path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
16169565/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from skimage import io, color, exposure, transform import cv2 import cv2 import numpy as np # linear algebra import os import os def preprocess_img(img): # Histogram normalization in y hsv = color.rgb2hsv(img) hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2]) img = color.hsv2rgb(hsv) # central scrop min_side = min(img.shape[:-1]) centre = img.shape[0]//2, img.shape[1]//2 img = img[centre[0]-min_side//2:centre[0]+min_side//2, centre[1]-min_side//2:centre[1]+min_side//2, :] # rescale to standard size img = transform.resize(img, (IMG_SIZE, IMG_SIZE)) # roll color axis to axis 0 img = np.rollaxis(img,-1) return img import cv2 DATA_DIR_TRAIN = '../input/dataset/dataset/train' CATEGORIES = ['left', 'right'] x_train = [] y_train = [] img_data_train = [] for category in CATEGORIES: path = os.path.join(DATA_DIR_TRAIN, category) class_num = CATEGORIES.index(category) for img_path in os.listdir(path): img = cv2.imread(os.path.join(path, img_path)) img_data_train.append(img) new_img = preprocess_img(img) x_train.append(new_img) y_train.append(class_num) import cv2 DATA_DIR_TEST = '../input/dataset/dataset/test' CATEGORIES = ['left', 'right'] x_test = [] y_test = [] img_data_test = [] for category in CATEGORIES: path = os.path.join(DATA_DIR_TEST, category) class_num = CATEGORIES.index(category) for img_path in os.listdir(path): img = cv2.imread(os.path.join(path, img_path)) img_data_test.append(img) new_img = preprocess_img(img) x_test.append(new_img) y_test.append(class_num) x_train_np = np.array(x_train, dtype='float32') y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train] x_test_np = np.array(x_test, dtype='float32') y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test] print(x_train_np.shape) print(y_train_np.shape) print(x_test_np.shape) print(y_test_np.shape)
code
17112602/cell_13
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5)
code
17112602/cell_9
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape)
code
17112602/cell_20
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import roc_curve, auc from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) y_test_pred = model.predict_proba(X_test)[:, 1] f1_score(y_test, y_test_pred > 0.5) fpr, tpr, _ = roc_curve(y_test, y_test_pred) roc_auc = auc(fpr, tpr) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) df_acc = pd.DataFrame(columns=['minprob', 'maxprob', 'count', 'accuracy']) for pbot in np.linspace(0, 0.9, 10): ptop = pbot + 0.1 mask = (y_test_pred >= pbot) & (y_test_pred < ptop) count = int(mask.sum()) actual = pd.Series(y_test)[mask].values pred_prob = pd.Series(y_test_pred)[mask].values pred_bin = pred_prob > 0.5 acc = accuracy_score(actual, pred_bin) row = pd.DataFrame({'minprob': [pbot], 'maxprob': [ptop], 'count': [count], 'accuracy': [acc]}) df_acc = pd.concat([df_acc, row]) df_acc.set_index(['minprob', 'maxprob'])
code
17112602/cell_6
[ "image_output_1.png" ]
!ls $basepath
code
17112602/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import os print(os.listdir('../input'))
code
17112602/cell_11
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) pca = PCA(64) pca.fit(X_train) print(pca.explained_variance_ratio_)
code
17112602/cell_19
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import roc_curve, auc from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) y_test_pred = model.predict_proba(X_test)[:, 1] f1_score(y_test, y_test_pred > 0.5) fpr, tpr, _ = roc_curve(y_test, y_test_pred) roc_auc = auc(fpr, tpr) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) pd.Series(y_test_pred).hist() plt.show()
code
17112602/cell_7
[ "image_output_1.png" ]
import pandas as pd TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_train.head()
code
17112602/cell_18
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import roc_curve, auc from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) y_test_pred = model.predict_proba(X_test)[:, 1] f1_score(y_test, y_test_pred > 0.5) fpr, tpr, _ = roc_curve(y_test, y_test_pred) roc_auc = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, color='darkorange', lw=1, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic curve') plt.legend(loc='lower right') plt.show()
code
17112602/cell_15
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) accuracy_score(y_valid, y_pred > 0.5)
code
17112602/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) y_test_pred = model.predict_proba(X_test)[:, 1] print(confusion_matrix(y_test, y_test_pred > 0.5)) f1_score(y_test, y_test_pred > 0.5)
code
17112602/cell_17
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] f1_score(y_valid, y_pred > 0.5) y_test_pred = model.predict_proba(X_test)[:, 1] f1_score(y_test, y_test_pred > 0.5) accuracy_score(y_test, y_test_pred > 0.5)
code
17112602/cell_14
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train) y_train_pred = model.predict_proba(X_train)[:, 1] f1_score(y_train, y_train_pred > 0.5) y_pred = model.predict_proba(X_valid)[:, 1] print(confusion_matrix(y_valid, y_pred > 0.5)) f1_score(y_valid, y_pred > 0.5)
code
17112602/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) (X_train[:5, :5], X_valid[:5, :5], X_test[:5, :5])
code
17112602/cell_12
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures import numpy as np import pandas as pd import tensorflow as tf import tensorflow_hub as hub TRAIN_INPUT = 'twitgen_train_201906011956.csv' VALID_INPUT = 'twitgen_valid_201906011956.csv' TEST_INPUT = 'twitgen_test_201906011956.csv' EMBEDDING_DIM = 512 MAXLEN = 50 basepath = '/kaggle/input/' df_train = pd.read_csv(basepath + TRAIN_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_valid = pd.read_csv(basepath + VALID_INPUT, index_col=['id', 'time'], parse_dates=['time']) df_test = pd.read_csv(basepath + TEST_INPUT, index_col=['id', 'time'], parse_dates=['time']) def prepare_data(df): text = df['text'].tolist() text = [' '.join(t.split()[0:MAXLEN]) for t in text] text = np.array(text, dtype=object) label = df['male'].tolist() return (text, label) train_text, y_train = prepare_data(df_train) valid_text, y_valid = prepare_data(df_valid) test_text, y_test = prepare_data(df_test) module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/3' def get_embeddings(text): with tf.Graph().as_default(): embed = hub.Module(module_url) embeddings = embed(text) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.tables_initializer()) return sess.run(embeddings) chunk = int(len(train_text) / 2) X_train = np.concatenate([get_embeddings(train_text[:chunk]), get_embeddings(train_text[chunk:])]) X_valid = get_embeddings(valid_text) X_test = get_embeddings(test_text) (X_train.shape, X_valid.shape, X_test.shape) model = Pipeline([('pca', PCA(50)), ('poly', PolynomialFeatures()), ('lr', LogisticRegression(C=0.08))]) model = model.fit(X_train, y_train)
code
90146477/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum()
code
90146477/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] cm = df.corr() plt.figure(figsize=(16, 10)) sns.heatmap(cm, annot=True, cmap='Blues')
code
90146477/cell_23
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] for col, sk in zip(numerical_cols, skewness_values): plt.figure(figsize=(14, 6)) sns.histplot(data=df, x=col, bins=10, kde=True) plt.title(f'Distribution of {col}\nskewness:{sk:.2f}', fontsize=20)
code
90146477/cell_44
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RepeatedStratifiedKFold,train_test_split,cross_val_score,RandomizedSearchCV,GridSearchCV import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] for col, sk in zip(numerical_cols, skewness_values): if abs(sk) >= 0.4: df[col] = np.log1p(df[col]) skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] cm = df.corr() df['Class'] = np.where(df['Class'] == 'Çerçevelik', 1, 0) X = df[numerical_cols] y = df['Class'] cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=1) model_0 = RandomForestClassifier(n_jobs=-1) model_0_result = cross_val_score(model_0, X, y, scoring='accuracy', cv=cv, n_jobs=-1).mean() model_0_result model_1 = RandomForestClassifier(n_jobs=-1) grid = {'n_estimators': np.arange(250, 501, 50), 'max_depth': np.arange(5, 16, 1), 'min_impurity_decrease': np.logspace(-5, -1, 30), 'max_features': ['auto', 0.6, 0.7, 0.8, 0.9], 'max_samples': np.arange(0.5, 1, 0.1), 'min_samples_split': np.arange(5, 16, 1), 'min_samples_leaf': np.arange(2, 16, 1)} cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=1) rs_model_1 = RandomizedSearchCV(model_1, param_distributions=grid, cv=cv, n_iter=50, verbose=1, n_jobs=-1, scoring='accuracy') rs_model_1.fit(X, y)
code
90146477/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.head()
code
90146477/cell_29
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] df.head()
code
90146477/cell_41
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RepeatedStratifiedKFold,train_test_split,cross_val_score,RandomizedSearchCV,GridSearchCV import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] cm = df.corr() X = df[numerical_cols] y = df['Class'] cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=1) model_0 = RandomForestClassifier(n_jobs=-1) model_0_result = cross_val_score(model_0, X, y, scoring='accuracy', cv=cv, n_jobs=-1).mean() model_0_result
code
90146477/cell_2
[ "text_plain_output_1.png" ]
!pip install openpyxl --quiet
code
90146477/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() df.info()
code
90146477/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewed_cols = [] for col, sk in zip(numerical_cols, skewness_values): if abs(sk) >= 0.4: skewed_cols.append(col) print(f'There are {len(skewed_cols)} columns and they are:\n{skewed_cols}')
code
90146477/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90146477/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] for col, sk in zip(numerical_cols, skewness_values): plt.figure(figsize=(14, 6)) sns.histplot(data=df, x=col, bins=10, kde=True) plt.title(f'Distribution of {col}\nskewness:{sk:.2f}', fontsize=20)
code
90146477/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape
code
90146477/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4]
code
90146477/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3]
code
90146477/cell_31
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] for col in numerical_cols: plt.figure(figsize=(14, 6)) sns.violinplot(data=df, x='Class', y=col) plt.title(f'Distribution of Class with respect to {col}')
code
90146477/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] still_skewed_cols = [] for col, sk in zip(numerical_cols, skewness_values): if abs(sk) >= 0.4: still_skewed_cols.append(col) print(f'There are {len(still_skewed_cols)} columns and they are:\n{still_skewed_cols}')
code
90146477/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3]
code
90146477/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum()
code
90146477/cell_27
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_excel('/kaggle/input/pumpkin-seeds-dataset/Pumpkin_Seeds_Dataset.xlsx') df.shape df.duplicated().sum() df.isna().sum() numerical_cols = df.select_dtypes(include=np.number).columns.to_list() numerical_cols[:4] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] skewness_values = df[numerical_cols].skew().to_list() skewness_values[:3] plt.figure(figsize=(10, 6)) sns.countplot(data=df, x='Class') plt.title('Distribution of the Target Class', fontsize=20)
code
89132848/cell_9
[ "text_plain_output_1.png" ]
import json import torch test_dir = '../input/birdclef-2022/test_soundscapes' test_base_path = '../input/birdclef-2022/test.csv' class_dict_base_path = '../input/birdclef-2022-saved-weights-and-misc/class_dict.json' best_acc_mode_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_accuracy_model.pt' best_loss_model_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_loss_model.pt' class_labels = json.load(open(class_dict_base_path, 'r')) num_classes = len(class_labels.keys()) device = 'cuda:0' if torch.cuda.is_available() else 'cpu' device best_model = CLEFNetwork(num_classes) checkpoint = torch.load(best_loss_model_base_path, map_location=torch.device(device)) best_model.load_state_dict(checkpoint['model']) print(best_model)
code
89132848/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd test_dir = '../input/birdclef-2022/test_soundscapes' test_base_path = '../input/birdclef-2022/test.csv' class_dict_base_path = '../input/birdclef-2022-saved-weights-and-misc/class_dict.json' best_acc_mode_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_accuracy_model.pt' best_loss_model_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_loss_model.pt' test_df = pd.read_csv(test_base_path) test_df.head()
code
89132848/cell_6
[ "text_plain_output_1.png" ]
import torch device = 'cuda:0' if torch.cuda.is_available() else 'cpu' device
code
89132848/cell_11
[ "text_html_output_1.png" ]
from torchaudio.transforms import MelSpectrogram from torchvision.transforms import Resize augm = [MelSpectrogram(n_mels=128), Resize((128, 128))] augm
code
89132848/cell_5
[ "text_plain_output_1.png" ]
import json test_dir = '../input/birdclef-2022/test_soundscapes' test_base_path = '../input/birdclef-2022/test.csv' class_dict_base_path = '../input/birdclef-2022-saved-weights-and-misc/class_dict.json' best_acc_mode_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_accuracy_model.pt' best_loss_model_base_path = '../input/birdclef-2022-saved-weights-and-misc/birdclef2022-best_loss_model.pt' class_labels = json.load(open(class_dict_base_path, 'r')) num_classes = len(class_labels.keys()) print('Number of class : {}'.format(num_classes))
code
105179048/cell_42
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import mplfinance as mpf import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.dtypes hist_df.set_index('Close Time').tail(100) mpf.plot(hist_df.set_index('Close Time').tail(120), type='candle', style='charles', volume=True, title='ETHBTC Last 120 Days', mav=(10, 20, 30))
code
105179048/cell_13
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) ticker_df.tail()
code
105179048/cell_9
[ "image_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() tickers
code
105179048/cell_30
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes
code
105179048/cell_20
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] depth_df.dtypes
code
105179048/cell_29
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape
code
105179048/cell_26
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.head()
code
105179048/cell_41
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.dtypes hist_df.set_index('Close Time').tail(100)
code
105179048/cell_19
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] depth_df.head()
code
105179048/cell_18
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() depth = client.get_order_book(symbol='BTCUSDT') depth
code
105179048/cell_28
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.tail()
code
105179048/cell_15
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) ticker_df.set_index('symbol', inplace=True) float(ticker_df.loc['ETHBTC']['price'])
code
105179048/cell_38
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.dtypes hist_df.info()
code
105179048/cell_3
[ "text_html_output_1.png" ]
!pip install python-binance pandas mplfinance
code
105179048/cell_35
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.tail()
code
105179048/cell_24
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() depth = client.get_order_book(symbol='BTCUSDT') historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') historical
code
105179048/cell_10
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() tickers[1]['price']
code
105179048/cell_37
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.dtypes hist_df.describe()
code
105179048/cell_12
[ "text_plain_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) ticker_df.head()
code
105179048/cell_36
[ "text_html_output_1.png" ]
from binance import Client, ThreadedWebsocketManager, ThreadedDepthCacheManager import pandas as pd apikey = 'YOURAPIKEY' secret = 'YOURAPISECRET' client = Client(apikey, secret) tickers = client.get_all_tickers() ticker_df = pd.DataFrame(tickers) depth = client.get_order_book(symbol='BTCUSDT') depth_df = pd.DataFrame(depth['asks']) depth_df.columns = ['Price', 'Volume'] historical = client.get_historical_klines('ETHBTC', Client.KLINE_INTERVAL_1DAY, '1 Jan 2011') hist_df = pd.DataFrame(historical) hist_df.columns = ['Open Time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close Time', 'Quote Asset Volume', 'Number of Trades', 'TB Base Volume', 'TB Quote Volume', 'Ignore'] hist_df.shape hist_df.dtypes hist_df.dtypes
code
128027868/cell_9
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_test.columns = ['label', 'title', 'text'] df_test.head()
code
128027868/cell_30
[ "text_html_output_1.png" ]
from nltk.stem import WordNetLemmatizer, SnowballStemmer import collections import matplotlib.pyplot as plt import pandas as pd import re import string df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') def clean_text(text): text = re.sub('[^A-Za-zÀ-ú ]+', '', text) text = re.sub('book|one', '', text) text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) text = re.sub('\\s+', ' ', text).strip() return text df_train['text'] = df_train['text'].apply(clean_text) df_test['text'] = df_test['text'].apply(clean_text) def normalize_text(text): stemmer = SnowballStemmer('english') normalized_text = [] for word in text.split(): stemmed_word = stemmer.stem(word) normalized_text.append(stemmed_word) return ' '.join(normalized_text) df_train['text'] = df_train['text'].apply(normalize_text) df_test['text'] = df_test['text'].apply(normalize_text) words = [] for text in df_train['text']: words.extend(text.split()) word_count = collections.Counter(words) top_words = dict(word_count.most_common(10)) plt.xticks(range(len(top_words)), list(top_words.keys())) words = [] for text in df_test['text']: words.extend(text.split()) word_count = collections.Counter(words) top_words = dict(word_count.most_common(10)) plt.figure(figsize=(10, 6)) plt.bar(range(len(top_words)), list(top_words.values()), align='center') plt.xticks(range(len(top_words)), list(top_words.keys())) plt.grid(alpha=0.5) plt.title('Top 10 most used words', fontsize=18) plt.xlabel('Words') plt.ylabel('Frequency')
code
128027868/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.info()
code
128027868/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
from tensorflow.keras.layers import Embedding, Dense, GlobalAveragePooling1D from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import pandas as pd import tensorflow as tf df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') max_words = 10000 max_len = 200 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(df_train['text']) sequences_train = tokenizer.texts_to_sequences(df_train['text']) sequences_val = tokenizer.texts_to_sequences(df_test['text']) word_index = tokenizer.word_index data_train = pad_sequences(sequences_train, maxlen=max_len) data_val = pad_sequences(sequences_val, maxlen=max_len) model = tf.keras.Sequential() model.add(Embedding(max_words, 16, input_length=max_len)) model.add(GlobalAveragePooling1D()) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() history = model.fit(data_train, df_train['label'], epochs=15, batch_size=64, validation_data=(data_val, df_test['label'])) loss, accuracy = model.evaluate(data_val, df_test['label'], verbose=0) print('Accuracy: %f' % (accuracy * 100))
code
128027868/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.stem import WordNetLemmatizer, SnowballStemmer from tensorflow.keras.layers import Embedding, Dense, GlobalAveragePooling1D from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import collections import matplotlib.pyplot as plt import pandas as pd import re import string import tensorflow as tf df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') def clean_text(text): text = re.sub('[^A-Za-zÀ-ú ]+', '', text) text = re.sub('book|one', '', text) text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) text = re.sub('\\s+', ' ', text).strip() return text df_train['text'] = df_train['text'].apply(clean_text) df_test['text'] = df_test['text'].apply(clean_text) def normalize_text(text): stemmer = SnowballStemmer('english') normalized_text = [] for word in text.split(): stemmed_word = stemmer.stem(word) normalized_text.append(stemmed_word) return ' '.join(normalized_text) df_train['text'] = df_train['text'].apply(normalize_text) df_test['text'] = df_test['text'].apply(normalize_text) words = [] for text in df_train['text']: words.extend(text.split()) word_count = collections.Counter(words) top_words = dict(word_count.most_common(10)) plt.xticks(range(len(top_words)), list(top_words.keys())) words = [] for text in df_test['text']: words.extend(text.split()) word_count = collections.Counter(words) top_words = dict(word_count.most_common(10)) plt.xticks(range(len(top_words)), list(top_words.keys())) max_words = 10000 max_len = 200 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(df_train['text']) sequences_train = tokenizer.texts_to_sequences(df_train['text']) sequences_val = tokenizer.texts_to_sequences(df_test['text']) word_index = tokenizer.word_index data_train = pad_sequences(sequences_train, maxlen=max_len) data_val = pad_sequences(sequences_val, maxlen=max_len) model = tf.keras.Sequential() model.add(Embedding(max_words, 16, input_length=max_len)) model.add(GlobalAveragePooling1D()) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() history = model.fit(data_train, df_train['label'], epochs=15, batch_size=64, validation_data=(data_val, df_test['label'])) plt.style.use('dark_background') plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.xlabel('Epoch') plt.legend(['Training', 'Validation'], loc='upper right') plt.show()
code
128027868/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import re import string import collections import matplotlib.pyplot as plt import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer, SnowballStemmer import tensorflow as tf from tensorflow.keras.layers import Embedding, Dense, GlobalAveragePooling1D from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences
code
128027868/cell_28
[ "text_html_output_1.png" ]
from nltk.stem import WordNetLemmatizer, SnowballStemmer import collections import matplotlib.pyplot as plt import pandas as pd import re import string df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') def clean_text(text): text = re.sub('[^A-Za-zÀ-ú ]+', '', text) text = re.sub('book|one', '', text) text = text.lower() text = text.translate(str.maketrans('', '', string.punctuation)) text = re.sub('\\s+', ' ', text).strip() return text df_train['text'] = df_train['text'].apply(clean_text) df_test['text'] = df_test['text'].apply(clean_text) def normalize_text(text): stemmer = SnowballStemmer('english') normalized_text = [] for word in text.split(): stemmed_word = stemmer.stem(word) normalized_text.append(stemmed_word) return ' '.join(normalized_text) df_train['text'] = df_train['text'].apply(normalize_text) df_test['text'] = df_test['text'].apply(normalize_text) words = [] for text in df_train['text']: words.extend(text.split()) word_count = collections.Counter(words) top_words = dict(word_count.most_common(10)) plt.figure(figsize=(10, 6)) plt.bar(range(len(top_words)), list(top_words.values()), align='center') plt.xticks(range(len(top_words)), list(top_words.keys())) plt.grid(alpha=0.5) plt.title('Top 10 most used words', fontsize=18) plt.xlabel('Words') plt.ylabel('Frequency')
code
128027868/cell_8
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_train.head()
code
128027868/cell_17
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') df_train.head()
code
128027868/cell_35
[ "text_plain_output_1.png" ]
from tensorflow.keras.layers import Embedding, Dense, GlobalAveragePooling1D from tensorflow.keras.preprocessing.text import Tokenizer import pandas as pd import tensorflow as tf df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') max_words = 10000 max_len = 200 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(df_train['text']) sequences_train = tokenizer.texts_to_sequences(df_train['text']) sequences_val = tokenizer.texts_to_sequences(df_test['text']) word_index = tokenizer.word_index model = tf.keras.Sequential() model.add(Embedding(max_words, 16, input_length=max_len)) model.add(GlobalAveragePooling1D()) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary()
code
128027868/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) print(df_train['label'].value_counts()) print(df_test['label'].value_counts())
code
128027868/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.head()
code
128027868/cell_36
[ "text_html_output_1.png" ]
from tensorflow.keras.layers import Embedding, Dense, GlobalAveragePooling1D from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer import pandas as pd import tensorflow as tf df_train = pd.read_csv('/kaggle/input/amazon-reviews/train.csv') df_test = pd.read_csv('/kaggle/input/amazon-reviews/test.csv') df_train.columns = ['label', 'title', 'text'] df_test.columns = ['label', 'title', 'text'] df_train = df_train.head(100000) df_test = df_test.head(10000) def concat_columns(df, col1, col2, new_col): df[new_col] = df[col1].apply(str) + ' ' + df[col2].apply(str) df.drop(col2, axis=1, inplace=True) return df df_train = concat_columns(df_train, 'text', 'title', 'text') df_test = concat_columns(df_test, 'text', 'title', 'text') max_words = 10000 max_len = 200 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(df_train['text']) sequences_train = tokenizer.texts_to_sequences(df_train['text']) sequences_val = tokenizer.texts_to_sequences(df_test['text']) word_index = tokenizer.word_index data_train = pad_sequences(sequences_train, maxlen=max_len) data_val = pad_sequences(sequences_val, maxlen=max_len) model = tf.keras.Sequential() model.add(Embedding(max_words, 16, input_length=max_len)) model.add(GlobalAveragePooling1D()) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() history = model.fit(data_train, df_train['label'], epochs=15, batch_size=64, validation_data=(data_val, df_test['label']))
code
327932/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cross_validation import train_test_split from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.feature_selection import RFECV from sklearn.grid_search import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import Imputer, StandardScaler from sklearn.svm import SVR import numpy as np import pandas as pd from sklearn.pipeline import make_pipeline, make_union from sklearn.preprocessing import Imputer, StandardScaler from sklearn.base import BaseEstimator, TransformerMixin class ColumnSelector(BaseEstimator, TransformerMixin): def __init__(self, columns): self.columns = columns def transform(self, X, *_): if isinstance(X, pd.DataFrame): return pd.DataFrame(X[self.columns]) else: raise TypeError('This transformer only works with Pandas Dataframes') def fit(self, X, *_): return self cs = ColumnSelector('Age') cs.transform(df).head() age_pipe = make_pipeline(ColumnSelector('Age'), Imputer(), StandardScaler()) df.Embarked = df.Embarked.fillna('S') class GetDummiesTransformer(BaseEstimator, TransformerMixin): def __init__(self, columns): self.columns = columns def transform(self, X, *_): if isinstance(X, pd.DataFrame): return pd.get_dummies(X[self.columns], columns=self.columns) else: raise TypeError('This transformer only works with Pandas Dataframes') def fit(self, X, *_): return self one_hot_pipe = GetDummiesTransformer(['Pclass', 'Embarked']) class TrueFalseTransformer(BaseEstimator, TransformerMixin): def __init__(self, flag): self.flag = flag def transform(self, X, *_): return X == self.flag def fit(self, X, *_): return self gender_pipe = make_pipeline(ColumnSelector('Sex'), TrueFalseTransformer('male')) fare_pipe = make_pipeline(ColumnSelector('Fare'), StandardScaler()) union = make_union(age_pipe, one_hot_pipe, gender_pipe, fare_pipe) X = df[[u'Pclass', u'Sex', u'Age', u'SibSp', u'Parch', u'Fare', u'Embarked']] X_1 = union.fit_transform(X) new_cols = ['scaled_age', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Embarked_C', 'Embarked_Q', 'Embarked_S', 'male', 'scaled_fare'] Xt = pd.DataFrame(X_1, columns=new_cols) Xt = pd.concat([Xt, X[[u'SibSp', u'Parch']]], axis=1) X = Xt y = df[u'Survived'] from sklearn.feature_selection import RFECV from sklearn.svm import SVR estimator = SVR(kernel='linear') selector = RFECV(estimator, step=1, cv=3) rfecv_columns = selector.fit_transform(X, y) rfecv_columns = Xt.columns[selector.support_] X = X[rfecv_columns] from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y) from sklearn.grid_search import GridSearchCV logreg_parameters = {'penalty': ['l1', 'l2'], 'C': np.logspace(-5, 1, 50), 'solver': ['liblinear']} lr = LogisticRegression(solver='liblinear') mdl = lr.fit(X_train, y_train) gs = GridSearchCV(lr, logreg_parameters, cv=5) gs.fit(X_train, y_train) predictions = gs.predict(X)
code
327932/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from patsy import dmatrices import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import train_test_split, cross_val_score from sklearn import metrics df = pd.read_csv('../input/train.csv')
code
50228414/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from scipy.stats import mode import matplotlib.pyplot as plt import seaborn as sns df_metabric = pd.read_csv('../input/breast-cancer-metabric/Breast Cancer METABRIC.csv') fig, axes = plt.subplots(figsize=(32, 16), ncols=2, nrows=2) sns.distplot(df_metabric['Age at Diagnosis'], ax=axes[0][0]) sns.countplot(df_metabric['Type of Breast Surgery'], ax=axes[0][1]) sns.countplot(df_metabric['Cancer Type'], ax=axes[1][0]) sns.countplot(df_metabric['Cancer Type Detailed'], ax=axes[1][1]) for i in range(2): for j in range(2): if i == 1 and j == 1: axes[i][j].tick_params(axis='x', labelsize=22, rotation=90) else: axes[i][j].tick_params(axis='x', labelsize=22) axes[i][j].tick_params(axis='y', labelsize=20) axes[i][j].set_xlabel('') axes[i][j].set_ylabel('') axes[0][0].set_title('Age at Diagnosis Distribution', size=22, pad=15) axes[0][1].set_title('Type of Breast Surgery Distribution', size=22, pad=15) axes[1][0].set_title('Cancer Type Distribution', size=22, pad=15) axes[1][1].set_title('Cancer Type Detailed Distribution', size=22, pad=15) plt.show() fig, axes = plt.subplots(figsize=(32, 16), ncols=2, nrows=2) sns.distplot(df_metabric['Overall Survival (Months)'], ax=axes[0][0]) sns.countplot(df_metabric['Overall Survival Status'], ax=axes[0][1]) sns.distplot(df_metabric['Relapse Free Status (Months)'], ax=axes[1][0]) sns.countplot(df_metabric['Relapse Free Status'], ax=axes[1][1]) for i in range(2): for j in range(2): if i == 1 and j == 1: axes[i][j].tick_params(axis='x', labelsize=22) else: axes[i][j].tick_params(axis='x', labelsize=22) axes[i][j].tick_params(axis='y', labelsize=22) axes[i][j].set_xlabel('') axes[i][j].set_ylabel('') axes[0][0].set_title('Overall Survival (Months) Distribution', size=22, pad=15) axes[0][1].set_title('Overall Survival Status Distribution', size=22, pad=15) axes[1][0].set_title('Relapse Free Status (Months) Distribution', size=22, pad=15) axes[1][1].set_title('Relapse Free Status Distribution', size=22, pad=15) plt.show() fig = plt.figure(figsize=(24, 16)) sns.barplot(x=df_metabric.isnull().sum().sort_values(ascending=False).values, y=df_metabric.isnull().sum().sort_values(ascending=False).index, palette='Reds_d') plt.xlabel('Number of Missing Rows', size=20, labelpad=15) plt.ylabel('') plt.tick_params(axis='x', labelsize=18) plt.tick_params(axis='y', labelsize=18) plt.title('Missing Values in Columns', size=20, pad=15) plt.show()
code
50228414/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from scipy.stats import mode import matplotlib.pyplot as plt import seaborn as sns df_metabric = pd.read_csv('../input/breast-cancer-metabric/Breast Cancer METABRIC.csv') fig, axes = plt.subplots(figsize=(32, 16), ncols=2, nrows=2) sns.distplot(df_metabric['Age at Diagnosis'], ax=axes[0][0]) sns.countplot(df_metabric['Type of Breast Surgery'], ax=axes[0][1]) sns.countplot(df_metabric['Cancer Type'], ax=axes[1][0]) sns.countplot(df_metabric['Cancer Type Detailed'], ax=axes[1][1]) for i in range(2): for j in range(2): if i == 1 and j == 1: axes[i][j].tick_params(axis='x', labelsize=22, rotation=90) else: axes[i][j].tick_params(axis='x', labelsize=22) axes[i][j].tick_params(axis='y', labelsize=20) axes[i][j].set_xlabel('') axes[i][j].set_ylabel('') axes[0][0].set_title('Age at Diagnosis Distribution', size=22, pad=15) axes[0][1].set_title('Type of Breast Surgery Distribution', size=22, pad=15) axes[1][0].set_title('Cancer Type Distribution', size=22, pad=15) axes[1][1].set_title('Cancer Type Detailed Distribution', size=22, pad=15) plt.show() fig, axes = plt.subplots(figsize=(32, 16), ncols=2, nrows=2) sns.distplot(df_metabric['Overall Survival (Months)'], ax=axes[0][0]) sns.countplot(df_metabric['Overall Survival Status'], ax=axes[0][1]) sns.distplot(df_metabric['Relapse Free Status (Months)'], ax=axes[1][0]) sns.countplot(df_metabric['Relapse Free Status'], ax=axes[1][1]) for i in range(2): for j in range(2): if i == 1 and j == 1: axes[i][j].tick_params(axis='x', labelsize=22) else: axes[i][j].tick_params(axis='x', labelsize=22) axes[i][j].tick_params(axis='y', labelsize=22) axes[i][j].set_xlabel('') axes[i][j].set_ylabel('') axes[0][0].set_title('Overall Survival (Months) Distribution', size=22, pad=15) axes[0][1].set_title('Overall Survival Status Distribution', size=22, pad=15) axes[1][0].set_title('Relapse Free Status (Months) Distribution', size=22, pad=15) axes[1][1].set_title('Relapse Free Status Distribution', size=22, pad=15) plt.show()
code
50228414/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from scipy.stats import mode import matplotlib.pyplot as plt import seaborn as sns df_metabric = pd.read_csv('../input/breast-cancer-metabric/Breast Cancer METABRIC.csv') df_metabric.head()
code
50228414/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from scipy.stats import mode import matplotlib.pyplot as plt import seaborn as sns df_metabric = pd.read_csv('../input/breast-cancer-metabric/Breast Cancer METABRIC.csv') fig, axes = plt.subplots(figsize=(32, 16), ncols=2, nrows=2) sns.distplot(df_metabric['Age at Diagnosis'], ax=axes[0][0]) sns.countplot(df_metabric['Type of Breast Surgery'], ax=axes[0][1]) sns.countplot(df_metabric['Cancer Type'], ax=axes[1][0]) sns.countplot(df_metabric['Cancer Type Detailed'], ax=axes[1][1]) for i in range(2): for j in range(2): if i == 1 and j == 1: axes[i][j].tick_params(axis='x', labelsize=22, rotation=90) else: axes[i][j].tick_params(axis='x', labelsize=22) axes[i][j].tick_params(axis='y', labelsize=20) axes[i][j].set_xlabel('') axes[i][j].set_ylabel('') axes[0][0].set_title('Age at Diagnosis Distribution', size=22, pad=15) axes[0][1].set_title('Type of Breast Surgery Distribution', size=22, pad=15) axes[1][0].set_title('Cancer Type Distribution', size=22, pad=15) axes[1][1].set_title('Cancer Type Detailed Distribution', size=22, pad=15) plt.show()
code
50228414/cell_5
[ "image_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) from scipy.stats import mode import matplotlib.pyplot as plt import seaborn as sns df_metabric = pd.read_csv('../input/breast-cancer-metabric/Breast Cancer METABRIC.csv') print(f'METABRIC Dataset Shape: {df_metabric.shape}') print(f'METABRIC Dataset Memory Usage: {df_metabric.memory_usage().sum() / 1024 ** 2:.2f} MB')
code
106196473/cell_4
[ "text_plain_output_1.png" ]
import gc import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 df = agg_functions(df) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) df['size'] = df['size'].apply(lambda x: x.split('x')) df['size'] = df['size'].apply(lambda x: int(x[0]) * int(x[1])) df['size'] = df['size'] * 0.0001 df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: x.replace('-beta', '.') if 'beta' in x else x + '.0') def ver_convert_num(ver): ver = ver.str.split('.', expand=True) digit = [2, 1, 1, 2] for i, x in enumerate(ver.columns): if int(ver[x].str.len().min()) == digit[i]: continue ver[x] = ver[x].apply(lambda x: x if len(x) == digit[i] else (digit[i] - len(x)) * '0' + x) ver = ver.apply(lambda x: int(''.join(x)), axis=1) return ver df.mediationProviderVersion = ver_convert_num(df.mediationProviderVersion) rank = {102100: 0, 103100: 1, 103200: 2, 103400: 3, 103500: 4, 103600: 5, 103700: 6, 110000: 7, 110003: 8, 110004: 9, 110005: 10, 110007: 11, 110101: 12, 110106: 13, 110110: 14, 111000: 15, 111100: 16, 111102: 17, 111103: 18, 111104: 19, 111200: 20, 111305: 21, 112003: 22, 112100: 23, 113100: 24, 113200: 25, 113201: 26, 113300: 27, 114000: 28, 114100: 29, 114200: 30, 114201: 31, 114300: 32, 114304: 33, 114400: 34} unranked = [] for x in df.mediationProviderVersion.unique(): if x not in rank.keys(): unranked.append(x) t = list(rank.keys()) tem = [i for i in unranked if i < t[0]] def interver(tem, border, index): global rank tem.sort() if len(tem) > 0: tem.append(border) for i, c in enumerate(tem): if c == border: continue rank[c] = index - (i + 1) / len(tem) interver(tem, t[0], 0) for x in range(0, len(t), 2): if x + 1 == len(t): continue tem = [i for i in unranked if i < t[x + 1] and i > t[x]] interver(tem, t[x + 1], x + 1) tem = [i for i in unranked if i < t[x] and i > t[x - 1]] interver(tem, t[x], x) tem = [i for i in unranked if i > t[-1]] tem.sort() if len(tem) > 0: h = rank[t[-1]] + 1 for i, c in enumerate(tem): if i + 1 == len(tem): rank[c] = h continue rank[c] = h - (i + 1) / len(tem) print(rank) df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: rank[x]) df['os'] = df.osAndVersion.apply(lambda x: x.split('-')[0]) df['ver'] = df.osAndVersion.apply(lambda x: x.split('-')[1].split('.')[0]) os_rank = [{4: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 10: 6, 11: 7}, {10: 0, 11: 1, 12: 2, 13: 3, 14: 4, 15: 5, 16: 6}] threshold = [3, 1] for i, c in enumerate(df.os.unique()): rank = os_rank[i] for x in df.loc[df.os == c, 'ver'].unique(): if int(x) not in rank.keys(): print(x) g = rank.keys() x = int(x) rank[x] = min(g) - x if x < min(g) else rank[max(g)] + (x - max(g)) print(rank) df.loc[df.os == c, 'ver'] = df.loc[df.os == c, 'ver'].apply(lambda y: rank[int(y)] + threshold[i]) del df['os'] df['ver'] = df['ver'].astype(np.float32) import gc gc.collect() df
code
106196473/cell_6
[ "text_html_output_1.png" ]
import gc import numpy as np # linear algebra import pandas as pd import pycountry import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 df = agg_functions(df) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) df['size'] = df['size'].apply(lambda x: x.split('x')) df['size'] = df['size'].apply(lambda x: int(x[0]) * int(x[1])) df['size'] = df['size'] * 0.0001 df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: x.replace('-beta', '.') if 'beta' in x else x + '.0') def ver_convert_num(ver): ver = ver.str.split('.', expand=True) digit = [2, 1, 1, 2] for i, x in enumerate(ver.columns): if int(ver[x].str.len().min()) == digit[i]: continue ver[x] = ver[x].apply(lambda x: x if len(x) == digit[i] else (digit[i] - len(x)) * '0' + x) ver = ver.apply(lambda x: int(''.join(x)), axis=1) return ver df.mediationProviderVersion = ver_convert_num(df.mediationProviderVersion) rank = {102100: 0, 103100: 1, 103200: 2, 103400: 3, 103500: 4, 103600: 5, 103700: 6, 110000: 7, 110003: 8, 110004: 9, 110005: 10, 110007: 11, 110101: 12, 110106: 13, 110110: 14, 111000: 15, 111100: 16, 111102: 17, 111103: 18, 111104: 19, 111200: 20, 111305: 21, 112003: 22, 112100: 23, 113100: 24, 113200: 25, 113201: 26, 113300: 27, 114000: 28, 114100: 29, 114200: 30, 114201: 31, 114300: 32, 114304: 33, 114400: 34} unranked = [] for x in df.mediationProviderVersion.unique(): if x not in rank.keys(): unranked.append(x) t = list(rank.keys()) tem = [i for i in unranked if i < t[0]] def interver(tem, border, index): global rank tem.sort() if len(tem) > 0: tem.append(border) for i, c in enumerate(tem): if c == border: continue rank[c] = index - (i + 1) / len(tem) interver(tem, t[0], 0) for x in range(0, len(t), 2): if x + 1 == len(t): continue tem = [i for i in unranked if i < t[x + 1] and i > t[x]] interver(tem, t[x + 1], x + 1) tem = [i for i in unranked if i < t[x] and i > t[x - 1]] interver(tem, t[x], x) tem = [i for i in unranked if i > t[-1]] tem.sort() if len(tem) > 0: h = rank[t[-1]] + 1 for i, c in enumerate(tem): if i + 1 == len(tem): rank[c] = h continue rank[c] = h - (i + 1) / len(tem) df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: rank[x]) df['os'] = df.osAndVersion.apply(lambda x: x.split('-')[0]) df['ver'] = df.osAndVersion.apply(lambda x: x.split('-')[1].split('.')[0]) os_rank = [{4: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 10: 6, 11: 7}, {10: 0, 11: 1, 12: 2, 13: 3, 14: 4, 15: 5, 16: 6}] threshold = [3, 1] for i, c in enumerate(df.os.unique()): rank = os_rank[i] for x in df.loc[df.os == c, 'ver'].unique(): if int(x) not in rank.keys(): g = rank.keys() x = int(x) rank[x] = min(g) - x if x < min(g) else rank[max(g)] + (x - max(g)) df.loc[df.os == c, 'ver'] = df.loc[df.os == c, 'ver'].apply(lambda y: rank[int(y)] + threshold[i]) del df['os'] df['ver'] = df['ver'].astype(np.float32) import gc gc.collect() df import pycountry countries = {} for country in pycountry.countries: countries[country.name] = country.alpha_2 country = pd.read_csv('../input/country-name-hdi/csvData.csv') s = country.hdi2019.median() country['countryCode'] = country.country.apply(lambda x: countries.get(x, '0_0')) country.loc[country.countryCode == '0_0', 'hdi2019'] = s country.drop(['pop2022', 'country'], axis=1, inplace=True) country.drop_duplicates(subset='countryCode', keep='first', inplace=True) country.set_index('countryCode', inplace=True) country = country.loc[:, 'hdi2019'].to_dict() df.countryCode.fillna('0_0', inplace=True) df['countryCode'] = df['countryCode'].apply(lambda x: country.get(x, s)) df['countryCode'] = df['countryCode'].astype(np.float32) df
code
106196473/cell_2
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') display(df.isnull().sum()) def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 print(len(df)) df = agg_functions(df) print(len(df)) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) display(df.isnull().sum())
code
106196473/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import gc import numpy as np # linear algebra import pandas as pd import pycountry import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 df = agg_functions(df) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) df['size'] = df['size'].apply(lambda x: x.split('x')) df['size'] = df['size'].apply(lambda x: int(x[0]) * int(x[1])) df['size'] = df['size'] * 0.0001 df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: x.replace('-beta', '.') if 'beta' in x else x + '.0') def ver_convert_num(ver): ver = ver.str.split('.', expand=True) digit = [2, 1, 1, 2] for i, x in enumerate(ver.columns): if int(ver[x].str.len().min()) == digit[i]: continue ver[x] = ver[x].apply(lambda x: x if len(x) == digit[i] else (digit[i] - len(x)) * '0' + x) ver = ver.apply(lambda x: int(''.join(x)), axis=1) return ver df.mediationProviderVersion = ver_convert_num(df.mediationProviderVersion) rank = {102100: 0, 103100: 1, 103200: 2, 103400: 3, 103500: 4, 103600: 5, 103700: 6, 110000: 7, 110003: 8, 110004: 9, 110005: 10, 110007: 11, 110101: 12, 110106: 13, 110110: 14, 111000: 15, 111100: 16, 111102: 17, 111103: 18, 111104: 19, 111200: 20, 111305: 21, 112003: 22, 112100: 23, 113100: 24, 113200: 25, 113201: 26, 113300: 27, 114000: 28, 114100: 29, 114200: 30, 114201: 31, 114300: 32, 114304: 33, 114400: 34} unranked = [] for x in df.mediationProviderVersion.unique(): if x not in rank.keys(): unranked.append(x) t = list(rank.keys()) tem = [i for i in unranked if i < t[0]] def interver(tem, border, index): global rank tem.sort() if len(tem) > 0: tem.append(border) for i, c in enumerate(tem): if c == border: continue rank[c] = index - (i + 1) / len(tem) interver(tem, t[0], 0) for x in range(0, len(t), 2): if x + 1 == len(t): continue tem = [i for i in unranked if i < t[x + 1] and i > t[x]] interver(tem, t[x + 1], x + 1) tem = [i for i in unranked if i < t[x] and i > t[x - 1]] interver(tem, t[x], x) tem = [i for i in unranked if i > t[-1]] tem.sort() if len(tem) > 0: h = rank[t[-1]] + 1 for i, c in enumerate(tem): if i + 1 == len(tem): rank[c] = h continue rank[c] = h - (i + 1) / len(tem) df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: rank[x]) df['os'] = df.osAndVersion.apply(lambda x: x.split('-')[0]) df['ver'] = df.osAndVersion.apply(lambda x: x.split('-')[1].split('.')[0]) os_rank = [{4: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 10: 6, 11: 7}, {10: 0, 11: 1, 12: 2, 13: 3, 14: 4, 15: 5, 16: 6}] threshold = [3, 1] for i, c in enumerate(df.os.unique()): rank = os_rank[i] for x in df.loc[df.os == c, 'ver'].unique(): if int(x) not in rank.keys(): g = rank.keys() x = int(x) rank[x] = min(g) - x if x < min(g) else rank[max(g)] + (x - max(g)) df.loc[df.os == c, 'ver'] = df.loc[df.os == c, 'ver'].apply(lambda y: rank[int(y)] + threshold[i]) del df['os'] df['ver'] = df['ver'].astype(np.float32) import gc gc.collect() df import pycountry countries = {} for country in pycountry.countries: countries[country.name] = country.alpha_2 country = pd.read_csv('../input/country-name-hdi/csvData.csv') s = country.hdi2019.median() country['countryCode'] = country.country.apply(lambda x: countries.get(x, '0_0')) country.loc[country.countryCode == '0_0', 'hdi2019'] = s country.drop(['pop2022', 'country'], axis=1, inplace=True) country.drop_duplicates(subset='countryCode', keep='first', inplace=True) country.set_index('countryCode', inplace=True) country = country.loc[:, 'hdi2019'].to_dict() df.countryCode.fillna('0_0', inplace=True) df['countryCode'] = df['countryCode'].apply(lambda x: country.get(x, s)) df['countryCode'] = df['countryCode'].astype(np.float32) df from tqdm import tqdm def preprocess(df1): unique_dict = {'unitDisplayType': ['rewarded', 'interstitial', 'banner'], 'bundleId': ['com.tilegarden.match3', 'com.loop.match3d', 'com.tintash.nailsalon', '1502447854', 'se.ace.fishinc', 'com.kamilbilge.ropesavior3d', '1523081624', 'com.AppIdeas.LevelUpRunner', '1529614832', '1586795332', 'dovi.coalmining.inc', '1542256628', '1436213906', 'com.YayySAL.DodgeAgent', 'com.volt.dresstoimpress', '1579489488', '1582745578', '1569586264'], 'connectionType': ['3G', 'WIFI', 'UNKNOWN', '0_0'], 'c1': ['cb2', '7d3', '8bd', 'ad3', '59b', 'fdc', '7ca', '7b8', '9b5', 'dfa', '1ba', '2c1', 'ce2', '3db', '76e', '313', 'f8d', 'c2e', '82a', 'b22', 'f0f', '3dc', 'c17', '403', '707', '94f', 'cb3', '87b', '7be', 'd69', '00e', 'ea0', '397', '443', '466', '16a', '1c3', 'f99', 'f17', '05b', '2f6', '8f8', '49e', 'a65', '064', 'da9', 'd79', 'ab5', 'fd5', '541'], 'c3': ['6b', '79', '4b', '4e'], 'c2': ['6.0', '3.0', '9.0', '7.0', '8.0', '5.0', '2.0', '1.0', '4.0']} def unique_one_hot(df2, name): df2[name] = df2[name].astype(str) df2[name].fillna('0_0', inplace=True) df2[name] = df2[name].str.replace('nan', '0_0') unique = unique_dict[name] dummies = {x: y for x, y in zip(unique, pd.get_dummies(unique, dtype=np.uint8).values)} one_hot = pd.DataFrame(columns=[f'{name}_{i}' for i, x in enumerate(unique)]) print(name) one_hot[[f'{name}_{i}' for i, x in enumerate(unique)]] = np.array([dummies[x] for x in df2[name]]) one_hot = one_hot.astype({f'{name}_{i}': np.uint8 for i, x in enumerate(unique)}) df2 = df2.join(one_hot) return df2 categorical = ['unitDisplayType', 'connectionType', 'bundleId', 'c3', 'c1'] for cat in categorical: df1 = unique_one_hot(df1, cat) df1.drop(categorical, axis=1, inplace=True) gc.collect() return df1 df = preprocess(df)
code
106196473/cell_10
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import gc import numpy as np # linear algebra import pandas as pd import pycountry import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 df = agg_functions(df) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) df['size'] = df['size'].apply(lambda x: x.split('x')) df['size'] = df['size'].apply(lambda x: int(x[0]) * int(x[1])) df['size'] = df['size'] * 0.0001 df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: x.replace('-beta', '.') if 'beta' in x else x + '.0') def ver_convert_num(ver): ver = ver.str.split('.', expand=True) digit = [2, 1, 1, 2] for i, x in enumerate(ver.columns): if int(ver[x].str.len().min()) == digit[i]: continue ver[x] = ver[x].apply(lambda x: x if len(x) == digit[i] else (digit[i] - len(x)) * '0' + x) ver = ver.apply(lambda x: int(''.join(x)), axis=1) return ver df.mediationProviderVersion = ver_convert_num(df.mediationProviderVersion) rank = {102100: 0, 103100: 1, 103200: 2, 103400: 3, 103500: 4, 103600: 5, 103700: 6, 110000: 7, 110003: 8, 110004: 9, 110005: 10, 110007: 11, 110101: 12, 110106: 13, 110110: 14, 111000: 15, 111100: 16, 111102: 17, 111103: 18, 111104: 19, 111200: 20, 111305: 21, 112003: 22, 112100: 23, 113100: 24, 113200: 25, 113201: 26, 113300: 27, 114000: 28, 114100: 29, 114200: 30, 114201: 31, 114300: 32, 114304: 33, 114400: 34} unranked = [] for x in df.mediationProviderVersion.unique(): if x not in rank.keys(): unranked.append(x) t = list(rank.keys()) tem = [i for i in unranked if i < t[0]] def interver(tem, border, index): global rank tem.sort() if len(tem) > 0: tem.append(border) for i, c in enumerate(tem): if c == border: continue rank[c] = index - (i + 1) / len(tem) interver(tem, t[0], 0) for x in range(0, len(t), 2): if x + 1 == len(t): continue tem = [i for i in unranked if i < t[x + 1] and i > t[x]] interver(tem, t[x + 1], x + 1) tem = [i for i in unranked if i < t[x] and i > t[x - 1]] interver(tem, t[x], x) tem = [i for i in unranked if i > t[-1]] tem.sort() if len(tem) > 0: h = rank[t[-1]] + 1 for i, c in enumerate(tem): if i + 1 == len(tem): rank[c] = h continue rank[c] = h - (i + 1) / len(tem) df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: rank[x]) df['os'] = df.osAndVersion.apply(lambda x: x.split('-')[0]) df['ver'] = df.osAndVersion.apply(lambda x: x.split('-')[1].split('.')[0]) os_rank = [{4: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 10: 6, 11: 7}, {10: 0, 11: 1, 12: 2, 13: 3, 14: 4, 15: 5, 16: 6}] threshold = [3, 1] for i, c in enumerate(df.os.unique()): rank = os_rank[i] for x in df.loc[df.os == c, 'ver'].unique(): if int(x) not in rank.keys(): g = rank.keys() x = int(x) rank[x] = min(g) - x if x < min(g) else rank[max(g)] + (x - max(g)) df.loc[df.os == c, 'ver'] = df.loc[df.os == c, 'ver'].apply(lambda y: rank[int(y)] + threshold[i]) del df['os'] df['ver'] = df['ver'].astype(np.float32) import gc gc.collect() df import pycountry countries = {} for country in pycountry.countries: countries[country.name] = country.alpha_2 country = pd.read_csv('../input/country-name-hdi/csvData.csv') s = country.hdi2019.median() country['countryCode'] = country.country.apply(lambda x: countries.get(x, '0_0')) country.loc[country.countryCode == '0_0', 'hdi2019'] = s country.drop(['pop2022', 'country'], axis=1, inplace=True) country.drop_duplicates(subset='countryCode', keep='first', inplace=True) country.set_index('countryCode', inplace=True) country = country.loc[:, 'hdi2019'].to_dict() df.countryCode.fillna('0_0', inplace=True) df['countryCode'] = df['countryCode'].apply(lambda x: country.get(x, s)) df['countryCode'] = df['countryCode'].astype(np.float32) df from tqdm import tqdm def preprocess(df1): unique_dict = {'unitDisplayType': ['rewarded', 'interstitial', 'banner'], 'bundleId': ['com.tilegarden.match3', 'com.loop.match3d', 'com.tintash.nailsalon', '1502447854', 'se.ace.fishinc', 'com.kamilbilge.ropesavior3d', '1523081624', 'com.AppIdeas.LevelUpRunner', '1529614832', '1586795332', 'dovi.coalmining.inc', '1542256628', '1436213906', 'com.YayySAL.DodgeAgent', 'com.volt.dresstoimpress', '1579489488', '1582745578', '1569586264'], 'connectionType': ['3G', 'WIFI', 'UNKNOWN', '0_0'], 'c1': ['cb2', '7d3', '8bd', 'ad3', '59b', 'fdc', '7ca', '7b8', '9b5', 'dfa', '1ba', '2c1', 'ce2', '3db', '76e', '313', 'f8d', 'c2e', '82a', 'b22', 'f0f', '3dc', 'c17', '403', '707', '94f', 'cb3', '87b', '7be', 'd69', '00e', 'ea0', '397', '443', '466', '16a', '1c3', 'f99', 'f17', '05b', '2f6', '8f8', '49e', 'a65', '064', 'da9', 'd79', 'ab5', 'fd5', '541'], 'c3': ['6b', '79', '4b', '4e'], 'c2': ['6.0', '3.0', '9.0', '7.0', '8.0', '5.0', '2.0', '1.0', '4.0']} def unique_one_hot(df2, name): df2[name] = df2[name].astype(str) df2[name].fillna('0_0', inplace=True) df2[name] = df2[name].str.replace('nan', '0_0') unique = unique_dict[name] dummies = {x: y for x, y in zip(unique, pd.get_dummies(unique, dtype=np.uint8).values)} one_hot = pd.DataFrame(columns=[f'{name}_{i}' for i, x in enumerate(unique)]) one_hot[[f'{name}_{i}' for i, x in enumerate(unique)]] = np.array([dummies[x] for x in df2[name]]) one_hot = one_hot.astype({f'{name}_{i}': np.uint8 for i, x in enumerate(unique)}) df2 = df2.join(one_hot) return df2 categorical = ['unitDisplayType', 'connectionType', 'bundleId', 'c3', 'c1'] for cat in categorical: df1 = unique_one_hot(df1, cat) df1.drop(categorical, axis=1, inplace=True) gc.collect() return df1 df = preprocess(df) df
code
106196473/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import gc import numpy as np # linear algebra import pandas as pd import pycountry import tensorflow as tf import numpy as np import pandas as pd import gc train = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/train_data.csv') df = pd.read_csv('../input/digital-turbine-auction-bid-price-prediction/test_data.csv') def agg_functions(df1): features = ['c1', 'deviceId', 'unitDisplayType', 'bundleId'] global train for x in features: t = train.groupby(x)['winBid'].agg(['std', 'max', 'min', 'mean', 'median', 'var', 'sem']) t.columns = [x + c + '_bidWin' for c in t.columns] t = t.astype({c: np.float32 for c in t.columns}) t.reset_index(inplace=True) df1 = df1.merge(t, on=x, how='left') gc.collect() return df1 df = agg_functions(df) train = agg_functions(train) s = train.deviceIdstd_bidWin.mean() df['deviceIdstd_bidWin'].fillna(s, inplace=True) s = train.deviceIdmin_bidWin.mean() df['deviceIdmin_bidWin'].fillna(s, inplace=True) s = train.deviceIdmax_bidWin.mean() df['deviceIdmax_bidWin'].fillna(s, inplace=True) s = train.deviceIdmean_bidWin.mean() df['deviceIdmean_bidWin'].fillna(s, inplace=True) s = train.deviceIdmedian_bidWin.mean() df['deviceIdmedian_bidWin'].fillna(s, inplace=True) s = train.deviceIdvar_bidWin.mean() df['deviceIdvar_bidWin'].fillna(s, inplace=True) s = train.deviceIdsem_bidWin.mean() df['deviceIdsem_bidWin'].fillna(s, inplace=True) del train gc.collect() cols = ['unitDisplayTypemin_bidWin'] df.drop(cols, axis=1, inplace=True) df['size'] = df['size'].apply(lambda x: x.split('x')) df['size'] = df['size'].apply(lambda x: int(x[0]) * int(x[1])) df['size'] = df['size'] * 0.0001 df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: x.replace('-beta', '.') if 'beta' in x else x + '.0') def ver_convert_num(ver): ver = ver.str.split('.', expand=True) digit = [2, 1, 1, 2] for i, x in enumerate(ver.columns): if int(ver[x].str.len().min()) == digit[i]: continue ver[x] = ver[x].apply(lambda x: x if len(x) == digit[i] else (digit[i] - len(x)) * '0' + x) ver = ver.apply(lambda x: int(''.join(x)), axis=1) return ver df.mediationProviderVersion = ver_convert_num(df.mediationProviderVersion) rank = {102100: 0, 103100: 1, 103200: 2, 103400: 3, 103500: 4, 103600: 5, 103700: 6, 110000: 7, 110003: 8, 110004: 9, 110005: 10, 110007: 11, 110101: 12, 110106: 13, 110110: 14, 111000: 15, 111100: 16, 111102: 17, 111103: 18, 111104: 19, 111200: 20, 111305: 21, 112003: 22, 112100: 23, 113100: 24, 113200: 25, 113201: 26, 113300: 27, 114000: 28, 114100: 29, 114200: 30, 114201: 31, 114300: 32, 114304: 33, 114400: 34} unranked = [] for x in df.mediationProviderVersion.unique(): if x not in rank.keys(): unranked.append(x) t = list(rank.keys()) tem = [i for i in unranked if i < t[0]] def interver(tem, border, index): global rank tem.sort() if len(tem) > 0: tem.append(border) for i, c in enumerate(tem): if c == border: continue rank[c] = index - (i + 1) / len(tem) interver(tem, t[0], 0) for x in range(0, len(t), 2): if x + 1 == len(t): continue tem = [i for i in unranked if i < t[x + 1] and i > t[x]] interver(tem, t[x + 1], x + 1) tem = [i for i in unranked if i < t[x] and i > t[x - 1]] interver(tem, t[x], x) tem = [i for i in unranked if i > t[-1]] tem.sort() if len(tem) > 0: h = rank[t[-1]] + 1 for i, c in enumerate(tem): if i + 1 == len(tem): rank[c] = h continue rank[c] = h - (i + 1) / len(tem) df.mediationProviderVersion = df.mediationProviderVersion.apply(lambda x: rank[x]) df['os'] = df.osAndVersion.apply(lambda x: x.split('-')[0]) df['ver'] = df.osAndVersion.apply(lambda x: x.split('-')[1].split('.')[0]) os_rank = [{4: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 10: 6, 11: 7}, {10: 0, 11: 1, 12: 2, 13: 3, 14: 4, 15: 5, 16: 6}] threshold = [3, 1] for i, c in enumerate(df.os.unique()): rank = os_rank[i] for x in df.loc[df.os == c, 'ver'].unique(): if int(x) not in rank.keys(): g = rank.keys() x = int(x) rank[x] = min(g) - x if x < min(g) else rank[max(g)] + (x - max(g)) df.loc[df.os == c, 'ver'] = df.loc[df.os == c, 'ver'].apply(lambda y: rank[int(y)] + threshold[i]) del df['os'] df['ver'] = df['ver'].astype(np.float32) import gc gc.collect() df import pycountry countries = {} for country in pycountry.countries: countries[country.name] = country.alpha_2 country = pd.read_csv('../input/country-name-hdi/csvData.csv') s = country.hdi2019.median() country['countryCode'] = country.country.apply(lambda x: countries.get(x, '0_0')) country.loc[country.countryCode == '0_0', 'hdi2019'] = s country.drop(['pop2022', 'country'], axis=1, inplace=True) country.drop_duplicates(subset='countryCode', keep='first', inplace=True) country.set_index('countryCode', inplace=True) country = country.loc[:, 'hdi2019'].to_dict() df.countryCode.fillna('0_0', inplace=True) df['countryCode'] = df['countryCode'].apply(lambda x: country.get(x, s)) df['countryCode'] = df['countryCode'].astype(np.float32) df from tqdm import tqdm def preprocess(df1): unique_dict = {'unitDisplayType': ['rewarded', 'interstitial', 'banner'], 'bundleId': ['com.tilegarden.match3', 'com.loop.match3d', 'com.tintash.nailsalon', '1502447854', 'se.ace.fishinc', 'com.kamilbilge.ropesavior3d', '1523081624', 'com.AppIdeas.LevelUpRunner', '1529614832', '1586795332', 'dovi.coalmining.inc', '1542256628', '1436213906', 'com.YayySAL.DodgeAgent', 'com.volt.dresstoimpress', '1579489488', '1582745578', '1569586264'], 'connectionType': ['3G', 'WIFI', 'UNKNOWN', '0_0'], 'c1': ['cb2', '7d3', '8bd', 'ad3', '59b', 'fdc', '7ca', '7b8', '9b5', 'dfa', '1ba', '2c1', 'ce2', '3db', '76e', '313', 'f8d', 'c2e', '82a', 'b22', 'f0f', '3dc', 'c17', '403', '707', '94f', 'cb3', '87b', '7be', 'd69', '00e', 'ea0', '397', '443', '466', '16a', '1c3', 'f99', 'f17', '05b', '2f6', '8f8', '49e', 'a65', '064', 'da9', 'd79', 'ab5', 'fd5', '541'], 'c3': ['6b', '79', '4b', '4e'], 'c2': ['6.0', '3.0', '9.0', '7.0', '8.0', '5.0', '2.0', '1.0', '4.0']} def unique_one_hot(df2, name): df2[name] = df2[name].astype(str) df2[name].fillna('0_0', inplace=True) df2[name] = df2[name].str.replace('nan', '0_0') unique = unique_dict[name] dummies = {x: y for x, y in zip(unique, pd.get_dummies(unique, dtype=np.uint8).values)} one_hot = pd.DataFrame(columns=[f'{name}_{i}' for i, x in enumerate(unique)]) one_hot[[f'{name}_{i}' for i, x in enumerate(unique)]] = np.array([dummies[x] for x in df2[name]]) one_hot = one_hot.astype({f'{name}_{i}': np.uint8 for i, x in enumerate(unique)}) df2 = df2.join(one_hot) return df2 categorical = ['unitDisplayType', 'connectionType', 'bundleId', 'c3', 'c1'] for cat in categorical: df1 = unique_one_hot(df1, cat) df1.drop(categorical, axis=1, inplace=True) gc.collect() return df1 df = preprocess(df) import tensorflow as tf dc = ['eventTimestamp', 'brandName', 'appVersion', 'correctModelName', 'deviceId', 'osAndVersion'] model = tf.keras.models.load_model('../input/eda-item-price/train_76.408043.h5') out = model.predict(df.drop(dc, axis=1), batch_size=512) df.to_csv('submission.csv', index=False)
code
1009481/cell_13
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier import datetime import numpy as np import re def calc_len_partial(X_train, limit=15): i = 1 partial_len = len(X_train) div_len = 0 while i: if partial_len % 2: partial_len = len(X_train) / 2 div_len += 2 elif partial_len % 3: partial_len = len(X_train) / 3 div_len += 3 elif partial_len % 5: partial_len = len(X_train) / 5 div_len += 5 elif partial_len % 7: partial_len = len(X_train) / 7 div_len += 7 elif partial_len % 11: partial_len = len(X_train) / 11 div_len += 11 else: break if div_len > limit: break return len(X_train) / div_len def preprocessor(text): text = str(text) text = re.sub('<[^>]*>', '', text) text = re.sub('[\\W]+', ' ', text.lower()) text = text.rstrip().lstrip() return text stop = stopwords.words('english') vect = HashingVectorizer(decode_error='ignore', n_features=2 ** 21, preprocessor=preprocessor, stop_words=stop, ngram_range=(1, 3)) clf = SGDClassifier(loss='log', random_state=1, n_iter=1) len_partial = int(calc_len_partial(X_train=X_train, limit=20)) classes = np.array([0, 1, 2]) for i in range(round(len(X_train) / len_partial)): X_train_ml = X_train[i:len_partial * (i + 1)] y_train_ml = y_train[i:len_partial * (i + 1)] X_train_ml = vect.transform(X_train_ml) clf.partial_fit(X_train_ml, y_train_ml, classes=classes) X_test_ml = vect.transform(X_test) print('Testing accuracy: {:.3f}%'.format(clf.score(X_test_ml, y_test) * 100)) clf = clf.partial_fit(X_test_ml, y_test)
code
1009481/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import SGDClassifier from sklearn.feature_extraction.text import HashingVectorizer from sklearn.cross_validation import train_test_split from nltk.corpus import stopwords from subprocess import check_output import datetime import re print(check_output(['ls', '../input']).decode('utf8'))
code
1009481/cell_11
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier import datetime import numpy as np import re def calc_len_partial(X_train, limit=15): i = 1 partial_len = len(X_train) div_len = 0 while i: if partial_len % 2: partial_len = len(X_train) / 2 div_len += 2 elif partial_len % 3: partial_len = len(X_train) / 3 div_len += 3 elif partial_len % 5: partial_len = len(X_train) / 5 div_len += 5 elif partial_len % 7: partial_len = len(X_train) / 7 div_len += 7 elif partial_len % 11: partial_len = len(X_train) / 11 div_len += 11 else: break if div_len > limit: break return len(X_train) / div_len def preprocessor(text): text = str(text) text = re.sub('<[^>]*>', '', text) text = re.sub('[\\W]+', ' ', text.lower()) text = text.rstrip().lstrip() return text stop = stopwords.words('english') vect = HashingVectorizer(decode_error='ignore', n_features=2 ** 21, preprocessor=preprocessor, stop_words=stop, ngram_range=(1, 3)) clf = SGDClassifier(loss='log', random_state=1, n_iter=1) print(datetime.datetime.now()) len_partial = int(calc_len_partial(X_train=X_train, limit=20)) classes = np.array([0, 1, 2]) for i in range(round(len(X_train) / len_partial)): X_train_ml = X_train[i:len_partial * (i + 1)] y_train_ml = y_train[i:len_partial * (i + 1)] X_train_ml = vect.transform(X_train_ml) clf.partial_fit(X_train_ml, y_train_ml, classes=classes) print(datetime.datetime.now())
code
1009481/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_json('../input/train.json') df[1:3]
code
1009481/cell_12
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier import datetime import numpy as np import re def calc_len_partial(X_train, limit=15): i = 1 partial_len = len(X_train) div_len = 0 while i: if partial_len % 2: partial_len = len(X_train) / 2 div_len += 2 elif partial_len % 3: partial_len = len(X_train) / 3 div_len += 3 elif partial_len % 5: partial_len = len(X_train) / 5 div_len += 5 elif partial_len % 7: partial_len = len(X_train) / 7 div_len += 7 elif partial_len % 11: partial_len = len(X_train) / 11 div_len += 11 else: break if div_len > limit: break return len(X_train) / div_len def preprocessor(text): text = str(text) text = re.sub('<[^>]*>', '', text) text = re.sub('[\\W]+', ' ', text.lower()) text = text.rstrip().lstrip() return text stop = stopwords.words('english') vect = HashingVectorizer(decode_error='ignore', n_features=2 ** 21, preprocessor=preprocessor, stop_words=stop, ngram_range=(1, 3)) clf = SGDClassifier(loss='log', random_state=1, n_iter=1) len_partial = int(calc_len_partial(X_train=X_train, limit=20)) classes = np.array([0, 1, 2]) for i in range(round(len(X_train) / len_partial)): X_train_ml = X_train[i:len_partial * (i + 1)] y_train_ml = y_train[i:len_partial * (i + 1)] X_train_ml = vect.transform(X_train_ml) clf.partial_fit(X_train_ml, y_train_ml, classes=classes) print('Training accuracy: {:.3f}%'.format(clf.score(vect.transform(X_train), y_train) * 100))
code
122250162/cell_13
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_breast_cancer breast_cancer = load_breast_cancer(as_frame=True) breast_cancer = load_breast_cancer() breast_cancer.DESCR breast_cancer.feature_names breast_cancer.target_names breast_cancer.data breast_cancer.target
code
122250162/cell_9
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_breast_cancer breast_cancer = load_breast_cancer(as_frame=True) breast_cancer = load_breast_cancer() breast_cancer.DESCR
code
122250162/cell_11
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_breast_cancer breast_cancer = load_breast_cancer(as_frame=True) breast_cancer = load_breast_cancer() breast_cancer.DESCR breast_cancer.feature_names breast_cancer.target_names
code
122250162/cell_10
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_breast_cancer breast_cancer = load_breast_cancer(as_frame=True) breast_cancer = load_breast_cancer() breast_cancer.DESCR breast_cancer.feature_names
code
122250162/cell_12
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_breast_cancer breast_cancer = load_breast_cancer(as_frame=True) breast_cancer = load_breast_cancer() breast_cancer.DESCR breast_cancer.feature_names breast_cancer.target_names breast_cancer.data
code
329301/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
329301/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.grid_search import GridSearchCV import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.label.values.ravel() X_train = train.values[:, 1:] X_test = test.values def normalized_data(): X = np.concatenate((X_train, X_test)) x_test = X_test - X.mean(0) x_train = X_train - X.mean(0) x_test /= x_test.std(1).reshape((-1, 1)) x_train /= x_train.std(1).reshape((-1, 1)) return (x_train, x_test) from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC def testCLF(clf, parameters, X): search = GridSearchCV(clf, parameters) search.fit(X, y_train) print(search.score) return search.best_estimator_
code
329301/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.decomposition import PCA, RandomizedPCA from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') y_train = train.label.values.ravel() X_train = train.values[:, 1:] X_test = test.values def show(array): array = array.reshape(28, 28) def plot_gallery(images, n_row=2, n_col=5): h = w = 28 'Helper function to plot a gallery of portraits' for i in range(n_row * n_col): plt.xticks(()) plt.yticks(()) def normalized_data(): X = np.concatenate((X_train, X_test)) x_test = X_test - X.mean(0) x_train = X_train - X.mean(0) x_test /= x_test.std(1).reshape((-1, 1)) x_train /= x_train.std(1).reshape((-1, 1)) return (x_train, x_test) from sklearn.decomposition import PCA, RandomizedPCA def components(n_components, random=False, show_components=True): x_train, x_test = normalized_data() pca = PCA(n_components=n_components) if random: pca = RandomPCA(n_components=n_components) pca.fit(x_train) components = pca.components_ x_train = pca.transform(x_train) x_test = pca.transform(x_test) return (x_train, x_test) from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC def testCLF(clf, parameters, X): search = GridSearchCV(clf, parameters) search.fit(X, y_train) return search.best_estimator_ clf = SVC() parameters = {'C': [0.5, 1.0], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'], 'degree': [2, 3]} X = components(10)[0] testCLF(clf, parameters, X)
code