependentMultiGaussPSF` from FITS file.\n\n Parameters\n ----------\n filename : str\n File name\n ' with fits.open(str(make_path(filename)), memmap=False) as hdulist: return cls.from_table_hdu(hdulist[hdu])
@classmethod def from_table_hdu(cls, hdu): 'Create `EnergyDependentMultiGaussPSF` from HDU list.\n\n Parameters\n ----------\n hdu : `~astropy.io.fits.BinTableHDU`\n HDU\n ' table = Table.read(hdu) energy_axis_true = MapAxis.from_table(table, column_prefix='ENERG', format='gadf-dl3') offset_axis = MapAxis.from_table(table, column_prefix='THETA', format='gadf-dl3') shape = (offset_axis.nbin, energy_axis_true.nbin) sigmas = [] for key in ['SIGMA_1', 'SIGMA_2', 'SIGMA_3']: sigma = hdu.data[key].reshape(shape).copy() sigmas.append(sigma) norms = [] for key in ['SCALE', 'AMPL_2', 'AMPL_3']: norm = hdu.data[key].reshape(shape).copy() norms.append(norm) return cls(energy_axis_true=energy_axis_true, offset_axis=offset_axis, sigmas=sigmas, norms=norms, meta=dict(hdu.header))
-4,669,775,591,258,652,000
Create `EnergyDependentMultiGaussPSF` from HDU list. Parameters ---------- hdu : `~astropy.io.fits.BinTableHDU` HDU
gammapy/irf/psf/gauss.py
from_table_hdu
mdebony/gammapy
python
@classmethod def from_table_hdu(cls, hdu): 'Create `EnergyDependentMultiGaussPSF` from HDU list.\n\n Parameters\n ----------\n hdu : `~astropy.io.fits.BinTableHDU`\n HDU\n ' table = Table.read(hdu) energy_axis_true = MapAxis.from_table(table, column_prefix='ENERG', format='gadf-dl3') offset_axis = MapAxis.from_table(table, column_prefix='THETA', format='gadf-dl3') shape = (offset_axis.nbin, energy_axis_true.nbin) sigmas = [] for key in ['SIGMA_1', 'SIGMA_2', 'SIGMA_3']: sigma = hdu.data[key].reshape(shape).copy() sigmas.append(sigma) norms = [] for key in ['SCALE', 'AMPL_2', 'AMPL_3']: norm = hdu.data[key].reshape(shape).copy() norms.append(norm) return cls(energy_axis_true=energy_axis_true, offset_axis=offset_axis, sigmas=sigmas, norms=norms, meta=dict(hdu.header))
def to_hdulist(self): '\n Convert psf table data to FITS hdu list.\n\n Returns\n -------\n hdu_list : `~astropy.io.fits.HDUList`\n PSF in HDU list format.\n ' names = ['SCALE', 'SIGMA_1', 'AMPL_2', 'SIGMA_2', 'AMPL_3', 'SIGMA_3'] units = ['', 'deg', '', 'deg', '', 'deg'] data = [self.norms[0], self.sigmas[0], self.norms[1], self.sigmas[1], self.norms[2], self.sigmas[2]] axes = MapAxes([self.energy_axis_true, self.offset_axis]) table = axes.to_table(format='gadf-dl3') for (name_, data_, unit_) in zip(names, data, units): table[name_] = [data_] table[name_].unit = unit_ hdu = fits.BinTableHDU(table) hdu.header.update(self.meta) return fits.HDUList([fits.PrimaryHDU(), hdu])
-3,263,587,897,682,827,300
Convert psf table data to FITS hdu list. Returns ------- hdu_list : `~astropy.io.fits.HDUList` PSF in HDU list format.
gammapy/irf/psf/gauss.py
to_hdulist
mdebony/gammapy
python
def to_hdulist(self): '\n Convert psf table data to FITS hdu list.\n\n Returns\n -------\n hdu_list : `~astropy.io.fits.HDUList`\n PSF in HDU list format.\n ' names = ['SCALE', 'SIGMA_1', 'AMPL_2', 'SIGMA_2', 'AMPL_3', 'SIGMA_3'] units = [, 'deg', , 'deg', , 'deg'] data = [self.norms[0], self.sigmas[0], self.norms[1], self.sigmas[1], self.norms[2], self.sigmas[2]] axes = MapAxes([self.energy_axis_true, self.offset_axis]) table = axes.to_table(format='gadf-dl3') for (name_, data_, unit_) in zip(names, data, units): table[name_] = [data_] table[name_].unit = unit_ hdu = fits.BinTableHDU(table) hdu.header.update(self.meta) return fits.HDUList([fits.PrimaryHDU(), hdu])
def write(self, filename, *args, **kwargs): 'Write PSF to FITS file.\n\n Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments.\n ' self.to_hdulist().writeto(str(make_path(filename)), *args, **kwargs)
2,628,976,963,919,575,000
Write PSF to FITS file. Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments.
gammapy/irf/psf/gauss.py
write
mdebony/gammapy
python
def write(self, filename, *args, **kwargs): 'Write PSF to FITS file.\n\n Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments.\n ' self.to_hdulist().writeto(str(make_path(filename)), *args, **kwargs)
def psf_at_energy_and_theta(self, energy, theta): '\n Get `~gammapy.modeling.models.MultiGauss2D` model for given energy and theta.\n\n No interpolation is used.\n\n Parameters\n ----------\n energy : `~astropy.units.u.Quantity`\n Energy at which a PSF is requested.\n theta : `~astropy.coordinates.Angle`\n Offset angle at which a PSF is requested.\n\n Returns\n -------\n psf : `~gammapy.utils.gauss.MultiGauss2D`\n Multigauss PSF object.\n ' energy = u.Quantity(energy) theta = u.Quantity(theta) (sigmas, norms) = ([], []) pars = {'A_1': 1} for interp_sigma in self._interp_sigmas: sigma = interp_sigma((theta, energy)) sigmas.append(sigma) for (name, interp_norm) in zip(['scale', 'A_2', 'A_3'], self._interp_norms): pars[name] = interp_norm((theta, energy)) for (idx, sigma) in enumerate(sigmas): a = pars[f'A_{(idx + 1)}'] norm = (((pars['scale'] * 2) * a) * (sigma ** 2)) norms.append(norm) m = MultiGauss2D(sigmas, norms) m.normalize() return m
6,419,885,130,308,105,000
Get `~gammapy.modeling.models.MultiGauss2D` model for given energy and theta. No interpolation is used. Parameters ---------- energy : `~astropy.units.u.Quantity` Energy at which a PSF is requested. theta : `~astropy.coordinates.Angle` Offset angle at which a PSF is requested. Returns ------- psf : `~gammapy.utils.gauss.MultiGauss2D` Multigauss PSF object.
gammapy/irf/psf/gauss.py
psf_at_energy_and_theta
mdebony/gammapy
python
def psf_at_energy_and_theta(self, energy, theta): '\n Get `~gammapy.modeling.models.MultiGauss2D` model for given energy and theta.\n\n No interpolation is used.\n\n Parameters\n ----------\n energy : `~astropy.units.u.Quantity`\n Energy at which a PSF is requested.\n theta : `~astropy.coordinates.Angle`\n Offset angle at which a PSF is requested.\n\n Returns\n -------\n psf : `~gammapy.utils.gauss.MultiGauss2D`\n Multigauss PSF object.\n ' energy = u.Quantity(energy) theta = u.Quantity(theta) (sigmas, norms) = ([], []) pars = {'A_1': 1} for interp_sigma in self._interp_sigmas: sigma = interp_sigma((theta, energy)) sigmas.append(sigma) for (name, interp_norm) in zip(['scale', 'A_2', 'A_3'], self._interp_norms): pars[name] = interp_norm((theta, energy)) for (idx, sigma) in enumerate(sigmas): a = pars[f'A_{(idx + 1)}'] norm = (((pars['scale'] * 2) * a) * (sigma ** 2)) norms.append(norm) m = MultiGauss2D(sigmas, norms) m.normalize() return m
def containment_radius(self, energy, theta, fraction=0.68): 'Compute containment for all energy and theta values' energies = u.Quantity(energy).flatten() thetas = Angle(theta).flatten() radius = np.empty((theta.size, energy.size)) for (idx, energy) in enumerate(energies): for (jdx, theta) in enumerate(thetas): try: psf = self.psf_at_energy_and_theta(energy, theta) radius[(jdx, idx)] = psf.containment_radius(fraction) except ValueError: log.debug(f'Computing containment failed for energy = {energy:.2f} and theta={theta:.2f}') log.debug(f'Sigmas: {psf.sigmas} Norms: {psf.norms}') radius[(jdx, idx)] = np.nan return Angle(radius, 'deg')
2,057,220,733,141,044,700
Compute containment for all energy and theta values
gammapy/irf/psf/gauss.py
containment_radius
mdebony/gammapy
python
def containment_radius(self, energy, theta, fraction=0.68): energies = u.Quantity(energy).flatten() thetas = Angle(theta).flatten() radius = np.empty((theta.size, energy.size)) for (idx, energy) in enumerate(energies): for (jdx, theta) in enumerate(thetas): try: psf = self.psf_at_energy_and_theta(energy, theta) radius[(jdx, idx)] = psf.containment_radius(fraction) except ValueError: log.debug(f'Computing containment failed for energy = {energy:.2f} and theta={theta:.2f}') log.debug(f'Sigmas: {psf.sigmas} Norms: {psf.norms}') radius[(jdx, idx)] = np.nan return Angle(radius, 'deg')
def plot_containment(self, fraction=0.68, ax=None, add_cbar=True, **kwargs): '\n Plot containment image with energy and theta axes.\n\n Parameters\n ----------\n fraction : float\n Containment fraction between 0 and 1.\n add_cbar : bool\n Add a colorbar\n ' import matplotlib.pyplot as plt ax = (plt.gca() if (ax is None) else ax) energy = self.energy_axis_true.center offset = self.offset_axis.center containment = self.containment_radius(energy, offset, fraction) kwargs.setdefault('cmap', 'GnBu') kwargs.setdefault('vmin', np.nanmin(containment.value)) kwargs.setdefault('vmax', np.nanmax(containment.value)) x = energy.value y = offset.value caxes = ax.pcolormesh(x, y, containment.value, **kwargs) ax.semilogx() ax.set_ylabel(f'Offset ({offset.unit})') ax.set_xlabel(f'Energy ({energy.unit})') ax.set_xlim(x.min(), x.max()) ax.set_ylim(y.min(), y.max()) try: self._plot_safe_energy_range(ax) except KeyError: pass if add_cbar: label = f'Containment radius R{(100 * fraction):.0f} ({containment.unit})' ax.figure.colorbar(caxes, ax=ax, label=label) return ax
-2,834,756,856,326,981,600
Plot containment image with energy and theta axes. Parameters ---------- fraction : float Containment fraction between 0 and 1. add_cbar : bool Add a colorbar
gammapy/irf/psf/gauss.py
plot_containment
mdebony/gammapy
python
def plot_containment(self, fraction=0.68, ax=None, add_cbar=True, **kwargs): '\n Plot containment image with energy and theta axes.\n\n Parameters\n ----------\n fraction : float\n Containment fraction between 0 and 1.\n add_cbar : bool\n Add a colorbar\n ' import matplotlib.pyplot as plt ax = (plt.gca() if (ax is None) else ax) energy = self.energy_axis_true.center offset = self.offset_axis.center containment = self.containment_radius(energy, offset, fraction) kwargs.setdefault('cmap', 'GnBu') kwargs.setdefault('vmin', np.nanmin(containment.value)) kwargs.setdefault('vmax', np.nanmax(containment.value)) x = energy.value y = offset.value caxes = ax.pcolormesh(x, y, containment.value, **kwargs) ax.semilogx() ax.set_ylabel(f'Offset ({offset.unit})') ax.set_xlabel(f'Energy ({energy.unit})') ax.set_xlim(x.min(), x.max()) ax.set_ylim(y.min(), y.max()) try: self._plot_safe_energy_range(ax) except KeyError: pass if add_cbar: label = f'Containment radius R{(100 * fraction):.0f} ({containment.unit})' ax.figure.colorbar(caxes, ax=ax, label=label) return ax
def _plot_safe_energy_range(self, ax): 'add safe energy range lines to the plot' esafe = self.energy_thresh_lo omin = self.offset_axis.center.min() omax = self.offset_axis.center.max() ax.vlines(x=esafe.value, ymin=omin.value, ymax=omax.value) label = f'Safe energy threshold: {esafe:3.2f}' ax.text(x=(1.1 * esafe.value), y=0.3, s=label, va='top')
1,833,843,675,341,529,300
add safe energy range lines to the plot
gammapy/irf/psf/gauss.py
_plot_safe_energy_range
mdebony/gammapy
python
def _plot_safe_energy_range(self, ax): esafe = self.energy_thresh_lo omin = self.offset_axis.center.min() omax = self.offset_axis.center.max() ax.vlines(x=esafe.value, ymin=omin.value, ymax=omax.value) label = f'Safe energy threshold: {esafe:3.2f}' ax.text(x=(1.1 * esafe.value), y=0.3, s=label, va='top')
def plot_containment_vs_energy(self, fractions=[0.68, 0.95], thetas=Angle([0, 1], 'deg'), ax=None, **kwargs): 'Plot containment fraction as a function of energy.\n ' import matplotlib.pyplot as plt ax = (plt.gca() if (ax is None) else ax) energy = self.energy_axis_true.center for theta in thetas: for fraction in fractions: radius = self.containment_radius(energy, theta, fraction).squeeze() kwargs.setdefault('label', f'{theta.deg} deg, {(100 * fraction):.1f}%') ax.plot(energy.value, radius.value, **kwargs) ax.semilogx() ax.legend(loc='best') ax.set_xlabel('Energy (TeV)') ax.set_ylabel('Containment radius (deg)')
-9,218,549,933,889,060,000
Plot containment fraction as a function of energy.
gammapy/irf/psf/gauss.py
plot_containment_vs_energy
mdebony/gammapy
python
def plot_containment_vs_energy(self, fractions=[0.68, 0.95], thetas=Angle([0, 1], 'deg'), ax=None, **kwargs): '\n ' import matplotlib.pyplot as plt ax = (plt.gca() if (ax is None) else ax) energy = self.energy_axis_true.center for theta in thetas: for fraction in fractions: radius = self.containment_radius(energy, theta, fraction).squeeze() kwargs.setdefault('label', f'{theta.deg} deg, {(100 * fraction):.1f}%') ax.plot(energy.value, radius.value, **kwargs) ax.semilogx() ax.legend(loc='best') ax.set_xlabel('Energy (TeV)') ax.set_ylabel('Containment radius (deg)')
def peek(self, figsize=(15, 5)): 'Quick-look summary plots.' import matplotlib.pyplot as plt (fig, axes) = plt.subplots(nrows=1, ncols=3, figsize=figsize) self.plot_containment(fraction=0.68, ax=axes[0]) self.plot_containment(fraction=0.95, ax=axes[1]) self.plot_containment_vs_energy(ax=axes[2]) plt.tight_layout()
4,996,040,905,371,016,000
Quick-look summary plots.
gammapy/irf/psf/gauss.py
peek
mdebony/gammapy
python
def peek(self, figsize=(15, 5)): import matplotlib.pyplot as plt (fig, axes) = plt.subplots(nrows=1, ncols=3, figsize=figsize) self.plot_containment(fraction=0.68, ax=axes[0]) self.plot_containment(fraction=0.95, ax=axes[1]) self.plot_containment_vs_energy(ax=axes[2]) plt.tight_layout()
def info(self, fractions=[0.68, 0.95], energies=u.Quantity([1.0, 10.0], 'TeV'), thetas=u.Quantity([0.0], 'deg')): '\n Print PSF summary info.\n\n The containment radius for given fraction, energies and thetas is\n computed and printed on the command line.\n\n Parameters\n ----------\n fractions : list\n Containment fraction to compute containment radius for.\n energies : `~astropy.units.u.Quantity`\n Energies to compute containment radius for.\n thetas : `~astropy.units.u.Quantity`\n Thetas to compute containment radius for.\n\n Returns\n -------\n ss : string\n Formatted string containing the summary info.\n ' ss = '\nSummary PSF info\n' ss += '----------------\n' ss += array_stats_str(self.offset_axis.center.to('deg'), 'Theta') ss += array_stats_str(self.energy_axis_true.edges[1:], 'Energy hi') ss += array_stats_str(self.energy_axis_true.edges[:(- 1)], 'Energy lo') ss += f'''Safe energy threshold lo: {self.energy_thresh_lo:6.3f} ''' ss += f'''Safe energy threshold hi: {self.energy_thresh_hi:6.3f} ''' for fraction in fractions: containment = self.containment_radius(energies, thetas, fraction) for (i, energy) in enumerate(energies): for (j, theta) in enumerate(thetas): radius = containment[(j, i)] ss += '{:2.0f}% containment radius at theta = {} and E = {:4.1f}: {:5.8f}\n'.format((100 * fraction), theta, energy, radius) return ss
-5,399,679,831,764,795,000
Print PSF summary info. The containment radius for given fraction, energies and thetas is computed and printed on the command line. Parameters ---------- fractions : list Containment fraction to compute containment radius for. energies : `~astropy.units.u.Quantity` Energies to compute containment radius for. thetas : `~astropy.units.u.Quantity` Thetas to compute containment radius for. Returns ------- ss : string Formatted string containing the summary info.
gammapy/irf/psf/gauss.py
info
mdebony/gammapy
python
def info(self, fractions=[0.68, 0.95], energies=u.Quantity([1.0, 10.0], 'TeV'), thetas=u.Quantity([0.0], 'deg')): '\n Print PSF summary info.\n\n The containment radius for given fraction, energies and thetas is\n computed and printed on the command line.\n\n Parameters\n ----------\n fractions : list\n Containment fraction to compute containment radius for.\n energies : `~astropy.units.u.Quantity`\n Energies to compute containment radius for.\n thetas : `~astropy.units.u.Quantity`\n Thetas to compute containment radius for.\n\n Returns\n -------\n ss : string\n Formatted string containing the summary info.\n ' ss = '\nSummary PSF info\n' ss += '----------------\n' ss += array_stats_str(self.offset_axis.center.to('deg'), 'Theta') ss += array_stats_str(self.energy_axis_true.edges[1:], 'Energy hi') ss += array_stats_str(self.energy_axis_true.edges[:(- 1)], 'Energy lo') ss += f'Safe energy threshold lo: {self.energy_thresh_lo:6.3f} ' ss += f'Safe energy threshold hi: {self.energy_thresh_hi:6.3f} ' for fraction in fractions: containment = self.containment_radius(energies, thetas, fraction) for (i, energy) in enumerate(energies): for (j, theta) in enumerate(thetas): radius = containment[(j, i)] ss += '{:2.0f}% containment radius at theta = {} and E = {:4.1f}: {:5.8f}\n'.format((100 * fraction), theta, energy, radius) return ss
def to_energy_dependent_table_psf(self, theta=None, rad=None, exposure=None): "Convert triple Gaussian PSF ot table PSF.\n\n Parameters\n ----------\n theta : `~astropy.coordinates.Angle`\n Offset in the field of view. Default theta = 0 deg\n rad : `~astropy.coordinates.Angle`\n Offset from PSF center used for evaluating the PSF on a grid.\n Default offset = [0, 0.005, ..., 1.495, 1.5] deg.\n exposure : `~astropy.units.u.Quantity`\n Energy dependent exposure. Should be in units equivalent to 'cm^2 s'.\n Default exposure = 1.\n\n Returns\n -------\n tabe_psf : `~gammapy.irf.EnergyDependentTablePSF`\n Instance of `EnergyDependentTablePSF`.\n " energies = self.energy_axis_true.center if (theta is None): theta = Angle(0, 'deg') else: theta = Angle(theta) if (rad is None): rad = Angle(np.arange(0, 1.5, 0.005), 'deg') rad_axis = MapAxis.from_nodes(rad, name='rad') psf_value = u.Quantity(np.zeros((energies.size, rad.size)), 'deg^-2') for (idx, energy) in enumerate(energies): psf_gauss = self.psf_at_energy_and_theta(energy, theta) psf_value[idx] = u.Quantity(psf_gauss(rad), 'deg^-2') return EnergyDependentTablePSF(energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, exposure=exposure, data=psf_value)
-273,039,063,780,967,460
Convert triple Gaussian PSF ot table PSF. Parameters ---------- theta : `~astropy.coordinates.Angle` Offset in the field of view. Default theta = 0 deg rad : `~astropy.coordinates.Angle` Offset from PSF center used for evaluating the PSF on a grid. Default offset = [0, 0.005, ..., 1.495, 1.5] deg. exposure : `~astropy.units.u.Quantity` Energy dependent exposure. Should be in units equivalent to 'cm^2 s'. Default exposure = 1. Returns ------- tabe_psf : `~gammapy.irf.EnergyDependentTablePSF` Instance of `EnergyDependentTablePSF`.
gammapy/irf/psf/gauss.py
to_energy_dependent_table_psf
mdebony/gammapy
python
def to_energy_dependent_table_psf(self, theta=None, rad=None, exposure=None): "Convert triple Gaussian PSF ot table PSF.\n\n Parameters\n ----------\n theta : `~astropy.coordinates.Angle`\n Offset in the field of view. Default theta = 0 deg\n rad : `~astropy.coordinates.Angle`\n Offset from PSF center used for evaluating the PSF on a grid.\n Default offset = [0, 0.005, ..., 1.495, 1.5] deg.\n exposure : `~astropy.units.u.Quantity`\n Energy dependent exposure. Should be in units equivalent to 'cm^2 s'.\n Default exposure = 1.\n\n Returns\n -------\n tabe_psf : `~gammapy.irf.EnergyDependentTablePSF`\n Instance of `EnergyDependentTablePSF`.\n " energies = self.energy_axis_true.center if (theta is None): theta = Angle(0, 'deg') else: theta = Angle(theta) if (rad is None): rad = Angle(np.arange(0, 1.5, 0.005), 'deg') rad_axis = MapAxis.from_nodes(rad, name='rad') psf_value = u.Quantity(np.zeros((energies.size, rad.size)), 'deg^-2') for (idx, energy) in enumerate(energies): psf_gauss = self.psf_at_energy_and_theta(energy, theta) psf_value[idx] = u.Quantity(psf_gauss(rad), 'deg^-2') return EnergyDependentTablePSF(energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, exposure=exposure, data=psf_value)
def to_psf3d(self, rad=None): 'Create a PSF3D from an analytical PSF.\n\n Parameters\n ----------\n rad : `~astropy.units.u.Quantity` or `~astropy.coordinates.Angle`\n the array of position errors (rad) on which the PSF3D will be defined\n\n Returns\n -------\n psf3d : `~gammapy.irf.PSF3D`\n the PSF3D. It will be defined on the same energy and offset values than the input psf.\n ' offsets = self.offset_axis.center energy = self.energy_axis_true.center if (rad is None): rad = (np.linspace(0, 0.66, 67) * u.deg) rad_axis = MapAxis.from_edges(rad, name='rad') shape = (self.energy_axis_true.nbin, self.offset_axis.nbin, rad_axis.nbin) psf_value = (np.zeros(shape) * u.Unit('sr-1')) for (idx, offset) in enumerate(offsets): table_psf = self.to_energy_dependent_table_psf(offset) psf_value[:, idx, :] = table_psf.evaluate(energy, rad_axis.center) return PSF3D(energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, offset_axis=self.offset_axis, data=psf_value, meta=self.meta.copy())
-6,570,291,098,575,002,000
Create a PSF3D from an analytical PSF. Parameters ---------- rad : `~astropy.units.u.Quantity` or `~astropy.coordinates.Angle` the array of position errors (rad) on which the PSF3D will be defined Returns ------- psf3d : `~gammapy.irf.PSF3D` the PSF3D. It will be defined on the same energy and offset values than the input psf.
gammapy/irf/psf/gauss.py
to_psf3d
mdebony/gammapy
python
def to_psf3d(self, rad=None): 'Create a PSF3D from an analytical PSF.\n\n Parameters\n ----------\n rad : `~astropy.units.u.Quantity` or `~astropy.coordinates.Angle`\n the array of position errors (rad) on which the PSF3D will be defined\n\n Returns\n -------\n psf3d : `~gammapy.irf.PSF3D`\n the PSF3D. It will be defined on the same energy and offset values than the input psf.\n ' offsets = self.offset_axis.center energy = self.energy_axis_true.center if (rad is None): rad = (np.linspace(0, 0.66, 67) * u.deg) rad_axis = MapAxis.from_edges(rad, name='rad') shape = (self.energy_axis_true.nbin, self.offset_axis.nbin, rad_axis.nbin) psf_value = (np.zeros(shape) * u.Unit('sr-1')) for (idx, offset) in enumerate(offsets): table_psf = self.to_energy_dependent_table_psf(offset) psf_value[:, idx, :] = table_psf.evaluate(energy, rad_axis.center) return PSF3D(energy_axis_true=self.energy_axis_true, rad_axis=rad_axis, offset_axis=self.offset_axis, data=psf_value, meta=self.meta.copy())
def read_model(model_path, weigths_path): 'Load your pretrained model\n\t' model = model_from_json(open(model_path).read()) model.load_weights(weigths_path) return model
-8,900,926,367,652,668,000
Load your pretrained model
demo.py
read_model
ijinmao/CAM-Localization
python
def read_model(model_path, weigths_path): '\n\t' model = model_from_json(open(model_path).read()) model.load_weights(weigths_path) return model
def train_cam_model(X_train, Y_train, X_test, Y_test, batch_size, nb_epoch): 'Train CAM model based on your pretrained model\n\n\t# Arguments\n\t\tmodel: your pretrained model, CAM model is trained based on this model.\n\n\t' pretrained_model_path = '' pretrained_weights_path = '' pretrained_model_name = 'VGG16' num_classes = 10 gap_spacial_size = 14 if (pretrained_model_name == 'VGG16'): in_layer_name = 'block5_conv3' elif (pretrained_model_name == 'InceptionV3'): in_layer_name = 'batchnormalization_921' elif (pretrained_model_name == 'ResNet50'): in_layer_name = 'merge_13' else: in_layer_name = '' pretrained_model = read_model(pretrained_model_path, pretrained_weights_path) model = create_cam_model(pretrained_model, gap_spacial_size, num_classes, in_layer_name, CAM_CONV_LAYER) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_test, Y_test)) model.save_weights('') return model
8,713,368,420,113,241,000
Train CAM model based on your pretrained model # Arguments model: your pretrained model, CAM model is trained based on this model.
demo.py
train_cam_model
ijinmao/CAM-Localization
python
def train_cam_model(X_train, Y_train, X_test, Y_test, batch_size, nb_epoch): 'Train CAM model based on your pretrained model\n\n\t# Arguments\n\t\tmodel: your pretrained model, CAM model is trained based on this model.\n\n\t' pretrained_model_path = pretrained_weights_path = pretrained_model_name = 'VGG16' num_classes = 10 gap_spacial_size = 14 if (pretrained_model_name == 'VGG16'): in_layer_name = 'block5_conv3' elif (pretrained_model_name == 'InceptionV3'): in_layer_name = 'batchnormalization_921' elif (pretrained_model_name == 'ResNet50'): in_layer_name = 'merge_13' else: in_layer_name = pretrained_model = read_model(pretrained_model_path, pretrained_weights_path) model = create_cam_model(pretrained_model, gap_spacial_size, num_classes, in_layer_name, CAM_CONV_LAYER) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_test, Y_test)) model.save_weights() return model
def cam_model(): '\n\tReturn your trained CAM model\n\t' return
4,348,099,947,783,747,000
Return your trained CAM model
demo.py
cam_model
ijinmao/CAM-Localization
python
def cam_model(): '\n\t\n\t' return
def plot_cam_map(img_path, img_size, batch_size, label_plot): 'Plot class activation map.\n\n\t' gap_spacial_size = 14 model = cam_model() im_ori = np.asarray(load_img(img_path, target_size=(img_size, img_size))) test_data = preprocess_image(img_path, img_size, expand_dims=True) im_cam = get_cam_img(model, test_data, label_plot, CAM_CONV_LAYER, ratio=(img_size / gap_spacial_size)) if (im_cam.shape != im_ori[:, :, 0].shape): im_cam = cv2.resize(im_cam, (img_size, img_size), cv2.INTER_LINEAR) prediction_labels = model.predict(test_data.astype('float32'), batch_size=batch_size, verbose=1) print('Info: Predictions:\n{}'.format(prediction_labels)) plt.imshow(im_ori) plt.imshow(im_cam, cmap='jet', alpha=0.5, interpolation='bilinear') plt.show()
-4,127,016,016,632,387,600
Plot class activation map.
demo.py
plot_cam_map
ijinmao/CAM-Localization
python
def plot_cam_map(img_path, img_size, batch_size, label_plot): '\n\n\t' gap_spacial_size = 14 model = cam_model() im_ori = np.asarray(load_img(img_path, target_size=(img_size, img_size))) test_data = preprocess_image(img_path, img_size, expand_dims=True) im_cam = get_cam_img(model, test_data, label_plot, CAM_CONV_LAYER, ratio=(img_size / gap_spacial_size)) if (im_cam.shape != im_ori[:, :, 0].shape): im_cam = cv2.resize(im_cam, (img_size, img_size), cv2.INTER_LINEAR) prediction_labels = model.predict(test_data.astype('float32'), batch_size=batch_size, verbose=1) print('Info: Predictions:\n{}'.format(prediction_labels)) plt.imshow(im_ori) plt.imshow(im_cam, cmap='jet', alpha=0.5, interpolation='bilinear') plt.show()
def train(self, start_epoch, max_epoch): 'Generic training loops.' self.start_epoch = start_epoch self.max_epoch = max_epoch self.before_train() for self.epoch in range(self.start_epoch, self.max_epoch): self.before_epoch() self.run_epoch() self.after_epoch() self.after_train()
-5,646,719,091,533,232,000
Generic training loops.
dassl/engine/trainer.py
train
zhaoxin94/Dassl.pytorch
python
def train(self, start_epoch, max_epoch): self.start_epoch = start_epoch self.max_epoch = max_epoch self.before_train() for self.epoch in range(self.start_epoch, self.max_epoch): self.before_epoch() self.run_epoch() self.after_epoch() self.after_train()
def check_cfg(self, cfg): "Check whether some variables are set correctly for\n the trainer (optional).\n\n For example, a trainer might require a particular sampler\n for training such as 'RandomDomainSampler', so it is good\n to do the checking:\n\n assert cfg.DATALOADER.SAMPLER_TRAIN == 'RandomDomainSampler'\n " pass
-6,042,607,910,904,794,000
Check whether some variables are set correctly for the trainer (optional). For example, a trainer might require a particular sampler for training such as 'RandomDomainSampler', so it is good to do the checking: assert cfg.DATALOADER.SAMPLER_TRAIN == 'RandomDomainSampler'
dassl/engine/trainer.py
check_cfg
zhaoxin94/Dassl.pytorch
python
def check_cfg(self, cfg): "Check whether some variables are set correctly for\n the trainer (optional).\n\n For example, a trainer might require a particular sampler\n for training such as 'RandomDomainSampler', so it is good\n to do the checking:\n\n assert cfg.DATALOADER.SAMPLER_TRAIN == 'RandomDomainSampler'\n " pass
def build_data_loader(self): 'Create essential data-related attributes.\n\n What must be done in the re-implementation\n of this method:\n 1) initialize data manager\n 2) assign as attributes the data loaders\n 3) assign as attribute the number of classes\n ' self.dm = DataManager(self.cfg) self.train_loader_x = self.dm.train_loader_x self.train_loader_u = self.dm.train_loader_u self.val_loader = self.dm.val_loader self.test_loader = self.dm.test_loader self.num_classes = self.dm.num_classes
-6,602,930,038,107,107,000
Create essential data-related attributes. What must be done in the re-implementation of this method: 1) initialize data manager 2) assign as attributes the data loaders 3) assign as attribute the number of classes
dassl/engine/trainer.py
build_data_loader
zhaoxin94/Dassl.pytorch
python
def build_data_loader(self): 'Create essential data-related attributes.\n\n What must be done in the re-implementation\n of this method:\n 1) initialize data manager\n 2) assign as attributes the data loaders\n 3) assign as attribute the number of classes\n ' self.dm = DataManager(self.cfg) self.train_loader_x = self.dm.train_loader_x self.train_loader_u = self.dm.train_loader_u self.val_loader = self.dm.val_loader self.test_loader = self.dm.test_loader self.num_classes = self.dm.num_classes
def build_model(self): 'Build and register model.\n\n The default builds a classification model along with its\n optimizer and scheduler.\n\n Custom trainers can re-implement this method if necessary.\n ' cfg = self.cfg print('Building model') self.model = SimpleNet(cfg, cfg.MODEL, self.num_classes) if cfg.MODEL.INIT_WEIGHTS: load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS) self.model.to(self.device) print('# params: {:,}'.format(count_num_param(self.model))) self.optim = build_optimizer(self.model, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model('model', self.model, self.optim, self.sched)
-4,805,539,644,684,228,000
Build and register model. The default builds a classification model along with its optimizer and scheduler. Custom trainers can re-implement this method if necessary.
dassl/engine/trainer.py
build_model
zhaoxin94/Dassl.pytorch
python
def build_model(self): 'Build and register model.\n\n The default builds a classification model along with its\n optimizer and scheduler.\n\n Custom trainers can re-implement this method if necessary.\n ' cfg = self.cfg print('Building model') self.model = SimpleNet(cfg, cfg.MODEL, self.num_classes) if cfg.MODEL.INIT_WEIGHTS: load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS) self.model.to(self.device) print('# params: {:,}'.format(count_num_param(self.model))) self.optim = build_optimizer(self.model, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model('model', self.model, self.optim, self.sched)
@torch.no_grad() def test(self, split=None, return_per_class_results=False): 'A generic testing pipeline.' self.set_model_mode('eval') self.evaluator.reset() if (split is None): split = self.cfg.TEST.SPLIT if ((split == 'val') and (self.val_loader is not None)): data_loader = self.val_loader print('Do evaluation on {} set'.format(split)) else: data_loader = self.test_loader print('Do evaluation on test set') for (batch_idx, batch) in enumerate(data_loader): (input, label) = self.parse_batch_test(batch) output = self.model_inference(input) self.evaluator.process(output, label) results = self.evaluator.evaluate() for (k, v) in results.items(): if (k == 'perclass_accuracies'): continue tag = '{}/{}'.format(split, k) self.write_scalar(tag, v, self.epoch) if (not return_per_class_results): return list(results.values())[0] else: return (results['accuracy'], results['perclass_accuracies'])
8,053,161,361,375,309,000
A generic testing pipeline.
dassl/engine/trainer.py
test
zhaoxin94/Dassl.pytorch
python
@torch.no_grad() def test(self, split=None, return_per_class_results=False): self.set_model_mode('eval') self.evaluator.reset() if (split is None): split = self.cfg.TEST.SPLIT if ((split == 'val') and (self.val_loader is not None)): data_loader = self.val_loader print('Do evaluation on {} set'.format(split)) else: data_loader = self.test_loader print('Do evaluation on test set') for (batch_idx, batch) in enumerate(data_loader): (input, label) = self.parse_batch_test(batch) output = self.model_inference(input) self.evaluator.process(output, label) results = self.evaluator.evaluate() for (k, v) in results.items(): if (k == 'perclass_accuracies'): continue tag = '{}/{}'.format(split, k) self.write_scalar(tag, v, self.epoch) if (not return_per_class_results): return list(results.values())[0] else: return (results['accuracy'], results['perclass_accuracies'])
@property def method(self) -> str: 'HTTP method used for the request' return self._environ['REQUEST_METHOD']
5,419,372,049,588,608,000
HTTP method used for the request
pogweb/models.py
method
ahnaf-zamil/pogweb
python
@property def method(self) -> str: return self._environ['REQUEST_METHOD']
@property def endpoint(self) -> str: 'The route/endpoint used for that specific request' return self._environ['PATH_INFO']
-2,896,867,337,130,264,000
The route/endpoint used for that specific request
pogweb/models.py
endpoint
ahnaf-zamil/pogweb
python
@property def endpoint(self) -> str: return self._environ['PATH_INFO']
@property def query_args(self) -> ImmutableDict: 'Query arguments from the request' args = self._environ['QUERY_STRING'] if (not args): return ImmutableDict({}) args = args.split('&') query_args = {} for _arg in args: (name, value) = _arg.split('=') query_args[name] = value return ImmutableDict(query_args)
6,587,376,489,600,675,000
Query arguments from the request
pogweb/models.py
query_args
ahnaf-zamil/pogweb
python
@property def query_args(self) -> ImmutableDict: args = self._environ['QUERY_STRING'] if (not args): return ImmutableDict({}) args = args.split('&') query_args = {} for _arg in args: (name, value) = _arg.split('=') query_args[name] = value return ImmutableDict(query_args)
@property def form(self) -> typing.Optional[typing.Dict]: 'Form data sent via HTTP request' data = self._environ.get('wsgi.input') if data: form_dict = parse_qs(data.getvalue().decode('utf-8')) final_dict = {} for (k, v) in form_dict.items(): final_dict[k] = v[0] return ImmutableDict(final_dict)
6,462,910,950,514,397,000
Form data sent via HTTP request
pogweb/models.py
form
ahnaf-zamil/pogweb
python
@property def form(self) -> typing.Optional[typing.Dict]: data = self._environ.get('wsgi.input') if data: form_dict = parse_qs(data.getvalue().decode('utf-8')) final_dict = {} for (k, v) in form_dict.items(): final_dict[k] = v[0] return ImmutableDict(final_dict)
def get_entity(hass): 'Get the fan entity.' return hass.states.get(FAN_ENTITY_ID)
7,856,547,689,952,820,000
Get the fan entity.
tests/components/demo/test_fan.py
get_entity
ActuallyRuben/home-assistant
python
def get_entity(hass): return hass.states.get(FAN_ENTITY_ID)
@pytest.fixture(autouse=True) def setup_comp(hass): 'Initialize components.' hass.loop.run_until_complete(async_setup_component(hass, fan.DOMAIN, {'fan': {'platform': 'demo'}}))
-959,499,954,790,526,500
Initialize components.
tests/components/demo/test_fan.py
setup_comp
ActuallyRuben/home-assistant
python
@pytest.fixture(autouse=True) def setup_comp(hass): hass.loop.run_until_complete(async_setup_component(hass, fan.DOMAIN, {'fan': {'platform': 'demo'}}))
async def test_turn_on(hass): 'Test turning on the device.' assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID, fan.SPEED_HIGH)) assert (STATE_ON == get_entity(hass).state) assert (fan.SPEED_HIGH == get_entity(hass).attributes[fan.ATTR_SPEED])
-8,242,091,094,631,456,000
Test turning on the device.
tests/components/demo/test_fan.py
test_turn_on
ActuallyRuben/home-assistant
python
async def test_turn_on(hass): assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID, fan.SPEED_HIGH)) assert (STATE_ON == get_entity(hass).state) assert (fan.SPEED_HIGH == get_entity(hass).attributes[fan.ATTR_SPEED])
async def test_turn_off(hass): 'Test turning off the device.' assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_off(hass, FAN_ENTITY_ID)) assert (STATE_OFF == get_entity(hass).state)
9,193,625,582,298,587,000
Test turning off the device.
tests/components/demo/test_fan.py
test_turn_off
ActuallyRuben/home-assistant
python
async def test_turn_off(hass): assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_off(hass, FAN_ENTITY_ID)) assert (STATE_OFF == get_entity(hass).state)
async def test_turn_off_without_entity_id(hass): 'Test turning off all fans.' assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_off(hass)) assert (STATE_OFF == get_entity(hass).state)
4,560,760,357,813,158,400
Test turning off all fans.
tests/components/demo/test_fan.py
test_turn_off_without_entity_id
ActuallyRuben/home-assistant
python
async def test_turn_off_without_entity_id(hass): assert (STATE_OFF == get_entity(hass).state) (await common.async_turn_on(hass, FAN_ENTITY_ID)) assert (STATE_OFF != get_entity(hass).state) (await common.async_turn_off(hass)) assert (STATE_OFF == get_entity(hass).state)