path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
128021494/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import random
import tensorflow as tf
data = np.genfromtxt('/kaggle/input/da-assignment2/wdbc.data', delimiter=',')
data = np.delete(data, [0, 1], axis=1)
file = open('/kaggle/input/wdbc-labels/wdbc_labels.csv', 'r')
lines = file.readlines()
count = 0
labels = np.zeros((data.shape[0], 1))
for line in lines:
if line[0] == 'M':
labels[count] = 0
else:
labels[count] = 1
count = count + 1
data_comb = []
for i in range(569):
data_comb.append((data[i], labels[i]))
random.shuffle(data_comb)
data = np.empty((569, 30))
for i in range(569):
data[i] = np.array(data_comb[i][0])
labels[i] = data_comb[i][1]
border = int(data.shape[0] * 0.75)
train_x = data[0:border]
train_y = labels[0:border]
test_x = data[border + 1:data.shape[0]]
test_y = labels[border + 1:data.shape[0]]
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
train_x = sc.fit_transform(train_x)
test_x = sc.transform(test_x)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(30))
model.add(tf.keras.layers.Dense(512, activation='relu'))
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002), loss='binary_crossentropy', metrics=['accuracy', tf.keras.metrics.TruePositives(), tf.keras.metrics.FalsePositives(), tf.keras.metrics.TrueNegatives(), tf.keras.metrics.FalseNegatives()])
model.summary()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
batch_size = 64
history = model.fit(train_x, train_y, batch_size=batch_size, epochs=1)
dataset = tf.data.Dataset.from_tensor_slices((train_x, train_y)).batch(batch_size)
history = model.fit(dataset, epochs=15)
val_dataset = tf.data.Dataset.from_tensor_slices((test_x, test_y)).batch(batch_size)
history = model.fit(dataset, epochs=1, validation_data=val_dataset)
print(history.history) | code |
128021494/cell_3 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
data = np.genfromtxt('/kaggle/input/da-assignment2/wdbc.data', delimiter=',')
data = np.delete(data, [0, 1], axis=1)
print(data.shape)
file = open('/kaggle/input/wdbc-labels/wdbc_labels.csv', 'r')
lines = file.readlines()
count = 0
labels = np.zeros((data.shape[0], 1))
for line in lines:
if line[0] == 'M':
labels[count] = 0
else:
labels[count] = 1
count = count + 1
print(labels.shape)
plt.hist(labels) | code |
50212911/cell_13 | [
"image_output_1.png"
] | import xgboost
import xgboost
xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, booster='gbtree')
xgBoost.fit(X_train, Y_train)
print('train score', xgBoost.score(X_train, Y_train))
print('test score', xgBoost.score(X_test, Y_test)) | code |
50212911/cell_9 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
def NanColums(df):
percent_nan = 100 * df.isnull().sum() / len(df)
percent_nan = percent_nan[percent_nan > 0].sort_values()
return percent_nan
nanColums = NanColums(df)
plt.xticks(rotation=90)
del df['Alley']
del df['PoolQC']
del df['MiscFeature']
df['MasVnrType'].fillna(value='0', inplace=True)
df['MasVnrArea'].fillna(value=0.0, inplace=True)
df['BsmtQual'].fillna(value='0', inplace=True)
df['BsmtCond'].fillna(value='0', inplace=True)
df['BsmtExposure'].fillna(value='0', inplace=True)
df['BsmtFinType1'].fillna(value='0', inplace=True)
df['BsmtFinType2'].fillna(value='0', inplace=True)
df['FireplaceQu'].fillna(value='0', inplace=True)
df['Electrical'].fillna(value='0', inplace=True)
df['GarageType'].fillna(value='0', inplace=True)
df['GarageYrBlt'].fillna(value=0.0, inplace=True)
df['GarageFinish'].fillna(value='0', inplace=True)
df['GarageQual'].fillna(value='0', inplace=True)
df['GarageCond'].fillna(value='0', inplace=True)
df['Fence'].fillna(value='0', inplace=True)
df['LotFrontage'] = df.groupby('Neighborhood')['LotFrontage'].transform(lambda val: val.fillna(val.mean()))
df = pd.get_dummies(df)
sns.heatmap(df.corr(), xticklabels=True, yticklabels=True)
plt.show() | code |
50212911/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
df.info() | code |
50212911/cell_20 | [
"text_plain_output_1.png"
] | from sklearn import ensemble
import catboost
import lightgbm
import lightgbm
import xgboost
import xgboost
import sklearn
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100)
sklearn_boost.fit(X_train, Y_train)
import catboost
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False)
cboost.fit(X_train, Y_train)
import xgboost
xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, booster='gbtree')
xgBoost.fit(X_train, Y_train)
import lightgbm
lgbreg = lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, learning_rate=0.1, n_estimators=100)
lgbreg.fit(X_train, Y_train)
import sklearn
params = {'learning_rate': [0.05], 'n_estimators': [200], 'max_depth': [6]}
gsc = GridSearchCV(estimator=ensemble.GradientBoostingRegressor(), param_grid=params, cv=3)
grid_result = gsc.fit(X_train, Y_train)
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=200, max_depth=6)
sklearn_boost.fit(X_train, Y_train)
from catboost import CatBoost
params = {'depth': [7], 'learning_rate': [0.15], 'l2_leaf_reg': [15, 20, 25], 'iterations': [300], 'verbose': [False]}
gsc = GridSearchCV(estimator=catboost.CatBoostRegressor(), param_grid=params, cv=3, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False, learning_rate=0.15, l2_leaf_reg=20, iterations=300)
cboost.fit(X_train, Y_train)
import xgboost
params = [{'learning_rate': [0.2], 'n_estimators': [250], 'max_depth': [3]}]
gsc = GridSearchCV(estimator=xgboost.XGBRegressor(), param_grid=params, cv=3, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.2, n_estimators=250, booster='gbtree')
xgBoost.fit(X_train, Y_train)
import lightgbm
params = [{'regressor__regressor__boosting_type': ['gbdt'], 'regressor__regressor__n_estimators': [100], 'regressor__regressor__max_depth': [20], 'regressor__regressor__learning_rate': [0.1], 'regressor__regressor__num_leaves': [31]}]
gsc = GridSearchCV(estimator=lightgbm.LGBMRegressor(), param_grid=params, cv=320, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
print('Best params:', grid_result.best_params_)
print('Best score:', grid_result.best_score_)
lgbreg = lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, learning_rate=0.1, n_estimators=100, max_depth=20)
lgbreg.fit(X_train, Y_train)
print('train score', lgbreg.score(X_train, Y_train))
print('test score', lgbreg.score(X_test, Y_test)) | code |
50212911/cell_11 | [
"text_plain_output_1.png"
] | from sklearn import ensemble
import sklearn
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100)
sklearn_boost.fit(X_train, Y_train)
print('train score', sklearn_boost.score(X_train, Y_train))
print('test score', sklearn_boost.score(X_test, Y_test)) | code |
50212911/cell_19 | [
"text_plain_output_1.png"
] | from sklearn import ensemble
import catboost
import xgboost
import xgboost
import sklearn
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100)
sklearn_boost.fit(X_train, Y_train)
import catboost
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False)
cboost.fit(X_train, Y_train)
import xgboost
xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, booster='gbtree')
xgBoost.fit(X_train, Y_train)
import sklearn
params = {'learning_rate': [0.05], 'n_estimators': [200], 'max_depth': [6]}
gsc = GridSearchCV(estimator=ensemble.GradientBoostingRegressor(), param_grid=params, cv=3)
grid_result = gsc.fit(X_train, Y_train)
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=200, max_depth=6)
sklearn_boost.fit(X_train, Y_train)
from catboost import CatBoost
params = {'depth': [7], 'learning_rate': [0.15], 'l2_leaf_reg': [15, 20, 25], 'iterations': [300], 'verbose': [False]}
gsc = GridSearchCV(estimator=catboost.CatBoostRegressor(), param_grid=params, cv=3, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False, learning_rate=0.15, l2_leaf_reg=20, iterations=300)
cboost.fit(X_train, Y_train)
import xgboost
params = [{'learning_rate': [0.2], 'n_estimators': [250], 'max_depth': [3]}]
gsc = GridSearchCV(estimator=xgboost.XGBRegressor(), param_grid=params, cv=3, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
print('Best params:', grid_result.best_params_)
print('Best score:', grid_result.best_score_)
xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.2, n_estimators=250, booster='gbtree')
xgBoost.fit(X_train, Y_train)
print('train score', xgBoost.score(X_train, Y_train))
print('test score', xgBoost.score(X_test, Y_test)) | code |
50212911/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
50212911/cell_7 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
def NanColums(df):
percent_nan = 100 * df.isnull().sum() / len(df)
percent_nan = percent_nan[percent_nan > 0].sort_values()
return percent_nan
nanColums = NanColums(df)
plt.xticks(rotation=90)
del df['Alley']
del df['PoolQC']
del df['MiscFeature']
df['MasVnrType'].fillna(value='0', inplace=True)
df['MasVnrArea'].fillna(value=0.0, inplace=True)
df['BsmtQual'].fillna(value='0', inplace=True)
df['BsmtCond'].fillna(value='0', inplace=True)
df['BsmtExposure'].fillna(value='0', inplace=True)
df['BsmtFinType1'].fillna(value='0', inplace=True)
df['BsmtFinType2'].fillna(value='0', inplace=True)
df['FireplaceQu'].fillna(value='0', inplace=True)
df['Electrical'].fillna(value='0', inplace=True)
df['GarageType'].fillna(value='0', inplace=True)
df['GarageYrBlt'].fillna(value=0.0, inplace=True)
df['GarageFinish'].fillna(value='0', inplace=True)
df['GarageQual'].fillna(value='0', inplace=True)
df['GarageCond'].fillna(value='0', inplace=True)
df['Fence'].fillna(value='0', inplace=True)
df['LotFrontage'] = df.groupby('Neighborhood')['LotFrontage'].transform(lambda val: val.fillna(val.mean()))
df = pd.get_dummies(df)
plt.figure(figsize=(10, 8))
sns.distplot(df['SalePrice'])
plt.show() | code |
50212911/cell_18 | [
"text_plain_output_1.png"
] | from sklearn import ensemble
import catboost
import sklearn
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100)
sklearn_boost.fit(X_train, Y_train)
import catboost
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False)
cboost.fit(X_train, Y_train)
import sklearn
params = {'learning_rate': [0.05], 'n_estimators': [200], 'max_depth': [6]}
gsc = GridSearchCV(estimator=ensemble.GradientBoostingRegressor(), param_grid=params, cv=3)
grid_result = gsc.fit(X_train, Y_train)
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=200, max_depth=6)
sklearn_boost.fit(X_train, Y_train)
from catboost import CatBoost
params = {'depth': [7], 'learning_rate': [0.15], 'l2_leaf_reg': [15, 20, 25], 'iterations': [300], 'verbose': [False]}
gsc = GridSearchCV(estimator=catboost.CatBoostRegressor(), param_grid=params, cv=3, scoring='r2', verbose=0, n_jobs=-1)
grid_result = gsc.fit(X_train, Y_train)
print('Best params:', grid_result.best_params_)
print('Best score:', grid_result.best_score_)
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False, learning_rate=0.15, l2_leaf_reg=20, iterations=300)
cboost.fit(X_train, Y_train)
print('train score', cboost.score(X_train, Y_train))
print('test score', cboost.score(X_test, Y_test)) | code |
50212911/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import RidgeCV
from sklearn.svm import LinearSVR
import warnings
from sklearn.linear_model import RidgeCV
from sklearn.svm import LinearSVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import StackingRegressor
import warnings
warnings.filterwarnings('ignore')
estimators = [('lr', RidgeCV()), ('svr', LinearSVR(random_state=42, max_iter=1000))]
regStack = StackingRegressor(estimators=estimators, final_estimator=RandomForestRegressor(n_estimators=10, random_state=42))
regStack.fit(X_train, Y_train)
print('train score', regStack.score(X_train, Y_train))
print('test score', regStack.score(X_test, Y_test)) | code |
50212911/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
Begging = RandomForestRegressor(max_depth=30, n_estimators=300)
Begging.fit(X_train, Y_train)
print('train score', Begging.score(X_train, Y_train))
print('test score', Begging.score(X_test, Y_test)) | code |
50212911/cell_17 | [
"text_plain_output_1.png"
] | from sklearn import ensemble
import sklearn
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100)
sklearn_boost.fit(X_train, Y_train)
import sklearn
params = {'learning_rate': [0.05], 'n_estimators': [200], 'max_depth': [6]}
gsc = GridSearchCV(estimator=ensemble.GradientBoostingRegressor(), param_grid=params, cv=3)
grid_result = gsc.fit(X_train, Y_train)
print('Best params:', grid_result.best_params_)
print('Best score:', grid_result.best_score_)
sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=200, max_depth=6)
sklearn_boost.fit(X_train, Y_train)
print('train score', sklearn_boost.score(X_train, Y_train))
print('test score', sklearn_boost.score(X_test, Y_test)) | code |
50212911/cell_14 | [
"image_output_1.png"
] | import lightgbm
import lightgbm
lgbreg = lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, learning_rate=0.1, n_estimators=100)
lgbreg.fit(X_train, Y_train)
print('train score', lgbreg.score(X_train, Y_train))
print('test score', lgbreg.score(X_test, Y_test)) | code |
50212911/cell_12 | [
"image_output_1.png"
] | import catboost
import catboost
cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False)
cboost.fit(X_train, Y_train)
print('train score', cboost.score(X_train, Y_train))
print('test score', cboost.score(X_test, Y_test)) | code |
50212911/cell_5 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv')
def NanColums(df):
percent_nan = 100 * df.isnull().sum() / len(df)
percent_nan = percent_nan[percent_nan > 0].sort_values()
return percent_nan
nanColums = NanColums(df)
sns.barplot(x=nanColums.index, y=nanColums)
plt.xticks(rotation=90) | code |
106198039/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
df_train.describe(include='all') | code |
106198039/cell_20 | [
"text_html_output_1.png"
] | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
df_Y = df_train_Y.copy()
df = df_train_X_good_cols.copy()
df_test = df_test_X_good_cols.copy()
df[['CryoSleep']] = df[['CryoSleep']].fillna(value=df[['CryoSleep']].mode().iloc[0, 0])
df_test[['CryoSleep']] = df_test[['CryoSleep']].fillna(value=df_test[['CryoSleep']].mode().iloc[0, 0])
num_cols = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df[num_cols] = df[num_cols].fillna(value=df[num_cols].median())
df_test[num_cols] = df_test[num_cols].fillna(value=df_test[num_cols].median())
df['CryoSleep'] = df['CryoSleep'].astype(int)
df_test['CryoSleep'] = df_test['CryoSleep'].astype(int)
df_Y['Transported'] = df_Y['Transported'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(df.to_numpy(), df_Y.to_numpy(), test_size=0.1)
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=1000)
classifier.fit(X_train, y_train.ravel())
y_pred = classifier.predict(X_test)
importances = classifier.feature_importances_
std = np.std([tree.feature_importances_ for tree in classifier.estimators_], axis=0)
forest_importances = pd.Series(importances, index=good_columns)
fig, ax = plt.subplots()
forest_importances.plot.bar(yerr=std, ax=ax)
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout()
test_pred = classifier.predict(df_test.to_numpy())
df_test_df = pd.DataFrame(test_pred)
a = df_test_original[['PassengerId']]
b = df_test_df.astype(bool)
pd.concat([a, b])
final_result = pd.concat([a, b], ignore_index=True, axis=1)
final_result.columns = ['PassengerId', 'Transported']
final_result | code |
106198039/cell_6 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
print(col, unique)
print_unique(df_train)
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns] | code |
106198039/cell_11 | [
"text_html_output_1.png"
] | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
df_Y = df_train_Y.copy()
df = df_train_X_good_cols.copy()
df_test = df_test_X_good_cols.copy()
df[['CryoSleep']] = df[['CryoSleep']].fillna(value=df[['CryoSleep']].mode().iloc[0, 0])
df_test[['CryoSleep']] = df_test[['CryoSleep']].fillna(value=df_test[['CryoSleep']].mode().iloc[0, 0])
num_cols = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df[num_cols] = df[num_cols].fillna(value=df[num_cols].median())
df_test[num_cols] = df_test[num_cols].fillna(value=df_test[num_cols].median())
df['CryoSleep'] = df['CryoSleep'].astype(int)
df_test['CryoSleep'] = df_test['CryoSleep'].astype(int)
df_Y['Transported'] = df_Y['Transported'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(df.to_numpy(), df_Y.to_numpy(), test_size=0.1)
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=1000)
classifier.fit(X_train, y_train.ravel())
y_pred = classifier.predict(X_test)
print('ACCURACY OF THE MODEL: ', metrics.accuracy_score(y_test, y_pred)) | code |
106198039/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
a = df_test_original[['PassengerId']]
a | code |
106198039/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
106198039/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
print_unique(df_train_X_good_cols) | code |
106198039/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
df_Y = df_train_Y.copy()
df = df_train_X_good_cols.copy()
df_test = df_test_X_good_cols.copy()
df[['CryoSleep']] = df[['CryoSleep']].fillna(value=df[['CryoSleep']].mode().iloc[0, 0])
df_test[['CryoSleep']] = df_test[['CryoSleep']].fillna(value=df_test[['CryoSleep']].mode().iloc[0, 0])
num_cols = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df[num_cols] = df[num_cols].fillna(value=df[num_cols].median())
df_test[num_cols] = df_test[num_cols].fillna(value=df_test[num_cols].median())
df['CryoSleep'] = df['CryoSleep'].astype(int)
df_test['CryoSleep'] = df_test['CryoSleep'].astype(int)
df_Y['Transported'] = df_Y['Transported'].astype(int)
print('\ndf')
print_unique(df)
print('\ndf_Y')
print_unique(df_Y)
print('\ndf_test')
print_unique(df_test)
df.info()
df_Y.info() | code |
106198039/cell_3 | [
"text_plain_output_1.png"
] | !head /kaggle/input/spaceship-titanic/train.csv | code |
106198039/cell_17 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
df_Y = df_train_Y.copy()
df = df_train_X_good_cols.copy()
df_test = df_test_X_good_cols.copy()
df[['CryoSleep']] = df[['CryoSleep']].fillna(value=df[['CryoSleep']].mode().iloc[0, 0])
df_test[['CryoSleep']] = df_test[['CryoSleep']].fillna(value=df_test[['CryoSleep']].mode().iloc[0, 0])
num_cols = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df[num_cols] = df[num_cols].fillna(value=df[num_cols].median())
df_test[num_cols] = df_test[num_cols].fillna(value=df_test[num_cols].median())
df['CryoSleep'] = df['CryoSleep'].astype(int)
df_test['CryoSleep'] = df_test['CryoSleep'].astype(int)
df_Y['Transported'] = df_Y['Transported'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(df.to_numpy(), df_Y.to_numpy(), test_size=0.1)
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=1000)
classifier.fit(X_train, y_train.ravel())
y_pred = classifier.predict(X_test)
importances = classifier.feature_importances_
std = np.std([tree.feature_importances_ for tree in classifier.estimators_], axis=0)
forest_importances = pd.Series(importances, index=good_columns)
fig, ax = plt.subplots()
forest_importances.plot.bar(yerr=std, ax=ax)
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout()
test_pred = classifier.predict(df_test.to_numpy())
df_test_df = pd.DataFrame(test_pred)
a = df_test_original[['PassengerId']]
b = df_test_df.astype(bool)
pd.concat([a, b]) | code |
106198039/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
df_train.info(verbose=True) | code |
106198039/cell_12 | [
"text_plain_output_1.png"
] | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train
def print_unique(df):
for col in df:
unique = df[col].unique()
max_len = 6
if len(unique) <= max_len:
unique = [f'{u}({(df[col] == u).sum()})' for u in unique]
if len(unique) > max_len:
unique = list(unique[:max_len]) + [f'...({len(unique) - max_len})']
df_train_Y = df_train[['Transported']]
good_columns = ['CryoSleep', 'RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df_train_X_good_cols = df_train[good_columns]
df_test_X_good_cols = df_test[good_columns]
df_Y = df_train_Y.copy()
df = df_train_X_good_cols.copy()
df_test = df_test_X_good_cols.copy()
df[['CryoSleep']] = df[['CryoSleep']].fillna(value=df[['CryoSleep']].mode().iloc[0, 0])
df_test[['CryoSleep']] = df_test[['CryoSleep']].fillna(value=df_test[['CryoSleep']].mode().iloc[0, 0])
num_cols = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']
df[num_cols] = df[num_cols].fillna(value=df[num_cols].median())
df_test[num_cols] = df_test[num_cols].fillna(value=df_test[num_cols].median())
df['CryoSleep'] = df['CryoSleep'].astype(int)
df_test['CryoSleep'] = df_test['CryoSleep'].astype(int)
df_Y['Transported'] = df_Y['Transported'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(df.to_numpy(), df_Y.to_numpy(), test_size=0.1)
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=1000)
classifier.fit(X_train, y_train.ravel())
y_pred = classifier.predict(X_test)
importances = classifier.feature_importances_
std = np.std([tree.feature_importances_ for tree in classifier.estimators_], axis=0)
forest_importances = pd.Series(importances, index=good_columns)
fig, ax = plt.subplots()
forest_importances.plot.bar(yerr=std, ax=ax)
ax.set_title('Feature importances using MDI')
ax.set_ylabel('Mean decrease in impurity')
fig.tight_layout() | code |
106198039/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_filename = '/kaggle/input/spaceship-titanic/train.csv'
test_filename = '/kaggle/input/spaceship-titanic/test.csv'
df_train = pd.read_csv(train_filename)
df_test = pd.read_csv(test_filename)
df_test_original = df_test.copy()
df_train | code |
105216211/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
105216211/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full.info()
X_full.head() | code |
105216211/cell_18 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.impute import SimpleImputer
from sklearn.metrics import f1_score
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
import datetime
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full['created_at'] = pd.to_datetime(X_full['created_at'])
X_full['signup_date'] = pd.to_datetime(X_full['signup_date'])
dt = datetime.date.today()
today = pd.DatetimeIndex([dt])[0]
X_full['signup_date'] = today - X_full['signup_date']
X_full['created_at'] = today - X_full['created_at']
X_full['created_at'] = (X_full['created_at'] / np.timedelta64(1, 'D')).astype(int, errors='ignore')
X_full['signup_date'] = (X_full['signup_date'] / np.timedelta64(1, 'D')).astype(int, errors='ignore')
cols = X_train.columns
imp = SimpleImputer(strategy='constant')
scaler = MinMaxScaler()
X_train = imp.fit_transform(X_train)
X_valid = imp.transform(X_valid)
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_train = pd.DataFrame(X_train, columns=[cols])
X_valid = pd.DataFrame(X_valid, columns=[cols])
model = MLPClassifier(random_state=1, hidden_layer_sizes=(30, 20), max_iter=250)
model.fit(X_train, y_train)
preds = model.predict(X_valid)
F1 = f1_score(y_valid, preds)
ID = X_test.index
X_test['created_at'] = pd.to_datetime(X_test['created_at'])
X_test['signup_date'] = pd.to_datetime(X_test['signup_date'])
X_test['signup_date'] = today - X_test['signup_date']
X_test['created_at'] = today - X_test['created_at']
X_test['created_at'] = (X_test['created_at'] / np.timedelta64(1, 'D')).astype(int, errors='ignore')
X_test['signup_date'] = (X_test['signup_date'] / np.timedelta64(1, 'D')).astype(int, errors='ignore')
X_test = imp.transform(X_test)
X_test = scaler.transform(X_test)
X_test = pd.DataFrame(X_test, columns=[cols])
preds = model.predict(X_test) | code |
105216211/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler
import datetime
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full['created_at'] = pd.to_datetime(X_full['created_at'])
X_full['signup_date'] = pd.to_datetime(X_full['signup_date'])
dt = datetime.date.today()
today = pd.DatetimeIndex([dt])[0]
X_full['signup_date'] = today - X_full['signup_date']
X_full['created_at'] = today - X_full['created_at']
cols = X_train.columns
imp = SimpleImputer(strategy='constant')
scaler = MinMaxScaler()
X_train = imp.fit_transform(X_train)
X_valid = imp.transform(X_valid)
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_train = pd.DataFrame(X_train, columns=[cols])
X_valid = pd.DataFrame(X_valid, columns=[cols])
X_train.describe()
X_train.head() | code |
105216211/cell_16 | [
"text_html_output_1.png"
] | from sklearn.impute import SimpleImputer
from sklearn.metrics import f1_score
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
import datetime
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full['created_at'] = pd.to_datetime(X_full['created_at'])
X_full['signup_date'] = pd.to_datetime(X_full['signup_date'])
dt = datetime.date.today()
today = pd.DatetimeIndex([dt])[0]
X_full['signup_date'] = today - X_full['signup_date']
X_full['created_at'] = today - X_full['created_at']
cols = X_train.columns
imp = SimpleImputer(strategy='constant')
scaler = MinMaxScaler()
X_train = imp.fit_transform(X_train)
X_valid = imp.transform(X_valid)
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_train = pd.DataFrame(X_train, columns=[cols])
X_valid = pd.DataFrame(X_valid, columns=[cols])
model = MLPClassifier(random_state=1, hidden_layer_sizes=(30, 20), max_iter=250)
model.fit(X_train, y_train)
preds = model.predict(X_valid)
F1 = f1_score(y_valid, preds)
print(F1) | code |
105216211/cell_10 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full.info()
X_full.head() | code |
105216211/cell_12 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
file_path = '../input/analyticsvjobathon/train_wn75k28.csv'
lead_data = pd.read_csv(file_path, index_col='id')
file_path2 = '../input/analyticsvjobathon/test_Wf7sxXF.csv'
X_test = pd.read_csv(file_path2, index_col='id')
X = lead_data.copy()
y = X.buy
X_full = X.drop(['buy'], axis=1)
X_full.info() | code |
18114963/cell_7 | [
"image_output_1.png"
] | import bs4
import pandas as pd
import requests
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code
soup = bs4.BeautifulSoup(r.content)
graphs = soup.find_all('p')
utterances = [x.get_text() for x in graphs if 'data-elm-loc' in x.attrs.keys()]
utterances = utterances[2:]
seq = 0
data = []
for i in utterances:
graph = i.split()
if graph[0][-1] == ':':
text = ' '.join(graph[1:])
num_words = len(graph) - 1
name = graph[0][:-1]
seq += 1
elif len(graph) > 1 and graph[1] == '(?):':
text = ' '.join(graph[2:])
num_words = len(graph) - 2
name = graph[0]
seq += 1
else:
text = ' '.join(graph)
data.append({'name': name, 'graph': text, 'seq': seq, 'num_words': num_words})
df = pd.DataFrame(data)
df.name.unique() | code |
18114963/cell_15 | [
"image_output_1.png"
] | from wordcloud import WordCloud
import bs4
import matplotlib.pyplot as plt
import pandas as pd
import requests
import sklearn.feature_extraction.text as skt
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code
soup = bs4.BeautifulSoup(r.content)
graphs = soup.find_all('p')
utterances = [x.get_text() for x in graphs if 'data-elm-loc' in x.attrs.keys()]
utterances = utterances[2:]
seq = 0
data = []
for i in utterances:
graph = i.split()
if graph[0][-1] == ':':
text = ' '.join(graph[1:])
num_words = len(graph) - 1
name = graph[0][:-1]
seq += 1
elif len(graph) > 1 and graph[1] == '(?):':
text = ' '.join(graph[2:])
num_words = len(graph) - 2
name = graph[0]
seq += 1
else:
text = ' '.join(graph)
data.append({'name': name, 'graph': text, 'seq': seq, 'num_words': num_words})
df = pd.DataFrame(data)
df.name.unique()
df = df[df.name != '(UNKNOWN)']
df['name'] = df['name'].apply(lambda x: ''.join([char for char in x if char.isalpha()]))
def processing(x):
return pd.Series({'graph': f"{' '.join(x['graph'])}", 'name': x['name'].iloc[0]})
df = df.groupby('seq').apply(processing)
import numpy as np
import sklearn.feature_extraction.text as skt
from wordcloud import WordCloud
def topwords_candidate(candidate_name, n):
lectures = ['this is some food', 'this is some drink']
vectorizer = skt.TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(df[df['name'] == candidate_name]['graph'])
feature_names = vectorizer.get_feature_names()
doc = 0
feature_index = X[doc, :].nonzero()[1]
tfidf_scores = zip(feature_index, [X[doc, x] for x in feature_index])
scored_features = sorted([(feature_names[i], s) for i, s in tfidf_scores], key=lambda x: x[1])
data = scored_features[-n:]
wordcloud = WordCloud().generate(' '.join([x[0] for x in data][::-1]))
import matplotlib.pyplot as plt
plt.axis('off')
return (data, wordcloud)
topwords_candidate('SANDERS', 10) | code |
18114963/cell_3 | [
"image_output_1.png"
] | import requests
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code | code |
18114963/cell_17 | [
"text_html_output_1.png"
] | from wordcloud import WordCloud
import bs4
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
import requests
import sklearn.feature_extraction.text as skt
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code
soup = bs4.BeautifulSoup(r.content)
graphs = soup.find_all('p')
utterances = [x.get_text() for x in graphs if 'data-elm-loc' in x.attrs.keys()]
utterances = utterances[2:]
seq = 0
data = []
for i in utterances:
graph = i.split()
if graph[0][-1] == ':':
text = ' '.join(graph[1:])
num_words = len(graph) - 1
name = graph[0][:-1]
seq += 1
elif len(graph) > 1 and graph[1] == '(?):':
text = ' '.join(graph[2:])
num_words = len(graph) - 2
name = graph[0]
seq += 1
else:
text = ' '.join(graph)
data.append({'name': name, 'graph': text, 'seq': seq, 'num_words': num_words})
df = pd.DataFrame(data)
df.name.unique()
df = df[df.name != '(UNKNOWN)']
df['name'] = df['name'].apply(lambda x: ''.join([char for char in x if char.isalpha()]))
def processing(x):
return pd.Series({'graph': f"{' '.join(x['graph'])}", 'name': x['name'].iloc[0]})
df = df.groupby('seq').apply(processing)
import numpy as np
import sklearn.feature_extraction.text as skt
from wordcloud import WordCloud
def topwords_candidate(candidate_name, n):
lectures = ['this is some food', 'this is some drink']
vectorizer = skt.TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(df[df['name'] == candidate_name]['graph'])
feature_names = vectorizer.get_feature_names()
doc = 0
feature_index = X[doc, :].nonzero()[1]
tfidf_scores = zip(feature_index, [X[doc, x] for x in feature_index])
scored_features = sorted([(feature_names[i], s) for i, s in tfidf_scores], key=lambda x: x[1])
data = scored_features[-n:]
wordcloud = WordCloud().generate(' '.join([x[0] for x in data][::-1]))
import matplotlib.pyplot as plt
plt.axis('off')
return (data, wordcloud)
import matplotlib.pyplot as plt
figs, axs = plt.subplots(2, 5, figsize=(80, 20))
candidates = list(filter(lambda x: x not in ['BASH', 'TAPPER', 'LEMON'], df.name.unique()))
for i in range(5):
axs[0][i].imshow(topwords_candidate(candidates[i], 10)[1])
axs[0][i].axis('off')
axs[0][i].set_title(candidates[i], fontsize=40)
axs[1][i].imshow(topwords_candidate(candidates[i + 5], 10)[1])
axs[1][i].axis('off')
axs[1][i].set_title(candidates[i + 5], fontsize=40) | code |
18114963/cell_10 | [
"text_plain_output_1.png"
] | import bs4
import pandas as pd
import requests
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code
soup = bs4.BeautifulSoup(r.content)
graphs = soup.find_all('p')
utterances = [x.get_text() for x in graphs if 'data-elm-loc' in x.attrs.keys()]
utterances = utterances[2:]
seq = 0
data = []
for i in utterances:
graph = i.split()
if graph[0][-1] == ':':
text = ' '.join(graph[1:])
num_words = len(graph) - 1
name = graph[0][:-1]
seq += 1
elif len(graph) > 1 and graph[1] == '(?):':
text = ' '.join(graph[2:])
num_words = len(graph) - 2
name = graph[0]
seq += 1
else:
text = ' '.join(graph)
data.append({'name': name, 'graph': text, 'seq': seq, 'num_words': num_words})
df = pd.DataFrame(data)
df.name.unique()
df = df[df.name != '(UNKNOWN)']
df['name'] = df['name'].apply(lambda x: ''.join([char for char in x if char.isalpha()]))
df.groupby('name').sum()['num_words'].plot(kind='bar') | code |
18114963/cell_12 | [
"text_plain_output_1.png"
] | import bs4
import pandas as pd
import requests
r = requests.get('https://www.washingtonpost.com/politics/2019/07/31/transcript-first-night-second-democratic-debate')
r.status_code
soup = bs4.BeautifulSoup(r.content)
graphs = soup.find_all('p')
utterances = [x.get_text() for x in graphs if 'data-elm-loc' in x.attrs.keys()]
utterances = utterances[2:]
seq = 0
data = []
for i in utterances:
graph = i.split()
if graph[0][-1] == ':':
text = ' '.join(graph[1:])
num_words = len(graph) - 1
name = graph[0][:-1]
seq += 1
elif len(graph) > 1 and graph[1] == '(?):':
text = ' '.join(graph[2:])
num_words = len(graph) - 2
name = graph[0]
seq += 1
else:
text = ' '.join(graph)
data.append({'name': name, 'graph': text, 'seq': seq, 'num_words': num_words})
df = pd.DataFrame(data)
df.name.unique()
df = df[df.name != '(UNKNOWN)']
df['name'] = df['name'].apply(lambda x: ''.join([char for char in x if char.isalpha()]))
def processing(x):
return pd.Series({'graph': f"{' '.join(x['graph'])}", 'name': x['name'].iloc[0]})
df = df.groupby('seq').apply(processing)
df.head() | code |
2033155/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/Pakistan Intellectual Capital - Computer Science - Ver 1.csv', encoding='ISO-8859-1')
df['University Currently Teaching'].value_counts()[:20].plot(kind='bar') | code |
2033155/cell_4 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/Pakistan Intellectual Capital - Computer Science - Ver 1.csv', encoding='ISO-8859-1')
df.head() | code |
2033155/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/Pakistan Intellectual Capital - Computer Science - Ver 1.csv', encoding='ISO-8859-1')
df_new = df[df['Other Information'].isin(['On Study Leave', 'On study leave', 'PhD Study Leave', 'On Leave'])]
x = df_new['Teacher Name'].count()
y = df['Teacher Name'].count() - x
df_new = df[df['Year'].isin([2013, 2014, 2015, 2016, 2017])]
df_new = df_new[df_new['Terminal Degree'].isin(['PhD', 'Ph.D', 'Phd'])]
df_new['Year'].value_counts().plot(kind='bar') | code |
2033155/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (12, 5)
df = pd.read_csv('../input/Pakistan Intellectual Capital - Computer Science - Ver 1.csv', encoding='ISO-8859-1')
df_new = df[df['Other Information'].isin(['On Study Leave', 'On study leave', 'PhD Study Leave', 'On Leave'])]
x = df_new['Teacher Name'].count()
y = df['Teacher Name'].count() - x
plt.pie([x, y], explode=(0.02, 0.09), labels=['On Leave', 'Available'], autopct='%1.1f%%', startangle=140)
plt.axis('equal')
plt.show() | code |
128012764/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import glob
import numpy as np
import pandas as pd
import pickle
import tensorflow as tf
import tensorflow.keras.backend as K
breast_img = glob.glob('/kaggle/input/breast-histopathology-images/IDC_regular_ps50_idx5/**/*.png', recursive=True)
data = pd.read_csv('/kaggle/input/selected-images/selected_images.csv')
train_data, val_data = train_test_split(data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(val_data, test_size=0.5, random_state=42)
datagen = ImageDataGenerator(rescale=1.0 / 255)
target_size = (50, 50)
batch_size = 32
train_generator = datagen.flow_from_dataframe(dataframe=train_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
val_generator = datagen.flow_from_dataframe(dataframe=val_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
test_generator = datagen.flow_from_dataframe(dataframe=test_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
A, B = np.unique(train_generator.labels, return_counts=True)
n = len(train_generator.labels)
cls_weights = {i: (n - j) / n for i, j in zip(A, B)}
def f1_score(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def train_best_model(learning_rate, units):
pre = VGG16(input_shape=(50, 50, 3), include_top=False, pooling='max')
for layer in pre.layers:
layer.trainable = False
x = tf.keras.layers.Dense(units, activation='relu')(pre.output)
x = tf.keras.layers.Dense(units / 2, activation='relu')(x)
out = tf.keras.layers.Dense(1, activation='sigmoid')(x)
transfer_learning_model = tf.keras.models.Model(pre.input, out)
transfer_learning_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.Recall(), tf.keras.metrics.Precision(), f1_score])
history = transfer_learning_model.fit(train_generator, epochs=300, validation_data=val_generator, callbacks=tf.keras.callbacks.EarlyStopping(patience=5, min_delta=0.001))
test_results = transfer_learning_model.evaluate(test_generator)
return (transfer_learning_model, history, test_results)
model.save('transfer_learning_modelVGG16.h5')
with open('transfer_learning_historyVGG16.pkl', 'wb') as file:
pickle.dump(history.history, file)
with open('transfer_learning_test_resultsVGG16.pkl', 'wb') as file:
pickle.dump(test_results, file)
total_parameters = model.count_params()
mult_adds_total = 0
for layer in model.layers:
if isinstance(layer, tf.keras.layers.Conv2D):
height, width, channels_in = layer.input_shape[1:]
_, _, channels_out = layer.output_shape[1:]
kernel_height, kernel_width = layer.kernel_size
mult_adds = height * width * channels_in * channels_out * kernel_height * kernel_width
mult_adds_total += mult_adds
print('Total parameters:', total_parameters)
print('Total number of multipy-accumulates:', mult_adds_total) | code |
128012764/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import shutil
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import glob
import random
import tensorflow as tf
import keras.utils as image
random.seed(42)
tf.random.set_seed(42)
from tensorflow.keras import layers
from tensorflow.keras.applications import VGG16
from tensorflow.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import pickle
import keras_tuner as kt
import tensorflow.keras.backend as K | code |
128012764/cell_18 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import glob
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras.backend as K
breast_img = glob.glob('/kaggle/input/breast-histopathology-images/IDC_regular_ps50_idx5/**/*.png', recursive=True)
data = pd.read_csv('/kaggle/input/selected-images/selected_images.csv')
train_data, val_data = train_test_split(data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(val_data, test_size=0.5, random_state=42)
datagen = ImageDataGenerator(rescale=1.0 / 255)
target_size = (50, 50)
batch_size = 32
train_generator = datagen.flow_from_dataframe(dataframe=train_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
val_generator = datagen.flow_from_dataframe(dataframe=val_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
test_generator = datagen.flow_from_dataframe(dataframe=test_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
A, B = np.unique(train_generator.labels, return_counts=True)
n = len(train_generator.labels)
cls_weights = {i: (n - j) / n for i, j in zip(A, B)}
def f1_score(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def train_best_model(learning_rate, units):
pre = VGG16(input_shape=(50, 50, 3), include_top=False, pooling='max')
for layer in pre.layers:
layer.trainable = False
x = tf.keras.layers.Dense(units, activation='relu')(pre.output)
x = tf.keras.layers.Dense(units / 2, activation='relu')(x)
out = tf.keras.layers.Dense(1, activation='sigmoid')(x)
transfer_learning_model = tf.keras.models.Model(pre.input, out)
transfer_learning_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.Recall(), tf.keras.metrics.Precision(), f1_score])
history = transfer_learning_model.fit(train_generator, epochs=300, validation_data=val_generator, callbacks=tf.keras.callbacks.EarlyStopping(patience=5, min_delta=0.001))
test_results = transfer_learning_model.evaluate(test_generator)
return (transfer_learning_model, history, test_results)
print('Test Results')
print('\n-------------\n')
print('Test Loss:', format(test_results[0], '.3f'))
print('Test Precision: ', format(test_results[1], '.3f'))
print('Test Recall: ', format(test_results[2], '.3f'))
print('Test F1:', format(test_results[3], '.3f')) | code |
128012764/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import glob
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras.backend as K
breast_img = glob.glob('/kaggle/input/breast-histopathology-images/IDC_regular_ps50_idx5/**/*.png', recursive=True)
data = pd.read_csv('/kaggle/input/selected-images/selected_images.csv')
train_data, val_data = train_test_split(data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(val_data, test_size=0.5, random_state=42)
datagen = ImageDataGenerator(rescale=1.0 / 255)
target_size = (50, 50)
batch_size = 32
train_generator = datagen.flow_from_dataframe(dataframe=train_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
val_generator = datagen.flow_from_dataframe(dataframe=val_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
test_generator = datagen.flow_from_dataframe(dataframe=test_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
A, B = np.unique(train_generator.labels, return_counts=True)
n = len(train_generator.labels)
cls_weights = {i: (n - j) / n for i, j in zip(A, B)}
def f1_score(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def train_best_model(learning_rate, units):
pre = VGG16(input_shape=(50, 50, 3), include_top=False, pooling='max')
for layer in pre.layers:
layer.trainable = False
x = tf.keras.layers.Dense(units, activation='relu')(pre.output)
x = tf.keras.layers.Dense(units / 2, activation='relu')(x)
out = tf.keras.layers.Dense(1, activation='sigmoid')(x)
transfer_learning_model = tf.keras.models.Model(pre.input, out)
transfer_learning_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.Recall(), tf.keras.metrics.Precision(), f1_score])
history = transfer_learning_model.fit(train_generator, epochs=300, validation_data=val_generator, callbacks=tf.keras.callbacks.EarlyStopping(patience=5, min_delta=0.001))
test_results = transfer_learning_model.evaluate(test_generator)
return (transfer_learning_model, history, test_results)
best_params = {'units': 100, 'learning_rate': 0.001}
model, history, test_results = train_best_model(**best_params) | code |
128012764/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import glob
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pickle
import tensorflow as tf
import tensorflow.keras.backend as K
breast_img = glob.glob('/kaggle/input/breast-histopathology-images/IDC_regular_ps50_idx5/**/*.png', recursive=True)
data = pd.read_csv('/kaggle/input/selected-images/selected_images.csv')
train_data, val_data = train_test_split(data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(val_data, test_size=0.5, random_state=42)
datagen = ImageDataGenerator(rescale=1.0 / 255)
target_size = (50, 50)
batch_size = 32
train_generator = datagen.flow_from_dataframe(dataframe=train_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
val_generator = datagen.flow_from_dataframe(dataframe=val_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
test_generator = datagen.flow_from_dataframe(dataframe=test_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
A, B = np.unique(train_generator.labels, return_counts=True)
n = len(train_generator.labels)
cls_weights = {i: (n - j) / n for i, j in zip(A, B)}
def f1_score(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
recall = true_positives / (possible_positives + K.epsilon())
f1_val = 2 * (precision * recall) / (precision + recall + K.epsilon())
return f1_val
def train_best_model(learning_rate, units):
pre = VGG16(input_shape=(50, 50, 3), include_top=False, pooling='max')
for layer in pre.layers:
layer.trainable = False
x = tf.keras.layers.Dense(units, activation='relu')(pre.output)
x = tf.keras.layers.Dense(units / 2, activation='relu')(x)
out = tf.keras.layers.Dense(1, activation='sigmoid')(x)
transfer_learning_model = tf.keras.models.Model(pre.input, out)
transfer_learning_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss=tf.keras.losses.BinaryCrossentropy(), metrics=[tf.keras.metrics.Recall(), tf.keras.metrics.Precision(), f1_score])
history = transfer_learning_model.fit(train_generator, epochs=300, validation_data=val_generator, callbacks=tf.keras.callbacks.EarlyStopping(patience=5, min_delta=0.001))
test_results = transfer_learning_model.evaluate(test_generator)
return (transfer_learning_model, history, test_results)
model.save('transfer_learning_modelVGG16.h5')
with open('transfer_learning_historyVGG16.pkl', 'wb') as file:
pickle.dump(history.history, file)
with open('transfer_learning_test_resultsVGG16.pkl', 'wb') as file:
pickle.dump(test_results, file)
def plot_the_results(history):
plt.style.use('seaborn')
plt.figure(figsize=(10, 5))
plt.plot(history.epoch, history.history['val_f1_score'], label='Val F1 Score', linewidth=2)
plt.plot(history.epoch, history.history['f1_score'], label='f1_score', linewidth=2)
plt.legend()
plt.title('F1 Score')
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(history.epoch, history.history['val_precision'], label='Val Precision', linewidth=2)
plt.plot(history.epoch, history.history['precision'], label='Precision', linewidth=2)
plt.legend()
plt.title('Precision')
plt.show()
plt.figure(figsize=(10, 5))
plt.plot(history.epoch, history.history['val_recall'], label='Val Recall', linewidth=2)
plt.plot(history.epoch, history.history['recall'], label='Recall', linewidth=2)
plt.legend()
plt.title('Recall')
plt.show()
plot_the_results(history) | code |
128012764/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import glob
import pandas as pd
breast_img = glob.glob('/kaggle/input/breast-histopathology-images/IDC_regular_ps50_idx5/**/*.png', recursive=True)
data = pd.read_csv('/kaggle/input/selected-images/selected_images.csv')
train_data, val_data = train_test_split(data, test_size=0.3, random_state=42)
val_data, test_data = train_test_split(val_data, test_size=0.5, random_state=42)
datagen = ImageDataGenerator(rescale=1.0 / 255)
target_size = (50, 50)
batch_size = 32
train_generator = datagen.flow_from_dataframe(dataframe=train_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
val_generator = datagen.flow_from_dataframe(dataframe=val_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw')
test_generator = datagen.flow_from_dataframe(dataframe=test_data, x_col='path', y_col='label', target_size=target_size, batch_size=batch_size, class_mode='raw') | code |
105173129/cell_13 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
def get_continent_country(x):
NorthAmerica = ['Barbados', 'Bermuda', 'Canada', 'Greenland', 'Jamaica', 'Mexico', 'Panama', 'Costa Rica', 'Dominican Republic', 'Guatemala', 'Puerto Rico', 'United States', 'Bahamas', 'Cuba', 'Honduras']
SouthAmerica = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Peru', 'Uruguay', 'Venezuela', 'Guyana', 'Paraguay']
Europe = ['Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'Monaco']
Africa = ['Benin', 'Cameroon', 'Central African Republic', 'Democratic Republic of Congo', 'Ghana', 'Liberia', 'Morocco', 'Nigeria', 'South Africa', 'Sudan']
Asia = ['Cyprus', 'India', 'Israel', 'Japan', 'Lebanon', 'Philippines', 'Qatar', 'Russia', 'Saudi Arabia', 'Singapore', 'South Korea', 'Taiwan', 'Thailand', 'Turkey', 'United Arab Emirates', 'Indonesia', 'Iran']
Oceania = ['Australia', 'New Zealand', 'New Caledonia']
if x in NorthAmerica:
return 'North America'
elif x in SouthAmerica:
return 'South America'
elif x in Europe:
return 'Europe'
elif x in Africa:
return 'Africa'
elif x in Asia:
return 'Asia'
else:
return 'Oceania'
continent = []
for country in monkeypox_countr['location']:
y = get_continent_country(country)
continent.append(y)
monkeypox_countr['Continent'] = pd.Series(continent)
monkeypox_cont = monkeypox_countr[['Continent', 'location', 'date', 'new_cases', 'new_cases_smoothed', 'total_cases', 'new_cases_per_million', 'total_cases_per_million', 'new_cases_smoothed_per_million', 'new_deaths', 'new_deaths_smoothed', 'total_deaths', 'new_deaths_per_million', 'total_deaths_per_million', 'new_deaths_smoothed_per_million']].copy()
total_cases_continent = monkeypox_cont.set_index('Continent').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)
total_cases_country = monkeypox_cont.set_index('location').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)[:20]
Europe = monkeypox_cont[monkeypox_cont['Continent'] == 'Europe'].copy()
Europe['new_cases_%'] = Europe['new_cases'] / np.sum(Europe['new_cases'])
Europe = Europe.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:5]
print('Top 5 countries in Europe')
print(Europe)
print('------------------------------------')
NorthAmerica = monkeypox_cont[monkeypox_cont['Continent'] == 'North America'].copy()
NorthAmerica['new_cases_%'] = NorthAmerica['new_cases'] / np.sum(NorthAmerica['new_cases'])
NorthAmerica = NorthAmerica.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:3]
print('Top 3 countries in North America')
print(NorthAmerica) | code |
105173129/cell_4 | [
"image_output_1.png"
] | import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.head() | code |
105173129/cell_6 | [
"image_output_1.png"
] | import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
print(monkeypox.isnull().sum()) | code |
105173129/cell_8 | [
"image_output_1.png"
] | import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
print('Countries :', monkeypox_countr.location.unique())
print('We have', len(monkeypox_countr.location.unique()), 'countries') | code |
105173129/cell_15 | [
"text_html_output_1.png"
] | from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
def get_continent_country(x):
NorthAmerica = ['Barbados', 'Bermuda', 'Canada', 'Greenland', 'Jamaica', 'Mexico', 'Panama', 'Costa Rica', 'Dominican Republic', 'Guatemala', 'Puerto Rico', 'United States', 'Bahamas', 'Cuba', 'Honduras']
SouthAmerica = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Peru', 'Uruguay', 'Venezuela', 'Guyana', 'Paraguay']
Europe = ['Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'Monaco']
Africa = ['Benin', 'Cameroon', 'Central African Republic', 'Democratic Republic of Congo', 'Ghana', 'Liberia', 'Morocco', 'Nigeria', 'South Africa', 'Sudan']
Asia = ['Cyprus', 'India', 'Israel', 'Japan', 'Lebanon', 'Philippines', 'Qatar', 'Russia', 'Saudi Arabia', 'Singapore', 'South Korea', 'Taiwan', 'Thailand', 'Turkey', 'United Arab Emirates', 'Indonesia', 'Iran']
Oceania = ['Australia', 'New Zealand', 'New Caledonia']
if x in NorthAmerica:
return 'North America'
elif x in SouthAmerica:
return 'South America'
elif x in Europe:
return 'Europe'
elif x in Africa:
return 'Africa'
elif x in Asia:
return 'Asia'
else:
return 'Oceania'
continent = []
for country in monkeypox_countr['location']:
y = get_continent_country(country)
continent.append(y)
monkeypox_countr['Continent'] = pd.Series(continent)
monkeypox_cont = monkeypox_countr[['Continent', 'location', 'date', 'new_cases', 'new_cases_smoothed', 'total_cases', 'new_cases_per_million', 'total_cases_per_million', 'new_cases_smoothed_per_million', 'new_deaths', 'new_deaths_smoothed', 'total_deaths', 'new_deaths_per_million', 'total_deaths_per_million', 'new_deaths_smoothed_per_million']].copy()
total_cases_continent = monkeypox_cont.set_index('Continent').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)
total_cases_country = monkeypox_cont.set_index('location').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)[:20]
Europe = monkeypox_cont[monkeypox_cont['Continent'] == 'Europe'].copy()
Europe['new_cases_%'] = Europe['new_cases'] / np.sum(Europe['new_cases'])
Europe = Europe.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:5]
NorthAmerica = monkeypox_cont[monkeypox_cont['Continent'] == 'North America'].copy()
NorthAmerica['new_cases_%'] = NorthAmerica['new_cases'] / np.sum(NorthAmerica['new_cases'])
NorthAmerica = NorthAmerica.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:3]
def graph_1():
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 5))
fig.subplots_adjust(wspace=0)
plt.style.use('seaborn-colorblind')
cases = list(total_cases_continent.values)
labels = list(total_cases_continent.index)
explode = [0.1, 0, 0, 0, 0, 0]
angle = -270 * cases[0]
wedges, *_ = ax1.pie(cases, autopct='%1.1f%%', startangle=angle, labels=labels, explode=explode, rotatelabels=True)
age_ratios = list(Europe.values)
age_labels = list(Europe.index)
bottom = 0.82
width = 0.2
for j, (height, label) in enumerate(reversed([*zip(age_ratios, age_labels)])):
bottom -= height
bc = ax2.bar(0, height, width, bottom=bottom, color='C0', label=label, alpha=0.1 + 0.15 * j)
ax2.bar_label(bc, labels=[f'{height:.1%}'], label_type='center')
ax1.set_title('Total cases in the World')
ax2.set_title('% Cases in Europe: Top 5')
ax2.legend()
ax2.axis('off')
ax2.set_xlim(-1.5 * width, 2.5 * width)
theta1, theta2 = (wedges[0].theta1, wedges[0].theta2)
center, r = (wedges[0].center, wedges[0].r)
bar_height = sum(age_ratios)
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = r * np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = r * np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
return plt.show()
graph_1() | code |
105173129/cell_16 | [
"text_plain_output_1.png"
] | from matplotlib.patches import ConnectionPatch
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
def get_continent_country(x):
NorthAmerica = ['Barbados', 'Bermuda', 'Canada', 'Greenland', 'Jamaica', 'Mexico', 'Panama', 'Costa Rica', 'Dominican Republic', 'Guatemala', 'Puerto Rico', 'United States', 'Bahamas', 'Cuba', 'Honduras']
SouthAmerica = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Peru', 'Uruguay', 'Venezuela', 'Guyana', 'Paraguay']
Europe = ['Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'Monaco']
Africa = ['Benin', 'Cameroon', 'Central African Republic', 'Democratic Republic of Congo', 'Ghana', 'Liberia', 'Morocco', 'Nigeria', 'South Africa', 'Sudan']
Asia = ['Cyprus', 'India', 'Israel', 'Japan', 'Lebanon', 'Philippines', 'Qatar', 'Russia', 'Saudi Arabia', 'Singapore', 'South Korea', 'Taiwan', 'Thailand', 'Turkey', 'United Arab Emirates', 'Indonesia', 'Iran']
Oceania = ['Australia', 'New Zealand', 'New Caledonia']
if x in NorthAmerica:
return 'North America'
elif x in SouthAmerica:
return 'South America'
elif x in Europe:
return 'Europe'
elif x in Africa:
return 'Africa'
elif x in Asia:
return 'Asia'
else:
return 'Oceania'
continent = []
for country in monkeypox_countr['location']:
y = get_continent_country(country)
continent.append(y)
monkeypox_countr['Continent'] = pd.Series(continent)
monkeypox_cont = monkeypox_countr[['Continent', 'location', 'date', 'new_cases', 'new_cases_smoothed', 'total_cases', 'new_cases_per_million', 'total_cases_per_million', 'new_cases_smoothed_per_million', 'new_deaths', 'new_deaths_smoothed', 'total_deaths', 'new_deaths_per_million', 'total_deaths_per_million', 'new_deaths_smoothed_per_million']].copy()
total_cases_continent = monkeypox_cont.set_index('Continent').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)
total_cases_country = monkeypox_cont.set_index('location').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)[:20]
Europe = monkeypox_cont[monkeypox_cont['Continent'] == 'Europe'].copy()
Europe['new_cases_%'] = Europe['new_cases'] / np.sum(Europe['new_cases'])
Europe = Europe.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:5]
NorthAmerica = monkeypox_cont[monkeypox_cont['Continent'] == 'North America'].copy()
NorthAmerica['new_cases_%'] = NorthAmerica['new_cases'] / np.sum(NorthAmerica['new_cases'])
NorthAmerica = NorthAmerica.set_index('location').groupby(level=0)['new_cases_%'].agg(np.sum).sort_values(ascending=False)[:3]
#PRINT GRAPH EUROPE
def graph_1():
# make figure and assign axis objects
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 5))
fig.subplots_adjust(wspace=0)
plt.style.use('seaborn-colorblind')
# pie chart parameters
cases = list(total_cases_continent.values)
labels = list(total_cases_continent.index)
explode = [0.1, 0, 0,0,0,0]
# rotate so that first wedge is split by the x-axis
angle = -270 * cases[0]
wedges, *_ = ax1.pie(cases, autopct='%1.1f%%', startangle=angle,
labels=labels, explode=explode, rotatelabels=True)
# bar chart parameters Europe
age_ratios = list(Europe.values)
age_labels = list(Europe.index)
bottom = .82
width = .2
# Adding from the top matches the legend. Europe
for j, (height, label) in enumerate(reversed([*zip(age_ratios, age_labels)])):
bottom -= height
bc = ax2.bar(0, height, width, bottom=bottom, color='C0', label=label,
alpha=0.1 + 0.15 * j)
ax2.bar_label(bc, labels=[f"{height:.1%}"], label_type='center')
ax1.set_title('Total cases in the World')
ax2.set_title('% Cases in Europe: Top 5')
ax2.legend()
ax2.axis('off')
ax2.set_xlim(- 1.5 * width, 2.5 * width)
# use ConnectionPatch to draw lines between the two plots:Europe
theta1, theta2 = wedges[0].theta1, wedges[0].theta2
center, r = wedges[0].center, wedges[0].r
bar_height = sum(age_ratios)
# draw top connecting line
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = r * np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData,
xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
# draw bottom connecting line
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = r * np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData,
xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
return plt.show()
graph_1()
def graph_2():
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 5))
fig.subplots_adjust(wspace=0)
plt.style.use('seaborn-colorblind')
cases = list(total_cases_continent.values)
labels = list(total_cases_continent.index)
explode = [0, 0.1, 0, 0, 0, 0]
angle = -88 * cases[0]
wedges, labels, pct_texts, *_ = ax1.pie(cases, autopct='%1.1f%%', startangle=angle, labels=labels, explode=explode, rotatelabels=True, labeldistance=1)
for label, pct_text in zip(labels, pct_texts):
pct_text.set_rotation(label.get_rotation())
north_ratios = list(NorthAmerica.values)
north_labels = list(NorthAmerica.index)
bottom = 1
width = 0.2
for q, (height, label) in enumerate(reversed([*zip(north_ratios, north_labels)])):
bottom -= height
bc = ax2.bar(0, height, width, bottom=bottom, color='C1', label=label, alpha=0.1 + 0.25 * q)
ax2.bar_label(bc, labels=[f'{height:.1%}'], label_type='center')
ax2.set_title('% Cases in North America: Top 3')
ax2.legend()
ax2.axis('off')
ax2.set_xlim(-1.5 * width, 2.5 * width)
theta1, theta2 = (wedges[1].theta1, wedges[1].theta2)
center, r = (wedges[1].center, wedges[1].r)
bar_height = sum(north_ratios)
x = r * np.cos(np.pi / 180 * theta2) + center[0]
y = r * np.sin(np.pi / 180 * theta2) + center[1]
con = ConnectionPatch(xyA=(-width / 2, bar_height), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
con.set_linewidth(4)
ax2.add_artist(con)
x = r * np.cos(np.pi / 180 * theta1) + center[0]
y = r * np.sin(np.pi / 180 * theta1) + center[1]
con = ConnectionPatch(xyA=(-width / 2, 0), coordsA=ax2.transData, xyB=(x, y), coordsB=ax1.transData)
con.set_color([0, 0, 0])
ax2.add_artist(con)
con.set_linewidth(4)
return plt.show()
graph_2() | code |
105173129/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
def get_continent_country(x):
NorthAmerica = ['Barbados', 'Bermuda', 'Canada', 'Greenland', 'Jamaica', 'Mexico', 'Panama', 'Costa Rica', 'Dominican Republic', 'Guatemala', 'Puerto Rico', 'United States', 'Bahamas', 'Cuba', 'Honduras']
SouthAmerica = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Peru', 'Uruguay', 'Venezuela', 'Guyana', 'Paraguay']
Europe = ['Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'Monaco']
Africa = ['Benin', 'Cameroon', 'Central African Republic', 'Democratic Republic of Congo', 'Ghana', 'Liberia', 'Morocco', 'Nigeria', 'South Africa', 'Sudan']
Asia = ['Cyprus', 'India', 'Israel', 'Japan', 'Lebanon', 'Philippines', 'Qatar', 'Russia', 'Saudi Arabia', 'Singapore', 'South Korea', 'Taiwan', 'Thailand', 'Turkey', 'United Arab Emirates', 'Indonesia', 'Iran']
Oceania = ['Australia', 'New Zealand', 'New Caledonia']
if x in NorthAmerica:
return 'North America'
elif x in SouthAmerica:
return 'South America'
elif x in Europe:
return 'Europe'
elif x in Africa:
return 'Africa'
elif x in Asia:
return 'Asia'
else:
return 'Oceania'
continent = []
for country in monkeypox_countr['location']:
y = get_continent_country(country)
continent.append(y)
monkeypox_countr['Continent'] = pd.Series(continent)
monkeypox_cont = monkeypox_countr[['Continent', 'location', 'date', 'new_cases', 'new_cases_smoothed', 'total_cases', 'new_cases_per_million', 'total_cases_per_million', 'new_cases_smoothed_per_million', 'new_deaths', 'new_deaths_smoothed', 'total_deaths', 'new_deaths_per_million', 'total_deaths_per_million', 'new_deaths_smoothed_per_million']].copy()
monkeypox_cont.head() | code |
105173129/cell_12 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
monkeypox = pd.read_csv('../input/worldwide-monkeypox-daily-dataset/owid-monkeypox-data.csv')
monkeypox.replace('Congo', 'Democratic Republic of Congo', inplace=True)
monkeypox_countr = monkeypox[monkeypox['location'] != 'World'].copy()
def get_continent_country(x):
NorthAmerica = ['Barbados', 'Bermuda', 'Canada', 'Greenland', 'Jamaica', 'Mexico', 'Panama', 'Costa Rica', 'Dominican Republic', 'Guatemala', 'Puerto Rico', 'United States', 'Bahamas', 'Cuba', 'Honduras']
SouthAmerica = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Peru', 'Uruguay', 'Venezuela', 'Guyana', 'Paraguay']
Europe = ['Andorra', 'Austria', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Montenegro', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'United Kingdom', 'Monaco']
Africa = ['Benin', 'Cameroon', 'Central African Republic', 'Democratic Republic of Congo', 'Ghana', 'Liberia', 'Morocco', 'Nigeria', 'South Africa', 'Sudan']
Asia = ['Cyprus', 'India', 'Israel', 'Japan', 'Lebanon', 'Philippines', 'Qatar', 'Russia', 'Saudi Arabia', 'Singapore', 'South Korea', 'Taiwan', 'Thailand', 'Turkey', 'United Arab Emirates', 'Indonesia', 'Iran']
Oceania = ['Australia', 'New Zealand', 'New Caledonia']
if x in NorthAmerica:
return 'North America'
elif x in SouthAmerica:
return 'South America'
elif x in Europe:
return 'Europe'
elif x in Africa:
return 'Africa'
elif x in Asia:
return 'Asia'
else:
return 'Oceania'
continent = []
for country in monkeypox_countr['location']:
y = get_continent_country(country)
continent.append(y)
monkeypox_countr['Continent'] = pd.Series(continent)
monkeypox_cont = monkeypox_countr[['Continent', 'location', 'date', 'new_cases', 'new_cases_smoothed', 'total_cases', 'new_cases_per_million', 'total_cases_per_million', 'new_cases_smoothed_per_million', 'new_deaths', 'new_deaths_smoothed', 'total_deaths', 'new_deaths_per_million', 'total_deaths_per_million', 'new_deaths_smoothed_per_million']].copy()
total_cases_continent = monkeypox_cont.set_index('Continent').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)
print('TOTAL CASES BY CONTINENT')
print(total_cases_continent)
print('------------------------------')
total_cases_country = monkeypox_cont.set_index('location').groupby(level=0)['new_cases'].agg(np.sum).sort_values(ascending=False)[:20]
print('TOTAL CASES BY COUNTRY: TOP 20')
print(total_cases_country) | code |
18118979/cell_13 | [
"text_html_output_1.png"
] | out_path = Path('./')
out_path.ls()
in_path = Path('../input/')
tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20.0, max_zoom=1.1, max_lighting=0.0, max_warp=0.2, p_affine=0.75, p_lighting=0.0)
test = CustomImageList.from_csv_custom(path=in_path, csv_name='test.csv', imgIdx=0)
data = CustomImageList.from_csv_custom(path=in_path, csv_name='train.csv').split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test).transform(tfms).databunch(bs=64, num_workers=0).normalize(imagenet_stats)
learner = cnn_learner(data, models.resnet50, metrics=error_rate, pretrained=False, model_dir='./')
learner.fit_one_cycle(25)
interp = ClassificationInterpretation.from_learner(learner)
losses, idxs = interp.top_losses()
interp.plot_top_losses(16, figsize=(15, 11)) | code |
18118979/cell_4 | [
"image_output_1.png"
] | import pandas as pd
out_path = Path('./')
out_path.ls()
in_path = Path('../input/')
df = pd.read_csv(in_path / 'train.csv')
df.head(n=5) | code |
18118979/cell_11 | [
"image_output_1.png"
] | out_path = Path('./')
out_path.ls()
in_path = Path('../input/')
tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20.0, max_zoom=1.1, max_lighting=0.0, max_warp=0.2, p_affine=0.75, p_lighting=0.0)
test = CustomImageList.from_csv_custom(path=in_path, csv_name='test.csv', imgIdx=0)
data = CustomImageList.from_csv_custom(path=in_path, csv_name='train.csv').split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test).transform(tfms).databunch(bs=64, num_workers=0).normalize(imagenet_stats)
learner = cnn_learner(data, models.resnet50, metrics=error_rate, pretrained=False, model_dir='./')
learner.fit_one_cycle(25)
learner.recorder.plot_losses() | code |
18118979/cell_1 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import os
print(os.listdir('../input')) | code |
18118979/cell_8 | [
"image_output_1.png"
] | out_path = Path('./')
out_path.ls()
in_path = Path('../input/')
tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20.0, max_zoom=1.1, max_lighting=0.0, max_warp=0.2, p_affine=0.75, p_lighting=0.0)
test = CustomImageList.from_csv_custom(path=in_path, csv_name='test.csv', imgIdx=0)
data = CustomImageList.from_csv_custom(path=in_path, csv_name='train.csv').split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test).transform(tfms).databunch(bs=64, num_workers=0).normalize(imagenet_stats)
data.show_batch(rows=3, figsize=(12, 9)) | code |
18118979/cell_10 | [
"text_html_output_1.png"
] | out_path = Path('./')
out_path.ls()
in_path = Path('../input/')
tfms = get_transforms(do_flip=False, flip_vert=False, max_rotate=20.0, max_zoom=1.1, max_lighting=0.0, max_warp=0.2, p_affine=0.75, p_lighting=0.0)
test = CustomImageList.from_csv_custom(path=in_path, csv_name='test.csv', imgIdx=0)
data = CustomImageList.from_csv_custom(path=in_path, csv_name='train.csv').split_by_rand_pct(0.2).label_from_df(cols='label').add_test(test).transform(tfms).databunch(bs=64, num_workers=0).normalize(imagenet_stats)
learner = cnn_learner(data, models.resnet50, metrics=error_rate, pretrained=False, model_dir='./')
learner.fit_one_cycle(25) | code |
34140599/cell_7 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import spacy
folder = '../input/nlp-getting-started'
test = pd.read_csv(os.path.join(folder, 'test.csv'), index_col='id')
train = pd.read_csv(os.path.join(folder, 'train.csv'), index_col='id')
X = train.drop(columns='target')
y = train['target']
nlp = spacy.load('en_core_web_sm')
doc = nlp(X['text'].iloc[0])
for token in doc:
print(token.text, token.lemma_, token.dep_, token.pos_) | code |
34140599/cell_3 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
folder = '../input/nlp-getting-started'
test = pd.read_csv(os.path.join(folder, 'test.csv'), index_col='id')
train = pd.read_csv(os.path.join(folder, 'train.csv'), index_col='id')
X = train.drop(columns='target')
y = train['target']
len(X) | code |
34140599/cell_5 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
folder = '../input/nlp-getting-started'
test = pd.read_csv(os.path.join(folder, 'test.csv'), index_col='id')
train = pd.read_csv(os.path.join(folder, 'train.csv'), index_col='id')
X = train.drop(columns='target')
y = train['target']
X['text'].iloc[0] | code |
90152351/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid)
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
my_model.fit(x_train, y_train)
my_model.score(x_valid, y_valid)
my_model = KNeighborsRegressor()
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid)
my_model = KNeighborsRegressor()
my_model.fit(x_train, y_train)
my_model.score(x_valid, y_valid) | code |
90152351/cell_20 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid)
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
my_model.fit(x_train, y_train)
my_model.score(x_valid, y_valid) | code |
90152351/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.feature_selection import mutual_info_regression
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsRegressor
df = pd.read_csv('../input/fe-course-data/customer.csv')
df.dtypes | code |
90152351/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid) | code |
90152351/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid)
my_model = XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=5, n_estimators=150, nthread=-1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=0, subsample=1, eval_metric='mlogloss')
my_model.fit(x_train, y_train)
my_model.score(x_valid, y_valid)
my_model = KNeighborsRegressor()
PIPE = Pipeline(steps=[('preproc', StandardScaler()), ('model', my_model)])
PIPE.fit(x_train, y_train)
PIPE.score(x_valid, y_valid) | code |
90152351/cell_10 | [
"text_html_output_1.png"
] | from sklearn.feature_selection import mutual_info_regression
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.feature_selection import mutual_info_regression
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsRegressor
df = pd.read_csv('../input/fe-course-data/customer.csv')
df.dtypes
y = df['ClaimAmount']
X = df.drop(['Customer', 'ClaimAmount', 'Unnamed: 0'], axis=1, inplace=False).copy()
for col in X.select_dtypes(include=['object']):
X[col], unique = X[col].factorize()
discrete_features = [True if X[col].dtypes == 'int64' else False for col in X.columns]
mi_scores = mutual_info_regression(X, y, discrete_features=discrete_features, random_state=0)
mi_scores = pd.Series(mi_scores, index=X.columns, name='MI')
mi_scores = mi_scores.sort_values(ascending=False)
mi_scores | code |
90152351/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.feature_selection import mutual_info_regression
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsRegressor
df = pd.read_csv('../input/fe-course-data/customer.csv')
df.dtypes
y = df['ClaimAmount']
X = df.drop(['Customer', 'ClaimAmount', 'Unnamed: 0'], axis=1, inplace=False).copy()
sns.relplot(x='Income', y='ClaimAmount', data=df) | code |
90152351/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.feature_selection import mutual_info_regression
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
from sklearn.pipeline import Pipeline
from sklearn.neighbors import KNeighborsRegressor
df = pd.read_csv('../input/fe-course-data/customer.csv')
df.head() | code |
332834/cell_9 | [
"image_output_11.png",
"image_output_74.png",
"image_output_82.png",
"image_output_24.png",
"image_output_46.png",
"image_output_25.png",
"text_plain_output_5.png",
"image_output_77.png",
"image_output_47.png",
"text_plain_output_15.png",
"image_output_78.png",
"image_output_17.png",
"image_output_30.png",
"text_plain_output_9.png",
"image_output_73.png",
"image_output_72.png",
"image_output_14.png",
"image_output_59.png",
"image_output_39.png",
"image_output_28.png",
"text_plain_output_20.png",
"image_output_84.png",
"image_output_81.png",
"image_output_23.png",
"image_output_34.png",
"image_output_64.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"image_output_13.png",
"image_output_40.png",
"image_output_5.png",
"image_output_48.png",
"image_output_68.png",
"image_output_75.png",
"text_plain_output_14.png",
"image_output_18.png",
"text_plain_output_29.png",
"image_output_58.png",
"image_output_21.png",
"text_plain_output_27.png",
"image_output_52.png",
"text_plain_output_10.png",
"image_output_60.png",
"text_plain_output_6.png",
"image_output_7.png",
"image_output_62.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"image_output_56.png",
"image_output_31.png",
"text_plain_output_25.png",
"image_output_65.png",
"image_output_20.png",
"text_plain_output_18.png",
"image_output_69.png",
"image_output_32.png",
"image_output_53.png",
"text_plain_output_3.png",
"image_output_4.png",
"image_output_51.png",
"text_plain_output_22.png",
"image_output_83.png",
"image_output_42.png",
"image_output_35.png",
"image_output_41.png",
"image_output_57.png",
"text_plain_output_7.png",
"image_output_36.png",
"image_output_8.png",
"image_output_37.png",
"image_output_66.png",
"text_plain_output_16.png",
"image_output_16.png",
"image_output_70.png",
"text_plain_output_8.png",
"text_plain_output_26.png",
"image_output_67.png",
"image_output_27.png",
"image_output_54.png",
"image_output_6.png",
"image_output_45.png",
"image_output_63.png",
"image_output_71.png",
"image_output_80.png",
"text_plain_output_23.png",
"image_output_12.png",
"text_plain_output_28.png",
"image_output_22.png",
"text_plain_output_2.png",
"image_output_55.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_29.png",
"image_output_44.png",
"image_output_43.png",
"text_plain_output_19.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"image_output_33.png",
"image_output_50.png",
"image_output_15.png",
"image_output_49.png",
"image_output_76.png",
"image_output_9.png",
"image_output_19.png",
"image_output_79.png",
"image_output_61.png",
"image_output_38.png",
"image_output_26.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10) | code |
332834/cell_4 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
plt.legend()
plt.show() | code |
332834/cell_20 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
goods = act_train[act_train['outcome'] == 1]
bads = act_train[act_train['outcome'] == 0]
goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good')
bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10)
hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1
people2 = pd.merge(people, hstry, on='people_id', how='inner')
people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64)
people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64)
people2['profit'] = people2['profit'].fillna('0').astype(np.int64)
obs = ['group_1']
for i in range(1, 10):
obs.append('char_' + str(i))
for x in obs:
people2[x] = people2[x].fillna('type 0')
people2[x] = people2[x].str.split(' ').str[1]
bools = []
for i in range(10, 38):
bools.append('char_' + str(i))
for x in list(set(obs).union(set(bools))):
people2[x] = pd.to_numeric(people2[x]).astype(int)
for x in list(set(obs).union(set(bools))):
fig=plt.figure(dpi=100,figsize=(12,3))
fig.suptitle(x, fontsize=15)
plt.subplot(141)
pos=people2[people2['prof_label']==1]
plt.hist(pos[x],
len(pos[x].unique()),
range=(pos[x].min(),pos[x].max()+1))
plt.title('Very Good')
plt.subplot(142)
pos=people2[people2['prof_label']==2]
plt.hist(pos[x],
len(pos[x].unique()),
range=(pos[x].min(),pos[x].max()+1))
plt.title('Good')
plt.subplot(143)
pos=people2[people2['prof_label']==3]
plt.hist(pos[x],
len(pos[x].unique()),
range=(pos[x].min(),pos[x].max()+1))
plt.title('Bad')
plt.subplot(144)
pos=people2[people2['prof_label']==4]
plt.hist(pos[x],
len(pos[x].unique()),
range=(pos[x].min(),pos[x].max()+1))
plt.title('Very Bad')
plt.show()
for x in bools:
print(x)
pos = people2[people2[x] == 1]
fig.suptitle(x, fontsize=15)
plt.hist(pos['prof_label'], 4, range=(1, 5))
plt.show() | code |
332834/cell_6 | [
"image_output_11.png",
"image_output_24.png",
"image_output_25.png",
"image_output_17.png",
"image_output_30.png",
"image_output_14.png",
"image_output_28.png",
"image_output_23.png",
"image_output_34.png",
"image_output_13.png",
"image_output_5.png",
"image_output_18.png",
"image_output_21.png",
"image_output_7.png",
"image_output_31.png",
"image_output_20.png",
"image_output_32.png",
"image_output_4.png",
"image_output_35.png",
"image_output_36.png",
"image_output_8.png",
"image_output_37.png",
"image_output_16.png",
"image_output_27.png",
"image_output_6.png",
"image_output_12.png",
"image_output_22.png",
"image_output_3.png",
"image_output_29.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_33.png",
"image_output_15.png",
"image_output_9.png",
"image_output_19.png",
"image_output_38.png",
"image_output_26.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
goods = act_train[act_train['outcome'] == 1]
bads = act_train[act_train['outcome'] == 0]
goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good')
bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad')
plt.legend()
plt.show() | code |
332834/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
goods = act_train[act_train['outcome'] == 1]
bads = act_train[act_train['outcome'] == 0]
goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good')
bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10)
hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1
people2 = pd.merge(people, hstry, on='people_id', how='inner')
people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64)
people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64)
people2['profit'] = people2['profit'].fillna('0').astype(np.int64)
obs = ['group_1']
for i in range(1, 10):
obs.append('char_' + str(i))
for x in obs:
people2[x] = people2[x].fillna('type 0')
people2[x] = people2[x].str.split(' ').str[1]
bools = []
for i in range(10, 38):
bools.append('char_' + str(i))
for x in list(set(obs).union(set(bools))):
people2[x] = pd.to_numeric(people2[x]).astype(int)
for x in list(set(obs).union(set(bools))):
fig = plt.figure(dpi=100, figsize=(12, 3))
fig.suptitle(x, fontsize=15)
plt.subplot(141)
pos = people2[people2['prof_label'] == 1]
plt.hist(pos[x], len(pos[x].unique()), range=(pos[x].min(), pos[x].max() + 1))
plt.title('Very Good')
plt.subplot(142)
pos = people2[people2['prof_label'] == 2]
plt.hist(pos[x], len(pos[x].unique()), range=(pos[x].min(), pos[x].max() + 1))
plt.title('Good')
plt.subplot(143)
pos = people2[people2['prof_label'] == 3]
plt.hist(pos[x], len(pos[x].unique()), range=(pos[x].min(), pos[x].max() + 1))
plt.title('Bad')
plt.subplot(144)
pos = people2[people2['prof_label'] == 4]
plt.hist(pos[x], len(pos[x].unique()), range=(pos[x].min(), pos[x].max() + 1))
plt.title('Very Bad')
plt.show() | code |
332834/cell_15 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10)
hstry['prof_label'].unique() | code |
332834/cell_14 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
goods = act_train[act_train['outcome'] == 1]
bads = act_train[act_train['outcome'] == 0]
goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good')
bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10)
plt.hist(hstry['prof_label'], 4, range=(1, 5))
plt.show() | code |
332834/cell_10 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10) | code |
332834/cell_12 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='outer')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10)
hstry['profit'].describe() | code |
18135285/cell_4 | [
"text_html_output_1.png"
] | from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark
sdf_train = spark.read.csv('../input/train.csv', inferSchema=True, header=True)
print(sdf_train.printSchema())
pdf = sdf_train.limit(5).toPandas()
pdf.T | code |
18135285/cell_2 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from pyspark.sql import SparkSession
import os
print(os.listdir('../input')) | code |
18135285/cell_1 | [
"text_plain_output_1.png"
] | ! pip install pyspark | code |
18135285/cell_3 | [
"text_html_output_1.png"
] | from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark | code |
18135285/cell_17 | [
"text_html_output_1.png"
] | import os
import numpy as np
import pandas as pd
from pyspark.sql import SparkSession
import os
print(os.listdir('submission')) | code |
18135285/cell_14 | [
"text_plain_output_1.png"
] | from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark
sdf_train = spark.read.csv('../input/train.csv', inferSchema=True, header=True)
pdf = sdf_train.limit(5).toPandas()
pdf.T
sdf_test = spark.read.csv('../input/test.csv', inferSchema=True, header=True)
pdf = sdf_test.limit(5).toPandas()
pdf.T
from pyspark.sql import functions as F
sdf_typecast = sdf_train.withColumn('Ticket', sdf_train['Ticket'].cast('double'))
sdf_typecast = sdf_typecast.fillna(0)
numeric_cols = ['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare']
numeric_features = ['Pclass', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare']
sdf_train_subset = sdf_typecast.select(numeric_cols)
from pyspark.ml.feature import VectorAssembler
vectAssembler = VectorAssembler(inputCols=numeric_features, outputCol='vect_features')
from pyspark.ml.classification import DecisionTreeClassifier
dt = DecisionTreeClassifier(labelCol='Survived', featuresCol='vect_features')
from pyspark.ml import Pipeline
pipeline = Pipeline(stages=[vectAssembler, dt])
model = pipeline.fit(sdf_train_subset)
numeric_cols_test = ['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare']
sdf_test_subset = sdf_test.withColumn('Ticket', sdf_test['Ticket'].cast('double')).fillna(0).select(numeric_cols_test)
sdf_predict = model.transform(sdf_test_subset)
pdf = sdf_predict.limit(10).toPandas()
pdf.T | code |
18135285/cell_5 | [
"text_plain_output_1.png"
] | from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark
sdf_train = spark.read.csv('../input/train.csv', inferSchema=True, header=True)
pdf = sdf_train.limit(5).toPandas()
pdf.T
sdf_test = spark.read.csv('../input/test.csv', inferSchema=True, header=True)
pdf = sdf_test.limit(5).toPandas()
pdf.T | code |
16169565/cell_13 | [
"image_output_1.png"
] | from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras.layers.convolutional import Conv2D
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.pooling import MaxPooling2D
from keras.models import Sequential, model_from_json
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from skimage import io, color, exposure, transform
import cv2
import cv2
import numpy as np # linear algebra
import os
import os
def preprocess_img(img):
# Histogram normalization in y
hsv = color.rgb2hsv(img)
hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2])
img = color.hsv2rgb(hsv)
# central scrop
min_side = min(img.shape[:-1])
centre = img.shape[0]//2, img.shape[1]//2
img = img[centre[0]-min_side//2:centre[0]+min_side//2,
centre[1]-min_side//2:centre[1]+min_side//2,
:]
# rescale to standard size
img = transform.resize(img, (IMG_SIZE, IMG_SIZE))
# roll color axis to axis 0
img = np.rollaxis(img,-1)
return img
import cv2
DATA_DIR_TRAIN = '../input/dataset/dataset/train'
CATEGORIES = ['left', 'right']
x_train = []
y_train = []
img_data_train = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TRAIN, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_train.append(img)
new_img = preprocess_img(img)
x_train.append(new_img)
y_train.append(class_num)
import cv2
DATA_DIR_TEST = '../input/dataset/dataset/test'
CATEGORIES = ['left', 'right']
x_test = []
y_test = []
img_data_test = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TEST, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_test.append(img)
new_img = preprocess_img(img)
x_test.append(new_img)
y_test.append(class_num)
x_train_np = np.array(x_train, dtype='float32')
y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train]
x_test_np = np.array(x_test, dtype='float32')
y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test]
random_array = np.random.randint(len(x_train), size=25)
random_array
grids = (5,5)
counter = 0
plt.figure(figsize=(10,10))
for i in range(0, 25):
ax = plt.subplot(5, 5, i+1)
img = img_data_train[random_array[i]]
rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ax = plt.imshow(rgb_img, cmap='gray')
plt.title(CATEGORIES[y_train[random_array[i]]])
plt.xticks([])
plt.yticks([])
def cnn_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=(3, IMG_SIZE, IMG_SIZE), activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(NUM_CLASSES, activation='softmax'))
return model
def lr_schedule(epoch):
return lr * 0.1 ** int(epoch / 10)
datagen = ImageDataGenerator(featurewise_center=False, featurewise_std_normalization=False, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, shear_range=0.1, rotation_range=10.0)
datagen.fit(x_train_np)
model = cnn_model()
lr = 0.01
sgd = SGD(lr=lr, decay=1e-06, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
def lr_schedule(epoch):
return lr * 0.1 ** int(epoch / 10)
batch_size = 32
nb_epoch = 20
model.fit_generator(datagen.flow(x_train_np, y_train_np, batch_size=batch_size), steps_per_epoch=x_train_np.shape[0], epochs=nb_epoch, validation_data=(x_test_np, y_test_np), callbacks=[LearningRateScheduler(lr_schedule), ModelCheckpoint('model.h5', save_best_only=True)])
random_array = np.random.randint(len(x_test), size=25)
random_array
grids = (5, 5)
counter = 0
plt.figure(figsize=(10, 10))
for i in range(0, 25):
ax = plt.subplot(5, 5, i + 1)
img = img_data_test[random_array[i]]
rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ax = plt.imshow(rgb_img, cmap='gray')
x = x_test[random_array[i]]
y_predict = np.argmax(model.predict(x.reshape(1, 3, 48, 48)), axis=1)
plt.title(CATEGORIES[int(y_predict)])
plt.xticks([])
plt.yticks([]) | code |
16169565/cell_6 | [
"text_plain_output_1.png"
] | from skimage import io, color, exposure, transform
import cv2
import cv2
import numpy as np # linear algebra
import os
import os
def preprocess_img(img):
# Histogram normalization in y
hsv = color.rgb2hsv(img)
hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2])
img = color.hsv2rgb(hsv)
# central scrop
min_side = min(img.shape[:-1])
centre = img.shape[0]//2, img.shape[1]//2
img = img[centre[0]-min_side//2:centre[0]+min_side//2,
centre[1]-min_side//2:centre[1]+min_side//2,
:]
# rescale to standard size
img = transform.resize(img, (IMG_SIZE, IMG_SIZE))
# roll color axis to axis 0
img = np.rollaxis(img,-1)
return img
import cv2
DATA_DIR_TRAIN = '../input/dataset/dataset/train'
CATEGORIES = ['left', 'right']
x_train = []
y_train = []
img_data_train = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TRAIN, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_train.append(img)
new_img = preprocess_img(img)
x_train.append(new_img)
y_train.append(class_num)
import cv2
DATA_DIR_TEST = '../input/dataset/dataset/test'
CATEGORIES = ['left', 'right']
x_test = []
y_test = []
img_data_test = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TEST, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_test.append(img)
new_img = preprocess_img(img)
x_test.append(new_img)
y_test.append(class_num)
x_train_np = np.array(x_train, dtype='float32')
y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train]
x_test_np = np.array(x_test, dtype='float32')
y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test]
random_array = np.random.randint(len(x_train), size=25)
random_array | code |
16169565/cell_11 | [
"text_plain_output_1.png"
] | from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras.layers.convolutional import Conv2D
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.pooling import MaxPooling2D
from keras.models import Sequential, model_from_json
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from skimage import io, color, exposure, transform
import cv2
import cv2
import numpy as np # linear algebra
import os
import os
def preprocess_img(img):
# Histogram normalization in y
hsv = color.rgb2hsv(img)
hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2])
img = color.hsv2rgb(hsv)
# central scrop
min_side = min(img.shape[:-1])
centre = img.shape[0]//2, img.shape[1]//2
img = img[centre[0]-min_side//2:centre[0]+min_side//2,
centre[1]-min_side//2:centre[1]+min_side//2,
:]
# rescale to standard size
img = transform.resize(img, (IMG_SIZE, IMG_SIZE))
# roll color axis to axis 0
img = np.rollaxis(img,-1)
return img
import cv2
DATA_DIR_TRAIN = '../input/dataset/dataset/train'
CATEGORIES = ['left', 'right']
x_train = []
y_train = []
img_data_train = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TRAIN, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_train.append(img)
new_img = preprocess_img(img)
x_train.append(new_img)
y_train.append(class_num)
import cv2
DATA_DIR_TEST = '../input/dataset/dataset/test'
CATEGORIES = ['left', 'right']
x_test = []
y_test = []
img_data_test = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TEST, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_test.append(img)
new_img = preprocess_img(img)
x_test.append(new_img)
y_test.append(class_num)
x_train_np = np.array(x_train, dtype='float32')
y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train]
x_test_np = np.array(x_test, dtype='float32')
y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test]
def cnn_model():
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=(3, IMG_SIZE, IMG_SIZE), activation='relu'))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(128, (3, 3), padding='same', activation='relu'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(NUM_CLASSES, activation='softmax'))
return model
def lr_schedule(epoch):
return lr * 0.1 ** int(epoch / 10)
datagen = ImageDataGenerator(featurewise_center=False, featurewise_std_normalization=False, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, shear_range=0.1, rotation_range=10.0)
datagen.fit(x_train_np)
model = cnn_model()
lr = 0.01
sgd = SGD(lr=lr, decay=1e-06, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
def lr_schedule(epoch):
return lr * 0.1 ** int(epoch / 10)
batch_size = 32
nb_epoch = 20
model.fit_generator(datagen.flow(x_train_np, y_train_np, batch_size=batch_size), steps_per_epoch=x_train_np.shape[0], epochs=nb_epoch, validation_data=(x_test_np, y_test_np), callbacks=[LearningRateScheduler(lr_schedule), ModelCheckpoint('model.h5', save_best_only=True)]) | code |
16169565/cell_1 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
from skimage import io, color, exposure, transform
import os
import glob
import h5py
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, model_from_json
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.pooling import MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras import backend as K
K.set_image_data_format('channels_first')
from matplotlib import pyplot as plt
import os
print(os.listdir('../input'))
NUM_CLASSES = 2
IMG_SIZE = 48 | code |
16169565/cell_7 | [
"image_output_1.png"
] | from skimage import io, color, exposure, transform
import cv2
import cv2
import numpy as np # linear algebra
import os
import os
def preprocess_img(img):
# Histogram normalization in y
hsv = color.rgb2hsv(img)
hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2])
img = color.hsv2rgb(hsv)
# central scrop
min_side = min(img.shape[:-1])
centre = img.shape[0]//2, img.shape[1]//2
img = img[centre[0]-min_side//2:centre[0]+min_side//2,
centre[1]-min_side//2:centre[1]+min_side//2,
:]
# rescale to standard size
img = transform.resize(img, (IMG_SIZE, IMG_SIZE))
# roll color axis to axis 0
img = np.rollaxis(img,-1)
return img
import cv2
DATA_DIR_TRAIN = '../input/dataset/dataset/train'
CATEGORIES = ['left', 'right']
x_train = []
y_train = []
img_data_train = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TRAIN, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_train.append(img)
new_img = preprocess_img(img)
x_train.append(new_img)
y_train.append(class_num)
import cv2
DATA_DIR_TEST = '../input/dataset/dataset/test'
CATEGORIES = ['left', 'right']
x_test = []
y_test = []
img_data_test = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TEST, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_test.append(img)
new_img = preprocess_img(img)
x_test.append(new_img)
y_test.append(class_num)
x_train_np = np.array(x_train, dtype='float32')
y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train]
x_test_np = np.array(x_test, dtype='float32')
y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test]
random_array = np.random.randint(len(x_train), size=25)
random_array
grids = (5, 5)
counter = 0
plt.figure(figsize=(10, 10))
for i in range(0, 25):
ax = plt.subplot(5, 5, i + 1)
img = img_data_train[random_array[i]]
rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ax = plt.imshow(rgb_img, cmap='gray')
plt.title(CATEGORIES[y_train[random_array[i]]])
plt.xticks([])
plt.yticks([]) | code |
16169565/cell_12 | [
"text_plain_output_1.png"
] | from skimage import io, color, exposure, transform
import cv2
import cv2
import numpy as np # linear algebra
import os
import os
def preprocess_img(img):
# Histogram normalization in y
hsv = color.rgb2hsv(img)
hsv[:,:,2] = exposure.equalize_hist(hsv[:,:,2])
img = color.hsv2rgb(hsv)
# central scrop
min_side = min(img.shape[:-1])
centre = img.shape[0]//2, img.shape[1]//2
img = img[centre[0]-min_side//2:centre[0]+min_side//2,
centre[1]-min_side//2:centre[1]+min_side//2,
:]
# rescale to standard size
img = transform.resize(img, (IMG_SIZE, IMG_SIZE))
# roll color axis to axis 0
img = np.rollaxis(img,-1)
return img
import cv2
DATA_DIR_TRAIN = '../input/dataset/dataset/train'
CATEGORIES = ['left', 'right']
x_train = []
y_train = []
img_data_train = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TRAIN, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_train.append(img)
new_img = preprocess_img(img)
x_train.append(new_img)
y_train.append(class_num)
import cv2
DATA_DIR_TEST = '../input/dataset/dataset/test'
CATEGORIES = ['left', 'right']
x_test = []
y_test = []
img_data_test = []
for category in CATEGORIES:
path = os.path.join(DATA_DIR_TEST, category)
class_num = CATEGORIES.index(category)
for img_path in os.listdir(path):
img = cv2.imread(os.path.join(path, img_path))
img_data_test.append(img)
new_img = preprocess_img(img)
x_test.append(new_img)
y_test.append(class_num)
x_train_np = np.array(x_train, dtype='float32')
y_train_np = np.eye(NUM_CLASSES, dtype='uint8')[y_train]
x_test_np = np.array(x_test, dtype='float32')
y_test_np = np.eye(NUM_CLASSES, dtype='uint8')[y_test]
random_array = np.random.randint(len(x_train), size=25)
random_array
random_array = np.random.randint(len(x_test), size=25)
random_array | code |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.