body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
def AcidocellaSpMxAz02(directed: bool=False, preprocess: bool=True, load_nodes: bool=True, verbose: int=2, cache: bool=True, cache_path: str='graphs/string', version: str='links.v11.5', **additional_graph_kwargs: Dict) -> Graph: 'Return new instance of the Acidocella sp. MX-AZ02 graph.\n\n The graph is automatically retrieved from the STRING repository.\t\n\n Parameters\n -------------------\n directed: bool = False\n Wether to load the graph as directed or undirected.\n By default false.\n preprocess: bool = True\n Whether to preprocess the graph to be loaded in \n optimal time and memory.\n load_nodes: bool = True,\n Whether to load the nodes vocabulary or treat the nodes\n simply as a numeric range.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache: bool = True\n Whether to use cache, i.e. download files only once\n and preprocess them only once.\n cache_path: str = "graphs"\n Where to store the downloaded graphs.\n version: str = "links.v11.5"\n The version of the graph to retrieve.\t\t\n\tThe available versions are:\n\t\t\t- homology.v11.5\n\t\t\t- physical.links.v11.5\n\t\t\t- links.v11.5\n additional_graph_kwargs: Dict\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Acidocella sp. MX-AZ02 graph.\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t```bib\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t```\n ' return AutomaticallyRetrievedGraph(graph_name='AcidocellaSpMxAz02', repository='string', version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
-4,163,455,853,893,054,500
Return new instance of the Acidocella sp. MX-AZ02 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Acidocella sp. MX-AZ02 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ```
bindings/python/ensmallen/datasets/string/acidocellaspmxaz02.py
AcidocellaSpMxAz02
AnacletoLAB/ensmallen
python
def AcidocellaSpMxAz02(directed: bool=False, preprocess: bool=True, load_nodes: bool=True, verbose: int=2, cache: bool=True, cache_path: str='graphs/string', version: str='links.v11.5', **additional_graph_kwargs: Dict) -> Graph: 'Return new instance of the Acidocella sp. MX-AZ02 graph.\n\n The graph is automatically retrieved from the STRING repository.\t\n\n Parameters\n -------------------\n directed: bool = False\n Wether to load the graph as directed or undirected.\n By default false.\n preprocess: bool = True\n Whether to preprocess the graph to be loaded in \n optimal time and memory.\n load_nodes: bool = True,\n Whether to load the nodes vocabulary or treat the nodes\n simply as a numeric range.\n verbose: int = 2,\n Wether to show loading bars during the retrieval and building\n of the graph.\n cache: bool = True\n Whether to use cache, i.e. download files only once\n and preprocess them only once.\n cache_path: str = "graphs"\n Where to store the downloaded graphs.\n version: str = "links.v11.5"\n The version of the graph to retrieve.\t\t\n\tThe available versions are:\n\t\t\t- homology.v11.5\n\t\t\t- physical.links.v11.5\n\t\t\t- links.v11.5\n additional_graph_kwargs: Dict\n Additional graph kwargs.\n\n Returns\n -----------------------\n Instace of Acidocella sp. MX-AZ02 graph.\n\n\tReferences\n\t---------------------\n\tPlease cite the following if you use the data:\n\t\n\t```bib\n\t@article{szklarczyk2019string,\n\t title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets},\n\t author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others},\n\t journal={Nucleic acids research},\n\t volume={47},\n\t number={D1},\n\t pages={D607--D613},\n\t year={2019},\n\t publisher={Oxford University Press}\n\t}\n\t```\n ' return AutomaticallyRetrievedGraph(graph_name='AcidocellaSpMxAz02', repository='string', version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs)()
def create_ipython_console(app, title, view_width, view_ht): ' create a iPython console with a rayoptics environment ' opt_model = app.app_manager.model if opt_model: ro_env = {'app': app, 'opm': opt_model, 'sm': opt_model.seq_model, 'osp': opt_model.optical_spec, 'pm': opt_model.parax_model} else: ro_env = {'app': app, 'opm': opt_model} ro_setup = 'from rayoptics.environment import *' ipy_console = ConsoleWidget() ipy_console.execute_command(ro_setup) ipy_console.push_vars(ro_env) mi = ModelInfo(opt_model) sub_window = app.add_subwindow(ipy_console, mi) sub_window.setWindowTitle(title) (orig_x, orig_y) = app.initial_window_offset() sub_window.setGeometry(orig_x, orig_y, view_width, view_ht) sub_window.show()
4,749,318,609,762,118,000
create a iPython console with a rayoptics environment
src/rayoptics/qtgui/ipyconsole.py
create_ipython_console
NelisW/ray-optics
python
def create_ipython_console(app, title, view_width, view_ht): ' ' opt_model = app.app_manager.model if opt_model: ro_env = {'app': app, 'opm': opt_model, 'sm': opt_model.seq_model, 'osp': opt_model.optical_spec, 'pm': opt_model.parax_model} else: ro_env = {'app': app, 'opm': opt_model} ro_setup = 'from rayoptics.environment import *' ipy_console = ConsoleWidget() ipy_console.execute_command(ro_setup) ipy_console.push_vars(ro_env) mi = ModelInfo(opt_model) sub_window = app.add_subwindow(ipy_console, mi) sub_window.setWindowTitle(title) (orig_x, orig_y) = app.initial_window_offset() sub_window.setGeometry(orig_x, orig_y, view_width, view_ht) sub_window.show()
def push_vars(self, variableDict): '\n Given a dictionary containing name / value pairs, push those variables\n to the Jupyter console widget\n ' self.kernel_manager.kernel.shell.push(variableDict)
-6,908,998,854,733,955,000
Given a dictionary containing name / value pairs, push those variables to the Jupyter console widget
src/rayoptics/qtgui/ipyconsole.py
push_vars
NelisW/ray-optics
python
def push_vars(self, variableDict): '\n Given a dictionary containing name / value pairs, push those variables\n to the Jupyter console widget\n ' self.kernel_manager.kernel.shell.push(variableDict)
def clear(self): '\n Clears the terminal\n ' self._control.clear()
8,491,764,359,652,678,000
Clears the terminal
src/rayoptics/qtgui/ipyconsole.py
clear
NelisW/ray-optics
python
def clear(self): '\n \n ' self._control.clear()
def print_text(self, text): '\n Prints some plain text to the console\n ' self._append_plain_text(text)
3,013,955,330,680,670,700
Prints some plain text to the console
src/rayoptics/qtgui/ipyconsole.py
print_text
NelisW/ray-optics
python
def print_text(self, text): '\n \n ' self._append_plain_text(text)
def execute_command(self, command): '\n Execute a command in the frame of the console widget\n ' self._execute(command, False)
2,414,786,539,950,187,500
Execute a command in the frame of the console widget
src/rayoptics/qtgui/ipyconsole.py
execute_command
NelisW/ray-optics
python
def execute_command(self, command): '\n \n ' self._execute(command, False)
def __init__(self, volumes, energies, eos='vinet'): "Init method.\n\n volumes : array_like\n Unit cell volumes where energies are obtained.\n shape=(volumes, ), dtype='double'.\n energies : array_like\n Energies obtained at volumes.\n shape=(volumes, ), dtype='double'.\n eos : str\n Identifier of equation of states function.\n\n " self._volumes = volumes if (np.array(energies).ndim == 1): self._energies = energies else: self._energies = energies[0] self._eos = get_eos(eos) self._energy = None self._bulk_modulus = None self._b_prime = None try: (self._energy, self._bulk_modulus, self._b_prime, self._volume) = fit_to_eos(volumes, self._energies, self._eos) except TypeError: msg = [('Failed to fit to "%s" equation of states.' % eos)] if (len(volumes) < 4): msg += ['At least 4 volume points are needed for the fitting.'] msg += ['Careful choice of volume points is recommended.'] raise RuntimeError('\n'.join(msg))
-6,041,298,175,504,865,000
Init method. volumes : array_like Unit cell volumes where energies are obtained. shape=(volumes, ), dtype='double'. energies : array_like Energies obtained at volumes. shape=(volumes, ), dtype='double'. eos : str Identifier of equation of states function.
phonopy/qha/core.py
__init__
SeyedMohamadMoosavi/phonopy
python
def __init__(self, volumes, energies, eos='vinet'): "Init method.\n\n volumes : array_like\n Unit cell volumes where energies are obtained.\n shape=(volumes, ), dtype='double'.\n energies : array_like\n Energies obtained at volumes.\n shape=(volumes, ), dtype='double'.\n eos : str\n Identifier of equation of states function.\n\n " self._volumes = volumes if (np.array(energies).ndim == 1): self._energies = energies else: self._energies = energies[0] self._eos = get_eos(eos) self._energy = None self._bulk_modulus = None self._b_prime = None try: (self._energy, self._bulk_modulus, self._b_prime, self._volume) = fit_to_eos(volumes, self._energies, self._eos) except TypeError: msg = [('Failed to fit to "%s" equation of states.' % eos)] if (len(volumes) < 4): msg += ['At least 4 volume points are needed for the fitting.'] msg += ['Careful choice of volume points is recommended.'] raise RuntimeError('\n'.join(msg))
@property def bulk_modulus(self): 'Return bulk modulus.' return self._bulk_modulus
-2,595,303,705,271,994,000
Return bulk modulus.
phonopy/qha/core.py
bulk_modulus
SeyedMohamadMoosavi/phonopy
python
@property def bulk_modulus(self): return self._bulk_modulus
def get_bulk_modulus(self): 'Return bulk modulus.' warnings.warn('BulkModulus.get_bulk_modulus() is deprecated.Use BulkModulus.bulk_modulus attribute.', DeprecationWarning) return self.bulk_modulus
6,207,878,060,856,568,000
Return bulk modulus.
phonopy/qha/core.py
get_bulk_modulus
SeyedMohamadMoosavi/phonopy
python
def get_bulk_modulus(self): warnings.warn('BulkModulus.get_bulk_modulus() is deprecated.Use BulkModulus.bulk_modulus attribute.', DeprecationWarning) return self.bulk_modulus
@property def equilibrium_volume(self): 'Return volume at equilibrium.' return self._volume
4,626,538,268,838,389,000
Return volume at equilibrium.
phonopy/qha/core.py
equilibrium_volume
SeyedMohamadMoosavi/phonopy
python
@property def equilibrium_volume(self): return self._volume
def get_equilibrium_volume(self): 'Return volume at equilibrium.' warnings.warn('BulkModulus.get_equilibrium_volume() is deprecated.Use BulkModulus.equilibrium_volume attribute.', DeprecationWarning) return self.equilibrium_volume
-4,453,012,193,212,020,000
Return volume at equilibrium.
phonopy/qha/core.py
get_equilibrium_volume
SeyedMohamadMoosavi/phonopy
python
def get_equilibrium_volume(self): warnings.warn('BulkModulus.get_equilibrium_volume() is deprecated.Use BulkModulus.equilibrium_volume attribute.', DeprecationWarning) return self.equilibrium_volume
@property def b_prime(self): "Return fitted parameter B'." return self._b_prime
-6,632,820,823,371,828,000
Return fitted parameter B'.
phonopy/qha/core.py
b_prime
SeyedMohamadMoosavi/phonopy
python
@property def b_prime(self): return self._b_prime
def get_b_prime(self): "Return fitted parameter B'." warnings.warn('BulkModulus.get_b_prime() is deprecated.Use BulkModulus.b_prime attribute.', DeprecationWarning) return self._b_prime
-8,431,160,056,754,322,000
Return fitted parameter B'.
phonopy/qha/core.py
get_b_prime
SeyedMohamadMoosavi/phonopy
python
def get_b_prime(self): warnings.warn('BulkModulus.get_b_prime() is deprecated.Use BulkModulus.b_prime attribute.', DeprecationWarning) return self._b_prime
@property def energy(self): 'Return fitted parameter of energy.' return self._energy
-1,284,467,124,829,295,900
Return fitted parameter of energy.
phonopy/qha/core.py
energy
SeyedMohamadMoosavi/phonopy
python
@property def energy(self): return self._energy
def get_energy(self): 'Return fitted parameter of energy.' warnings.warn('BulkModulus.get_energy() is deprecated.Use BulkModulus.energy attribute.', DeprecationWarning) return self._energy
-778,690,476,186,869,600
Return fitted parameter of energy.
phonopy/qha/core.py
get_energy
SeyedMohamadMoosavi/phonopy
python
def get_energy(self): warnings.warn('BulkModulus.get_energy() is deprecated.Use BulkModulus.energy attribute.', DeprecationWarning) return self._energy
def get_parameters(self): 'Return fitted parameters.' return (self._energy, self._bulk_modulus, self._b_prime, self._volume)
-1,417,737,956,995,839,500
Return fitted parameters.
phonopy/qha/core.py
get_parameters
SeyedMohamadMoosavi/phonopy
python
def get_parameters(self): return (self._energy, self._bulk_modulus, self._b_prime, self._volume)
def get_eos(self): 'Return EOS function as a python method.' warnings.warn('BulkModulus.get_eos() is deprecated.', DeprecationWarning) return self._eos
-5,511,940,530,130,078,000
Return EOS function as a python method.
phonopy/qha/core.py
get_eos
SeyedMohamadMoosavi/phonopy
python
def get_eos(self): warnings.warn('BulkModulus.get_eos() is deprecated.', DeprecationWarning) return self._eos
def plot(self): 'Plot fitted EOS curve.' import matplotlib.pyplot as plt ep = self.get_parameters() vols = self._volumes volume_points = np.linspace(min(vols), max(vols), 201) (fig, ax) = plt.subplots() ax.plot(volume_points, self._eos(volume_points, *ep), 'r-') ax.plot(vols, self._energies, 'bo', markersize=4) return plt
450,993,508,511,894,140
Plot fitted EOS curve.
phonopy/qha/core.py
plot
SeyedMohamadMoosavi/phonopy
python
def plot(self): import matplotlib.pyplot as plt ep = self.get_parameters() vols = self._volumes volume_points = np.linspace(min(vols), max(vols), 201) (fig, ax) = plt.subplots() ax.plot(volume_points, self._eos(volume_points, *ep), 'r-') ax.plot(vols, self._energies, 'bo', markersize=4) return plt
def __init__(self, volumes, electronic_energies, temperatures, cv, entropy, fe_phonon, eos='vinet', t_max=None, energy_plot_factor=None): "Init method.\n\n Parameters\n ----------\n volumes: array_like\n Unit cell volumes (V) in angstrom^3.\n dtype='double'\n shape=(volumes,)\n electronic_energies: array_like\n Electronic energies (U_el) or electronic free energies (F_el) in eV.\n It is assumed as formar if ndim==1 and latter if ndim==2.\n dtype='double'\n shape=(volumes,) or (temperatuers, volumes)\n temperatures: array_like\n Temperatures ascending order (T) in K.\n dtype='double'\n shape=(temperatures,)\n cv: array_like\n Phonon Heat capacity at constant volume in J/K/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n entropy: array_like\n Phonon entropy at constant volume (S_ph) in J/K/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n fe_phonon: array_like\n Phonon Helmholtz free energy (F_ph) in kJ/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n eos: str\n Equation of state used for fitting F vs V.\n 'vinet', 'murnaghan' or 'birch_murnaghan'.\n t_max: float\n Maximum temperature to be calculated. This has to be not\n greater than the temperature of the third element from the\n end of 'temperatre' elements. If max_t=None, the temperature\n of the third element from the end is used.\n energy_plot_factor: float\n This value is multiplied to energy like values only in plotting.\n\n " self._volumes = np.array(volumes) self._electronic_energies = np.array(electronic_energies) self._all_temperatures = np.array(temperatures) self._cv = np.array(cv) self._entropy = np.array(entropy) self._fe_phonon = (np.array(fe_phonon) / EvTokJmol) self._eos = get_eos(eos) self._t_max = t_max self._energy_plot_factor = energy_plot_factor self._temperatures = None self._equiv_volumes = None self._equiv_energies = None self._equiv_bulk_modulus = None self._equiv_parameters = None self._free_energies = None self._num_elems = None self._thermal_expansions = None self._cp_numerical = None self._volume_entropy_parameters = None self._volume_cv_parameters = None self._volume_entropy = None self._volume_cv = None self._cp_polyfit = None self._dsdv = None self._gruneisen_parameters = None self._len = None
5,790,105,411,908,088,000
Init method. Parameters ---------- volumes: array_like Unit cell volumes (V) in angstrom^3. dtype='double' shape=(volumes,) electronic_energies: array_like Electronic energies (U_el) or electronic free energies (F_el) in eV. It is assumed as formar if ndim==1 and latter if ndim==2. dtype='double' shape=(volumes,) or (temperatuers, volumes) temperatures: array_like Temperatures ascending order (T) in K. dtype='double' shape=(temperatures,) cv: array_like Phonon Heat capacity at constant volume in J/K/mol. dtype='double' shape=(temperatuers, volumes) entropy: array_like Phonon entropy at constant volume (S_ph) in J/K/mol. dtype='double' shape=(temperatuers, volumes) fe_phonon: array_like Phonon Helmholtz free energy (F_ph) in kJ/mol. dtype='double' shape=(temperatuers, volumes) eos: str Equation of state used for fitting F vs V. 'vinet', 'murnaghan' or 'birch_murnaghan'. t_max: float Maximum temperature to be calculated. This has to be not greater than the temperature of the third element from the end of 'temperatre' elements. If max_t=None, the temperature of the third element from the end is used. energy_plot_factor: float This value is multiplied to energy like values only in plotting.
phonopy/qha/core.py
__init__
SeyedMohamadMoosavi/phonopy
python
def __init__(self, volumes, electronic_energies, temperatures, cv, entropy, fe_phonon, eos='vinet', t_max=None, energy_plot_factor=None): "Init method.\n\n Parameters\n ----------\n volumes: array_like\n Unit cell volumes (V) in angstrom^3.\n dtype='double'\n shape=(volumes,)\n electronic_energies: array_like\n Electronic energies (U_el) or electronic free energies (F_el) in eV.\n It is assumed as formar if ndim==1 and latter if ndim==2.\n dtype='double'\n shape=(volumes,) or (temperatuers, volumes)\n temperatures: array_like\n Temperatures ascending order (T) in K.\n dtype='double'\n shape=(temperatures,)\n cv: array_like\n Phonon Heat capacity at constant volume in J/K/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n entropy: array_like\n Phonon entropy at constant volume (S_ph) in J/K/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n fe_phonon: array_like\n Phonon Helmholtz free energy (F_ph) in kJ/mol.\n dtype='double'\n shape=(temperatuers, volumes)\n eos: str\n Equation of state used for fitting F vs V.\n 'vinet', 'murnaghan' or 'birch_murnaghan'.\n t_max: float\n Maximum temperature to be calculated. This has to be not\n greater than the temperature of the third element from the\n end of 'temperatre' elements. If max_t=None, the temperature\n of the third element from the end is used.\n energy_plot_factor: float\n This value is multiplied to energy like values only in plotting.\n\n " self._volumes = np.array(volumes) self._electronic_energies = np.array(electronic_energies) self._all_temperatures = np.array(temperatures) self._cv = np.array(cv) self._entropy = np.array(entropy) self._fe_phonon = (np.array(fe_phonon) / EvTokJmol) self._eos = get_eos(eos) self._t_max = t_max self._energy_plot_factor = energy_plot_factor self._temperatures = None self._equiv_volumes = None self._equiv_energies = None self._equiv_bulk_modulus = None self._equiv_parameters = None self._free_energies = None self._num_elems = None self._thermal_expansions = None self._cp_numerical = None self._volume_entropy_parameters = None self._volume_cv_parameters = None self._volume_entropy = None self._volume_cv = None self._cp_polyfit = None self._dsdv = None self._gruneisen_parameters = None self._len = None
@property def thermal_expansion(self): 'Return volumetric thermal expansion coefficients at temperatures.' return self._thermal_expansions[:self._len]
6,564,147,274,133,580,000
Return volumetric thermal expansion coefficients at temperatures.
phonopy/qha/core.py
thermal_expansion
SeyedMohamadMoosavi/phonopy
python
@property def thermal_expansion(self): return self._thermal_expansions[:self._len]
@property def helmholtz_volume(self): 'Return Helmholtz free energies at temperatures and volumes.' return self._free_energies[:self._len]
5,229,335,254,799,800,000
Return Helmholtz free energies at temperatures and volumes.
phonopy/qha/core.py
helmholtz_volume
SeyedMohamadMoosavi/phonopy
python
@property def helmholtz_volume(self): return self._free_energies[:self._len]
@property def volume_temperature(self): 'Return equilibrium volumes at temperatures.' return self._equiv_volumes[:self._len]
5,589,368,534,607,171,000
Return equilibrium volumes at temperatures.
phonopy/qha/core.py
volume_temperature
SeyedMohamadMoosavi/phonopy
python
@property def volume_temperature(self): return self._equiv_volumes[:self._len]
@property def gibbs_temperature(self): 'Return Gibbs free energies at temperatures.' return self._equiv_energies[:self._len]
3,348,669,770,639,401,000
Return Gibbs free energies at temperatures.
phonopy/qha/core.py
gibbs_temperature
SeyedMohamadMoosavi/phonopy
python
@property def gibbs_temperature(self): return self._equiv_energies[:self._len]
@property def bulk_modulus_temperature(self): 'Return bulk modulus vs temperature data.' return self._equiv_bulk_modulus[:self._len]
284,408,110,806,463,400
Return bulk modulus vs temperature data.
phonopy/qha/core.py
bulk_modulus_temperature
SeyedMohamadMoosavi/phonopy
python
@property def bulk_modulus_temperature(self): return self._equiv_bulk_modulus[:self._len]
@property def heat_capacity_P_numerical(self): 'Return heat capacities at constant pressure at temperatures.\n\n Values are computed by numerical derivative of Gibbs free energy.\n\n ' return self._cp_numerical[:self._len]
5,557,818,067,728,385,000
Return heat capacities at constant pressure at temperatures. Values are computed by numerical derivative of Gibbs free energy.
phonopy/qha/core.py
heat_capacity_P_numerical
SeyedMohamadMoosavi/phonopy
python
@property def heat_capacity_P_numerical(self): 'Return heat capacities at constant pressure at temperatures.\n\n Values are computed by numerical derivative of Gibbs free energy.\n\n ' return self._cp_numerical[:self._len]
@property def heat_capacity_P_polyfit(self): 'Return heat capacities at constant pressure at temperatures.\n\n Volumes are computed in another way to heat_capacity_P_numerical\n for the better numerical behaviour. But this does not work\n when temperature dependent electronic_energies is supplied.\n\n ' if (self._electronic_energies.ndim == 1): return self._cp_polyfit[:self._len] else: return None
-8,213,427,396,810,456,000
Return heat capacities at constant pressure at temperatures. Volumes are computed in another way to heat_capacity_P_numerical for the better numerical behaviour. But this does not work when temperature dependent electronic_energies is supplied.
phonopy/qha/core.py
heat_capacity_P_polyfit
SeyedMohamadMoosavi/phonopy
python
@property def heat_capacity_P_polyfit(self): 'Return heat capacities at constant pressure at temperatures.\n\n Volumes are computed in another way to heat_capacity_P_numerical\n for the better numerical behaviour. But this does not work\n when temperature dependent electronic_energies is supplied.\n\n ' if (self._electronic_energies.ndim == 1): return self._cp_polyfit[:self._len] else: return None
@property def gruneisen_temperature(self): 'Return Gruneisen parameters at temperatures.' return self._gruneisen_parameters[:self._len]
-6,513,037,188,215,679,000
Return Gruneisen parameters at temperatures.
phonopy/qha/core.py
gruneisen_temperature
SeyedMohamadMoosavi/phonopy
python
@property def gruneisen_temperature(self): return self._gruneisen_parameters[:self._len]
def run(self, verbose=False): "Fit parameters to EOS at temperatures.\n\n Even if fitting failed, simply omit the volume point. In this case,\n the failed temperature point doesn't exist in the returned arrays.\n\n " if verbose: print((('#%11s' + ('%14s' * 4)) % ('T', 'E_0', 'B_0', "B'_0", 'V_0'))) num_elems = (self._get_num_elems(self._all_temperatures) + 1) if (num_elems > len(self._all_temperatures)): num_elems -= 1 temperatures = [] parameters = [] free_energies = [] for i in range(num_elems): if (self._electronic_energies.ndim == 1): el_energy = self._electronic_energies else: el_energy = self._electronic_energies[i] fe = [(ph_e + el_e) for (ph_e, el_e) in zip(self._fe_phonon[i], el_energy)] try: ep = fit_to_eos(self._volumes, fe, self._eos) except TypeError: print(('Fitting failure at T=%.1f' % self._all_temperatures[i])) if (ep is None): continue else: [ee, eb, ebp, ev] = ep t = self._all_temperatures[i] temperatures.append(t) parameters.append(ep) free_energies.append(fe) if verbose: print((('%14.6f' * 5) % (t, ep[0], (ep[1] * EVAngstromToGPa), ep[2], ep[3]))) self._free_energies = np.array(free_energies) self._temperatures = np.array(temperatures) self._equiv_parameters = np.array(parameters) self._equiv_volumes = np.array(self._equiv_parameters[:, 3]) self._equiv_energies = np.array(self._equiv_parameters[:, 0]) self._equiv_bulk_modulus = np.array((self._equiv_parameters[:, 1] * EVAngstromToGPa)) self._num_elems = len(self._temperatures) self._set_thermal_expansion() self._set_heat_capacity_P_numerical() self._set_heat_capacity_P_polyfit() self._set_gruneisen_parameter() self._len = len(self._thermal_expansions) assert ((self._len + 1) == self._num_elems)
-7,183,663,002,175,828,000
Fit parameters to EOS at temperatures. Even if fitting failed, simply omit the volume point. In this case, the failed temperature point doesn't exist in the returned arrays.
phonopy/qha/core.py
run
SeyedMohamadMoosavi/phonopy
python
def run(self, verbose=False): "Fit parameters to EOS at temperatures.\n\n Even if fitting failed, simply omit the volume point. In this case,\n the failed temperature point doesn't exist in the returned arrays.\n\n " if verbose: print((('#%11s' + ('%14s' * 4)) % ('T', 'E_0', 'B_0', "B'_0", 'V_0'))) num_elems = (self._get_num_elems(self._all_temperatures) + 1) if (num_elems > len(self._all_temperatures)): num_elems -= 1 temperatures = [] parameters = [] free_energies = [] for i in range(num_elems): if (self._electronic_energies.ndim == 1): el_energy = self._electronic_energies else: el_energy = self._electronic_energies[i] fe = [(ph_e + el_e) for (ph_e, el_e) in zip(self._fe_phonon[i], el_energy)] try: ep = fit_to_eos(self._volumes, fe, self._eos) except TypeError: print(('Fitting failure at T=%.1f' % self._all_temperatures[i])) if (ep is None): continue else: [ee, eb, ebp, ev] = ep t = self._all_temperatures[i] temperatures.append(t) parameters.append(ep) free_energies.append(fe) if verbose: print((('%14.6f' * 5) % (t, ep[0], (ep[1] * EVAngstromToGPa), ep[2], ep[3]))) self._free_energies = np.array(free_energies) self._temperatures = np.array(temperatures) self._equiv_parameters = np.array(parameters) self._equiv_volumes = np.array(self._equiv_parameters[:, 3]) self._equiv_energies = np.array(self._equiv_parameters[:, 0]) self._equiv_bulk_modulus = np.array((self._equiv_parameters[:, 1] * EVAngstromToGPa)) self._num_elems = len(self._temperatures) self._set_thermal_expansion() self._set_heat_capacity_P_numerical() self._set_heat_capacity_P_polyfit() self._set_gruneisen_parameter() self._len = len(self._thermal_expansions) assert ((self._len + 1) == self._num_elems)
def get_field_type(field, include_role=True): '\n Get the type of a field including the correct intersphinx mappings.\n\n :param field: The field\n :type field: ~django.db.models.Field\n\n :param include_directive: Whether or not the role :any:`py:class` should be included\n :type include_directive: bool\n\n :return: The type of the field\n :rtype: str\n ' if isinstance(field, models.fields.related.RelatedField): if isinstance(field.remote_field.model, str): to = field.remote_field.model else: to = f'{field.remote_field.model.__module__}.{field.remote_field.model.__name__}' return f':class:`~{type(field).__module__}.{type(field).__name__}` to :class:`~{to}`' elif isinstance(field, models.fields.reverse_related.ForeignObjectRel): to = field.remote_field.model return f'Reverse :class:`~{type(field.remote_field).__module__}.{type(field.remote_field).__name__}` from :class:`~{to.__module__}.{to.__name__}`' elif include_role: return f':class:`~{type(field).__module__}.{type(field).__name__}`' else: return f'~{type(field).__module__}.{type(field).__name__}'
7,352,132,743,437,656,000
Get the type of a field including the correct intersphinx mappings. :param field: The field :type field: ~django.db.models.Field :param include_directive: Whether or not the role :any:`py:class` should be included :type include_directive: bool :return: The type of the field :rtype: str
sphinxcontrib_django2/docstrings/field_utils.py
get_field_type
mkalioby/sphinxcontrib-django2
python
def get_field_type(field, include_role=True): '\n Get the type of a field including the correct intersphinx mappings.\n\n :param field: The field\n :type field: ~django.db.models.Field\n\n :param include_directive: Whether or not the role :any:`py:class` should be included\n :type include_directive: bool\n\n :return: The type of the field\n :rtype: str\n ' if isinstance(field, models.fields.related.RelatedField): if isinstance(field.remote_field.model, str): to = field.remote_field.model else: to = f'{field.remote_field.model.__module__}.{field.remote_field.model.__name__}' return f':class:`~{type(field).__module__}.{type(field).__name__}` to :class:`~{to}`' elif isinstance(field, models.fields.reverse_related.ForeignObjectRel): to = field.remote_field.model return f'Reverse :class:`~{type(field.remote_field).__module__}.{type(field.remote_field).__name__}` from :class:`~{to.__module__}.{to.__name__}`' elif include_role: return f':class:`~{type(field).__module__}.{type(field).__name__}`' else: return f'~{type(field).__module__}.{type(field).__name__}'
def get_field_verbose_name(field): '\n Get the verbose name of the field.\n If the field has a ``help_text``, it is also included.\n\n In case the field is a related field, the ``related_name`` is used to link to the remote model.\n For reverse related fields, the originating field is linked.\n\n :param field: The field\n :type field: ~django.db.models.Field\n ' help_text = '' if isinstance(field, models.fields.reverse_related.ForeignObjectRel): related_name = (field.related_name.replace('_', ' ') if field.related_name else None) if isinstance(field, models.fields.reverse_related.OneToOneRel): related_name = (related_name or field.remote_field.model._meta.verbose_name) verbose_name = f'The {related_name} of this {field.model._meta.verbose_name}' else: related_name = (related_name or field.remote_field.model._meta.verbose_name_plural) verbose_name = f'All {related_name} of this {field.model._meta.verbose_name}' verbose_name += f' (related name of :attr:`~{field.remote_field.model.__module__}.{field.remote_field.model.__name__}.{field.remote_field.name}`)' elif isinstance(field, contenttypes.fields.GenericForeignKey): return f'Generic foreign key to the :class:`~django.contrib.contenttypes.models.ContentType` specified in :attr:`~{field.model.__module__}.{field.model.__name__}.{field.ct_field}`' else: primary_key = ('Primary key: ' if field.primary_key else '') field_verbose_name = force_str(field.verbose_name) verbose_name = ((primary_key + field_verbose_name[:1].upper()) + field_verbose_name[1:]) help_text = force_str(field.help_text) if help_text: if (not verbose_name.endswith('.')): verbose_name += '. ' verbose_name += help_text if isinstance(field, models.fields.related.RelatedField): to = field.remote_field.model if isinstance(to, str): if ('.' in to): to = apps.get_model(to) elif (to == 'self'): to = field.model else: to = apps.get_model(field.model._meta.app_label, to) if hasattr(field.remote_field, 'related_name'): related_name = (field.remote_field.related_name or field.model.__name__.lower()) verbose_name += f' (related name: :attr:`~{to.__module__}.{to.__name__}.{related_name}`)' return verbose_name
8,593,726,823,584,610,000
Get the verbose name of the field. If the field has a ``help_text``, it is also included. In case the field is a related field, the ``related_name`` is used to link to the remote model. For reverse related fields, the originating field is linked. :param field: The field :type field: ~django.db.models.Field
sphinxcontrib_django2/docstrings/field_utils.py
get_field_verbose_name
mkalioby/sphinxcontrib-django2
python
def get_field_verbose_name(field): '\n Get the verbose name of the field.\n If the field has a ``help_text``, it is also included.\n\n In case the field is a related field, the ``related_name`` is used to link to the remote model.\n For reverse related fields, the originating field is linked.\n\n :param field: The field\n :type field: ~django.db.models.Field\n ' help_text = if isinstance(field, models.fields.reverse_related.ForeignObjectRel): related_name = (field.related_name.replace('_', ' ') if field.related_name else None) if isinstance(field, models.fields.reverse_related.OneToOneRel): related_name = (related_name or field.remote_field.model._meta.verbose_name) verbose_name = f'The {related_name} of this {field.model._meta.verbose_name}' else: related_name = (related_name or field.remote_field.model._meta.verbose_name_plural) verbose_name = f'All {related_name} of this {field.model._meta.verbose_name}' verbose_name += f' (related name of :attr:`~{field.remote_field.model.__module__}.{field.remote_field.model.__name__}.{field.remote_field.name}`)' elif isinstance(field, contenttypes.fields.GenericForeignKey): return f'Generic foreign key to the :class:`~django.contrib.contenttypes.models.ContentType` specified in :attr:`~{field.model.__module__}.{field.model.__name__}.{field.ct_field}`' else: primary_key = ('Primary key: ' if field.primary_key else ) field_verbose_name = force_str(field.verbose_name) verbose_name = ((primary_key + field_verbose_name[:1].upper()) + field_verbose_name[1:]) help_text = force_str(field.help_text) if help_text: if (not verbose_name.endswith('.')): verbose_name += '. ' verbose_name += help_text if isinstance(field, models.fields.related.RelatedField): to = field.remote_field.model if isinstance(to, str): if ('.' in to): to = apps.get_model(to) elif (to == 'self'): to = field.model else: to = apps.get_model(field.model._meta.app_label, to) if hasattr(field.remote_field, 'related_name'): related_name = (field.remote_field.related_name or field.model.__name__.lower()) verbose_name += f' (related name: :attr:`~{to.__module__}.{to.__name__}.{related_name}`)' return verbose_name
def fact(name=None): 'Output a fact about factorials.\n\n Args:\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `string`.\n ' _ctx = _context._context if ((_ctx is None) or (not _ctx._eager_context.is_eager)): (_, _, _op) = _op_def_lib._apply_op_helper('Fact', name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient('Fact', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._context_handle, _ctx._eager_context.device_name, 'Fact', name, _ctx._post_execution_callbacks) return _result except _core._FallbackException: return fact_eager_fallback(name=name, ctx=_ctx) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
-2,174,702,402,554,505,700
Output a fact about factorials. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `string`.
venv/Lib/site-packages/tensorflow/python/ops/gen_user_ops.py
fact
caiovini/Image_reader_api
python
def fact(name=None): 'Output a fact about factorials.\n\n Args:\n name: A name for the operation (optional).\n\n Returns:\n A `Tensor` of type `string`.\n ' _ctx = _context._context if ((_ctx is None) or (not _ctx._eager_context.is_eager)): (_, _, _op) = _op_def_lib._apply_op_helper('Fact', name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient('Fact', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(_ctx._context_handle, _ctx._eager_context.device_name, 'Fact', name, _ctx._post_execution_callbacks) return _result except _core._FallbackException: return fact_eager_fallback(name=name, ctx=_ctx) except _core._NotOkStatusException as e: if (name is not None): message = ((e.message + ' name: ') + name) else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None)
def fact_eager_fallback(name=None, ctx=None): 'This is the slowpath function for Eager mode.\n This is for function fact\n ' _ctx = (ctx if ctx else _context.context()) _inputs_flat = [] _attrs = None _result = _execute.execute(b'Fact', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('Fact', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
8,948,339,619,584,408,000
This is the slowpath function for Eager mode. This is for function fact
venv/Lib/site-packages/tensorflow/python/ops/gen_user_ops.py
fact_eager_fallback
caiovini/Image_reader_api
python
def fact_eager_fallback(name=None, ctx=None): 'This is the slowpath function for Eager mode.\n This is for function fact\n ' _ctx = (ctx if ctx else _context.context()) _inputs_flat = [] _attrs = None _result = _execute.execute(b'Fact', 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient('Fact', _inputs_flat, _attrs, _result, name) (_result,) = _result return _result
def introduction(): 'Prints out introductory statements at start of run.' print('Lennard-Jones potential') print('Cut-and-shifted version for dynamics') print('Cut (but not shifted) version also calculated') print('Diameter, sigma = 1') print('Well depth, epsilon = 1') if fast: print('Fast NumPy force routine') else: print('Slow Python force routine')
-3,767,502,228,122,722,300
Prints out introductory statements at start of run.
python_examples/md_lj_module.py
introduction
Allen-Tildesley/examples
python
def introduction(): print('Lennard-Jones potential') print('Cut-and-shifted version for dynamics') print('Cut (but not shifted) version also calculated') print('Diameter, sigma = 1') print('Well depth, epsilon = 1') if fast: print('Fast NumPy force routine') else: print('Slow Python force routine')
def conclusion(): 'Prints out concluding statements at end of run.' print('Program ends')
7,885,841,679,723,434,000
Prints out concluding statements at end of run.
python_examples/md_lj_module.py
conclusion
Allen-Tildesley/examples
python
def conclusion(): print('Program ends')
def force(box, r_cut, r): 'Takes in box, cutoff range, and coordinate array, and calculates forces and potentials etc.' import numpy as np (n, d) = r.shape assert (d == 3), 'Dimension error in force' sr2_ovr = 1.77 r_cut_box = (r_cut / box) r_cut_box_sq = (r_cut_box ** 2) box_sq = (box ** 2) sr2 = (1.0 / (r_cut ** 2)) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) pot_cut = (sr12 - sr6) f = np.zeros_like(r) total = PotentialType(cut=0.0, pot=0.0, vir=0.0, lap=0.0, ovr=False) if fast: for i in range((n - 1)): rij = (r[i, :] - r[(i + 1):, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2), axis=1) in_range = (rij_sq < r_cut_box_sq) rij_sq = (rij_sq * box_sq) rij = (rij * box) sr2 = np.where(in_range, (1.0 / rij_sq), 0.0) ovr = (sr2 > sr2_ovr) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) cut = (sr12 - sr6) vir = (cut + sr12) pot = np.where(in_range, (cut - pot_cut), 0.0) lap = (((22.0 * sr12) - (5.0 * sr6)) * sr2) fij = (vir * sr2) fij = (rij * fij[:, np.newaxis]) total = (total + PotentialType(cut=np.sum(cut), pot=np.sum(pot), vir=np.sum(vir), lap=np.sum(lap), ovr=np.any(ovr))) f[i, :] = (f[i, :] + np.sum(fij, axis=0)) f[(i + 1):, :] = (f[(i + 1):, :] - fij) else: for i in range((n - 1)): for j in range((i + 1), n): rij = (r[i, :] - r[j, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2)) if (rij_sq < r_cut_box_sq): rij_sq = (rij_sq * box_sq) rij = (rij * box) sr2 = (1.0 / rij_sq) ovr = (sr2 > sr2_ovr) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) cut = (sr12 - sr6) vir = (cut + sr12) pot = (cut - pot_cut) lap = (((22.0 * sr12) - (5.0 * sr6)) * sr2) fij = ((rij * vir) * sr2) total = (total + PotentialType(cut=cut, pot=pot, vir=vir, lap=lap, ovr=ovr)) f[i, :] = (f[i, :] + fij) f[j, :] = (f[j, :] - fij) f = (f * 24.0) total.cut = (total.cut * 4.0) total.pot = (total.pot * 4.0) total.vir = ((total.vir * 24.0) / 3.0) total.lap = ((total.lap * 24.0) * 2.0) return (total, f)
-3,670,322,586,466,179,000
Takes in box, cutoff range, and coordinate array, and calculates forces and potentials etc.
python_examples/md_lj_module.py
force
Allen-Tildesley/examples
python
def force(box, r_cut, r): import numpy as np (n, d) = r.shape assert (d == 3), 'Dimension error in force' sr2_ovr = 1.77 r_cut_box = (r_cut / box) r_cut_box_sq = (r_cut_box ** 2) box_sq = (box ** 2) sr2 = (1.0 / (r_cut ** 2)) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) pot_cut = (sr12 - sr6) f = np.zeros_like(r) total = PotentialType(cut=0.0, pot=0.0, vir=0.0, lap=0.0, ovr=False) if fast: for i in range((n - 1)): rij = (r[i, :] - r[(i + 1):, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2), axis=1) in_range = (rij_sq < r_cut_box_sq) rij_sq = (rij_sq * box_sq) rij = (rij * box) sr2 = np.where(in_range, (1.0 / rij_sq), 0.0) ovr = (sr2 > sr2_ovr) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) cut = (sr12 - sr6) vir = (cut + sr12) pot = np.where(in_range, (cut - pot_cut), 0.0) lap = (((22.0 * sr12) - (5.0 * sr6)) * sr2) fij = (vir * sr2) fij = (rij * fij[:, np.newaxis]) total = (total + PotentialType(cut=np.sum(cut), pot=np.sum(pot), vir=np.sum(vir), lap=np.sum(lap), ovr=np.any(ovr))) f[i, :] = (f[i, :] + np.sum(fij, axis=0)) f[(i + 1):, :] = (f[(i + 1):, :] - fij) else: for i in range((n - 1)): for j in range((i + 1), n): rij = (r[i, :] - r[j, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2)) if (rij_sq < r_cut_box_sq): rij_sq = (rij_sq * box_sq) rij = (rij * box) sr2 = (1.0 / rij_sq) ovr = (sr2 > sr2_ovr) sr6 = (sr2 ** 3) sr12 = (sr6 ** 2) cut = (sr12 - sr6) vir = (cut + sr12) pot = (cut - pot_cut) lap = (((22.0 * sr12) - (5.0 * sr6)) * sr2) fij = ((rij * vir) * sr2) total = (total + PotentialType(cut=cut, pot=pot, vir=vir, lap=lap, ovr=ovr)) f[i, :] = (f[i, :] + fij) f[j, :] = (f[j, :] - fij) f = (f * 24.0) total.cut = (total.cut * 4.0) total.pot = (total.pot * 4.0) total.vir = ((total.vir * 24.0) / 3.0) total.lap = ((total.lap * 24.0) * 2.0) return (total, f)
def hessian(box, r_cut, r, f): 'Calculates Hessian function (for 1/N correction to config temp).' import numpy as np (n, d) = r.shape assert (d == 3), 'Dimension error in hessian' assert np.all((r.shape == f.shape)), 'Dimension mismatch in hessian' r_cut_box = (r_cut / box) r_cut_box_sq = (r_cut_box ** 2) box_sq = (box ** 2) hes = 0.0 if fast: for i in range((n - 1)): rij = (r[i, :] - r[(i + 1):, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2), axis=1) in_range = (rij_sq < r_cut_box_sq) rij_sq = (rij_sq * box_sq) rij = (rij * box) fij = (f[i, :] - f[(i + 1):, :]) ff = np.sum((fij * fij), axis=1) rf = np.sum((rij * fij), axis=1) sr2 = np.where(in_range, (1.0 / rij_sq), 0.0) sr6 = (sr2 ** 3) sr8 = (sr6 * sr2) sr10 = (sr8 * sr2) v1 = ((24.0 * (1.0 - (2.0 * sr6))) * sr8) v2 = ((96.0 * ((7.0 * sr6) - 2.0)) * sr10) hes = ((hes + np.sum((v1 * ff))) + np.sum((v2 * (rf ** 2)))) else: for i in range((n - 1)): for j in range((i + 1), n): rij = (r[i, :] - r[j, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2)) if (rij_sq < r_cut_box_sq): rij_sq = (rij_sq * box_sq) rij = (rij * box) fij = (f[i, :] - f[j, :]) ff = np.dot(fij, fij) rf = np.dot(rij, fij) sr2 = (1.0 / rij_sq) sr6 = (sr2 ** 3) sr8 = (sr6 * sr2) sr10 = (sr8 * sr2) v1 = ((24.0 * (1.0 - (2.0 * sr6))) * sr8) v2 = ((96.0 * ((7.0 * sr6) - 2.0)) * sr10) hes = ((hes + (v1 * ff)) + (v2 * (rf ** 2))) return hes
2,891,517,025,663,908,000
Calculates Hessian function (for 1/N correction to config temp).
python_examples/md_lj_module.py
hessian
Allen-Tildesley/examples
python
def hessian(box, r_cut, r, f): import numpy as np (n, d) = r.shape assert (d == 3), 'Dimension error in hessian' assert np.all((r.shape == f.shape)), 'Dimension mismatch in hessian' r_cut_box = (r_cut / box) r_cut_box_sq = (r_cut_box ** 2) box_sq = (box ** 2) hes = 0.0 if fast: for i in range((n - 1)): rij = (r[i, :] - r[(i + 1):, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2), axis=1) in_range = (rij_sq < r_cut_box_sq) rij_sq = (rij_sq * box_sq) rij = (rij * box) fij = (f[i, :] - f[(i + 1):, :]) ff = np.sum((fij * fij), axis=1) rf = np.sum((rij * fij), axis=1) sr2 = np.where(in_range, (1.0 / rij_sq), 0.0) sr6 = (sr2 ** 3) sr8 = (sr6 * sr2) sr10 = (sr8 * sr2) v1 = ((24.0 * (1.0 - (2.0 * sr6))) * sr8) v2 = ((96.0 * ((7.0 * sr6) - 2.0)) * sr10) hes = ((hes + np.sum((v1 * ff))) + np.sum((v2 * (rf ** 2)))) else: for i in range((n - 1)): for j in range((i + 1), n): rij = (r[i, :] - r[j, :]) rij = (rij - np.rint(rij)) rij_sq = np.sum((rij ** 2)) if (rij_sq < r_cut_box_sq): rij_sq = (rij_sq * box_sq) rij = (rij * box) fij = (f[i, :] - f[j, :]) ff = np.dot(fij, fij) rf = np.dot(rij, fij) sr2 = (1.0 / rij_sq) sr6 = (sr2 ** 3) sr8 = (sr6 * sr2) sr10 = (sr8 * sr2) v1 = ((24.0 * (1.0 - (2.0 * sr6))) * sr8) v2 = ((96.0 * ((7.0 * sr6) - 2.0)) * sr10) hes = ((hes + (v1 * ff)) + (v2 * (rf ** 2))) return hes
def test_scaler(): 'Test methods of Scaler\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() scaler = Scaler(epochs.info) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = scaler.fit_transform(epochs_data, y) assert_true((X.shape == epochs_data.shape)) X2 = scaler.fit(epochs_data, y).transform(epochs_data) assert_array_equal(X2, X) with warnings.catch_warnings(record=True): Xi = scaler.inverse_transform(X, y) assert_array_equal(epochs_data, Xi) assert_raises(ValueError, scaler.fit, epochs, y) assert_raises(ValueError, scaler.transform, epochs, y)
5,428,728,073,411,530,000
Test methods of Scaler
mne/decoding/tests/test_transformer.py
test_scaler
ARudiuk/mne-python
python
def test_scaler(): '\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() scaler = Scaler(epochs.info) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = scaler.fit_transform(epochs_data, y) assert_true((X.shape == epochs_data.shape)) X2 = scaler.fit(epochs_data, y).transform(epochs_data) assert_array_equal(X2, X) with warnings.catch_warnings(record=True): Xi = scaler.inverse_transform(X, y) assert_array_equal(epochs_data, Xi) assert_raises(ValueError, scaler.fit, epochs, y) assert_raises(ValueError, scaler.transform, epochs, y)
def test_filterestimator(): 'Test methods of FilterEstimator\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() filt = FilterEstimator(epochs.info, l_freq=1, h_freq=40) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) assert_true((X.shape == epochs_data.shape)) assert_array_equal(filt.fit(epochs_data, y).transform(epochs_data), X) filt = FilterEstimator(epochs.info, l_freq=0, h_freq=40) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=1) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): assert_raises(ValueError, filt.fit_transform, epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=None) with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) assert_raises(ValueError, filt.fit, epochs, y) assert_raises(ValueError, filt.transform, epochs, y)
-8,625,130,022,647,989,000
Test methods of FilterEstimator
mne/decoding/tests/test_transformer.py
test_filterestimator
ARudiuk/mne-python
python
def test_filterestimator(): '\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() filt = FilterEstimator(epochs.info, l_freq=1, h_freq=40) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) assert_true((X.shape == epochs_data.shape)) assert_array_equal(filt.fit(epochs_data, y).transform(epochs_data), X) filt = FilterEstimator(epochs.info, l_freq=0, h_freq=40) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=1) y = epochs.events[:, (- 1)] with warnings.catch_warnings(record=True): assert_raises(ValueError, filt.fit_transform, epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=None) with warnings.catch_warnings(record=True): X = filt.fit_transform(epochs_data, y) assert_raises(ValueError, filt.fit, epochs, y) assert_raises(ValueError, filt.transform, epochs, y)
def test_psdestimator(): 'Test methods of PSDEstimator\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() psd = PSDEstimator((2 * np.pi), 0, np.inf) y = epochs.events[:, (- 1)] X = psd.fit_transform(epochs_data, y) assert_true((X.shape[0] == epochs_data.shape[0])) assert_array_equal(psd.fit(epochs_data, y).transform(epochs_data), X) assert_raises(ValueError, psd.fit, epochs, y) assert_raises(ValueError, psd.transform, epochs, y)
-5,691,515,387,998,737,000
Test methods of PSDEstimator
mne/decoding/tests/test_transformer.py
test_psdestimator
ARudiuk/mne-python
python
def test_psdestimator(): '\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() psd = PSDEstimator((2 * np.pi), 0, np.inf) y = epochs.events[:, (- 1)] X = psd.fit_transform(epochs_data, y) assert_true((X.shape[0] == epochs_data.shape[0])) assert_array_equal(psd.fit(epochs_data, y).transform(epochs_data), X) assert_raises(ValueError, psd.fit, epochs, y) assert_raises(ValueError, psd.transform, epochs, y)
def test_epochs_vectorizer(): 'Test methods of EpochsVectorizer\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() vector = EpochsVectorizer(epochs.info) y = epochs.events[:, (- 1)] X = vector.fit_transform(epochs_data, y) assert_true((X.shape[0] == epochs_data.shape[0])) assert_true((X.shape[1] == (epochs_data.shape[1] * epochs_data.shape[2]))) assert_array_equal(vector.fit(epochs_data, y).transform(epochs_data), X) n_times = epochs_data.shape[2] assert_array_equal(epochs_data[0, 0, 0:n_times], X[0, 0:n_times]) Xi = vector.inverse_transform(X, y) assert_true((Xi.shape[0] == epochs_data.shape[0])) assert_true((Xi.shape[1] == epochs_data.shape[1])) assert_array_equal(epochs_data[0, 0, 0:n_times], Xi[0, 0, 0:n_times]) Xi = vector.inverse_transform(epochs_data[0], y) assert_true((Xi.shape[1] == epochs_data.shape[1])) assert_true((Xi.shape[2] == epochs_data.shape[2])) assert_raises(ValueError, vector.fit, epochs, y) assert_raises(ValueError, vector.transform, epochs, y)
-3,315,928,520,592,674,000
Test methods of EpochsVectorizer
mne/decoding/tests/test_transformer.py
test_epochs_vectorizer
ARudiuk/mne-python
python
def test_epochs_vectorizer(): '\n ' raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() vector = EpochsVectorizer(epochs.info) y = epochs.events[:, (- 1)] X = vector.fit_transform(epochs_data, y) assert_true((X.shape[0] == epochs_data.shape[0])) assert_true((X.shape[1] == (epochs_data.shape[1] * epochs_data.shape[2]))) assert_array_equal(vector.fit(epochs_data, y).transform(epochs_data), X) n_times = epochs_data.shape[2] assert_array_equal(epochs_data[0, 0, 0:n_times], X[0, 0:n_times]) Xi = vector.inverse_transform(X, y) assert_true((Xi.shape[0] == epochs_data.shape[0])) assert_true((Xi.shape[1] == epochs_data.shape[1])) assert_array_equal(epochs_data[0, 0, 0:n_times], Xi[0, 0, 0:n_times]) Xi = vector.inverse_transform(epochs_data[0], y) assert_true((Xi.shape[1] == epochs_data.shape[1])) assert_true((Xi.shape[2] == epochs_data.shape[2])) assert_raises(ValueError, vector.fit, epochs, y) assert_raises(ValueError, vector.transform, epochs, y)
def export_transcripts(adapter, build='37'): 'Export all transcripts from the database\n\n Args:\n adapter(scout.adapter.MongoAdapter)\n build(str)\n\n Yields:\n transcript(scout.models.Transcript)\n ' LOG.info('Exporting all transcripts') for tx_obj in adapter.transcripts(build=build): (yield tx_obj)
-9,093,368,864,162,328,000
Export all transcripts from the database Args: adapter(scout.adapter.MongoAdapter) build(str) Yields: transcript(scout.models.Transcript)
scout/export/transcript.py
export_transcripts
Clinical-Genomics/scout
python
def export_transcripts(adapter, build='37'): 'Export all transcripts from the database\n\n Args:\n adapter(scout.adapter.MongoAdapter)\n build(str)\n\n Yields:\n transcript(scout.models.Transcript)\n ' LOG.info('Exporting all transcripts') for tx_obj in adapter.transcripts(build=build): (yield tx_obj)
def fit(self, X, y): 'Fit the model to the data' if self.normalize: X = self._feature_scaler.fit_transform(X) y = self._target_scaler.fit_transform(y) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y = y.to_numpy() if (self.method == 'normal_equation'): self._weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) else: self._weights = np.zeros(X.shape[1]) self.cost_history = ([0] * self.epochs) for i in range(self.epochs): grad = (np.dot(X.T, (np.dot(X, self._weights) - y)) / y.shape[0]) self._weights = (self._weights - (self.lr * grad)) self.cost_history[i] = mse_score(y, np.dot(X, self._weights)) plt.scatter(range(self.epochs), self.cost_history) plt.xlabel('epoch') plt.ylabel('mse')
6,111,973,649,880,488,000
Fit the model to the data
src/models/_linear.py
fit
orsdanilo/ml-from-scratch
python
def fit(self, X, y): if self.normalize: X = self._feature_scaler.fit_transform(X) y = self._target_scaler.fit_transform(y) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y = y.to_numpy() if (self.method == 'normal_equation'): self._weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) else: self._weights = np.zeros(X.shape[1]) self.cost_history = ([0] * self.epochs) for i in range(self.epochs): grad = (np.dot(X.T, (np.dot(X, self._weights) - y)) / y.shape[0]) self._weights = (self._weights - (self.lr * grad)) self.cost_history[i] = mse_score(y, np.dot(X, self._weights)) plt.scatter(range(self.epochs), self.cost_history) plt.xlabel('epoch') plt.ylabel('mse')
def predict(self, X): 'Use the fitted model to predict on data' assert (self._weights is not None), 'Model needs to be fitted first. Use the fit method' if self.normalize: X = self._feature_scaler.transform(X) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y_pred = np.dot(X, self._weights) if self.normalize: y_pred = self._target_scaler.inverse_transform(y_pred) return np.round(y_pred, 2)
7,613,581,550,927,299,000
Use the fitted model to predict on data
src/models/_linear.py
predict
orsdanilo/ml-from-scratch
python
def predict(self, X): assert (self._weights is not None), 'Model needs to be fitted first. Use the fit method' if self.normalize: X = self._feature_scaler.transform(X) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y_pred = np.dot(X, self._weights) if self.normalize: y_pred = self._target_scaler.inverse_transform(y_pred) return np.round(y_pred, 2)
def get_weights(self): 'Get weights from the fitted model' assert (self._weights is not None), 'Model needs to be fitted first. Use the fit method' return self._weights
6,695,253,196,701,115,000
Get weights from the fitted model
src/models/_linear.py
get_weights
orsdanilo/ml-from-scratch
python
def get_weights(self): assert (self._weights is not None), 'Model needs to be fitted first. Use the fit method' return self._weights
def score(self, X, y, metric='r2'): 'Score the model' assert (metric in ['r2', 'rmse', 'mae']), "Metric not supported. Supported metrics are 'r2', 'rmse' and 'mae'" y_pred = self.predict(X) if (metric == 'r2'): score = r2_score(y, y_pred) elif (metric == 'rmse'): score = rmse_score(y, y_pred) elif (metric == 'mae'): score = mae_score(y, y_pred) return score
-1,464,843,303,557,911,800
Score the model
src/models/_linear.py
score
orsdanilo/ml-from-scratch
python
def score(self, X, y, metric='r2'): assert (metric in ['r2', 'rmse', 'mae']), "Metric not supported. Supported metrics are 'r2', 'rmse' and 'mae'" y_pred = self.predict(X) if (metric == 'r2'): score = r2_score(y, y_pred) elif (metric == 'rmse'): score = rmse_score(y, y_pred) elif (metric == 'mae'): score = mae_score(y, y_pred) return score
def set_quest_cooldown(self, display_name, cooldown): '\n Sets the quest cooldown to be the specified value.\n\n :param display_name: str - The display name of the person trying to set the cooldown\n :param cooldown: str - The raw message specifying the value to set the cooldown to\n :return:\n ' try: self.channel_manager.set_quest_cooldown(self.owner, int(cooldown)) except (IndexError, ValueError): self.channel_manager.bot.send_whisper(display_name, 'Invalid usage! Sample usage: !questcooldown 90')
7,163,774,876,840,697,000
Sets the quest cooldown to be the specified value. :param display_name: str - The display name of the person trying to set the cooldown :param cooldown: str - The raw message specifying the value to set the cooldown to :return:
quest_bot/quest_channel.py
set_quest_cooldown
Xelaadryth/Xelabot
python
def set_quest_cooldown(self, display_name, cooldown): '\n Sets the quest cooldown to be the specified value.\n\n :param display_name: str - The display name of the person trying to set the cooldown\n :param cooldown: str - The raw message specifying the value to set the cooldown to\n :return:\n ' try: self.channel_manager.set_quest_cooldown(self.owner, int(cooldown)) except (IndexError, ValueError): self.channel_manager.bot.send_whisper(display_name, 'Invalid usage! Sample usage: !questcooldown 90')
def check_commands(self, display_name, msg, is_mod, is_sub): '\n Connect to other command lists whose requirements are met.\n :param display_name: str - The display name of the command sender\n :param msg: str - The full message that the user sent that starts with "!"\n :param is_mod: bool - Whether the sender is a mod\n :param is_sub: bool - Whether the sender is a sub\n ' super().check_commands(display_name, msg, is_mod, is_sub) self.quest_manager.commands.execute_command(display_name, msg)
-8,146,444,172,030,377,000
Connect to other command lists whose requirements are met. :param display_name: str - The display name of the command sender :param msg: str - The full message that the user sent that starts with "!" :param is_mod: bool - Whether the sender is a mod :param is_sub: bool - Whether the sender is a sub
quest_bot/quest_channel.py
check_commands
Xelaadryth/Xelabot
python
def check_commands(self, display_name, msg, is_mod, is_sub): '\n Connect to other command lists whose requirements are met.\n :param display_name: str - The display name of the command sender\n :param msg: str - The full message that the user sent that starts with "!"\n :param is_mod: bool - Whether the sender is a mod\n :param is_sub: bool - Whether the sender is a sub\n ' super().check_commands(display_name, msg, is_mod, is_sub) self.quest_manager.commands.execute_command(display_name, msg)
def list(self, scope: str, **kwargs: Any) -> AsyncIterable['_models.ComplianceResultList']: 'Security compliance results in the subscription.\n\n :param scope: Scope of the query, can be subscription\n (/subscriptions/0b06d9ea-afe6-4779-bd59-30e5c2d9d13f) or management group\n (/providers/Microsoft.Management/managementGroups/mgName).\n :type scope: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either ComplianceResultList or the result of cls(response)\n :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.security.models.ComplianceResultList]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = '2017-08-01' accept = 'application/json' def prepare_request(next_link=None): header_parameters = {} header_parameters['Accept'] = self._serialize.header('accept', accept, 'str') if (not next_link): url = self.list.metadata['url'] path_format_arguments = {'scope': self._serialize.url('scope', scope, 'str', skip_quote=True)} url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query('api_version', api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ComplianceResultList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), AsyncList(list_of_elem)) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)
1,449,087,768,364,436,500
Security compliance results in the subscription. :param scope: Scope of the query, can be subscription (/subscriptions/0b06d9ea-afe6-4779-bd59-30e5c2d9d13f) or management group (/providers/Microsoft.Management/managementGroups/mgName). :type scope: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ComplianceResultList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.security.models.ComplianceResultList] :raises: ~azure.core.exceptions.HttpResponseError
sdk/security/azure-mgmt-security/azure/mgmt/security/aio/operations/_compliance_results_operations.py
list
AFengKK/azure-sdk-for-python
python
def list(self, scope: str, **kwargs: Any) -> AsyncIterable['_models.ComplianceResultList']: 'Security compliance results in the subscription.\n\n :param scope: Scope of the query, can be subscription\n (/subscriptions/0b06d9ea-afe6-4779-bd59-30e5c2d9d13f) or management group\n (/providers/Microsoft.Management/managementGroups/mgName).\n :type scope: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: An iterator like instance of either ComplianceResultList or the result of cls(response)\n :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.security.models.ComplianceResultList]\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = '2017-08-01' accept = 'application/json' def prepare_request(next_link=None): header_parameters = {} header_parameters['Accept'] = self._serialize.header('accept', accept, 'str') if (not next_link): url = self.list.metadata['url'] path_format_arguments = {'scope': self._serialize.url('scope', scope, 'str', skip_quote=True)} url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query('api_version', api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ComplianceResultList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return ((deserialized.next_link or None), AsyncList(list_of_elem)) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data)
async def get(self, resource_id: str, compliance_result_name: str, **kwargs: Any) -> '_models.ComplianceResult': 'Security Compliance Result.\n\n :param resource_id: The identifier of the resource.\n :type resource_id: str\n :param compliance_result_name: name of the desired assessment compliance result.\n :type compliance_result_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: ComplianceResult, or the result of cls(response)\n :rtype: ~azure.mgmt.security.models.ComplianceResult\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = '2017-08-01' accept = 'application/json' url = self.get.metadata['url'] path_format_arguments = {'resourceId': self._serialize.url('resource_id', resource_id, 'str', skip_quote=True), 'complianceResultName': self._serialize.url('compliance_result_name', compliance_result_name, 'str')} url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query('api_version', api_version, 'str') header_parameters = {} header_parameters['Accept'] = self._serialize.header('accept', accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ComplianceResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
-7,370,226,887,770,046,000
Security Compliance Result. :param resource_id: The identifier of the resource. :type resource_id: str :param compliance_result_name: name of the desired assessment compliance result. :type compliance_result_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComplianceResult, or the result of cls(response) :rtype: ~azure.mgmt.security.models.ComplianceResult :raises: ~azure.core.exceptions.HttpResponseError
sdk/security/azure-mgmt-security/azure/mgmt/security/aio/operations/_compliance_results_operations.py
get
AFengKK/azure-sdk-for-python
python
async def get(self, resource_id: str, compliance_result_name: str, **kwargs: Any) -> '_models.ComplianceResult': 'Security Compliance Result.\n\n :param resource_id: The identifier of the resource.\n :type resource_id: str\n :param compliance_result_name: name of the desired assessment compliance result.\n :type compliance_result_name: str\n :keyword callable cls: A custom type or function that will be passed the direct response\n :return: ComplianceResult, or the result of cls(response)\n :rtype: ~azure.mgmt.security.models.ComplianceResult\n :raises: ~azure.core.exceptions.HttpResponseError\n ' cls = kwargs.pop('cls', None) error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = '2017-08-01' accept = 'application/json' url = self.get.metadata['url'] path_format_arguments = {'resourceId': self._serialize.url('resource_id', resource_id, 'str', skip_quote=True), 'complianceResultName': self._serialize.url('compliance_result_name', compliance_result_name, 'str')} url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query('api_version', api_version, 'str') header_parameters = {} header_parameters['Accept'] = self._serialize.header('accept', accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = (await self._client._pipeline.run(request, stream=False, **kwargs)) response = pipeline_response.http_response if (response.status_code not in [200]): map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ComplianceResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized
def _warmup_update_lr(optimizer, epoch, init_lr, warmup_epochs, warmup_ratio=0.0): '\n update learning rate of optimizers\n ' lr = ((((init_lr - warmup_ratio) * epoch) / warmup_epochs) + warmup_ratio) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr
-4,755,421,572,880,323,000
update learning rate of optimizers
aw_nas/final/cnn_trainer.py
_warmup_update_lr
Harald-R/aw_nas
python
def _warmup_update_lr(optimizer, epoch, init_lr, warmup_epochs, warmup_ratio=0.0): '\n \n ' lr = ((((init_lr - warmup_ratio) * epoch) / warmup_epochs) + warmup_ratio) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr
async def try_initialize(input_channel: connection.TextReader, output_channel: connection.TextWriter, server_start_options_reader: PyreServerStartOptionsReader) -> Union[(InitializationSuccess, InitializationFailure, InitializationExit)]: '\n Read an LSP message from the input channel and try to initialize an LSP\n server. Also write to the output channel with proper response if the input\n message is a request instead of a notification.\n\n The function can return one of three possibilities:\n - If the initialization succeeds, return `InitializationSuccess`.\n - If the initialization fails, return `InitializationFailure`. There could\n be many reasons for the failure: The incoming LSP message may not be an\n initiailization request. The incoming LSP request may be malformed. Or the\n client may not complete the handshake by sending back an `initialized` request.\n - If an exit notification is received, return `InitializationExit`. The LSP\n spec allows exiting a server without a preceding initialize request.\n ' request = None try: request = (await lsp.read_json_rpc(input_channel)) LOG.debug(f'Received pre-initialization LSP request: {request}') request_id = request.id if (request_id is None): return (InitializationExit() if (request.method == 'exit') else InitializationFailure()) if (request.method != 'initialize'): raise lsp.ServerNotInitializedError('An initialize request is needed.') request_parameters = request.parameters if (request_parameters is None): raise lsp.ServerNotInitializedError('Missing parameters for initialize request.') initialize_parameters = lsp.InitializeParameters.from_json_rpc_parameters(request_parameters) try: server_start_options = read_server_start_options(server_start_options_reader, remote_logging=None) except configuration_module.InvalidConfiguration as e: raise lsp.ServerNotInitializedError(str(e)) result = process_initialize_request(initialize_parameters, server_start_options.ide_features) (await lsp.write_json_rpc(output_channel, json_rpc.SuccessResponse(id=request_id, result=result.to_dict()))) initialized_notification = (await lsp.read_json_rpc(input_channel)) if (initialized_notification.method == 'shutdown'): (await _wait_for_exit(input_channel, output_channel)) return InitializationExit() elif (initialized_notification.method != 'initialized'): actual_message = json.dumps(initialized_notification.json()) raise lsp.ServerNotInitializedError(('Failed to receive an `initialized` request from client. ' + f'Got {log.truncate(actual_message, 100)}')) return InitializationSuccess(client_capabilities=initialize_parameters.capabilities, client_info=initialize_parameters.client_info, initialization_options=initialize_parameters.initialization_options) except json_rpc.JSONRPCException as json_rpc_error: (await lsp.write_json_rpc(output_channel, json_rpc.ErrorResponse(id=(request.id if (request is not None) else None), code=json_rpc_error.error_code(), message=str(json_rpc_error), data={'retry': False}))) return InitializationFailure(exception=json_rpc_error)
-3,685,783,171,509,941,000
Read an LSP message from the input channel and try to initialize an LSP server. Also write to the output channel with proper response if the input message is a request instead of a notification. The function can return one of three possibilities: - If the initialization succeeds, return `InitializationSuccess`. - If the initialization fails, return `InitializationFailure`. There could be many reasons for the failure: The incoming LSP message may not be an initiailization request. The incoming LSP request may be malformed. Or the client may not complete the handshake by sending back an `initialized` request. - If an exit notification is received, return `InitializationExit`. The LSP spec allows exiting a server without a preceding initialize request.
client/commands/persistent.py
try_initialize
dmitryvinn/pyre-check-1
python
async def try_initialize(input_channel: connection.TextReader, output_channel: connection.TextWriter, server_start_options_reader: PyreServerStartOptionsReader) -> Union[(InitializationSuccess, InitializationFailure, InitializationExit)]: '\n Read an LSP message from the input channel and try to initialize an LSP\n server. Also write to the output channel with proper response if the input\n message is a request instead of a notification.\n\n The function can return one of three possibilities:\n - If the initialization succeeds, return `InitializationSuccess`.\n - If the initialization fails, return `InitializationFailure`. There could\n be many reasons for the failure: The incoming LSP message may not be an\n initiailization request. The incoming LSP request may be malformed. Or the\n client may not complete the handshake by sending back an `initialized` request.\n - If an exit notification is received, return `InitializationExit`. The LSP\n spec allows exiting a server without a preceding initialize request.\n ' request = None try: request = (await lsp.read_json_rpc(input_channel)) LOG.debug(f'Received pre-initialization LSP request: {request}') request_id = request.id if (request_id is None): return (InitializationExit() if (request.method == 'exit') else InitializationFailure()) if (request.method != 'initialize'): raise lsp.ServerNotInitializedError('An initialize request is needed.') request_parameters = request.parameters if (request_parameters is None): raise lsp.ServerNotInitializedError('Missing parameters for initialize request.') initialize_parameters = lsp.InitializeParameters.from_json_rpc_parameters(request_parameters) try: server_start_options = read_server_start_options(server_start_options_reader, remote_logging=None) except configuration_module.InvalidConfiguration as e: raise lsp.ServerNotInitializedError(str(e)) result = process_initialize_request(initialize_parameters, server_start_options.ide_features) (await lsp.write_json_rpc(output_channel, json_rpc.SuccessResponse(id=request_id, result=result.to_dict()))) initialized_notification = (await lsp.read_json_rpc(input_channel)) if (initialized_notification.method == 'shutdown'): (await _wait_for_exit(input_channel, output_channel)) return InitializationExit() elif (initialized_notification.method != 'initialized'): actual_message = json.dumps(initialized_notification.json()) raise lsp.ServerNotInitializedError(('Failed to receive an `initialized` request from client. ' + f'Got {log.truncate(actual_message, 100)}')) return InitializationSuccess(client_capabilities=initialize_parameters.capabilities, client_info=initialize_parameters.client_info, initialization_options=initialize_parameters.initialization_options) except json_rpc.JSONRPCException as json_rpc_error: (await lsp.write_json_rpc(output_channel, json_rpc.ErrorResponse(id=(request.id if (request is not None) else None), code=json_rpc_error.error_code(), message=str(json_rpc_error), data={'retry': False}))) return InitializationFailure(exception=json_rpc_error)
async def _wait_for_exit(input_channel: connection.TextReader, output_channel: connection.TextWriter) -> None: '\n Wait for an LSP "exit" request from the `input_channel`. This is mostly useful\n when the LSP server has received a "shutdown" request, in which case the LSP\n specification dictates that only "exit" can be sent from the client side.\n\n If a non-exit LSP request is received, drop it and keep waiting on another\n "exit" request.\n ' while True: async with _read_lsp_request(input_channel, output_channel) as request: if (request.method == 'exit'): return else: raise json_rpc.InvalidRequestError(f'Only exit requests are accepted after shutdown. Got {request}.')
-5,747,864,269,994,665,000
Wait for an LSP "exit" request from the `input_channel`. This is mostly useful when the LSP server has received a "shutdown" request, in which case the LSP specification dictates that only "exit" can be sent from the client side. If a non-exit LSP request is received, drop it and keep waiting on another "exit" request.
client/commands/persistent.py
_wait_for_exit
dmitryvinn/pyre-check-1
python
async def _wait_for_exit(input_channel: connection.TextReader, output_channel: connection.TextWriter) -> None: '\n Wait for an LSP "exit" request from the `input_channel`. This is mostly useful\n when the LSP server has received a "shutdown" request, in which case the LSP\n specification dictates that only "exit" can be sent from the client side.\n\n If a non-exit LSP request is received, drop it and keep waiting on another\n "exit" request.\n ' while True: async with _read_lsp_request(input_channel, output_channel) as request: if (request.method == 'exit'): return else: raise json_rpc.InvalidRequestError(f'Only exit requests are accepted after shutdown. Got {request}.')
async def process_hover_request(self, parameters: lsp.HoverTextDocumentParameters, request_id: Union[(int, str, None)]) -> None: 'Always respond to a hover request even for non-tracked paths.\n\n Otherwise, VS Code hover will wait for Pyre until it times out, meaning\n that messages from other hover providers will be delayed.' document_path = parameters.text_document.document_uri().to_file_path() if (document_path is None): raise json_rpc.InvalidRequestError(f'Document URI is not a file: {parameters.text_document.uri}') if (document_path not in self.state.opened_documents): response = lsp.HoverResponse.empty() else: self.state.query_state.queries.put_nowait(TypesQuery(document_path)) response = self.state.query_state.hover_response_for_position(Path(document_path), parameters.position) (await lsp.write_json_rpc(self.output_channel, json_rpc.SuccessResponse(id=request_id, result=response.to_dict())))
-5,727,239,738,493,310,000
Always respond to a hover request even for non-tracked paths. Otherwise, VS Code hover will wait for Pyre until it times out, meaning that messages from other hover providers will be delayed.
client/commands/persistent.py
process_hover_request
dmitryvinn/pyre-check-1
python
async def process_hover_request(self, parameters: lsp.HoverTextDocumentParameters, request_id: Union[(int, str, None)]) -> None: 'Always respond to a hover request even for non-tracked paths.\n\n Otherwise, VS Code hover will wait for Pyre until it times out, meaning\n that messages from other hover providers will be delayed.' document_path = parameters.text_document.document_uri().to_file_path() if (document_path is None): raise json_rpc.InvalidRequestError(f'Document URI is not a file: {parameters.text_document.uri}') if (document_path not in self.state.opened_documents): response = lsp.HoverResponse.empty() else: self.state.query_state.queries.put_nowait(TypesQuery(document_path)) response = self.state.query_state.hover_response_for_position(Path(document_path), parameters.position) (await lsp.write_json_rpc(self.output_channel, json_rpc.SuccessResponse(id=request_id, result=response.to_dict())))
@property def Active(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
-8,614,067,439,674,340,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Active
OpenIxia/ixnetwork_restpy
python
@property def Active(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Activate/Deactivate Configuration\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Active']))
@property def BroadcastRootPriority(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Broadcast Root Priority\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BroadcastRootPriority']))
-5,547,421,448,337,901,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Broadcast Root Priority
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
BroadcastRootPriority
OpenIxia/ixnetwork_restpy
python
@property def BroadcastRootPriority(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Broadcast Root Priority\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BroadcastRootPriority']))
@property def Count(self): '\n Returns\n -------\n - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group.\n ' return self._get_attribute(self._SDM_ATT_MAP['Count'])
9,202,294,428,103,448,000
Returns ------- - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group.
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Count
OpenIxia/ixnetwork_restpy
python
@property def Count(self): '\n Returns\n -------\n - number: Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group.\n ' return self._get_attribute(self._SDM_ATT_MAP['Count'])
@property def DescriptiveName(self): "\n Returns\n -------\n - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context.\n " return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName'])
6,335,322,004,352,822,000
Returns ------- - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context.
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
DescriptiveName
OpenIxia/ixnetwork_restpy
python
@property def DescriptiveName(self): "\n Returns\n -------\n - str: Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context.\n " return self._get_attribute(self._SDM_ATT_MAP['DescriptiveName'])
@property def Name(self): '\n Returns\n -------\n - str: Name of NGPF element, guaranteed to be unique in Scenario\n ' return self._get_attribute(self._SDM_ATT_MAP['Name'])
-1,824,082,867,023,513,900
Returns ------- - str: Name of NGPF element, guaranteed to be unique in Scenario
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Name
OpenIxia/ixnetwork_restpy
python
@property def Name(self): '\n Returns\n -------\n - str: Name of NGPF element, guaranteed to be unique in Scenario\n ' return self._get_attribute(self._SDM_ATT_MAP['Name'])
@property def Nickname(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Nickname\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Nickname']))
4,368,694,805,941,518,000
Returns ------- - obj(uhd_restpy.multivalue.Multivalue): Nickname
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Nickname
OpenIxia/ixnetwork_restpy
python
@property def Nickname(self): '\n Returns\n -------\n - obj(uhd_restpy.multivalue.Multivalue): Nickname\n ' from uhd_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Nickname']))
def update(self, Name=None): 'Updates isisTrillPseudoNode resource on the server.\n\n This method has some named parameters with a type: obj (Multivalue).\n The Multivalue class has documentation that details the possible values for those named parameters.\n\n Args\n ----\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._update(self._map_locals(self._SDM_ATT_MAP, locals()))
-5,700,813,858,963,087,000
Updates isisTrillPseudoNode resource on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
update
OpenIxia/ixnetwork_restpy
python
def update(self, Name=None): 'Updates isisTrillPseudoNode resource on the server.\n\n This method has some named parameters with a type: obj (Multivalue).\n The Multivalue class has documentation that details the possible values for those named parameters.\n\n Args\n ----\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._update(self._map_locals(self._SDM_ATT_MAP, locals()))
def add(self, Name=None): 'Adds a new isisTrillPseudoNode resource on the json, only valid with config assistant\n\n Args\n ----\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Returns\n -------\n - self: This instance with all currently retrieved isisTrillPseudoNode resources using find and the newly added isisTrillPseudoNode resources available through an iterator or index\n\n Raises\n ------\n - Exception: if this function is not being used with config assistance\n ' return self._add_xpath(self._map_locals(self._SDM_ATT_MAP, locals()))
-6,872,992,947,753,101,000
Adds a new isisTrillPseudoNode resource on the json, only valid with config assistant Args ---- - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Returns ------- - self: This instance with all currently retrieved isisTrillPseudoNode resources using find and the newly added isisTrillPseudoNode resources available through an iterator or index Raises ------ - Exception: if this function is not being used with config assistance
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
add
OpenIxia/ixnetwork_restpy
python
def add(self, Name=None): 'Adds a new isisTrillPseudoNode resource on the json, only valid with config assistant\n\n Args\n ----\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Returns\n -------\n - self: This instance with all currently retrieved isisTrillPseudoNode resources using find and the newly added isisTrillPseudoNode resources available through an iterator or index\n\n Raises\n ------\n - Exception: if this function is not being used with config assistance\n ' return self._add_xpath(self._map_locals(self._SDM_ATT_MAP, locals()))
def find(self, Count=None, DescriptiveName=None, Name=None): "Finds and retrieves isisTrillPseudoNode resources from the server.\n\n All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve isisTrillPseudoNode resources from the server.\n To retrieve an exact match ensure the parameter value starts with ^ and ends with $\n By default the find method takes no parameters and will retrieve all isisTrillPseudoNode resources from the server.\n\n Args\n ----\n - Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group.\n - DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context.\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Returns\n -------\n - self: This instance with matching isisTrillPseudoNode resources retrieved from the server available through an iterator or index\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n " return self._select(self._map_locals(self._SDM_ATT_MAP, locals()))
-8,582,310,718,667,406,000
Finds and retrieves isisTrillPseudoNode resources from the server. All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve isisTrillPseudoNode resources from the server. To retrieve an exact match ensure the parameter value starts with ^ and ends with $ By default the find method takes no parameters and will retrieve all isisTrillPseudoNode resources from the server. Args ---- - Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. - DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context. - Name (str): Name of NGPF element, guaranteed to be unique in Scenario Returns ------- - self: This instance with matching isisTrillPseudoNode resources retrieved from the server available through an iterator or index Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
find
OpenIxia/ixnetwork_restpy
python
def find(self, Count=None, DescriptiveName=None, Name=None): "Finds and retrieves isisTrillPseudoNode resources from the server.\n\n All named parameters are evaluated on the server using regex. The named parameters can be used to selectively retrieve isisTrillPseudoNode resources from the server.\n To retrieve an exact match ensure the parameter value starts with ^ and ends with $\n By default the find method takes no parameters and will retrieve all isisTrillPseudoNode resources from the server.\n\n Args\n ----\n - Count (number): Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group.\n - DescriptiveName (str): Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offer more context.\n - Name (str): Name of NGPF element, guaranteed to be unique in Scenario\n\n Returns\n -------\n - self: This instance with matching isisTrillPseudoNode resources retrieved from the server available through an iterator or index\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n " return self._select(self._map_locals(self._SDM_ATT_MAP, locals()))
def read(self, href): 'Retrieves a single instance of isisTrillPseudoNode data from the server.\n\n Args\n ----\n - href (str): An href to the instance to be retrieved\n\n Returns\n -------\n - self: This instance with the isisTrillPseudoNode resources from the server available through an iterator or index\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._read(href)
-3,411,542,355,956,305,000
Retrieves a single instance of isisTrillPseudoNode data from the server. Args ---- - href (str): An href to the instance to be retrieved Returns ------- - self: This instance with the isisTrillPseudoNode resources from the server available through an iterator or index Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
read
OpenIxia/ixnetwork_restpy
python
def read(self, href): 'Retrieves a single instance of isisTrillPseudoNode data from the server.\n\n Args\n ----\n - href (str): An href to the instance to be retrieved\n\n Returns\n -------\n - self: This instance with the isisTrillPseudoNode resources from the server available through an iterator or index\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._read(href)
def Abort(self, *args, **kwargs): 'Executes the abort operation on the server.\n\n Abort CPF control plane (equals to demote to kUnconfigured state).\n\n abort(async_operation=bool)\n ---------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('abort', payload=payload, response_object=None)
-4,862,486,890,617,578,000
Executes the abort operation on the server. Abort CPF control plane (equals to demote to kUnconfigured state). abort(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Abort
OpenIxia/ixnetwork_restpy
python
def Abort(self, *args, **kwargs): 'Executes the abort operation on the server.\n\n Abort CPF control plane (equals to demote to kUnconfigured state).\n\n abort(async_operation=bool)\n ---------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('abort', payload=payload, response_object=None)
def Start(self, *args, **kwargs): 'Executes the start operation on the server.\n\n Start CPF control plane (equals to promote to negotiated state).\n\n The IxNetwork model allows for multiple method Signatures with the same name while python does not.\n\n start(async_operation=bool)\n ---------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n start(SessionIndices=list, async_operation=bool)\n ------------------------------------------------\n - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n start(SessionIndices=string, async_operation=bool)\n --------------------------------------------------\n - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None)
-8,314,196,885,129,389,000
Executes the start operation on the server. Start CPF control plane (equals to promote to negotiated state). The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=list, async_operation=bool) ------------------------------------------------ - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. start(SessionIndices=string, async_operation=bool) -------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Start
OpenIxia/ixnetwork_restpy
python
def Start(self, *args, **kwargs): 'Executes the start operation on the server.\n\n Start CPF control plane (equals to promote to negotiated state).\n\n The IxNetwork model allows for multiple method Signatures with the same name while python does not.\n\n start(async_operation=bool)\n ---------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n start(SessionIndices=list, async_operation=bool)\n ------------------------------------------------\n - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n start(SessionIndices=string, async_operation=bool)\n --------------------------------------------------\n - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None)
def Stop(self, *args, **kwargs): 'Executes the stop operation on the server.\n\n Stop CPF control plane (equals to demote to PreValidated-DoDDone state).\n\n The IxNetwork model allows for multiple method Signatures with the same name while python does not.\n\n stop(async_operation=bool)\n --------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n stop(SessionIndices=list, async_operation=bool)\n -----------------------------------------------\n - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n stop(SessionIndices=string, async_operation=bool)\n -------------------------------------------------\n - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None)
8,743,726,022,297,206,000
Executes the stop operation on the server. Stop CPF control plane (equals to demote to PreValidated-DoDDone state). The IxNetwork model allows for multiple method Signatures with the same name while python does not. stop(async_operation=bool) -------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=list, async_operation=bool) ----------------------------------------------- - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. stop(SessionIndices=string, async_operation=bool) ------------------------------------------------- - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12 - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
Stop
OpenIxia/ixnetwork_restpy
python
def Stop(self, *args, **kwargs): 'Executes the stop operation on the server.\n\n Stop CPF control plane (equals to demote to PreValidated-DoDDone state).\n\n The IxNetwork model allows for multiple method Signatures with the same name while python does not.\n\n stop(async_operation=bool)\n --------------------------\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n stop(SessionIndices=list, async_operation=bool)\n -----------------------------------------------\n - SessionIndices (list(number)): This parameter requires an array of session numbers 1 2 3\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n stop(SessionIndices=string, async_operation=bool)\n -------------------------------------------------\n - SessionIndices (str): This parameter requires a string of session numbers 1-4;6;7-12\n - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete.\n\n Raises\n ------\n - NotFoundError: The requested resource does not exist on the server\n - ServerError: The server has encountered an uncategorized error condition\n ' payload = {'Arg1': self} for i in range(len(args)): payload[('Arg%s' % (i + 2))] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None)
def get_device_ids(self, PortNames=None, Active=None, BroadcastRootPriority=None, Nickname=None): 'Base class infrastructure that gets a list of isisTrillPseudoNode device ids encapsulated by this object.\n\n Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object.\n\n Args\n ----\n - PortNames (str): optional regex of port names\n - Active (str): optional regex of active\n - BroadcastRootPriority (str): optional regex of broadcastRootPriority\n - Nickname (str): optional regex of nickname\n\n Returns\n -------\n - list(int): A list of device ids that meets the regex criteria provided in the method parameters\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._get_ngpf_device_ids(locals())
-6,627,007,136,703,285,000
Base class infrastructure that gets a list of isisTrillPseudoNode device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args ---- - PortNames (str): optional regex of port names - Active (str): optional regex of active - BroadcastRootPriority (str): optional regex of broadcastRootPriority - Nickname (str): optional regex of nickname Returns ------- - list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises ------ - ServerError: The server has encountered an uncategorized error condition
uhd_restpy/testplatform/sessions/ixnetwork/topology/isistrillpseudonode_173e4463dccc2001457569c77f3570e0.py
get_device_ids
OpenIxia/ixnetwork_restpy
python
def get_device_ids(self, PortNames=None, Active=None, BroadcastRootPriority=None, Nickname=None): 'Base class infrastructure that gets a list of isisTrillPseudoNode device ids encapsulated by this object.\n\n Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object.\n\n Args\n ----\n - PortNames (str): optional regex of port names\n - Active (str): optional regex of active\n - BroadcastRootPriority (str): optional regex of broadcastRootPriority\n - Nickname (str): optional regex of nickname\n\n Returns\n -------\n - list(int): A list of device ids that meets the regex criteria provided in the method parameters\n\n Raises\n ------\n - ServerError: The server has encountered an uncategorized error condition\n ' return self._get_ngpf_device_ids(locals())
def __repr__(self): '\n display info about this object ...\n\n :return: output\n ' x = ('Libref = %s\n' % self.libref) x += ('Table = %s\n' % self.table) x += ('Dsopts = %s\n' % str(self.dsopts)) x += ('Results = %s\n' % self.results) return x
833,230,397,643,892,900
display info about this object ... :return: output
saspy/sasdata.py
__repr__
kjnh10/saspy
python
def __repr__(self): '\n display info about this object ...\n\n :return: output\n ' x = ('Libref = %s\n' % self.libref) x += ('Table = %s\n' % self.table) x += ('Dsopts = %s\n' % str(self.dsopts)) x += ('Results = %s\n' % self.results) return x
def set_results(self, results: str): "\n This method set the results attribute for the SASdata object; it stays in effect till changed\n results - set the default result type for this SASdata object. 'Pandas' or 'HTML' or 'TEXT'.\n\n :param results: format of results, SASsession.results is default, PANDAS, HTML or TEXT are the alternatives\n :return: None\n " if (results.upper() == 'HTML'): self.HTML = 1 else: self.HTML = 0 self.results = results
8,315,398,458,623,885,000
This method set the results attribute for the SASdata object; it stays in effect till changed results - set the default result type for this SASdata object. 'Pandas' or 'HTML' or 'TEXT'. :param results: format of results, SASsession.results is default, PANDAS, HTML or TEXT are the alternatives :return: None
saspy/sasdata.py
set_results
kjnh10/saspy
python
def set_results(self, results: str): "\n This method set the results attribute for the SASdata object; it stays in effect till changed\n results - set the default result type for this SASdata object. 'Pandas' or 'HTML' or 'TEXT'.\n\n :param results: format of results, SASsession.results is default, PANDAS, HTML or TEXT are the alternatives\n :return: None\n " if (results.upper() == 'HTML'): self.HTML = 1 else: self.HTML = 0 self.results = results
def _returnPD(self, code, tablename, **kwargs): '\n private function to take a sas code normally to create a table, generate pandas data frame and cleanup.\n\n :param code: string of SAS code\n :param tablename: the name of the SAS Data Set\n :param kwargs:\n :return: Pandas Data Frame\n ' if self.sas.sascfg.pandas: raise type(self.sas.sascfg.pandas)(self.sas.sascfg.pandas.msg) libref = kwargs.get('libref', 'work') ll = self.sas._io.submit(code) (check, errorMsg) = self._checkLogForError(ll['LOG']) if (not check): raise ValueError(('Internal code execution failed: ' + errorMsg)) if isinstance(tablename, str): df = self.sas.sasdata2dataframe(tablename, libref) self.sas._io.submit(('proc delete data=%s.%s; run;' % (libref, tablename))) elif isinstance(tablename, list): df = dict() for t in tablename: if self.sas.exist(t, libref): df[t.replace('_', '').capitalize()] = self.sas.sasdata2dataframe(t, libref) self.sas._io.submit(('proc delete data=%s.%s; run;' % (libref, t))) else: raise SyntaxError(('The tablename must be a string or list %s was submitted' % str(type(tablename)))) return df
-6,078,101,975,344,420,000
private function to take a sas code normally to create a table, generate pandas data frame and cleanup. :param code: string of SAS code :param tablename: the name of the SAS Data Set :param kwargs: :return: Pandas Data Frame
saspy/sasdata.py
_returnPD
kjnh10/saspy
python
def _returnPD(self, code, tablename, **kwargs): '\n private function to take a sas code normally to create a table, generate pandas data frame and cleanup.\n\n :param code: string of SAS code\n :param tablename: the name of the SAS Data Set\n :param kwargs:\n :return: Pandas Data Frame\n ' if self.sas.sascfg.pandas: raise type(self.sas.sascfg.pandas)(self.sas.sascfg.pandas.msg) libref = kwargs.get('libref', 'work') ll = self.sas._io.submit(code) (check, errorMsg) = self._checkLogForError(ll['LOG']) if (not check): raise ValueError(('Internal code execution failed: ' + errorMsg)) if isinstance(tablename, str): df = self.sas.sasdata2dataframe(tablename, libref) self.sas._io.submit(('proc delete data=%s.%s; run;' % (libref, tablename))) elif isinstance(tablename, list): df = dict() for t in tablename: if self.sas.exist(t, libref): df[t.replace('_', ).capitalize()] = self.sas.sasdata2dataframe(t, libref) self.sas._io.submit(('proc delete data=%s.%s; run;' % (libref, t))) else: raise SyntaxError(('The tablename must be a string or list %s was submitted' % str(type(tablename)))) return df
def _dsopts(self): "\n This method builds out data set options clause for this SASdata object: '(where= , keeep=, obs=, ...)'\n " return self.sas._dsopts(self.dsopts)
-3,960,126,987,296,020,500
This method builds out data set options clause for this SASdata object: '(where= , keeep=, obs=, ...)'
saspy/sasdata.py
_dsopts
kjnh10/saspy
python
def _dsopts(self): "\n \n " return self.sas._dsopts(self.dsopts)
def where(self, where: str) -> 'SASdata': '\n This method returns a clone of the SASdata object, with the where attribute set. The original SASdata object is not affected.\n\n :param where: the where clause to apply\n :return: SAS data object\n ' sd = SASdata(self.sas, self.libref, self.table, dsopts=dict(self.dsopts)) sd.HTML = self.HTML sd.dsopts['where'] = where return sd
191,522,911,558,066,560
This method returns a clone of the SASdata object, with the where attribute set. The original SASdata object is not affected. :param where: the where clause to apply :return: SAS data object
saspy/sasdata.py
where
kjnh10/saspy
python
def where(self, where: str) -> 'SASdata': '\n This method returns a clone of the SASdata object, with the where attribute set. The original SASdata object is not affected.\n\n :param where: the where clause to apply\n :return: SAS data object\n ' sd = SASdata(self.sas, self.libref, self.table, dsopts=dict(self.dsopts)) sd.HTML = self.HTML sd.dsopts['where'] = where return sd
def head(self, obs=5): '\n display the first n rows of a table\n\n :param obs: the number of rows of the table that you want to display. The default is 5\n :return:\n ' topts = dict(self.dsopts) topts['obs'] = obs code = ((((('proc print data=' + self.libref) + '.') + self.table) + self.sas._dsopts(topts)) + ';run;') if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('data _head ; set %s.%s %s; run;' % (self.libref, self.table, self.sas._dsopts(topts))) return self._returnPD(code, '_head') else: ll = self._is_valid() if self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
3,445,847,193,978,387,500
display the first n rows of a table :param obs: the number of rows of the table that you want to display. The default is 5 :return:
saspy/sasdata.py
head
kjnh10/saspy
python
def head(self, obs=5): '\n display the first n rows of a table\n\n :param obs: the number of rows of the table that you want to display. The default is 5\n :return:\n ' topts = dict(self.dsopts) topts['obs'] = obs code = ((((('proc print data=' + self.libref) + '.') + self.table) + self.sas._dsopts(topts)) + ';run;') if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('data _head ; set %s.%s %s; run;' % (self.libref, self.table, self.sas._dsopts(topts))) return self._returnPD(code, '_head') else: ll = self._is_valid() if self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
def tail(self, obs=5): '\n display the last n rows of a table\n\n :param obs: the number of rows of the table that you want to display. The default is 5\n :return:\n ' code = 'proc sql;select count(*) format best32. into :lastobs from ' code += (((self.libref + '.') + self.table) + self._dsopts()) code += ';%put lastobs=&lastobs lastobsend=;\nquit;' nosub = self.sas.nosub self.sas.nosub = False le = self._is_valid() if (not le): ll = self.sas.submit(code, 'text') lastobs = ll['LOG'].rpartition('lastobs=') lastobs = lastobs[2].partition(' lastobsend=') lastobs = int(lastobs[0]) else: lastobs = obs firstobs = (lastobs - (obs - 1)) if (firstobs < 1): firstobs = 1 topts = dict(self.dsopts) topts['obs'] = lastobs topts['firstobs'] = firstobs code = (('proc print data=' + self.libref) + '.') code += ((self.table + self.sas._dsopts(topts)) + ';run;') self.sas.nosub = nosub if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('data _tail ; set %s.%s %s; run;' % (self.libref, self.table, self.sas._dsopts(topts))) return self._returnPD(code, '_tail') elif self.HTML: if (not le): ll = self.sas._io.submit(code) else: ll = le if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not le): ll = self.sas._io.submit(code, 'text') else: ll = le if (not self.sas.batch): print(ll['LST']) else: return ll
-8,550,472,158,035,630,000
display the last n rows of a table :param obs: the number of rows of the table that you want to display. The default is 5 :return:
saspy/sasdata.py
tail
kjnh10/saspy
python
def tail(self, obs=5): '\n display the last n rows of a table\n\n :param obs: the number of rows of the table that you want to display. The default is 5\n :return:\n ' code = 'proc sql;select count(*) format best32. into :lastobs from ' code += (((self.libref + '.') + self.table) + self._dsopts()) code += ';%put lastobs=&lastobs lastobsend=;\nquit;' nosub = self.sas.nosub self.sas.nosub = False le = self._is_valid() if (not le): ll = self.sas.submit(code, 'text') lastobs = ll['LOG'].rpartition('lastobs=') lastobs = lastobs[2].partition(' lastobsend=') lastobs = int(lastobs[0]) else: lastobs = obs firstobs = (lastobs - (obs - 1)) if (firstobs < 1): firstobs = 1 topts = dict(self.dsopts) topts['obs'] = lastobs topts['firstobs'] = firstobs code = (('proc print data=' + self.libref) + '.') code += ((self.table + self.sas._dsopts(topts)) + ';run;') self.sas.nosub = nosub if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('data _tail ; set %s.%s %s; run;' % (self.libref, self.table, self.sas._dsopts(topts))) return self._returnPD(code, '_tail') elif self.HTML: if (not le): ll = self.sas._io.submit(code) else: ll = le if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not le): ll = self.sas._io.submit(code, 'text') else: ll = le if (not self.sas.batch): print(ll['LST']) else: return ll
def obs(self): '\n return the number of observations for your SASdata object\n ' code = 'proc sql;select count(*) format best32. into :lastobs from ' code += (((self.libref + '.') + self.table) + self._dsopts()) code += ';%put lastobs=&lastobs lastobsend=;\nquit;' if self.sas.nosub: print(code) return le = self._is_valid() if (not le): ll = self.sas.submit(code, 'text') lastobs = ll['LOG'].rpartition('lastobs=') lastobs = lastobs[2].partition(' lastobsend=') lastobs = int(lastobs[0]) else: print("The SASdata object is not valid. The table doesn't exist in this SAS session at this time.") lastobs = None return lastobs
7,016,958,279,017,528,000
return the number of observations for your SASdata object
saspy/sasdata.py
obs
kjnh10/saspy
python
def obs(self): '\n \n ' code = 'proc sql;select count(*) format best32. into :lastobs from ' code += (((self.libref + '.') + self.table) + self._dsopts()) code += ';%put lastobs=&lastobs lastobsend=;\nquit;' if self.sas.nosub: print(code) return le = self._is_valid() if (not le): ll = self.sas.submit(code, 'text') lastobs = ll['LOG'].rpartition('lastobs=') lastobs = lastobs[2].partition(' lastobsend=') lastobs = int(lastobs[0]) else: print("The SASdata object is not valid. The table doesn't exist in this SAS session at this time.") lastobs = None return lastobs
def partition(self, var: str='', fraction: float=0.7, seed: int=9878, kfold: int=1, out: 'SASdata'=None, singleOut: bool=True) -> object: '\n Partition a sas data object using SRS sampling or if a variable is specified then\n stratifying with respect to that variable\n\n :param var: variable(s) for stratification. If multiple then space delimited list\n :param fraction: fraction to split\n :param seed: random seed\n :param kfold: number of k folds\n :param out: the SAS data object\n :param singleOut: boolean to return single table or seperate tables\n :return: Tuples or SAS data object\n ' i = 1 code = '' try: k = int(kfold) except ValueError: print('Kfold must be an integer') if (out is None): out_table = self.table out_libref = self.libref elif (not isinstance(out, str)): out_table = out.table out_libref = out.libref else: try: out_table = out.split('.')[1] out_libref = out.split('.')[0] except IndexError: out_table = out out_libref = 'work' while (i <= k): if (k == 1): code += ('proc hpsample data=%s.%s %s out=%s.%s %s samppct=%s seed=%s Partition;\n' % (self.libref, self.table, self._dsopts(), out_libref, out_table, self._dsopts(), (fraction * 100), seed)) else: seed += 1 code += ('proc hpsample data=%s.%s %s out=%s.%s %s samppct=%s seed=%s partition PARTINDNAME=_cvfold%s;\n' % (self.libref, self.table, self._dsopts(), out_libref, out_table, self._dsopts(), (fraction * 100), seed, i)) if (len(var) > 0): if (i == 1): num_string = "\n data _null_; file LOG;\n d = open('{0}.{1}');\n nvars = attrn(d, 'NVARS'); \n put 'VARLIST=';\n do i = 1 to nvars; \n vart = vartype(d, i);\n var = varname(d, i);\n if vart eq 'N' then\n put %upcase('var=') var %upcase('varEND=');\n end;\n put 'VARLISTEND=';\n run;\n " nosub = self.sas.nosub self.sas.nosub = False ll = self.sas.submit(num_string.format(self.libref, (self.table + self._dsopts()))) self.sas.nosub = nosub numlist = [] log = ll['LOG'].rpartition('VARLISTEND=')[0].rpartition('VARLIST=') for vari in range(log[2].count('VAR=')): log = log[2].partition('VAR=')[2].partition(' VAREND=') numlist.append(log[0].strip()) if isinstance(var, str): tlist = var.split() elif isinstance(var, list): tlist = var else: raise SyntaxError(('var must be a string or list you submitted: %s' % str(type(var)))) if set(numlist).isdisjoint(tlist): if isinstance(var, str): code += ('class _character_;\ntarget %s;\nvar _numeric_;\n' % var) else: code += ('class _character_;\ntarget %s;\nvar _numeric_;\n' % ' '.join(var)) else: varlist = [x for x in numlist if (x not in tlist)] varlist.extend([('_cvfold%s' % j) for j in range(1, i) if ((k > 1) and (i > 1))]) code += ('class %s _character_;\ntarget %s;\nvar %s;\n' % (var, var, ' '.join(varlist))) else: code += 'class _character_;\nvar _numeric_;\n' code += 'run;\n' i += 1 split_code = '' if (not singleOut): split_code += 'DATA ' for j in range(1, (k + 1)): split_code += ('\t%s.%s%s_train(drop=_Partind_ _cvfold:)\n' % (out_libref, out_table, j)) split_code += ('\t%s.%s%s_score(drop=_Partind_ _cvfold:)\n' % (out_libref, out_table, j)) split_code += (';\n \tset %s.%s;\n' % (out_libref, out_table)) for z in range(1, (k + 1)): split_code += ('\tif _cvfold%s = 1 or _partind_ = 1 then output %s.%s%s_train;\n' % (z, out_libref, out_table, z)) split_code += ('\telse output %s.%s%s_score;\n' % (out_libref, out_table, z)) split_code += 'run;' runcode = True if self.sas.nosub: print(((code + '\n\n') + split_code)) runcode = False ll = self._is_valid() if ll: runcode = False if runcode: ll = self.sas.submit((code + split_code), 'text') elog = [] for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if (not singleOut): outTableList = [] if (k == 1): return (self.sas.sasdata(((out_table + str(k)) + '_train'), out_libref, dsopts=self._dsopts()), self.sas.sasdata(((out_table + str(k)) + '_score'), out_libref, dsopts=self._dsopts())) for j in range(1, (k + 1)): outTableList.append((self.sas.sasdata(((out_table + str(j)) + '_train'), out_libref, dsopts=self._dsopts()), self.sas.sasdata(((out_table + str(j)) + '_score'), out_libref, dsopts=self._dsopts()))) return outTableList if out: if (not isinstance(out, str)): return out else: return self.sas.sasdata(out_table, out_libref, self.results) else: return self
-2,989,308,485,039,091,700
Partition a sas data object using SRS sampling or if a variable is specified then stratifying with respect to that variable :param var: variable(s) for stratification. If multiple then space delimited list :param fraction: fraction to split :param seed: random seed :param kfold: number of k folds :param out: the SAS data object :param singleOut: boolean to return single table or seperate tables :return: Tuples or SAS data object
saspy/sasdata.py
partition
kjnh10/saspy
python
def partition(self, var: str=, fraction: float=0.7, seed: int=9878, kfold: int=1, out: 'SASdata'=None, singleOut: bool=True) -> object: '\n Partition a sas data object using SRS sampling or if a variable is specified then\n stratifying with respect to that variable\n\n :param var: variable(s) for stratification. If multiple then space delimited list\n :param fraction: fraction to split\n :param seed: random seed\n :param kfold: number of k folds\n :param out: the SAS data object\n :param singleOut: boolean to return single table or seperate tables\n :return: Tuples or SAS data object\n ' i = 1 code = try: k = int(kfold) except ValueError: print('Kfold must be an integer') if (out is None): out_table = self.table out_libref = self.libref elif (not isinstance(out, str)): out_table = out.table out_libref = out.libref else: try: out_table = out.split('.')[1] out_libref = out.split('.')[0] except IndexError: out_table = out out_libref = 'work' while (i <= k): if (k == 1): code += ('proc hpsample data=%s.%s %s out=%s.%s %s samppct=%s seed=%s Partition;\n' % (self.libref, self.table, self._dsopts(), out_libref, out_table, self._dsopts(), (fraction * 100), seed)) else: seed += 1 code += ('proc hpsample data=%s.%s %s out=%s.%s %s samppct=%s seed=%s partition PARTINDNAME=_cvfold%s;\n' % (self.libref, self.table, self._dsopts(), out_libref, out_table, self._dsopts(), (fraction * 100), seed, i)) if (len(var) > 0): if (i == 1): num_string = "\n data _null_; file LOG;\n d = open('{0}.{1}');\n nvars = attrn(d, 'NVARS'); \n put 'VARLIST=';\n do i = 1 to nvars; \n vart = vartype(d, i);\n var = varname(d, i);\n if vart eq 'N' then\n put %upcase('var=') var %upcase('varEND=');\n end;\n put 'VARLISTEND=';\n run;\n " nosub = self.sas.nosub self.sas.nosub = False ll = self.sas.submit(num_string.format(self.libref, (self.table + self._dsopts()))) self.sas.nosub = nosub numlist = [] log = ll['LOG'].rpartition('VARLISTEND=')[0].rpartition('VARLIST=') for vari in range(log[2].count('VAR=')): log = log[2].partition('VAR=')[2].partition(' VAREND=') numlist.append(log[0].strip()) if isinstance(var, str): tlist = var.split() elif isinstance(var, list): tlist = var else: raise SyntaxError(('var must be a string or list you submitted: %s' % str(type(var)))) if set(numlist).isdisjoint(tlist): if isinstance(var, str): code += ('class _character_;\ntarget %s;\nvar _numeric_;\n' % var) else: code += ('class _character_;\ntarget %s;\nvar _numeric_;\n' % ' '.join(var)) else: varlist = [x for x in numlist if (x not in tlist)] varlist.extend([('_cvfold%s' % j) for j in range(1, i) if ((k > 1) and (i > 1))]) code += ('class %s _character_;\ntarget %s;\nvar %s;\n' % (var, var, ' '.join(varlist))) else: code += 'class _character_;\nvar _numeric_;\n' code += 'run;\n' i += 1 split_code = if (not singleOut): split_code += 'DATA ' for j in range(1, (k + 1)): split_code += ('\t%s.%s%s_train(drop=_Partind_ _cvfold:)\n' % (out_libref, out_table, j)) split_code += ('\t%s.%s%s_score(drop=_Partind_ _cvfold:)\n' % (out_libref, out_table, j)) split_code += (';\n \tset %s.%s;\n' % (out_libref, out_table)) for z in range(1, (k + 1)): split_code += ('\tif _cvfold%s = 1 or _partind_ = 1 then output %s.%s%s_train;\n' % (z, out_libref, out_table, z)) split_code += ('\telse output %s.%s%s_score;\n' % (out_libref, out_table, z)) split_code += 'run;' runcode = True if self.sas.nosub: print(((code + '\n\n') + split_code)) runcode = False ll = self._is_valid() if ll: runcode = False if runcode: ll = self.sas.submit((code + split_code), 'text') elog = [] for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if (not singleOut): outTableList = [] if (k == 1): return (self.sas.sasdata(((out_table + str(k)) + '_train'), out_libref, dsopts=self._dsopts()), self.sas.sasdata(((out_table + str(k)) + '_score'), out_libref, dsopts=self._dsopts())) for j in range(1, (k + 1)): outTableList.append((self.sas.sasdata(((out_table + str(j)) + '_train'), out_libref, dsopts=self._dsopts()), self.sas.sasdata(((out_table + str(j)) + '_score'), out_libref, dsopts=self._dsopts()))) return outTableList if out: if (not isinstance(out, str)): return out else: return self.sas.sasdata(out_table, out_libref, self.results) else: return self
def contents(self): '\n display metadata about the table. size, number of rows, columns and their data type ...\n\n :return: output\n ' code = ((((('proc contents data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';run;') if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc contents data=%s.%s %s ;' % (self.libref, self.table, self._dsopts())) code += 'ods output Attributes=work._attributes;' code += 'ods output EngineHost=work._EngineHost;' code += 'ods output Variables=work._Variables;' code += 'ods output Sortedby=work._Sortedby;' code += 'run;' return self._returnPD(code, ['_attributes', '_EngineHost', '_Variables', '_Sortedby']) elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
-5,023,457,607,378,223,000
display metadata about the table. size, number of rows, columns and their data type ... :return: output
saspy/sasdata.py
contents
kjnh10/saspy
python
def contents(self): '\n display metadata about the table. size, number of rows, columns and their data type ...\n\n :return: output\n ' code = ((((('proc contents data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';run;') if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc contents data=%s.%s %s ;' % (self.libref, self.table, self._dsopts())) code += 'ods output Attributes=work._attributes;' code += 'ods output EngineHost=work._EngineHost;' code += 'ods output Variables=work._Variables;' code += 'ods output Sortedby=work._Sortedby;' code += 'run;' return self._returnPD(code, ['_attributes', '_EngineHost', '_Variables', '_Sortedby']) elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
def columnInfo(self): '\n display metadata about the table, size, number of rows, columns and their data type\n ' code = (((((('proc contents data=' + self.libref) + '.') + self.table) + ' ') + self._dsopts()) + ';ods select Variables;run;') if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('proc contents data=%s.%s %s ;ods output Variables=work._variables ;run;' % (self.libref, self.table, self._dsopts())) df = self._returnPD(code, '_variables') df['Type'] = df['Type'].str.rstrip() return df else: ll = self._is_valid() if self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
644,311,950,941,764,900
display metadata about the table, size, number of rows, columns and their data type
saspy/sasdata.py
columnInfo
kjnh10/saspy
python
def columnInfo(self): '\n \n ' code = (((((('proc contents data=' + self.libref) + '.') + self.table) + ' ') + self._dsopts()) + ';ods select Variables;run;') if self.sas.nosub: print(code) return if (self.results.upper() == 'PANDAS'): code = ('proc contents data=%s.%s %s ;ods output Variables=work._variables ;run;' % (self.libref, self.table, self._dsopts())) df = self._returnPD(code, '_variables') df['Type'] = df['Type'].str.rstrip() return df else: ll = self._is_valid() if self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
def info(self): '\n Display the column info on a SAS data object\n\n :return: Pandas data frame\n ' if (self.results.casefold() != 'pandas'): print('The info method only works with Pandas results') return None info_code = "\n data work._statsInfo ;\n do rows=0 by 1 while( not last ) ;\n set {0}.{1}{2} end=last;\n array chrs _character_ ;\n array nums _numeric_ ;\n array ccounts(999) _temporary_ ;\n array ncounts(999) _temporary_ ;\n do over chrs;\n ccounts(_i_) + missing(chrs) ;\n end;\n do over nums;\n ncounts(_i_) + missing(nums);\n end; \n end ;\n length Variable $32 type $8. ;\n Do over chrs;\n Type = 'char';\n Variable = vname(chrs) ;\n N = rows;\n Nmiss = ccounts(_i_) ;\n Output ;\n end ;\n Do over nums;\n Type = 'numeric';\n Variable = vname(nums) ;\n N = rows;\n Nmiss = ncounts(_i_) ;\n if variable ^= 'rows' then output;\n end ;\n stop;\n keep Variable N NMISS Type ;\n run;\n " if self.sas.nosub: print(info_code.format(self.libref, self.table, self._dsopts())) return None df = self._returnPD(info_code.format(self.libref, self.table, self._dsopts()), '_statsInfo') df = df.iloc[:, :] df.index.name = None df.name = None return df
6,330,648,730,209,849,000
Display the column info on a SAS data object :return: Pandas data frame
saspy/sasdata.py
info
kjnh10/saspy
python
def info(self): '\n Display the column info on a SAS data object\n\n :return: Pandas data frame\n ' if (self.results.casefold() != 'pandas'): print('The info method only works with Pandas results') return None info_code = "\n data work._statsInfo ;\n do rows=0 by 1 while( not last ) ;\n set {0}.{1}{2} end=last;\n array chrs _character_ ;\n array nums _numeric_ ;\n array ccounts(999) _temporary_ ;\n array ncounts(999) _temporary_ ;\n do over chrs;\n ccounts(_i_) + missing(chrs) ;\n end;\n do over nums;\n ncounts(_i_) + missing(nums);\n end; \n end ;\n length Variable $32 type $8. ;\n Do over chrs;\n Type = 'char';\n Variable = vname(chrs) ;\n N = rows;\n Nmiss = ccounts(_i_) ;\n Output ;\n end ;\n Do over nums;\n Type = 'numeric';\n Variable = vname(nums) ;\n N = rows;\n Nmiss = ncounts(_i_) ;\n if variable ^= 'rows' then output;\n end ;\n stop;\n keep Variable N NMISS Type ;\n run;\n " if self.sas.nosub: print(info_code.format(self.libref, self.table, self._dsopts())) return None df = self._returnPD(info_code.format(self.libref, self.table, self._dsopts()), '_statsInfo') df = df.iloc[:, :] df.index.name = None df.name = None return df
def describe(self): '\n display descriptive statistics for the table; summary statistics.\n\n :return:\n ' return self.means()
-8,534,865,489,948,653,000
display descriptive statistics for the table; summary statistics. :return:
saspy/sasdata.py
describe
kjnh10/saspy
python
def describe(self): '\n display descriptive statistics for the table; summary statistics.\n\n :return:\n ' return self.means()
def means(self): "\n display descriptive statistics for the table; summary statistics. This is an alias for 'describe'\n\n :return:\n " dsopts = self._dsopts().partition(';\n\tformat') code = ((((('proc means data=' + self.libref) + '.') + self.table) + dsopts[0]) + ' stackodsoutput n nmiss median mean std min p25 p50 p75 max;') code += ((dsopts[1] + dsopts[2]) + 'run;') if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc means data=%s.%s %s stackodsoutput n nmiss median mean std min p25 p50 p75 max; %s ods output Summary=work._summary; run;' % (self.libref, self.table, dsopts[0], (dsopts[1] + dsopts[2]))) return self._returnPD(code, '_summary') elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
5,236,874,011,568,663,000
display descriptive statistics for the table; summary statistics. This is an alias for 'describe' :return:
saspy/sasdata.py
means
kjnh10/saspy
python
def means(self): "\n display descriptive statistics for the table; summary statistics. This is an alias for 'describe'\n\n :return:\n " dsopts = self._dsopts().partition(';\n\tformat') code = ((((('proc means data=' + self.libref) + '.') + self.table) + dsopts[0]) + ' stackodsoutput n nmiss median mean std min p25 p50 p75 max;') code += ((dsopts[1] + dsopts[2]) + 'run;') if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc means data=%s.%s %s stackodsoutput n nmiss median mean std min p25 p50 p75 max; %s ods output Summary=work._summary; run;' % (self.libref, self.table, dsopts[0], (dsopts[1] + dsopts[2]))) return self._returnPD(code, '_summary') elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
def impute(self, vars: dict, replace: bool=False, prefix: str='imp_', out: 'SASdata'=None) -> 'SASdata': "\n Imputes missing values for a SASdata object.\n\n :param vars: a dictionary in the form of {'varname':'impute type'} or {'impute type':'[var1, var2]'}\n :param replace:\n :param prefix:\n :param out:\n :return:\n " outstr = '' if out: if isinstance(out, str): fn = out.partition('.') if (fn[1] == '.'): out_libref = fn[0] out_table = fn[2] else: out_libref = '' out_table = fn[0] else: out_libref = out.libref out_table = out.table outstr = ('out=%s.%s' % (out_libref, out_table)) else: out_table = self.table out_libref = self.libref varcode = (((("data _null_; d = open('" + self.libref) + '.') + self.table) + "');\n") varcode += "nvars = attrn(d, 'NVARS');\n" varcode += "put 'VARNUMS=' nvars 'VARNUMS_END=';\n" varcode += "put 'VARLIST=';\n" varcode += "do i = 1 to nvars; var = varname(d, i); put %upcase('var=') var %upcase('varEND='); end;\n" varcode += "put 'TYPELIST=';\n" varcode += "do i = 1 to nvars; var = vartype(d, i); put %upcase('type=') var %upcase('typeEND='); end;\n" varcode += "put 'END_ALL_VARS_AND_TYPES=';\n" varcode += 'run;' ll = self.sas._io.submit(varcode, 'text') l2 = ll['LOG'].rpartition('VARNUMS=')[2].partition('VARNUMS_END=') nvars = int(float(l2[0].strip())) varlist = [] log = ll['LOG'].rpartition('TYPELIST=')[0].rpartition('VARLIST=') for vari in range(log[2].count('VAR=')): log = log[2].partition('VAR=')[2].partition('VAREND=') varlist.append(log[0].strip().upper()) typelist = [] log = ll['LOG'].rpartition('END_ALL_VARS_AND_TYPES=')[0].rpartition('TYPELIST=') for typei in range(log[2].count('VAR=')): log = log[2].partition('TYPE=')[2].partition('TYPEEND=') typelist.append(log[0].strip().upper()) varListType = dict(zip(varlist, typelist)) sql = 'proc sql;\n select\n' sqlsel = ' %s(%s),\n' sqlinto = ' into\n' if (len(out_libref) > 0): ds1 = ((((((((('data ' + out_libref) + '.') + out_table) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') else: ds1 = ((((((('data ' + out_table) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') dsmiss = 'if missing({0}) then {1} = {2};\n' if replace: dsmiss = (prefix + ('{1} = {0}; if missing({0}) then %s{1} = {2};\n' % prefix)) modesql = '' modeq = 'proc sql outobs=1;\n select %s, count(*) as freq into :imp_mode_%s, :imp_mode_freq\n' modeq += ' from %s where %s is not null group by %s order by freq desc, %s;\nquit;\n' contantValues = vars.pop('value', None) if (contantValues is not None): if (not all((isinstance(x, tuple) for x in contantValues))): raise SyntaxError("The elements in the 'value' key must be tuples") for t in contantValues: if (varListType.get(t[0].upper()) == 'N'): ds1 += dsmiss.format((t[0], t[0], t[1])) else: ds1 += dsmiss.format(t[0], t[0], (('"' + str(t[1])) + '"')) for (key, values) in vars.items(): if (key.lower() in ['midrange', 'random']): for v in values: sql += (sqlsel % ('max', v)) sql += (sqlsel % ('min', v)) sqlinto += ((' :imp_max_' + v) + ',\n') sqlinto += ((' :imp_min_' + v) + ',\n') if (key.lower() == 'midrange'): ds1 += dsmiss.format(v, v, ((((((('(&imp_min_' + v) + '.') + ' + ') + '&imp_max_') + v) + '.') + ') / 2')) elif (key.lower() == 'random'): ds1 += dsmiss.format(v, v, (((((((((('(&imp_max_' + v) + '.') + ' - ') + '&imp_min_') + v) + '.') + ') * ranuni(0)') + '+ &imp_min_') + v) + '.')) else: raise SyntaxError('This should not happen!!!!') else: for v in values: sql += (sqlsel % (key, v)) sqlinto += ((' :imp_' + v) + ',\n') if (key.lower == 'mode'): modesql += (modeq % (v, v, (((self.libref + '.') + self.table) + self._dsopts()), v, v, v)) if (varListType.get(v.upper()) == 'N'): ds1 += dsmiss.format(v, v, (('&imp_' + v) + '.')) else: ds1 += dsmiss.format(v, v, (('"&imp_' + v) + '."')) if (len(sql) > 20): sql = ((((((((sql.rstrip(', \n') + '\n') + sqlinto.rstrip(', \n')) + '\n from ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\nquit;\n') else: sql = '' ds1 += 'run;\n' if self.sas.nosub: print(((modesql + sql) + ds1)) return None ll = self.sas.submit(((modesql + sql) + ds1)) return self.sas.sasdata(out_table, libref=out_libref, results=self.results, dsopts=self._dsopts())
-6,392,868,252,885,690,000
Imputes missing values for a SASdata object. :param vars: a dictionary in the form of {'varname':'impute type'} or {'impute type':'[var1, var2]'} :param replace: :param prefix: :param out: :return:
saspy/sasdata.py
impute
kjnh10/saspy
python
def impute(self, vars: dict, replace: bool=False, prefix: str='imp_', out: 'SASdata'=None) -> 'SASdata': "\n Imputes missing values for a SASdata object.\n\n :param vars: a dictionary in the form of {'varname':'impute type'} or {'impute type':'[var1, var2]'}\n :param replace:\n :param prefix:\n :param out:\n :return:\n " outstr = if out: if isinstance(out, str): fn = out.partition('.') if (fn[1] == '.'): out_libref = fn[0] out_table = fn[2] else: out_libref = out_table = fn[0] else: out_libref = out.libref out_table = out.table outstr = ('out=%s.%s' % (out_libref, out_table)) else: out_table = self.table out_libref = self.libref varcode = (((("data _null_; d = open('" + self.libref) + '.') + self.table) + "');\n") varcode += "nvars = attrn(d, 'NVARS');\n" varcode += "put 'VARNUMS=' nvars 'VARNUMS_END=';\n" varcode += "put 'VARLIST=';\n" varcode += "do i = 1 to nvars; var = varname(d, i); put %upcase('var=') var %upcase('varEND='); end;\n" varcode += "put 'TYPELIST=';\n" varcode += "do i = 1 to nvars; var = vartype(d, i); put %upcase('type=') var %upcase('typeEND='); end;\n" varcode += "put 'END_ALL_VARS_AND_TYPES=';\n" varcode += 'run;' ll = self.sas._io.submit(varcode, 'text') l2 = ll['LOG'].rpartition('VARNUMS=')[2].partition('VARNUMS_END=') nvars = int(float(l2[0].strip())) varlist = [] log = ll['LOG'].rpartition('TYPELIST=')[0].rpartition('VARLIST=') for vari in range(log[2].count('VAR=')): log = log[2].partition('VAR=')[2].partition('VAREND=') varlist.append(log[0].strip().upper()) typelist = [] log = ll['LOG'].rpartition('END_ALL_VARS_AND_TYPES=')[0].rpartition('TYPELIST=') for typei in range(log[2].count('VAR=')): log = log[2].partition('TYPE=')[2].partition('TYPEEND=') typelist.append(log[0].strip().upper()) varListType = dict(zip(varlist, typelist)) sql = 'proc sql;\n select\n' sqlsel = ' %s(%s),\n' sqlinto = ' into\n' if (len(out_libref) > 0): ds1 = ((((((((('data ' + out_libref) + '.') + out_table) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') else: ds1 = ((((((('data ' + out_table) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') dsmiss = 'if missing({0}) then {1} = {2};\n' if replace: dsmiss = (prefix + ('{1} = {0}; if missing({0}) then %s{1} = {2};\n' % prefix)) modesql = modeq = 'proc sql outobs=1;\n select %s, count(*) as freq into :imp_mode_%s, :imp_mode_freq\n' modeq += ' from %s where %s is not null group by %s order by freq desc, %s;\nquit;\n' contantValues = vars.pop('value', None) if (contantValues is not None): if (not all((isinstance(x, tuple) for x in contantValues))): raise SyntaxError("The elements in the 'value' key must be tuples") for t in contantValues: if (varListType.get(t[0].upper()) == 'N'): ds1 += dsmiss.format((t[0], t[0], t[1])) else: ds1 += dsmiss.format(t[0], t[0], (('"' + str(t[1])) + '"')) for (key, values) in vars.items(): if (key.lower() in ['midrange', 'random']): for v in values: sql += (sqlsel % ('max', v)) sql += (sqlsel % ('min', v)) sqlinto += ((' :imp_max_' + v) + ',\n') sqlinto += ((' :imp_min_' + v) + ',\n') if (key.lower() == 'midrange'): ds1 += dsmiss.format(v, v, ((((((('(&imp_min_' + v) + '.') + ' + ') + '&imp_max_') + v) + '.') + ') / 2')) elif (key.lower() == 'random'): ds1 += dsmiss.format(v, v, (((((((((('(&imp_max_' + v) + '.') + ' - ') + '&imp_min_') + v) + '.') + ') * ranuni(0)') + '+ &imp_min_') + v) + '.')) else: raise SyntaxError('This should not happen!!!!') else: for v in values: sql += (sqlsel % (key, v)) sqlinto += ((' :imp_' + v) + ',\n') if (key.lower == 'mode'): modesql += (modeq % (v, v, (((self.libref + '.') + self.table) + self._dsopts()), v, v, v)) if (varListType.get(v.upper()) == 'N'): ds1 += dsmiss.format(v, v, (('&imp_' + v) + '.')) else: ds1 += dsmiss.format(v, v, (('"&imp_' + v) + '."')) if (len(sql) > 20): sql = ((((((((sql.rstrip(', \n') + '\n') + sqlinto.rstrip(', \n')) + '\n from ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\nquit;\n') else: sql = ds1 += 'run;\n' if self.sas.nosub: print(((modesql + sql) + ds1)) return None ll = self.sas.submit(((modesql + sql) + ds1)) return self.sas.sasdata(out_table, libref=out_libref, results=self.results, dsopts=self._dsopts())
def sort(self, by: str, out: object='', **kwargs) -> 'SASdata': "\n Sort the SAS Data Set\n\n :param by: REQUIRED variable to sort by (BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;)\n :param out: OPTIONAL takes either a string 'libref.table' or 'table' which will go to WORK or USER\n if assigned or a sas data object'' will sort in place if allowed\n :param kwargs:\n :return: SASdata object if out= not specified, or a new SASdata object for out= when specified\n\n :Example:\n\n #. wkcars.sort('type')\n #. wkcars2 = sas.sasdata('cars2')\n #. wkcars.sort('cylinders', wkcars2)\n #. cars2=cars.sort('DESCENDING origin', out='foobar')\n #. cars.sort('type').head()\n #. stat_results = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type'))\n #. stat_results2 = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type','work.cars'))\n " outstr = '' options = '' if out: if isinstance(out, str): fn = out.partition('.') if (fn[1] == '.'): libref = fn[0] table = fn[2] outstr = ('out=%s.%s' % (libref, table)) else: libref = '' table = fn[0] outstr = ('out=' + table) else: libref = out.libref table = out.table outstr = ('out=%s.%s' % (out.libref, out.table)) if ('options' in kwargs): options = kwargs['options'] code = ('proc sort data=%s.%s%s %s %s ;\n' % (self.libref, self.table, self._dsopts(), outstr, options)) code += ('by %s;' % by) code += 'run\n;' runcode = True if self.sas.nosub: print(code) runcode = False ll = self._is_valid() if ll: runcode = False if runcode: ll = self.sas.submit(code, 'text') elog = [] for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if out: if (not isinstance(out, str)): return out else: return self.sas.sasdata(table, libref, self.results) else: return self
3,380,481,552,454,117,400
Sort the SAS Data Set :param by: REQUIRED variable to sort by (BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;) :param out: OPTIONAL takes either a string 'libref.table' or 'table' which will go to WORK or USER if assigned or a sas data object'' will sort in place if allowed :param kwargs: :return: SASdata object if out= not specified, or a new SASdata object for out= when specified :Example: #. wkcars.sort('type') #. wkcars2 = sas.sasdata('cars2') #. wkcars.sort('cylinders', wkcars2) #. cars2=cars.sort('DESCENDING origin', out='foobar') #. cars.sort('type').head() #. stat_results = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type')) #. stat_results2 = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type','work.cars'))
saspy/sasdata.py
sort
kjnh10/saspy
python
def sort(self, by: str, out: object=, **kwargs) -> 'SASdata': "\n Sort the SAS Data Set\n\n :param by: REQUIRED variable to sort by (BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;)\n :param out: OPTIONAL takes either a string 'libref.table' or 'table' which will go to WORK or USER\n if assigned or a sas data object will sort in place if allowed\n :param kwargs:\n :return: SASdata object if out= not specified, or a new SASdata object for out= when specified\n\n :Example:\n\n #. wkcars.sort('type')\n #. wkcars2 = sas.sasdata('cars2')\n #. wkcars.sort('cylinders', wkcars2)\n #. cars2=cars.sort('DESCENDING origin', out='foobar')\n #. cars.sort('type').head()\n #. stat_results = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type'))\n #. stat_results2 = stat.reg(model='horsepower = Cylinders EngineSize', by='type', data=wkcars.sort('type','work.cars'))\n " outstr = options = if out: if isinstance(out, str): fn = out.partition('.') if (fn[1] == '.'): libref = fn[0] table = fn[2] outstr = ('out=%s.%s' % (libref, table)) else: libref = table = fn[0] outstr = ('out=' + table) else: libref = out.libref table = out.table outstr = ('out=%s.%s' % (out.libref, out.table)) if ('options' in kwargs): options = kwargs['options'] code = ('proc sort data=%s.%s%s %s %s ;\n' % (self.libref, self.table, self._dsopts(), outstr, options)) code += ('by %s;' % by) code += 'run\n;' runcode = True if self.sas.nosub: print(code) runcode = False ll = self._is_valid() if ll: runcode = False if runcode: ll = self.sas.submit(code, 'text') elog = [] for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if out: if (not isinstance(out, str)): return out else: return self.sas.sasdata(table, libref, self.results) else: return self
def add_vars(self, vars: dict, out: object=None, **kwargs) -> 'SASLOG': "\n Copy table to itesf, or to 'out=' table and add any vars if you want\n\n :param vars: REQUIRED dictionayr of variable names (keys) and assignment statement (values)\n to maintain variable order use collections.OrderedDict Assignment statements must be valid \n SAS assignment expressions.\n :param out: OPTIONAL takes a SASdata Object you create ahead of time. If not specified, replaces the existing table\n and the current SAS data object still refers to the replacement table.\n :param kwargs:\n :return: SAS Log showing what happened\n\n :Example:\n\n #. cars = sas.sasdata('cars', 'sashelp') \n #. wkcars = sas.sasdata('cars') \n #. cars.add_vars({'PW_ratio': 'weight / horsepower', 'Overhang' : 'length - wheelbase'}, wkcars)\n #. wkcars.head()\n " if (out is not None): if (not isinstance(out, SASdata)): print('out= needs to be a SASdata object') return None else: outtab = (((out.libref + '.') + out.table) + out._dsopts()) else: outtab = (((self.libref + '.') + self.table) + self._dsopts()) code = ((((((('data ' + outtab) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') for key in vars.keys(): code += (((key + ' = ') + vars[key]) + ';\n') code += '; run;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LOG']) else: return ll
781,591,339,113,170,600
Copy table to itesf, or to 'out=' table and add any vars if you want :param vars: REQUIRED dictionayr of variable names (keys) and assignment statement (values) to maintain variable order use collections.OrderedDict Assignment statements must be valid SAS assignment expressions. :param out: OPTIONAL takes a SASdata Object you create ahead of time. If not specified, replaces the existing table and the current SAS data object still refers to the replacement table. :param kwargs: :return: SAS Log showing what happened :Example: #. cars = sas.sasdata('cars', 'sashelp') #. wkcars = sas.sasdata('cars') #. cars.add_vars({'PW_ratio': 'weight / horsepower', 'Overhang' : 'length - wheelbase'}, wkcars) #. wkcars.head()
saspy/sasdata.py
add_vars
kjnh10/saspy
python
def add_vars(self, vars: dict, out: object=None, **kwargs) -> 'SASLOG': "\n Copy table to itesf, or to 'out=' table and add any vars if you want\n\n :param vars: REQUIRED dictionayr of variable names (keys) and assignment statement (values)\n to maintain variable order use collections.OrderedDict Assignment statements must be valid \n SAS assignment expressions.\n :param out: OPTIONAL takes a SASdata Object you create ahead of time. If not specified, replaces the existing table\n and the current SAS data object still refers to the replacement table.\n :param kwargs:\n :return: SAS Log showing what happened\n\n :Example:\n\n #. cars = sas.sasdata('cars', 'sashelp') \n #. wkcars = sas.sasdata('cars') \n #. cars.add_vars({'PW_ratio': 'weight / horsepower', 'Overhang' : 'length - wheelbase'}, wkcars)\n #. wkcars.head()\n " if (out is not None): if (not isinstance(out, SASdata)): print('out= needs to be a SASdata object') return None else: outtab = (((out.libref + '.') + out.table) + out._dsopts()) else: outtab = (((self.libref + '.') + self.table) + self._dsopts()) code = ((((((('data ' + outtab) + '; set ') + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') for key in vars.keys(): code += (((key + ' = ') + vars[key]) + ';\n') code += '; run;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LOG']) else: return ll
def assessModel(self, target: str, prediction: str, nominal: bool=True, event: str='', **kwargs): '\n This method will calculate assessment measures using the SAS AA_Model_Eval Macro used for SAS Enterprise Miner.\n Not all datasets can be assessed. This is designed for scored data that includes a target and prediction columns\n TODO: add code example of build, score, and then assess\n\n :param target: string that represents the target variable in the data\n :param prediction: string that represents the numeric prediction column in the data. For nominal targets this should a probability between (0,1).\n :param nominal: boolean to indicate if the Target Variable is nominal because the assessment measures are different.\n :param event: string which indicates which value of the nominal target variable is the event vs non-event\n :param kwargs:\n :return: SAS result object\n ' self.sas.submit('%aamodel;') objtype = 'datastep' objname = ('{s:{c}^{n}}'.format(s=self.table[:3], n=3, c='_') + self.sas._objcnt()) code = '%macro proccall(d);\n' score_table = str(((self.libref + '.') + self.table)) binstats = str(((objname + '.') + 'ASSESSMENTSTATISTICS')) out = str(((objname + '.') + 'ASSESSMENTBINSTATISTICS')) level = 'interval' if nominal: level = 'class' try: if (len(event) < 1): raise Exception(event) except Exception: print('No event was specified for a nominal target. Here are possible options:\n') event_code = ('proc hpdmdb data=%s.%s %s classout=work._DMDBCLASSTARGET(keep=name nraw craw level frequency nmisspercent);' % (self.libref, self.table, self._dsopts())) event_code += ('\nclass %s ; \nrun;' % target) event_code += ("data _null_; set work._DMDBCLASSTARGET; where ^(NRAW eq . and CRAW eq '') and lowcase(name)=lowcase('%s');" % target) ec = self.sas._io.submit(event_code) HTML(ec['LST']) if nominal: code += ('%%aa_model_eval(DATA=%s%s, TARGET=%s, VAR=%s, level=%s, BINSTATS=%s, bins=100, out=%s, EVENT=%s);' % (score_table, self._dsopts(), target, prediction, level, binstats, out, event)) else: code += ('%%aa_model_eval(DATA=%s%s, TARGET=%s, VAR=%s, level=%s, BINSTATS=%s, bins=100, out=%s);' % (score_table, self._dsopts(), target, prediction, level, binstats, out)) rename_char = '\n data {0};\n set {0};\n if level in ("INTERVAL", "INT") then do;\n rename _sse_ = SumSquaredError\n _div_ = Divsor\n _ASE_ = AverageSquaredError\n _RASE_ = RootAverageSquaredError\n _MEANP_ = MeanPredictionValue\n _STDP_ = StandardDeviationPrediction\n _CVP_ = CoefficientVariationPrediction;\n end;\n else do;\n rename CR = MaxClassificationRate\n KSCut = KSCutOff\n CRDEPTH = MaxClassificationDepth\n MDepth = MedianClassificationDepth\n MCut = MedianEventDetectionCutOff\n CCut = ClassificationCutOff\n _misc_ = MisClassificationRate;\n end;\n run;\n ' code += rename_char.format(binstats) if nominal: graphics = '\n ODS PROCLABEL=\'ERRORPLOT\' ;\n proc sgplot data={0};\n title "Error and Correct rate by Depth";\n series x=depth y=correct_rate;\n series x=depth y=error_rate;\n yaxis label="Percentage" grid;\n run;\n /* roc chart */\n ODS PROCLABEL=\'ROCPLOT\' ;\n\n proc sgplot data={0};\n title "ROC Curve";\n series x=one_minus_specificity y=sensitivity;\n yaxis grid;\n run;\n /* Lift and Cumulative Lift */\n ODS PROCLABEL=\'LIFTPLOT\' ;\n proc sgplot data={0};\n Title "Lift and Cumulative Lift";\n series x=depth y=c_lift;\n series x=depth y=lift;\n yaxis grid;\n run;\n ' code += graphics.format(out) code += 'run; quit; %mend;\n' code += ('%%mangobj(%s,%s,%s);' % (objname, objtype, self.table)) if self.sas.nosub: print(code) return ll = self.sas.submit(code, 'text') obj1 = sp2.SASProcCommons._objectmethods(self, objname) return sp2.SASresults(obj1, self.sas, objname, self.sas.nosub, ll['LOG'])
3,050,446,093,375,741,400
This method will calculate assessment measures using the SAS AA_Model_Eval Macro used for SAS Enterprise Miner. Not all datasets can be assessed. This is designed for scored data that includes a target and prediction columns TODO: add code example of build, score, and then assess :param target: string that represents the target variable in the data :param prediction: string that represents the numeric prediction column in the data. For nominal targets this should a probability between (0,1). :param nominal: boolean to indicate if the Target Variable is nominal because the assessment measures are different. :param event: string which indicates which value of the nominal target variable is the event vs non-event :param kwargs: :return: SAS result object
saspy/sasdata.py
assessModel
kjnh10/saspy
python
def assessModel(self, target: str, prediction: str, nominal: bool=True, event: str=, **kwargs): '\n This method will calculate assessment measures using the SAS AA_Model_Eval Macro used for SAS Enterprise Miner.\n Not all datasets can be assessed. This is designed for scored data that includes a target and prediction columns\n TODO: add code example of build, score, and then assess\n\n :param target: string that represents the target variable in the data\n :param prediction: string that represents the numeric prediction column in the data. For nominal targets this should a probability between (0,1).\n :param nominal: boolean to indicate if the Target Variable is nominal because the assessment measures are different.\n :param event: string which indicates which value of the nominal target variable is the event vs non-event\n :param kwargs:\n :return: SAS result object\n ' self.sas.submit('%aamodel;') objtype = 'datastep' objname = ('{s:{c}^{n}}'.format(s=self.table[:3], n=3, c='_') + self.sas._objcnt()) code = '%macro proccall(d);\n' score_table = str(((self.libref + '.') + self.table)) binstats = str(((objname + '.') + 'ASSESSMENTSTATISTICS')) out = str(((objname + '.') + 'ASSESSMENTBINSTATISTICS')) level = 'interval' if nominal: level = 'class' try: if (len(event) < 1): raise Exception(event) except Exception: print('No event was specified for a nominal target. Here are possible options:\n') event_code = ('proc hpdmdb data=%s.%s %s classout=work._DMDBCLASSTARGET(keep=name nraw craw level frequency nmisspercent);' % (self.libref, self.table, self._dsopts())) event_code += ('\nclass %s ; \nrun;' % target) event_code += ("data _null_; set work._DMDBCLASSTARGET; where ^(NRAW eq . and CRAW eq ) and lowcase(name)=lowcase('%s');" % target) ec = self.sas._io.submit(event_code) HTML(ec['LST']) if nominal: code += ('%%aa_model_eval(DATA=%s%s, TARGET=%s, VAR=%s, level=%s, BINSTATS=%s, bins=100, out=%s, EVENT=%s);' % (score_table, self._dsopts(), target, prediction, level, binstats, out, event)) else: code += ('%%aa_model_eval(DATA=%s%s, TARGET=%s, VAR=%s, level=%s, BINSTATS=%s, bins=100, out=%s);' % (score_table, self._dsopts(), target, prediction, level, binstats, out)) rename_char = '\n data {0};\n set {0};\n if level in ("INTERVAL", "INT") then do;\n rename _sse_ = SumSquaredError\n _div_ = Divsor\n _ASE_ = AverageSquaredError\n _RASE_ = RootAverageSquaredError\n _MEANP_ = MeanPredictionValue\n _STDP_ = StandardDeviationPrediction\n _CVP_ = CoefficientVariationPrediction;\n end;\n else do;\n rename CR = MaxClassificationRate\n KSCut = KSCutOff\n CRDEPTH = MaxClassificationDepth\n MDepth = MedianClassificationDepth\n MCut = MedianEventDetectionCutOff\n CCut = ClassificationCutOff\n _misc_ = MisClassificationRate;\n end;\n run;\n ' code += rename_char.format(binstats) if nominal: graphics = '\n ODS PROCLABEL=\'ERRORPLOT\' ;\n proc sgplot data={0};\n title "Error and Correct rate by Depth";\n series x=depth y=correct_rate;\n series x=depth y=error_rate;\n yaxis label="Percentage" grid;\n run;\n /* roc chart */\n ODS PROCLABEL=\'ROCPLOT\' ;\n\n proc sgplot data={0};\n title "ROC Curve";\n series x=one_minus_specificity y=sensitivity;\n yaxis grid;\n run;\n /* Lift and Cumulative Lift */\n ODS PROCLABEL=\'LIFTPLOT\' ;\n proc sgplot data={0};\n Title "Lift and Cumulative Lift";\n series x=depth y=c_lift;\n series x=depth y=lift;\n yaxis grid;\n run;\n ' code += graphics.format(out) code += 'run; quit; %mend;\n' code += ('%%mangobj(%s,%s,%s);' % (objname, objtype, self.table)) if self.sas.nosub: print(code) return ll = self.sas.submit(code, 'text') obj1 = sp2.SASProcCommons._objectmethods(self, objname) return sp2.SASresults(obj1, self.sas, objname, self.sas.nosub, ll['LOG'])
def to_csv(self, file: str, opts: dict=None) -> str: '\n This method will export a SAS Data Set to a file in CSV format.\n\n :param file: the OS filesystem path of the file to be created (exported from this SAS Data Set)\n :return:\n ' opts = (opts if (opts is not None) else {}) ll = self._is_valid() if ll: if (not self.sas.batch): print(ll['LOG']) else: return ll else: return self.sas.write_csv(file, self.table, self.libref, self.dsopts, opts)
8,813,894,262,514,378,000
This method will export a SAS Data Set to a file in CSV format. :param file: the OS filesystem path of the file to be created (exported from this SAS Data Set) :return:
saspy/sasdata.py
to_csv
kjnh10/saspy
python
def to_csv(self, file: str, opts: dict=None) -> str: '\n This method will export a SAS Data Set to a file in CSV format.\n\n :param file: the OS filesystem path of the file to be created (exported from this SAS Data Set)\n :return:\n ' opts = (opts if (opts is not None) else {}) ll = self._is_valid() if ll: if (not self.sas.batch): print(ll['LOG']) else: return ll else: return self.sas.write_csv(file, self.table, self.libref, self.dsopts, opts)
def score(self, file: str='', code: str='', out: 'SASdata'=None) -> 'SASdata': '\n This method is meant to update a SAS Data object with a model score file.\n\n :param file: a file reference to the SAS score code\n :param code: a string of the valid SAS score code\n :param out: Where to the write the file. Defaults to update in place\n :return: The Scored SAS Data object.\n ' if (out is not None): outTable = out.table outLibref = out.libref else: outTable = self.table outLibref = self.libref codestr = code code = ('data %s.%s%s;' % (outLibref, outTable, self._dsopts())) code += ('set %s.%s%s;' % (self.libref, self.table, self._dsopts())) if (len(file) > 0): code += ('%%include "%s";' % file) else: code += ('%s;' % codestr) code += 'run;' if self.sas.nosub: print(code) return None ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
8,542,006,771,395,692,000
This method is meant to update a SAS Data object with a model score file. :param file: a file reference to the SAS score code :param code: a string of the valid SAS score code :param out: Where to the write the file. Defaults to update in place :return: The Scored SAS Data object.
saspy/sasdata.py
score
kjnh10/saspy
python
def score(self, file: str=, code: str=, out: 'SASdata'=None) -> 'SASdata': '\n This method is meant to update a SAS Data object with a model score file.\n\n :param file: a file reference to the SAS score code\n :param code: a string of the valid SAS score code\n :param out: Where to the write the file. Defaults to update in place\n :return: The Scored SAS Data object.\n ' if (out is not None): outTable = out.table outLibref = out.libref else: outTable = self.table outLibref = self.libref codestr = code code = ('data %s.%s%s;' % (outLibref, outTable, self._dsopts())) code += ('set %s.%s%s;' % (self.libref, self.table, self._dsopts())) if (len(file) > 0): code += ('%%include "%s";' % file) else: code += ('%s;' % codestr) code += 'run;' if self.sas.nosub: print(code) return None ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def to_frame(self, **kwargs) -> 'pd.DataFrame': "\n Export this SAS Data Set to a Pandas Data Frame\n\n :param kwargs:\n :return: Pandas data frame\n :rtype: 'pd.DataFrame'\n " return self.to_df(**kwargs)
-7,170,669,116,586,191,000
Export this SAS Data Set to a Pandas Data Frame :param kwargs: :return: Pandas data frame :rtype: 'pd.DataFrame'
saspy/sasdata.py
to_frame
kjnh10/saspy
python
def to_frame(self, **kwargs) -> 'pd.DataFrame': "\n Export this SAS Data Set to a Pandas Data Frame\n\n :param kwargs:\n :return: Pandas data frame\n :rtype: 'pd.DataFrame'\n " return self.to_df(**kwargs)
def to_df(self, method: str='MEMORY', **kwargs) -> 'pd.DataFrame': '\n Export this SAS Data Set to a Pandas Data Frame\n\n :param method: defaults to MEMORY; the original method. CSV is the other choice which uses an intermediary csv file; faster for large data\n :param kwargs:\n :return: Pandas data frame\n ' ll = self._is_valid() if ll: print(ll['LOG']) return None else: if self.sas.sascfg.pandas: raise type(self.sas.sascfg.pandas)(self.sas.sascfg.pandas.msg) return self.sas.sasdata2dataframe(self.table, self.libref, self.dsopts, method, **kwargs)
7,848,463,222,761,535,000
Export this SAS Data Set to a Pandas Data Frame :param method: defaults to MEMORY; the original method. CSV is the other choice which uses an intermediary csv file; faster for large data :param kwargs: :return: Pandas data frame
saspy/sasdata.py
to_df
kjnh10/saspy
python
def to_df(self, method: str='MEMORY', **kwargs) -> 'pd.DataFrame': '\n Export this SAS Data Set to a Pandas Data Frame\n\n :param method: defaults to MEMORY; the original method. CSV is the other choice which uses an intermediary csv file; faster for large data\n :param kwargs:\n :return: Pandas data frame\n ' ll = self._is_valid() if ll: print(ll['LOG']) return None else: if self.sas.sascfg.pandas: raise type(self.sas.sascfg.pandas)(self.sas.sascfg.pandas.msg) return self.sas.sasdata2dataframe(self.table, self.libref, self.dsopts, method, **kwargs)
def to_df_CSV(self, tempfile: str=None, tempkeep: bool=False, **kwargs) -> 'pd.DataFrame': "\n Export this SAS Data Set to a Pandas Data Frame via CSV file\n\n :param tempfile: [optional] an OS path for a file to use for the local CSV file; default it a temporary file that's cleaned up\n :param tempkeep: if you specify your own file to use with tempfile=, this controls whether it's cleaned up after using it\n :param kwargs:\n :return: Pandas data frame\n :rtype: 'pd.DataFrame'\n " return self.to_df(method='CSV', tempfile=tempfile, tempkeep=tempkeep, **kwargs)
1,314,355,456,754,178,600
Export this SAS Data Set to a Pandas Data Frame via CSV file :param tempfile: [optional] an OS path for a file to use for the local CSV file; default it a temporary file that's cleaned up :param tempkeep: if you specify your own file to use with tempfile=, this controls whether it's cleaned up after using it :param kwargs: :return: Pandas data frame :rtype: 'pd.DataFrame'
saspy/sasdata.py
to_df_CSV
kjnh10/saspy
python
def to_df_CSV(self, tempfile: str=None, tempkeep: bool=False, **kwargs) -> 'pd.DataFrame': "\n Export this SAS Data Set to a Pandas Data Frame via CSV file\n\n :param tempfile: [optional] an OS path for a file to use for the local CSV file; default it a temporary file that's cleaned up\n :param tempkeep: if you specify your own file to use with tempfile=, this controls whether it's cleaned up after using it\n :param kwargs:\n :return: Pandas data frame\n :rtype: 'pd.DataFrame'\n " return self.to_df(method='CSV', tempfile=tempfile, tempkeep=tempkeep, **kwargs)
def to_json(self, pretty: bool=False, sastag: bool=False, **kwargs) -> str: '\n Export this SAS Data Set to a JSON Object\n PROC JSON documentation: http://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p06hstivs0b3hsn1cb4zclxukkut.htm&locale=en\n\n :param pretty: boolean False return JSON on one line True returns formatted JSON\n :param sastag: include SAS meta tags\n :param kwargs:\n :return: JSON str\n ' code = 'filename file1 temp;\n' code += 'proc json out=file1' if pretty: code += ' pretty ' if (not sastag): code += ' nosastags ' code += (';\n export %s.%s %s;\n run;' % (self.libref, self.table, self._dsopts())) if self.sas.nosub: print(code) return None ll = self._is_valid() runcode = True if ll: runcode = False if runcode: ll = self.sas.submit(code, 'text') elog = [] fpath = '' for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('JSONFilePath:'): fpath = line[14:] if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if len(fpath): with open(fpath, 'r') as myfile: json_str = myfile.read() return json_str
-1,177,426,332,884,585,200
Export this SAS Data Set to a JSON Object PROC JSON documentation: http://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p06hstivs0b3hsn1cb4zclxukkut.htm&locale=en :param pretty: boolean False return JSON on one line True returns formatted JSON :param sastag: include SAS meta tags :param kwargs: :return: JSON str
saspy/sasdata.py
to_json
kjnh10/saspy
python
def to_json(self, pretty: bool=False, sastag: bool=False, **kwargs) -> str: '\n Export this SAS Data Set to a JSON Object\n PROC JSON documentation: http://go.documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p06hstivs0b3hsn1cb4zclxukkut.htm&locale=en\n\n :param pretty: boolean False return JSON on one line True returns formatted JSON\n :param sastag: include SAS meta tags\n :param kwargs:\n :return: JSON str\n ' code = 'filename file1 temp;\n' code += 'proc json out=file1' if pretty: code += ' pretty ' if (not sastag): code += ' nosastags ' code += (';\n export %s.%s %s;\n run;' % (self.libref, self.table, self._dsopts())) if self.sas.nosub: print(code) return None ll = self._is_valid() runcode = True if ll: runcode = False if runcode: ll = self.sas.submit(code, 'text') elog = [] fpath = for line in ll['LOG'].splitlines(): if line[self.sas.logoffset:].startswith('JSONFilePath:'): fpath = line[14:] if line[self.sas.logoffset:].startswith('ERROR'): elog.append(line) if len(elog): raise RuntimeError('\n'.join(elog)) if len(fpath): with open(fpath, 'r') as myfile: json_str = myfile.read() return json_str
def heatmap(self, x: str, y: str, options: str='', title: str='', label: str='') -> object: '\n Documentation link: http://support.sas.com/documentation/cdl/en/grstatproc/67909/HTML/default/viewer.htm#n0w12m4cn1j5c6n12ak64u1rys4w.htm\n\n :param x: x variable\n :param y: y variable\n :param options: display options (string)\n :param title: graph title\n :param label:\n :return:\n ' code = ('proc sgplot data=%s.%s %s;' % (self.libref, self.table, self._dsopts())) if len(options): code += ("\n\theatmap x='%s'n y='%s'n / %s;" % (x, y, options)) else: code += ("\n\theatmap x='%s'n y='%s'n;" % (x, y)) if (len(label) > 0): code += ((" LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += ("\ttitle '%s';\n" % title) code += 'run;\ntitle;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
-2,740,617,728,054,231,600
Documentation link: http://support.sas.com/documentation/cdl/en/grstatproc/67909/HTML/default/viewer.htm#n0w12m4cn1j5c6n12ak64u1rys4w.htm :param x: x variable :param y: y variable :param options: display options (string) :param title: graph title :param label: :return:
saspy/sasdata.py
heatmap
kjnh10/saspy
python
def heatmap(self, x: str, y: str, options: str=, title: str=, label: str=) -> object: '\n Documentation link: http://support.sas.com/documentation/cdl/en/grstatproc/67909/HTML/default/viewer.htm#n0w12m4cn1j5c6n12ak64u1rys4w.htm\n\n :param x: x variable\n :param y: y variable\n :param options: display options (string)\n :param title: graph title\n :param label:\n :return:\n ' code = ('proc sgplot data=%s.%s %s;' % (self.libref, self.table, self._dsopts())) if len(options): code += ("\n\theatmap x='%s'n y='%s'n / %s;" % (x, y, options)) else: code += ("\n\theatmap x='%s'n y='%s'n;" % (x, y)) if (len(label) > 0): code += ((" LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += ("\ttitle '%s';\n" % title) code += 'run;\ntitle;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def hist(self, var: str, title: str='', label: str='') -> object: '\n This method requires a numeric column (use the contents method to see column types) and generates a histogram.\n\n :param var: the NUMERIC variable (column) you want to plot\n :param title: an optional Title for the chart\n :param label: LegendLABEL= value for sgplot\n :return:\n ' code = (((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) code += ((";\n\thistogram '" + var) + "'n / scale=count") if (len(label) > 0): code += ((" LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += ((("\tdensity '" + var) + "'n;\nrun;\n") + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
-8,487,482,241,291,482,000
This method requires a numeric column (use the contents method to see column types) and generates a histogram. :param var: the NUMERIC variable (column) you want to plot :param title: an optional Title for the chart :param label: LegendLABEL= value for sgplot :return:
saspy/sasdata.py
hist
kjnh10/saspy
python
def hist(self, var: str, title: str=, label: str=) -> object: '\n This method requires a numeric column (use the contents method to see column types) and generates a histogram.\n\n :param var: the NUMERIC variable (column) you want to plot\n :param title: an optional Title for the chart\n :param label: LegendLABEL= value for sgplot\n :return:\n ' code = (((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) code += ((";\n\thistogram '" + var) + "'n / scale=count") if (len(label) > 0): code += ((" LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += ((("\tdensity '" + var) + "'n;\nrun;\n") + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def top(self, var: str, n: int=10, order: str='freq', title: str='') -> object: "\n Return the most commonly occuring items (levels)\n\n :param var: the CHAR variable (column) you want to count\n :param n: the top N to be displayed (defaults to 10)\n :param order: default to most common use order='data' to get then in alphbetic order\n :param title: an optional Title for the chart\n :return: Data Table\n " code = ('proc freq data=%s.%s %s order=%s noprint;' % (self.libref, self.table, self._dsopts(), order)) code += ("\n\ttables '%s'n / out=tmpFreqOut;" % var) code += '\nrun;' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += ('proc print data=tmpFreqOut(obs=%s); \nrun;' % n) code += 'title;' if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc freq data=%s.%s%s order=%s noprint;' % (self.libref, self.table, self._dsopts(), order)) code += ("\n\ttables '%s'n / out=tmpFreqOut;" % var) code += '\nrun;' code += ('\ndata tmpFreqOut; set tmpFreqOut(obs=%s); run;' % n) return self._returnPD(code, 'tmpFreqOut') elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
4,979,005,287,876,301,000
Return the most commonly occuring items (levels) :param var: the CHAR variable (column) you want to count :param n: the top N to be displayed (defaults to 10) :param order: default to most common use order='data' to get then in alphbetic order :param title: an optional Title for the chart :return: Data Table
saspy/sasdata.py
top
kjnh10/saspy
python
def top(self, var: str, n: int=10, order: str='freq', title: str=) -> object: "\n Return the most commonly occuring items (levels)\n\n :param var: the CHAR variable (column) you want to count\n :param n: the top N to be displayed (defaults to 10)\n :param order: default to most common use order='data' to get then in alphbetic order\n :param title: an optional Title for the chart\n :return: Data Table\n " code = ('proc freq data=%s.%s %s order=%s noprint;' % (self.libref, self.table, self._dsopts(), order)) code += ("\n\ttables '%s'n / out=tmpFreqOut;" % var) code += '\nrun;' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += ('proc print data=tmpFreqOut(obs=%s); \nrun;' % n) code += 'title;' if self.sas.nosub: print(code) return ll = self._is_valid() if (self.results.upper() == 'PANDAS'): code = ('proc freq data=%s.%s%s order=%s noprint;' % (self.libref, self.table, self._dsopts(), order)) code += ("\n\ttables '%s'n / out=tmpFreqOut;" % var) code += '\nrun;' code += ('\ndata tmpFreqOut; set tmpFreqOut(obs=%s); run;' % n) return self._returnPD(code, 'tmpFreqOut') elif self.HTML: if (not ll): ll = self.sas._io.submit(code) if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll else: if (not ll): ll = self.sas._io.submit(code, 'text') if (not self.sas.batch): print(ll['LST']) else: return ll
def bar(self, var: str, title: str='', label: str='') -> object: '\n This method requires a character column (use the contents method to see column types)\n and generates a bar chart.\n\n :param var: the CHAR variable (column) you want to plot\n :param title: an optional title for the chart\n :param label: LegendLABEL= value for sgplot\n :return: graphic plot\n ' code = (((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) code += ((";\n\tvbar '" + var) + "'n") if (len(label) > 0): code += ((" / LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += 'run;\ntitle;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
8,782,738,664,675,304,000
This method requires a character column (use the contents method to see column types) and generates a bar chart. :param var: the CHAR variable (column) you want to plot :param title: an optional title for the chart :param label: LegendLABEL= value for sgplot :return: graphic plot
saspy/sasdata.py
bar
kjnh10/saspy
python
def bar(self, var: str, title: str=, label: str=) -> object: '\n This method requires a character column (use the contents method to see column types)\n and generates a bar chart.\n\n :param var: the CHAR variable (column) you want to plot\n :param title: an optional title for the chart\n :param label: LegendLABEL= value for sgplot\n :return: graphic plot\n ' code = (((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) code += ((";\n\tvbar '" + var) + "'n") if (len(label) > 0): code += ((" / LegendLABEL='" + label) + "'") code += ';\n' if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') code += 'run;\ntitle;' if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def series(self, x: str, y: list, title: str='') -> object: '\n This method plots a series of x,y coordinates. You can provide a list of y columns for multiple line plots.\n\n :param x: the x axis variable; generally a time or continuous variable.\n :param y: the y axis variable(s), you can specify a single column or a list of columns\n :param title: an optional Title for the chart\n :return: graph object\n ' code = ((((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') if isinstance(y, list): num = len(y) else: num = 1 y = [y] for i in range(num): code += (((("\tseries x='" + x) + "'n y='") + str(y[i])) + "'n;\n") code += ('run;\n' + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
-2,095,631,289,854,435,800
This method plots a series of x,y coordinates. You can provide a list of y columns for multiple line plots. :param x: the x axis variable; generally a time or continuous variable. :param y: the y axis variable(s), you can specify a single column or a list of columns :param title: an optional Title for the chart :return: graph object
saspy/sasdata.py
series
kjnh10/saspy
python
def series(self, x: str, y: list, title: str=) -> object: '\n This method plots a series of x,y coordinates. You can provide a list of y columns for multiple line plots.\n\n :param x: the x axis variable; generally a time or continuous variable.\n :param y: the y axis variable(s), you can specify a single column or a list of columns\n :param title: an optional Title for the chart\n :return: graph object\n ' code = ((((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') if isinstance(y, list): num = len(y) else: num = 1 y = [y] for i in range(num): code += (((("\tseries x='" + x) + "'n y='") + str(y[i])) + "'n;\n") code += ('run;\n' + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def scatter(self, x: str, y: list, title: str='') -> object: '\n This method plots a scatter of x,y coordinates. You can provide a list of y columns for multiple line plots.\n\n :param x: the x axis variable; generally a time or continuous variable.\n :param y: the y axis variable(s), you can specify a single column or a list of columns\n :param title: an optional Title for the chart\n :return: graph object\n ' code = ((((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') if isinstance(y, list): num = len(y) else: num = 1 y = [y] for i in range(num): code += (((("\tscatter x='" + x) + "'n y='") + y[i]) + "'n;\n") code += ('run;\n' + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
-1,922,689,700,356,596,500
This method plots a scatter of x,y coordinates. You can provide a list of y columns for multiple line plots. :param x: the x axis variable; generally a time or continuous variable. :param y: the y axis variable(s), you can specify a single column or a list of columns :param title: an optional Title for the chart :return: graph object
saspy/sasdata.py
scatter
kjnh10/saspy
python
def scatter(self, x: str, y: list, title: str=) -> object: '\n This method plots a scatter of x,y coordinates. You can provide a list of y columns for multiple line plots.\n\n :param x: the x axis variable; generally a time or continuous variable.\n :param y: the y axis variable(s), you can specify a single column or a list of columns\n :param title: an optional Title for the chart\n :return: graph object\n ' code = ((((('proc sgplot data=' + self.libref) + '.') + self.table) + self._dsopts()) + ';\n') if (len(title) > 0): code += (('\ttitle "' + title) + '";\n') if isinstance(y, list): num = len(y) else: num = 1 y = [y] for i in range(num): code += (((("\tscatter x='" + x) + "'n y='") + y[i]) + "'n;\n") code += ('run;\n' + 'title;') if self.sas.nosub: print(code) return ll = self._is_valid() if (not ll): html = self.HTML self.HTML = 1 ll = self.sas._io.submit(code) self.HTML = html if (not self.sas.batch): self.sas.DISPLAY(self.sas.HTML(ll['LST'])) else: return ll
def _invert(f_x, y, x, domain=S.Complexes): "\n Reduce the complex valued equation ``f(x) = y`` to a set of equations\n ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is\n a simpler function than ``f(x)``. The return value is a tuple ``(g(x),\n set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is\n the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``.\n Here, ``y`` is not necessarily a symbol.\n\n The ``set_h`` contains the functions along with the information\n about their domain in which they are valid, through set\n operations. For instance, if ``y = Abs(x) - n``, is inverted\n in the real domain, then, the ``set_h`` doesn't simply return\n `{-n, n}`, as the nature of `n` is unknown; rather it will return:\n `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})`\n\n By default, the complex domain is used but note that inverting even\n seemingly simple functions like ``exp(x)`` can give very different\n result in the complex domain than are obtained in the real domain.\n (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued\n in the complex domain, having infinitely many branches.)\n\n If you are working with real values only (or you are not sure which\n function to use) you should probably use set the domain to\n ``S.Reals`` (or use `invert\\_real` which does that automatically).\n\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import invert_complex, invert_real\n >>> from sympy.abc import x, y\n >>> from sympy import exp, log\n\n When does exp(x) == y?\n\n >>> invert_complex(exp(x), y, x)\n (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers()))\n >>> invert_real(exp(x), y, x)\n (x, Intersection((-oo, oo), {log(y)}))\n\n When does exp(x) == 1?\n\n >>> invert_complex(exp(x), 1, x)\n (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers()))\n >>> invert_real(exp(x), 1, x)\n (x, {0})\n\n See Also\n ========\n invert_real, invert_complex\n " x = sympify(x) if (not x.is_Symbol): raise ValueError('x must be a symbol') f_x = sympify(f_x) if (not f_x.has(x)): raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if y.has(x): raise ValueError('y should be independent of x ') if domain.is_subset(S.Reals): (x, s) = _invert_real(f_x, FiniteSet(y), x) else: (x, s) = _invert_complex(f_x, FiniteSet(y), x) return (x, (s.intersection(domain) if isinstance(s, FiniteSet) else s))
-329,772,719,969,644,500
Reduce the complex valued equation ``f(x) = y`` to a set of equations ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is a simpler function than ``f(x)``. The return value is a tuple ``(g(x), set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``. Here, ``y`` is not necessarily a symbol. The ``set_h`` contains the functions along with the information about their domain in which they are valid, through set operations. For instance, if ``y = Abs(x) - n``, is inverted in the real domain, then, the ``set_h`` doesn't simply return `{-n, n}`, as the nature of `n` is unknown; rather it will return: `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})` By default, the complex domain is used but note that inverting even seemingly simple functions like ``exp(x)`` can give very different result in the complex domain than are obtained in the real domain. (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued in the complex domain, having infinitely many branches.) If you are working with real values only (or you are not sure which function to use) you should probably use set the domain to ``S.Reals`` (or use `invert\_real` which does that automatically). Examples ======== >>> from sympy.solvers.solveset import invert_complex, invert_real >>> from sympy.abc import x, y >>> from sympy import exp, log When does exp(x) == y? >>> invert_complex(exp(x), y, x) (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers())) >>> invert_real(exp(x), y, x) (x, Intersection((-oo, oo), {log(y)})) When does exp(x) == 1? >>> invert_complex(exp(x), 1, x) (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers())) >>> invert_real(exp(x), 1, x) (x, {0}) See Also ======== invert_real, invert_complex
sympy/solvers/solveset.py
_invert
aktech/sympy
python
def _invert(f_x, y, x, domain=S.Complexes): "\n Reduce the complex valued equation ``f(x) = y`` to a set of equations\n ``{g(x) = h_1(y), g(x) = h_2(y), ..., g(x) = h_n(y) }`` where ``g(x)`` is\n a simpler function than ``f(x)``. The return value is a tuple ``(g(x),\n set_h)``, where ``g(x)`` is a function of ``x`` and ``set_h`` is\n the set of function ``{h_1(y), h_2(y), ..., h_n(y)}``.\n Here, ``y`` is not necessarily a symbol.\n\n The ``set_h`` contains the functions along with the information\n about their domain in which they are valid, through set\n operations. For instance, if ``y = Abs(x) - n``, is inverted\n in the real domain, then, the ``set_h`` doesn't simply return\n `{-n, n}`, as the nature of `n` is unknown; rather it will return:\n `Intersection([0, oo) {n}) U Intersection((-oo, 0], {-n})`\n\n By default, the complex domain is used but note that inverting even\n seemingly simple functions like ``exp(x)`` can give very different\n result in the complex domain than are obtained in the real domain.\n (In the case of ``exp(x)``, the inversion via ``log`` is multi-valued\n in the complex domain, having infinitely many branches.)\n\n If you are working with real values only (or you are not sure which\n function to use) you should probably use set the domain to\n ``S.Reals`` (or use `invert\\_real` which does that automatically).\n\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import invert_complex, invert_real\n >>> from sympy.abc import x, y\n >>> from sympy import exp, log\n\n When does exp(x) == y?\n\n >>> invert_complex(exp(x), y, x)\n (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers()))\n >>> invert_real(exp(x), y, x)\n (x, Intersection((-oo, oo), {log(y)}))\n\n When does exp(x) == 1?\n\n >>> invert_complex(exp(x), 1, x)\n (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers()))\n >>> invert_real(exp(x), 1, x)\n (x, {0})\n\n See Also\n ========\n invert_real, invert_complex\n " x = sympify(x) if (not x.is_Symbol): raise ValueError('x must be a symbol') f_x = sympify(f_x) if (not f_x.has(x)): raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if y.has(x): raise ValueError('y should be independent of x ') if domain.is_subset(S.Reals): (x, s) = _invert_real(f_x, FiniteSet(y), x) else: (x, s) = _invert_complex(f_x, FiniteSet(y), x) return (x, (s.intersection(domain) if isinstance(s, FiniteSet) else s))
def invert_real(f_x, y, x, domain=S.Reals): '\n Inverts a real-valued function. Same as _invert, but sets\n the domain to ``S.Reals`` before inverting.\n ' return _invert(f_x, y, x, domain)
5,623,686,675,543,600,000
Inverts a real-valued function. Same as _invert, but sets the domain to ``S.Reals`` before inverting.
sympy/solvers/solveset.py
invert_real
aktech/sympy
python
def invert_real(f_x, y, x, domain=S.Reals): '\n Inverts a real-valued function. Same as _invert, but sets\n the domain to ``S.Reals`` before inverting.\n ' return _invert(f_x, y, x, domain)
def _invert_real(f, g_ys, symbol): 'Helper function for _invert.' if (f == symbol): return (f, g_ys) n = Dummy('n', real=True) if (hasattr(f, 'inverse') and (not isinstance(f, (TrigonometricFunction, HyperbolicFunction)))): if (len(f.args) > 1): raise ValueError('Only functions with one argument are supported.') return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): pos = Interval(0, S.Infinity) neg = Interval(S.NegativeInfinity, 0) return _invert_real(f.args[0], Union(imageset(Lambda(n, n), g_ys).intersect(pos), imageset(Lambda(n, (- n)), g_ys).intersect(neg)), symbol) if f.is_Add: (g, h) = f.as_independent(symbol) if (g is not S.Zero): return _invert_real(h, imageset(Lambda(n, (n - g)), g_ys), symbol) if f.is_Mul: (g, h) = f.as_independent(symbol) if (g is not S.One): return _invert_real(h, imageset(Lambda(n, (n / g)), g_ys), symbol) if f.is_Pow: (base, expo) = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if (not expo_has_sym): res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: (numer, denom) = expo.as_numer_denom() if ((numer == S.One) or (numer == (- S.One))): return _invert_real(base, res, symbol) elif ((numer % 2) == 0): n = Dummy('n') neg_res = imageset(Lambda(n, (- n)), res) return _invert_real(base, (res + neg_res), symbol) else: return _invert_real(base, res, symbol) else: if (not base.is_positive): raise ValueError('x**w where w is irrational is not defined for negative x') return _invert_real(base, res, symbol) if (not base_has_sym): return _invert_real(expo, imageset(Lambda(n, (log(n) / log(base))), g_ys), symbol) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(f, (sin, csc)): F = (asin if isinstance(f, sin) else acsc) return ((lambda a: ((n * pi) + (((- 1) ** n) * F(a)))),) if isinstance(f, (cos, sec)): F = (acos if isinstance(f, cos) else asec) return ((lambda a: (((2 * n) * pi) + F(a))), (lambda a: (((2 * n) * pi) - F(a)))) if isinstance(f, (tan, cot)): return ((lambda a: ((n * pi) + f.inverse()(a))),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys)
-8,353,688,872,299,090,000
Helper function for _invert.
sympy/solvers/solveset.py
_invert_real
aktech/sympy
python
def _invert_real(f, g_ys, symbol): if (f == symbol): return (f, g_ys) n = Dummy('n', real=True) if (hasattr(f, 'inverse') and (not isinstance(f, (TrigonometricFunction, HyperbolicFunction)))): if (len(f.args) > 1): raise ValueError('Only functions with one argument are supported.') return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): pos = Interval(0, S.Infinity) neg = Interval(S.NegativeInfinity, 0) return _invert_real(f.args[0], Union(imageset(Lambda(n, n), g_ys).intersect(pos), imageset(Lambda(n, (- n)), g_ys).intersect(neg)), symbol) if f.is_Add: (g, h) = f.as_independent(symbol) if (g is not S.Zero): return _invert_real(h, imageset(Lambda(n, (n - g)), g_ys), symbol) if f.is_Mul: (g, h) = f.as_independent(symbol) if (g is not S.One): return _invert_real(h, imageset(Lambda(n, (n / g)), g_ys), symbol) if f.is_Pow: (base, expo) = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if (not expo_has_sym): res = imageset(Lambda(n, real_root(n, expo)), g_ys) if expo.is_rational: (numer, denom) = expo.as_numer_denom() if ((numer == S.One) or (numer == (- S.One))): return _invert_real(base, res, symbol) elif ((numer % 2) == 0): n = Dummy('n') neg_res = imageset(Lambda(n, (- n)), res) return _invert_real(base, (res + neg_res), symbol) else: return _invert_real(base, res, symbol) else: if (not base.is_positive): raise ValueError('x**w where w is irrational is not defined for negative x') return _invert_real(base, res, symbol) if (not base_has_sym): return _invert_real(expo, imageset(Lambda(n, (log(n) / log(base))), g_ys), symbol) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(f, (sin, csc)): F = (asin if isinstance(f, sin) else acsc) return ((lambda a: ((n * pi) + (((- 1) ** n) * F(a)))),) if isinstance(f, (cos, sec)): F = (acos if isinstance(f, cos) else asec) return ((lambda a: (((2 * n) * pi) + F(a))), (lambda a: (((2 * n) * pi) - F(a)))) if isinstance(f, (tan, cot)): return ((lambda a: ((n * pi) + f.inverse()(a))),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys)