body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def _invert_complex(f, g_ys, symbol): 'Helper function for _invert.' if (f == symbol): return (f, g_ys) n = Dummy('n') if f.is_Add: (g, h) = f.as_independent(symbol) if (g is not S.Zero): return _invert_complex(h, imageset(Lambda(n, (n - g)), g_ys), symbol) if f.is_Mul: (g, h) = f.as_independent(symbol) if (g is not S.One): return _invert_complex(h, imageset(Lambda(n, (n / g)), g_ys), symbol) if (hasattr(f, 'inverse') and (not isinstance(f, TrigonometricFunction)) and (not isinstance(f, exp))): if (len(f.args) > 1): raise ValueError('Only functions with one argument are supported.') return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp): if isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, ((I * (((2 * n) * pi) + arg(g_y))) + log(Abs(g_y)))), S.Integers) for g_y in g_ys if (g_y != 0)]) return _invert_complex(f.args[0], exp_invs, symbol) return (f, g_ys)
-3,189,530,294,001,748,500
Helper function for _invert.
sympy/solvers/solveset.py
_invert_complex
aktech/sympy
python
def _invert_complex(f, g_ys, symbol): if (f == symbol): return (f, g_ys) n = Dummy('n') if f.is_Add: (g, h) = f.as_independent(symbol) if (g is not S.Zero): return _invert_complex(h, imageset(Lambda(n, (n - g)), g_ys), symbol) if f.is_Mul: (g, h) = f.as_independent(symbol) if (g is not S.One): return _invert_complex(h, imageset(Lambda(n, (n / g)), g_ys), symbol) if (hasattr(f, 'inverse') and (not isinstance(f, TrigonometricFunction)) and (not isinstance(f, exp))): if (len(f.args) > 1): raise ValueError('Only functions with one argument are supported.') return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp): if isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, ((I * (((2 * n) * pi) + arg(g_y))) + log(Abs(g_y)))), S.Integers) for g_y in g_ys if (g_y != 0)]) return _invert_complex(f.args[0], exp_invs, symbol) return (f, g_ys)
def domain_check(f, symbol, p): 'Returns False if point p is infinite or any subexpression of f\n is infinite or becomes so after replacing symbol with p. If none of\n these conditions is met then True will be returned.\n\n Examples\n ========\n\n >>> from sympy import Mul, oo\n >>> from sympy.abc import x\n >>> from sympy.solvers.solveset import domain_check\n >>> g = 1/(1 + (1/(x + 1))**2)\n >>> domain_check(g, x, -1)\n False\n >>> domain_check(x**2, x, 0)\n True\n >>> domain_check(1/x, x, oo)\n False\n\n * The function relies on the assumption that the original form\n of the equation has not been changed by automatic simplification.\n\n >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1\n True\n\n * To deal with automatic evaluations use evaluate=False:\n\n >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)\n False\n ' (f, p) = (sympify(f), sympify(p)) if p.is_infinite: return False return _domain_check(f, symbol, p)
-3,833,105,999,056,127,500
Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned. Examples ======== >>> from sympy import Mul, oo >>> from sympy.abc import x >>> from sympy.solvers.solveset import domain_check >>> g = 1/(1 + (1/(x + 1))**2) >>> domain_check(g, x, -1) False >>> domain_check(x**2, x, 0) True >>> domain_check(1/x, x, oo) False * The function relies on the assumption that the original form of the equation has not been changed by automatic simplification. >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1 True * To deal with automatic evaluations use evaluate=False: >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0) False
sympy/solvers/solveset.py
domain_check
aktech/sympy
python
def domain_check(f, symbol, p): 'Returns False if point p is infinite or any subexpression of f\n is infinite or becomes so after replacing symbol with p. If none of\n these conditions is met then True will be returned.\n\n Examples\n ========\n\n >>> from sympy import Mul, oo\n >>> from sympy.abc import x\n >>> from sympy.solvers.solveset import domain_check\n >>> g = 1/(1 + (1/(x + 1))**2)\n >>> domain_check(g, x, -1)\n False\n >>> domain_check(x**2, x, 0)\n True\n >>> domain_check(1/x, x, oo)\n False\n\n * The function relies on the assumption that the original form\n of the equation has not been changed by automatic simplification.\n\n >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1\n True\n\n * To deal with automatic evaluations use evaluate=False:\n\n >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)\n False\n ' (f, p) = (sympify(f), sympify(p)) if p.is_infinite: return False return _domain_check(f, symbol, p)
def _is_finite_with_finite_vars(f, domain=S.Complexes): "\n Return True if the given expression is finite. For symbols that\n don't assign a value for `complex` and/or `real`, the domain will\n be used to assign a value; symbols that don't assign a value\n for `finite` will be made finite. All other assumptions are\n left unmodified.\n " def assumptions(s): A = s.assumptions0 if (A.get('finite', None) is None): A['finite'] = True A.setdefault('complex', True) A.setdefault('real', domain.is_subset(S.Reals)) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite
995,980,117,664,021,600
Return True if the given expression is finite. For symbols that don't assign a value for `complex` and/or `real`, the domain will be used to assign a value; symbols that don't assign a value for `finite` will be made finite. All other assumptions are left unmodified.
sympy/solvers/solveset.py
_is_finite_with_finite_vars
aktech/sympy
python
def _is_finite_with_finite_vars(f, domain=S.Complexes): "\n Return True if the given expression is finite. For symbols that\n don't assign a value for `complex` and/or `real`, the domain will\n be used to assign a value; symbols that don't assign a value\n for `finite` will be made finite. All other assumptions are\n left unmodified.\n " def assumptions(s): A = s.assumptions0 if (A.get('finite', None) is None): A['finite'] = True A.setdefault('complex', True) A.setdefault('real', domain.is_subset(S.Reals)) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite
def _is_function_class_equation(func_class, f, symbol): ' Tests whether the equation is an equation of the given function class.\n\n The given equation belongs to the given function class if it is\n comprised of functions of the function class which are multiplied by\n or added to expressions independent of the symbol. In addition, the\n arguments of all such functions must be linear in the symbol as well.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _is_function_class_equation\n >>> from sympy import tan, sin, tanh, sinh, exp\n >>> from sympy.abc import x\n >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction,\n ... HyperbolicFunction)\n >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)\n True\n >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)\n True\n >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)\n True\n ' if (f.is_Mul or f.is_Add): return all((_is_function_class_equation(func_class, arg, symbol) for arg in f.args)) if f.is_Pow: if (not f.exp.has(symbol)): return _is_function_class_equation(func_class, f.base, symbol) else: return False if (not f.has(symbol)): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return (g.degree() <= 1) except PolynomialError: return False else: return False
-4,478,829,296,558,413,000
Tests whether the equation is an equation of the given function class. The given equation belongs to the given function class if it is comprised of functions of the function class which are multiplied by or added to expressions independent of the symbol. In addition, the arguments of all such functions must be linear in the symbol as well. Examples ======== >>> from sympy.solvers.solveset import _is_function_class_equation >>> from sympy import tan, sin, tanh, sinh, exp >>> from sympy.abc import x >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction, ... HyperbolicFunction) >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) True >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x) True >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) True
sympy/solvers/solveset.py
_is_function_class_equation
aktech/sympy
python
def _is_function_class_equation(func_class, f, symbol): ' Tests whether the equation is an equation of the given function class.\n\n The given equation belongs to the given function class if it is\n comprised of functions of the function class which are multiplied by\n or added to expressions independent of the symbol. In addition, the\n arguments of all such functions must be linear in the symbol as well.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _is_function_class_equation\n >>> from sympy import tan, sin, tanh, sinh, exp\n >>> from sympy.abc import x\n >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction,\n ... HyperbolicFunction)\n >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)\n True\n >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)\n True\n >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)\n True\n ' if (f.is_Mul or f.is_Add): return all((_is_function_class_equation(func_class, arg, symbol) for arg in f.args)) if f.is_Pow: if (not f.exp.has(symbol)): return _is_function_class_equation(func_class, f.base, symbol) else: return False if (not f.has(symbol)): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return (g.degree() <= 1) except PolynomialError: return False else: return False
def _solve_as_rational(f, symbol, domain): ' solve rational functions' f = together(f, deep=True) (g, h) = fraction(f) if (not h.has(symbol)): return _solve_as_poly(g, symbol, domain) else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return (valid_solns - invalid_solns)
2,026,569,488,700,366,800
solve rational functions
sympy/solvers/solveset.py
_solve_as_rational
aktech/sympy
python
def _solve_as_rational(f, symbol, domain): ' ' f = together(f, deep=True) (g, h) = fraction(f) if (not h.has(symbol)): return _solve_as_poly(g, symbol, domain) else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return (valid_solns - invalid_solns)
def _solve_trig(f, symbol, domain): ' Helper to solve trigonometric equations ' f = trigsimp(f) f_original = f f = f.rewrite(exp) f = together(f) (g, h) = fraction(f) y = Dummy('y') (g, h) = (g.expand(), h.expand()) (g, h) = (g.subs(exp((I * symbol)), y), h.subs(exp((I * symbol)), y)) if (g.has(symbol) or h.has(symbol)): return ConditionSet(symbol, Eq(f, 0), S.Reals) solns = (solveset_complex(g, y) - solveset_complex(h, y)) if isinstance(solns, FiniteSet): result = Union(*[invert_complex(exp((I * symbol)), s, symbol)[1] for s in solns]) return Intersection(result, domain) elif (solns is S.EmptySet): return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
-5,411,093,422,298,752,000
Helper to solve trigonometric equations
sympy/solvers/solveset.py
_solve_trig
aktech/sympy
python
def _solve_trig(f, symbol, domain): ' ' f = trigsimp(f) f_original = f f = f.rewrite(exp) f = together(f) (g, h) = fraction(f) y = Dummy('y') (g, h) = (g.expand(), h.expand()) (g, h) = (g.subs(exp((I * symbol)), y), h.subs(exp((I * symbol)), y)) if (g.has(symbol) or h.has(symbol)): return ConditionSet(symbol, Eq(f, 0), S.Reals) solns = (solveset_complex(g, y) - solveset_complex(h, y)) if isinstance(solns, FiniteSet): result = Union(*[invert_complex(exp((I * symbol)), s, symbol)[1] for s in solns]) return Intersection(result, domain) elif (solns is S.EmptySet): return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
def _solve_as_poly(f, symbol, domain=S.Complexes): '\n Solve the equation using polynomial techniques if it already is a\n polynomial equation or, with a change of variables, can be made so.\n ' result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if (degree(f, symbol) <= num_roots): result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if (poly.degree() <= len(solns)): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if (poly is None): result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if (len(gens) == 1): poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if (len(poly_solns) < deg): result = ConditionSet(symbol, Eq(f, 0), domain) if (gen != symbol): y = Dummy('y') inverter = (invert_real if domain.is_subset(S.Reals) else invert_complex) (lhs, rhs_s) = inverter(gen, y, symbol) if (lhs == symbol): result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if (result is not None): if isinstance(result, FiniteSet): if all([((s.free_symbols == set()) and (not isinstance(s, RootOf))) for s in result]): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet): result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain)
-4,573,146,541,065,318,000
Solve the equation using polynomial techniques if it already is a polynomial equation or, with a change of variables, can be made so.
sympy/solvers/solveset.py
_solve_as_poly
aktech/sympy
python
def _solve_as_poly(f, symbol, domain=S.Complexes): '\n Solve the equation using polynomial techniques if it already is a\n polynomial equation or, with a change of variables, can be made so.\n ' result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if (degree(f, symbol) <= num_roots): result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if (poly.degree() <= len(solns)): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if (poly is None): result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if (len(gens) == 1): poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if (len(poly_solns) < deg): result = ConditionSet(symbol, Eq(f, 0), domain) if (gen != symbol): y = Dummy('y') inverter = (invert_real if domain.is_subset(S.Reals) else invert_complex) (lhs, rhs_s) = inverter(gen, y, symbol) if (lhs == symbol): result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if (result is not None): if isinstance(result, FiniteSet): if all([((s.free_symbols == set()) and (not isinstance(s, RootOf))) for s in result]): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet): result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain)
def _has_rational_power(expr, symbol): "\n Returns (bool, den) where bool is True if the term has a\n non-integer rational power and den is the denominator of the\n expression's exponent.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _has_rational_power\n >>> from sympy import sqrt\n >>> from sympy.abc import x\n >>> _has_rational_power(sqrt(x), x)\n (True, 2)\n >>> _has_rational_power(x**2, x)\n (False, 1)\n " (a, p, q) = (Wild('a'), Wild('p'), Wild('q')) pattern_match = (expr.match((a * (p ** q))) or {}) if (pattern_match.get(a, S.Zero) is S.Zero): return (False, S.One) elif (p not in pattern_match.keys()): return (False, S.One) elif (isinstance(pattern_match[q], Rational) and pattern_match[p].has(symbol)): if (not (pattern_match[q].q == S.One)): return (True, pattern_match[q].q) if ((not isinstance(pattern_match[a], Pow)) or isinstance(pattern_match[a], Mul)): return (False, S.One) else: return _has_rational_power(pattern_match[a], symbol)
-2,331,732,730,696,701,000
Returns (bool, den) where bool is True if the term has a non-integer rational power and den is the denominator of the expression's exponent. Examples ======== >>> from sympy.solvers.solveset import _has_rational_power >>> from sympy import sqrt >>> from sympy.abc import x >>> _has_rational_power(sqrt(x), x) (True, 2) >>> _has_rational_power(x**2, x) (False, 1)
sympy/solvers/solveset.py
_has_rational_power
aktech/sympy
python
def _has_rational_power(expr, symbol): "\n Returns (bool, den) where bool is True if the term has a\n non-integer rational power and den is the denominator of the\n expression's exponent.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _has_rational_power\n >>> from sympy import sqrt\n >>> from sympy.abc import x\n >>> _has_rational_power(sqrt(x), x)\n (True, 2)\n >>> _has_rational_power(x**2, x)\n (False, 1)\n " (a, p, q) = (Wild('a'), Wild('p'), Wild('q')) pattern_match = (expr.match((a * (p ** q))) or {}) if (pattern_match.get(a, S.Zero) is S.Zero): return (False, S.One) elif (p not in pattern_match.keys()): return (False, S.One) elif (isinstance(pattern_match[q], Rational) and pattern_match[p].has(symbol)): if (not (pattern_match[q].q == S.One)): return (True, pattern_match[q].q) if ((not isinstance(pattern_match[a], Pow)) or isinstance(pattern_match[a], Mul)): return (False, S.One) else: return _has_rational_power(pattern_match[a], symbol)
def _solve_radical(f, symbol, solveset_solver): ' Helper function to solve equations with radicals ' (eq, cov) = unrad(f) if (not cov): result = (solveset_solver(eq, symbol) - Union(*[solveset_solver(g, symbol) for g in denoms(f, [symbol])])) else: (y, yeq) = cov if (not solveset_solver((y - I), y)): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if isinstance(result, Complement): solution_set = result else: f_set = [] c_set = [] for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = (FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))) return solution_set
-1,662,945,041,287,894,300
Helper function to solve equations with radicals
sympy/solvers/solveset.py
_solve_radical
aktech/sympy
python
def _solve_radical(f, symbol, solveset_solver): ' ' (eq, cov) = unrad(f) if (not cov): result = (solveset_solver(eq, symbol) - Union(*[solveset_solver(g, symbol) for g in denoms(f, [symbol])])) else: (y, yeq) = cov if (not solveset_solver((y - I), y)): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if isinstance(result, Complement): solution_set = result else: f_set = [] c_set = [] for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = (FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))) return solution_set
def _solve_abs(f, symbol, domain): ' Helper function to solve equation involving absolute value function ' if (not domain.is_subset(S.Reals)): raise ValueError(filldedent('\n Absolute values cannot be inverted in the\n complex domain.')) (p, q, r) = (Wild('p'), Wild('q'), Wild('r')) pattern_match = (f.match(((p * Abs(q)) + r)) or {}) if (not pattern_match.get(p, S.Zero).is_zero): (f_p, f_q, f_r) = (pattern_match[p], pattern_match[q], pattern_match[r]) q_pos_cond = solve_univariate_inequality((f_q >= 0), symbol, relational=False) q_neg_cond = solve_univariate_inequality((f_q < 0), symbol, relational=False) sols_q_pos = solveset_real(((f_p * f_q) + f_r), symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(((f_p * (- f_q)) + f_r), symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain)
-2,798,441,721,755,541,000
Helper function to solve equation involving absolute value function
sympy/solvers/solveset.py
_solve_abs
aktech/sympy
python
def _solve_abs(f, symbol, domain): ' ' if (not domain.is_subset(S.Reals)): raise ValueError(filldedent('\n Absolute values cannot be inverted in the\n complex domain.')) (p, q, r) = (Wild('p'), Wild('q'), Wild('r')) pattern_match = (f.match(((p * Abs(q)) + r)) or {}) if (not pattern_match.get(p, S.Zero).is_zero): (f_p, f_q, f_r) = (pattern_match[p], pattern_match[q], pattern_match[r]) q_pos_cond = solve_univariate_inequality((f_q >= 0), symbol, relational=False) q_neg_cond = solve_univariate_inequality((f_q < 0), symbol, relational=False) sols_q_pos = solveset_real(((f_p * f_q) + f_r), symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(((f_p * (- f_q)) + f_r), symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain)
def solve_decomposition(f, symbol, domain): '\n Function to solve equations via the principle of "Decomposition\n and Rewriting".\n\n Examples\n ========\n >>> from sympy import exp, sin, Symbol, pprint, S\n >>> from sympy.solvers.solveset import solve_decomposition as sd\n >>> x = Symbol(\'x\')\n >>> f1 = exp(2*x) - 3*exp(x) + 2\n >>> sd(f1, x, S.Reals)\n {0, log(2)}\n >>> f2 = sin(x)**2 + 2*sin(x) + 1\n >>> pprint(sd(f2, x, S.Reals), use_unicode=False)\n 3*pi\n {2*n*pi + ---- | n in Integers()}\n 2\n >>> f3 = sin(x + 2)\n >>> pprint(sd(f3, x, S.Reals), use_unicode=False)\n {2*n*pi - 2 | n in Integers()} U {pi*(2*n + 1) - 2 | n in Integers()}\n\n ' from sympy.solvers.decompogen import decompogen from sympy.calculus.util import function_range g_s = decompogen(f, symbol) y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if (not isinstance(solutions, ConditionSet)): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] base_set = iset.base_set if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if (result is S.EmptySet): return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s
997,600,514,692,112,900
Function to solve equations via the principle of "Decomposition and Rewriting". Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solve_decomposition as sd >>> x = Symbol('x') >>> f1 = exp(2*x) - 3*exp(x) + 2 >>> sd(f1, x, S.Reals) {0, log(2)} >>> f2 = sin(x)**2 + 2*sin(x) + 1 >>> pprint(sd(f2, x, S.Reals), use_unicode=False) 3*pi {2*n*pi + ---- | n in Integers()} 2 >>> f3 = sin(x + 2) >>> pprint(sd(f3, x, S.Reals), use_unicode=False) {2*n*pi - 2 | n in Integers()} U {pi*(2*n + 1) - 2 | n in Integers()}
sympy/solvers/solveset.py
solve_decomposition
aktech/sympy
python
def solve_decomposition(f, symbol, domain): '\n Function to solve equations via the principle of "Decomposition\n and Rewriting".\n\n Examples\n ========\n >>> from sympy import exp, sin, Symbol, pprint, S\n >>> from sympy.solvers.solveset import solve_decomposition as sd\n >>> x = Symbol(\'x\')\n >>> f1 = exp(2*x) - 3*exp(x) + 2\n >>> sd(f1, x, S.Reals)\n {0, log(2)}\n >>> f2 = sin(x)**2 + 2*sin(x) + 1\n >>> pprint(sd(f2, x, S.Reals), use_unicode=False)\n 3*pi\n {2*n*pi + ---- | n in Integers()}\n 2\n >>> f3 = sin(x + 2)\n >>> pprint(sd(f3, x, S.Reals), use_unicode=False)\n {2*n*pi - 2 | n in Integers()} U {pi*(2*n + 1) - 2 | n in Integers()}\n\n ' from sympy.solvers.decompogen import decompogen from sympy.calculus.util import function_range g_s = decompogen(f, symbol) y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if (not isinstance(solutions, ConditionSet)): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] base_set = iset.base_set if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if (result is S.EmptySet): return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s
def _solveset(f, symbol, domain, _check=False): "Helper for solveset to return a result from an expression\n that has already been sympify'ed and is known to contain the\n given symbol." from sympy.simplify.simplify import signsimp orig_f = f f = together(f) if f.is_Mul: (_, f) = f.as_independent(symbol, as_Add=False) if f.is_Add: (a, h) = f.as_independent(symbol) (m, h) = h.as_independent(symbol, as_Add=False) f = ((a / m) + h) f = piecewise_fold(f) solver = (lambda f, x, domain=domain: _solveset(f, x, domain)) if domain.is_subset(S.Reals): inverter_func = invert_real else: inverter_func = invert_complex inverter = (lambda f, rhs, symbol: inverter_func(f, rhs, symbol, domain)) result = EmptySet() if f.expand().is_zero: return domain elif (not f.has(symbol)): return EmptySet() elif (f.is_Mul and all((_is_finite_with_finite_vars(m, domain) for m in f.args))): result = Union(*[solver(m, symbol) for m in f.args]) elif (_is_function_class_equation(TrigonometricFunction, f, symbol) or _is_function_class_equation(HyperbolicFunction, f, symbol)): result = _solve_trig(f, symbol, domain) elif f.is_Piecewise: dom = domain result = EmptySet() expr_set_pairs = f.as_expr_set_pairs() for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() if in_set.is_Interval: dom -= in_set solns = solver(expr, symbol, in_set) result += solns else: (lhs, rhs_s) = inverter(f, 0, symbol) if (lhs == symbol): if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(*signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [(lhs - rhs) for rhs in rhs_s]: if (equation == f): if (any((_has_rational_power(g, symbol)[0] for g in equation.args)) or _has_rational_power(equation, symbol)[0]): result += _solve_radical(equation, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result += _solve_as_rational(equation, symbol, domain) else: result += solver(equation, symbol) elif (rhs_s is not S.EmptySet): result = ConditionSet(symbol, Eq(f, 0), domain) if _check: if isinstance(result, ConditionSet): return result fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] if isinstance(result, FiniteSet): result = FiniteSet(*[s for s in result if (isinstance(s, RootOf) or domain_check(fx, symbol, s))]) return result
-617,146,554,266,846,500
Helper for solveset to return a result from an expression that has already been sympify'ed and is known to contain the given symbol.
sympy/solvers/solveset.py
_solveset
aktech/sympy
python
def _solveset(f, symbol, domain, _check=False): "Helper for solveset to return a result from an expression\n that has already been sympify'ed and is known to contain the\n given symbol." from sympy.simplify.simplify import signsimp orig_f = f f = together(f) if f.is_Mul: (_, f) = f.as_independent(symbol, as_Add=False) if f.is_Add: (a, h) = f.as_independent(symbol) (m, h) = h.as_independent(symbol, as_Add=False) f = ((a / m) + h) f = piecewise_fold(f) solver = (lambda f, x, domain=domain: _solveset(f, x, domain)) if domain.is_subset(S.Reals): inverter_func = invert_real else: inverter_func = invert_complex inverter = (lambda f, rhs, symbol: inverter_func(f, rhs, symbol, domain)) result = EmptySet() if f.expand().is_zero: return domain elif (not f.has(symbol)): return EmptySet() elif (f.is_Mul and all((_is_finite_with_finite_vars(m, domain) for m in f.args))): result = Union(*[solver(m, symbol) for m in f.args]) elif (_is_function_class_equation(TrigonometricFunction, f, symbol) or _is_function_class_equation(HyperbolicFunction, f, symbol)): result = _solve_trig(f, symbol, domain) elif f.is_Piecewise: dom = domain result = EmptySet() expr_set_pairs = f.as_expr_set_pairs() for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() if in_set.is_Interval: dom -= in_set solns = solver(expr, symbol, in_set) result += solns else: (lhs, rhs_s) = inverter(f, 0, symbol) if (lhs == symbol): if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(*signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [(lhs - rhs) for rhs in rhs_s]: if (equation == f): if (any((_has_rational_power(g, symbol)[0] for g in equation.args)) or _has_rational_power(equation, symbol)[0]): result += _solve_radical(equation, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result += _solve_as_rational(equation, symbol, domain) else: result += solver(equation, symbol) elif (rhs_s is not S.EmptySet): result = ConditionSet(symbol, Eq(f, 0), domain) if _check: if isinstance(result, ConditionSet): return result fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] if isinstance(result, FiniteSet): result = FiniteSet(*[s for s in result if (isinstance(s, RootOf) or domain_check(fx, symbol, s))]) return result
def solveset(f, symbol=None, domain=S.Complexes): "Solves a given inequality or equation with set as output\n\n Parameters\n ==========\n\n f : Expr or a relational.\n The target equation or inequality\n symbol : Symbol\n The variable for which the equation is solved\n domain : Set\n The domain over which the equation is solved\n\n Returns\n =======\n\n Set\n A set of values for `symbol` for which `f` is True or is equal to\n zero. An `EmptySet` is returned if `f` is False or nonzero.\n A `ConditionSet` is returned as unsolved object if algorithms\n to evaluate complete solution are not yet implemented.\n\n `solveset` claims to be complete in the solution set that it returns.\n\n Raises\n ======\n\n NotImplementedError\n The algorithms to solve inequalities in complex domain are\n not yet implemented.\n ValueError\n The input is not valid.\n RuntimeError\n It is a bug, please report to the github issue tracker.\n\n\n Notes\n =====\n\n Python interprets 0 and 1 as False and True, respectively, but\n in this function they refer to solutions of an expression. So 0 and 1\n return the Domain and EmptySet, respectively, while True and False\n return the opposite (as they are assumed to be solutions of relational\n expressions).\n\n\n See Also\n ========\n\n solveset_real: solver for real domain\n solveset_complex: solver for complex domain\n\n Examples\n ========\n\n >>> from sympy import exp, sin, Symbol, pprint, S\n >>> from sympy.solvers.solveset import solveset, solveset_real\n\n * The default domain is complex. Not specifying a domain will lead\n to the solving of the equation in the complex domain (and this\n is not affected by the assumptions on the symbol):\n\n >>> x = Symbol('x')\n >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)\n {2*n*I*pi | n in Integers()}\n\n >>> x = Symbol('x', real=True)\n >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)\n {2*n*I*pi | n in Integers()}\n\n * If you want to use `solveset` to solve the equation in the\n real domain, provide a real domain. (Using `solveset\\_real`\n does this automatically.)\n\n >>> R = S.Reals\n >>> x = Symbol('x')\n >>> solveset(exp(x) - 1, x, R)\n {0}\n >>> solveset_real(exp(x) - 1, x)\n {0}\n\n The solution is mostly unaffected by assumptions on the symbol,\n but there may be some slight difference:\n\n >>> pprint(solveset(sin(x)/x,x), use_unicode=False)\n ({2*n*pi | n in Integers()} \\ {0}) U ({2*n*pi + pi | n in Integers()} \\ {0})\n\n >>> p = Symbol('p', positive=True)\n >>> pprint(solveset(sin(p)/p, p), use_unicode=False)\n {2*n*pi | n in Integers()} U {2*n*pi + pi | n in Integers()}\n\n * Inequalities can be solved over the real domain only. Use of a complex\n domain leads to a NotImplementedError.\n\n >>> solveset(exp(x) > 1, x, R)\n (0, oo)\n\n " f = sympify(f) if (f is S.true): return domain if (f is S.false): return S.EmptySet if (not isinstance(f, (Expr, Number))): raise ValueError(('%s is not a valid SymPy expression' % f)) free_symbols = f.free_symbols if (not free_symbols): b = Eq(f, 0) if (b is S.true): return domain elif (b is S.false): return S.EmptySet else: raise NotImplementedError(filldedent(('\n relationship between value and 0 is unknown: %s' % b))) if (symbol is None): if (len(free_symbols) == 1): symbol = free_symbols.pop() else: raise ValueError(filldedent('\n The independent variable must be specified for a\n multivariate equation.')) elif (not getattr(symbol, 'is_Symbol', False)): raise ValueError(('A Symbol must be given, not type %s: %s' % (type(symbol), symbol))) if isinstance(f, Eq): from sympy.core import Add f = Add(f.lhs, (- f.rhs), evaluate=False) elif f.is_Relational: if (not domain.is_subset(S.Reals)): raise NotImplementedError(filldedent('\n Inequalities in the complex domain are\n not supported. Try the real domain by\n setting domain=S.Reals')) try: result = (solve_univariate_inequality(f, symbol, relational=False) - _invalid_solutions(f, symbol, domain)) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result return _solveset(f, symbol, domain, _check=True)
-4,553,008,390,556,071,400
Solves a given inequality or equation with set as output Parameters ========== f : Expr or a relational. The target equation or inequality symbol : Symbol The variable for which the equation is solved domain : Set The domain over which the equation is solved Returns ======= Set A set of values for `symbol` for which `f` is True or is equal to zero. An `EmptySet` is returned if `f` is False or nonzero. A `ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. `solveset` claims to be complete in the solution set that it returns. Raises ====== NotImplementedError The algorithms to solve inequalities in complex domain are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report to the github issue tracker. Notes ===== Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the Domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions). See Also ======== solveset_real: solver for real domain solveset_complex: solver for complex domain Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solveset, solveset_real * The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol): >>> x = Symbol('x') >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers()} >>> x = Symbol('x', real=True) >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers()} * If you want to use `solveset` to solve the equation in the real domain, provide a real domain. (Using `solveset\_real` does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) {0} >>> solveset_real(exp(x) - 1, x) {0} The solution is mostly unaffected by assumptions on the symbol, but there may be some slight difference: >>> pprint(solveset(sin(x)/x,x), use_unicode=False) ({2*n*pi | n in Integers()} \ {0}) U ({2*n*pi + pi | n in Integers()} \ {0}) >>> p = Symbol('p', positive=True) >>> pprint(solveset(sin(p)/p, p), use_unicode=False) {2*n*pi | n in Integers()} U {2*n*pi + pi | n in Integers()} * Inequalities can be solved over the real domain only. Use of a complex domain leads to a NotImplementedError. >>> solveset(exp(x) > 1, x, R) (0, oo)
sympy/solvers/solveset.py
solveset
aktech/sympy
python
def solveset(f, symbol=None, domain=S.Complexes): "Solves a given inequality or equation with set as output\n\n Parameters\n ==========\n\n f : Expr or a relational.\n The target equation or inequality\n symbol : Symbol\n The variable for which the equation is solved\n domain : Set\n The domain over which the equation is solved\n\n Returns\n =======\n\n Set\n A set of values for `symbol` for which `f` is True or is equal to\n zero. An `EmptySet` is returned if `f` is False or nonzero.\n A `ConditionSet` is returned as unsolved object if algorithms\n to evaluate complete solution are not yet implemented.\n\n `solveset` claims to be complete in the solution set that it returns.\n\n Raises\n ======\n\n NotImplementedError\n The algorithms to solve inequalities in complex domain are\n not yet implemented.\n ValueError\n The input is not valid.\n RuntimeError\n It is a bug, please report to the github issue tracker.\n\n\n Notes\n =====\n\n Python interprets 0 and 1 as False and True, respectively, but\n in this function they refer to solutions of an expression. So 0 and 1\n return the Domain and EmptySet, respectively, while True and False\n return the opposite (as they are assumed to be solutions of relational\n expressions).\n\n\n See Also\n ========\n\n solveset_real: solver for real domain\n solveset_complex: solver for complex domain\n\n Examples\n ========\n\n >>> from sympy import exp, sin, Symbol, pprint, S\n >>> from sympy.solvers.solveset import solveset, solveset_real\n\n * The default domain is complex. Not specifying a domain will lead\n to the solving of the equation in the complex domain (and this\n is not affected by the assumptions on the symbol):\n\n >>> x = Symbol('x')\n >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)\n {2*n*I*pi | n in Integers()}\n\n >>> x = Symbol('x', real=True)\n >>> pprint(solveset(exp(x) - 1, x), use_unicode=False)\n {2*n*I*pi | n in Integers()}\n\n * If you want to use `solveset` to solve the equation in the\n real domain, provide a real domain. (Using `solveset\\_real`\n does this automatically.)\n\n >>> R = S.Reals\n >>> x = Symbol('x')\n >>> solveset(exp(x) - 1, x, R)\n {0}\n >>> solveset_real(exp(x) - 1, x)\n {0}\n\n The solution is mostly unaffected by assumptions on the symbol,\n but there may be some slight difference:\n\n >>> pprint(solveset(sin(x)/x,x), use_unicode=False)\n ({2*n*pi | n in Integers()} \\ {0}) U ({2*n*pi + pi | n in Integers()} \\ {0})\n\n >>> p = Symbol('p', positive=True)\n >>> pprint(solveset(sin(p)/p, p), use_unicode=False)\n {2*n*pi | n in Integers()} U {2*n*pi + pi | n in Integers()}\n\n * Inequalities can be solved over the real domain only. Use of a complex\n domain leads to a NotImplementedError.\n\n >>> solveset(exp(x) > 1, x, R)\n (0, oo)\n\n " f = sympify(f) if (f is S.true): return domain if (f is S.false): return S.EmptySet if (not isinstance(f, (Expr, Number))): raise ValueError(('%s is not a valid SymPy expression' % f)) free_symbols = f.free_symbols if (not free_symbols): b = Eq(f, 0) if (b is S.true): return domain elif (b is S.false): return S.EmptySet else: raise NotImplementedError(filldedent(('\n relationship between value and 0 is unknown: %s' % b))) if (symbol is None): if (len(free_symbols) == 1): symbol = free_symbols.pop() else: raise ValueError(filldedent('\n The independent variable must be specified for a\n multivariate equation.')) elif (not getattr(symbol, 'is_Symbol', False)): raise ValueError(('A Symbol must be given, not type %s: %s' % (type(symbol), symbol))) if isinstance(f, Eq): from sympy.core import Add f = Add(f.lhs, (- f.rhs), evaluate=False) elif f.is_Relational: if (not domain.is_subset(S.Reals)): raise NotImplementedError(filldedent('\n Inequalities in the complex domain are\n not supported. Try the real domain by\n setting domain=S.Reals')) try: result = (solve_univariate_inequality(f, symbol, relational=False) - _invalid_solutions(f, symbol, domain)) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result return _solveset(f, symbol, domain, _check=True)
def solvify(f, symbol, domain): 'Solves an equation using solveset and returns the solution in accordance\n with the `solve` output API.\n\n Returns\n =======\n\n We classify the output based on the type of solution returned by `solveset`.\n\n Solution | Output\n ----------------------------------------\n FiniteSet | list\n\n ImageSet, | list (if `f` is periodic)\n Union |\n\n EmptySet | empty list\n\n Others | None\n\n\n Raises\n ======\n\n NotImplementedError\n A ConditionSet is the input.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import solvify, solveset\n >>> from sympy.abc import x\n >>> from sympy import S, tan, sin, exp\n >>> solvify(x**2 - 9, x, S.Reals)\n [-3, 3]\n >>> solvify(sin(x) - 1, x, S.Reals)\n [pi/2]\n >>> solvify(tan(x), x, S.Reals)\n [0]\n >>> solvify(exp(x) - 1, x, S.Complexes)\n\n >>> solvify(exp(x) - 1, x, S.Reals)\n [0]\n\n ' solution_set = solveset(f, symbol, domain) result = None if (solution_set is S.EmptySet): result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if (period is not None): solutions = S.EmptySet if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all((isinstance(i, ImageSet) for i in solution_set.args)): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, FiniteSet): result += solution return result
7,219,948,723,992,646,000
Solves an equation using solveset and returns the solution in accordance with the `solve` output API. Returns ======= We classify the output based on the type of solution returned by `solveset`. Solution | Output ---------------------------------------- FiniteSet | list ImageSet, | list (if `f` is periodic) Union | EmptySet | empty list Others | None Raises ====== NotImplementedError A ConditionSet is the input. Examples ======== >>> from sympy.solvers.solveset import solvify, solveset >>> from sympy.abc import x >>> from sympy import S, tan, sin, exp >>> solvify(x**2 - 9, x, S.Reals) [-3, 3] >>> solvify(sin(x) - 1, x, S.Reals) [pi/2] >>> solvify(tan(x), x, S.Reals) [0] >>> solvify(exp(x) - 1, x, S.Complexes) >>> solvify(exp(x) - 1, x, S.Reals) [0]
sympy/solvers/solveset.py
solvify
aktech/sympy
python
def solvify(f, symbol, domain): 'Solves an equation using solveset and returns the solution in accordance\n with the `solve` output API.\n\n Returns\n =======\n\n We classify the output based on the type of solution returned by `solveset`.\n\n Solution | Output\n ----------------------------------------\n FiniteSet | list\n\n ImageSet, | list (if `f` is periodic)\n Union |\n\n EmptySet | empty list\n\n Others | None\n\n\n Raises\n ======\n\n NotImplementedError\n A ConditionSet is the input.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import solvify, solveset\n >>> from sympy.abc import x\n >>> from sympy import S, tan, sin, exp\n >>> solvify(x**2 - 9, x, S.Reals)\n [-3, 3]\n >>> solvify(sin(x) - 1, x, S.Reals)\n [pi/2]\n >>> solvify(tan(x), x, S.Reals)\n [0]\n >>> solvify(exp(x) - 1, x, S.Complexes)\n\n >>> solvify(exp(x) - 1, x, S.Reals)\n [0]\n\n ' solution_set = solveset(f, symbol, domain) result = None if (solution_set is S.EmptySet): result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if (period is not None): solutions = S.EmptySet if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all((isinstance(i, ImageSet) for i in solution_set.args)): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, FiniteSet): result += solution return result
def linear_eq_to_matrix(equations, *symbols): "\n Converts a given System of Equations into Matrix form.\n Here `equations` must be a linear system of equations in\n `symbols`. The order of symbols in input `symbols` will\n determine the order of coefficients in the returned\n Matrix.\n\n The Matrix form corresponds to the augmented matrix form.\n For example:\n\n .. math:: 4x + 2y + 3z = 1\n .. math:: 3x + y + z = -6\n .. math:: 2x + 4y + 9z = 2\n\n This system would return `A` & `b` as given below:\n\n ::\n\n [ 4 2 3 ] [ 1 ]\n A = [ 3 1 1 ] b = [-6 ]\n [ 2 4 9 ] [ 2 ]\n\n Examples\n ========\n\n >>> from sympy import linear_eq_to_matrix, symbols\n >>> x, y, z = symbols('x, y, z')\n >>> eqns = [x + 2*y + 3*z - 1, 3*x + y + z + 6, 2*x + 4*y + 9*z - 2]\n >>> A, b = linear_eq_to_matrix(eqns, [x, y, z])\n >>> A\n Matrix([\n [1, 2, 3],\n [3, 1, 1],\n [2, 4, 9]])\n >>> b\n Matrix([\n [ 1],\n [-6],\n [ 2]])\n >>> eqns = [x + z - 1, y + z, x - y]\n >>> A, b = linear_eq_to_matrix(eqns, [x, y, z])\n >>> A\n Matrix([\n [1, 0, 1],\n [0, 1, 1],\n [1, -1, 0]])\n >>> b\n Matrix([\n [1],\n [0],\n [0]])\n\n * Symbolic coefficients are also supported\n\n >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')\n >>> eqns = [a*x + b*y - c, d*x + e*y - f]\n >>> A, B = linear_eq_to_matrix(eqns, x, y)\n >>> A\n Matrix([\n [a, b],\n [d, e]])\n >>> B\n Matrix([\n [c],\n [f]])\n\n " if (not symbols): raise ValueError('Symbols must be given, for which coefficients are to be found.') if hasattr(symbols[0], '__iter__'): symbols = symbols[0] M = Matrix([symbols]) M = M.col_insert(len(symbols), Matrix([1])) row_no = 1 for equation in equations: f = sympify(equation) if isinstance(f, Equality): f = (f.lhs - f.rhs) coeff_list = [] for symbol in symbols: coeff_list.append(f.coeff(symbol)) coeff_list.append((- f.as_coeff_add(*symbols)[0])) M = M.row_insert(row_no, Matrix([coeff_list])) row_no += 1 M.row_del(0) (A, b) = (M[:, :(- 1)], M[:, (- 1):]) return (A, b)
-8,302,918,135,174,498,000
Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. The order of symbols in input `symbols` will determine the order of coefficients in the returned Matrix. The Matrix form corresponds to the augmented matrix form. For example: .. math:: 4x + 2y + 3z = 1 .. math:: 3x + y + z = -6 .. math:: 2x + 4y + 9z = 2 This system would return `A` & `b` as given below: :: [ 4 2 3 ] [ 1 ] A = [ 3 1 1 ] b = [-6 ] [ 2 4 9 ] [ 2 ] Examples ======== >>> from sympy import linear_eq_to_matrix, symbols >>> x, y, z = symbols('x, y, z') >>> eqns = [x + 2*y + 3*z - 1, 3*x + y + z + 6, 2*x + 4*y + 9*z - 2] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [1, 2, 3], [3, 1, 1], [2, 4, 9]]) >>> b Matrix([ [ 1], [-6], [ 2]]) >>> eqns = [x + z - 1, y + z, x - y] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [1, 0, 1], [0, 1, 1], [1, -1, 0]]) >>> b Matrix([ [1], [0], [0]]) * Symbolic coefficients are also supported >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> A, B = linear_eq_to_matrix(eqns, x, y) >>> A Matrix([ [a, b], [d, e]]) >>> B Matrix([ [c], [f]])
sympy/solvers/solveset.py
linear_eq_to_matrix
aktech/sympy
python
def linear_eq_to_matrix(equations, *symbols): "\n Converts a given System of Equations into Matrix form.\n Here `equations` must be a linear system of equations in\n `symbols`. The order of symbols in input `symbols` will\n determine the order of coefficients in the returned\n Matrix.\n\n The Matrix form corresponds to the augmented matrix form.\n For example:\n\n .. math:: 4x + 2y + 3z = 1\n .. math:: 3x + y + z = -6\n .. math:: 2x + 4y + 9z = 2\n\n This system would return `A` & `b` as given below:\n\n ::\n\n [ 4 2 3 ] [ 1 ]\n A = [ 3 1 1 ] b = [-6 ]\n [ 2 4 9 ] [ 2 ]\n\n Examples\n ========\n\n >>> from sympy import linear_eq_to_matrix, symbols\n >>> x, y, z = symbols('x, y, z')\n >>> eqns = [x + 2*y + 3*z - 1, 3*x + y + z + 6, 2*x + 4*y + 9*z - 2]\n >>> A, b = linear_eq_to_matrix(eqns, [x, y, z])\n >>> A\n Matrix([\n [1, 2, 3],\n [3, 1, 1],\n [2, 4, 9]])\n >>> b\n Matrix([\n [ 1],\n [-6],\n [ 2]])\n >>> eqns = [x + z - 1, y + z, x - y]\n >>> A, b = linear_eq_to_matrix(eqns, [x, y, z])\n >>> A\n Matrix([\n [1, 0, 1],\n [0, 1, 1],\n [1, -1, 0]])\n >>> b\n Matrix([\n [1],\n [0],\n [0]])\n\n * Symbolic coefficients are also supported\n\n >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')\n >>> eqns = [a*x + b*y - c, d*x + e*y - f]\n >>> A, B = linear_eq_to_matrix(eqns, x, y)\n >>> A\n Matrix([\n [a, b],\n [d, e]])\n >>> B\n Matrix([\n [c],\n [f]])\n\n " if (not symbols): raise ValueError('Symbols must be given, for which coefficients are to be found.') if hasattr(symbols[0], '__iter__'): symbols = symbols[0] M = Matrix([symbols]) M = M.col_insert(len(symbols), Matrix([1])) row_no = 1 for equation in equations: f = sympify(equation) if isinstance(f, Equality): f = (f.lhs - f.rhs) coeff_list = [] for symbol in symbols: coeff_list.append(f.coeff(symbol)) coeff_list.append((- f.as_coeff_add(*symbols)[0])) M = M.row_insert(row_no, Matrix([coeff_list])) row_no += 1 M.row_del(0) (A, b) = (M[:, :(- 1)], M[:, (- 1):]) return (A, b)
def linsolve(system, *symbols): '\n Solve system of N linear equations with M variables, which\n means both under - and overdetermined systems are supported.\n The possible number of solutions is zero, one or infinite.\n Zero solutions throws a ValueError, where as infinite\n solutions are represented parametrically in terms of given\n symbols. For unique solution a FiniteSet of ordered tuple\n is returned.\n\n All Standard input formats are supported:\n For the given set of Equations, the respective input types\n are given below:\n\n .. math:: 3x + 2y - z = 1\n .. math:: 2x - 2y + 4z = -2\n .. math:: 2x - y + 2z = 0\n\n * Augmented Matrix Form, `system` given below:\n\n ::\n\n [3 2 -1 1]\n system = [2 -2 4 -2]\n [2 -1 2 0]\n\n * List Of Equations Form\n\n `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]`\n\n * Input A & b Matrix Form (from Ax = b) are given as below:\n\n ::\n\n [3 2 -1 ] [ 1 ]\n A = [2 -2 4 ] b = [ -2 ]\n [2 -1 2 ] [ 0 ]\n\n `system = (A, b)`\n\n Symbols to solve for should be given as input in all the\n cases either in an iterable or as comma separated arguments.\n This is done to maintain consistency in returning solutions\n in the form of variable input by the user.\n\n The algorithm used here is Gauss-Jordan elimination, which\n results, after elimination, in an row echelon form matrix.\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `symbols` for which\n the `system` has solution.\n\n Please note that general FiniteSet is unordered, the solution\n returned here is not simply a FiniteSet of solutions, rather\n it is a FiniteSet of ordered tuple, i.e. the first & only\n argument to FiniteSet is a tuple of solutions, which is ordered,\n & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an\n ordered tuple, FiniteSet is just a wrapper `{}` around\n the tuple. It has no other significance except for\n the fact it is just used to maintain a consistent output\n format throughout the solveset.\n\n Returns EmptySet(), if the linear system is inconsistent.\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n\n Examples\n ========\n\n >>> from sympy import Matrix, S, linsolve, symbols\n >>> x, y, z = symbols("x, y, z")\n >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])\n >>> b = Matrix([3, 6, 9])\n >>> A\n Matrix([\n [1, 2, 3],\n [4, 5, 6],\n [7, 8, 10]])\n >>> b\n Matrix([\n [3],\n [6],\n [9]])\n >>> linsolve((A, b), [x, y, z])\n {(-1, 2, 0)}\n\n * Parametric Solution: In case the system is under determined, the function\n will return parametric solution in terms of the given symbols.\n Free symbols in the system are returned as it is. For e.g. in the system\n below, `z` is returned as the solution for variable z, which means z is a\n free symbol, i.e. it can take arbitrary values.\n\n >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n >>> b = Matrix([3, 6, 9])\n >>> linsolve((A, b), [x, y, z])\n {(z - 1, -2*z + 2, z)}\n\n * List of Equations as input\n\n >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + S(1)/2*y - z]\n >>> linsolve(Eqns, x, y, z)\n {(1, -2, -2)}\n\n * Augmented Matrix as input\n\n >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])\n >>> aug\n Matrix([\n [2, 1, 3, 1],\n [2, 6, 8, 3],\n [6, 8, 18, 5]])\n >>> linsolve(aug, x, y, z)\n {(3/10, 2/5, 0)}\n\n * Solve for symbolic coefficients\n\n >>> a, b, c, d, e, f = symbols(\'a, b, c, d, e, f\')\n >>> eqns = [a*x + b*y - c, d*x + e*y - f]\n >>> linsolve(eqns, x, y)\n {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}\n\n * A degenerate system returns solution as set of given\n symbols.\n\n >>> system = Matrix(([0,0,0], [0,0,0], [0,0,0]))\n >>> linsolve(system, x, y)\n {(x, y)}\n\n * For an empty system linsolve returns empty set\n\n >>> linsolve([ ], x)\n EmptySet()\n\n ' if (not system): return S.EmptySet if (not symbols): raise ValueError('Symbols must be given, for which solution of the system is to be found.') if hasattr(symbols[0], '__iter__'): symbols = symbols[0] try: sym = symbols[0].is_Symbol except AttributeError: sym = False if (not sym): raise ValueError(('Symbols or iterable of symbols must be given as second argument, not type %s: %s' % (type(symbols[0]), symbols[0]))) if isinstance(system, Matrix): (A, b) = (system[:, :(- 1)], system[:, (- 1):]) elif hasattr(system, '__iter__'): if ((len(system) == 2) and system[0].is_Matrix): (A, b) = (system[0], system[1]) if (not system[0].is_Matrix): (A, b) = linear_eq_to_matrix(system, symbols) else: raise ValueError('Invalid arguments') try: (sol, params, free_syms) = A.gauss_jordan_solve(b, freevar=True) except ValueError: return EmptySet() solution = [] if params: for s in sol: for (k, v) in enumerate(params): s = s.xreplace({v: symbols[free_syms[k]]}) solution.append(simplify(s)) else: for s in sol: solution.append(simplify(s)) solution = FiniteSet(tuple(solution)) return solution
4,470,600,606,688,218,600
Solve system of N linear equations with M variables, which means both under - and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, where as infinite solutions are represented parametrically in terms of given symbols. For unique solution a FiniteSet of ordered tuple is returned. All Standard input formats are supported: For the given set of Equations, the respective input types are given below: .. math:: 3x + 2y - z = 1 .. math:: 2x - 2y + 4z = -2 .. math:: 2x - y + 2z = 0 * Augmented Matrix Form, `system` given below: :: [3 2 -1 1] system = [2 -2 4 -2] [2 -1 2 0] * List Of Equations Form `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]` * Input A & b Matrix Form (from Ax = b) are given as below: :: [3 2 -1 ] [ 1 ] A = [2 -2 4 ] b = [ -2 ] [2 -1 2 ] [ 0 ] `system = (A, b)` Symbols to solve for should be given as input in all the cases either in an iterable or as comma separated arguments. This is done to maintain consistency in returning solutions in the form of variable input by the user. The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in an row echelon form matrix. Returns ======= A FiniteSet of ordered tuple of values of `symbols` for which the `system` has solution. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Returns EmptySet(), if the linear system is inconsistent. Raises ====== ValueError The input is not valid. The symbols are not given. Examples ======== >>> from sympy import Matrix, S, linsolve, symbols >>> x, y, z = symbols("x, y, z") >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> A Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b Matrix([ [3], [6], [9]]) >>> linsolve((A, b), [x, y, z]) {(-1, 2, 0)} * Parametric Solution: In case the system is under determined, the function will return parametric solution in terms of the given symbols. Free symbols in the system are returned as it is. For e.g. in the system below, `z` is returned as the solution for variable z, which means z is a free symbol, i.e. it can take arbitrary values. >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> b = Matrix([3, 6, 9]) >>> linsolve((A, b), [x, y, z]) {(z - 1, -2*z + 2, z)} * List of Equations as input >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + S(1)/2*y - z] >>> linsolve(Eqns, x, y, z) {(1, -2, -2)} * Augmented Matrix as input >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> aug Matrix([ [2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> linsolve(aug, x, y, z) {(3/10, 2/5, 0)} * Solve for symbolic coefficients >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> linsolve(eqns, x, y) {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))} * A degenerate system returns solution as set of given symbols. >>> system = Matrix(([0,0,0], [0,0,0], [0,0,0])) >>> linsolve(system, x, y) {(x, y)} * For an empty system linsolve returns empty set >>> linsolve([ ], x) EmptySet()
sympy/solvers/solveset.py
linsolve
aktech/sympy
python
def linsolve(system, *symbols): '\n Solve system of N linear equations with M variables, which\n means both under - and overdetermined systems are supported.\n The possible number of solutions is zero, one or infinite.\n Zero solutions throws a ValueError, where as infinite\n solutions are represented parametrically in terms of given\n symbols. For unique solution a FiniteSet of ordered tuple\n is returned.\n\n All Standard input formats are supported:\n For the given set of Equations, the respective input types\n are given below:\n\n .. math:: 3x + 2y - z = 1\n .. math:: 2x - 2y + 4z = -2\n .. math:: 2x - y + 2z = 0\n\n * Augmented Matrix Form, `system` given below:\n\n ::\n\n [3 2 -1 1]\n system = [2 -2 4 -2]\n [2 -1 2 0]\n\n * List Of Equations Form\n\n `system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]`\n\n * Input A & b Matrix Form (from Ax = b) are given as below:\n\n ::\n\n [3 2 -1 ] [ 1 ]\n A = [2 -2 4 ] b = [ -2 ]\n [2 -1 2 ] [ 0 ]\n\n `system = (A, b)`\n\n Symbols to solve for should be given as input in all the\n cases either in an iterable or as comma separated arguments.\n This is done to maintain consistency in returning solutions\n in the form of variable input by the user.\n\n The algorithm used here is Gauss-Jordan elimination, which\n results, after elimination, in an row echelon form matrix.\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `symbols` for which\n the `system` has solution.\n\n Please note that general FiniteSet is unordered, the solution\n returned here is not simply a FiniteSet of solutions, rather\n it is a FiniteSet of ordered tuple, i.e. the first & only\n argument to FiniteSet is a tuple of solutions, which is ordered,\n & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an\n ordered tuple, FiniteSet is just a wrapper `{}` around\n the tuple. It has no other significance except for\n the fact it is just used to maintain a consistent output\n format throughout the solveset.\n\n Returns EmptySet(), if the linear system is inconsistent.\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n\n Examples\n ========\n\n >>> from sympy import Matrix, S, linsolve, symbols\n >>> x, y, z = symbols("x, y, z")\n >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])\n >>> b = Matrix([3, 6, 9])\n >>> A\n Matrix([\n [1, 2, 3],\n [4, 5, 6],\n [7, 8, 10]])\n >>> b\n Matrix([\n [3],\n [6],\n [9]])\n >>> linsolve((A, b), [x, y, z])\n {(-1, 2, 0)}\n\n * Parametric Solution: In case the system is under determined, the function\n will return parametric solution in terms of the given symbols.\n Free symbols in the system are returned as it is. For e.g. in the system\n below, `z` is returned as the solution for variable z, which means z is a\n free symbol, i.e. it can take arbitrary values.\n\n >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])\n >>> b = Matrix([3, 6, 9])\n >>> linsolve((A, b), [x, y, z])\n {(z - 1, -2*z + 2, z)}\n\n * List of Equations as input\n\n >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + S(1)/2*y - z]\n >>> linsolve(Eqns, x, y, z)\n {(1, -2, -2)}\n\n * Augmented Matrix as input\n\n >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])\n >>> aug\n Matrix([\n [2, 1, 3, 1],\n [2, 6, 8, 3],\n [6, 8, 18, 5]])\n >>> linsolve(aug, x, y, z)\n {(3/10, 2/5, 0)}\n\n * Solve for symbolic coefficients\n\n >>> a, b, c, d, e, f = symbols(\'a, b, c, d, e, f\')\n >>> eqns = [a*x + b*y - c, d*x + e*y - f]\n >>> linsolve(eqns, x, y)\n {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}\n\n * A degenerate system returns solution as set of given\n symbols.\n\n >>> system = Matrix(([0,0,0], [0,0,0], [0,0,0]))\n >>> linsolve(system, x, y)\n {(x, y)}\n\n * For an empty system linsolve returns empty set\n\n >>> linsolve([ ], x)\n EmptySet()\n\n ' if (not system): return S.EmptySet if (not symbols): raise ValueError('Symbols must be given, for which solution of the system is to be found.') if hasattr(symbols[0], '__iter__'): symbols = symbols[0] try: sym = symbols[0].is_Symbol except AttributeError: sym = False if (not sym): raise ValueError(('Symbols or iterable of symbols must be given as second argument, not type %s: %s' % (type(symbols[0]), symbols[0]))) if isinstance(system, Matrix): (A, b) = (system[:, :(- 1)], system[:, (- 1):]) elif hasattr(system, '__iter__'): if ((len(system) == 2) and system[0].is_Matrix): (A, b) = (system[0], system[1]) if (not system[0].is_Matrix): (A, b) = linear_eq_to_matrix(system, symbols) else: raise ValueError('Invalid arguments') try: (sol, params, free_syms) = A.gauss_jordan_solve(b, freevar=True) except ValueError: return EmptySet() solution = [] if params: for s in sol: for (k, v) in enumerate(params): s = s.xreplace({v: symbols[free_syms[k]]}) solution.append(simplify(s)) else: for s in sol: solution.append(simplify(s)) solution = FiniteSet(tuple(solution)) return solution
def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): "\n Solves the `system` using substitution method. It is used in\n `nonlinsolve`. This will be called from `nonlinsolve` when any\n equation(s) is non polynomial equation.\n\n Parameters\n ==========\n\n system : list of equations\n The target system of equations\n symbols : list of symbols to be solved.\n The variable(s) for which the system is solved\n known_symbols : list of solved symbols\n Values are known for these variable(s)\n result : An empty list or list of dict\n If No symbol values is known then empty list otherwise\n symbol as keys and corresponding value in dict.\n exclude : Set of expression.\n Mostly denominator expression(s) of the equations of the system.\n Final solution should not satisfy these expressions.\n all_symbols : known_symbols + symbols(unsolved).\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `all_symbols` for which the\n `system` has solution. Order of values in the tuple is same as symbols\n present in the parameter `all_symbols`. If parameter `all_symbols` is None\n then same as symbols present in the parameter `symbols`.\n\n Please note that general FiniteSet is unordered, the solution returned\n here is not simply a FiniteSet of solutions, rather it is a FiniteSet of\n ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of\n solutions, which is ordered, & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an ordered tuple,\n FiniteSet is just a wrapper `{}` around the tuple. It has no other\n significance except for the fact it is just used to maintain a consistent\n output format throughout the solveset.\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n AttributeError\n The input symbols are not `Symbol` type.\n\n Examples\n ========\n\n >>> from sympy.core.symbol import symbols\n >>> x, y = symbols('x, y', real=True)\n >>> from sympy.solvers.solveset import substitution\n >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])\n {(-1, 1)}\n\n * when you want soln should not satisfy eq `x + 1 = 0`\n\n >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])\n EmptySet()\n >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])\n {(1, -1)}\n >>> substitution([x + y - 1, y - x**2 + 5], [x, y])\n {(-3, 4), (2, -1)}\n\n * Returns both real and complex solution\n\n >>> x, y, z = symbols('x, y, z')\n >>> from sympy import exp, sin\n >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])\n {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +\n log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +\n Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}\n\n >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]\n >>> substitution(eqs, [y, z])\n {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),\n (-log(3), sqrt(-exp(2*x) - sin(log(3)))),\n (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),\n ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi +\n Mod(-log(3), 2*I*pi)))), Integers())),\n (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),\n ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi +\n Mod(-log(3), 2*I*pi)))), Integers()))}\n\n " from sympy import Complement from sympy.core.compatibility import is_sequence if (not system): return S.EmptySet if (not symbols): msg = 'Symbols must be given, for which solution of the system is to be found.' raise ValueError(filldedent(msg)) if (not is_sequence(symbols)): msg = 'symbols should be given as a sequence, e.g. a list.Not type %s: %s' raise TypeError(filldedent((msg % (type(symbols), symbols)))) try: sym = symbols[0].is_Symbol except AttributeError: sym = False if (not sym): msg = 'Iterable of symbols must be given as second argument, not type %s: %s' raise ValueError(filldedent((msg % (type(symbols[0]), symbols[0])))) if (all_symbols is None): all_symbols = symbols old_result = result complements = {} intersections = {} total_conditionset = (- 1) total_solveset_call = (- 1) def _unsolved_syms(eq, sort=False): 'Returns the unsolved symbol present\n in the equation `eq`.\n ' free = eq.free_symbols unsolved = ((free - set(known_symbols)) & set(all_symbols)) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved eqs_in_better_order = list(ordered(system, (lambda _: len(_unsolved_syms(_))))) def add_intersection_complement(result, sym_set, **flags): final_result = [] for res in result: res_copy = res for (key_res, value_res) in res.items(): intersection_true = flags.get('Intersection', True) complements_true = flags.get('Complement', True) for (key_sym, value_sym) in sym_set.items(): if (key_sym == key_res): if intersection_true: new_value = Intersection(FiniteSet(value_res), value_sym) if (new_value is not S.EmptySet): res_copy[key_res] = new_value if complements_true: new_value = Complement(FiniteSet(value_res), value_sym) if (new_value is not S.EmptySet): res_copy[key_res] = new_value final_result.append(res_copy) return final_result def _extract_main_soln(sol, soln_imageset): "separate the Complements, Intersections, ImageSet lambda expr\n and it's base_set.\n " if isinstance(sol, Complement): complements[sym] = sol.args[1] sol = sol.args[0] if isinstance(sol, Intersection): if (sol.args[0] != Interval((- oo), oo)): intersections[sym] = sol.args[0] sol = sol.args[1] if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: sol += FiniteSet(sol_arg2) if (not isinstance(sol, FiniteSet)): sol = FiniteSet(sol) return (sol, soln_imageset) def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for (key_res, value_res) in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy try: satisfy_exclude = any((checksol(d, rnew_) for d in exclude)) except TypeError: satisfy_exclude = None return satisfy_exclude def _restore_imgset(rnew, original_imageset, newresult): restore_sym = (set(rnew.keys()) & set(original_imageset.keys())) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if (rnew not in newresult): newresult.append(rnew) def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = checksol(u, u, eq, minimal=True) if (satisfy is False): delete_soln = True res = {} else: result.append(res) return (result, res, delete_soln) def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): 'If `rnew` (A dict <symbol: soln>) contains valid soln\n append it to `newresult` list.\n `imgset_yes` is (base, dummy_var) if there was imageset in previously\n calculated result(otherwise empty tuple). `original_imageset` is dict\n of imageset expr and imageset from this result.\n `soln_imageset` dict of imageset expr and imageset of new soln.\n ' satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False if (not satisfy_exclude): local_n = None if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if (sym and sol): dummy_list = list(sol.atoms(Dummy)) local_n_list = [local_n for i in range(0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln, local_n) elif (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return (newresult, delete_soln) def _new_order_result(result, eq): first_priority = [] second_priority = [] for res in result: if (not any((isinstance(val, ImageSet) for val in res.values()))): if (eq.subs(res) == 0): first_priority.append(res) else: second_priority.append(res) if (first_priority or second_priority): return (first_priority + second_priority) return result def _solve_using_known_values(result, solver): 'Solves the system using already known solution\n (result contains the dict <symbol: value>).\n solver is `solveset_complex` or `solveset_real`.\n ' soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 for (index, eq) in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() if soln_imageset: for (key_res, value_res) in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) eq2 = eq.subs(res) unsolved_syms = _unsolved_syms(eq2, sort=True) if (not unsolved_syms): if res: (newresult, delete_res) = _append_new_soln(res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: result.remove(res) continue depen = eq2.as_independent(unsolved_syms)[0] if (depen.has(Abs) and (solver == solveset_complex)): continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): complements[sym] = soln.args[1] soln = soln.args[0] if isinstance(soln, Intersection): if (soln.args[0] != Interval((- oo), oo)): intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = (soln_new if soln_new else soln) if ((index > 0) and (solver == solveset_real)): if (not isinstance(soln, (ImageSet, ConditionSet))): soln += solveset_complex(eq2, sym) except NotImplementedError: continue if isinstance(soln, ConditionSet): soln = S.EmptySet not_solvable = True total_conditionst += 1 if (soln is not S.EmptySet): (soln, soln_imageset) = _extract_main_soln(soln, soln_imageset) for sol in soln: (sol, soln_imageset) = _extract_main_soln(sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if (got_symbol and any([(ss in free) for ss in got_symbol])): continue rnew = res.copy() for (k, v) in res.items(): if isinstance(v, Expr): rnew[k] = v.subs(sym, sol) if soln_imageset: imgst = soln_imageset[sol] rnew[sym] = imgst.lamda(*[0 for i in range(0, len(imgst.lamda.variables))]) else: rnew[sym] = sol (newresult, delete_res) = _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: result.remove(res) if (not not_solvable): got_symbol.add(sym) if newresult: result = newresult return (result, total_solvest_call, total_conditionst) (new_result_real, solve_call1, cnd_call1) = _solve_using_known_values(old_result, solveset_real) (new_result_complex, solve_call2, cnd_call2) = _solve_using_known_values(old_result, solveset_complex) total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if ((total_conditionset == total_solveset_call) and (total_solveset_call != (- 1))): return _return_conditionset(eqs_in_better_order, all_symbols) result = (new_result_real + new_result_complex) result_all_variables = [] result_infinite = [] for res in result: if (not res): continue if (len(res) < len(all_symbols)): solved_symbols = res.keys() unsolved = list(filter((lambda x: (x not in solved_symbols)), all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if (res not in result_all_variables): result_all_variables.append(res) if result_infinite: result_all_variables = result_infinite if (intersections and complements): result_all_variables = add_intersection_complement(result_all_variables, intersections, Intersection=True, Complement=True) elif intersections: result_all_variables = add_intersection_complement(result_all_variables, intersections, Intersection=True) elif complements: result_all_variables = add_intersection_complement(result_all_variables, complements, Complement=True) result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result
-3,908,398,040,080,195,600
Solves the `system` using substitution method. It is used in `nonlinsolve`. This will be called from `nonlinsolve` when any equation(s) is non polynomial equation. Parameters ========== system : list of equations The target system of equations symbols : list of symbols to be solved. The variable(s) for which the system is solved known_symbols : list of solved symbols Values are known for these variable(s) result : An empty list or list of dict If No symbol values is known then empty list otherwise symbol as keys and corresponding value in dict. exclude : Set of expression. Mostly denominator expression(s) of the equations of the system. Final solution should not satisfy these expressions. all_symbols : known_symbols + symbols(unsolved). Returns ======= A FiniteSet of ordered tuple of values of `all_symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `all_symbols`. If parameter `all_symbols` is None then same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> x, y = symbols('x, y', real=True) >>> from sympy.solvers.solveset import substitution >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) {(-1, 1)} * when you want soln should not satisfy eq `x + 1 = 0` >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) EmptySet() >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x]) {(1, -1)} >>> substitution([x + y - 1, y - x**2 + 5], [x, y]) {(-3, 4), (2, -1)} * Returns both real and complex solution >>> x, y, z = symbols('x, y, z') >>> from sympy import exp, sin >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y]) {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(log(sin(2)), 2*I*pi)), Integers()), 2)} >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)] >>> substitution(eqs, [y, z]) {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3)))), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()), ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi + Mod(-log(3), 2*I*pi)))), Integers())), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()), ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi + Mod(-log(3), 2*I*pi)))), Integers()))}
sympy/solvers/solveset.py
substitution
aktech/sympy
python
def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): "\n Solves the `system` using substitution method. It is used in\n `nonlinsolve`. This will be called from `nonlinsolve` when any\n equation(s) is non polynomial equation.\n\n Parameters\n ==========\n\n system : list of equations\n The target system of equations\n symbols : list of symbols to be solved.\n The variable(s) for which the system is solved\n known_symbols : list of solved symbols\n Values are known for these variable(s)\n result : An empty list or list of dict\n If No symbol values is known then empty list otherwise\n symbol as keys and corresponding value in dict.\n exclude : Set of expression.\n Mostly denominator expression(s) of the equations of the system.\n Final solution should not satisfy these expressions.\n all_symbols : known_symbols + symbols(unsolved).\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `all_symbols` for which the\n `system` has solution. Order of values in the tuple is same as symbols\n present in the parameter `all_symbols`. If parameter `all_symbols` is None\n then same as symbols present in the parameter `symbols`.\n\n Please note that general FiniteSet is unordered, the solution returned\n here is not simply a FiniteSet of solutions, rather it is a FiniteSet of\n ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of\n solutions, which is ordered, & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an ordered tuple,\n FiniteSet is just a wrapper `{}` around the tuple. It has no other\n significance except for the fact it is just used to maintain a consistent\n output format throughout the solveset.\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n AttributeError\n The input symbols are not `Symbol` type.\n\n Examples\n ========\n\n >>> from sympy.core.symbol import symbols\n >>> x, y = symbols('x, y', real=True)\n >>> from sympy.solvers.solveset import substitution\n >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])\n {(-1, 1)}\n\n * when you want soln should not satisfy eq `x + 1 = 0`\n\n >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])\n EmptySet()\n >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])\n {(1, -1)}\n >>> substitution([x + y - 1, y - x**2 + 5], [x, y])\n {(-3, 4), (2, -1)}\n\n * Returns both real and complex solution\n\n >>> x, y, z = symbols('x, y, z')\n >>> from sympy import exp, sin\n >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])\n {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +\n log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +\n Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}\n\n >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]\n >>> substitution(eqs, [y, z])\n {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),\n (-log(3), sqrt(-exp(2*x) - sin(log(3)))),\n (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),\n ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi +\n Mod(-log(3), 2*I*pi)))), Integers())),\n (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(-log(3), 2*I*pi)), Integers()),\n ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi +\n Mod(-log(3), 2*I*pi)))), Integers()))}\n\n " from sympy import Complement from sympy.core.compatibility import is_sequence if (not system): return S.EmptySet if (not symbols): msg = 'Symbols must be given, for which solution of the system is to be found.' raise ValueError(filldedent(msg)) if (not is_sequence(symbols)): msg = 'symbols should be given as a sequence, e.g. a list.Not type %s: %s' raise TypeError(filldedent((msg % (type(symbols), symbols)))) try: sym = symbols[0].is_Symbol except AttributeError: sym = False if (not sym): msg = 'Iterable of symbols must be given as second argument, not type %s: %s' raise ValueError(filldedent((msg % (type(symbols[0]), symbols[0])))) if (all_symbols is None): all_symbols = symbols old_result = result complements = {} intersections = {} total_conditionset = (- 1) total_solveset_call = (- 1) def _unsolved_syms(eq, sort=False): 'Returns the unsolved symbol present\n in the equation `eq`.\n ' free = eq.free_symbols unsolved = ((free - set(known_symbols)) & set(all_symbols)) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved eqs_in_better_order = list(ordered(system, (lambda _: len(_unsolved_syms(_))))) def add_intersection_complement(result, sym_set, **flags): final_result = [] for res in result: res_copy = res for (key_res, value_res) in res.items(): intersection_true = flags.get('Intersection', True) complements_true = flags.get('Complement', True) for (key_sym, value_sym) in sym_set.items(): if (key_sym == key_res): if intersection_true: new_value = Intersection(FiniteSet(value_res), value_sym) if (new_value is not S.EmptySet): res_copy[key_res] = new_value if complements_true: new_value = Complement(FiniteSet(value_res), value_sym) if (new_value is not S.EmptySet): res_copy[key_res] = new_value final_result.append(res_copy) return final_result def _extract_main_soln(sol, soln_imageset): "separate the Complements, Intersections, ImageSet lambda expr\n and it's base_set.\n " if isinstance(sol, Complement): complements[sym] = sol.args[1] sol = sol.args[0] if isinstance(sol, Intersection): if (sol.args[0] != Interval((- oo), oo)): intersections[sym] = sol.args[0] sol = sol.args[1] if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: sol += FiniteSet(sol_arg2) if (not isinstance(sol, FiniteSet)): sol = FiniteSet(sol) return (sol, soln_imageset) def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for (key_res, value_res) in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy try: satisfy_exclude = any((checksol(d, rnew_) for d in exclude)) except TypeError: satisfy_exclude = None return satisfy_exclude def _restore_imgset(rnew, original_imageset, newresult): restore_sym = (set(rnew.keys()) & set(original_imageset.keys())) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if (rnew not in newresult): newresult.append(rnew) def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = checksol(u, u, eq, minimal=True) if (satisfy is False): delete_soln = True res = {} else: result.append(res) return (result, res, delete_soln) def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): 'If `rnew` (A dict <symbol: soln>) contains valid soln\n append it to `newresult` list.\n `imgset_yes` is (base, dummy_var) if there was imageset in previously\n calculated result(otherwise empty tuple). `original_imageset` is dict\n of imageset expr and imageset from this result.\n `soln_imageset` dict of imageset expr and imageset of new soln.\n ' satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False if (not satisfy_exclude): local_n = None if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if (sym and sol): dummy_list = list(sol.atoms(Dummy)) local_n_list = [local_n for i in range(0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln, local_n) elif (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return (newresult, delete_soln) def _new_order_result(result, eq): first_priority = [] second_priority = [] for res in result: if (not any((isinstance(val, ImageSet) for val in res.values()))): if (eq.subs(res) == 0): first_priority.append(res) else: second_priority.append(res) if (first_priority or second_priority): return (first_priority + second_priority) return result def _solve_using_known_values(result, solver): 'Solves the system using already known solution\n (result contains the dict <symbol: value>).\n solver is `solveset_complex` or `solveset_real`.\n ' soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 for (index, eq) in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() if soln_imageset: for (key_res, value_res) in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) eq2 = eq.subs(res) unsolved_syms = _unsolved_syms(eq2, sort=True) if (not unsolved_syms): if res: (newresult, delete_res) = _append_new_soln(res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: result.remove(res) continue depen = eq2.as_independent(unsolved_syms)[0] if (depen.has(Abs) and (solver == solveset_complex)): continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): complements[sym] = soln.args[1] soln = soln.args[0] if isinstance(soln, Intersection): if (soln.args[0] != Interval((- oo), oo)): intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = (soln_new if soln_new else soln) if ((index > 0) and (solver == solveset_real)): if (not isinstance(soln, (ImageSet, ConditionSet))): soln += solveset_complex(eq2, sym) except NotImplementedError: continue if isinstance(soln, ConditionSet): soln = S.EmptySet not_solvable = True total_conditionst += 1 if (soln is not S.EmptySet): (soln, soln_imageset) = _extract_main_soln(soln, soln_imageset) for sol in soln: (sol, soln_imageset) = _extract_main_soln(sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if (got_symbol and any([(ss in free) for ss in got_symbol])): continue rnew = res.copy() for (k, v) in res.items(): if isinstance(v, Expr): rnew[k] = v.subs(sym, sol) if soln_imageset: imgst = soln_imageset[sol] rnew[sym] = imgst.lamda(*[0 for i in range(0, len(imgst.lamda.variables))]) else: rnew[sym] = sol (newresult, delete_res) = _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: result.remove(res) if (not not_solvable): got_symbol.add(sym) if newresult: result = newresult return (result, total_solvest_call, total_conditionst) (new_result_real, solve_call1, cnd_call1) = _solve_using_known_values(old_result, solveset_real) (new_result_complex, solve_call2, cnd_call2) = _solve_using_known_values(old_result, solveset_complex) total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if ((total_conditionset == total_solveset_call) and (total_solveset_call != (- 1))): return _return_conditionset(eqs_in_better_order, all_symbols) result = (new_result_real + new_result_complex) result_all_variables = [] result_infinite = [] for res in result: if (not res): continue if (len(res) < len(all_symbols)): solved_symbols = res.keys() unsolved = list(filter((lambda x: (x not in solved_symbols)), all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if (res not in result_all_variables): result_all_variables.append(res) if result_infinite: result_all_variables = result_infinite if (intersections and complements): result_all_variables = add_intersection_complement(result_all_variables, intersections, Intersection=True, Complement=True) elif intersections: result_all_variables = add_intersection_complement(result_all_variables, intersections, Intersection=True) elif complements: result_all_variables = add_intersection_complement(result_all_variables, complements, Complement=True) result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result
def nonlinsolve(system, *symbols): "\n Solve system of N non linear equations with M variables, which means both\n under and overdetermined systems are supported. Positive dimensional\n system is also supported (A system with infinitely many solutions is said\n to be positive-dimensional). In Positive dimensional system solution will\n be dependent on at least one symbol. Returns both real solution\n and complex solution(If system have). The possible number of solutions\n is zero, one or infinite.\n\n Parameters\n ==========\n\n system : list of equations\n The target system of equations\n symbols : list of Symbols\n symbols should be given as a sequence eg. list\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `symbols` for which the `system`\n has solution. Order of values in the tuple is same as symbols present in\n the parameter `symbols`.\n\n Please note that general FiniteSet is unordered, the solution returned\n here is not simply a FiniteSet of solutions, rather it is a FiniteSet of\n ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of\n solutions, which is ordered, & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an ordered tuple,\n FiniteSet is just a wrapper `{}` around the tuple. It has no other\n significance except for the fact it is just used to maintain a consistent\n output format throughout the solveset.\n\n For the given set of Equations, the respective input types\n are given below:\n\n .. math:: x*y - 1 = 0\n .. math:: 4*x**2 + y**2 - 5 = 0\n\n `system = [x*y - 1, 4*x**2 + y**2 - 5]`\n `symbols = [x, y]`\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n AttributeError\n The input symbols are not `Symbol` type.\n\n Examples\n ========\n\n >>> from sympy.core.symbol import symbols\n >>> from sympy.solvers.solveset import nonlinsolve\n >>> x, y, z = symbols('x, y, z', real=True)\n >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])\n {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}\n\n 1. Positive dimensional system and complements:\n\n >>> from sympy import pprint\n >>> from sympy.polys.polytools import is_zero_dimensional\n >>> a, b, c, d = symbols('a, b, c, d', real=True)\n >>> eq1 = a + b + c + d\n >>> eq2 = a*b + b*c + c*d + d*a\n >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b\n >>> eq4 = a*b*c*d - 1\n >>> system = [eq1, eq2, eq3, eq4]\n >>> is_zero_dimensional(system)\n False\n >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)\n -1 1 1 -1\n {(---, -d, -, {d} \\ {0}), (-, -d, ---, {d} \\ {0})}\n d d d d\n >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])\n {(-y + 2, y)}\n\n 2. If some of the equations are non polynomial equation then `nonlinsolve`\n will call `substitution` function and returns real and complex solutions,\n if present.\n\n >>> from sympy import exp, sin\n >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])\n {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +\n log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +\n Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}\n\n 3. If system is Non linear polynomial zero dimensional then it returns\n both solution (real and complex solutions, if present using\n `solve_poly_system`):\n\n >>> from sympy import sqrt\n >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])\n {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}\n\n 4. `nonlinsolve` can solve some linear(zero or positive dimensional)\n system (because it is using `groebner` function to get the\n groebner basis and then `substitution` function basis as the new `system`).\n But it is not recommended to solve linear system using `nonlinsolve`,\n because `linsolve` is better for all kind of linear system.\n\n >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z])\n {(3*z - 5, -z + 4, z)}\n\n 5. System having polynomial equations and only real solution is present\n (will be solved using `solve_poly_system`):\n\n >>> e1 = sqrt(x**2 + y**2) - 10\n >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3\n >>> nonlinsolve((e1, e2), (x, y))\n {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}\n >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])\n {(1, 2), (1 + sqrt(5), -sqrt(5) + 2), (-sqrt(5) + 1, 2 + sqrt(5))}\n >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])\n {(2, 1), (2 + sqrt(5), -sqrt(5) + 1), (-sqrt(5) + 2, 1 + sqrt(5))}\n\n 6. It is better to use symbols instead of Trigonometric Function or\n Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol\n and so on. Get soln from `nonlinsolve` and then using `solveset` get\n the value of `x`)\n\n How nonlinsolve is better than old solver `_solve_system` :\n ===========================================================\n\n 1. A positive dimensional system solver : nonlinsolve can return\n solution for positive dimensional system. It finds the\n Groebner Basis of the positive dimensional system(calling it as\n basis) then we can start solving equation(having least number of\n variable first in the basis) using solveset and substituting that\n solved solutions into other equation(of basis) to get solution in\n terms of minimum variables. Here the important thing is how we\n are substituting the known values and in which equations.\n\n 2. Real and Complex both solutions : nonlinsolve returns both real\n and complex solution. If all the equations in the system are polynomial\n then using `solve_poly_system` both real and complex solution is returned.\n If all the equations in the system are not polynomial equation then goes to\n `substitution` method with this polynomial and non polynomial equation(s),\n to solve for unsolved variables. Here to solve for particular variable\n solveset_real and solveset_complex is used. For both real and complex\n solution function `_solve_using_know_values` is used inside `substitution`\n function.(`substitution` function will be called when there is any non\n polynomial equation(s) is present). When solution is valid then add its\n general solution in the final result.\n\n 3. Complement and Intersection will be added if any : nonlinsolve maintains\n dict for complements and Intersections. If solveset find complements or/and\n Intersection with any Interval or set during the execution of\n `substitution` function ,then complement or/and Intersection for that\n variable is added before returning final solution.\n\n " from sympy.polys.polytools import is_zero_dimensional if (not system): return S.EmptySet if (not symbols): msg = 'Symbols must be given, for which solution of the system is to be found.' raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] try: sym = symbols[0].is_Symbol except AttributeError: sym = False except IndexError: msg = 'Symbols must be given, for which solution of the system is to be found.' raise IndexError(filldedent(msg)) if (not sym): msg = 'Symbols or iterable of symbols must be given as second argument, not type %s: %s' raise ValueError(filldedent((msg % (type(symbols[0]), symbols[0])))) if ((len(system) == 1) and (len(symbols) == 1)): return _solveset_work(system, symbols) (polys, polys_expr, nonpolys, denominators) = _separate_poly_nonpoly(system, symbols) if (len(symbols) == len(polys)): if is_zero_dimensional(polys, symbols): try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: result = substitution(polys_expr, symbols, exclude=denominators) return result return _handle_positive_dimensional(polys, symbols, denominators) else: result = substitution((polys_expr + nonpolys), symbols, exclude=denominators) return result
6,897,244,678,591,841,000
Solve system of N non linear equations with M variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In Positive dimensional system solution will be dependent on at least one symbol. Returns both real solution and complex solution(If system have). The possible number of solutions is zero, one or infinite. Parameters ========== system : list of equations The target system of equations symbols : list of Symbols symbols should be given as a sequence eg. list Returns ======= A FiniteSet of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. For the given set of Equations, the respective input types are given below: .. math:: x*y - 1 = 0 .. math:: 4*x**2 + y**2 - 5 = 0 `system = [x*y - 1, 4*x**2 + y**2 - 5]` `symbols = [x, y]` Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy.core.symbol import symbols >>> from sympy.solvers.solveset import nonlinsolve >>> x, y, z = symbols('x, y, z', real=True) >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y]) {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)} 1. Positive dimensional system and complements: >>> from sympy import pprint >>> from sympy.polys.polytools import is_zero_dimensional >>> a, b, c, d = symbols('a, b, c, d', real=True) >>> eq1 = a + b + c + d >>> eq2 = a*b + b*c + c*d + d*a >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b >>> eq4 = a*b*c*d - 1 >>> system = [eq1, eq2, eq3, eq4] >>> is_zero_dimensional(system) False >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False) -1 1 1 -1 {(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})} d d d d >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y]) {(-y + 2, y)} 2. If some of the equations are non polynomial equation then `nonlinsolve` will call `substitution` function and returns real and complex solutions, if present. >>> from sympy import exp, sin >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y]) {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + Mod(log(sin(2)), 2*I*pi)), Integers()), 2)} 3. If system is Non linear polynomial zero dimensional then it returns both solution (real and complex solutions, if present using `solve_poly_system`): >>> from sympy import sqrt >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y]) {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)} 4. `nonlinsolve` can solve some linear(zero or positive dimensional) system (because it is using `groebner` function to get the groebner basis and then `substitution` function basis as the new `system`). But it is not recommended to solve linear system using `nonlinsolve`, because `linsolve` is better for all kind of linear system. >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z]) {(3*z - 5, -z + 4, z)} 5. System having polynomial equations and only real solution is present (will be solved using `solve_poly_system`): >>> e1 = sqrt(x**2 + y**2) - 10 >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3 >>> nonlinsolve((e1, e2), (x, y)) {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y]) {(1, 2), (1 + sqrt(5), -sqrt(5) + 2), (-sqrt(5) + 1, 2 + sqrt(5))} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x]) {(2, 1), (2 + sqrt(5), -sqrt(5) + 1), (-sqrt(5) + 2, 1 + sqrt(5))} 6. It is better to use symbols instead of Trigonometric Function or Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol and so on. Get soln from `nonlinsolve` and then using `solveset` get the value of `x`) How nonlinsolve is better than old solver `_solve_system` : =========================================================== 1. A positive dimensional system solver : nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations. 2. Real and Complex both solutions : nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using `solve_poly_system` both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to `substitution` method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution function `_solve_using_know_values` is used inside `substitution` function.(`substitution` function will be called when there is any non polynomial equation(s) is present). When solution is valid then add its general solution in the final result. 3. Complement and Intersection will be added if any : nonlinsolve maintains dict for complements and Intersections. If solveset find complements or/and Intersection with any Interval or set during the execution of `substitution` function ,then complement or/and Intersection for that variable is added before returning final solution.
sympy/solvers/solveset.py
nonlinsolve
aktech/sympy
python
def nonlinsolve(system, *symbols): "\n Solve system of N non linear equations with M variables, which means both\n under and overdetermined systems are supported. Positive dimensional\n system is also supported (A system with infinitely many solutions is said\n to be positive-dimensional). In Positive dimensional system solution will\n be dependent on at least one symbol. Returns both real solution\n and complex solution(If system have). The possible number of solutions\n is zero, one or infinite.\n\n Parameters\n ==========\n\n system : list of equations\n The target system of equations\n symbols : list of Symbols\n symbols should be given as a sequence eg. list\n\n Returns\n =======\n\n A FiniteSet of ordered tuple of values of `symbols` for which the `system`\n has solution. Order of values in the tuple is same as symbols present in\n the parameter `symbols`.\n\n Please note that general FiniteSet is unordered, the solution returned\n here is not simply a FiniteSet of solutions, rather it is a FiniteSet of\n ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of\n solutions, which is ordered, & hence the returned solution is ordered.\n\n Also note that solution could also have been returned as an ordered tuple,\n FiniteSet is just a wrapper `{}` around the tuple. It has no other\n significance except for the fact it is just used to maintain a consistent\n output format throughout the solveset.\n\n For the given set of Equations, the respective input types\n are given below:\n\n .. math:: x*y - 1 = 0\n .. math:: 4*x**2 + y**2 - 5 = 0\n\n `system = [x*y - 1, 4*x**2 + y**2 - 5]`\n `symbols = [x, y]`\n\n Raises\n ======\n\n ValueError\n The input is not valid.\n The symbols are not given.\n AttributeError\n The input symbols are not `Symbol` type.\n\n Examples\n ========\n\n >>> from sympy.core.symbol import symbols\n >>> from sympy.solvers.solveset import nonlinsolve\n >>> x, y, z = symbols('x, y, z', real=True)\n >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])\n {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}\n\n 1. Positive dimensional system and complements:\n\n >>> from sympy import pprint\n >>> from sympy.polys.polytools import is_zero_dimensional\n >>> a, b, c, d = symbols('a, b, c, d', real=True)\n >>> eq1 = a + b + c + d\n >>> eq2 = a*b + b*c + c*d + d*a\n >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b\n >>> eq4 = a*b*c*d - 1\n >>> system = [eq1, eq2, eq3, eq4]\n >>> is_zero_dimensional(system)\n False\n >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)\n -1 1 1 -1\n {(---, -d, -, {d} \\ {0}), (-, -d, ---, {d} \\ {0})}\n d d d d\n >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])\n {(-y + 2, y)}\n\n 2. If some of the equations are non polynomial equation then `nonlinsolve`\n will call `substitution` function and returns real and complex solutions,\n if present.\n\n >>> from sympy import exp, sin\n >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])\n {(log(sin(2)), 2), (ImageSet(Lambda(_n, I*(2*_n*pi + pi) +\n log(sin(2))), Integers()), -2), (ImageSet(Lambda(_n, 2*_n*I*pi +\n Mod(log(sin(2)), 2*I*pi)), Integers()), 2)}\n\n 3. If system is Non linear polynomial zero dimensional then it returns\n both solution (real and complex solutions, if present using\n `solve_poly_system`):\n\n >>> from sympy import sqrt\n >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])\n {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}\n\n 4. `nonlinsolve` can solve some linear(zero or positive dimensional)\n system (because it is using `groebner` function to get the\n groebner basis and then `substitution` function basis as the new `system`).\n But it is not recommended to solve linear system using `nonlinsolve`,\n because `linsolve` is better for all kind of linear system.\n\n >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9 , y + z - 4], [x, y, z])\n {(3*z - 5, -z + 4, z)}\n\n 5. System having polynomial equations and only real solution is present\n (will be solved using `solve_poly_system`):\n\n >>> e1 = sqrt(x**2 + y**2) - 10\n >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3\n >>> nonlinsolve((e1, e2), (x, y))\n {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}\n >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])\n {(1, 2), (1 + sqrt(5), -sqrt(5) + 2), (-sqrt(5) + 1, 2 + sqrt(5))}\n >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])\n {(2, 1), (2 + sqrt(5), -sqrt(5) + 1), (-sqrt(5) + 2, 1 + sqrt(5))}\n\n 6. It is better to use symbols instead of Trigonometric Function or\n Function (e.g. replace `sin(x)` with symbol, replace `f(x)` with symbol\n and so on. Get soln from `nonlinsolve` and then using `solveset` get\n the value of `x`)\n\n How nonlinsolve is better than old solver `_solve_system` :\n ===========================================================\n\n 1. A positive dimensional system solver : nonlinsolve can return\n solution for positive dimensional system. It finds the\n Groebner Basis of the positive dimensional system(calling it as\n basis) then we can start solving equation(having least number of\n variable first in the basis) using solveset and substituting that\n solved solutions into other equation(of basis) to get solution in\n terms of minimum variables. Here the important thing is how we\n are substituting the known values and in which equations.\n\n 2. Real and Complex both solutions : nonlinsolve returns both real\n and complex solution. If all the equations in the system are polynomial\n then using `solve_poly_system` both real and complex solution is returned.\n If all the equations in the system are not polynomial equation then goes to\n `substitution` method with this polynomial and non polynomial equation(s),\n to solve for unsolved variables. Here to solve for particular variable\n solveset_real and solveset_complex is used. For both real and complex\n solution function `_solve_using_know_values` is used inside `substitution`\n function.(`substitution` function will be called when there is any non\n polynomial equation(s) is present). When solution is valid then add its\n general solution in the final result.\n\n 3. Complement and Intersection will be added if any : nonlinsolve maintains\n dict for complements and Intersections. If solveset find complements or/and\n Intersection with any Interval or set during the execution of\n `substitution` function ,then complement or/and Intersection for that\n variable is added before returning final solution.\n\n " from sympy.polys.polytools import is_zero_dimensional if (not system): return S.EmptySet if (not symbols): msg = 'Symbols must be given, for which solution of the system is to be found.' raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] try: sym = symbols[0].is_Symbol except AttributeError: sym = False except IndexError: msg = 'Symbols must be given, for which solution of the system is to be found.' raise IndexError(filldedent(msg)) if (not sym): msg = 'Symbols or iterable of symbols must be given as second argument, not type %s: %s' raise ValueError(filldedent((msg % (type(symbols[0]), symbols[0])))) if ((len(system) == 1) and (len(symbols) == 1)): return _solveset_work(system, symbols) (polys, polys_expr, nonpolys, denominators) = _separate_poly_nonpoly(system, symbols) if (len(symbols) == len(polys)): if is_zero_dimensional(polys, symbols): try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: result = substitution(polys_expr, symbols, exclude=denominators) return result return _handle_positive_dimensional(polys, symbols, denominators) else: result = substitution((polys_expr + nonpolys), symbols, exclude=denominators) return result
def _unsolved_syms(eq, sort=False): 'Returns the unsolved symbol present\n in the equation `eq`.\n ' free = eq.free_symbols unsolved = ((free - set(known_symbols)) & set(all_symbols)) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved
3,910,959,993,474,881,000
Returns the unsolved symbol present in the equation `eq`.
sympy/solvers/solveset.py
_unsolved_syms
aktech/sympy
python
def _unsolved_syms(eq, sort=False): 'Returns the unsolved symbol present\n in the equation `eq`.\n ' free = eq.free_symbols unsolved = ((free - set(known_symbols)) & set(all_symbols)) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved
def _extract_main_soln(sol, soln_imageset): "separate the Complements, Intersections, ImageSet lambda expr\n and it's base_set.\n " if isinstance(sol, Complement): complements[sym] = sol.args[1] sol = sol.args[0] if isinstance(sol, Intersection): if (sol.args[0] != Interval((- oo), oo)): intersections[sym] = sol.args[0] sol = sol.args[1] if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: sol += FiniteSet(sol_arg2) if (not isinstance(sol, FiniteSet)): sol = FiniteSet(sol) return (sol, soln_imageset)
5,009,555,416,651,553,000
separate the Complements, Intersections, ImageSet lambda expr and it's base_set.
sympy/solvers/solveset.py
_extract_main_soln
aktech/sympy
python
def _extract_main_soln(sol, soln_imageset): "separate the Complements, Intersections, ImageSet lambda expr\n and it's base_set.\n " if isinstance(sol, Complement): complements[sym] = sol.args[1] sol = sol.args[0] if isinstance(sol, Intersection): if (sol.args[0] != Interval((- oo), oo)): intersections[sym] = sol.args[0] sol = sol.args[1] if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: sol += FiniteSet(sol_arg2) if (not isinstance(sol, FiniteSet)): sol = FiniteSet(sol) return (sol, soln_imageset)
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): 'If `rnew` (A dict <symbol: soln>) contains valid soln\n append it to `newresult` list.\n `imgset_yes` is (base, dummy_var) if there was imageset in previously\n calculated result(otherwise empty tuple). `original_imageset` is dict\n of imageset expr and imageset from this result.\n `soln_imageset` dict of imageset expr and imageset of new soln.\n ' satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False if (not satisfy_exclude): local_n = None if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if (sym and sol): dummy_list = list(sol.atoms(Dummy)) local_n_list = [local_n for i in range(0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln, local_n) elif (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return (newresult, delete_soln)
1,804,431,466,947,199,000
If `rnew` (A dict <symbol: soln>) contains valid soln append it to `newresult` list. `imgset_yes` is (base, dummy_var) if there was imageset in previously calculated result(otherwise empty tuple). `original_imageset` is dict of imageset expr and imageset from this result. `soln_imageset` dict of imageset expr and imageset of new soln.
sympy/solvers/solveset.py
_append_new_soln
aktech/sympy
python
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): 'If `rnew` (A dict <symbol: soln>) contains valid soln\n append it to `newresult` list.\n `imgset_yes` is (base, dummy_var) if there was imageset in previously\n calculated result(otherwise empty tuple). `original_imageset` is dict\n of imageset expr and imageset from this result.\n `soln_imageset` dict of imageset expr and imageset of new soln.\n ' satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False if (not satisfy_exclude): local_n = None if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if (sym and sol): dummy_list = list(sol.atoms(Dummy)) local_n_list = [local_n for i in range(0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln, local_n) elif (eq is not None): (newresult, rnew, delete_soln) = _append_eq(eq, newresult, rnew, delete_soln) elif soln_imageset: rnew[sym] = soln_imageset[sol] _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return (newresult, delete_soln)
def _solve_using_known_values(result, solver): 'Solves the system using already known solution\n (result contains the dict <symbol: value>).\n solver is `solveset_complex` or `solveset_real`.\n ' soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 for (index, eq) in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() if soln_imageset: for (key_res, value_res) in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) eq2 = eq.subs(res) unsolved_syms = _unsolved_syms(eq2, sort=True) if (not unsolved_syms): if res: (newresult, delete_res) = _append_new_soln(res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: result.remove(res) continue depen = eq2.as_independent(unsolved_syms)[0] if (depen.has(Abs) and (solver == solveset_complex)): continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): complements[sym] = soln.args[1] soln = soln.args[0] if isinstance(soln, Intersection): if (soln.args[0] != Interval((- oo), oo)): intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = (soln_new if soln_new else soln) if ((index > 0) and (solver == solveset_real)): if (not isinstance(soln, (ImageSet, ConditionSet))): soln += solveset_complex(eq2, sym) except NotImplementedError: continue if isinstance(soln, ConditionSet): soln = S.EmptySet not_solvable = True total_conditionst += 1 if (soln is not S.EmptySet): (soln, soln_imageset) = _extract_main_soln(soln, soln_imageset) for sol in soln: (sol, soln_imageset) = _extract_main_soln(sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if (got_symbol and any([(ss in free) for ss in got_symbol])): continue rnew = res.copy() for (k, v) in res.items(): if isinstance(v, Expr): rnew[k] = v.subs(sym, sol) if soln_imageset: imgst = soln_imageset[sol] rnew[sym] = imgst.lamda(*[0 for i in range(0, len(imgst.lamda.variables))]) else: rnew[sym] = sol (newresult, delete_res) = _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: result.remove(res) if (not not_solvable): got_symbol.add(sym) if newresult: result = newresult return (result, total_solvest_call, total_conditionst)
3,553,278,576,903,280,600
Solves the system using already known solution (result contains the dict <symbol: value>). solver is `solveset_complex` or `solveset_real`.
sympy/solvers/solveset.py
_solve_using_known_values
aktech/sympy
python
def _solve_using_known_values(result, solver): 'Solves the system using already known solution\n (result contains the dict <symbol: value>).\n solver is `solveset_complex` or `solveset_real`.\n ' soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 for (index, eq) in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() if soln_imageset: for (key_res, value_res) in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() base = value_res.base_set imgset_yes = (dummy_n, base) eq2 = eq.subs(res) unsolved_syms = _unsolved_syms(eq2, sort=True) if (not unsolved_syms): if res: (newresult, delete_res) = _append_new_soln(res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: result.remove(res) continue depen = eq2.as_independent(unsolved_syms)[0] if (depen.has(Abs) and (solver == solveset_complex)): continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): complements[sym] = soln.args[1] soln = soln.args[0] if isinstance(soln, Intersection): if (soln.args[0] != Interval((- oo), oo)): intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = (soln_new if soln_new else soln) if ((index > 0) and (solver == solveset_real)): if (not isinstance(soln, (ImageSet, ConditionSet))): soln += solveset_complex(eq2, sym) except NotImplementedError: continue if isinstance(soln, ConditionSet): soln = S.EmptySet not_solvable = True total_conditionst += 1 if (soln is not S.EmptySet): (soln, soln_imageset) = _extract_main_soln(soln, soln_imageset) for sol in soln: (sol, soln_imageset) = _extract_main_soln(sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if (got_symbol and any([(ss in free) for ss in got_symbol])): continue rnew = res.copy() for (k, v) in res.items(): if isinstance(v, Expr): rnew[k] = v.subs(sym, sol) if soln_imageset: imgst = soln_imageset[sol] rnew[sym] = imgst.lamda(*[0 for i in range(0, len(imgst.lamda.variables))]) else: rnew[sym] = sol (newresult, delete_res) = _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: result.remove(res) if (not not_solvable): got_symbol.add(sym) if newresult: result = newresult return (result, total_solvest_call, total_conditionst)
def get_file_handle(file_path): 'Return a opened file' if file_path.endswith('.gz'): file_handle = getreader('utf-8')(gzip.open(file_path, 'r'), errors='replace') else: file_handle = open(file_path, 'r', encoding='utf-8') return file_handle
-1,693,644,682,931,493,000
Return a opened file
scout/utils/handle.py
get_file_handle
Clinical-Genomics/scout
python
def get_file_handle(file_path): if file_path.endswith('.gz'): file_handle = getreader('utf-8')(gzip.open(file_path, 'r'), errors='replace') else: file_handle = open(file_path, 'r', encoding='utf-8') return file_handle
def schedule(cron_schedule, pipeline_name, name=None, tags=None, tags_fn=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, execution_timezone=None): "Create a schedule.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n cron_schedule (str): A valid cron string specifying when the schedule will run, e.g.,\n ``'45 23 * * 6'`` for a schedule that runs at 11:45 PM every Saturday.\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n name (Optional[str]): The name of the schedule to create.\n tags (Optional[Dict[str, str]]): A dictionary of tags (string key-value pairs) to attach\n to the scheduled runs.\n tags_fn (Optional[Callable[[ScheduleExecutionContext], Optional[Dict[str, str]]]]): A function\n that generates tags to attach to the schedules runs. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a dictionary of tags (string\n key-value pairs). You may set only one of ``tags`` and ``tags_fn``.\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[[ScheduleExecutionContext], bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) return ScheduleDefinition(name=schedule_name, cron_schedule=cron_schedule, pipeline_name=pipeline_name, run_config_fn=fn, tags=tags, tags_fn=tags_fn, solid_selection=solid_selection, mode=mode, should_execute=should_execute, environment_vars=environment_vars, execution_timezone=execution_timezone) return inner
-7,617,151,434,662,817,000
Create a schedule. The decorated function will be called as the ``run_config_fn`` of the underlying :py:class:`~dagster.ScheduleDefinition` and should take a :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment dict for the scheduled execution. Args: cron_schedule (str): A valid cron string specifying when the schedule will run, e.g., ``'45 23 * * 6'`` for a schedule that runs at 11:45 PM every Saturday. pipeline_name (str): The name of the pipeline to execute when the schedule runs. name (Optional[str]): The name of the schedule to create. tags (Optional[Dict[str, str]]): A dictionary of tags (string key-value pairs) to attach to the scheduled runs. tags_fn (Optional[Callable[[ScheduleExecutionContext], Optional[Dict[str, str]]]]): A function that generates tags to attach to the schedules runs. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a dictionary of tags (string key-value pairs). You may set only one of ``tags`` and ``tags_fn``. solid_selection (Optional[List[str]]): A list of solid subselection (including single solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']`` mode (Optional[str]): The pipeline mode in which to execute this schedule. (Default: 'default') should_execute (Optional[Callable[[ScheduleExecutionContext], bool]]): A function that runs at schedule execution tie to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing the schedule. execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works with DagsterDaemonScheduler, and must be set when using that scheduler.
python_modules/dagster/dagster/core/definitions/decorators/schedule.py
schedule
alex-treebeard/dagster
python
def schedule(cron_schedule, pipeline_name, name=None, tags=None, tags_fn=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, execution_timezone=None): "Create a schedule.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n cron_schedule (str): A valid cron string specifying when the schedule will run, e.g.,\n ``'45 23 * * 6'`` for a schedule that runs at 11:45 PM every Saturday.\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n name (Optional[str]): The name of the schedule to create.\n tags (Optional[Dict[str, str]]): A dictionary of tags (string key-value pairs) to attach\n to the scheduled runs.\n tags_fn (Optional[Callable[[ScheduleExecutionContext], Optional[Dict[str, str]]]]): A function\n that generates tags to attach to the schedules runs. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a dictionary of tags (string\n key-value pairs). You may set only one of ``tags`` and ``tags_fn``.\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[[ScheduleExecutionContext], bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) return ScheduleDefinition(name=schedule_name, cron_schedule=cron_schedule, pipeline_name=pipeline_name, run_config_fn=fn, tags=tags, tags_fn=tags_fn, solid_selection=solid_selection, mode=mode, should_execute=should_execute, environment_vars=environment_vars, execution_timezone=execution_timezone) return inner
def monthly_schedule(pipeline_name, start_date, name=None, execution_day_of_month=1, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs monthly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_day_of_month (int): The day of the month on which to run the schedule (must be\n between 0 and 31).\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.int_param(execution_day_of_month, 'execution_day') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.day != 1) or (start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of the first day of the month for a monthly schedule. Use `execution_day_of_month` and `execution_time` to execute the schedule at a specific time within the month. For example, to run the schedule at 3AM on the 23rd of each month starting in October, your schedule definition would look like:\n@monthly_schedule(\n start_date=datetime.datetime(2020, 10, 1),\n execution_day_of_month=23,\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') if ((execution_day_of_month <= 0) or (execution_day_of_month > 31)): raise DagsterInvalidDefinitionError('`execution_day_of_month={}` is not valid for monthly schedule. Execution day must be between 1 and 31'.format(execution_day_of_month)) cron_schedule = '{minute} {hour} {day} * *'.format(minute=execution_time.minute, hour=execution_time.hour, day=execution_day_of_month) fmt = DEFAULT_MONTHLY_FORMAT execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(months=1, days=(execution_day_of_month - 1))) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
-2,608,099,812,723,566,600
Create a schedule that runs monthly. The decorated function will be called as the ``run_config_fn`` of the underlying :py:class:`~dagster.ScheduleDefinition` and should take a :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment dict for the scheduled execution. Args: pipeline_name (str): The name of the pipeline to execute when the schedule runs. start_date (datetime.datetime): The date from which to run the schedule. name (Optional[str]): The name of the schedule to create. execution_day_of_month (int): The day of the month on which to run the schedule (must be between 0 and 31). execution_time (datetime.time): The time at which to execute the schedule. tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A function that generates tags to attach to the schedules runs. Takes the date of the schedule run and returns a dictionary of tags (string key-value pairs). solid_selection (Optional[List[str]]): A list of solid subselection (including single solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']`` mode (Optional[str]): The pipeline mode in which to execute this schedule. (Default: 'default') should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at schedule execution tie to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing the schedule. end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to current time. execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works with DagsterDaemonScheduler, and must be set when using that scheduler.
python_modules/dagster/dagster/core/definitions/decorators/schedule.py
monthly_schedule
alex-treebeard/dagster
python
def monthly_schedule(pipeline_name, start_date, name=None, execution_day_of_month=1, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs monthly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_day_of_month (int): The day of the month on which to run the schedule (must be\n between 0 and 31).\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.int_param(execution_day_of_month, 'execution_day') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.day != 1) or (start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of the first day of the month for a monthly schedule. Use `execution_day_of_month` and `execution_time` to execute the schedule at a specific time within the month. For example, to run the schedule at 3AM on the 23rd of each month starting in October, your schedule definition would look like:\n@monthly_schedule(\n start_date=datetime.datetime(2020, 10, 1),\n execution_day_of_month=23,\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') if ((execution_day_of_month <= 0) or (execution_day_of_month > 31)): raise DagsterInvalidDefinitionError('`execution_day_of_month={}` is not valid for monthly schedule. Execution day must be between 1 and 31'.format(execution_day_of_month)) cron_schedule = '{minute} {hour} {day} * *'.format(minute=execution_time.minute, hour=execution_time.hour, day=execution_day_of_month) fmt = DEFAULT_MONTHLY_FORMAT execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(months=1, days=(execution_day_of_month - 1))) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
def weekly_schedule(pipeline_name, start_date, name=None, execution_day_of_week=0, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs weekly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_day_of_week (int): The day of the week on which to run the schedule. Must be\n between 0 (Sunday) and 6 (Saturday).\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.int_param(execution_day_of_week, 'execution_day_of_week') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of a day for a weekly schedule. Use `execution_time` to execute the schedule at a specific time of day. For example, to run the schedule at 3AM each Tuesday starting on 10/20/2020, your schedule definition would look like:\n@weekly_schedule(\n start_date=datetime.datetime(2020, 10, 20),\n execution_day_of_week=1,\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') if ((execution_day_of_week < 0) or (execution_day_of_week >= 7)): raise DagsterInvalidDefinitionError('`execution_day_of_week={}` is not valid for weekly schedule. Execution day must be between 0 [Sunday] and 6 [Saturday]'.format(execution_day_of_week)) cron_schedule = '{minute} {hour} * * {day}'.format(minute=execution_time.minute, hour=execution_time.hour, day=execution_day_of_week) fmt = DEFAULT_DATE_FORMAT day_difference = ((execution_day_of_week - (start_date.weekday() + 1)) % 7) execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(weeks=1, days=day_difference)) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
7,615,266,254,079,671,000
Create a schedule that runs weekly. The decorated function will be called as the ``run_config_fn`` of the underlying :py:class:`~dagster.ScheduleDefinition` and should take a :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment dict for the scheduled execution. Args: pipeline_name (str): The name of the pipeline to execute when the schedule runs. start_date (datetime.datetime): The date from which to run the schedule. name (Optional[str]): The name of the schedule to create. execution_day_of_week (int): The day of the week on which to run the schedule. Must be between 0 (Sunday) and 6 (Saturday). execution_time (datetime.time): The time at which to execute the schedule. tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A function that generates tags to attach to the schedules runs. Takes the date of the schedule run and returns a dictionary of tags (string key-value pairs). solid_selection (Optional[List[str]]): A list of solid subselection (including single solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']`` mode (Optional[str]): The pipeline mode in which to execute this schedule. (Default: 'default') should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at schedule execution tie to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing the schedule. end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to current time. execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works with DagsterDaemonScheduler, and must be set when using that scheduler.
python_modules/dagster/dagster/core/definitions/decorators/schedule.py
weekly_schedule
alex-treebeard/dagster
python
def weekly_schedule(pipeline_name, start_date, name=None, execution_day_of_week=0, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs weekly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_day_of_week (int): The day of the week on which to run the schedule. Must be\n between 0 (Sunday) and 6 (Saturday).\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.int_param(execution_day_of_week, 'execution_day_of_week') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of a day for a weekly schedule. Use `execution_time` to execute the schedule at a specific time of day. For example, to run the schedule at 3AM each Tuesday starting on 10/20/2020, your schedule definition would look like:\n@weekly_schedule(\n start_date=datetime.datetime(2020, 10, 20),\n execution_day_of_week=1,\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') if ((execution_day_of_week < 0) or (execution_day_of_week >= 7)): raise DagsterInvalidDefinitionError('`execution_day_of_week={}` is not valid for weekly schedule. Execution day must be between 0 [Sunday] and 6 [Saturday]'.format(execution_day_of_week)) cron_schedule = '{minute} {hour} * * {day}'.format(minute=execution_time.minute, hour=execution_time.hour, day=execution_day_of_week) fmt = DEFAULT_DATE_FORMAT day_difference = ((execution_day_of_week - (start_date.weekday() + 1)) % 7) execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(weeks=1, days=day_difference)) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
def daily_schedule(pipeline_name, start_date, name=None, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs daily.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.str_param(pipeline_name, 'pipeline_name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_str_param(name, 'name') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of a day for a daily schedule. Use `execution_time` to execute the schedule at a specific time of day. For example, to run the schedule at 3AM each day starting on 10/20/2020, your schedule definition would look like:\n@daily_schedule(\n start_date=datetime.datetime(2020, 10, 20),\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') cron_schedule = '{minute} {hour} * * *'.format(minute=execution_time.minute, hour=execution_time.hour) fmt = DEFAULT_DATE_FORMAT execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(days=1)) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
5,154,281,865,935,283,000
Create a schedule that runs daily. The decorated function will be called as the ``run_config_fn`` of the underlying :py:class:`~dagster.ScheduleDefinition` and should take a :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment dict for the scheduled execution. Args: pipeline_name (str): The name of the pipeline to execute when the schedule runs. start_date (datetime.datetime): The date from which to run the schedule. name (Optional[str]): The name of the schedule to create. execution_time (datetime.time): The time at which to execute the schedule. tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A function that generates tags to attach to the schedules runs. Takes the date of the schedule run and returns a dictionary of tags (string key-value pairs). solid_selection (Optional[List[str]]): A list of solid subselection (including single solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']`` mode (Optional[str]): The pipeline mode in which to execute this schedule. (Default: 'default') should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at schedule execution tie to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing the schedule. end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to current time. execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works with DagsterDaemonScheduler, and must be set when using that scheduler.
python_modules/dagster/dagster/core/definitions/decorators/schedule.py
daily_schedule
alex-treebeard/dagster
python
def daily_schedule(pipeline_name, start_date, name=None, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs daily.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create.\n execution_time (datetime.time): The time at which to execute the schedule.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.str_param(pipeline_name, 'pipeline_name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_str_param(name, 'name') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.hour != 0) or (start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of a day for a daily schedule. Use `execution_time` to execute the schedule at a specific time of day. For example, to run the schedule at 3AM each day starting on 10/20/2020, your schedule definition would look like:\n@daily_schedule(\n start_date=datetime.datetime(2020, 10, 20),\n execution_time=datetime.time(3, 0)\n):\ndef my_schedule_definition(_):\n ...\n') cron_schedule = '{minute} {hour} * * *'.format(minute=execution_time.minute, hour=execution_time.hour) fmt = DEFAULT_DATE_FORMAT execution_time_to_partition_fn = (lambda d: pendulum.instance(d).replace(hour=0, minute=0).subtract(days=1)) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
def hourly_schedule(pipeline_name, start_date, name=None, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs hourly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create. By default, this will be the name\n of the decorated function.\n execution_time (datetime.time): The time at which to execute the schedule. Only the minutes\n component will be respected -- the hour should be 0, and will be ignored if it is not 0.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of the hour for an hourly schedule. Use `execution_time` to execute the schedule at a specific time within the hour. For example, to run the schedule each hour at 15 minutes past the hour starting at 3AM on 10/20/2020, your schedule definition would look like:\n@hourly_schedule(\n start_date=datetime.datetime(2020, 10, 20, 3),\n execution_time=datetime.time(0, 15)\n):\ndef my_schedule_definition(_):\n ...\n') if (execution_time.hour != 0): warnings.warn('Hourly schedule {schedule_name} created with:\n\tschedule_time=datetime.time(hour={hour}, minute={minute}, ...).Since this is an hourly schedule, the hour parameter will be ignored and the schedule will run on the {minute} mark for the previous hour interval. Replace datetime.time(hour={hour}, minute={minute}, ...) with datetime.time(minute={minute}, ...) to fix this warning.') cron_schedule = '{minute} * * * *'.format(minute=execution_time.minute) fmt = (DEFAULT_HOURLY_FORMAT_WITH_TIMEZONE if execution_timezone else DEFAULT_HOURLY_FORMAT_WITHOUT_TIMEZONE) execution_time_to_partition_fn = (lambda d: pendulum.instance(d).subtract(hours=1, minutes=((execution_time.minute - start_date.minute) % 60))) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
-2,717,627,667,788,724,700
Create a schedule that runs hourly. The decorated function will be called as the ``run_config_fn`` of the underlying :py:class:`~dagster.ScheduleDefinition` and should take a :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment dict for the scheduled execution. Args: pipeline_name (str): The name of the pipeline to execute when the schedule runs. start_date (datetime.datetime): The date from which to run the schedule. name (Optional[str]): The name of the schedule to create. By default, this will be the name of the decorated function. execution_time (datetime.time): The time at which to execute the schedule. Only the minutes component will be respected -- the hour should be 0, and will be ignored if it is not 0. tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A function that generates tags to attach to the schedules runs. Takes the date of the schedule run and returns a dictionary of tags (string key-value pairs). solid_selection (Optional[List[str]]): A list of solid subselection (including single solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']`` mode (Optional[str]): The pipeline mode in which to execute this schedule. (Default: 'default') should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at schedule execution tie to determine whether a schedule should execute or skip. Takes a :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the schedule should execute). Defaults to a function that always returns ``True``. environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing the schedule. end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to current time. execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works with DagsterDaemonScheduler, and must be set when using that scheduler.
python_modules/dagster/dagster/core/definitions/decorators/schedule.py
hourly_schedule
alex-treebeard/dagster
python
def hourly_schedule(pipeline_name, start_date, name=None, execution_time=datetime.time(0, 0), tags_fn_for_date=None, solid_selection=None, mode='default', should_execute=None, environment_vars=None, end_date=None, execution_timezone=None): "Create a schedule that runs hourly.\n\n The decorated function will be called as the ``run_config_fn`` of the underlying\n :py:class:`~dagster.ScheduleDefinition` and should take a\n :py:class:`~dagster.ScheduleExecutionContext` as its only argument, returning the environment\n dict for the scheduled execution.\n\n Args:\n pipeline_name (str): The name of the pipeline to execute when the schedule runs.\n start_date (datetime.datetime): The date from which to run the schedule.\n name (Optional[str]): The name of the schedule to create. By default, this will be the name\n of the decorated function.\n execution_time (datetime.time): The time at which to execute the schedule. Only the minutes\n component will be respected -- the hour should be 0, and will be ignored if it is not 0.\n tags_fn_for_date (Optional[Callable[[datetime.datetime], Optional[Dict[str, str]]]]): A\n function that generates tags to attach to the schedules runs. Takes the date of the\n schedule run and returns a dictionary of tags (string key-value pairs).\n solid_selection (Optional[List[str]]): A list of solid subselection (including single\n solid names) to execute when the schedule runs. e.g. ``['*some_solid+', 'other_solid']``\n mode (Optional[str]): The pipeline mode in which to execute this schedule.\n (Default: 'default')\n should_execute (Optional[Callable[ScheduleExecutionContext, bool]]): A function that runs at\n schedule execution tie to determine whether a schedule should execute or skip. Takes a\n :py:class:`~dagster.ScheduleExecutionContext` and returns a boolean (``True`` if the\n schedule should execute). Defaults to a function that always returns ``True``.\n environment_vars (Optional[Dict[str, str]]): Any environment variables to set when executing\n the schedule.\n end_date (Optional[datetime.datetime]): The last time to run the schedule to, defaults to\n current time.\n execution_timezone (Optional[str]): Timezone in which the schedule should run. Only works\n with DagsterDaemonScheduler, and must be set when using that scheduler.\n " check.opt_str_param(name, 'name') check.inst_param(start_date, 'start_date', datetime.datetime) check.opt_inst_param(end_date, 'end_date', datetime.datetime) check.opt_callable_param(tags_fn_for_date, 'tags_fn_for_date') check.opt_nullable_list_param(solid_selection, 'solid_selection', of_type=str) mode = check.opt_str_param(mode, 'mode', DEFAULT_MODE_NAME) check.opt_callable_param(should_execute, 'should_execute') check.opt_dict_param(environment_vars, 'environment_vars', key_type=str, value_type=str) check.str_param(pipeline_name, 'pipeline_name') check.inst_param(execution_time, 'execution_time', datetime.time) check.opt_str_param(execution_timezone, 'execution_timezone') if ((start_date.minute != 0) or (start_date.second != 0)): warnings.warn('`start_date` must be at the beginning of the hour for an hourly schedule. Use `execution_time` to execute the schedule at a specific time within the hour. For example, to run the schedule each hour at 15 minutes past the hour starting at 3AM on 10/20/2020, your schedule definition would look like:\n@hourly_schedule(\n start_date=datetime.datetime(2020, 10, 20, 3),\n execution_time=datetime.time(0, 15)\n):\ndef my_schedule_definition(_):\n ...\n') if (execution_time.hour != 0): warnings.warn('Hourly schedule {schedule_name} created with:\n\tschedule_time=datetime.time(hour={hour}, minute={minute}, ...).Since this is an hourly schedule, the hour parameter will be ignored and the schedule will run on the {minute} mark for the previous hour interval. Replace datetime.time(hour={hour}, minute={minute}, ...) with datetime.time(minute={minute}, ...) to fix this warning.') cron_schedule = '{minute} * * * *'.format(minute=execution_time.minute) fmt = (DEFAULT_HOURLY_FORMAT_WITH_TIMEZONE if execution_timezone else DEFAULT_HOURLY_FORMAT_WITHOUT_TIMEZONE) execution_time_to_partition_fn = (lambda d: pendulum.instance(d).subtract(hours=1, minutes=((execution_time.minute - start_date.minute) % 60))) partition_fn = schedule_partition_range(start_date, end=end_date, cron_schedule=cron_schedule, fmt=fmt, timezone=execution_timezone, execution_time_to_partition_fn=execution_time_to_partition_fn) def inner(fn): check.callable_param(fn, 'fn') schedule_name = (name or fn.__name__) tags_fn_for_partition_value = (lambda partition: {}) if tags_fn_for_date: tags_fn_for_partition_value = (lambda partition: tags_fn_for_date(partition.value)) partition_set = PartitionSetDefinition(name='{}_partitions'.format(schedule_name), pipeline_name=pipeline_name, partition_fn=partition_fn, run_config_fn_for_partition=(lambda partition: fn(partition.value)), solid_selection=solid_selection, tags_fn_for_partition=tags_fn_for_partition_value, mode=mode) return partition_set.create_schedule_definition(schedule_name, cron_schedule, should_execute=should_execute, environment_vars=environment_vars, partition_selector=create_offset_partition_selector(execution_time_to_partition_fn=execution_time_to_partition_fn), execution_timezone=execution_timezone) return inner
def init_all_dbs(): '\n call it when creating database\n :return:\n ' conn = sqlite3.connect(DB_PATH) cursor = conn.cursor() exec_sql = 'create table Question (id INTEGER primary key, content text, user VARCHAR(20), date VARCHAR(30))' cursor.execute(exec_sql) exec_sql = 'create table People (id INTEGER primary key, question_id INTEGER, content text, user VARCHAR(20), date VARCHAR(30))' cursor.execute(exec_sql) conn.commit() conn.close()
-5,197,294,188,878,423,000
call it when creating database :return:
store/store.py
init_all_dbs
mengfanShi/SpiderMan
python
def init_all_dbs(): '\n call it when creating database\n :return:\n ' conn = sqlite3.connect(DB_PATH) cursor = conn.cursor() exec_sql = 'create table Question (id INTEGER primary key, content text, user VARCHAR(20), date VARCHAR(30))' cursor.execute(exec_sql) exec_sql = 'create table People (id INTEGER primary key, question_id INTEGER, content text, user VARCHAR(20), date VARCHAR(30))' cursor.execute(exec_sql) conn.commit() conn.close()
@property def BgpCustomAfiSafiv6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpcustomafisafiv6_31ae8bd98f331c2119281ac977022fca.BgpCustomAfiSafiv6): An instance of the BgpCustomAfiSafiv6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpcustomafisafiv6_31ae8bd98f331c2119281ac977022fca import BgpCustomAfiSafiv6 return BgpCustomAfiSafiv6(self)._select()
-7,325,503,119,801,193,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpcustomafisafiv6_31ae8bd98f331c2119281ac977022fca.BgpCustomAfiSafiv6): An instance of the BgpCustomAfiSafiv6 class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpCustomAfiSafiv6
rfrye-github/ixnetwork_restpy
python
@property def BgpCustomAfiSafiv6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpcustomafisafiv6_31ae8bd98f331c2119281ac977022fca.BgpCustomAfiSafiv6): An instance of the BgpCustomAfiSafiv6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpcustomafisafiv6_31ae8bd98f331c2119281ac977022fca import BgpCustomAfiSafiv6 return BgpCustomAfiSafiv6(self)._select()
@property def BgpEpePeerList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpepepeerlist_8e1fc47aa0221fde5418b0e01514b909.BgpEpePeerList): An instance of the BgpEpePeerList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpepepeerlist_8e1fc47aa0221fde5418b0e01514b909 import BgpEpePeerList return BgpEpePeerList(self)._select()
-3,840,936,234,641,362,400
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpepepeerlist_8e1fc47aa0221fde5418b0e01514b909.BgpEpePeerList): An instance of the BgpEpePeerList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpEpePeerList
rfrye-github/ixnetwork_restpy
python
@property def BgpEpePeerList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpepepeerlist_8e1fc47aa0221fde5418b0e01514b909.BgpEpePeerList): An instance of the BgpEpePeerList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpepepeerlist_8e1fc47aa0221fde5418b0e01514b909 import BgpEpePeerList return BgpEpePeerList(self)._select()
@property def BgpEthernetSegmentV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpethernetsegmentv6_766c04a63efb3fe4eca969aac968fe4e.BgpEthernetSegmentV6): An instance of the BgpEthernetSegmentV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpethernetsegmentv6_766c04a63efb3fe4eca969aac968fe4e import BgpEthernetSegmentV6 return BgpEthernetSegmentV6(self)._select()
6,040,624,524,474,441,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpethernetsegmentv6_766c04a63efb3fe4eca969aac968fe4e.BgpEthernetSegmentV6): An instance of the BgpEthernetSegmentV6 class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpEthernetSegmentV6
rfrye-github/ixnetwork_restpy
python
@property def BgpEthernetSegmentV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpethernetsegmentv6_766c04a63efb3fe4eca969aac968fe4e.BgpEthernetSegmentV6): An instance of the BgpEthernetSegmentV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpethernetsegmentv6_766c04a63efb3fe4eca969aac968fe4e import BgpEthernetSegmentV6 return BgpEthernetSegmentV6(self)._select()
@property def BgpFlowSpecRangesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslist_9ad7609645f425215665a5736cc73e84.BgpFlowSpecRangesList): An instance of the BgpFlowSpecRangesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslist_9ad7609645f425215665a5736cc73e84 import BgpFlowSpecRangesList return BgpFlowSpecRangesList(self)._select()
3,712,483,164,783,856,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslist_9ad7609645f425215665a5736cc73e84.BgpFlowSpecRangesList): An instance of the BgpFlowSpecRangesList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpFlowSpecRangesList
rfrye-github/ixnetwork_restpy
python
@property def BgpFlowSpecRangesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslist_9ad7609645f425215665a5736cc73e84.BgpFlowSpecRangesList): An instance of the BgpFlowSpecRangesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslist_9ad7609645f425215665a5736cc73e84 import BgpFlowSpecRangesList return BgpFlowSpecRangesList(self)._select()
@property def BgpFlowSpecRangesListV4(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv4_ab0c3185b027eff54394da27736dcb9a.BgpFlowSpecRangesListV4): An instance of the BgpFlowSpecRangesListV4 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv4_ab0c3185b027eff54394da27736dcb9a import BgpFlowSpecRangesListV4 return BgpFlowSpecRangesListV4(self)._select()
3,334,446,235,289,044,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv4_ab0c3185b027eff54394da27736dcb9a.BgpFlowSpecRangesListV4): An instance of the BgpFlowSpecRangesListV4 class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpFlowSpecRangesListV4
rfrye-github/ixnetwork_restpy
python
@property def BgpFlowSpecRangesListV4(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv4_ab0c3185b027eff54394da27736dcb9a.BgpFlowSpecRangesListV4): An instance of the BgpFlowSpecRangesListV4 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv4_ab0c3185b027eff54394da27736dcb9a import BgpFlowSpecRangesListV4 return BgpFlowSpecRangesListV4(self)._select()
@property def BgpFlowSpecRangesListV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv6_305d65dd8b0f124660b13211ca670c20.BgpFlowSpecRangesListV6): An instance of the BgpFlowSpecRangesListV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv6_305d65dd8b0f124660b13211ca670c20 import BgpFlowSpecRangesListV6 return BgpFlowSpecRangesListV6(self)._select()
-5,145,287,172,163,459,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv6_305d65dd8b0f124660b13211ca670c20.BgpFlowSpecRangesListV6): An instance of the BgpFlowSpecRangesListV6 class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpFlowSpecRangesListV6
rfrye-github/ixnetwork_restpy
python
@property def BgpFlowSpecRangesListV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv6_305d65dd8b0f124660b13211ca670c20.BgpFlowSpecRangesListV6): An instance of the BgpFlowSpecRangesListV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpflowspecrangeslistv6_305d65dd8b0f124660b13211ca670c20 import BgpFlowSpecRangesListV6 return BgpFlowSpecRangesListV6(self)._select()
@property def BgpIPv6EvpnEvi(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnevi_7148192f2f68b72a7e220fe51f91ee65.BgpIPv6EvpnEvi): An instance of the BgpIPv6EvpnEvi class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnevi_7148192f2f68b72a7e220fe51f91ee65 import BgpIPv6EvpnEvi return BgpIPv6EvpnEvi(self)
6,720,772,140,658,798,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnevi_7148192f2f68b72a7e220fe51f91ee65.BgpIPv6EvpnEvi): An instance of the BgpIPv6EvpnEvi class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIPv6EvpnEvi
rfrye-github/ixnetwork_restpy
python
@property def BgpIPv6EvpnEvi(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnevi_7148192f2f68b72a7e220fe51f91ee65.BgpIPv6EvpnEvi): An instance of the BgpIPv6EvpnEvi class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnevi_7148192f2f68b72a7e220fe51f91ee65 import BgpIPv6EvpnEvi return BgpIPv6EvpnEvi(self)
@property def BgpIPv6EvpnPbb(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnpbb_7e3d31c960a96c76772f39596f4e0b6c.BgpIPv6EvpnPbb): An instance of the BgpIPv6EvpnPbb class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnpbb_7e3d31c960a96c76772f39596f4e0b6c import BgpIPv6EvpnPbb return BgpIPv6EvpnPbb(self)
-1,671,315,899,680,887,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnpbb_7e3d31c960a96c76772f39596f4e0b6c.BgpIPv6EvpnPbb): An instance of the BgpIPv6EvpnPbb class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIPv6EvpnPbb
rfrye-github/ixnetwork_restpy
python
@property def BgpIPv6EvpnPbb(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnpbb_7e3d31c960a96c76772f39596f4e0b6c.BgpIPv6EvpnPbb): An instance of the BgpIPv6EvpnPbb class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnpbb_7e3d31c960a96c76772f39596f4e0b6c import BgpIPv6EvpnPbb return BgpIPv6EvpnPbb(self)
@property def BgpIPv6EvpnVXLAN(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlan_58919d93e3f1d08f428277c92a21e890.BgpIPv6EvpnVXLAN): An instance of the BgpIPv6EvpnVXLAN class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlan_58919d93e3f1d08f428277c92a21e890 import BgpIPv6EvpnVXLAN return BgpIPv6EvpnVXLAN(self)
1,290,244,958,635,942,100
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlan_58919d93e3f1d08f428277c92a21e890.BgpIPv6EvpnVXLAN): An instance of the BgpIPv6EvpnVXLAN class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIPv6EvpnVXLAN
rfrye-github/ixnetwork_restpy
python
@property def BgpIPv6EvpnVXLAN(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlan_58919d93e3f1d08f428277c92a21e890.BgpIPv6EvpnVXLAN): An instance of the BgpIPv6EvpnVXLAN class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlan_58919d93e3f1d08f428277c92a21e890 import BgpIPv6EvpnVXLAN return BgpIPv6EvpnVXLAN(self)
@property def BgpIPv6EvpnVXLANVpws(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlanvpws_3f36e2b3e739d7ab9aec3577a508ada7.BgpIPv6EvpnVXLANVpws): An instance of the BgpIPv6EvpnVXLANVpws class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlanvpws_3f36e2b3e739d7ab9aec3577a508ada7 import BgpIPv6EvpnVXLANVpws return BgpIPv6EvpnVXLANVpws(self)
8,252,743,323,883,794,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlanvpws_3f36e2b3e739d7ab9aec3577a508ada7.BgpIPv6EvpnVXLANVpws): An instance of the BgpIPv6EvpnVXLANVpws class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIPv6EvpnVXLANVpws
rfrye-github/ixnetwork_restpy
python
@property def BgpIPv6EvpnVXLANVpws(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlanvpws_3f36e2b3e739d7ab9aec3577a508ada7.BgpIPv6EvpnVXLANVpws): An instance of the BgpIPv6EvpnVXLANVpws class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvxlanvpws_3f36e2b3e739d7ab9aec3577a508ada7 import BgpIPv6EvpnVXLANVpws return BgpIPv6EvpnVXLANVpws(self)
@property def BgpIPv6EvpnVpws(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvpws_7e7a3dec141df7b1c974f723df7f4814.BgpIPv6EvpnVpws): An instance of the BgpIPv6EvpnVpws class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvpws_7e7a3dec141df7b1c974f723df7f4814 import BgpIPv6EvpnVpws return BgpIPv6EvpnVpws(self)
491,731,151,166,504,600
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvpws_7e7a3dec141df7b1c974f723df7f4814.BgpIPv6EvpnVpws): An instance of the BgpIPv6EvpnVpws class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIPv6EvpnVpws
rfrye-github/ixnetwork_restpy
python
@property def BgpIPv6EvpnVpws(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvpws_7e7a3dec141df7b1c974f723df7f4814.BgpIPv6EvpnVpws): An instance of the BgpIPv6EvpnVpws class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6evpnvpws_7e7a3dec141df7b1c974f723df7f4814 import BgpIPv6EvpnVpws return BgpIPv6EvpnVpws(self)
@property def BgpIpv6AdL2Vpn(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6adl2vpn_dfa30e45f6798c9ecc0ef8b85351cb5d.BgpIpv6AdL2Vpn): An instance of the BgpIpv6AdL2Vpn class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6adl2vpn_dfa30e45f6798c9ecc0ef8b85351cb5d import BgpIpv6AdL2Vpn return BgpIpv6AdL2Vpn(self)
2,498,762,400,428,744,700
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6adl2vpn_dfa30e45f6798c9ecc0ef8b85351cb5d.BgpIpv6AdL2Vpn): An instance of the BgpIpv6AdL2Vpn class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIpv6AdL2Vpn
rfrye-github/ixnetwork_restpy
python
@property def BgpIpv6AdL2Vpn(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6adl2vpn_dfa30e45f6798c9ecc0ef8b85351cb5d.BgpIpv6AdL2Vpn): An instance of the BgpIpv6AdL2Vpn class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6adl2vpn_dfa30e45f6798c9ecc0ef8b85351cb5d import BgpIpv6AdL2Vpn return BgpIpv6AdL2Vpn(self)
@property def BgpIpv6L2Site(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6l2site_91dde52dc0cc2c12360c0d436c8db2fe.BgpIpv6L2Site): An instance of the BgpIpv6L2Site class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6l2site_91dde52dc0cc2c12360c0d436c8db2fe import BgpIpv6L2Site return BgpIpv6L2Site(self)
-1,916,634,906,356,977,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6l2site_91dde52dc0cc2c12360c0d436c8db2fe.BgpIpv6L2Site): An instance of the BgpIpv6L2Site class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIpv6L2Site
rfrye-github/ixnetwork_restpy
python
@property def BgpIpv6L2Site(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6l2site_91dde52dc0cc2c12360c0d436c8db2fe.BgpIpv6L2Site): An instance of the BgpIpv6L2Site class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6l2site_91dde52dc0cc2c12360c0d436c8db2fe import BgpIpv6L2Site return BgpIpv6L2Site(self)
@property def BgpIpv6MVrf(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6mvrf_226a44af23e6291841522d3353c88b21.BgpIpv6MVrf): An instance of the BgpIpv6MVrf class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6mvrf_226a44af23e6291841522d3353c88b21 import BgpIpv6MVrf return BgpIpv6MVrf(self)
6,978,177,364,024,046,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6mvrf_226a44af23e6291841522d3353c88b21.BgpIpv6MVrf): An instance of the BgpIpv6MVrf class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpIpv6MVrf
rfrye-github/ixnetwork_restpy
python
@property def BgpIpv6MVrf(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6mvrf_226a44af23e6291841522d3353c88b21.BgpIpv6MVrf): An instance of the BgpIpv6MVrf class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpipv6mvrf_226a44af23e6291841522d3353c88b21 import BgpIpv6MVrf return BgpIpv6MVrf(self)
@property def BgpLsAsPathSegmentList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsaspathsegmentlist_fed4f671dbff6ccda8e8824fbe375856.BgpLsAsPathSegmentList): An instance of the BgpLsAsPathSegmentList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsaspathsegmentlist_fed4f671dbff6ccda8e8824fbe375856 import BgpLsAsPathSegmentList return BgpLsAsPathSegmentList(self)
2,239,986,300,212,686,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsaspathsegmentlist_fed4f671dbff6ccda8e8824fbe375856.BgpLsAsPathSegmentList): An instance of the BgpLsAsPathSegmentList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsAsPathSegmentList
rfrye-github/ixnetwork_restpy
python
@property def BgpLsAsPathSegmentList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsaspathsegmentlist_fed4f671dbff6ccda8e8824fbe375856.BgpLsAsPathSegmentList): An instance of the BgpLsAsPathSegmentList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsaspathsegmentlist_fed4f671dbff6ccda8e8824fbe375856 import BgpLsAsPathSegmentList return BgpLsAsPathSegmentList(self)
@property def BgpLsClusterIdList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsclusteridlist_7b4bcec76ea98c69afbc1dcb2556f669.BgpLsClusterIdList): An instance of the BgpLsClusterIdList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsclusteridlist_7b4bcec76ea98c69afbc1dcb2556f669 import BgpLsClusterIdList return BgpLsClusterIdList(self)
-2,438,261,614,393,010,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsclusteridlist_7b4bcec76ea98c69afbc1dcb2556f669.BgpLsClusterIdList): An instance of the BgpLsClusterIdList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsClusterIdList
rfrye-github/ixnetwork_restpy
python
@property def BgpLsClusterIdList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsclusteridlist_7b4bcec76ea98c69afbc1dcb2556f669.BgpLsClusterIdList): An instance of the BgpLsClusterIdList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsclusteridlist_7b4bcec76ea98c69afbc1dcb2556f669 import BgpLsClusterIdList return BgpLsClusterIdList(self)
@property def BgpLsCommunitiesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplscommunitieslist_fdb216f1d4195f82ad738e19cb2b5d32.BgpLsCommunitiesList): An instance of the BgpLsCommunitiesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplscommunitieslist_fdb216f1d4195f82ad738e19cb2b5d32 import BgpLsCommunitiesList return BgpLsCommunitiesList(self)
-7,831,585,676,460,029,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplscommunitieslist_fdb216f1d4195f82ad738e19cb2b5d32.BgpLsCommunitiesList): An instance of the BgpLsCommunitiesList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsCommunitiesList
rfrye-github/ixnetwork_restpy
python
@property def BgpLsCommunitiesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplscommunitieslist_fdb216f1d4195f82ad738e19cb2b5d32.BgpLsCommunitiesList): An instance of the BgpLsCommunitiesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplscommunitieslist_fdb216f1d4195f82ad738e19cb2b5d32 import BgpLsCommunitiesList return BgpLsCommunitiesList(self)
@property def BgpLsExtendedCommunitiesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsextendedcommunitieslist_835ffabe7ce10fa0b2a04b0ca4ed54d9.BgpLsExtendedCommunitiesList): An instance of the BgpLsExtendedCommunitiesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsextendedcommunitieslist_835ffabe7ce10fa0b2a04b0ca4ed54d9 import BgpLsExtendedCommunitiesList return BgpLsExtendedCommunitiesList(self)
4,599,853,937,210,486,300
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsextendedcommunitieslist_835ffabe7ce10fa0b2a04b0ca4ed54d9.BgpLsExtendedCommunitiesList): An instance of the BgpLsExtendedCommunitiesList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsExtendedCommunitiesList
rfrye-github/ixnetwork_restpy
python
@property def BgpLsExtendedCommunitiesList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsextendedcommunitieslist_835ffabe7ce10fa0b2a04b0ca4ed54d9.BgpLsExtendedCommunitiesList): An instance of the BgpLsExtendedCommunitiesList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgplsextendedcommunitieslist_835ffabe7ce10fa0b2a04b0ca4ed54d9 import BgpLsExtendedCommunitiesList return BgpLsExtendedCommunitiesList(self)
@property def BgpSRGBRangeSubObjectsList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrgbrangesubobjectslist_6e28159e439bbeffe19ca2de4c7f7879.BgpSRGBRangeSubObjectsList): An instance of the BgpSRGBRangeSubObjectsList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrgbrangesubobjectslist_6e28159e439bbeffe19ca2de4c7f7879 import BgpSRGBRangeSubObjectsList return BgpSRGBRangeSubObjectsList(self)
3,278,076,265,471,277,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrgbrangesubobjectslist_6e28159e439bbeffe19ca2de4c7f7879.BgpSRGBRangeSubObjectsList): An instance of the BgpSRGBRangeSubObjectsList class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpSRGBRangeSubObjectsList
rfrye-github/ixnetwork_restpy
python
@property def BgpSRGBRangeSubObjectsList(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrgbrangesubobjectslist_6e28159e439bbeffe19ca2de4c7f7879.BgpSRGBRangeSubObjectsList): An instance of the BgpSRGBRangeSubObjectsList class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrgbrangesubobjectslist_6e28159e439bbeffe19ca2de4c7f7879 import BgpSRGBRangeSubObjectsList return BgpSRGBRangeSubObjectsList(self)
@property def BgpSRTEPoliciesListV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrtepolicieslistv6_4c4a356e5a00d2ddfa49e9cef396bffd.BgpSRTEPoliciesListV6): An instance of the BgpSRTEPoliciesListV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrtepolicieslistv6_4c4a356e5a00d2ddfa49e9cef396bffd import BgpSRTEPoliciesListV6 return BgpSRTEPoliciesListV6(self)._select()
-2,489,453,630,538,092,500
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrtepolicieslistv6_4c4a356e5a00d2ddfa49e9cef396bffd.BgpSRTEPoliciesListV6): An instance of the BgpSRTEPoliciesListV6 class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpSRTEPoliciesListV6
rfrye-github/ixnetwork_restpy
python
@property def BgpSRTEPoliciesListV6(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrtepolicieslistv6_4c4a356e5a00d2ddfa49e9cef396bffd.BgpSRTEPoliciesListV6): An instance of the BgpSRTEPoliciesListV6 class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpsrtepolicieslistv6_4c4a356e5a00d2ddfa49e9cef396bffd import BgpSRTEPoliciesListV6 return BgpSRTEPoliciesListV6(self)._select()
@property def BgpV6Vrf(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpv6vrf_1d6029d380b737c5ce1f12d2ed82f3ed.BgpV6Vrf): An instance of the BgpV6Vrf class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpv6vrf_1d6029d380b737c5ce1f12d2ed82f3ed import BgpV6Vrf return BgpV6Vrf(self)
-3,337,457,177,840,421,400
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpv6vrf_1d6029d380b737c5ce1f12d2ed82f3ed.BgpV6Vrf): An instance of the BgpV6Vrf class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpV6Vrf
rfrye-github/ixnetwork_restpy
python
@property def BgpV6Vrf(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpv6vrf_1d6029d380b737c5ce1f12d2ed82f3ed.BgpV6Vrf): An instance of the BgpV6Vrf class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.bgpv6vrf_1d6029d380b737c5ce1f12d2ed82f3ed import BgpV6Vrf return BgpV6Vrf(self)
@property def Connector(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b.Connector): An instance of the Connector class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b import Connector return Connector(self)
6,783,369,117,556,820,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b.Connector): An instance of the Connector class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
Connector
rfrye-github/ixnetwork_restpy
python
@property def Connector(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b.Connector): An instance of the Connector class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.connector_d0d942810e4010add7642d3914a1f29b import Connector return Connector(self)
@property def FlexAlgoColorMappingTemplate(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.flexalgocolormappingtemplate_8e0816b88fc7b32d81aaa2e2335895f1.FlexAlgoColorMappingTemplate): An instance of the FlexAlgoColorMappingTemplate class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.flexalgocolormappingtemplate_8e0816b88fc7b32d81aaa2e2335895f1 import FlexAlgoColorMappingTemplate return FlexAlgoColorMappingTemplate(self)._select()
8,741,643,204,530,978,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.flexalgocolormappingtemplate_8e0816b88fc7b32d81aaa2e2335895f1.FlexAlgoColorMappingTemplate): An instance of the FlexAlgoColorMappingTemplate class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
FlexAlgoColorMappingTemplate
rfrye-github/ixnetwork_restpy
python
@property def FlexAlgoColorMappingTemplate(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.flexalgocolormappingtemplate_8e0816b88fc7b32d81aaa2e2335895f1.FlexAlgoColorMappingTemplate): An instance of the FlexAlgoColorMappingTemplate class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.flexalgocolormappingtemplate_8e0816b88fc7b32d81aaa2e2335895f1 import FlexAlgoColorMappingTemplate return FlexAlgoColorMappingTemplate(self)._select()
@property def LearnedInfo(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100.LearnedInfo): An instance of the LearnedInfo class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100 import LearnedInfo return LearnedInfo(self)
7,549,900,077,694,341,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100.LearnedInfo): An instance of the LearnedInfo class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
LearnedInfo
rfrye-github/ixnetwork_restpy
python
@property def LearnedInfo(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100.LearnedInfo): An instance of the LearnedInfo class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.learnedinfo.learnedinfo_ff4d5e5643a63bccb40b6cf64fc58100 import LearnedInfo return LearnedInfo(self)
@property def TlvProfile(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.tlvprofile.tlvprofile_69db000d3ef3b060f5edc387b878736c.TlvProfile): An instance of the TlvProfile class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.tlvprofile.tlvprofile_69db000d3ef3b060f5edc387b878736c import TlvProfile return TlvProfile(self)
5,812,676,477,857,461,000
Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.tlvprofile.tlvprofile_69db000d3ef3b060f5edc387b878736c.TlvProfile): An instance of the TlvProfile class Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
TlvProfile
rfrye-github/ixnetwork_restpy
python
@property def TlvProfile(self): '\n Returns\n -------\n - obj(uhd_restpy.testplatform.sessions.ixnetwork.topology.tlvprofile.tlvprofile_69db000d3ef3b060f5edc387b878736c.TlvProfile): An instance of the TlvProfile class\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' from uhd_restpy.testplatform.sessions.ixnetwork.topology.tlvprofile.tlvprofile_69db000d3ef3b060f5edc387b878736c import TlvProfile return TlvProfile(self)
@property def ActAsRestarted(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Act as restarted\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ActAsRestarted']))
-7,196,879,219,354,280,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Act as restarted
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
ActAsRestarted
rfrye-github/ixnetwork_restpy
python
@property def ActAsRestarted(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Act as restarted\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ActAsRestarted']))
@property def Active(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
-8,614,067,439,674,340,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
Active
rfrye-github/ixnetwork_restpy
python
@property def Active(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
@property def AdvSrv6SidInIgp(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID in IGP\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvSrv6SidInIgp']))
7,843,939,858,331,869,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID in IGP
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AdvSrv6SidInIgp
rfrye-github/ixnetwork_restpy
python
@property def AdvSrv6SidInIgp(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID in IGP\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvSrv6SidInIgp']))
@property def AdvertiseEndOfRib(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise End-Of-RIB\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseEndOfRib']))
-568,183,110,144,396,500
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Advertise End-Of-RIB
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AdvertiseEndOfRib
rfrye-github/ixnetwork_restpy
python
@property def AdvertiseEndOfRib(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise End-Of-RIB\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseEndOfRib']))
@property def AdvertiseEvpnRoutesForOtherVtep(self): '\n Returns\n -------\n - bool: Advertise EVPN routes for other VTEPS\n ' return self._get_attribute(self._SDM_ATT_MAP['AdvertiseEvpnRoutesForOtherVtep'])
-327,058,035,595,677,000
Returns ------- - bool: Advertise EVPN routes for other VTEPS
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AdvertiseEvpnRoutesForOtherVtep
rfrye-github/ixnetwork_restpy
python
@property def AdvertiseEvpnRoutesForOtherVtep(self): '\n Returns\n -------\n - bool: Advertise EVPN routes for other VTEPS\n ' return self._get_attribute(self._SDM_ATT_MAP['AdvertiseEvpnRoutesForOtherVtep'])
@property def AdvertiseSRv6SID(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseSRv6SID']))
1,427,049,423,402,907,600
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AdvertiseSRv6SID
rfrye-github/ixnetwork_restpy
python
@property def AdvertiseSRv6SID(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise SRv6 SID\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseSRv6SID']))
@property def AdvertiseTunnelEncapsulationExtendedCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise Tunnel Encapsulation Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseTunnelEncapsulationExtendedCommunity']))
2,813,584,264,658,598,400
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Advertise Tunnel Encapsulation Extended Community
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AdvertiseTunnelEncapsulationExtendedCommunity
rfrye-github/ixnetwork_restpy
python
@property def AdvertiseTunnelEncapsulationExtendedCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Advertise Tunnel Encapsulation Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AdvertiseTunnelEncapsulationExtendedCommunity']))
@property def AlwaysIncludeTunnelEncExtCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Always Include Tunnel Encapsulation Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AlwaysIncludeTunnelEncExtCommunity']))
-1,722,546,325,876,228,400
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Always Include Tunnel Encapsulation Extended Community
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AlwaysIncludeTunnelEncExtCommunity
rfrye-github/ixnetwork_restpy
python
@property def AlwaysIncludeTunnelEncExtCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Always Include Tunnel Encapsulation Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AlwaysIncludeTunnelEncExtCommunity']))
@property def AsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsSetMode']))
3,627,613,641,122,489,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AsSetMode
rfrye-github/ixnetwork_restpy
python
@property def AsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['AsSetMode']))
@property def Authentication(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Authentication Type\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Authentication']))
-8,498,841,170,008,673,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Authentication Type
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
Authentication
rfrye-github/ixnetwork_restpy
python
@property def Authentication(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Authentication Type\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Authentication']))
@property def AutoGenSegmentLeftValue(self): '\n Returns\n -------\n - bool: If enabled then Segment Left field value will be auto generated\n ' return self._get_attribute(self._SDM_ATT_MAP['AutoGenSegmentLeftValue'])
-2,350,733,040,861,744,000
Returns ------- - bool: If enabled then Segment Left field value will be auto generated
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
AutoGenSegmentLeftValue
rfrye-github/ixnetwork_restpy
python
@property def AutoGenSegmentLeftValue(self): '\n Returns\n -------\n - bool: If enabled then Segment Left field value will be auto generated\n ' return self._get_attribute(self._SDM_ATT_MAP['AutoGenSegmentLeftValue'])
@property def BgpFsmState(self): '\n Returns\n -------\n - list(str[active | connect | error | established | idle | none | openConfirm | openSent]): Logs additional information about the BGP Peer State\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpFsmState'])
-7,621,347,124,457,967,000
Returns ------- - list(str[active | connect | error | established | idle | none | openConfirm | openSent]): Logs additional information about the BGP Peer State
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpFsmState
rfrye-github/ixnetwork_restpy
python
@property def BgpFsmState(self): '\n Returns\n -------\n - list(str[active | connect | error | established | idle | none | openConfirm | openSent]): Logs additional information about the BGP Peer State\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpFsmState'])
@property def BgpId(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): BGP ID\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpId']))
9,043,268,046,621,933,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): BGP ID
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpId
rfrye-github/ixnetwork_restpy
python
@property def BgpId(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): BGP ID\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpId']))
@property def BgpLsAsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsAsSetMode']))
319,127,661,016,352,300
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsAsSetMode
rfrye-github/ixnetwork_restpy
python
@property def BgpLsAsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsAsSetMode']))
@property def BgpLsEnableAsPathSegments(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable AS Path Segments\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableAsPathSegments']))
2,265,162,943,682,732,500
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable AS Path Segments
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsEnableAsPathSegments
rfrye-github/ixnetwork_restpy
python
@property def BgpLsEnableAsPathSegments(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable AS Path Segments\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableAsPathSegments']))
@property def BgpLsEnableCluster(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable Cluster\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableCluster']))
6,132,178,046,963,054,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Cluster
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsEnableCluster
rfrye-github/ixnetwork_restpy
python
@property def BgpLsEnableCluster(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable Cluster\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableCluster']))
@property def BgpLsEnableExtendedCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableExtendedCommunity']))
8,942,937,420,216,711,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Enable Extended Community
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsEnableExtendedCommunity
rfrye-github/ixnetwork_restpy
python
@property def BgpLsEnableExtendedCommunity(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Enable Extended Community\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsEnableExtendedCommunity']))
@property def BgpLsNoOfASPathSegments(self): '\n Returns\n -------\n - number: Number Of AS Path Segments Per Route Range\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfASPathSegments'])
-8,530,864,123,651,886,000
Returns ------- - number: Number Of AS Path Segments Per Route Range
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsNoOfASPathSegments
rfrye-github/ixnetwork_restpy
python
@property def BgpLsNoOfASPathSegments(self): '\n Returns\n -------\n - number: Number Of AS Path Segments Per Route Range\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfASPathSegments'])
@property def BgpLsNoOfClusters(self): '\n Returns\n -------\n - number: Number of Clusters\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfClusters'])
-3,051,049,339,947,409,000
Returns ------- - number: Number of Clusters
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsNoOfClusters
rfrye-github/ixnetwork_restpy
python
@property def BgpLsNoOfClusters(self): '\n Returns\n -------\n - number: Number of Clusters\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfClusters'])
@property def BgpLsNoOfCommunities(self): '\n Returns\n -------\n - number: Number of Communities\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfCommunities'])
-5,189,109,858,748,717,000
Returns ------- - number: Number of Communities
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsNoOfCommunities
rfrye-github/ixnetwork_restpy
python
@property def BgpLsNoOfCommunities(self): '\n Returns\n -------\n - number: Number of Communities\n ' return self._get_attribute(self._SDM_ATT_MAP['BgpLsNoOfCommunities'])
@property def BgpLsOverridePeerAsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Override Peer AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsOverridePeerAsSetMode']))
-5,136,637,764,748,780,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Override Peer AS# Set Mode
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpLsOverridePeerAsSetMode
rfrye-github/ixnetwork_restpy
python
@property def BgpLsOverridePeerAsSetMode(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Override Peer AS# Set Mode\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpLsOverridePeerAsSetMode']))
@property def BgpUnnumbered(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): If enabled, BGP local IP will be Link-local IP.\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpUnnumbered']))
3,803,989,257,556,558,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): If enabled, BGP local IP will be Link-local IP.
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
BgpUnnumbered
rfrye-github/ixnetwork_restpy
python
@property def BgpUnnumbered(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): If enabled, BGP local IP will be Link-local IP.\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BgpUnnumbered']))
@property def CapabilityIpV4Mdt(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 BGP MDT: AFI = 1, SAFI = 66\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Mdt']))
4,725,452,127,750,323,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 BGP MDT: AFI = 1, SAFI = 66
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4Mdt
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4Mdt(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 BGP MDT: AFI = 1, SAFI = 66\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Mdt']))
@property def CapabilityIpV4Mpls(self): 'DEPRECATED \n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Mpls']))
2,653,988,765,480,852,000
DEPRECATED Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4Mpls
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4Mpls(self): 'DEPRECATED \n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Mpls']))
@property def CapabilityIpV4MplsVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS VPN Capability: AFI=1,SAFI=128\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4MplsVpn']))
7,705,672,281,504,060,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS VPN Capability: AFI=1,SAFI=128
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4MplsVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4MplsVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 MPLS VPN Capability: AFI=1,SAFI=128\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4MplsVpn']))
@property def CapabilityIpV4Multicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Multicast Capability: AFI=1,SAFI=2\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Multicast']))
-5,959,574,163,894,074,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 Multicast Capability: AFI=1,SAFI=2
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4Multicast
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4Multicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Multicast Capability: AFI=1,SAFI=2\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Multicast']))
@property def CapabilityIpV4MulticastVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IP MCAST-VPN: AFI = 1, SAFI = 5\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4MulticastVpn']))
-1,670,850,077,124,506,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IP MCAST-VPN: AFI = 1, SAFI = 5
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4MulticastVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4MulticastVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IP MCAST-VPN: AFI = 1, SAFI = 5\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4MulticastVpn']))
@property def CapabilityIpV4Unicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Capability: AFI=1,SAFI=1\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Unicast']))
-2,234,620,909,009,305,300
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Capability: AFI=1,SAFI=1
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV4Unicast
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV4Unicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Capability: AFI=1,SAFI=1\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV4Unicast']))
@property def CapabilityIpV6Mpls(self): 'DEPRECATED \n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Mpls']))
4,050,921,797,112,284,700
DEPRECATED Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV6Mpls
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV6Mpls(self): 'DEPRECATED \n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Mpls']))
@property def CapabilityIpV6MplsVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS VPN Capability: AFI=2,SAFI=128\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6MplsVpn']))
-7,248,043,999,864,903,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS VPN Capability: AFI=2,SAFI=128
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV6MplsVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV6MplsVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 MPLS VPN Capability: AFI=2,SAFI=128\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6MplsVpn']))
@property def CapabilityIpV6Multicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 Multicast Capability: AFI=2,SAFI=2\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Multicast']))
7,636,897,105,456,212,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv6 Multicast Capability: AFI=2,SAFI=2
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV6Multicast
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV6Multicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 Multicast Capability: AFI=2,SAFI=2\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Multicast']))
@property def CapabilityIpV6MulticastVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IP6 MCAST-VPN: AFI = 2, SAFI = 5\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6MulticastVpn']))
4,273,521,640,843,206,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IP6 MCAST-VPN: AFI = 2, SAFI = 5
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV6MulticastVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV6MulticastVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IP6 MCAST-VPN: AFI = 2, SAFI = 5\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6MulticastVpn']))
@property def CapabilityIpV6Unicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 Unicast Capability: AFI=2,SAFI=1\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Unicast']))
6,578,704,941,314,357,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv6 Unicast Capability: AFI=2,SAFI=1
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpV6Unicast
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpV6Unicast(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 Unicast Capability: AFI=2,SAFI=1\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpV6Unicast']))
@property def CapabilityIpv4MplsAddPath(self): '\n Returns\n -------\n - bool: IPv4 MPLS Add Path Capability\n ' return self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv4MplsAddPath'])
5,448,256,857,143,750,000
Returns ------- - bool: IPv4 MPLS Add Path Capability
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpv4MplsAddPath
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpv4MplsAddPath(self): '\n Returns\n -------\n - bool: IPv4 MPLS Add Path Capability\n ' return self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv4MplsAddPath'])
@property def CapabilityIpv4UnicastAddPath(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv4 Unicast Add Path\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv4UnicastAddPath']))
4,481,523,749,071,057,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv4 Unicast Add Path
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpv4UnicastAddPath
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpv4UnicastAddPath(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv4 Unicast Add Path\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv4UnicastAddPath']))
@property def CapabilityIpv6MplsAddPath(self): '\n Returns\n -------\n - bool: IPv6 MPLS Add Path Capability\n ' return self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv6MplsAddPath'])
-468,016,014,134,343,900
Returns ------- - bool: IPv6 MPLS Add Path Capability
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpv6MplsAddPath
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpv6MplsAddPath(self): '\n Returns\n -------\n - bool: IPv6 MPLS Add Path Capability\n ' return self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv6MplsAddPath'])
@property def CapabilityIpv6UnicastAddPath(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv6 Unicast Add Path\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv6UnicastAddPath']))
6,929,437,793,636,300,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv6 Unicast Add Path
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityIpv6UnicastAddPath
rfrye-github/ixnetwork_restpy
python
@property def CapabilityIpv6UnicastAddPath(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Check box for IPv6 Unicast Add Path\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityIpv6UnicastAddPath']))
@property def CapabilityLinkStateNonVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Link State Non-VPN Capability: AFI=16388,SAFI=71\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityLinkStateNonVpn']))
-236,741,811,375,229,800
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Link State Non-VPN Capability: AFI=16388,SAFI=71
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityLinkStateNonVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityLinkStateNonVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Link State Non-VPN Capability: AFI=16388,SAFI=71\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityLinkStateNonVpn']))
@property def CapabilityLinkStateVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Select this check box to enable Link State VPN capability on the router.AFI=16388 and SAFI=72 values will be supported.\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityLinkStateVpn']))
9,103,111,205,149,441,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Select this check box to enable Link State VPN capability on the router.AFI=16388 and SAFI=72 values will be supported.
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityLinkStateVpn
rfrye-github/ixnetwork_restpy
python
@property def CapabilityLinkStateVpn(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Select this check box to enable Link State VPN capability on the router.AFI=16388 and SAFI=72 values will be supported.\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityLinkStateVpn']))
@property def CapabilityNHEncodingCapabilities(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Extended Next Hop Encoding Capability which needs to be used when advertising IPv4 or VPN-IPv4 routes over IPv6 Core\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityNHEncodingCapabilities']))
8,351,961,515,150,855,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Extended Next Hop Encoding Capability which needs to be used when advertising IPv4 or VPN-IPv4 routes over IPv6 Core
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityNHEncodingCapabilities
rfrye-github/ixnetwork_restpy
python
@property def CapabilityNHEncodingCapabilities(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Extended Next Hop Encoding Capability which needs to be used when advertising IPv4 or VPN-IPv4 routes over IPv6 Core\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityNHEncodingCapabilities']))
@property def CapabilityRouteConstraint(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Route Constraint Capability: AFI=1,SAFI=132\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityRouteConstraint']))
7,900,999,350,622,410,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Route Constraint Capability: AFI=1,SAFI=132
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityRouteConstraint
rfrye-github/ixnetwork_restpy
python
@property def CapabilityRouteConstraint(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Route Constraint Capability: AFI=1,SAFI=132\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityRouteConstraint']))
@property def CapabilityRouteRefresh(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Route Refresh\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityRouteRefresh']))
5,150,408,324,567,939,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Route Refresh
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityRouteRefresh
rfrye-github/ixnetwork_restpy
python
@property def CapabilityRouteRefresh(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Route Refresh\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityRouteRefresh']))
@property def CapabilitySRTEPoliciesV4(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 SR TE Policy Capability: AFI=1,SAFI=73\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilitySRTEPoliciesV4']))
4,357,890,466,959,535,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 SR TE Policy Capability: AFI=1,SAFI=73
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilitySRTEPoliciesV4
rfrye-github/ixnetwork_restpy
python
@property def CapabilitySRTEPoliciesV4(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 SR TE Policy Capability: AFI=1,SAFI=73\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilitySRTEPoliciesV4']))
@property def CapabilitySRTEPoliciesV6(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 SR TE Policy Capability: AFI=2,SAFI=73\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilitySRTEPoliciesV6']))
-281,317,356,902,695,460
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv6 SR TE Policy Capability: AFI=2,SAFI=73
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilitySRTEPoliciesV6
rfrye-github/ixnetwork_restpy
python
@property def CapabilitySRTEPoliciesV6(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv6 SR TE Policy Capability: AFI=2,SAFI=73\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilitySRTEPoliciesV6']))
@property def CapabilityVpls(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): VPLS Capability: AFI = 25, SAFI = 65\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityVpls']))
2,527,981,225,844,211,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): VPLS Capability: AFI = 25, SAFI = 65
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
CapabilityVpls
rfrye-github/ixnetwork_restpy
python
@property def CapabilityVpls(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): VPLS Capability: AFI = 25, SAFI = 65\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['CapabilityVpls']))
@property def Capabilityipv4UnicastFlowSpec(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Flow Spec Capability: AFI=1,SAFI=133\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Capabilityipv4UnicastFlowSpec']))
432,845,826,204,110,460
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Flow Spec Capability: AFI=1,SAFI=133
uhd_restpy/testplatform/sessions/ixnetwork/topology/bgpipv6peer_d4ac277d9da759fd5a152b8e6eb0ab20.py
Capabilityipv4UnicastFlowSpec
rfrye-github/ixnetwork_restpy
python
@property def Capabilityipv4UnicastFlowSpec(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): IPv4 Unicast Flow Spec Capability: AFI=1,SAFI=133\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Capabilityipv4UnicastFlowSpec']))