code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
msg = struct.pack('>Q', counter)
hs = hmac.new(key, msg, hashlib.sha1).digest()
offset = six.indexbytes(hs, 19) & 0x0f
val = struct.unpack('>L', hs[offset:offset + 4])[0] & 0x7fffffff
return '{val:0{digits}d}'.format(val=val % 10 ** digits, digits=digits) | def hotp(key, counter, digits=6) | These test vectors come from RFC-4226
(https://tools.ietf.org/html/rfc4226#page-32).
>>> key = b'12345678901234567890'
>>> for c in range(10):
... hotp(key, c)
'755224'
'287082'
'359152'
'969429'
'338314'
'254676'
'287922'
'162583'
'399871'
'520489' | 2.452462 | 2.442047 | 1.004265 |
if hasattr(t, 'timestamp'):
timestamp = t.timestamp()
else:
# python 2
if t.tzinfo is None:
timestamp = time.mktime(t.timetuple())
else:
utc_naive = t.replace(tzinfo=None) - t.utcoffset()
timestamp = (utc_naive - datetime.datetime(1970, 1, 1)).total_seconds()
return int(timestamp) // step | def T(t, step=30) | The TOTP T value (number of time steps since the epoch) | 2.581765 | 2.562455 | 1.007536 |
return hotp(key, T(t, step), digits) | def totp(key, t, digits=6, step=30) | These test vectors come from RFC-6238
(https://tools.ietf.org/html/rfc6238#appendix-B).
>>> import datetime
>>> key = b'12345678901234567890'
>>> totp(key, datetime.datetime.fromtimestamp(59), digits=8)
'94287082'
>>> totp(key, datetime.datetime.fromtimestamp(1111111109), digits=8)
'07081804'
>>> totp(key, datetime.datetime.fromtimestamp(20000000000), digits=8)
'65353130' | 9.937113 | 28.242903 | 0.351845 |
with tf.Graph().as_default(), tf.Session() as self.tf_session:
self.build_model()
tf.global_variables_initializer().run()
third = self.num_epochs // 3
for i in range(self.num_epochs):
lr_decay = self.lr_decay ** max(i - third, 0.0)
self.tf_session.run(
tf.assign(self.lr_var, tf.multiply(self.learning_rate, lr_decay)))
train_perplexity = self._run_train_step(train_set, 'train')
print("Epoch: %d Train Perplexity: %.3f"
% (i + 1, train_perplexity))
test_perplexity = self._run_train_step(test_set, 'test')
print("Test Perplexity: %.3f" % test_perplexity) | def fit(self, train_set, test_set) | Fit the model to the given data.
:param train_set: training data
:param test_set: test data | 2.255164 | 2.380933 | 0.947177 |
epoch_size = ((len(data) // self.batch_size) - 1) // self.num_steps
costs = 0.0
iters = 0
step = 0
state = self._init_state.eval()
op = self._train_op if mode == 'train' else tf.no_op()
for step, (x, y) in enumerate(
utilities.seq_data_iterator(
data, self.batch_size, self.num_steps)):
cost, state, _ = self.tf_session.run(
[self.cost, self.final_state, op],
{self.input_data: x,
self.input_labels: y,
self._init_state: state})
costs += cost
iters += self.num_steps
if step % (epoch_size // 10) == 10:
print("%.3f perplexity" % (step * 1.0 / epoch_size))
return np.exp(costs / iters) | def _run_train_step(self, data, mode='train') | Run a single training step.
:param data: input data
:param mode: 'train' or 'test'. | 2.335296 | 2.56391 | 0.910834 |
with tf.variable_scope(
"model", reuse=None, initializer=self.initializer):
self._create_placeholders()
self._create_rnn_cells()
self._create_initstate_and_embeddings()
self._create_rnn_architecture()
self._create_optimizer_node() | def build_model(self) | Build the model's computational graph. | 4.675543 | 4.281501 | 1.092034 |
self.input_data = tf.placeholder(
tf.int32, [self.batch_size, self.num_steps])
self.input_labels = tf.placeholder(
tf.int32, [self.batch_size, self.num_steps]) | def _create_placeholders(self) | Create the computational graph's placeholders. | 2.010957 | 1.851438 | 1.086159 |
lstm_cell = tf.nn.rnn_cell.LSTMCell(
self.num_hidden, forget_bias=0.0)
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(
lstm_cell, output_keep_prob=self.dropout)
self.cell = tf.nn.rnn_cell.MultiRNNCell(
[lstm_cell] * self.num_layers) | def _create_rnn_cells(self) | Create the LSTM cells. | 1.790144 | 1.696761 | 1.055036 |
self._init_state = self.cell.zero_state(self.batch_size, tf.float32)
embedding = tf.get_variable(
"embedding", [self.vocab_size, self.num_hidden])
inputs = tf.nn.embedding_lookup(embedding, self.input_data)
self.inputs = tf.nn.dropout(inputs, self.dropout) | def _create_initstate_and_embeddings(self) | Create the initial state for the cell and the data embeddings. | 2.195997 | 1.994905 | 1.100803 |
self.inputs = [tf.squeeze(i, [1]) for i in tf.split(
axis=1, num_or_size_splits=self.num_steps, value=self.inputs)]
outputs, state = tf.nn.rnn(
self.cell, self.inputs, initial_state=self._init_state)
output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, self.num_hidden])
softmax_w = tf.get_variable(
"softmax_w", [self.num_hidden, self.vocab_size])
softmax_b = tf.get_variable("softmax_b", [self.vocab_size])
logits = tf.add(tf.matmul(output, softmax_w), softmax_b)
loss = tf.nn.seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(self.input_labels, [-1])],
[tf.ones([self.batch_size * self.num_steps])])
self.cost = tf.div(tf.reduce_sum(loss), self.batch_size)
self.final_state = state | def _create_rnn_architecture(self) | Create the training architecture and the last layer of the LSTM. | 1.730312 | 1.666353 | 1.038383 |
self.lr_var = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
self.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self.lr_var)
self._train_op = optimizer.apply_gradients(zip(grads, tvars)) | def _create_optimizer_node(self) | Create the optimizer node of the graph. | 1.723865 | 1.606339 | 1.073164 |
self.input_data = tf.placeholder(
tf.float32, [None, n_features], name='x-input')
self.input_labels = tf.placeholder(
tf.float32, [None, n_classes], name='y-input')
self.keep_prob = tf.placeholder(
tf.float32, name='keep-probs') | def _create_placeholders(self, n_features, n_classes) | Create the TensorFlow placeholders for the model.
:param n_features: number of features of the first layer
:param n_classes: number of classes
:return: self | 1.798876 | 1.905452 | 0.944068 |
if self.do_pretrain:
self._create_variables_pretrain()
else:
self._create_variables_no_pretrain(n_features) | def _create_variables(self, n_features) | Create the TensorFlow variables for the model.
:param n_features: number of features
:return: self | 3.451294 | 3.925236 | 0.879258 |
self.encoding_w_ = []
self.encoding_b_ = []
for l, layer in enumerate(self.layers):
if l == 0:
self.encoding_w_.append(tf.Variable(tf.truncated_normal(
shape=[n_features, self.layers[l]], stddev=0.1)))
self.encoding_b_.append(tf.Variable(tf.truncated_normal(
[self.layers[l]], stddev=0.1)))
else:
self.encoding_w_.append(tf.Variable(tf.truncated_normal(
shape=[self.layers[l - 1], self.layers[l]], stddev=0.1)))
self.encoding_b_.append(tf.Variable(tf.truncated_normal(
[self.layers[l]], stddev=0.1))) | def _create_variables_no_pretrain(self, n_features) | Create model variables (no previous unsupervised pretraining).
:param n_features: number of features
:return: self | 1.609972 | 1.65984 | 0.969956 |
for l, layer in enumerate(self.layers):
self.encoding_w_[l] = tf.Variable(
self.encoding_w_[l], name='enc-w-{}'.format(l))
self.encoding_b_[l] = tf.Variable(
self.encoding_b_[l], name='enc-b-{}'.format(l)) | def _create_variables_pretrain(self) | Create model variables (previous unsupervised pretraining).
:return: self | 2.600356 | 2.819436 | 0.922297 |
next_train = self.input_data
self.layer_nodes = []
for l, layer in enumerate(self.layers):
with tf.name_scope("encode-{}".format(l)):
y_act = tf.add(
tf.matmul(next_train, self.encoding_w_[l]),
self.encoding_b_[l]
)
if self.finetune_enc_act_func[l] is not None:
layer_y = self.finetune_enc_act_func[l](y_act)
else:
layer_y = None
# the input to the next layer is the output of this layer
next_train = tf.nn.dropout(layer_y, self.keep_prob)
self.layer_nodes.append(next_train)
self.encode = next_train | def _create_encoding_layers(self) | Create the encoding layers for supervised finetuning.
:return: output of the final encoding layer. | 3.399144 | 3.432483 | 0.990287 |
next_decode = self.encode
for l, layer in reversed(list(enumerate(self.layers))):
with tf.name_scope("decode-{}".format(l)):
# Create decoding variables
if self.tied_weights:
dec_w = tf.transpose(self.encoding_w_[l])
else:
dec_w = tf.Variable(tf.transpose(
self.encoding_w_[l].initialized_value()))
dec_b = tf.Variable(tf.constant(
0.1, shape=[dec_w.get_shape().dims[1].value]))
self.decoding_w.append(dec_w)
self.decoding_b.append(dec_b)
y_act = tf.add(
tf.matmul(next_decode, dec_w),
dec_b
)
if self.finetune_dec_act_func[l] is not None:
layer_y = self.finetune_dec_act_func[l](y_act)
else:
layer_y = None
# the input to the next layer is the output of this layer
next_decode = tf.nn.dropout(layer_y, self.keep_prob)
self.layer_nodes.append(next_decode)
self.reconstruction = next_decode | def _create_decoding_layers(self) | Create the decoding layers for reconstruction finetuning.
:return: output of the final encoding layer. | 3.087573 | 3.074942 | 1.004108 |
mnist = input_data.read_data_sets("MNIST_data/", one_hot=one_hot)
# Training set
trX = mnist.train.images
trY = mnist.train.labels
# Validation set
vlX = mnist.validation.images
vlY = mnist.validation.labels
# Test set
teX = mnist.test.images
teY = mnist.test.labels
if mode == 'supervised':
return trX, trY, vlX, vlY, teX, teY
elif mode == 'unsupervised':
return trX, vlX, teX | def load_mnist_dataset(mode='supervised', one_hot=True) | Load the MNIST handwritten digits dataset.
:param mode: 'supervised' or 'unsupervised' mode
:param one_hot: whether to get one hot encoded labels
:return: train, validation, test data:
for (X, y) if 'supervised',
for (X) if 'unsupervised' | 1.478827 | 1.585658 | 0.932627 |
# Training set
trX = None
trY = np.array([])
# Test set
teX = np.array([])
teY = np.array([])
for fn in os.listdir(cifar_dir):
if not fn.startswith('batches') and not fn.startswith('readme'):
fo = open(os.path.join(cifar_dir, fn), 'rb')
data_batch = pickle.load(fo)
fo.close()
if fn.startswith('data'):
if trX is None:
trX = data_batch['data']
trY = data_batch['labels']
else:
trX = np.concatenate((trX, data_batch['data']), axis=0)
trY = np.concatenate((trY, data_batch['labels']), axis=0)
if fn.startswith('test'):
teX = data_batch['data']
teY = data_batch['labels']
trX = trX.astype(np.float32) / 255.
teX = teX.astype(np.float32) / 255.
if mode == 'supervised':
return trX, trY, teX, teY
elif mode == 'unsupervised':
return trX, teX | def load_cifar10_dataset(cifar_dir, mode='supervised') | Load the cifar10 dataset.
:param cifar_dir: path to the dataset directory
(cPicle format from: https://www.cs.toronto.edu/~kriz/cifar.html)
:param mode: 'supervised' or 'unsupervised' mode
:return: train, test data:
for (X, y) if 'supervised',
for (X) if 'unsupervised' | 1.727785 | 1.808985 | 0.955113 |
with tf.name_scope(name):
in_dim = prev_layer.get_shape()[1].value
W = tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=0.1))
b = tf.Variable(tf.constant(0.1, shape=[out_dim]))
out = tf.add(tf.matmul(prev_layer, W), b)
return (out, W, b) | def linear(prev_layer, out_dim, name="linear") | Create a linear fully-connected layer.
Parameters
----------
prev_layer : tf.Tensor
Last layer's output tensor.
out_dim : int
Number of output units.
Returns
-------
tuple (
tf.Tensor : Linear output tensor
tf.Tensor : Linear weights variable
tf.Tensor : Linear biases variable
) | 1.559873 | 1.623201 | 0.960986 |
with tf.name_scope(name):
if regtype != 'none':
regs = tf.constant(0.0)
for v in variables:
if regtype == 'l2':
regs = tf.add(regs, tf.nn.l2_loss(v))
elif regtype == 'l1':
regs = tf.add(regs, tf.reduce_sum(tf.abs(v)))
return tf.multiply(regcoef, regs)
else:
return None | def regularization(variables, regtype, regcoef, name="regularization") | Compute the regularization tensor.
Parameters
----------
variables : list of tf.Variable
List of model variables.
regtype : str
Type of regularization. Can be ["none", "l1", "l2"]
regcoef : float,
Regularization coefficient.
name : str, optional (default = "regularization")
Name for the regularization op.
Returns
-------
tf.Tensor : Regularization tensor. | 1.771316 | 1.844392 | 0.96038 |
with tf.name_scope(name):
mod_pred = tf.argmax(mod_y, 1)
correct_pred = tf.equal(mod_pred, tf.argmax(ref_y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
if summary:
tf.summary.scalar('accuracy', accuracy)
return accuracy | def accuracy(mod_y, ref_y, summary=True, name="accuracy") | Accuracy computation op.
Parameters
----------
mod_y : tf.Tensor
Model output tensor.
ref_y : tf.Tensor
Reference input tensor.
summary : bool, optional (default = True)
Whether to save tf summary for the op.
Returns
-------
tf.Tensor : accuracy op. tensor | 1.585064 | 1.82578 | 0.868157 |
self._create_placeholders(n_features, n_classes)
self._create_variables(n_features, n_classes)
self.mod_y = tf.nn.softmax(
tf.add(tf.matmul(self.input_data, self.W_), self.b_))
self.cost = self.loss.compile(self.mod_y, self.input_labels)
self.train_step = tf.train.GradientDescentOptimizer(
self.learning_rate).minimize(self.cost)
self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels) | def build_model(self, n_features, n_classes) | Create the computational graph.
:param n_features: number of features
:param n_classes: number of classes
:return: self | 2.684997 | 2.812569 | 0.954642 |
self.W_ = tf.Variable(
tf.zeros([n_features, n_classes]), name='weights')
self.b_ = tf.Variable(
tf.zeros([n_classes]), name='biases') | def _create_variables(self, n_features, n_classes) | Create the TensorFlow variables for the model.
:param n_features: number of features
:param n_classes: number of classes
:return: self | 2.064609 | 2.382578 | 0.866544 |
next_train = train_set
next_valid = validation_set
for l, layer_obj in enumerate(layer_objs):
print('Training layer {}...'.format(l + 1))
next_train, next_valid = self._pretrain_layer_and_gen_feed(
layer_obj, set_params_func, next_train, next_valid,
layer_graphs[l])
return next_train, next_valid | def pretrain_procedure(self, layer_objs, layer_graphs, set_params_func,
train_set, validation_set=None) | Perform unsupervised pretraining of the model.
:param layer_objs: list of model objects (autoencoders or rbms)
:param layer_graphs: list of model tf.Graph objects
:param set_params_func: function used to set the parameters after
pretraining
:param train_set: training set
:param validation_set: validation set
:return: return data encoded by the last layer | 2.79985 | 3.276072 | 0.854636 |
layer_obj.fit(train_set, train_set,
validation_set, validation_set, graph=graph)
with graph.as_default():
set_params_func(layer_obj, graph)
next_train = layer_obj.transform(train_set, graph=graph)
if validation_set is not None:
next_valid = layer_obj.transform(validation_set, graph=graph)
else:
next_valid = None
return next_train, next_valid | def _pretrain_layer_and_gen_feed(self, layer_obj, set_params_func,
train_set, validation_set, graph) | Pretrain a single autoencoder and encode the data for the next layer.
:param layer_obj: layer model
:param set_params_func: function used to set the parameters after
pretraining
:param train_set: training set
:param validation_set: validation set
:param graph: tf object for the rbm
:return: encoded train data, encoded validation data | 2.288198 | 2.60668 | 0.877821 |
layers_out = []
with self.tf_graph.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
for l in self.layer_nodes:
layers_out.append(l.eval({self.input_data: dataset,
self.keep_prob: 1}))
if layers_out == []:
raise Exception("This method is not implemented for this model")
else:
return layers_out | def get_layers_output(self, dataset) | Get output from each layer of the network.
:param dataset: input data
:return: list of np array, element i is the output of layer i | 2.853119 | 2.868888 | 0.994504 |
g = graph if graph is not None else self.tf_graph
with g.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
out = {}
for par in params:
if type(params[par]) == list:
for i, p in enumerate(params[par]):
out[par + '-' + str(i+1)] = p.eval()
else:
out[par] = params[par].eval()
return out | def get_parameters(self, params, graph=None) | Get the parameters of the model.
:param params: dictionary of keys (str names) and values (tensors).
:return: evaluated tensors in params | 2.27003 | 2.391631 | 0.949155 |
if len(train_Y.shape) != 1:
num_classes = train_Y.shape[1]
else:
raise Exception("Please convert the labels with one-hot encoding.")
g = graph if graph is not None else self.tf_graph
with g.as_default():
# Build model
self.build_model(train_X.shape[1], num_classes)
with tf.Session() as self.tf_session:
# Initialize tf stuff
summary_objs = tf_utils.init_tf_ops(self.tf_session)
self.tf_merged_summaries = summary_objs[0]
self.tf_summary_writer = summary_objs[1]
self.tf_saver = summary_objs[2]
# Train model
self._train_model(train_X, train_Y, val_X, val_Y)
# Save model
self.tf_saver.save(self.tf_session, self.model_path) | def fit(self, train_X, train_Y, val_X=None, val_Y=None, graph=None) | Fit the model to the data.
Parameters
----------
train_X : array_like, shape (n_samples, n_features)
Training data.
train_Y : array_like, shape (n_samples, n_classes)
Training labels.
val_X : array_like, shape (N, n_features) optional, (default = None).
Validation data.
val_Y : array_like, shape (N, n_classes) optional, (default = None).
Validation labels.
graph : tf.Graph, optional (default = None)
Tensorflow Graph object.
Returns
------- | 2.57239 | 2.677833 | 0.960623 |
with self.tf_graph.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
feed = {
self.input_data: test_X,
self.keep_prob: 1
}
return self.mod_y.eval(feed) | def predict(self, test_X) | Predict the labels for the test set.
Parameters
----------
test_X : array_like, shape (n_samples, n_features)
Test data.
Returns
-------
array_like, shape (n_samples,) : predicted labels. | 2.64261 | 3.091104 | 0.854908 |
with self.tf_graph.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
feed = {
self.input_data: test_X,
self.input_labels: test_Y,
self.keep_prob: 1
}
return self.accuracy.eval(feed) | def score(self, test_X, test_Y) | Compute the mean accuracy over the test set.
Parameters
----------
test_X : array_like, shape (n_samples, n_features)
Test data.
test_Y : array_like, shape (n_samples, n_features)
Test labels.
Returns
-------
float : mean accuracy over the test set | 2.191324 | 2.517377 | 0.870479 |
self.do_pretrain = True
def set_params_func(autoenc, autoencgraph):
params = autoenc.get_parameters(graph=autoencgraph)
self.encoding_w_.append(params['enc_w'])
self.encoding_b_.append(params['enc_b'])
return SupervisedModel.pretrain_procedure(
self, self.autoencoders, self.autoencoder_graphs,
set_params_func=set_params_func, train_set=train_set,
validation_set=validation_set) | def pretrain(self, train_set, validation_set=None) | Perform Unsupervised pretraining of the autoencoder. | 4.686777 | 4.533575 | 1.033793 |
self._create_placeholders(n_features, n_classes)
self._create_variables(n_features)
next_train = self._create_encoding_layers()
self.mod_y, _, _ = Layers.linear(next_train, n_classes)
self.layer_nodes.append(self.mod_y)
self.cost = self.loss.compile(self.mod_y, self.input_labels)
self.train_step = self.trainer.compile(self.cost)
self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels) | def build_model(self, n_features, n_classes) | Create the computational graph.
This graph is intented to be created for finetuning,
i.e. after unsupervised pretraining.
:param n_features: Number of features.
:param n_classes: number of classes.
:return: self | 4.010767 | 4.293543 | 0.934139 |
self.encoding_w_ = []
self.encoding_b_ = []
for l, layer in enumerate(self.layers):
w_name = 'enc-w-{}'.format(l)
b_name = 'enc-b-{}'.format(l)
if l == 0:
w_shape = [n_features, self.layers[l]]
else:
w_shape = [self.layers[l - 1], self.layers[l]]
w_init = tf.truncated_normal(shape=w_shape, stddev=0.1)
W = tf.Variable(w_init, name=w_name)
tf.summary.histogram(w_name, W)
self.encoding_w_.append(W)
b_init = tf.constant(0.1, shape=[self.layers[l]])
b = tf.Variable(b_init, name=b_name)
tf.summary.histogram(b_name, b)
self.encoding_b_.append(b) | def _create_variables_no_pretrain(self, n_features) | Create model variables (no previous unsupervised pretraining).
:param n_features: number of features
:return: self | 1.75208 | 1.802631 | 0.971957 |
summary_merged = tf.summary.merge_all()
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
sess.run(init_op)
# Retrieve run identifier
run_id = 0
for e in os.listdir(Config().logs_dir):
if e[:3] == 'run':
r = int(e[3:])
if r > run_id:
run_id = r
run_id += 1
run_dir = os.path.join(Config().logs_dir, 'run' + str(run_id))
print('Tensorboard logs dir for this run is %s' % (run_dir))
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
return (summary_merged, summary_writer, saver) | def init_tf_ops(sess) | Initialize TensorFlow operations.
This function initialize the following tensorflow ops:
* init variables ops
* summary ops
* create model saver
Parameters
----------
sess : object
Tensorflow `Session` object
Returns
-------
tuple : (summary_merged, summary_writer)
* tf merged summaries object
* tf summary writer object
* tf saver object | 2.402615 | 2.474165 | 0.971081 |
try:
result = sess.run([merged_summaries, tens], feed_dict=feed)
summary_str = result[0]
out = result[1]
summary_writer.add_summary(summary_str, epoch)
except tf.errors.InvalidArgumentError:
out = sess.run(tens, feed_dict=feed)
return out | def run_summaries(
sess, merged_summaries, summary_writer, epoch, feed, tens) | Run the summaries and error computation on the validation set.
Parameters
----------
sess : tf.Session
Tensorflow session object.
merged_summaries : tf obj
Tensorflow merged summaries obj.
summary_writer : tf.summary.FileWriter
Tensorflow summary writer obj.
epoch : int
Current training epoch.
feed : dict
Validation feed dict.
tens : tf.Tensor
Tensor to display and evaluate during training.
Can be self.accuracy for SupervisedModel or self.cost for
UnsupervisedModel.
Returns
-------
err : float, mean error over the validation set. | 1.994191 | 2.226703 | 0.89558 |
self.do_pretrain = True
def set_params_func(rbmmachine, rbmgraph):
params = rbmmachine.get_parameters(graph=rbmgraph)
self.encoding_w_.append(params['W'])
self.encoding_b_.append(params['bh_'])
return SupervisedModel.pretrain_procedure(
self, self.rbms, self.rbm_graphs, set_params_func=set_params_func,
train_set=train_set, validation_set=validation_set) | def pretrain(self, train_set, validation_set=None) | Perform Unsupervised pretraining of the DBN. | 5.872273 | 5.826441 | 1.007866 |
for l, layer in enumerate(self.layers):
w_name = 'enc-w-{}'.format(l)
b_name = 'enc-b-{}'.format(l)
self.encoding_w_[l] = tf.Variable(
self.encoding_w_[l], name=w_name)
tf.summary.histogram(w_name, self.encoding_w_[l])
self.encoding_b_[l] = tf.Variable(
self.encoding_b_[l], name=b_name)
tf.summary.histogram(b_name, self.encoding_w_[l]) | def _create_variables_pretrain(self) | Create model variables (previous unsupervised pretraining).
:return: self | 2.144416 | 2.229868 | 0.961678 |
pbar = tqdm(range(self.num_epochs))
for i in pbar:
self._run_train_step(train_X)
if val_X is not None:
feed = {self.input_data_orig: val_X,
self.input_data: val_X}
err = tf_utils.run_summaries(
self.tf_session, self.tf_merged_summaries,
self.tf_summary_writer, i, feed, self.cost)
pbar.set_description("Reconstruction loss: %s" % (err))
return self | def _train_model(self, train_X, train_Y=None, val_X=None, val_Y=None) | Train the model.
Parameters
----------
train_X : array_like
Training data, shape (num_samples, num_features).
train_Y : array_like, optional (default = None)
Reference training data, shape (num_samples, num_features).
val_X : array_like, optional, default None
Validation data, shape (num_val_samples, num_features).
val_Y : array_like, optional, default None
Reference validation data, shape (num_val_samples, num_features).
Returns
-------
self : trained model instance | 3.66841 | 4.110765 | 0.892391 |
x_corrupted = utilities.corrupt_input(
train_X, self.tf_session, self.corr_type, self.corr_frac)
shuff = list(zip(train_X, x_corrupted))
np.random.shuffle(shuff)
batches = [_ for _ in utilities.gen_batches(shuff, self.batch_size)]
for batch in batches:
x_batch, x_corr_batch = zip(*batch)
tr_feed = {self.input_data_orig: x_batch,
self.input_data: x_corr_batch}
self.tf_session.run(self.train_step, feed_dict=tr_feed) | def _run_train_step(self, train_X) | Run a training step.
A training step is made by randomly corrupting the training set,
randomly shuffling it, divide it into batches and run the optimizer
for each batch.
Parameters
----------
train_X : array_like
Training data, shape (num_samples, num_features).
Returns
-------
self | 2.944478 | 3.18007 | 0.925916 |
self._create_placeholders(n_features)
self._create_variables(n_features, W_, bh_, bv_)
self._create_encode_layer()
self._create_decode_layer()
variables = [self.W_, self.bh_, self.bv_]
regterm = Layers.regularization(variables, self.regtype, self.regcoef)
self.cost = self.loss.compile(
self.reconstruction, self.input_data_orig, regterm=regterm)
self.train_step = self.trainer.compile(self.cost) | def build_model(self, n_features, W_=None, bh_=None, bv_=None) | Create the computational graph.
Parameters
----------
n_features : int
Number of units in the input layer.
W_ : array_like, optional (default = None)
Weight matrix np array.
bh_ : array_like, optional (default = None)
Hidden bias np array.
bv_ : array_like, optional (default = None)
Visible bias np array.
Returns
-------
self | 4.061566 | 4.375747 | 0.928199 |
if W_:
self.W_ = tf.Variable(W_, name='enc-w')
else:
self.W_ = tf.Variable(
tf.truncated_normal(
shape=[n_features, self.n_components], stddev=0.1),
name='enc-w')
if bh_:
self.bh_ = tf.Variable(bh_, name='hidden-bias')
else:
self.bh_ = tf.Variable(tf.constant(
0.1, shape=[self.n_components]), name='hidden-bias')
if bv_:
self.bv_ = tf.Variable(bv_, name='visible-bias')
else:
self.bv_ = tf.Variable(tf.constant(
0.1, shape=[n_features]), name='visible-bias') | def _create_variables(self, n_features, W_=None, bh_=None, bv_=None) | Create the TensorFlow variables for the model.
:return: self | 1.637626 | 1.681158 | 0.974106 |
with tf.name_scope("encoder"):
activation = tf.add(
tf.matmul(self.input_data, self.W_),
self.bh_
)
if self.enc_act_func:
self.encode = self.enc_act_func(activation)
else:
self.encode = activation
return self | def _create_encode_layer(self) | Create the encoding layer of the network.
Returns
-------
self | 4.099478 | 4.236703 | 0.96761 |
with tf.name_scope("decoder"):
activation = tf.add(
tf.matmul(self.encode, tf.transpose(self.W_)),
self.bv_
)
if self.dec_act_func:
self.reconstruction = self.dec_act_func(activation)
else:
self.reconstruction = activation
return self | def _create_decode_layer(self) | Create the decoding layer of the network.
Returns
-------
self | 4.443258 | 4.625976 | 0.960502 |
return tf.nn.relu(tf.sign(probs - rand)) | def sample_prob(probs, rand) | Get samples from a tensor of probabilities.
:param probs: tensor of probabilities
:param rand: tensor (of the same shape as probs) of random values
:return: binary sample of probabilities | 6.427274 | 10.436087 | 0.61587 |
corruption_ratio = np.round(corrfrac * data.shape[1]).astype(np.int)
if corrtype == 'none':
return np.copy(data)
if corrfrac > 0.0:
if corrtype == 'masking':
return masking_noise(data, sess, corrfrac)
elif corrtype == 'salt_and_pepper':
return salt_and_pepper_noise(data, corruption_ratio)
else:
return np.copy(data) | def corrupt_input(data, sess, corrtype, corrfrac) | Corrupt a fraction of data according to the chosen noise method.
:return: corrupted data | 2.73239 | 2.974014 | 0.918755 |
low = -const * np.sqrt(6.0 / (fan_in + fan_out))
high = const * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high) | def xavier_init(fan_in, fan_out, const=1) | Xavier initialization of network weights.
https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
:param fan_in: fan in of the network (n_features)
:param fan_out: fan out of the network (n_components)
:param const: multiplicative constant | 1.46939 | 1.901683 | 0.772679 |
data = np.array(data)
for i in range(0, data.shape[0], batch_size):
yield data[i:i + batch_size] | def gen_batches(data, batch_size) | Divide input data into batches.
:param data: input data
:param batch_size: size of each batch
:return: data divided into batches | 1.986278 | 2.671394 | 0.743536 |
nc = 1 + np.max(dataY)
onehot = [np.zeros(nc, dtype=np.int8) for _ in dataY]
for i, j in enumerate(dataY):
onehot[i][j] = 1
return onehot | def to_one_hot(dataY) | Convert the vector of labels dataY into one-hot encoding.
:param dataY: vector of labels
:return: one-hot encoded labels | 2.503179 | 2.924561 | 0.855916 |
if data.min() < 0 or data.max() > 1:
data = normalize(data)
out_data = data.copy()
for i, sample in enumerate(out_data):
for j, val in enumerate(sample):
if np.random.random() <= val:
out_data[i][j] = 1
else:
out_data[i][j] = 0
return out_data | def conv2bin(data) | Convert a matrix of probabilities into binary values.
If the matrix has values <= 0 or >= 1, the values are
normalized to be in [0, 1].
:type data: numpy array
:param data: input matrix
:return: converted binary matrix | 2.457293 | 2.473417 | 0.993481 |
out_data = data.copy()
for i, sample in enumerate(out_data):
out_data[i] /= sum(out_data[i])
return out_data | def normalize(data) | Normalize the data to be in the [0, 1] range.
:param data:
:return: normalized data | 3.129776 | 3.873492 | 0.807999 |
data_noise = data.copy()
rand = tf.random_uniform(data.shape)
data_noise[sess.run(tf.nn.relu(tf.sign(v - rand))).astype(np.bool)] = 0
return data_noise | def masking_noise(data, sess, v) | Apply masking noise to data in X.
In other words a fraction v of elements of X
(chosen at random) is forced to zero.
:param data: array_like, Input data
:param sess: TensorFlow session
:param v: fraction of elements to distort, float
:return: transformed data | 4.159185 | 4.582458 | 0.907632 |
X_noise = X.copy()
n_features = X.shape[1]
mn = X.min()
mx = X.max()
for i, sample in enumerate(X):
mask = np.random.randint(0, n_features, v)
for m in mask:
if np.random.random() < 0.5:
X_noise[i][m] = mn
else:
X_noise[i][m] = mx
return X_noise | def salt_and_pepper_noise(X, v) | Apply salt and pepper noise to data in X.
In other words a fraction v of elements of X
(chosen at random) is set to its maximum or minimum value according to a
fair coin flip.
If minimum or maximum are not given, the min (max) value in X is taken.
:param X: array_like, Input data
:param v: int, fraction of elements to distort
:return: transformed data | 2.362056 | 2.578466 | 0.91607 |
layers = args_to_expand['layers']
try:
items = args_to_expand.iteritems()
except AttributeError:
items = args_to_expand.items()
for key, val in items:
if isinstance(val, list) and len(val) != len(layers):
args_to_expand[key] = [val[0] for _ in layers]
return args_to_expand | def expand_args(**args_to_expand) | Expand the given lists into the length of the layers.
This is used as a convenience so that the user does not need to specify the
complete list of parameters for model initialization.
IE the user can just specify one parameter and this function will expand it | 2.630174 | 2.495777 | 1.05385 |
if flagtype == 'int':
return [int(_) for _ in flagval.split(',') if _]
elif flagtype == 'float':
return [float(_) for _ in flagval.split(',') if _]
elif flagtype == 'str':
return [_ for _ in flagval.split(',') if _]
else:
raise Exception("incorrect type") | def flag_to_list(flagval, flagtype) | Convert a string of comma-separated tf flags to a list of values. | 2.181426 | 2.015566 | 1.082289 |
if act_func == 'sigmoid':
return tf.nn.sigmoid
elif act_func == 'tanh':
return tf.nn.tanh
elif act_func == 'relu':
return tf.nn.relu | def str2actfunc(act_func) | Convert activation function name to tf function. | 1.749652 | 1.729551 | 1.011622 |
if seed >= 0:
np.random.seed(seed)
tf.set_random_seed(seed)
return True
else:
return False | def random_seed_np_tf(seed) | Seed numpy and tensorflow random number generators.
:param seed: seed parameter | 2.154981 | 3.006446 | 0.716787 |
assert len(img) == width * height or len(img) == width * height * 3
if img_type == 'grey':
misc.imsave(outfile, img.reshape(width, height))
elif img_type == 'color':
misc.imsave(outfile, img.reshape(3, width, height)) | def gen_image(img, width, height, outfile, img_type='grey') | Save an image with the given parameters. | 2.44973 | 2.451854 | 0.999134 |
weights = np.load(weights_npy)
perm = np.random.permutation(weights.shape[1])[:n_images]
for p in perm:
w = np.array([i[p] for i in weights])
image_path = outdir + 'w_{}.png'.format(p)
gen_image(w, width, height, image_path, img_type) | def get_weights_as_images(weights_npy, width, height, outdir='img/',
n_images=10, img_type='grey') | Create and save the weights of the hidden units as images.
:param weights_npy: path to the weights .npy file
:param width: width of the images
:param height: height of the images
:param outdir: output directory
:param n_images: number of images to generate
:param img_type: 'grey' or 'color' (RGB) | 2.724723 | 3.003972 | 0.90704 |
shuff = list(zip(train_set, train_labels))
pbar = tqdm(range(self.num_epochs))
for i in pbar:
np.random.shuffle(list(shuff))
batches = [_ for _ in utilities.gen_batches(
shuff, self.batch_size)]
for batch in batches:
x_batch, y_batch = zip(*batch)
self.tf_session.run(
self.train_step,
feed_dict={self.input_data: x_batch,
self.input_labels: y_batch,
self.keep_prob: self.dropout})
if validation_set is not None:
feed = {self.input_data: validation_set,
self.input_labels: validation_labels,
self.keep_prob: 1}
acc = tf_utils.run_summaries(
self.tf_session, self.tf_merged_summaries,
self.tf_summary_writer, i, feed, self.accuracy)
pbar.set_description("Accuracy: %s" % (acc)) | def _train_model(self, train_set, train_labels,
validation_set, validation_labels) | Train the model.
:param train_set: training set
:param train_labels: training labels
:param validation_set: validation set
:param validation_labels: validation labels
:return: self | 2.385856 | 2.545369 | 0.937332 |
self._create_placeholders(n_features, n_classes)
self._create_layers(n_classes)
self.cost = self.loss.compile(self.mod_y, self.input_labels)
self.train_step = self.trainer.compile(self.cost)
self.accuracy = Evaluation.accuracy(self.mod_y, self.input_labels) | def build_model(self, n_features, n_classes) | Create the computational graph of the model.
:param n_features: Number of features.
:param n_classes: number of classes.
:return: self | 3.865248 | 4.414441 | 0.875592 |
return tf.nn.max_pool(
x, ksize=[1, dim, dim, 1], strides=[1, dim, dim, 1],
padding='SAME') | def max_pool(x, dim) | Max pooling operation. | 2.377384 | 2.178937 | 1.091075 |
g = graph if graph is not None else self.tf_graph
with g.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
feed = {self.input_data: data, self.keep_prob: 1}
return self.reconstruction.eval(feed) | def reconstruct(self, data, graph=None) | Reconstruct data according to the model.
Parameters
----------
data : array_like, shape (n_samples, n_features)
Data to transform.
graph : tf.Graph, optional (default = None)
Tensorflow Graph object
Returns
-------
array_like, transformed data | 2.783825 | 3.139928 | 0.886589 |
g = graph if graph is not None else self.tf_graph
with g.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
feed = {
self.input_data: data,
self.input_labels: data_ref,
self.keep_prob: 1
}
return self.cost.eval(feed) | def score(self, data, data_ref, graph=None) | Compute the reconstruction loss over the test set.
Parameters
----------
data : array_like
Data to reconstruct.
data_ref : array_like
Reference data.
Returns
-------
float: Mean error. | 2.67873 | 3.028924 | 0.884383 |
with tf.name_scope(name_scope):
return self.opt_.minimize(cost) | def compile(self, cost, name_scope="train") | Compile the optimizer with the given training parameters.
Parameters
----------
cost : Tensor
A Tensor containing the value to minimize.
name_scope : str , optional (default="train")
Optional name scope for the optimizer graph ops. | 4.542771 | 5.293953 | 0.858106 |
with tf.name_scope(self.name):
if self.lfunc == 'cross_entropy':
clip_inf = tf.clip_by_value(mod_y, 1e-10, float('inf'))
clip_sup = tf.clip_by_value(1 - mod_y, 1e-10, float('inf'))
cost = - tf.reduce_mean(tf.add(
tf.multiply(ref_y, tf.log(clip_inf)),
tf.multiply(tf.subtract(1.0, ref_y), tf.log(clip_sup))))
elif self.lfunc == 'softmax_cross_entropy':
cost = tf.losses.softmax_cross_entropy(ref_y, mod_y)
elif self.lfunc == 'mse':
cost = tf.sqrt(tf.reduce_mean(
tf.square(tf.subtract(ref_y, mod_y))))
else:
cost = None
if cost is not None:
cost = cost + regterm if regterm is not None else cost
tf.summary.scalar(self.lfunc, cost)
else:
cost = None
return cost | def compile(self, mod_y, ref_y, regterm=None) | Compute the loss function tensor.
Parameters
----------
mode_y : tf.Tensor
model output tensor
ref_y : tf.Tensor
reference input tensor
regterm : tf.Tensor, optional (default = None)
Regularization term tensor
Returns
-------
Loss function tensor. | 2.153043 | 2.11676 | 1.017141 |
self._create_placeholders(n_features, n_features)
if encoding_w and encoding_b:
self.encoding_w_ = encoding_w
self.encoding_b_ = encoding_b
else:
self._create_variables(n_features)
self._create_encoding_layers()
self._create_decoding_layers()
variables = []
variables.extend(self.encoding_w_)
variables.extend(self.encoding_b_)
regterm = Layers.regularization(variables, self.regtype, self.regcoef)
self.cost = self.loss.compile(
self.reconstruction, self.input_labels, regterm=regterm)
self.train_step = self.trainer.compile(self.cost) | def build_model(self, n_features, encoding_w=None, encoding_b=None) | Create the computational graph for the reconstruction task.
:param n_features: Number of features
:param encoding_w: list of weights for the encoding layers.
:param encoding_b: list of biases for the encoding layers.
:return: self | 3.239802 | 3.321724 | 0.975337 |
pbar = tqdm(range(self.num_epochs))
for i in pbar:
self._run_train_step(train_set)
if validation_set is not None:
feed = self._create_feed_dict(validation_set)
err = tf_utils.run_summaries(
self.tf_session, self.tf_merged_summaries,
self.tf_summary_writer, i, feed, self.cost)
pbar.set_description("Reconstruction loss: %s" % (err)) | def _train_model(self, train_set, train_ref=None, validation_set=None,
Validation_ref=None) | Train the model.
:param train_set: training set
:param validation_set: validation set. optional, default None
:return: self | 3.689616 | 3.986075 | 0.925626 |
np.random.shuffle(train_set)
batches = [_ for _ in utilities.gen_batches(train_set,
self.batch_size)]
updates = [self.w_upd8, self.bh_upd8, self.bv_upd8]
for batch in batches:
self.tf_session.run(updates,
feed_dict=self._create_feed_dict(batch)) | def _run_train_step(self, train_set) | Run a training step.
A training step is made by randomly shuffling the training set,
divide into batches and run the variable update nodes for each batch.
:param train_set: training set
:return: self | 4.276536 | 4.349119 | 0.983311 |
return {
self.input_data: data,
self.hrand: np.random.rand(data.shape[0], self.num_hidden),
self.vrand: np.random.rand(data.shape[0], data.shape[1])
} | def _create_feed_dict(self, data) | Create the dictionary of data to feed to tf session during training.
:param data: training/validation set batch
:return: dictionary(self.input_data: data, self.hrand: random_uniform,
self.vrand: random_uniform) | 3.384568 | 2.038436 | 1.660375 |
self._create_placeholders(n_features)
self._create_variables(n_features)
self.encode = self.sample_hidden_from_visible(self.input_data)[0]
self.reconstruction = self.sample_visible_from_hidden(
self.encode, n_features)
hprob0, hstate0, vprob, hprob1, hstate1 = self.gibbs_sampling_step(
self.input_data, n_features)
positive = self.compute_positive_association(self.input_data,
hprob0, hstate0)
nn_input = vprob
for step in range(self.gibbs_sampling_steps - 1):
hprob, hstate, vprob, hprob1, hstate1 = self.gibbs_sampling_step(
nn_input, n_features)
nn_input = vprob
negative = tf.matmul(tf.transpose(vprob), hprob1)
self.w_upd8 = self.W.assign_add(
self.learning_rate * (positive - negative) / self.batch_size)
self.bh_upd8 = self.bh_.assign_add(tf.multiply(self.learning_rate, tf.reduce_mean(
tf.subtract(hprob0, hprob1), 0)))
self.bv_upd8 = self.bv_.assign_add(tf.multiply(self.learning_rate, tf.reduce_mean(
tf.subtract(self.input_data, vprob), 0)))
variables = [self.W, self.bh_, self.bv_]
regterm = Layers.regularization(variables, self.regtype, self.regcoef)
self.cost = self.loss.compile(vprob, self.input_data, regterm=regterm) | def build_model(self, n_features, regtype='none') | Build the Restricted Boltzmann Machine model in TensorFlow.
:param n_features: number of features
:param regtype: regularization type
:return: self | 3.176386 | 3.133616 | 1.013649 |
self.input_data = tf.placeholder(tf.float32, [None, n_features],
name='x-input')
self.hrand = tf.placeholder(tf.float32, [None, self.num_hidden],
name='hrand')
self.vrand = tf.placeholder(tf.float32, [None, n_features],
name='vrand')
# not used in this model, created just to comply with
# unsupervised_model.py
self.input_labels = tf.placeholder(tf.float32)
self.keep_prob = tf.placeholder(tf.float32, name='keep-probs') | def _create_placeholders(self, n_features) | Create the TensorFlow placeholders for the model.
:param n_features: number of features
:return: self | 3.008217 | 3.122218 | 0.963487 |
w_name = 'weights'
self.W = tf.Variable(tf.truncated_normal(
shape=[n_features, self.num_hidden], stddev=0.1), name=w_name)
tf.summary.histogram(w_name, self.W)
bh_name = 'hidden-bias'
self.bh_ = tf.Variable(tf.constant(0.1, shape=[self.num_hidden]),
name=bh_name)
tf.summary.histogram(bh_name, self.bh_)
bv_name = 'visible-bias'
self.bv_ = tf.Variable(tf.constant(0.1, shape=[n_features]),
name=bv_name)
tf.summary.histogram(bv_name, self.bv_) | def _create_variables(self, n_features) | Create the TensorFlow variables for the model.
:param n_features: number of features
:return: self | 1.721527 | 1.796678 | 0.958172 |
hprobs, hstates = self.sample_hidden_from_visible(visible)
vprobs = self.sample_visible_from_hidden(hprobs, n_features)
hprobs1, hstates1 = self.sample_hidden_from_visible(vprobs)
return hprobs, hstates, vprobs, hprobs1, hstates1 | def gibbs_sampling_step(self, visible, n_features) | Perform one step of gibbs sampling.
:param visible: activations of the visible units
:param n_features: number of features
:return: tuple(hidden probs, hidden states, visible probs,
new hidden probs, new hidden states) | 2.578766 | 2.304712 | 1.11891 |
hprobs = tf.nn.sigmoid(tf.add(tf.matmul(visible, self.W), self.bh_))
hstates = utilities.sample_prob(hprobs, self.hrand)
return hprobs, hstates | def sample_hidden_from_visible(self, visible) | Sample the hidden units from the visible units.
This is the Positive phase of the Contrastive Divergence algorithm.
:param visible: activations of the visible units
:return: tuple(hidden probabilities, hidden binary states) | 7.03786 | 6.000099 | 1.172957 |
visible_activation = tf.add(
tf.matmul(hidden, tf.transpose(self.W)),
self.bv_
)
if self.visible_unit_type == 'bin':
vprobs = tf.nn.sigmoid(visible_activation)
elif self.visible_unit_type == 'gauss':
vprobs = tf.truncated_normal(
(1, n_features), mean=visible_activation, stddev=self.stddev)
else:
vprobs = None
return vprobs | def sample_visible_from_hidden(self, hidden, n_features) | Sample the visible units from the hidden units.
This is the Negative phase of the Contrastive Divergence algorithm.
:param hidden: activations of the hidden units
:param n_features: number of features
:return: visible probabilities | 3.437349 | 3.535637 | 0.972201 |
if self.visible_unit_type == 'bin':
positive = tf.matmul(tf.transpose(visible), hidden_states)
elif self.visible_unit_type == 'gauss':
positive = tf.matmul(tf.transpose(visible), hidden_probs)
else:
positive = None
return positive | def compute_positive_association(self, visible,
hidden_probs, hidden_states) | Compute positive associations between visible and hidden units.
:param visible: visible units
:param hidden_probs: hidden units probabilities
:param hidden_states: hidden units states
:return: positive association = dot(visible.T, hidden) | 3.230227 | 2.990796 | 1.080056 |
n_features, self.num_hidden = shape[0], shape[1]
self.gibbs_sampling_steps = gibbs_sampling_steps
self.build_model(n_features)
init_op = tf.global_variables_initializer()
self.tf_saver = tf.train.Saver()
with tf.Session() as self.tf_session:
self.tf_session.run(init_op)
self.tf_saver.restore(self.tf_session, model_path) | def load_model(self, shape, gibbs_sampling_steps, model_path) | Load a trained model from disk.
The shape of the model (num_visible, num_hidden) and the number
of gibbs sampling steps must be known in order to restore the model.
:param shape: tuple(num_visible, num_hidden)
:param gibbs_sampling_steps:
:param model_path:
:return: self | 2.206481 | 2.303788 | 0.957762 |
g = graph if graph is not None else self.tf_graph
with g.as_default():
with tf.Session() as self.tf_session:
self.tf_saver.restore(self.tf_session, self.model_path)
return {
'W': self.W.eval(),
'bh_': self.bh_.eval(),
'bv_': self.bv_.eval()
} | def get_parameters(self, graph=None) | Return the model parameters in the form of numpy arrays.
:param graph: tf graph object
:return: model parameters | 2.76438 | 2.739837 | 1.008958 |
best_action = None
best_match_count = -1
min_cost = min(ic, dc, sc)
if min_cost == sc and cost == 0:
best_action = EQUAL
best_match_count = sm
elif min_cost == sc and cost == 1:
best_action = REPLACE
best_match_count = sm
elif min_cost == ic and im > best_match_count:
best_action = INSERT
best_match_count = im
elif min_cost == dc and dm > best_match_count:
best_action = DELETE
best_match_count = dm
return best_action | def lowest_cost_action(ic, dc, sc, im, dm, sm, cost) | Given the following values, choose the action (insertion, deletion,
or substitution), that results in the lowest cost (ties are broken using
the 'match' score). This is used within the dynamic programming algorithm.
* ic - insertion cost
* dc - deletion cost
* sc - substitution cost
* im - insertion match (score)
* dm - deletion match (score)
* sm - substitution match (score) | 2.236201 | 2.267691 | 0.986113 |
# pylint: disable=unused-argument
best_action = None
lowest_cost = float("inf")
max_match = max(im, dm, sm)
if max_match == sm and cost == 0:
best_action = EQUAL
lowest_cost = sm
elif max_match == sm and cost == 1:
best_action = REPLACE
lowest_cost = sm
elif max_match == im and ic < lowest_cost:
best_action = INSERT
lowest_cost = ic
elif max_match == dm and dc < lowest_cost:
best_action = DELETE
lowest_cost = dc
return best_action | def highest_match_action(ic, dc, sc, im, dm, sm, cost) | Given the following values, choose the action (insertion, deletion, or
substitution), that results in the highest match score (ties are broken
using the distance values). This is used within the dynamic programming
algorithm.
* ic - insertion cost
* dc - deletion cost
* sc - substitution cost
* im - insertion match (score)
* dm - deletion match (score)
* sm - substitution match (score) | 2.481655 | 2.440671 | 1.016792 |
m = len(seq1)
n = len(seq2)
# Special, easy cases:
if seq1 == seq2:
return 0, n
if m == 0:
return n, 0
if n == 0:
return m, 0
v0 = [0] * (n + 1) # The two 'error' columns
v1 = [0] * (n + 1)
m0 = [0] * (n + 1) # The two 'match' columns
m1 = [0] * (n + 1)
for i in range(1, n + 1):
v0[i] = i
for i in range(1, m + 1):
v1[0] = i
for j in range(1, n + 1):
cost = 0 if test(seq1[i - 1], seq2[j - 1]) else 1
# The costs
ins_cost = v1[j - 1] + 1
del_cost = v0[j] + 1
sub_cost = v0[j - 1] + cost
# Match counts
ins_match = m1[j - 1]
del_match = m0[j]
sub_match = m0[j - 1] + int(not cost)
action = action_function(ins_cost, del_cost, sub_cost, ins_match,
del_match, sub_match, cost)
if action in [EQUAL, REPLACE]:
v1[j] = sub_cost
m1[j] = sub_match
elif action == INSERT:
v1[j] = ins_cost
m1[j] = ins_match
elif action == DELETE:
v1[j] = del_cost
m1[j] = del_match
else:
raise Exception('Invalid dynamic programming option returned!')
# Copy the columns over
for i in range(0, n + 1):
v0[i] = v1[i]
m0[i] = m1[i]
return v1[n], m1[n] | def edit_distance(seq1, seq2, action_function=lowest_cost_action, test=operator.eq) | Computes the edit distance between the two given sequences.
This uses the relatively fast method that only constructs
two columns of the 2d array for edits. This function actually uses four columns
because we track the number of matches too. | 2.014706 | 1.948981 | 1.033723 |
matches = 0
# Create a 2d distance array
m = len(seq1)
n = len(seq2)
# distances array:
d = [[0 for x in range(n + 1)] for y in range(m + 1)]
# backpointer array:
bp = [[None for x in range(n + 1)] for y in range(m + 1)]
# matches array:
matches = [[0 for x in range(n + 1)] for y in range(m + 1)]
# source prefixes can be transformed into empty string by
# dropping all characters
for i in range(1, m + 1):
d[i][0] = i
bp[i][0] = [DELETE, i - 1, i, 0, 0]
# target prefixes can be reached from empty source prefix by inserting
# every characters
for j in range(1, n + 1):
d[0][j] = j
bp[0][j] = [INSERT, 0, 0, j - 1, j]
# compute the edit distance...
for i in range(1, m + 1):
for j in range(1, n + 1):
cost = 0 if test(seq1[i - 1], seq2[j - 1]) else 1
# The costs of each action...
ins_cost = d[i][j - 1] + 1 # insertion
del_cost = d[i - 1][j] + 1 # deletion
sub_cost = d[i - 1][j - 1] + cost # substitution/match
# The match scores of each action
ins_match = matches[i][j - 1]
del_match = matches[i - 1][j]
sub_match = matches[i - 1][j - 1] + int(not cost)
action = action_function(ins_cost, del_cost, sub_cost, ins_match,
del_match, sub_match, cost)
if action == EQUAL:
d[i][j] = sub_cost
matches[i][j] = sub_match
bp[i][j] = [EQUAL, i - 1, i, j - 1, j]
elif action == REPLACE:
d[i][j] = sub_cost
matches[i][j] = sub_match
bp[i][j] = [REPLACE, i - 1, i, j - 1, j]
elif action == INSERT:
d[i][j] = ins_cost
matches[i][j] = ins_match
bp[i][j] = [INSERT, i - 1, i - 1, j - 1, j]
elif action == DELETE:
d[i][j] = del_cost
matches[i][j] = del_match
bp[i][j] = [DELETE, i - 1, i, j - 1, j - 1]
else:
raise Exception('Invalid dynamic programming action returned!')
opcodes = get_opcodes_from_bp_table(bp)
return d[m][n], matches[m][n], opcodes | def edit_distance_backpointer(seq1, seq2, action_function=lowest_cost_action, test=operator.eq) | Similar to :py:func:`~edit_distance.edit_distance` except that this function keeps backpointers
during the search. This allows us to return the opcodes (i.e. the specific
edits that were used to change from one string to another). This function
contructs the full 2d array (actually it contructs three of them: one
for distances, one for matches, and one for backpointers). | 1.890734 | 1.869245 | 1.011496 |
x = len(bp) - 1
y = len(bp[0]) - 1
opcodes = []
while x != 0 or y != 0:
this_bp = bp[x][y]
opcodes.append(this_bp)
if this_bp[0] == EQUAL or this_bp[0] == REPLACE:
x = x - 1
y = y - 1
elif this_bp[0] == INSERT:
y = y - 1
elif this_bp[0] == DELETE:
x = x - 1
opcodes.reverse()
return opcodes | def get_opcodes_from_bp_table(bp) | Given a 2d list structure, collect the opcodes from the best path. | 2.007486 | 1.78229 | 1.126352 |
if len(sys.argv) != 3:
print('Usage: {} <file1> <file2>'.format(sys.argv[0]))
exit(-1)
file1 = sys.argv[1]
file2 = sys.argv[2]
with open(file1) as f1, open(file2) as f2:
for line1, line2 in zip(f1, f2):
print("Line 1: {}".format(line1.strip()))
print("Line 2: {}".format(line2.strip()))
dist, _, _ = edit_distance_backpointer(line1.split(), line2.split())
print('Distance: {}'.format(dist))
print('=' * 80) | def main() | Read two files line-by-line and print edit distances between each pair
of lines. Will terminate at the end of the shorter of the two files. | 2.012406 | 1.804086 | 1.115471 |
self.set_seq1(a)
self.set_seq2(b)
self._reset_object() | def set_seqs(self, a, b) | Specify two alternative sequences -- reset any cached values. | 5.1481 | 4.366308 | 1.179051 |
opcodes = self.get_opcodes()
match_opcodes = filter(lambda x: x[0] == EQUAL, opcodes)
return map(lambda opcode: [opcode[1], opcode[3], opcode[2] - opcode[1]],
match_opcodes) | def get_matching_blocks(self) | Similar to :py:meth:`get_opcodes`, but returns only the opcodes that are
equal and returns them in a somewhat different format
(i.e. ``(i, j, n)`` ). | 4.535108 | 3.643013 | 1.244878 |
if not self.opcodes:
d, m, opcodes = edit_distance_backpointer(self.seq1, self.seq2,
action_function=self.action_function,
test=self.test)
if self.dist:
assert d == self.dist
if self._matches:
assert m == self._matches
self.dist = d
self._matches = m
self.opcodes = opcodes
return self.opcodes | def get_opcodes(self) | Returns a list of opcodes. Opcodes are the same as defined by
:py:mod:`difflib`. | 4.442063 | 4.240044 | 1.047646 |
return 2.0 * self.matches() / (len(self.seq1) + len(self.seq2)) | def ratio(self) | Ratio of matches to the average sequence length. | 6.597006 | 3.356857 | 1.965233 |
d, m = edit_distance(self.seq1, self.seq2,
action_function=self.action_function,
test=self.test)
if self.dist:
assert d == self.dist
if self._matches:
assert m == self._matches
self.dist = d
self._matches = m | def _compute_distance_fast(self) | Calls edit_distance, and asserts that if we already have values for
matches and distance, that they match. | 4.716973 | 3.329834 | 1.416579 |
result = (response.result() for response in reqs)
ret = [r.json() if r.status_code == 200 else None for r in result]
return ret | def async_request(self, reqs:list)->list | 异步并发请求
:param reqs: 请求列表
:return: | 4.804553 | 4.546259 | 1.056815 |
params = {'symbol': symbol, 'period': period, 'size': size}
url = u.MARKET_URL + '/market/history/kline'
return http_get_request(url, params, _async=_async) | def get_kline(self, symbol, period, size=150, _async=False) | 获取KLine
:param symbol
:param period: 可选值:{1min, 5min, 15min, 30min, 60min, 1day, 1mon, 1week, 1year }
:param size: 可选值: [1,2000]
:return: | 3.575552 | 4.370774 | 0.818059 |
params = {'symbol': symbol, 'type': _type}
url = u.MARKET_URL + '/market/depth'
return http_get_request(url, params, _async=_async) | def get_last_depth(self, symbol, _type, _async=False) | 获取marketdepth
:param symbol
:param type: 可选值:{ percent10, step0, step1, step2, step3, step4, step5 }
:return: | 4.957492 | 5.31062 | 0.933505 |
params = {'symbol': symbol}
url = u.MARKET_URL + '/market/trade'
return http_get_request(url, params, _async=_async) | def get_last_ticker(self, symbol, _async=False) | 获取tradedetail
:param symbol
:return: | 6.674034 | 7.378162 | 0.904566 |
params = {'symbol': symbol, 'size': size}
url = u.MARKET_URL + '/market/history/trade'
return http_get_request(url, params, _async=_async) | def get_ticker(self, symbol, size=1, _async=False) | 获取历史ticker
:param symbol:
:param size: 可选[1,2000]
:return: | 4.528526 | 5.375974 | 0.842364 |
params = {}
url = u.MARKET_URL + '/market/tickers'
return http_get_request(url, params, _async=_async) | def get_all_last_24h_kline(self, _async=False) | 获取所有24小时的概况
:param _async:
:return: | 6.982159 | 7.557101 | 0.92392 |
assert site in ['Pro', 'HADAX']
params = {}
path = f'/v1{"/" if site == "Pro" else "/hadax/"}common/symbols'
return api_key_get(params, path, _async=_async) | def get_symbols(self, site='Pro', _async=False) | 获取 支持的交易对
:param site:
:return: | 8.538712 | 7.181347 | 1.189013 |
assert site in ['Pro', 'HADAX']
params = {}
path = f'/v1{"/" if site == "Pro" else "/hadax/"}common/currencys'
return api_key_get(params, path, _async=_async) | def get_currencys(self, site='Pro', _async=False) | 获取所有币种
:param site:
:return: | 7.041618 | 6.652194 | 1.058541 |
path = '/v1/account/accounts'
params = {}
return api_key_get(params, path, _async=_async) | def get_accounts(self, _async=False) | :return: | 7.150921 | 6.024688 | 1.186936 |
acc_id = self.acc_id if acc_id is None else acc_id
assert site in ['Pro', 'HADAX']
path = f'/v1{"/" if site == "Pro" else "/hadax/"}account/accounts/{acc_id}/balance'
# params = {'account-id': self.acct_id}
params = {}
return api_key_get(params, path, _async=_async) | def get_balance(self, acc_id=None, site='Pro', _async=False) | 获取当前账户资产
:return: | 4.554513 | 4.52967 | 1.005484 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.