code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
assert site in ['Pro', 'HADAX'] assert _type in u.ORDER_TYPE params = { 'account-id': acc_id, 'amount': amount, 'symbol': symbol, 'type': _type, 'source': 'api' } if price: params['price'] = price path = f'/v1{"/" if site == "Pro" else "/hadax/"}order/orders/place' return api_key_post(params, path, _async=_async)
def send_order(self, acc_id, amount, symbol, _type, price=0, site='Pro', _async=False)
创建并执行订单 :param amount: :param source: 如果使用借贷资产交易,请在下单接口,请求参数source中填写'margin-api' :param symbol: :param _type: 可选值 {buy-market:市价买, sell-market:市价卖, buy-limit:限价买, sell-limit:限价卖, buy-ioc:IOC买单, sell-ioc:IOC卖单} :param price: :return:
3.628369
3.952368
0.918024
params = {} path = f'/v1/order/orders/{order_id}/submitcancel' return api_key_post(params, path, _async=_async)
def cancel_order(self, order_id, _async=False)
撤销订单 :param order_id: :return:
5.472083
6.940178
0.788464
assert isinstance(order_ids, list) params = {'order-ids': order_ids} path = f'/v1/order/orders/batchcancel' return api_key_post(params, path, _async=_async)
def batchcancel_orders(self, order_ids: list, _async=False)
批量撤销订单 :param order_id: :return:
4.021963
4.08676
0.984145
params = {} path = '/v1/order/batchCancelOpenOrders' params['account-id'] = acc_id if symbol: params['symbol'] = symbol if side: assert side in ['buy', 'sell'] params['side'] = side if size: params['size'] = size return api_key_get(params, path, _async=_async)
def batchcancel_openOrders(self, acc_id, symbol=None, side=None, size=None, _async=False)
批量撤销未成交订单 :param acc_id: 帐号ID :param symbol: 交易对 :param side: 方向 :param size: :param _async: :return:
2.462714
2.811112
0.876064
params = {} path = f'/v1/order/orders/{order_id}' return api_key_get(params, path, _async=_async)
def get_order_info(self, order_id, _async=False)
查询某个订单 :param order_id: :return:
5.284648
6.308768
0.837667
params = {} path = '/v1/order/openOrders' if all([acc_id, symbol]): params['account-id'] = acc_id params['symbol'] = symbol if side: assert side in ['buy', 'sell'] params['side'] = side if size: params['size'] = size return api_key_get(params, path, _async=_async)
def get_openOrders(self, acc_id=None, symbol=None, side=None, size=None, _async=False)
查询未成交订单 :param acc_id: 帐号ID :param symbol: 交易对ID :param side: 交易方向,'buy'或者'sell' :param size: 记录条数,最大500 :return:
2.556584
2.834715
0.901884
params = {} path = f'/v1/order/orders/{order_id}/matchresults' return api_key_get(params, path, _async=_async)
def get_order_matchresults(self, order_id, _async=False)
查询某个订单的成交明细 :param order_id: :return:
4.878521
5.709681
0.85443
states = ','.join(states) params = {'symbol': symbol, 'states': states} if types: params['types'] = ','.join(types) if start_date: sd = parser.parse(start_date).date() params['start-date'] = str(sd) if end_date: ed = parser.parse(end_date).date() params['end-date'] = str(ed) if _from: params['from'] = _from if direct: assert direct in ['prev', 'next'] params['direct'] = direct if size: params['size'] = size path = '/v1/order/orders' return api_key_get(params, path, _async=_async)
def get_orders_info(self, symbol, states:list, types:list=None, start_date=None, end_date=None, _from=None, direct=None, size=None, _async=False)
查询当前委托、历史委托 :param symbol: :param states: 可选值 {pre-submitted 准备提交, submitted 已提交, partial-filled 部分成交, partial-canceled 部分成交撤销, filled 完全成交, canceled 已撤销} :param types: 可选值 {buy-market:市价买, sell-market:市价卖, buy-limit:限价买, sell-limit:限价卖} :param start_date: :param end_date: :param _from: :param direct: 可选值{prev 向前,next 向后} :param size: :return:
2.020036
2.113863
0.955614
params = { 'address': address, 'amount': amount, 'currency': currency, 'fee': fee, 'addr-tag': addr_tag } path = '/v1/dw/withdraw/api/create' return api_key_post(params, path, _async=_async)
def req_withdraw(self, address, amount, currency, fee=0, addr_tag="", _async=False)
申请提现虚拟币 :param address: :param amount: :param currency:btc, ltc, bcc, eth, etc ...(火币Pro支持的币种) :param fee: :param addr_tag: :return: { "status": "ok", "data": 700 }
3.112602
3.267643
0.952553
params = {} path = f'/v1/dw/withdraw-virtual/{address_id}/cancel' return api_key_post(params, path, _async=_async)
def cancel_withdraw(self, address_id, _async=False)
申请取消提现虚拟币 :param address_id: :return: { "status": "ok", "data": 700 }
8.159781
8.528395
0.956778
params = { 'account-id': acc_id, 'amount': amount, 'symbol': symbol, 'type': _type, 'source': 'margin-api' } if price: params['price'] = price path = '/v1/order/orders/place' return api_key_post(params, path, _async=_async)
def send_margin_order(self, acc_id, amount, symbol, _type, price=0, _async=False)
创建并执行借贷订单 :param amount: :param symbol: :param _type: 可选值 {buy-market:市价买, sell-market:市价卖, buy-limit:限价买, sell-limit:限价卖} :param price: :return:
2.695175
3.094605
0.870927
params = {'symbol': symbol, 'currency': currency, 'amount': amount} path = '/v1/dw/transfer-in/margin' return api_key_post(params, path, _async=_async)
def exchange_to_margin(self, symbol, currency, amount, _async=False)
现货账户划入至借贷账户 :param amount: :param currency: :param symbol: :return:
4.604233
5.837614
0.788718
params = {'order-id': order_id, 'amount': amount} path = f'/v1/margin/orders/{order_id}/repay' return api_key_post(params, path, _async=_async)
def repay_loan(self, order_id, amount, _async=False)
归还借贷 :param order_id: :param amount: :return:
3.667282
4.352284
0.842611
params = {} path = '/v1/margin/accounts/balance' if symbol: params['symbol'] = symbol return api_key_get(params, path, _async=_async)
def get_margin_balance(self, symbol=None, _async=False)
借贷账户详情,支持查询单个币种 :param symbol: :return:
4.284053
4.692061
0.913043
params = {} path = '/etf/swap/config' params['etf_name'] = etf_name return api_key_get(params, path, _async=_async)
def get_etf_config(self, etf_name, _async=False)
查询etf的基本信息 :param etf_name: etf基金名称 :param _async: :return:
5.821456
7.164642
0.812526
params = {} path = '/etf/swap/in' params['etf_name'] = etf_name params['amount'] = amount return api_key_post(params, path, _async=_async)
def etf_swap_in(self, etf_name, amount, _async=False)
换入etf :param etf_name: etf基金名称 :param amount: 数量 :param _async: :return:
3.853176
4.231962
0.910494
params = {} path = '/etf/list' params['etf_name'] = etf_name params['offset'] = offset params['limit'] = limit return api_key_get(params, path, _async=_async)
def get_etf_records(self, etf_name, offset, limit, _async=False)
查询etf换入换出明细 :param etf_name: eth基金名称 :param offset: 开始位置,0为最新一条 :param limit: 返回记录条数(0, 100] :param _async: :return:
3.108302
3.729032
0.833541
params = {} path = '/quotation/market/history/kline' params['symbol'] = symbol params['period'] = period if limit: params['limit'] = limit return api_key_get(params, path, _async=_async)
def get_quotation_kline(self, symbol, period, limit=None, _async=False)
获取etf净值 :param symbol: etf名称 :param period: K线类型 :param limit: 获取数量 :param _async: :return:
3.218361
3.762825
0.855304
params = {} path = '/v1/subuser/transfer' params['sub-uid'] = sub_uid params['currency'] = currency params['amount'] = amount params['type'] = transfer_type return api_key_post(params, path, _async=_async)
def transfer(self, sub_uid, currency, amount, transfer_type, _async=False)
母账户执行子账户划转 :param sub_uid: 子账户id :param currency: 币种 :param amount: 划转金额 :param transfer_type: 划转类型,master-transfer-in(子账户划转给母账户虚拟币)/ master-transfer-out (母账户划转给子账户虚拟币)/master-point-transfer-in (子账户划转给母账户点卡)/master-point-transfer-out(母账户划转给子账户点卡) :param _async: 是否异步执行 :return:
2.91972
3.829283
0.762472
params = {} path = '/v1/subuser/aggregate-balance' return api_key_get(params, path, _async=_async)
def get_aggregate_balance(self, _async=False)
查询所有子账户汇总 :param _async: 是否异步执行 :return:
9.6237
8.075408
1.191729
params = {} params['sub-uid'] = sub_id path = '/v1/account/accounts/{sub-uid}' return api_key_get(params, path, _async=_async)
def get_sub_balance(self, sub_id, _async=False)
查询子账户各币种账户余额 :param sub_uid: 子账户id :param _async: :return:
6.359965
5.94306
1.07015
params = {'symbol': symbol, 'period': period, 'size': size} url = u.MARKET_URL + '/market/history/kline' def _wrapper(_func): @wraps(_func) def handle(): _func(http_get_request(url, params)) return handle return _wrapper
def get_kline(self, symbol, period, size=150)
获取K线 :param symbol :param period: 可选值:{1min, 5min, 15min, 30min, 60min, 1day, 1mon, 1week, 1year } :param size: 可选值: [1,2000] :return:
4.318429
4.850175
0.890366
params = {'symbol': symbol, 'type': _type} url = u.MARKET_URL + '/market/depth' def _wrapper(_func): @wraps(_func) def handle(): _func(http_get_request(url, params)) return handle return _wrapper
def get_last_depth(self, symbol, _type)
获取marketdepth :param symbol :param type: 可选值:{ percent10, step0, step1, step2, step3, step4, step5 } :return:
5.808034
5.964951
0.973693
params = {'symbol': symbol} url = u.MARKET_URL + '/market/trade' def _wrapper(_func): @wraps(_func) def handle(): _func(http_get_request(url, params)) return handle return _wrapper
def get_last_ticker(self, symbol)
获取最新的ticker :param symbol :return:
6.987968
7.854821
0.889641
params = {} url = u.MARKET_URL + '/market/tickers' def _wrapper(_func): @wraps(_func) def handle(): _func(http_get_request(url, params)) return handle return _wrapper
def get_all_last_24h_kline(self)
获取所有ticker :param _async: :return:
7.832867
7.670788
1.021129
assert site in ['Pro', 'HADAX'] params = {} path = f'/v1{"/" if site == "Pro" else "/hadax/"}common/symbols' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_symbols(self, site='Pro')
获取支持的交易对 :param site: :return:
8.704699
7.13408
1.220157
assert site in ['Pro', 'HADAX'] path = f'/v1{"/" if site == "Pro" else "/hadax/"}account/accounts/{acc_id}/balance' # params = {'account-id': self.acct_id} params = {} def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_balance(self, acc_id, site='Pro')
获取当前账户资产 :return:
6.034825
5.792897
1.041763
assert site in ['Pro', 'HADAX'] assert _type in u.ORDER_TYPE params = { 'account-id': acc_id, 'amount': amount, 'symbol': symbol, 'type': _type, 'source': 'api' } if price: params['price'] = price path = f'/v1{"/" if site == "Pro" else "/hadax/"}order/orders/place' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def send_order(self, acc_id, amount, symbol, _type, price=0, site='Pro')
创建并执行订单 :param amount: :param source: 如果使用借贷资产交易,请在下单接口,请求参数source中填写'margin-api' :param symbol: :param _type: 可选值 {buy-market:市价买, sell-market:市价卖, buy-limit:限价买, sell-limit:限价卖, buy-ioc:IOC买单, sell-ioc:IOC卖单} :param price: :return:
4.148664
4.355212
0.952574
params = {} path = f'/v1/order/orders/{order_id}/submitcancel' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def cancel_order(self, order_id)
撤销订单 :param order_id: :return:
7.046802
7.757213
0.908419
assert isinstance(order_ids, list) params = {'order-ids': order_ids} path = f'/v1/order/orders/batchcancel' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def batchcancel_order(self, order_ids: list)
批量撤销订单 :param order_id: :return:
5.494201
5.256148
1.04529
params = {} path = f'/v1/order/orders/{order_id}' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_order_info(self, order_id)
查询某个订单 :param order_id: :return:
6.181999
6.78056
0.911724
params = {} path = f'/v1/order/orders/{order_id}/matchresults' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_order_matchresults(self, order_id)
查询某个订单的成交明细 :param order_id: :return:
6.153533
6.443613
0.954982
params = {'symbol': symbol, 'states': states} if types: params['types'] = types if start_date: sd = parser.parse(start_date).date() params['start-date'] = str(sd) if end_date: ed = parser.parse(end_date).date() params['end_date'] = str(ed) if _from: params['from'] = _from if direct: assert direct in ['prev', 'next'] params['direct'] = direct if size: params['size'] = size path = '/v1/order/orders' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_orders_info(self, symbol, states, types=None, start_date=None, end_date=None, _from=None, direct=None, size=None)
查询当前委托、历史委托 :param symbol: :param states: 可选值 {pre-submitted 准备提交, submitted 已提交, partial-filled 部分成交, partial-canceled 部分成交撤销, filled 完全成交, canceled 已撤销} :param types: 可选值 买卖类型 :param start_date: :param end_date: :param _from: :param direct: 可选值{prev 向前,next 向后} :param size: :return:
2.384838
2.539595
0.939062
params = { 'address': address, 'amount': amount, 'currency': currency, 'fee': fee, 'addr-tag': addr_tag } path = '/v1/dw/withdraw/api/create' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def req_withdraw(self, address, amount, currency, fee=0, addr_tag="")
申请提现虚拟币 :param address_id: :param amount: :param currency:btc, ltc, bcc, eth, etc ...(火币Pro支持的币种) :param fee: :param addr-tag: :return: { "status": "ok", "data": 700 }
4.051655
3.969168
1.020782
params = {} path = f'/v1/dw/withdraw-virtual/{address_id}/cancel' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def cancel_withdraw(self, address_id)
申请取消提现虚拟币 :param address_id: :return: { "status": "ok", "data": 700 }
8.618542
8.678246
0.99312
params = { 'account-id': acc_id, 'amount': amount, 'symbol': symbol, 'type': _type, 'source': 'margin-api' } if price: params['price'] = price path = '/v1/order/orders/place' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def send_margin_order(self, acc_id, amount, symbol, _type, price=0)
创建并执行借贷订单 :param amount: :param symbol: :param _type: 可选值 {buy-market:市价买, sell-market:市价卖, buy-limit:限价买, sell-limit:限价卖} :param price: :return:
3.392229
3.672025
0.923803
params = {'symbol': symbol, 'currency': currency, 'amount': amount} path = '/v1/dw/transfer-out/margin' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def margin_to_exchange(self, symbol, currency, amount)
借贷账户划出至现货账户 :param amount: :param currency: :param symbol: :return:
6.197461
6.978409
0.888091
params = {'order-id': order_id, 'amount': amount} path = f'/v1/margin/orders/{order_id}/repay' def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_post(params, path)) return handle return _wrapper
def repay_loan(self, order_id, amount)
归还借贷 :param order_id: :param amount: :return:
5.060484
5.638958
0.897415
params = {} path = '/v1/margin/accounts/balance' if symbol: params['symbol'] = symbol def _wrapper(_func): @wraps(_func) def handle(): _func(api_key_get(params, path)) return handle return _wrapper
def get_margin_balance(self, symbol)
借贷账户详情,支持查询单个币种 :param symbol: :return:
5.265412
5.551386
0.948486
def wrapper(_callback): callbackList = self._req_callbacks.setdefault(req, []) callbackList.append(_callback) return _callback return wrapper
def register_onRsp(self, req)
添加回调处理函数的装饰器 :param req: 具体的topic,如 :return:
6.668943
5.497612
1.213062
handler_list = self._handle_funcs.get(topic, []) for i, h in enumerate(handler_list): if h is _handle_func_name or h.__name__ == _handle_func_name: handler_list.pop(i) if self._handle_funcs.get(topic) == []: self._handle_funcs.pop(topic)
def unregister_handle_func(self, _handle_func_name, topic)
注销handle_func
2.110538
2.077637
1.015836
topic = msg.get('topic') self.pub_socket.send_multipart( [pickle.dumps(topic), pickle.dumps(msg)]) for h in self._handle_funcs.get(topic, []): h(msg)
def pub_msg(self, msg)
核心的处理函数,如果是handle_func直接处理,如果是handler,推送到handler的队列
4.986199
4.221587
1.181119
if file: import sys file_path, file_name = os.path.split(file) sys.path.append(file_path) strategy_module = importlib.import_module(os.path.splitext(file_name)[0]) init = getattr(strategy_module, 'init', None) handle_func = getattr(strategy_module, 'handle_func', None) schedule = getattr(strategy_module, 'schedule', None) else: init, handle_func, scedule = [None] * 3 setKey(access_key, secret_key) url = kwargs.get('url') hostname = 'api.huobi.br.com' if url: hostname = urlparse(url).hostname setUrl('https://' + hostname, 'https://' + hostname) reconn = kwargs.get('reconn', -1) from huobitrade import HBWebsocket, HBRestAPI from huobitrade.datatype import HBMarket, HBAccount, HBMargin restapi = HBRestAPI(get_acc=True) ws = HBWebsocket(host=hostname, reconn=reconn) auth_ws = HBWebsocket(host=hostname, auth=True, reconn=reconn) data = HBMarket() account = HBAccount() margin = HBMargin() ws_open = False ws_auth = False @ws.after_open def _open(): nonlocal ws_open click.echo('行情接口连接成功') ws_open = True @auth_ws.after_auth def _auth(): nonlocal ws_auth click.echo('鉴权接口鉴权成功') ws_auth = True ws.run() auth_ws.run() for i in range(10): time.sleep(3) click.echo(f'连接:第{i+1}次连接') if ws_open&ws_auth: break else: ws.stop() auth_ws.stop() raise Exception('连接失败') if init: init(restapi, ws, auth_ws) if handle_func: for k, v in handle_func.items(): if k.split('.')[0].lower() == 'market': ws.register_handle_func(k)(v) else: auth_ws.register_handle_func(k)(v) if schedule: print('testing') from huobitrade.handler import TimeHandler interval = scedule.__kwdefaults__['interval'] timerhandler = TimeHandler('scheduler', interval) timerhandler.handle = lambda msg: schedule(restapi, ws, auth_ws) timerhandler.start() while True: try: code = click.prompt('huobitrade>>') if code == 'exit': if click.confirm('是否要退出huobitrade'): break else: continue else: result = eval(code) click.echo(result) except Exception as e: click.echo(traceback.format_exc()) ws.stop() auth_ws.stop()
def run(file, access_key, secret_key, **kwargs)
命令行运行huobitrade
3.044605
2.954743
1.030413
sorted_params = sorted(pParams.items(), key=lambda d: d[0], reverse=False) encode_params = urllib.parse.urlencode(sorted_params) payload = [method, host_url, request_path, encode_params] payload = '\n'.join(payload) payload = payload.encode(encoding='UTF8') secret_key = secret_key.encode(encoding='UTF8') digest = hmac.new(secret_key, payload, digestmod=hashlib.sha256).digest() signature = base64.b64encode(digest) signature = signature.decode() return signature
def createSign(pParams, method, host_url, request_path, secret_key)
from 火币demo, 构造签名 :param pParams: :param method: :param host_url: :param request_path: :param secret_key: :return:
1.750081
1.83384
0.954326
headers = { 'Content-type': 'application/x-www-form-urlencoded', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36', } if add_to_headers: headers.update(add_to_headers) postdata = urllib.parse.urlencode(params) if _async: response = async_session.get(url, params=postdata, headers=headers, timeout=5) return response else: response = requests.get(url, postdata, headers=headers, timeout=5) try: if response.status_code == 200: return response.json() else: logger.debug( f'<GET>error_code:{response.status_code} reason:{response.reason} detail:{response.text}') return except BaseException as e: logger.exception(f'<GET>httpGet failed, detail is:{response.text},{e}') return
def http_get_request(url, params, add_to_headers=None, _async=False)
from 火币demo, get方法 :param url: :param params: :param add_to_headers: :return:
2.124963
2.142783
0.991684
headers = { "Accept": "application/json", 'Content-Type': 'application/json' } if add_to_headers: headers.update(add_to_headers) postdata = json.dumps(params) if _async: response = async_session.post(url, postdata, headers=headers, timeout=10) return response else: response = requests.post(url, postdata, headers=headers, timeout=10) try: if response.status_code == 200: return response.json() else: logger.debug(f'<POST>error_code:{response.status_code} reason:{response.reason} detail:{response.text}') return except BaseException as e: logger.exception( f'<POST>httpPost failed, detail is:{response.text},{e}') return
def http_post_request(url, params, add_to_headers=None, _async=False)
from 火币demo, post方法 :param url: :param params: :param add_to_headers: :return:
2.660517
2.614487
1.017606
method = 'GET' timestamp = datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') params.update({ 'AccessKeyId': ACCESS_KEY, 'SignatureMethod': 'HmacSHA256', 'SignatureVersion': '2', 'Timestamp': timestamp }) host_url = TRADE_URL host_name = urllib.parse.urlparse(host_url).hostname host_name = host_name.lower() secret_sign = createSign(params, method, host_name, request_path, SECRET_KEY) params['Signature'] = secret_sign if PRIVATE_KEY: params['PrivateSignature'] = createPrivateSign(secret_sign, PRIVATE_KEY) url = host_url + request_path return http_get_request(url, params, _async=_async)
def api_key_get(params, request_path, _async=False)
from 火币demo, 构造get请求并调用get方法 :param params: :param request_path: :return:
2.861414
2.715201
1.05385
method = 'POST' timestamp = datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S') params_to_sign = { 'AccessKeyId': ACCESS_KEY, 'SignatureMethod': 'HmacSHA256', 'SignatureVersion': '2', 'Timestamp': timestamp } host_url = TRADE_URL host_name = urllib.parse.urlparse(host_url).hostname host_name = host_name.lower() secret_sign = createSign(params_to_sign, method, host_name, request_path, SECRET_KEY) params_to_sign['Signature'] = secret_sign if PRIVATE_KEY: params_to_sign['PrivateSignature'] = createPrivateSign(secret_sign, PRIVATE_KEY) url = host_url + request_path + '?' + urllib.parse.urlencode(params_to_sign) return http_post_request(url, params, _async=_async)
def api_key_post(params, request_path, _async=False)
from 火币demo, 构造post请求并调用post方法 :param params: :param request_path: :return:
2.601106
2.500932
1.040055
if filename == None: f = sys.stdout else: f = open(filename, 'w') def _callfunc(handle): @wraps(handle) def func(self, topic, msg): t0 = time.time() handle(self, topic, msg) t1 = time.time() print(f'{self.name}-handle运行时间:{t1 - t0}s', file=f) return func return _callfunc
def handler_profiler(filename=None)
handler的性能测试装饰器 :param filename: :return:
3.492797
3.294523
1.060183
args = super(SatUtilsParser, self).parse_args(*args, **kwargs) args = vars(args) args = {k: v for k, v in args.items() if v is not None} if args.get('command', None) is None: self.print_help() sys.exit(0) # set logging level if 'verbosity' in args: logging.basicConfig(stream=sys.stdout, level=(50-args.pop('verbosity') * 10)) # set global configuration options if 'url' in args: config.API_URL = args.pop('url') if 'datadir' in args: config.DATADIR = args.pop('datadir') if 'filename' in args: config.FILENAME = args.pop('filename') return args
def parse_args(self, *args, **kwargs)
Parse arguments
2.564679
2.524444
1.015938
parser = cls(*args, **kwargs) subparser = parser.add_subparsers(dest='command') parents = [parser.pparser, parser.output_parser] sparser = subparser.add_parser('search', help='Perform new search of items', parents=parents) parser.search_group = sparser.add_argument_group('search options') parser.search_group.add_argument('-c', '--collection', help='Name of collection', default=None) h = 'One or more scene IDs from provided collection (ignores other parameters)' parser.search_group.add_argument('--ids', help=h, nargs='*', default=None) parser.search_group.add_argument('--bbox', help='Bounding box (min lon, min lat, max lon, max lat)', nargs=4) parser.search_group.add_argument('--intersects', help='GeoJSON Feature (file or string)') parser.search_group.add_argument('--datetime', help='Single date/time or begin and end date/time (e.g., 2017-01-01/2017-02-15)') parser.search_group.add_argument('-p', '--property', nargs='*', help='Properties of form KEY=VALUE (<, >, <=, >=, = supported)') parser.search_group.add_argument('--sort', help='Sort by fields', nargs='*') h = 'Only output how many Items found' parser.search_group.add_argument('--found', help=h, action='store_true', default=False) parser.search_group.add_argument('--url', help='URL of the API', default=config.API_URL) parents.append(parser.download_parser) lparser = subparser.add_parser('load', help='Load items from previous search', parents=parents) lparser.add_argument('items', help='GeoJSON file of Items') return parser
def newbie(cls, *args, **kwargs)
Create a newbie class, with all the skills needed
3.494726
3.572241
0.978301
if items is None: ## if there are no items then perform a search search = Search.search(**kwargs) if found: num = search.found() print('%s items found' % num) return num items = search.items() else: # otherwise, load a search from a file items = Items.load(items) print('%s items found' % len(items)) # print metadata if printmd is not None: print(items.summary(printmd)) # print calendar if printcal: print(items.calendar()) # save all metadata in JSON file if save is not None: items.save(filename=save) # download files given `download` keys if download is not None: if 'ALL' in download: # get complete set of assets download = set([k for i in items for k in i.assets]) for key in download: items.download(key=key, path=config.DATADIR, filename=config.FILENAME, requestor_pays=requestor_pays) return items
def main(items=None, printmd=None, printcal=False, found=False, save=None, download=None, requestor_pays=False, **kwargs)
Main function for performing a search
3.811658
3.796368
1.004027
if 'ids' in self.kwargs: cid = self.kwargs['query']['collection']['eq'] return len(self.items_by_id(self.kwargs['ids'], cid)) kwargs = { 'page': 1, 'limit': 0 } kwargs.update(self.kwargs) results = self.query(**kwargs) return results['meta']['found']
def found(self)
Small query to determine total number of hits
5.627522
5.126013
1.097836
logger.debug('Query URL: %s, Body: %s' % (url, json.dumps(kwargs))) response = requests.post(url, data=json.dumps(kwargs)) # API error if response.status_code != 200: raise SatSearchError(response.text) return response.json()
def query(cls, url=urljoin(config.API_URL, 'stac/search'), **kwargs)
Get request
3.124697
3.065279
1.019384
url = urljoin(config.API_URL, 'collections/%s' % cid) return Collection(cls.query(url=url))
def collection(cls, cid)
Get a Collection record
6.26813
5.913825
1.059911
col = cls.collection(collection) items = [] base_url = urljoin(config.API_URL, 'collections/%s/items' % collection) for id in ids: try: items.append(Item(cls.query(urljoin(base_url, id)))) except SatSearchError as err: pass return Items(items, collections=[col])
def items_by_id(cls, ids, collection)
Return Items from collection with matching ids
4.860236
4.604016
1.055651
_limit = 500 if 'ids' in self.kwargs: col = self.kwargs.get('query', {}).get('collection', {}).get('eq', None) if col is None: raise SatSearchError('Collection required when searching by id') return self.items_by_id(self.kwargs['ids'], col) items = [] found = self.found() if found > limit: logger.warning('There are more items found (%s) than the limit (%s) provided.' % (found, limit)) maxitems = min(found, limit) kwargs = { 'page': 1, 'limit': min(_limit, maxitems) } kwargs.update(self.kwargs) while len(items) < maxitems: items += [Item(i) for i in self.query(**kwargs)['features']] kwargs['page'] += 1 # retrieve collections collections = [] for c in set([item.properties['collection'] for item in items if 'collection' in item.properties]): collections.append(self.collection(c)) #del collections[c]['links'] # merge collections into items #_items = [] #for item in items: # import pdb; pdb.set_trace() # if 'collection' in item['properties']: # item = dict_merge(item, collections[item['properties']['collection']]) # _items.append(Item(item)) return Items(items, collections=collections, search=self.kwargs)
def items(self, limit=10000)
Return all of the Items and Collections for this search
3.783563
3.603893
1.049854
'''Like shutil.copyfileobj, but only copy a range of the streams. Both start and stop are inclusive. ''' if start is not None: infile.seek(start) while 1: to_read = min(bufsize, stop + 1 - infile.tell() if stop else bufsize) buf = infile.read(to_read) if not buf: break outfile.write(buf)
def copy_byte_range(infile, outfile, start=None, stop=None, bufsize=16*1024)
Like shutil.copyfileobj, but only copy a range of the streams. Both start and stop are inclusive.
3.185878
2.165422
1.47125
'''Returns the two numbers in 'bytes=123-456' or throws ValueError. The last number or both numbers may be None. ''' if byte_range.strip() == '': return None, None m = BYTE_RANGE_RE.match(byte_range) if not m: raise ValueError('Invalid byte range %s' % byte_range) first, last = [x and int(x) for x in m.groups()] if last and last < first: raise ValueError('Invalid byte range %s' % byte_range) return first, last
def parse_byte_range(byte_range)
Returns the two numbers in 'bytes=123-456' or throws ValueError. The last number or both numbers may be None.
2.920655
1.908219
1.530566
init_py = readfile(os.path.join(package, '__init__.py')) author = re.search("__author__ = u?['\"]([^'\"]+)['\"]", init_py).group(1) return UltraMagicString(author)
def get_author(package)
Return package version as listed in `__version__` in `init.py`.
3.941319
3.478014
1.13321
init_py = readfile(os.path.join(package, '__init__.py')) return re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1)
def get_version(package)
Return package version as listed in `__version__` in `init.py`.
2.124436
1.938394
1.095977
''' Same as django's ``cache_page`` decorator, but wraps the view into additional decorators before and after that. Makes it possible to serve multiple flavours without getting into trouble with django's caching that doesn't know about flavours. ''' decorator = _django_cache_page(*args, **kwargs) def flavoured_decorator(func): return vary_on_flavour_fetch(decorator(vary_on_flavour_update(func))) return flavoured_decorator
def cache_page(*args, **kwargs)
Same as django's ``cache_page`` decorator, but wraps the view into additional decorators before and after that. Makes it possible to serve multiple flavours without getting into trouble with django's caching that doesn't know about flavours.
8.74091
2.79605
3.126164
xdg = os.path.join(os.path.expanduser('~'), '.config') if 'XDG_CONFIG_DIR' in os.environ: xdg = os.environ['XDG_CONFIG_DIR'] xdgfile = os.path.join(xdg, 'cmakelintrc') if os.path.exists(xdgfile): return xdgfile return os.path.join(os.path.expanduser('~'), '.cmakelintrc')
def DefaultRC()
Check XDG_CONFIG_DIR before ~/.cmakelintrc
2.17681
1.586957
1.371688
if line.find('#') == -1 and line.find('"') == -1: if quote: return '', quote else: return line, quote # else have to check for comment prior = [] prev = '' for char in line: try: if char == '"': if prev != '\\': quote = not quote prior.append(char) continue elif char == '#' and not quote: break if not quote: prior.append(char) finally: prev = char # rstrip removes trailing space between end of command and the comment # start return ''.join(prior).rstrip(), quote
def CleanComments(line, quote=False)
quote means 'was in a quote starting this line' so that quoted lines can be eaten/removed.
4.729655
4.579609
1.032764
line = clean_lines.raw_lines[linenumber] if len(line) > _lint_state.linelength: return errors( filename, linenumber, 'linelength', 'Lines should be <= %d characters long' % (_lint_state.linelength))
def CheckLineLength(filename, linenumber, clean_lines, errors)
Check for lines longer than the recommended length
5.061302
4.802652
1.053856
line = clean_lines.lines[linenumber] if ContainsCommand(line): command = GetCommand(line) if IsCommandMixedCase(command): return errors( filename, linenumber, 'readability/wonkycase', 'Do not use mixed case commands') if clean_lines.have_seen_uppercase is None: clean_lines.have_seen_uppercase = IsCommandUpperCase(command) else: is_upper = IsCommandUpperCase(command) if is_upper != clean_lines.have_seen_uppercase: return errors( filename, linenumber, 'readability/mixedcase', 'Do not mix upper and lower case commands')
def CheckUpperLowerCase(filename, linenumber, clean_lines, errors)
Check that commands are either lower case or upper case, but not both
3.92378
3.596802
1.090908
line = clean_lines.lines[linenumber] match = ContainsCommand(line) if match and len(match.group(2)): errors(filename, linenumber, 'whitespace/extra', "Extra spaces between '%s' and its ()"%(match.group(1))) if match: spaces_after_open = len(_RE_COMMAND_START_SPACES.match(line).group(1)) initial_spaces = GetInitialSpaces(line) initial_linenumber = linenumber end = None while True: line = clean_lines.lines[linenumber] end = _RE_COMMAND_END_SPACES.search(line) if end: break linenumber += 1 if linenumber >= len(clean_lines.lines): break if linenumber == len(clean_lines.lines) and not end: errors(filename, initial_linenumber, 'syntax', 'Unable to find the end of this command') if end: spaces_before_end = len(end.group(1)) initial_spaces = GetInitialSpaces(line) if initial_linenumber != linenumber and spaces_before_end >= initial_spaces: spaces_before_end -= initial_spaces if spaces_after_open != spaces_before_end: errors(filename, initial_linenumber, 'whitespace/mismatch', 'Mismatching spaces inside () after command')
def CheckCommandSpaces(filename, linenumber, clean_lines, errors)
No extra spaces between command and parenthesis
3.385524
3.25518
1.040042
line = clean_lines.lines[linenumber] for cmd in _logic_commands: if re.search(r'\b%s\b'%cmd, line.lower()): m = _RE_LOGIC_CHECK.search(line) if m: errors(filename, linenumber, 'readability/logic', 'Expression repeated inside %s; ' 'better to use only %s()'%(cmd, m.group(1))) break
def CheckRepeatLogic(filename, linenumber, clean_lines, errors)
Check for logic inside else, endif etc
5.762486
5.528412
1.04234
CheckIndent(filename, linenumber, clean_lines, errors) CheckCommandSpaces(filename, linenumber, clean_lines, errors) line = clean_lines.raw_lines[linenumber] if line.find('\t') != -1: errors(filename, linenumber, 'whitespace/tabs', 'Tab found; please use spaces') if line and line[-1].isspace(): errors(filename, linenumber, 'whitespace/eol', 'Line ends in whitespace') CheckRepeatLogic(filename, linenumber, clean_lines, errors)
def CheckStyle(filename, linenumber, clean_lines, errors)
Check style issues. These are: No extra spaces between command and parenthesis Matching spaces between parenthesis and arguments No repeated logic in else(), endif(), endmacro()
3.550696
3.712842
0.956328
CheckLintPragma(filename, linenumber, clean_lines.raw_lines[linenumber], errors) CheckLineLength(filename, linenumber, clean_lines, errors) CheckUpperLowerCase(filename, linenumber, clean_lines, errors) CheckStyle(filename, linenumber, clean_lines, errors) if IsFindPackage(filename): CheckFindPackage(filename, linenumber, clean_lines, errors)
def ProcessLine(filename, linenumber, clean_lines, errors)
Arguments: filename the name of the file linenumber the line number index clean_lines CleansedLines instance errors the error handling function
3.534784
3.719772
0.950269
# local import to avoid dependency for non-debug use import matplotlib.pyplot as plt hs = [nolds.hurst_rs(np.random.random(size=10000), corrected=True) for _ in range(100)] plt.hist(hs, bins=20) plt.xlabel("esimated value of hurst exponent") plt.ylabel("number of experiments") plt.show()
def plot_hurst_hist()
Plots a histogram of values obtained for the hurst exponent of uniformly distributed white noise. This function requires the package ``matplotlib``.
5.937996
5.433722
1.092805
import cProfile n = 10000 data = np.cumsum(np.random.random(n) - 0.5) cProfile.runctx('lyap_e(data)', {'lyap_e': nolds.lyap_e}, {'data': data})
def profiling()
Runs a profiling test for the function ``lyap_e`` (mainly used for development) This function requires the package ``cProfile``.
4.601704
3.278932
1.403415
import matplotlib.pyplot as plt data = np.asarray(data) n_all = np.arange(2,len(data)+1) dd_all = nolds.hurst_rs(data, nvals=n_all, debug_data=True, fit="poly") dd_def = nolds.hurst_rs(data, debug_data=True, fit="poly") n_def = np.round(np.exp(dd_def[1][0])).astype("int32") n_div = n_all[np.where(len(data) % n_all[:-1] == 0)] dd_div = nolds.hurst_rs(data, nvals=n_div, debug_data=True, fit="poly") def corr(nvals): return [np.log(nolds.expected_rs(n)) for n in nvals] l_all = plt.plot(dd_all[1][0], dd_all[1][1] - corr(n_all), "o") l_def = plt.plot(dd_def[1][0], dd_def[1][1] - corr(n_def), "o") l_div = plt.plot(dd_div[1][0], dd_div[1][1] - corr(n_div), "o") l_cst = [] t_cst = [] if nvals is not None: dd_cst = nolds.hurst_rs(data, nvals=nvals, debug_data=True, fit="poly") l_cst = plt.plot(dd_cst[1][0], dd_cst[1][1] - corr(nvals), "o") l_cst = l_cst t_cst = ["custom"] plt.xlabel("log(n)") plt.ylabel("log((R/S)_n - E[(R/S)_n])") plt.legend(l_all + l_def + l_div + l_cst, ["all", "default", "divisors"] + t_cst) labeled_data = zip([dd_all[0], dd_def[0], dd_div[0]], ["all", "def", "div"]) for data, label in labeled_data: print("%s: %.3f" % (label, data)) if nvals is not None: print("custom: %.3f" % dd_cst[0]) plt.show()
def hurst_compare_nvals(data, nvals=None)
Creates a plot that compares the results of different choices for nvals for the function hurst_rs. Args: data (array-like of float): the input data from which the hurst exponent should be estimated Kwargs: nvals (array of int): a manually selected value for the nvals parameter that should be plotted in comparison to the default choices
2.644322
2.584857
1.023005
# TODO more detailed description of fbm assert H > 0 and H < 1 def R(t, s): twoH = 2 * H return 0.5 * (s**twoH + t**twoH - np.abs(t - s)**twoH) # form the matrix tau gamma = R(*np.mgrid[0:n, 0:n]) # apply R to every element in matrix w, P = np.linalg.eigh(gamma) L = np.diag(w) sigma = np.dot(np.dot(P, np.sqrt(L)), np.linalg.inv(P)) v = np.random.randn(n) return np.dot(sigma, v)
def fbm(n, H=0.75)
Generates fractional brownian motions of desired length. Author: Christian Thomae References: .. [fbm_1] https://en.wikipedia.org/wiki/Fractional_Brownian_motion#Method_1_of_simulation Args: n (int): length of sequence to generate Kwargs: H (float): hurst parameter Returns: array of float: simulated fractional brownian motion
4.747005
5.069282
0.936425
import quantumrandom return np.concatenate([ quantumrandom.get_data(data_type='uint16', array_length=1024) for i in range(int(np.ceil(n/1024.0))) ])[:n]
def qrandom(n)
Creates an array of n true random numbers obtained from the quantum random number generator at qrng.anu.edu.au This function requires the package quantumrandom and an internet connection. Args: n (int): length of the random array Return: array of ints: array of truly random unsigned 16 bit int values
5.674998
5.286608
1.073467
fname = "datasets/qrandom.npy" with pkg_resources.resource_stream(__name__, fname) as f: return np.load(f)
def load_qrandom()
Loads a set of 10000 random numbers generated by qrandom. This dataset can be used when you want to do some limited tests with "true" random data without an internet connection. Returns: int array the dataset
4.340001
4.98739
0.870195
fname = "datasets/brown72.npy" with pkg_resources.resource_stream(__name__, fname) as f: return np.load(f)
def load_brown72()
Loads the dataset brown72 with a prescribed Hurst exponent of 0.72 Source: http://www.bearcave.com/misl/misl_tech/wavelets/hurst/ Returns: float array: the dataset
4.251221
4.362529
0.974485
for _ in range(steps): x = mu * x if x < 0.5 else mu * (1 - x) yield x
def tent_map(x, steps, mu=2)
Generates a time series of the tent map. Characteristics and Background: The name of the tent map is derived from the fact that the plot of x_i vs x_i+1 looks like a tent. For mu > 1 one application of the mapping function can be viewed as stretching the surface on which the value is located and then folding the area that is greater than one back towards the zero. This corresponds nicely to the definition of chaos as expansion in one dimension which is counteracted by a compression in another dimension. Calculating the Lyapunov exponent: The lyapunov exponent of the tent map can be easily calculated as due to this stretching behavior a small difference delta between two neighboring points will indeed grow exponentially by a factor of mu in each iteration. We thus can assume that: delta_n = delta_0 * mu^n We now only have to change the basis to e to obtain the exact formula that is used for the definition of the lyapunov exponent: delta_n = delta_0 * e^(ln(mu) * n) Therefore the lyapunov exponent of the tent map is: lambda = ln(mu) References: .. [tm_1] https://en.wikipedia.org/wiki/Tent_map Args: x (float): starting point steps (int): number of steps for which the generator should run Kwargs: mu (int): parameter mu that controls the behavior of the map Returns: generator object: the generator that creates the time series
4.316345
6.020553
0.716935
r for _ in range(steps): x = r * x * (1 - x) yield x
def logistic_map(x, steps, r=4)
r""" Generates a time series of the logistic map. Characteristics and Background: The logistic map is among the simplest examples for a time series that can exhibit chaotic behavior depending on the parameter r. For r between 2 and 3, the series quickly becomes static. At r=3 the first bifurcation point is reached after which the series starts to oscillate. Beginning with r = 3.6 it shows chaotic behavior with a few islands of stability until perfect chaos is achieved at r = 4. Calculating the Lyapunov exponent: To calculate the "true" Lyapunov exponent of the logistic map, we first have to make a few observations for maps in general that are repeated applications of a function to a starting value. If we have two starting values that differ by some infinitesimal :math:`delta_0` then according to the definition of the lyapunov exponent we will have an exponential divergence: .. math:: |\delta_n| = |\delta_0| e^{\lambda n} We can now write that: .. math:: e^{\lambda n} = \lim_{\delta_0 -> 0} |\frac{\delta_n}{\delta_0}| This is the definition of the derivative :math:`\frac{dx_n}{dx_0}` of a point :math:`x_n` in the time series with respect to the starting point :math:`x_0` (or rather the absolute value of that derivative). Now we can use the fact that due to the definition of our map as repetitive application of some f we have: .. math:: f^{n\prime}(x) = f(f(f(...f(x_0)...))) = f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0) with .. math:: e^{\lambda n} = |f^{n\prime}(x)| we now have .. math:: e^{\lambda n} &= |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda n &= \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ \Leftrightarrow \\ \lambda &= \frac{1}{n} \ln |f'(x_n-1) \cdot f'(x_n-2) \cdot ... \cdot f'(x_0)| \\ &= \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)| With this sum we can now calculate the lyapunov exponent for any map. For the logistic map we simply have to calculate :math:`f'(x)` and as we have .. math:: f(x) = r x (1-x) = rx - rx² we now get .. math:: f'(x) = r - 2 rx References: .. [lm_1] https://en.wikipedia.org/wiki/Tent_map .. [lm_2] https://blog.abhranil.net/2015/05/15/lyapunov-exponent-of-the-logistic-map-mathematica-code/ Args: x (float): starting point steps (int): number of steps for which the generator should run Kwargs: r (int): parameter r that controls the behavior of the map Returns: generator object: the generator that creates the time series
6.754282
6.508815
1.037713
data = np.asarray(data) min_len = (emb_dim - 1) * lag + 1 if len(data) < min_len: msg = "cannot embed data of length {} with embedding dimension {} " \ + "and lag {}, minimum required length is {}" raise ValueError(msg.format(len(data), emb_dim, lag, min_len)) m = len(data) - min_len + 1 indices = np.repeat([np.arange(emb_dim) * lag], m, axis=0) indices += np.arange(m).reshape((m, 1)) return data[indices]
def delay_embedding(data, emb_dim, lag=1)
Perform a time-delay embedding of a time series Args: data (array-like): the data that should be embedded emb_dim (int): the embedding dimension Kwargs: lag (int): the lag between elements in the embedded vectors Returns: emb_dim x m array: matrix of embedded vectors of the form [data[i], data[i+lag], data[i+2*lag], ... data[i+(emb_dim-1)*lag]] for i in 0 to m-1 (m = len(data)-(emb_dim-1)*lag)
2.720991
2.66954
1.019273
# minimum length required to find single orbit vector min_len = (kwargs['emb_dim'] - 1) * kwargs['lag'] + 1 # we need trajectory_len orbit vectors to follow a complete trajectory min_len += kwargs['trajectory_len'] - 1 # we need min_tsep * 2 + 1 orbit vectors to find neighbors for each min_len += kwargs['min_tsep'] * 2 + 1 return min_len
def lyap_r_len(**kwargs)
Helper function that calculates the minimum number of data points required to use lyap_r. Note that none of the required parameters may be set to None. Kwargs: kwargs(dict): arguments used for lyap_r (required: emb_dim, lag, trajectory_len and min_tsep) Returns: minimum number of data points required to call lyap_r with the given parameters
7.971834
5.261237
1.515202
m = (kwargs['emb_dim'] - 1) // (kwargs['matrix_dim'] - 1) # minimum length required to find single orbit vector min_len = kwargs['emb_dim'] # we need to follow each starting point of an orbit vector for m more steps min_len += m # we need min_tsep * 2 + 1 orbit vectors to find neighbors for each min_len += kwargs['min_tsep'] * 2 # we need at least min_nb neighbors for each orbit vector min_len += kwargs['min_nb'] return min_len
def lyap_e_len(**kwargs)
Helper function that calculates the minimum number of data points required to use lyap_e. Note that none of the required parameters may be set to None. Kwargs: kwargs(dict): arguments used for lyap_e (required: emb_dim, matrix_dim, min_nb and min_tsep) Returns: minimum number of data points required to call lyap_e with the given parameters
8.057635
5.478141
1.47087
max_exp = np.log2(1.0 * total_N / min_n) max_exp = int(np.floor(max_exp)) return [int(np.floor(1.0 * total_N / (2**i))) for i in range(1, max_exp + 1)]
def binary_n(total_N, min_n=50)
Creates a list of values by successively halving the total length total_N until the resulting value is less than min_n. Non-integer results are rounded down. Args: total_N (int): total length Kwargs: min_n (int): minimal length after division Returns: list of integers: total_N/2, total_N/4, total_N/8, ... until total_N/2^i < min_n
2.880173
3.065529
0.939536
assert max_n > min_n assert factor > 1 # stop condition: min * f^x = max # => f^x = max/min # => x = log(max/min) / log(f) max_i = int(np.floor(np.log(1.0 * max_n / min_n) / np.log(factor))) ns = [min_n] for i in range(max_i + 1): n = int(np.floor(min_n * (factor ** i))) if n > ns[-1]: ns.append(n) return ns
def logarithmic_n(min_n, max_n, factor)
Creates a list of values by successively multiplying a minimum value min_n by a factor > 1 until a maximum value max_n is reached. Non-integer results are rounded down. Args: min_n (float): minimum value (must be < max_n) max_n (float): maximum value (must be > min_n) factor (float): factor used to increase min_n (must be > 1) Returns: list of integers: min_n, min_n * factor, min_n * factor^2, ... min_n * factor^i < max_n without duplicates
2.948823
3.046676
0.967882
l = np.log(max_n) span = l * ratio start = l * (1 - ratio) * 0.5 midrange = start + 1.0*np.arange(nsteps)/nsteps*span nvals = np.round(np.exp(midrange)).astype("int32") return np.unique(nvals)
def logmid_n(max_n, ratio=1/4.0, nsteps=15)
Creates an array of integers that lie evenly spaced in the "middle" of the logarithmic scale from 0 to log(max_n). If max_n is very small and/or nsteps is very large, this may lead to duplicate values which will be removed from the output. This function has benefits in hurst_rs, because it cuts away both very small and very large n, which both can cause problems, and still produces a logarithmically spaced sequence. Args: max_n (int): largest possible output value (should be the sequence length when used in hurst_rs) Kwargs: ratio (float): width of the "middle" of the logarithmic interval relative to log(max_n). For example, for ratio=1/2.0 the logarithm of the resulting values will lie between 0.25 * log(max_n) and 0.75 * log(max_n). nsteps (float): (maximum) number of values to take from the specified range Returns: array of int: a logarithmically spaced sequence of at most nsteps values (may be less, because only unique values are returned)
4.105708
4.785077
0.858023
assert max_n > min_n assert factor > 1 max_i = int(np.floor(np.log(1.0 * max_n / min_n) / np.log(factor))) return [min_n * (factor ** i) for i in range(max_i + 1)]
def logarithmic_r(min_n, max_n, factor)
Creates a list of values by successively multiplying a minimum value min_n by a factor > 1 until a maximum value max_n is reached. Args: min_n (float): minimum value (must be < max_n) max_n (float): maximum value (must be > min_n) factor (float): factor used to increase min_n (must be > 1) Returns: list of floats: min_n, min_n * factor, min_n * factor^2, ... min_n * factor^i < max_n
2.442999
2.512253
0.972434
front = (n - 0.5) / n i = np.arange(1,n) back = np.sum(np.sqrt((n - i) / i)) if n <= 340: middle = math.gamma((n-1) * 0.5) / math.sqrt(math.pi) / math.gamma(n * 0.5) else: middle = 1.0 / math.sqrt(n * math.pi * 0.5) return front * middle * back
def expected_rs(n)
Calculates the expected (R/S)_n for white noise for a given n. This is used as a correction factor in the function hurst_rs. It uses the formula of Anis-Lloyd-Peters (see [h_3]_). Args: n (int): the value of n for which the expected (R/S)_n should be calculated Returns: float: expected (R/S)_n for white noise
3.824755
4.209919
0.90851
rsvals = [expected_rs(n) for n in nvals] poly = poly_fit(np.log(nvals), np.log(rsvals), 1, fit=fit) return poly[0]
def expected_h(nvals, fit="RANSAC")
Uses expected_rs to calculate the expected value for the Hurst exponent h based on the values of n used for the calculation. Args: nvals (iterable of int): the values of n used to calculate the individual (R/S)_n KWargs: fit (str): the fitting method to use for the line fit, either 'poly' for normal least squares polynomial fitting or 'RANSAC' for RANSAC-fitting which is more robust to outliers Returns: float: expected h for white noise
4.557558
4.698161
0.970073
data = np.asarray(data) total_N = len(data) m = total_N // n # number of sequences # cut values at the end of data to make the array divisible by n data = data[:total_N - (total_N % n)] # split remaining data into subsequences of length n seqs = np.reshape(data, (m, n)) # calculate means of subsequences means = np.mean(seqs, axis=1) # normalize subsequences by substracting mean y = seqs - means.reshape((m, 1)) # build cumulative sum of subsequences y = np.cumsum(y, axis=1) # find ranges r = np.max(y, axis=1) - np.min(y, axis=1) # find standard deviation # we should use the unbiased estimator, since we do not know the true mean s = np.std(seqs, axis=1, ddof=1 if unbiased else 0) # some ranges may be zero and have to be excluded from the analysis idx = np.where(r != 0) r = r[idx] s = s[idx] # it may happen that all ranges are zero (if all values in data are equal) if len(r) == 0: return np.nan else: # return mean of r/s along subsequence index return np.mean(r / s)
def rs(data, n, unbiased=True)
Calculates an individual R/S value in the rescaled range approach for a given n. Note: This is just a helper function for hurst_rs and should not be called directly. Args: data (array-like of float): time series n (float): size of the subseries in which data should be split Kwargs: unbiased (boolean): if True, the standard deviation based on the unbiased variance (1/(N-1) instead of 1/N) will be used. This should be the default choice, since the true mean of the sequences is not known. This parameter should only be changed to recreate results of other implementations. Returns: float: (R/S)_n
3.583447
3.449047
1.038967
# local import to avoid dependency for non-debug use import matplotlib.pyplot as plt plt.plot(xvals, yvals, "bo", label=data_label) if not (poly is None): plt.plot(xvals, np.polyval(poly, xvals), "r-", label=reg_label) plt.xlabel(x_label) plt.ylabel(y_label) plt.legend(loc="best") if fname is None: plt.show() else: plt.savefig(fname) plt.close()
def plot_reg(xvals, yvals, poly, x_label="x", y_label="y", data_label="data", reg_label="regression line", fname=None)
Helper function to plot trend lines for line-fitting approaches. This function will show a plot through ``plt.show()`` and close it after the window has been closed by the user. Args: xvals (list/array of float): list of x-values yvals (list/array of float): list of y-values poly (list/array of float): polynomial parameters as accepted by ``np.polyval`` Kwargs: x_label (str): label of the x-axis y_label (str): label of the y-axis data_label (str): label of the data reg_label(str): label of the regression line fname (str): file name (if not None, the plot will be saved to disc instead of showing it though ``plt.show()``)
2.10595
2.148595
0.980152
if status in expected: return msg = ('Expect status %r from Google Storage. But got status %d.\n' 'Path: %r.\n' 'Request headers: %r.\n' 'Response headers: %r.\n' 'Body: %r.\n' 'Extra info: %r.\n' % (expected, status, path, headers, resp_headers, body, extras)) if status == httplib.UNAUTHORIZED: raise AuthorizationError(msg) elif status == httplib.FORBIDDEN: raise ForbiddenError(msg) elif status == httplib.NOT_FOUND: raise NotFoundError(msg) elif status == httplib.REQUEST_TIMEOUT: raise TimeoutError(msg) elif status == httplib.REQUESTED_RANGE_NOT_SATISFIABLE: raise InvalidRange(msg) elif (status == httplib.OK and 308 in expected and httplib.OK not in expected): raise FileClosedError(msg) elif status >= 500: raise ServerError(msg) else: raise FatalError(msg)
def check_status(status, expected, path, headers=None, resp_headers=None, body=None, extras=None)
Check HTTP response status is expected. Args: status: HTTP response status. int. expected: a list of expected statuses. A list of ints. path: filename or a path prefix. headers: HTTP request headers. resp_headers: HTTP response headers. body: HTTP response body. extras: extra info to be logged verbatim if error occurs. Raises: AuthorizationError: if authorization failed. NotFoundError: if an object that's expected to exist doesn't. TimeoutError: if HTTP request timed out. ServerError: if server experienced some errors. FatalError: if any other unexpected errors occurred.
2.453718
2.345084
1.046324
default = getattr(_thread_local_settings, 'default_retry_params', None) if default is None or not default.belong_to_current_request(): return RetryParams() else: return copy.copy(default)
def _get_default_retry_params()
Get default RetryParams for current request and current thread. Returns: A new instance of the default RetryParams.
5.913784
5.451463
1.084807
return (resp.status_code == httplib.REQUEST_TIMEOUT or (resp.status_code >= 500 and resp.status_code < 600))
def _should_retry(resp)
Given a urlfetch response, decide whether to retry that request.
2.999351
2.493363
1.202934
@utils.wrapping(tasklet) def eager_wrapper(*args, **kwds): fut = tasklet(*args, **kwds) _run_until_rpc() return fut return eager_wrapper
def _eager_tasklet(tasklet)
Decorator to turn tasklet to run eagerly.
8.18343
6.946976
1.177985
start_time = time.time() n = 1 while True: e = None result = None got_result = False try: result = yield tasklet(**kwds) got_result = True if not self.should_retry(result): raise ndb.Return(result) except runtime.DeadlineExceededError: logging.debug( 'Tasklet has exceeded request deadline after %s seconds total', time.time() - start_time) raise except self.retriable_exceptions as e: pass if n == 1: logging.debug('Tasklet is %r', tasklet) delay = self.retry_params.delay(n, start_time) if delay <= 0: logging.debug( 'Tasklet failed after %s attempts and %s seconds in total', n, time.time() - start_time) if got_result: raise ndb.Return(result) elif e is not None: raise e else: assert False, 'Should never reach here.' if got_result: logging.debug( 'Got result %r from tasklet.', result) else: logging.debug( 'Got exception "%r" from tasklet.', e) logging.debug('Retry in %s seconds.', delay) n += 1 yield tasklets.sleep(delay)
def run(self, tasklet, **kwds)
Run a tasklet with retry. The retry should be transparent to the caller: if no results are successful, the exception or result from the last retry is returned to the caller. Args: tasklet: the tasklet to run. **kwds: keywords arguments to run the tasklet. Raises: The exception from running the tasklet. Returns: The result from running the tasklet.
3.198468
3.082051
1.037772
valid_types = [val_type] if val_type is float: valid_types.append(int) if type(val) not in valid_types: raise TypeError( 'Expect type %s for parameter %s' % (val_type.__name__, name)) if val < 0: raise ValueError( 'Value for parameter %s has to be greater than 0' % name) if not can_be_zero and val == 0: raise ValueError( 'Value for parameter %s can not be 0' % name) return val
def _check(cls, name, val, can_be_zero=False, val_type=float)
Check init arguments. Args: name: name of the argument. For logging purpose. val: value. Value has to be non negative number. can_be_zero: whether value can be zero. val_type: Python type of the value. Returns: The value. Raises: ValueError: when invalid value is passed in. TypeError: when invalid value type is passed in.
2.268747
2.471967
0.91779
if (n > self.max_retries or (n > self.min_retries and time.time() - start_time > self.max_retry_period)): return -1 return min( math.pow(self.backoff_factor, n-1) * self.initial_delay, self.max_delay)
def delay(self, n, start_time)
Calculate delay before the next retry. Args: n: the number of current attempt. The first attempt should be 1. start_time: the time when retry started in unix time. Returns: Number of seconds to wait before next retry. -1 if retry should give up.
3.761515
3.206568
1.173066
common.validate_file_path(filename) api = storage_api._get_storage_api(retry_params=retry_params, account_id=_account_id) filename = api_utils._quote_filename(filename) if mode == 'w': common.validate_options(options) return storage_api.StreamingBuffer(api, filename, content_type, options) elif mode == 'r': if content_type or options: raise ValueError('Options and content_type can only be specified ' 'for writing mode.') return storage_api.ReadBuffer(api, filename, buffer_size=read_buffer_size, offset=offset) else: raise ValueError('Invalid mode %s.' % mode)
def open(filename, mode='r', content_type=None, options=None, read_buffer_size=storage_api.ReadBuffer.DEFAULT_BUFFER_SIZE, retry_params=None, _account_id=None, offset=0)
Opens a Google Cloud Storage file and returns it as a File-like object. Args: filename: A Google Cloud Storage filename of form '/bucket/filename'. mode: 'r' for reading mode. 'w' for writing mode. In reading mode, the file must exist. In writing mode, a file will be created or be overrode. content_type: The MIME type of the file. str. Only valid in writing mode. options: A str->basestring dict to specify additional headers to pass to GCS e.g. {'x-goog-acl': 'private', 'x-goog-meta-foo': 'foo'}. Supported options are x-goog-acl, x-goog-meta-, cache-control, content-disposition, and content-encoding. Only valid in writing mode. See https://developers.google.com/storage/docs/reference-headers for details. read_buffer_size: The buffer size for read. Read keeps a buffer and prefetches another one. To minimize blocking for large files, always read by buffer size. To minimize number of RPC requests for small files, set a large buffer size. Max is 30MB. retry_params: An instance of api_utils.RetryParams for subsequent calls to GCS from this file handle. If None, the default one is used. _account_id: Internal-use only. offset: Number of bytes to skip at the start of the file. If None, 0 is used. Returns: A reading or writing buffer that supports File-like interface. Buffer must be closed after operations are done. Raises: errors.AuthorizationError: if authorization failed. errors.NotFoundError: if an object that's expected to exist doesn't. ValueError: invalid open mode or if content_type or options are specified in reading mode.
3.006832
3.196664
0.940616
api = storage_api._get_storage_api(retry_params=retry_params, account_id=_account_id) common.validate_file_path(filename) filename = api_utils._quote_filename(filename) status, resp_headers, content = api.delete_object(filename) errors.check_status(status, [204], filename, resp_headers=resp_headers, body=content)
def delete(filename, retry_params=None, _account_id=None)
Delete a Google Cloud Storage file. Args: filename: A Google Cloud Storage filename of form '/bucket/filename'. retry_params: An api_utils.RetryParams for this call to GCS. If None, the default one is used. _account_id: Internal-use only. Raises: errors.NotFoundError: if the file doesn't exist prior to deletion.
4.197329
4.469117
0.939185
return _get_bucket_attribute(bucket, 'location', 'LocationConstraint', retry_params=retry_params, _account_id=_account_id)
def get_location(bucket, retry_params=None, _account_id=None)
Returns the location for the given bucket. https://cloud.google.com/storage/docs/bucket-locations Args: bucket: A Google Cloud Storage bucket of form '/bucket'. retry_params: An api_utils.RetryParams for this call to GCS. If None, the default one is used. _account_id: Internal-use only. Returns: The location as a string. Raises: errors.AuthorizationError: if authorization failed. errors.NotFoundError: if the bucket does not exist.
3.759411
5.246476
0.716559