path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129012199/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) # north_american_median = df['NA_Sales'].median() # print(north_american_median) # north_american_median_index = df.index[df.NA_Sales == north_american_median][0] # print(df.iloc[north_american_median_index-5:north_american_median_index+5]['Name']) median_value = df["NA_Sales"].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values("NA_Sales", ascending=False) print(median_value) new_df top_seller = df.head(1) top_seller platform_avgs = df.groupby(by='Platform')['Global_Sales'].mean().sort_values(ascending=False) platform_avgs df[['Name', 'JP_Sales']].nlargest(20, 'JP_Sales')
code
129012199/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129012199/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform
code
129012199/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) # north_american_median = df['NA_Sales'].median() # print(north_american_median) # north_american_median_index = df.index[df.NA_Sales == north_american_median][0] # print(df.iloc[north_american_median_index-5:north_american_median_index+5]['Name']) median_value = df["NA_Sales"].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values("NA_Sales", ascending=False) print(median_value) new_df top_seller = df.head(1) top_seller
code
129012199/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df
code
129012199/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) # north_american_median = df['NA_Sales'].median() # print(north_american_median) # north_american_median_index = df.index[df.NA_Sales == north_american_median][0] # print(df.iloc[north_american_median_index-5:north_american_median_index+5]['Name']) median_value = df["NA_Sales"].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values("NA_Sales", ascending=False) print(median_value) new_df top_seller = df.head(1) top_seller platform_avgs = df.groupby(by='Platform')['Global_Sales'].mean().sort_values(ascending=False) platform_avgs
code
129012199/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub
code
16115005/cell_13
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] from sklearn.tree import DecisionTreeRegressor fraud_model = DecisionTreeRegressor(random_state=1) fraud_model.fit(X, y)
code
16115005/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns
code
16115005/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns fraud_data.head()
code
16115005/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) print('Setup Complete')
code
16115005/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] X.head()
code
16115005/cell_18
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] from sklearn.tree import DecisionTreeRegressor fraud_model = DecisionTreeRegressor(random_state=1) fraud_model.fit(X, y) from sklearn.metrics import mean_absolute_error predicted_fraud = fraud_model.predict(X) mean_absolute_error(y, predicted_fraud) from sklearn.model_selection import train_test_split train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=0) fraud_model = DecisionTreeRegressor() fraud_model.fit(train_X, train_y) val_predictions = fraud_model.predict(val_X) print(mean_absolute_error(val_y, val_predictions))
code
16115005/cell_15
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] from sklearn.tree import DecisionTreeRegressor fraud_model = DecisionTreeRegressor(random_state=1) fraud_model.fit(X, y) print('Making predictions for the following 5 transactions:') print(X.head()) print('The predictions are') print(fraud_model.predict(X.head()))
code
16115005/cell_17
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] from sklearn.tree import DecisionTreeRegressor fraud_model = DecisionTreeRegressor(random_state=1) fraud_model.fit(X, y) from sklearn.metrics import mean_absolute_error predicted_fraud = fraud_model.predict(X) mean_absolute_error(y, predicted_fraud)
code
16115005/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd fraud_data_path = '../input/credit_fraud_sytn.csv' fraud_data = pd.read_csv(fraud_data_path) fraud_data.columns y = fraud_data.isFradulent feature_names = ['Average Amount/transaction/day', 'Transaction_amount', 'isForeignTransaction', 'isHighRiskCountry'] X = fraud_data[feature_names] X.describe()
code
34133327/cell_42
[ "text_plain_output_1.png" ]
from scipy import stats from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes from sklearn.preprocessing import LabelEncoder le = LabelEncoder() customers_label = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_label['Gender'] = le.fit_transform(customers_label['Gender']) customers_one_hot = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_one_hot = pd.get_dummies(customers_one_hot) customers_one_hot.head()
code
34133327/cell_21
[ "text_html_output_1.png" ]
from scipy import stats import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]]
code
34133327/cell_13
[ "text_plain_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.isnull().sum() customers_null.dropna() customers_null.fillna(0) customers_null.describe()
code
34133327/cell_9
[ "text_plain_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.head(10)
code
34133327/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.info()
code
34133327/cell_33
[ "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) replace_map = {'Gender': {'Male': 1, 'Female': 2}} labels = cat_df_customers['Gender'].astype('category').cat.categories.tolist() replace_map_comp = {'Gender': {k: v for k, v in zip(labels, list(range(1, len(labels) + 1)))}} cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_replace.replace(replace_map_comp, inplace=True) cat_df_customers_replace.head()
code
34133327/cell_6
[ "text_html_output_1.png" ]
import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum()
code
34133327/cell_40
[ "text_html_output_1.png" ]
from scipy import stats from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes from sklearn.preprocessing import LabelEncoder le = LabelEncoder() customers_label = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_label['Gender'] = le.fit_transform(customers_label['Gender']) customers_label.head(10)
code
34133327/cell_29
[ "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers.head()
code
34133327/cell_26
[ "text_html_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] customers.hist('Age', bins=35) plt.title('Distribuição dos clientes pela idade') plt.xlabel('Idade')
code
34133327/cell_11
[ "text_plain_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.isnull().sum() customers_null.dropna()
code
34133327/cell_45
[ "text_html_output_1.png" ]
from scipy import stats from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes from sklearn.preprocessing import LabelEncoder le = LabelEncoder() customers_label = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_label['Gender'] = le.fit_transform(customers_label['Gender']) customers_one_hot = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_one_hot = pd.get_dummies(customers_one_hot) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_one_hot = customers from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder() customers_ohe = ohe.fit_transform(customers_one_hot['Gender'].values.reshape(-1, 1)).toarray() customers_ohe.shape
code
34133327/cell_18
[ "text_html_output_1.png" ]
import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)'])
code
34133327/cell_8
[ "text_plain_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.info()
code
34133327/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers.describe()
code
34133327/cell_38
[ "text_html_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes cat_df_customers_lc['Gender'] = cat_df_customers_lc['Gender'].cat.codes cat_df_customers_lc.head()
code
34133327/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.head()
code
34133327/cell_31
[ "text_html_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) replace_map = {'Gender': {'Male': 1, 'Female': 2}} labels = cat_df_customers['Gender'].astype('category').cat.categories.tolist() replace_map_comp = {'Gender': {k: v for k, v in zip(labels, list(range(1, len(labels) + 1)))}} print(replace_map_comp)
code
34133327/cell_46
[ "text_html_output_1.png" ]
from scipy import stats from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes from sklearn.preprocessing import LabelEncoder le = LabelEncoder() customers_label = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_label['Gender'] = le.fit_transform(customers_label['Gender']) customers_one_hot = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_one_hot = pd.get_dummies(customers_one_hot) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers_one_hot = customers from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder() customers_ohe = ohe.fit_transform(customers_one_hot['Gender'].values.reshape(-1, 1)).toarray() customers_ohe.shape customers_ohe
code
34133327/cell_24
[ "text_html_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] sns.countplot(x='Gender', data=customers) plt.title('Distribuição dos clientes quanto ao gênero')
code
34133327/cell_14
[ "text_html_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.isnull().sum() customers_null.dropna() customers_null.fillna(0) customers_null.fillna(customers_null.mean())
code
34133327/cell_22
[ "text_html_output_1.png" ]
from scipy import stats import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] df_salario_outlier
code
34133327/cell_10
[ "text_html_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.isnull().sum()
code
34133327/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #biblioteca para criar gráficos "comuns" ao estilo Matplot import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) import seaborn as sns #biblioteca utilizada para cirar gráficos mais "bonitos" customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan boxplot = customers.boxplot(column=['Age', 'Annual Income (k$)', 'Spending Score (1-100)']) #constroi o boxplot para as colunas desejadas from scipy import stats z = np.abs(stats.zscore(customers['Annual Income (k$)'].values)) thereshold = 2 result = np.where(z > thereshold) df_salario_outlier = customers.iloc[result[0]] cat_df_customers = customers.select_dtypes(include=['object']) cat_df_customers_replace = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') cat_df_customers_lc = customers cat_df_customers_lc['Gender'] = pd.Categorical(cat_df_customers_lc['Gender']) cat_df_customers_lc.dtypes
code
34133327/cell_12
[ "text_plain_output_1.png" ]
import numpy as np #biblioteca utilizada para trabalhar com vetores import pandas as pd #biblioteca para trabalhar com dataframes (planilhas excel) customers = pd.read_csv('../input/customer-segmentation-tutorial-in-python/Mall_Customers.csv') customers.isnull().sum() customers_null = customers for col in customers_null.columns: customers_null.loc[customers_null.sample(frac=0.1).index, col] = np.nan customers_null.isnull().sum() customers_null.dropna() customers_null.fillna(0)
code
18102956/cell_13
[ "text_plain_output_1.png" ]
from scipy.interpolate import griddata from sklearn.metrics import mean_squared_error from sklearn.multioutput import MultiOutputRegressor from sklearn.neighbors import KNeighborsRegressor import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindf = pd.read_csv('../input/train.csv') testdf = pd.read_csv('../input/test.csv') totalRows = traindf[' y'].max() totalCols = traindf['x'].max() trainData = traindf.iloc[:, 2:] trainlabels = traindf.iloc[:, 0:2] testData = testdf.iloc[:, 2:] testlabels = testdf.iloc[:, 0:2] dimOfdata = trainData.shape[1] numberOfSamples = len(trainlabels) train_X = trainData.values train_Y = trainlabels.values test_X = testData.values test_Y = testlabels.values from scipy.interpolate import griddata room_y = np.zeros(((totalRows + 1) * (totalCols + 1), 2)) k = 0 for i in range(totalCols + 1): for j in range(totalRows + 1): room_y[k, :] = [i, j] k += 1 room_x = griddata(train_Y, train_X, room_y, method='cubic') room_x = np.nan_to_num(room_x) k = 4 model = MultiOutputRegressor(KNeighborsRegressor(k)) model.fit(train_x, train_y) pred_results = model.predict(val_x) resultdf = pd.read_csv('../input/sample_submission.csv') realy, realx = (resultdf.iloc[:, 0], resultdf.iloc[:, 1]) testdf[' y'] = pred_results[:, 1] testdf['x'] = pred_results[:, 0] data = {'realy': realy, 'realx': realx, 'predicty': pred_results[:, 0], 'predictx': pred_results[:, 1]} df = pd.DataFrame(data) from sklearn.metrics import mean_squared_error predicts = testdf.iloc[:, 0:2] trues = resultdf.iloc[:, 0:2] print('total mse: ', mean_squared_error(trues, predicts)) df['mse'] = df.apply(lambda x: mean_squared_error([x['realx'], x['realy']], [x['predictx'], x['predicty']]), axis=1) df.to_csv('./submission.csv') df.head()
code
18102956/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os print(os.listdir('../input')) from sklearn.multioutput import MultiOutputRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt
code
18102956/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from scipy.interpolate import griddata from sklearn.multioutput import MultiOutputRegressor from sklearn.neighbors import KNeighborsRegressor import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindf = pd.read_csv('../input/train.csv') testdf = pd.read_csv('../input/test.csv') totalRows = traindf[' y'].max() totalCols = traindf['x'].max() trainData = traindf.iloc[:, 2:] trainlabels = traindf.iloc[:, 0:2] testData = testdf.iloc[:, 2:] testlabels = testdf.iloc[:, 0:2] dimOfdata = trainData.shape[1] numberOfSamples = len(trainlabels) train_X = trainData.values train_Y = trainlabels.values test_X = testData.values test_Y = testlabels.values from scipy.interpolate import griddata room_y = np.zeros(((totalRows + 1) * (totalCols + 1), 2)) k = 0 for i in range(totalCols + 1): for j in range(totalRows + 1): room_y[k, :] = [i, j] k += 1 room_x = griddata(train_Y, train_X, room_y, method='cubic') room_x = np.nan_to_num(room_x) k = 4 model = MultiOutputRegressor(KNeighborsRegressor(k)) model.fit(train_x, train_y)
code
18102956/cell_3
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindf = pd.read_csv('../input/train.csv') testdf = pd.read_csv('../input/test.csv') totalRows = traindf[' y'].max() totalCols = traindf['x'].max() print('room size ', totalRows, ' ', totalCols) trainData = traindf.iloc[:, 2:] trainlabels = traindf.iloc[:, 0:2] testData = testdf.iloc[:, 2:] testlabels = testdf.iloc[:, 0:2] dimOfdata = trainData.shape[1] print('number of features: ', dimOfdata) numberOfSamples = len(trainlabels) print('total samples: ', numberOfSamples)
code
18102956/cell_14
[ "text_plain_output_1.png" ]
from scipy.interpolate import griddata from sklearn.metrics import mean_squared_error from sklearn.multioutput import MultiOutputRegressor from sklearn.neighbors import KNeighborsRegressor import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) traindf = pd.read_csv('../input/train.csv') testdf = pd.read_csv('../input/test.csv') totalRows = traindf[' y'].max() totalCols = traindf['x'].max() trainData = traindf.iloc[:, 2:] trainlabels = traindf.iloc[:, 0:2] testData = testdf.iloc[:, 2:] testlabels = testdf.iloc[:, 0:2] dimOfdata = trainData.shape[1] numberOfSamples = len(trainlabels) train_X = trainData.values train_Y = trainlabels.values test_X = testData.values test_Y = testlabels.values from scipy.interpolate import griddata room_y = np.zeros(((totalRows + 1) * (totalCols + 1), 2)) k = 0 for i in range(totalCols + 1): for j in range(totalRows + 1): room_y[k, :] = [i, j] k += 1 room_x = griddata(train_Y, train_X, room_y, method='cubic') room_x = np.nan_to_num(room_x) k = 4 model = MultiOutputRegressor(KNeighborsRegressor(k)) model.fit(train_x, train_y) pred_results = model.predict(val_x) resultdf = pd.read_csv('../input/sample_submission.csv') realy, realx = (resultdf.iloc[:, 0], resultdf.iloc[:, 1]) testdf[' y'] = pred_results[:, 1] testdf['x'] = pred_results[:, 0] data = {'realy': realy, 'realx': realx, 'predicty': pred_results[:, 0], 'predictx': pred_results[:, 1]} df = pd.DataFrame(data) from sklearn.metrics import mean_squared_error predicts = testdf.iloc[:, 0:2] trues = resultdf.iloc[:, 0:2] df['mse'] = df.apply(lambda x: mean_squared_error([x['realx'], x['realy']], [x['predictx'], x['predicty']]), axis=1) df.to_csv('./submission.csv') imageSize = (totalRows + 1, totalCols + 1) testlabels = resultdf.iloc[:, 0:2] def getRouteImage(): image = np.full(imageSize, 128) for index, lables in testlabels.iterrows(): image[lables[' y']][lables['x']] = 80 return image image = getRouteImage() for predict_y, predict_x in predicts.iloc[:, 0:2].values: predict_y, predict_x = (to_int(predict_y), to_int(predict_x)) image[predict_x][predict_y] = 255 plt.figure(figsize=(20, 20)) plt.title('images') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
code
121150304/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.dtypes.value_counts().plot.pie(autopct='%0.2f%%')
code
121150304/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.info()
code
121150304/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum() print('************************************************\n',train['cut'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='cut') ax.bar_label(ax.containers[0]) plt.show() print('************************************************\n',train['color'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='color') ax.bar_label(ax.containers[0]) plt.show() print('************************************************\n',train['clarity'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='clarity') ax.bar_label(ax.containers[0]) plt.show() plt.boxplot(list(train['carat'].value_counts().keys())) plt.title('Carat') plt.show()
code
121150304/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor import matplotlib.pyplot as plt import time import seaborn as sns from sklearn import metrics import os from lightgbm import LGBMClassifier
code
121150304/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum() print('************************************************\n',train['cut'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='cut') ax.bar_label(ax.containers[0]) plt.show() print('************************************************\n',train['color'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='color') ax.bar_label(ax.containers[0]) plt.show() print('************************************************\n', train['clarity'].value_counts(), '\n************************************************') plt.figure(figsize=(6, 5)) ax = sns.countplot(data=train, x='clarity') ax.bar_label(ax.containers[0]) plt.show()
code
121150304/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum() print('************************************************\n',train['cut'].value_counts(), '\n************************************************') plt.figure(figsize=(6,5)) ax = sns.countplot(data=train, x='cut') ax.bar_label(ax.containers[0]) plt.show() print('************************************************\n', train['color'].value_counts(), '\n************************************************') plt.figure(figsize=(6, 5)) ax = sns.countplot(data=train, x='color') ax.bar_label(ax.containers[0]) plt.show()
code
121150304/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') test
code
121150304/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum() print('************************************************\n', train['cut'].value_counts(), '\n************************************************') plt.figure(figsize=(6, 5)) ax = sns.countplot(data=train, x='cut') ax.bar_label(ax.containers[0]) plt.show()
code
121150304/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train
code
121150304/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum() plt.figure(figsize=(15, 7)) sns.heatmap(train.isnull(), cmap='viridis')
code
121150304/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) test = pd.read_csv('/kaggle/input/playground-series-s3e8/test.csv') train = pd.read_csv('/kaggle/input/playground-series-s3e8/train.csv') sub = pd.read_csv('/kaggle/input/playground-series-s3e8/sample_submission.csv') train.isnull().sum()
code
122244134/cell_13
[ "text_plain_output_1.png" ]
from pathlib import Path from sentence_transformers import SentenceTransformer from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId') prompts = pd.read_csv('/kaggle/input/stable-diffusion-image-to-prompts/prompts.csv') prompts = prompts.loc[prompts['imgId'].isin(imgIds)].set_index('imgId').loc[imgIds].reset_index() st_model = SentenceTransformer('/kaggle/input/sentence-transformers-222/all-MiniLM-L6-v2') prompts_true = st_model.encode(prompts['prompt'])
code
122244134/cell_9
[ "text_plain_output_1.png" ]
from pathlib import Path from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId')
code
122244134/cell_23
[ "text_html_output_1.png" ]
prompt_embeddings.shape
code
122244134/cell_19
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from scipy import spatial from sentence_transformers import SentenceTransformer from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 class DiffusionTestDataset(Dataset): def __init__(self, images, transform): self.images = images self.transform = transform def __len__(self): return len(self.images) def __getitem__(self, idx): image = Image.open(self.images[idx]) image = self.transform(image) return image def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId') prompts = pd.read_csv('/kaggle/input/stable-diffusion-image-to-prompts/prompts.csv') prompts = prompts.loc[prompts['imgId'].isin(imgIds)].set_index('imgId').loc[imgIds].reset_index() st_model = SentenceTransformer('/kaggle/input/sentence-transformers-222/all-MiniLM-L6-v2') prompts_true = st_model.encode(prompts['prompt']) def simularity(y_pred, y_true): cosine_sim = [] for pred, true in zip(y_pred, y_true): cosine_sim.append(1 - spatial.distance.cosine(pred, true)) import torch from torch import nn from torch.optim import Adam class SimModel(nn.Module): def __init__(self, hid_dim): super().__init__() self.fc1 = nn.Linear(384, hid_dim) self.fc2 = nn.Linear(hid_dim, 384) self.act = nn.ReLU() def forward(self, x): x = self.act(self.fc1(x)) x = self.fc2(x) return x input = torch.FloatTensor(raw_preds) target = torch.FloatTensor(prompts_true) model = SimModel(128) criterion = nn.MSELoss() optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.01) for i in range(100): pred = model(input) optimizer.zero_grad() loss = criterion(pred, target - input) loss.backward() optimizer.step() model.eval() with torch.no_grad(): result = model(input) + input result = result.numpy() simularity(result, prompts_true)
code
122244134/cell_16
[ "text_plain_output_1.png" ]
from pathlib import Path from scipy import spatial from sentence_transformers import SentenceTransformer from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId') prompts = pd.read_csv('/kaggle/input/stable-diffusion-image-to-prompts/prompts.csv') prompts = prompts.loc[prompts['imgId'].isin(imgIds)].set_index('imgId').loc[imgIds].reset_index() st_model = SentenceTransformer('/kaggle/input/sentence-transformers-222/all-MiniLM-L6-v2') prompts_true = st_model.encode(prompts['prompt']) def simularity(y_pred, y_true): cosine_sim = [] for pred, true in zip(y_pred, y_true): cosine_sim.append(1 - spatial.distance.cosine(pred, true)) simularity(raw_preds, prompts_true)
code
122244134/cell_17
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from sentence_transformers import SentenceTransformer from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 class DiffusionTestDataset(Dataset): def __init__(self, images, transform): self.images = images self.transform = transform def __len__(self): return len(self.images) def __getitem__(self, idx): image = Image.open(self.images[idx]) image = self.transform(image) return image def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId') prompts = pd.read_csv('/kaggle/input/stable-diffusion-image-to-prompts/prompts.csv') prompts = prompts.loc[prompts['imgId'].isin(imgIds)].set_index('imgId').loc[imgIds].reset_index() st_model = SentenceTransformer('/kaggle/input/sentence-transformers-222/all-MiniLM-L6-v2') prompts_true = st_model.encode(prompts['prompt']) import torch from torch import nn from torch.optim import Adam class SimModel(nn.Module): def __init__(self, hid_dim): super().__init__() self.fc1 = nn.Linear(384, hid_dim) self.fc2 = nn.Linear(hid_dim, 384) self.act = nn.ReLU() def forward(self, x): x = self.act(self.fc1(x)) x = self.fc2(x) return x input = torch.FloatTensor(raw_preds) target = torch.FloatTensor(prompts_true) model = SimModel(128) criterion = nn.MSELoss() optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.01) for i in range(100): pred = model(input) optimizer.zero_grad() loss = criterion(pred, target - input) loss.backward() optimizer.step() if i % 10 == 9: print(loss)
code
122244134/cell_22
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from sentence_transformers import SentenceTransformer from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import numpy as np import pandas as pd import timm import torch import torch class CFG: model_path = '/kaggle/input/stable-diffusion-vit-baseline-train/vit_base_patch16_224.pth' model_name = 'vit_base_patch16_224' input_size = 224 batch_size = 64 class DiffusionTestDataset(Dataset): def __init__(self, images, transform): self.images = images self.transform = transform def __len__(self): return len(self.images) def __getitem__(self, idx): image = Image.open(self.images[idx]) image = self.transform(image) return image def predict(images, model_path, model_name, input_size, batch_size): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') transform = transforms.Compose([transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) dataset = DiffusionTestDataset(images, transform) dataloader = DataLoader(dataset=dataset, shuffle=False, batch_size=batch_size, pin_memory=True, num_workers=2, drop_last=False) model = timm.create_model(model_name, pretrained=False, num_classes=384) state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.to(device) model.eval() preds = [] for X in tqdm(dataloader, leave=False): X = X.to(device) with torch.no_grad(): X_out = model(X) preds.append(X_out.cpu().numpy()) return (np.vstack(preds).flatten(), np.array(preds)[0]) images = list(Path('/kaggle/input/stable-diffusion-image-to-prompts/images').glob('*.png')) imgIds = [i.stem for i in images] EMBEDDING_LENGTH = 384 imgId_eId = ['_'.join(map(str, i)) for i in zip(np.repeat(imgIds, EMBEDDING_LENGTH), np.tile(range(EMBEDDING_LENGTH), len(imgIds)))] prompt_embeddings, raw_preds = predict(images, CFG.model_path, CFG.model_name, CFG.input_size, CFG.batch_size) submission = pd.DataFrame(index=imgId_eId, data=prompt_embeddings, columns=['val']).rename_axis('imgId_eId') prompts = pd.read_csv('/kaggle/input/stable-diffusion-image-to-prompts/prompts.csv') prompts = prompts.loc[prompts['imgId'].isin(imgIds)].set_index('imgId').loc[imgIds].reset_index() st_model = SentenceTransformer('/kaggle/input/sentence-transformers-222/all-MiniLM-L6-v2') prompts_true = st_model.encode(prompts['prompt']) import torch from torch import nn from torch.optim import Adam class SimModel(nn.Module): def __init__(self, hid_dim): super().__init__() self.fc1 = nn.Linear(384, hid_dim) self.fc2 = nn.Linear(hid_dim, 384) self.act = nn.ReLU() def forward(self, x): x = self.act(self.fc1(x)) x = self.fc2(x) return x input = torch.FloatTensor(raw_preds) target = torch.FloatTensor(prompts_true) model = SimModel(128) criterion = nn.MSELoss() optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.01) for i in range(100): pred = model(input) optimizer.zero_grad() loss = criterion(pred, target - input) loss.backward() optimizer.step() model.eval() with torch.no_grad(): result = model(input) + input result = result.numpy() submission = pd.DataFrame(index=imgId_eId, data=result.flatten(), columns=['val']).rename_axis('imgId_eId') submission.to_csv('submission.csv') submission.head(10)
code
128022928/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/monthly-milk-production-pounds/monthlyMilkProduction.csv') df.columns = ['Month', 'Production/Cow'] df = df[:-1] df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) display(df.head()) display(df.tail())
code
128022928/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') iris = sns.load_dataset('iris') g = sns.PairGrid(iris, hue='species') g = g.map_diag(sns.histplot) g = g.map_offdiag(sns.scatterplot) g = g.add_legend()
code
128022928/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') iris = sns.load_dataset('iris') display(iris)
code
128022928/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') sns.boxplot(data=titanic, x='class', y='fare')
code
128022928/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from statsmodels.tsa.seasonal import seasonal_decompose import pandas as pd df = pd.read_csv('/kaggle/input/monthly-milk-production-pounds/monthlyMilkProduction.csv') df.columns = ['Month', 'Production/Cow'] df = df[:-1] df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(df, model='additive') result.plot()
code
128022928/cell_6
[ "text_plain_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') sns.lineplot(data=titanic, y='fare', x='embarked')
code
128022928/cell_29
[ "text_plain_output_1.png" ]
from statsmodels.tsa.arima.model import ARIMA model = ARIMA(train, order=(1, 1, 2)) model_fit = model.fit()
code
128022928/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') iris = sns.load_dataset('iris') sns.lmplot(data=iris, x='sepal_width', y='petal_width')
code
128022928/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') sns.barplot(data=titanic, x='fare', y='embarked')
code
128022928/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfVectorizer corpus = ['I live in Mumbai', 'I like Mumbai', 'I dont like Pune'] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) print(vectorizer.get_feature_names_out()) print(X)
code
128022928/cell_3
[ "text_plain_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') display(titanic)
code
128022928/cell_17
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import TfidfVectorizer corpus = ['I live in Mumbai', 'I like Mumbai', 'I dont like Pune'] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) corpus = ['you were born with potential', 'you were born with goodness and trust', 'you were born with ideals and dreams', 'you were born with greatness', 'you were born with wings', "you are not meant for crawling, so don't", 'you have wings', 'learn to use them and fly'] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) print(vectorizer.get_feature_names_out()) print(X)
code
128022928/cell_31
[ "text_html_output_2.png", "text_html_output_1.png" ]
from math import sqrt from sklearn.metrics import mean_squared_error from statsmodels.tsa.arima.model import ARIMA model = ARIMA(train, order=(1, 1, 2)) model_fit = model.fit() predictions = model_fit.forecast(steps=len(test))[0] rmse = sqrt(mean_squared_error(test.values, predictions)) print(f'RMSE: {rmse}')
code
128022928/cell_24
[ "image_output_1.png" ]
from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller import pandas as pd df = pd.read_csv('/kaggle/input/monthly-milk-production-pounds/monthlyMilkProduction.csv') df.columns = ['Month', 'Production/Cow'] df = df[:-1] df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) from statsmodels.tsa.seasonal import seasonal_decompose result = seasonal_decompose(df, model='additive') from statsmodels.tsa.stattools import adfuller result = adfuller(df) print(f'ADF Statistic: {result[0]}') print(f'p-value: {result[1]}')
code
128022928/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/monthly-milk-production-pounds/monthlyMilkProduction.csv') df.columns = ['Month', 'Production/Cow'] df = df[:-1] df['Month'] = pd.to_datetime(df['Month']) df.set_index('Month', inplace=True) df.plot()
code
128022928/cell_10
[ "text_html_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') iris = sns.load_dataset('iris') sns.scatterplot(data=iris, x='sepal_length', y='petal_length').set_title('scatter plot for “sepal_length” and “petal_length”')
code
128022928/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') iris = sns.load_dataset('iris') sns.regplot(data=iris, x='petal_length', y='petal_width').set_title('reg plot between petal_width and petal_length')
code
128022928/cell_5
[ "image_output_2.png", "image_output_1.png" ]
import seaborn as sns titanic = sns.load_dataset('titanic') sns.violinplot(data=titanic, x='age', y='sex')
code
90104745/cell_9
[ "text_plain_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data
code
90104745/cell_25
[ "image_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.shape new_data = data.drop(['sfm', 'kurt', 'meandom', 'meanfreq', 'dfrange', 'modindx'], axis=1) new_data
code
90104745/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
n_samples = 1000 n_features = 10 n_classes = 2 n_estimators = 25 max_depth = 10 model = cuRF(max_depth=max_depth, n_estimators=n_estimators, random_state=0) trained_RF = model.fit(X_train, y_train)
code
90104745/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score import cuml as np import numpy as np # linear algebra n_samples = 1000 n_features = 10 n_classes = 2 n_estimators = 25 max_depth = 10 model = cuRF(max_depth=max_depth, n_estimators=n_estimators, random_state=0) trained_RF = model.fit(X_train, y_train) predictions = model.predict(X_test) from cuml.datasets.classification import make_classification from sklearn.metrics import accuracy_score cu_score = np.metrics.accuracy_score(y_test, predictions) sk_score = accuracy_score(y_test.get(), predictions.get()) print(predictions)
code
90104745/cell_20
[ "text_plain_output_1.png" ]
!pip install mglearn
code
90104745/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import mglearn import pandas import seaborn import seaborn import matplotlib.pyplot as plt import pandas df_pandas = pandas.read_csv('../input/voicegender/voice.csv') # performing the visualization in pandas Data Frame male = df_pandas.loc[df_pandas['label']=='male'] female = df_pandas.loc[df_pandas['label']=='female'] fig, axes = plt.subplots(10, 2, figsize=(10,20)) ax = axes.ravel() for i in range(20): ax[i].hist(male.iloc[:,i], bins=20, color=mglearn.cm3(0), alpha=.5) ax[i].hist(female.iloc[:, i], bins=20, color=mglearn.cm3(2), alpha=.5) ax[i].set_title(list(male)[i]) ax[i].set_yticks(()) ax[i].set_xlabel("Feature magnitude") ax[i].set_ylabel("Frequency") ax[i].legend(["male", "female"], loc="best") fig.tight_layout() ND = df_pandas.drop(['sfm', 'kurt', 'meandom', 'meanfreq', 'dfrange', 'modindx'], axis=1) ND plt.figure(figsize=(16, 16)) seaborn.heatmap(ND.corr(), annot=True, cmap='viridis', linewidth=0.5)
code
90104745/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas import seaborn import seaborn import matplotlib.pyplot as plt import pandas df_pandas = pandas.read_csv('../input/voicegender/voice.csv') plt.figure(figsize=(21, 21)) seaborn.heatmap(df_pandas.corr(), annot=True, cmap='viridis', linewidth=0.5)
code
90104745/cell_7
[ "text_plain_output_1.png" ]
import cudf as pd import cuml as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy import seaborn as sns import sklearn import sys import sys import scipy print('Environment specification:\n') print('python', '%s.%s.%s' % sys.version_info[:3]) for mod in (np, scipy, sns, sklearn, pd): print(mod.__name__, mod.__version__)
code
90104745/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score import cuml as np import numpy as np # linear algebra n_samples = 1000 n_features = 10 n_classes = 2 n_estimators = 25 max_depth = 10 model = cuRF(max_depth=max_depth, n_estimators=n_estimators, random_state=0) trained_RF = model.fit(X_train, y_train) predictions = model.predict(X_test) from cuml.datasets.classification import make_classification from sklearn.metrics import accuracy_score cu_score = np.metrics.accuracy_score(y_test, predictions) sk_score = accuracy_score(y_test.get(), predictions.get()) print(' cuml accuracy: ', cu_score) print(' sklearn accuracy : ', sk_score)
code
90104745/cell_28
[ "text_html_output_1.png" ]
from cuml.model_selection import train_test_split from cuml.model_selection import train_test_split from sklearn.model_selection import cross_val_score,train_test_split import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.shape new_data = data.drop(['sfm', 'kurt', 'meandom', 'meanfreq', 'dfrange', 'modindx'], axis=1) new_data new_data['label'] = new_data['label'].map({'male': 1, 'female': 0}) print(new_data) from cuml.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(new_data.iloc[:, :-1].values, new_data.iloc[:, -1].values, test_size=0.2, random_state=42)
code
90104745/cell_15
[ "text_plain_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.shape
code
90104745/cell_16
[ "text_plain_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.shape print('Total number of labels: {}'.format(data.shape[0]))
code
90104745/cell_17
[ "text_plain_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.shape print('Number of male: {}'.format(data[data.label == 'male'].shape[0])) print('Number of female: {}'.format(data[data.label == 'female'].shape[0]))
code
90104745/cell_31
[ "text_plain_output_1.png" ]
n_samples = 1000 n_features = 10 n_classes = 2 n_estimators = 25 max_depth = 10 model = cuRF(max_depth=max_depth, n_estimators=n_estimators, random_state=0) trained_RF = model.fit(X_train, y_train) predictions = model.predict(X_test)
code
90104745/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import mglearn import pandas import seaborn import seaborn import matplotlib.pyplot as plt import pandas df_pandas = pandas.read_csv('../input/voicegender/voice.csv') # performing the visualization in pandas Data Frame male = df_pandas.loc[df_pandas['label']=='male'] female = df_pandas.loc[df_pandas['label']=='female'] fig, axes = plt.subplots(10, 2, figsize=(10,20)) ax = axes.ravel() for i in range(20): ax[i].hist(male.iloc[:,i], bins=20, color=mglearn.cm3(0), alpha=.5) ax[i].hist(female.iloc[:, i], bins=20, color=mglearn.cm3(2), alpha=.5) ax[i].set_title(list(male)[i]) ax[i].set_yticks(()) ax[i].set_xlabel("Feature magnitude") ax[i].set_ylabel("Frequency") ax[i].legend(["male", "female"], loc="best") fig.tight_layout() ND = df_pandas.drop(['sfm', 'kurt', 'meandom', 'meanfreq', 'dfrange', 'modindx'], axis=1) ND
code
90104745/cell_14
[ "text_html_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum() data.info()
code
90104745/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import mglearn import pandas import seaborn import seaborn import matplotlib.pyplot as plt import pandas df_pandas = pandas.read_csv('../input/voicegender/voice.csv') male = df_pandas.loc[df_pandas['label'] == 'male'] female = df_pandas.loc[df_pandas['label'] == 'female'] fig, axes = plt.subplots(10, 2, figsize=(10, 20)) ax = axes.ravel() for i in range(20): ax[i].hist(male.iloc[:, i], bins=20, color=mglearn.cm3(0), alpha=0.5) ax[i].hist(female.iloc[:, i], bins=20, color=mglearn.cm3(2), alpha=0.5) ax[i].set_title(list(male)[i]) ax[i].set_yticks(()) ax[i].set_xlabel('Feature magnitude') ax[i].set_ylabel('Frequency') ax[i].legend(['male', 'female'], loc='best') fig.tight_layout()
code
90104745/cell_12
[ "text_plain_output_1.png" ]
import cudf as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/voicegender/voice.csv') data.isnull().sum()
code