path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2021796/cell_5
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss from sklearn.model_selection import KFold import numpy as np import pandas as pd train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') train_df.fillna('unknown', inplace=True) test_df.fillna('unknown', inplace=True) label_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] X = train_df.comment_text test_X = test_df.comment_text tfidf_vec = TfidfVectorizer(ngram_range=(1, 2), min_df=3, max_df=0.9, strip_accents='unicode', use_idf=1, smooth_idf=1, sublinear_tf=1) tfidf_vec.fit(X) train_tfidf = tfidf_vec.transform(X) test_tfidf = tfidf_vec.transform(test_X) folds = KFold(n_splits=5, shuffle=True, random_state=7) pred_test = np.zeros((len(test_X), len(label_cols))) for i, t in enumerate(label_cols): print(t) y = train_df.loc[:, [t]].values.reshape(-1) for train_idx, test_idx in folds.split(train_tfidf): xtr = train_tfidf[train_idx] ytr = y[train_idx] xval = train_tfidf[test_idx] yval = y[test_idx] model = LogisticRegression(C=9.0) model.fit(xtr, ytr) pred_train = model.predict_proba(xtr) loss_train = log_loss(ytr, pred_train) pred_val = model.predict_proba(xval) loss_val = log_loss(yval, pred_val) pred_test[:, i] += model.predict_proba(test_tfidf)[:, 1] print('train loss:', loss_train, 'test loss', loss_val)
code
128044990/cell_34
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1] combo[-combo.duplicated(subset=feature_set_2)].loc[:, feature_set_2]
code
128044990/cell_23
[ "text_html_output_1.png" ]
from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True def distance(data, label=''): distances = data.corr() dist_linkage = ward(distances) dendro = dendrogram(dist_linkage, labels=data.columns, leaf_rotation=90) def find_duplicates(data, column, label=''): pass desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] feature_set_4 = ['andrena', 'osmia'] orig_train[-orig_train.duplicated(subset=feature_set_1)].loc[:, feature_set_1] orig_train[-orig_train.duplicated(subset=feature_set_2)].loc[:, feature_set_2] orig_train[-orig_train.duplicated(subset=feature_set_4)].loc[:, feature_set_4] find_duplicates(orig_train, feature_set_4, 'original train')
code
128044990/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] orig_train[-orig_train.duplicated(subset=feature_set_1)].loc[:, feature_set_1] orig_train[-orig_train.duplicated(subset=feature_set_2)].loc[:, feature_set_2]
code
128044990/cell_29
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc heatmap(combo, 'Competition')
code
128044990/cell_39
[ "text_plain_output_1.png" ]
from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True def distance(data, label=''): distances = data.corr() dist_linkage = ward(distances) dendro = dendrogram(dist_linkage, labels=data.columns, leaf_rotation=90) def find_duplicates(data, column, label=''): pass desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1] combo[-combo.duplicated(subset=feature_set_2)].loc[:, feature_set_2] find_duplicates(combo, feature_set_3, 'competition')
code
128044990/cell_18
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] orig_train[-orig_train.duplicated(subset=feature_set_1)].loc[:, feature_set_1]
code
128044990/cell_32
[ "text_plain_output_1.png" ]
from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True def distance(data, label=''): distances = data.corr() dist_linkage = ward(distances) dendro = dendrogram(dist_linkage, labels=data.columns, leaf_rotation=90) def find_duplicates(data, column, label=''): pass desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1] find_duplicates(combo, feature_set_1, 'competition')
code
128044990/cell_3
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100)
code
128044990/cell_35
[ "text_plain_output_1.png" ]
from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True def distance(data, label=''): distances = data.corr() dist_linkage = ward(distances) dendro = dendrogram(dist_linkage, labels=data.columns, leaf_rotation=90) def find_duplicates(data, column, label=''): pass desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1] combo[-combo.duplicated(subset=feature_set_2)].loc[:, feature_set_2] find_duplicates(combo, feature_set_2, 'competition')
code
128044990/cell_31
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1]
code
128044990/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] feature_set_4 = ['andrena', 'osmia'] orig_train[-orig_train.duplicated(subset=feature_set_1)].loc[:, feature_set_1] orig_train[-orig_train.duplicated(subset=feature_set_2)].loc[:, feature_set_2] orig_train[-orig_train.duplicated(subset=feature_set_4)].loc[:, feature_set_4]
code
128044990/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc
code
128044990/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc
code
128044990/cell_37
[ "text_plain_output_1.png" ]
from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True def distance(data, label=''): distances = data.corr() dist_linkage = ward(distances) dendro = dendrogram(dist_linkage, labels=data.columns, leaf_rotation=90) def find_duplicates(data, column, label=''): pass desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc feature_set_1 = ['RainingDays', 'AverageRainingDays'] feature_set_2 = ['MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange'] feature_set_3 = ['fruitset', 'fruitmass', 'seeds'] feature_set_4 = ['andrena', 'osmia'] combo = pd.concat([train.drop('yield', axis=1), test]) desc = pd.DataFrame(index=combo.columns) desc['count'] = len(combo) desc['nunique'] = combo.nunique() desc['%unique'] = desc['nunique'] / len(combo) * 100 desc['null'] = combo.isna().sum() desc['type'] = combo.dtypes desc combo[-combo.duplicated(subset=feature_set_1)].loc[:, feature_set_1] combo[-combo.duplicated(subset=feature_set_2)].loc[:, feature_set_2] find_duplicates(combo, feature_set_4, 'competition')
code
128044990/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import RepeatedStratifiedKFold, StratifiedKFold, KFold from scipy.cluster.hierarchy import dendrogram, ward sns.set_theme(style='white', palette='viridis') pal = sns.color_palette('viridis') pd.set_option('display.max_rows', 100) train = pd.read_csv('../input/playground-series-s3e14/train.csv') test_1 = pd.read_csv('../input/playground-series-s3e14/test.csv') orig_train = pd.read_csv('../input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv') train.drop('id', axis=1, inplace=True) test = test_1.drop('id', axis=1) orig_train.drop('Row#', axis=1, inplace=True) def heatmap(dataset, label=None): corr = dataset.corr() mask = np.zeros_like(corr) mask[np.triu_indices_from(mask)] = True desc = pd.DataFrame(index=orig_train.columns) desc['count'] = len(orig_train) desc['nunique'] = orig_train.nunique() desc['%unique'] = desc['nunique'] / len(orig_train) * 100 desc['null'] = orig_train.isna().sum() desc['type'] = orig_train.dtypes desc heatmap(orig_train, 'Original Train')
code
104128883/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.info()
code
104128883/cell_6
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.describe()
code
104128883/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.head()
code
104128883/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104128883/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.duplicated()
code
104128883/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.duplicated() insurance.sort_values(by='charges', ascending=1) Q2 = insurance['charges'].median() print(Q2)
code
104128883/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape
code
104128883/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.duplicated() plt.figure(figsize=(6, 7)) sns.boxplot(insurance['charges']) plt.show()
code
104128883/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.duplicated() insurance['region'].unique()
code
104128883/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum() insurance.duplicated() data_dummies = pd.get_dummies(insurance) data_dummies.head()
code
104128883/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) insurance = pd.read_csv('/kaggle/input/insurance/insurance.csv') insurance.shape insurance.isna().sum()
code
89122142/cell_42
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False for layer in base_model.layers: print(layer.name, layer.trainable)
code
89122142/cell_25
[ "image_output_1.png" ]
import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import os import pathlib import random def plot_loss_curves(history): """ Returns separate loss curves for training and validation metrics. Args: history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History) """ loss = history.history['loss'] val_loss = history.history['val_loss'] acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] epochs = range(len(history.history['loss'])) def compare_historys(original_history, new_history, initial_epochs=5): """ Compares two TensorFlow model History objects. Args: original_history: History object from original model (before new_history) new_history: History object from continued model training (after original_history) initial_epochs: Number of epochs in original_history (new_history plot starts from here) """ acc = original_history.history['accuracy'] loss = original_history.history['loss'] val_acc = original_history.history['val_accuracy'] val_loss = original_history.history['val_loss'] total_acc = acc + new_history.history['accuracy'] total_loss = loss + new_history.history['loss'] total_val_acc = val_acc + new_history.history['val_accuracy'] total_val_loss = val_loss + new_history.history['val_loss'] def walk_through_dir(dir_path): """ Walks through dir_path returning its contents. Args: dir_path (str): target directory Returns: A print out of: number of images (files) in each subdirectory name of each subdirectory """ # Plot Some Random Images data_dir = pathlib.Path('101_food_classes_10_percent/train') class_names = np.array(sorted([item.name for item in data_dir.glob('*')])) def view_rand_img(target_dir): plt.figure(figsize = (12,8)) # create the figure size for i in range(12): # loop to show 12 images at a time ax = plt.subplot(3, 4, i+1) # show the chosen 12 images in a 3 * 4 grid rand_class = random.choice(class_names) # choose a random class target_folder = '101_food_classes_10_percent/' + target_dir + "/" + rand_class # create the directory to the images rand_img = random.sample(os.listdir(target_folder), 12) # choose the 12 images randomly img = mpimg.imread(target_folder + "/" + rand_img[i]) # read the images plt.imshow(img) # show the images plt.title(rand_class) # set title plt.axis(False) # hide the axis view_rand_img('train')
code
89122142/cell_23
[ "text_plain_output_1.png" ]
import os def walk_through_dir(dir_path): """ Walks through dir_path returning its contents. Args: dir_path (str): target directory Returns: A print out of: number of images (files) in each subdirectory name of each subdirectory """ walk_through_dir('101_food_classes_10_percent')
code
89122142/cell_44
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1])
code
89122142/cell_55
[ "text_plain_output_1.png" ]
import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) y_labels = [] for images, labels in test_data.unbatch(): y_labels.append(labels.numpy().argmax()) y_labels[:10]
code
89122142/cell_39
[ "image_output_2.png", "image_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import matplotlib.pyplot as plt import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback def plot_loss_curves(history): """ Returns separate loss curves for training and validation metrics. Args: history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History) """ loss = history.history['loss'] val_loss = history.history['val_loss'] acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] epochs = range(len(history.history['loss'])) train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) plot_loss_curves(history_all_classes_10_percent)
code
89122142/cell_26
[ "image_output_1.png" ]
import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import os import pathlib import random def plot_loss_curves(history): """ Returns separate loss curves for training and validation metrics. Args: history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History) """ loss = history.history['loss'] val_loss = history.history['val_loss'] acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] epochs = range(len(history.history['loss'])) def compare_historys(original_history, new_history, initial_epochs=5): """ Compares two TensorFlow model History objects. Args: original_history: History object from original model (before new_history) new_history: History object from continued model training (after original_history) initial_epochs: Number of epochs in original_history (new_history plot starts from here) """ acc = original_history.history['accuracy'] loss = original_history.history['loss'] val_acc = original_history.history['val_accuracy'] val_loss = original_history.history['val_loss'] total_acc = acc + new_history.history['accuracy'] total_loss = loss + new_history.history['loss'] total_val_acc = val_acc + new_history.history['val_accuracy'] total_val_loss = val_loss + new_history.history['val_loss'] def walk_through_dir(dir_path): """ Walks through dir_path returning its contents. Args: dir_path (str): target directory Returns: A print out of: number of images (files) in each subdirectory name of each subdirectory """ # Plot Some Random Images data_dir = pathlib.Path('101_food_classes_10_percent/train') class_names = np.array(sorted([item.name for item in data_dir.glob('*')])) def view_rand_img(target_dir): plt.figure(figsize = (12,8)) # create the figure size for i in range(12): # loop to show 12 images at a time ax = plt.subplot(3, 4, i+1) # show the chosen 12 images in a 3 * 4 grid rand_class = random.choice(class_names) # choose a random class target_folder = '101_food_classes_10_percent/' + target_dir + "/" + rand_class # create the directory to the images rand_img = random.sample(os.listdir(target_folder), 12) # choose the 12 images randomly img = mpimg.imread(target_folder + "/" + rand_img[i]) # read the images plt.imshow(img) # show the images plt.title(rand_class) # set title plt.axis(False) # hide the axis view_rand_img('test')
code
89122142/cell_48
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) model.save('101_food_classes_10_percent_fine_tuned')
code
89122142/cell_54
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) model.save('101_food_classes_10_percent_fine_tuned') pred_probs = model.predict(test_data, verbose=1) pred_classes = pred_probs.argmax(axis=1) print(len(pred_classes)) pred_classes[:10]
code
89122142/cell_50
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) loaded_model = tf.keras.models.load_model('101_food_classes_10_percent_fine_tuned') loaded_model_results = loaded_model.evaluate(test_data)
code
89122142/cell_52
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) model.save('101_food_classes_10_percent_fine_tuned') pred_probs = model.predict(test_data, verbose=1)
code
89122142/cell_45
[ "image_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import matplotlib.pyplot as plt import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback def plot_loss_curves(history): """ Returns separate loss curves for training and validation metrics. Args: history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History) """ loss = history.history['loss'] val_loss = history.history['val_loss'] acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] epochs = range(len(history.history['loss'])) def compare_historys(original_history, new_history, initial_epochs=5): """ Compares two TensorFlow model History objects. Args: original_history: History object from original model (before new_history) new_history: History object from continued model training (after original_history) initial_epochs: Number of epochs in original_history (new_history plot starts from here) """ acc = original_history.history['accuracy'] loss = original_history.history['loss'] val_acc = original_history.history['val_accuracy'] val_loss = original_history.history['val_loss'] total_acc = acc + new_history.history['accuracy'] total_loss = loss + new_history.history['loss'] total_val_acc = val_acc + new_history.history['val_accuracy'] total_val_loss = val_loss + new_history.history['val_loss'] train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) compare_historys(original_history=history_all_classes_10_percent, new_history=history_all_classes_10_percent_fine_tune, initial_epochs=5)
code
89122142/cell_18
[ "text_plain_output_1.png" ]
!wget https://storage.googleapis.com/ztm_tf_course/food_vision/101_food_classes_10_percent.zip
code
89122142/cell_28
[ "text_plain_output_1.png" ]
import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False)
code
89122142/cell_35
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback])
code
89122142/cell_43
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False for layer_number, layer in enumerate(model.layers[2].layers): print(layer_number, layer.name, layer.trainable)
code
89122142/cell_53
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results base_model.trainable = True for layer in base_model.layers[:-5]: layer.trainable = False model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), metrics=['accuracy']) history_all_classes_10_percent_fine_tune = model.fit(train_data_all_10_percent, epochs=10, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback], initial_epoch=history_all_classes_10_percent.epoch[-1]) model.save('101_food_classes_10_percent_fine_tuned') pred_probs = model.predict(test_data, verbose=1) print(f'Number of images: {len(test_data)}') print(f'Number of probabilities: {len(pred_probs)}') print(f'Number of probabilities per image: {len(pred_probs[0])}') print(f'Predicted First Image Belong to class number: {pred_probs[0].argmax()}')
code
89122142/cell_37
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing from tensorflow.keras.models import Sequential import datetime import tensorflow as tf def create_tensorboard_callback(dir_name, experiment_name): """ Creates a TensorBoard callback instand to store log files. Stores log files with the filepath: "dir_name/experiment_name/current_datetime/" Args: dire_name: target directory to store TensorBoard log files experiment_name: name of experiment directory (e.g. efficientnet_model_1) """ log_dir = dir_name + '/' + experiment_name + '/' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S') tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir) return tensorboard_callback train_dir = '101_food_classes_10_percent/train/' test_dir = '101_food_classes_10_percent/test/' IMG_SIZE = (224, 224) train_data_all_10_percent = tf.keras.preprocessing.image_dataset_from_directory(train_dir, label_mode='categorical', image_size=IMG_SIZE) test_data = tf.keras.preprocessing.image_dataset_from_directory(test_dir, label_mode='categorical', image_size=IMG_SIZE, shuffle=False) checkpoint_path = '101_classes_10_percent_data_model_checkpoint' checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, monitor='val_accuracy', save_best_only=True) data_augmentation = Sequential([preprocessing.RandomFlip('horizontal'), preprocessing.RandomRotation(0.2), preprocessing.RandomHeight(0.2), preprocessing.RandomWidth(0.2), preprocessing.RandomZoom(0.2)], name='Data_Augmentation') base_model = tf.keras.applications.EfficientNetB0(include_top=False) base_model.trainable = False inputs = layers.Input(shape=(224, 224, 3), name='input_layer') x = data_augmentation(inputs) x = base_model(x, training=False) x = layers.GlobalAveragePooling2D(name='global_avg_pooling')(x) outputs = layers.Dense(len(train_data_all_10_percent.class_names), activation='softmax')(x) model = tf.keras.Model(inputs, outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history_all_classes_10_percent = model.fit(train_data_all_10_percent, epochs=5, validation_data=test_data, validation_steps=int(0.15 * len(test_data)), callbacks=[checkpoint_callback]) eval_results = model.evaluate(test_data) eval_results
code
73097309/cell_9
[ "image_output_1.png" ]
from skimage.transform import resize import SimpleITK as sitk import SimpleITK as sitk import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image image = load(path='../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/01006/', kind='FLAIR') image.shape
code
73097309/cell_23
[ "image_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from skimage.util import montage from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch import torch.nn as nn import torch.nn as nn import torch.nn.functional as F import torch.nn.functional as F labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image image = load(path='../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/01006/', kind='FLAIR') image.shape for i in range(64): plt.axis('off') class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader dataloader = get_dataloader(dataset=BratsDataset, path_to_csv='test_data.csv', phase='train', fold=0) len(dataloader) data = next(iter(dataloader)) (data['Id'], data['image'].shape) for i in range(64): plt.axis('off') class DoubleConv(nn.Module): """(Conv3D -> BN -> ReLU) * 2""" def __init__(self, in_channels, out_channels, num_groups=8): super().__init__() self.double_conv = nn.Sequential(nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True), nn.Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True)) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.encoder = nn.Sequential(nn.MaxPool3d(2, 2), DoubleConv(in_channels, out_channels)) def forward(self, x): return self.encoder(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, trilinear=False): super().__init__() if trilinear: self.up = nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True) else: self.up = nn.ConvTranspose3d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffZ = x2.size()[2] - x1.size()[2] diffY = x2.size()[3] - x1.size()[3] diffX = x2.size()[4] - x1.size()[4] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2, diffZ // 2, diffZ - diffZ // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class Out(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet3d(nn.Module): def __init__(self, in_channels, n_classes, n_channels): super().__init__() self.in_channels = in_channels self.n_classes = n_classes self.n_channels = n_channels self.conv = DoubleConv(in_channels, n_channels) self.enc1 = Down(n_channels, 2 * n_channels) self.enc2 = Down(2 * n_channels, 4 * n_channels) self.enc3 = Down(4 * n_channels, 8 * n_channels) self.enc4 = Down(8 * n_channels, 8 * n_channels) self.dec1 = Up(16 * n_channels, 4 * n_channels) self.dec2 = Up(8 * n_channels, 2 * n_channels) self.dec3 = Up(4 * n_channels, n_channels) self.dec4 = Up(2 * n_channels, n_channels) self.out = Out(n_channels, n_classes) def forward(self, x): x1 = self.conv(x) x2 = self.enc1(x1) x3 = self.enc2(x2) x4 = self.enc3(x3) x5 = self.enc4(x4) mask = self.dec1(x5, x4) mask = self.dec2(mask, x3) mask = self.dec3(mask, x2) mask = self.dec4(mask, x1) mask = self.out(mask) return mask model = UNet3d(in_channels=4, n_classes=3, n_channels=24) model.load_state_dict(torch.load('../input/seg-model/best_model_0.17.pth')) model.eval() class ShowResult: def mask_preprocessing(self, mask): """ Test. """ mask = mask.squeeze().cpu().detach().numpy() mask = np.moveaxis(mask, (0, 1, 2, 3), (0, 3, 2, 1)) mask_WT = np.rot90(montage(mask[0])) mask_TC = np.rot90(montage(mask[1])) mask_ET = np.rot90(montage(mask[2])) return mask_WT, mask_TC, mask_ET def image_preprocessing(self, image): """ Returns image flair as mask for overlaping gt and predictions. """ image = image.squeeze().cpu().detach().numpy() image = np.moveaxis(image, (0, 1, 2, 3), (0, 3, 2, 1)) flair_img = np.rot90(montage(image[0])) return flair_img def plot(self, image, prediction): image = self.image_preprocessing(image) # gt_mask_WT, gt_mask_TC, gt_mask_ET = self.mask_preprocessing(ground_truth) pr_mask_WT, pr_mask_TC, pr_mask_ET = self.mask_preprocessing(prediction) fig, axes = plt.subplots(1, 2, figsize = (35, 30)) [ax.axis("off") for ax in axes] # axes[0].set_title("Ground Truth", fontsize=35, weight='bold') # axes[0].imshow(image, cmap ='bone') # axes[0].imshow(np.ma.masked_where(gt_mask_WT == False, gt_mask_WT), # cmap='cool_r', alpha=0.6) # axes[0].imshow(np.ma.masked_where(gt_mask_TC == False, gt_mask_TC), # cmap='autumn_r', alpha=0.6) # axes[0].imshow(np.ma.masked_where(gt_mask_ET == False, gt_mask_ET), # cmap='autumn', alpha=0.6) axes[1].set_title("Prediction", fontsize=35, weight='bold') axes[1].imshow(image, cmap ='bone') axes[1].imshow(np.ma.masked_where(pr_mask_WT == False, pr_mask_WT), cmap='cool_r', alpha=0.6) axes[1].imshow(np.ma.masked_where(pr_mask_TC == False, pr_mask_TC), cmap='autumn_r', alpha=0.6) axes[1].imshow(np.ma.masked_where(pr_mask_ET == False, pr_mask_ET), cmap='autumn', alpha=0.6) plt.tight_layout() plt.show() train_data = [] ID = [] pos = [] for itr, data in enumerate(dataloader): print(itr) treshold = 0.3 id_ = int(data['Id'][0]) id_ = '{0:05d}'.format(id_) print(id_) img = data['image'] logits = model(img) probs = torch.sigmoid(logits) show = (probs >= treshold).float() predictions = show.numpy() predictions = predictions.reshape(3, 128, 128, 64) predictions = np.moveaxis(predictions, (0, 1, 2, 3), (0, 3, 2, 1)) train_data.append(predictions) ID.append(id_) pos.append(itr)
code
73097309/cell_2
[ "text_plain_output_1.png" ]
from tqdm import tqdm import os import time from random import randint from keras.callbacks import CSVLogger import numpy as np from scipy import stats import pandas as pd from keras.utils import np_utils from keras.callbacks import ModelCheckpoint from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.model_selection import KFold import nibabel as nib import pydicom as pdm import nilearn as nl import nilearn.plotting as nlplt import h5py import matplotlib.pyplot as plt from matplotlib import cm import matplotlib.animation as anim import matplotlib.patches as mpatches import matplotlib.gridspec as gridspec import seaborn as sns import imageio from skimage.transform import resize from skimage.util import montage from IPython.display import Image as show_gif from IPython.display import clear_output from IPython.display import YouTubeVideo import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader import torch.nn.functional as F from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.nn import MSELoss import albumentations as A from albumentations import Compose, HorizontalFlip import SimpleITK as sitk import sys import os import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd import os import pydicom import matplotlib.pyplot as plt from pydicom.pixel_data_handlers.util import apply_voi_lut import glob import cv2 import torch import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch import optim import keras import warnings import os import zipfile import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers warnings.filterwarnings('ignore') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') np.seterr(divide='ignore', invalid='ignore') from keras.layers import Conv3D, MaxPool3D, Flatten, Dense from keras.layers import Dropout, Input, BatchNormalization from sklearn.metrics import confusion_matrix, accuracy_score from plotly.offline import iplot, init_notebook_mode from keras.losses import categorical_crossentropy from keras.optimizers import Adadelta import plotly.graph_objs as go from matplotlib.pyplot import cm from keras.models import Model import numpy as np import keras import h5py import SimpleITK as sitk init_notebook_mode(connected=True)
code
73097309/cell_19
[ "text_html_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch import torch.nn as nn import torch.nn as nn import torch.nn.functional as F import torch.nn.functional as F labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader class DoubleConv(nn.Module): """(Conv3D -> BN -> ReLU) * 2""" def __init__(self, in_channels, out_channels, num_groups=8): super().__init__() self.double_conv = nn.Sequential(nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True), nn.Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True)) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.encoder = nn.Sequential(nn.MaxPool3d(2, 2), DoubleConv(in_channels, out_channels)) def forward(self, x): return self.encoder(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, trilinear=False): super().__init__() if trilinear: self.up = nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True) else: self.up = nn.ConvTranspose3d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffZ = x2.size()[2] - x1.size()[2] diffY = x2.size()[3] - x1.size()[3] diffX = x2.size()[4] - x1.size()[4] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2, diffZ // 2, diffZ - diffZ // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class Out(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet3d(nn.Module): def __init__(self, in_channels, n_classes, n_channels): super().__init__() self.in_channels = in_channels self.n_classes = n_classes self.n_channels = n_channels self.conv = DoubleConv(in_channels, n_channels) self.enc1 = Down(n_channels, 2 * n_channels) self.enc2 = Down(2 * n_channels, 4 * n_channels) self.enc3 = Down(4 * n_channels, 8 * n_channels) self.enc4 = Down(8 * n_channels, 8 * n_channels) self.dec1 = Up(16 * n_channels, 4 * n_channels) self.dec2 = Up(8 * n_channels, 2 * n_channels) self.dec3 = Up(4 * n_channels, n_channels) self.dec4 = Up(2 * n_channels, n_channels) self.out = Out(n_channels, n_classes) def forward(self, x): x1 = self.conv(x) x2 = self.enc1(x1) x3 = self.enc2(x2) x4 = self.enc3(x3) x5 = self.enc4(x4) mask = self.dec1(x5, x4) mask = self.dec2(mask, x3) mask = self.dec3(mask, x2) mask = self.dec4(mask, x1) mask = self.out(mask) return mask model = UNet3d(in_channels=4, n_classes=3, n_channels=24) model.load_state_dict(torch.load('../input/seg-model/best_model_0.17.pth'))
code
73097309/cell_15
[ "text_plain_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader dataloader = get_dataloader(dataset=BratsDataset, path_to_csv='test_data.csv', phase='train', fold=0) len(dataloader) data = next(iter(dataloader)) (data['Id'], data['image'].shape)
code
73097309/cell_16
[ "image_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image image = load(path='../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/01006/', kind='FLAIR') image.shape for i in range(64): plt.axis('off') class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader dataloader = get_dataloader(dataset=BratsDataset, path_to_csv='test_data.csv', phase='train', fold=0) len(dataloader) data = next(iter(dataloader)) (data['Id'], data['image'].shape) plt.figure(figsize=(12, 12)) for i in range(64): plt.subplot(8, 8, i + 1) plt.imshow(data['image'][0][0][i]) plt.axis('off')
code
73097309/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') labels.head()
code
73097309/cell_24
[ "text_plain_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from skimage.util import montage from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch import torch.nn as nn import torch.nn as nn import torch.nn.functional as F import torch.nn.functional as F labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image image = load(path='../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/01006/', kind='FLAIR') image.shape for i in range(64): plt.axis('off') class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader dataloader = get_dataloader(dataset=BratsDataset, path_to_csv='test_data.csv', phase='train', fold=0) len(dataloader) data = next(iter(dataloader)) (data['Id'], data['image'].shape) for i in range(64): plt.axis('off') class DoubleConv(nn.Module): """(Conv3D -> BN -> ReLU) * 2""" def __init__(self, in_channels, out_channels, num_groups=8): super().__init__() self.double_conv = nn.Sequential(nn.Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True), nn.Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.GroupNorm(num_groups=num_groups, num_channels=out_channels), nn.ReLU(inplace=True)) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.encoder = nn.Sequential(nn.MaxPool3d(2, 2), DoubleConv(in_channels, out_channels)) def forward(self, x): return self.encoder(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, trilinear=False): super().__init__() if trilinear: self.up = nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True) else: self.up = nn.ConvTranspose3d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) diffZ = x2.size()[2] - x1.size()[2] diffY = x2.size()[3] - x1.size()[3] diffX = x2.size()[4] - x1.size()[4] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2, diffZ // 2, diffZ - diffZ // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class Out(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet3d(nn.Module): def __init__(self, in_channels, n_classes, n_channels): super().__init__() self.in_channels = in_channels self.n_classes = n_classes self.n_channels = n_channels self.conv = DoubleConv(in_channels, n_channels) self.enc1 = Down(n_channels, 2 * n_channels) self.enc2 = Down(2 * n_channels, 4 * n_channels) self.enc3 = Down(4 * n_channels, 8 * n_channels) self.enc4 = Down(8 * n_channels, 8 * n_channels) self.dec1 = Up(16 * n_channels, 4 * n_channels) self.dec2 = Up(8 * n_channels, 2 * n_channels) self.dec3 = Up(4 * n_channels, n_channels) self.dec4 = Up(2 * n_channels, n_channels) self.out = Out(n_channels, n_classes) def forward(self, x): x1 = self.conv(x) x2 = self.enc1(x1) x3 = self.enc2(x2) x4 = self.enc3(x3) x5 = self.enc4(x4) mask = self.dec1(x5, x4) mask = self.dec2(mask, x3) mask = self.dec3(mask, x2) mask = self.dec4(mask, x1) mask = self.out(mask) return mask model = UNet3d(in_channels=4, n_classes=3, n_channels=24) model.load_state_dict(torch.load('../input/seg-model/best_model_0.17.pth')) model.eval() class ShowResult: def mask_preprocessing(self, mask): """ Test. """ mask = mask.squeeze().cpu().detach().numpy() mask = np.moveaxis(mask, (0, 1, 2, 3), (0, 3, 2, 1)) mask_WT = np.rot90(montage(mask[0])) mask_TC = np.rot90(montage(mask[1])) mask_ET = np.rot90(montage(mask[2])) return mask_WT, mask_TC, mask_ET def image_preprocessing(self, image): """ Returns image flair as mask for overlaping gt and predictions. """ image = image.squeeze().cpu().detach().numpy() image = np.moveaxis(image, (0, 1, 2, 3), (0, 3, 2, 1)) flair_img = np.rot90(montage(image[0])) return flair_img def plot(self, image, prediction): image = self.image_preprocessing(image) # gt_mask_WT, gt_mask_TC, gt_mask_ET = self.mask_preprocessing(ground_truth) pr_mask_WT, pr_mask_TC, pr_mask_ET = self.mask_preprocessing(prediction) fig, axes = plt.subplots(1, 2, figsize = (35, 30)) [ax.axis("off") for ax in axes] # axes[0].set_title("Ground Truth", fontsize=35, weight='bold') # axes[0].imshow(image, cmap ='bone') # axes[0].imshow(np.ma.masked_where(gt_mask_WT == False, gt_mask_WT), # cmap='cool_r', alpha=0.6) # axes[0].imshow(np.ma.masked_where(gt_mask_TC == False, gt_mask_TC), # cmap='autumn_r', alpha=0.6) # axes[0].imshow(np.ma.masked_where(gt_mask_ET == False, gt_mask_ET), # cmap='autumn', alpha=0.6) axes[1].set_title("Prediction", fontsize=35, weight='bold') axes[1].imshow(image, cmap ='bone') axes[1].imshow(np.ma.masked_where(pr_mask_WT == False, pr_mask_WT), cmap='cool_r', alpha=0.6) axes[1].imshow(np.ma.masked_where(pr_mask_TC == False, pr_mask_TC), cmap='autumn_r', alpha=0.6) axes[1].imshow(np.ma.masked_where(pr_mask_ET == False, pr_mask_ET), cmap='autumn', alpha=0.6) plt.tight_layout() plt.show() train_data = [] ID = [] pos = [] for itr, data in enumerate(dataloader): treshold = 0.3 id_ = int(data['Id'][0]) id_ = '{0:05d}'.format(id_) img = data['image'] logits = model(img) probs = torch.sigmoid(logits) show = (probs >= treshold).float() predictions = show.numpy() predictions = predictions.reshape(3, 128, 128, 64) predictions = np.moveaxis(predictions, (0, 1, 2, 3), (0, 3, 2, 1)) train_data.append(predictions) ID.append(id_) pos.append(itr) train_data[0].shape
code
73097309/cell_14
[ "text_html_output_1.png" ]
from albumentations import Compose, HorizontalFlip from skimage.transform import resize from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset,DataLoader import SimpleITK as sitk import SimpleITK as sitk import numpy as np import numpy as np import numpy as np import numpy as np import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image class BratsDataset(Dataset): def __init__(self, df: pd.DataFrame, phase: str='test', is_resize: bool=False): self.df = df self.phase = phase self.augmentations = get_augmentations(phase) self.data_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] self.is_resize = is_resize def __len__(self): return self.df.shape[0] def __getitem__(self, idx): id_ = self.df['imfolder'][idx] path = self.df['path'][idx] id_ = str(id_) images = [] for data_type in self.data_types: img_path = path img = self.load_img(img_path, data_type) img = img.reshape(64, 128, 128) img = img.numpy() img = self.normalize(img) images.append(img) img = np.stack(images) img = np.moveaxis(img, (0, 1, 2, 3), (0, 3, 2, 1)) if self.phase != 'test': augmented = self.augmentations(image=img.astype(np.float32)) img = augmented['image'] return {'Id': id_, 'image': img} return {'Id': id_, 'image': img} def load_img(self, file_path, data_type): data = load(file_path, data_type) return data def normalize(self, data: np.ndarray): data_min = 0 return (data - data_min) / (np.amax(data) - data_min) def get_augmentations(phase): list_transforms = [] list_trfms = Compose(list_transforms) return list_trfms def get_dataloader(dataset: torch.utils.data.Dataset, path_to_csv: str, phase: str, fold: int=0, batch_size: int=1, num_workers: int=0): """Returns: dataloader for the model training""" df = pd.read_csv(path_to_csv) dataset = dataset(df, phase) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=False, shuffle=True) return dataloader test_data = pd.read_csv('test_data.csv') test_data
code
73097309/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from skimage.transform import resize import SimpleITK as sitk import SimpleITK as sitk import matplotlib.pyplot as plt import matplotlib.pyplot as plt import os import os import os import os import pandas as pd import pandas as pd import torch import torch import torch labels = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') data_len = 1000 labels['imfolder'] = ['{0:05d}'.format(s) for s in labels['BraTS21ID']] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' labels['path'] = [os.path.join(path, f) for f in labels['imfolder']] train = labels[:data_len] val_len = int(data_len * 0.2) train = labels[:0] path = '../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/' p = [] d = [] for i in range(1010): id_ = '{0:05d}'.format(i) if os.path.exists(path + id_): p.append(path + id_) d.append(id_) def load(path, kind, image_size=128, depth=64): directory = path + '/' + kind reader = sitk.ImageSeriesReader() dicom_names = reader.GetGDCMSeriesFileNames(directory) reader.SetFileNames(dicom_names) image = reader.Execute() image = sitk.GetArrayFromImage(image) mid = int(image.shape[0] / 2) if image.shape[0] >= 64: image = image[mid - 32:mid + 32, :, :] image = resize(image, (64, 128, 128), preserve_range=True) image = torch.tensor(image) return image image = load(path='../input/rsna-miccai-brain-tumor-radiogenomic-classification/test/01006/', kind='FLAIR') image.shape plt.figure(figsize=(12, 12)) for i in range(64): plt.subplot(8, 8, i + 1) plt.imshow(image[i]) plt.axis('off')
code
73066496/cell_21
[ "image_output_1.png" ]
from sklearn.utils import shuffle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique() df_train = df_train.drop(['id'], axis=1) df_train = shuffle(df_train) target = ['target'] var_categorical = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] var_numerical = list(set(df_train.columns) - set(var_categorical) - set(target)) def label_values(ax, spacing=5): total = 0 for rect in ax.patches: total += rect.get_height() for rect in ax.patches: y_value = rect.get_height() x_value = rect.get_x() + rect.get_width() / 2 space = spacing va = 'bottom' if y_value < 0: space *= -1 va = 'top' label = '{:.2f}, {:.2f}'.format(y_value, y_value / total * 100) ax.annotate(label, (x_value, y_value), xytext=(0, space), textcoords='offset points', ha='center', va=va) for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.countplot(x = df_train[column]) label_values(ax) plt.show() for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.boxplot(x = df_train[column], y = df_train['target']) label_values(ax) plt.show() i = 1 for column in var_numerical: print(column.title()) plt.subplots(figsize=(16, 50)) plt.subplot(len(var_numerical) + 1, 3, i) sns.boxplot(y=df_train[column]) i += 1 plt.subplot(len(var_numerical) + 1, 3, i) sns.distplot(x=df_train[column]) i += 1 plt.subplot(len(var_numerical) + 1, 3, i) sns.scatterplot(y=df_train['target'], x=df_train[column]) i += 1 plt.show()
code
73066496/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_test.nunique()
code
73066496/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.info()
code
73066496/cell_20
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique() df_train = df_train.drop(['id'], axis=1) df_train = shuffle(df_train) target = ['target'] var_categorical = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] var_numerical = list(set(df_train.columns) - set(var_categorical) - set(target)) def label_values(ax, spacing=5): total = 0 for rect in ax.patches: total += rect.get_height() for rect in ax.patches: y_value = rect.get_height() x_value = rect.get_x() + rect.get_width() / 2 space = spacing va = 'bottom' if y_value < 0: space *= -1 va = 'top' label = '{:.2f}, {:.2f}'.format(y_value, y_value / total * 100) ax.annotate(label, (x_value, y_value), xytext=(0, space), textcoords='offset points', ha='center', va=va) for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.countplot(x = df_train[column]) label_values(ax) plt.show() for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.boxplot(x=df_train[column], y=df_train['target']) label_values(ax) plt.show()
code
73066496/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique()
code
73066496/cell_19
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique() df_train = df_train.drop(['id'], axis=1) df_train = shuffle(df_train) target = ['target'] var_categorical = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] var_numerical = list(set(df_train.columns) - set(var_categorical) - set(target)) def label_values(ax, spacing=5): total = 0 for rect in ax.patches: total += rect.get_height() for rect in ax.patches: y_value = rect.get_height() x_value = rect.get_x() + rect.get_width() / 2 space = spacing va = 'bottom' if y_value < 0: space *= -1 va = 'top' label = '{:.2f}, {:.2f}'.format(y_value, y_value / total * 100) ax.annotate(label, (x_value, y_value), xytext=(0, space), textcoords='offset points', ha='center', va=va) for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.countplot(x=df_train[column]) label_values(ax) plt.show()
code
73066496/cell_7
[ "image_output_11.png", "application_vnd.jupyter.stderr_output_24.png", "application_vnd.jupyter.stderr_output_16.png", "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_15.png", "application_vnd.jupyter.stderr_output_18.png", "text_plain_output_9.png", "image_output_14.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_26.png", "application_vnd.jupyter.stderr_output_6.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "application_vnd.jupyter.stderr_output_12.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_27.png", "image_output_7.png", "application_vnd.jupyter.stderr_output_10.png", "text_plain_output_21.png", "text_plain_output_25.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "application_vnd.jupyter.stderr_output_28.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_20.png", "text_plain_output_23.png", "application_vnd.jupyter.stderr_output_22.png", "image_output_12.png", "text_plain_output_1.png", "image_output_3.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "application_vnd.jupyter.stderr_output_14.png", "image_output_9.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.head()
code
73066496/cell_18
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique() df_train = df_train.drop(['id'], axis=1) df_train = shuffle(df_train) target = ['target'] var_categorical = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] var_numerical = list(set(df_train.columns) - set(var_categorical) - set(target)) sns.boxplot(x=df_train['target']) plt.show()
code
73066496/cell_8
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.describe()
code
73066496/cell_22
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
from sklearn.utils import shuffle import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_train.nunique() df_train = df_train.drop(['id'], axis=1) df_train = shuffle(df_train) target = ['target'] var_categorical = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] var_numerical = list(set(df_train.columns) - set(var_categorical) - set(target)) def label_values(ax, spacing=5): total = 0 for rect in ax.patches: total += rect.get_height() for rect in ax.patches: y_value = rect.get_height() x_value = rect.get_x() + rect.get_width() / 2 space = spacing va = 'bottom' if y_value < 0: space *= -1 va = 'top' label = '{:.2f}, {:.2f}'.format(y_value, y_value / total * 100) ax.annotate(label, (x_value, y_value), xytext=(0, space), textcoords='offset points', ha='center', va=va) for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.countplot(x = df_train[column]) label_values(ax) plt.show() for column in var_categorical: plt.figure(figsize=(15, 6)) print(column.title()) ax = sns.boxplot(x = df_train[column], y = df_train['target']) label_values(ax) plt.show() i = 1 for column in var_numerical: i += 1 i += 1 i += 1 plt.figure(figsize=(15, 15)) sns.heatmap(df_train.corr(), annot=True) plt.show()
code
73066496/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') df_test.info()
code
72062718/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') (test.shape, train.shape) train.drop(['id'], axis=1, inplace=True) test.drop(['id'], axis=1, inplace=True) (test.shape, train.shape) test.fillna(0, inplace=True) train.fillna(0, inplace=True) corr = train.corr() columns_to_delete = corr[corr.loss < 0.001][corr.loss > -0.001].index
code
72062718/cell_34
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearnex import patch_sklearn from sklearnex import patch_sklearn patch_sklearn()
code
72062718/cell_11
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') test.head()
code
72062718/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') (test.shape, train.shape) train.drop(['id'], axis=1, inplace=True) test.drop(['id'], axis=1, inplace=True) (test.shape, train.shape)
code
72062718/cell_32
[ "text_plain_output_1.png" ]
!pip install scikit-learn-intelex -q --progress-bar off
code
72062718/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') (test.shape, train.shape) train.drop(['id'], axis=1, inplace=True) test.drop(['id'], axis=1, inplace=True) all_data = [train, test] for df in all_data: df['f77^2/f52^2'] = df['f77'] ** 2 / df['f52'] ** 2 df['f74^2/f81^2'] = df['f74'] ** 2 / df['f81'] ** 2 df['f77/f69'] = df['f77'] / df['f69'] df['f81^2/f77^2'] = df['f81'] ** 2 / df['f77'] ** 2 df['f96/f28'] = df['f96'] / df['f28'] df['f96^2/f73^2'] = df['f96'] ** 2 / df['f73'] ** 2 df['f78/f28'] = df['f78'] / df['f28'] df['f73/f28'] = df['f73'] / df['f28'] df['f66/f69'] = df['f66'] / df['f69'] df['f46^2/f4^2'] = df['f46'] ** 2 / df['f4'] ** 2 df['f4/f75'] = df['f4'] / df['f75'] df['f69^2/f96^2'] = df['f69'] ** 2 / df['f96'] ** 2 df['f25/f69'] = df['f25'] / df['f69'] df['f78/f69'] = df['f78'] / df['f69'] df['f96^2/f77^2'] = df['f96'] ** 2 / df['f77'] ** 2 df['f4^2/f52^2'] = df['f4'] ** 2 / df['f52'] ** 2 df['f66^2/f52^2'] = df['f66'] ** 2 / df['f52'] ** 2 df['f4^2/f81^2'] = df['f4'] ** 2 / df['f81'] ** 2 df['f46^2/f81^2'] = df['f46'] ** 2 / df['f81'] ** 2 df['f47/f69'] = df['f47'] / df['f69'] df['f74xf70'] = df['f74'] * df['f70'] df['f46^2/f66^2'] = df['f46'] ** 2 / df['f66'] ** 2 df['f74/f47'] = df['f74'] / df['f47'] df['f96^2xf69^2'] = df['f96'] ** 2 / df['f69'] ** 2 df['f66/f46'] = df['f66'] / df['f46'] df['f25xf96'] = df['f25'] * df['f96'] df['f28xf81'] = df['f28'] * df['f81'] df['f52xf66'] = df['f52'] * df['f66'] df['f46^2xf81^2'] = df['f46'] ** 2 * df['f81'] ** 2 df['f46xf74'] = df['f46'] * df['f74'] df['f28_log'] = np.log2(df['f28']) df['f28xf70'] = df['f28'] * df['f70'] df['f52_log'] = np.log2(df['f52']) df['f47_log'] = np.log2(df['f47']) df['f66xf73'] = df['f66'] * df['f73'] df['f69_log'] = np.log2(df['f69']) df['f96/f78'] = df['f96'] / df['f78']
code
72062718/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') train.head()
code
72062718/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_sub = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') pseudo = pd.read_csv('../input/blending-tool-tps-aug-2021/file1_7.85192_file2_7.85244_blend.csv') (test.shape, train.shape)
code
128020426/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') df_train.describe()
code
128020426/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') df_train.info()
code
128020426/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') plt.figure(figsize=(16, 5)) sns.heatmap(df_train.corr(), cmap='crest', annot=True, fmt='.3f') plt.show()
code
128020426/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
128020426/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') pp = sns.pairplot(data=df_train, y_vars=['yield'], x_vars=['fruitset', 'fruitmass', 'seeds'])
code
128020426/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') X_train_full = df_train.drop(['yield'], axis=1) y_train_full = df_train['yield'] X_test = df_test X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.2) pipeline = Pipeline([('scaler', StandardScaler()), ('random_forest_regr', RandomForestRegressor())]) pipeline.fit(X_train.values, y_train)
code
128020426/cell_16
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') X_train_full = df_train.drop(['yield'], axis=1) y_train_full = df_train['yield'] X_test = df_test X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.2) pipeline = Pipeline([('scaler', StandardScaler()), ('random_forest_regr', RandomForestRegressor())]) pipeline.fit(X_train.values, y_train) print('MAE of train:', mean_absolute_error(pipeline.predict(X_train.values), y_train)) print('MAE of valid:', mean_absolute_error(pipeline.predict(X_valid.values), y_valid))
code
128020426/cell_3
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') df_train.head()
code
128020426/cell_14
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv', index_col='id') X_train_full = df_train.drop(['yield'], axis=1) y_train_full = df_train['yield'] X_test = df_test X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.2) print('Train: X shape={} y shape={}'.format(X_train.shape, y_train.shape)) print('Valid: X shape={} y shape={}'.format(X_valid.shape, y_valid.shape))
code
122247764/cell_57
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) param_grid = {'bootstrap': [False, True], 'max_depth': [5, 8, 10, 20], 'max_features': [3, 4, 5, None], 'min_samples_split': [2, 10, 12], 'n_estimators': [100, 200, 300]} rfc = RandomForestClassifier() clf = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) clf = RandomForestClassifier(bootstrap=False, max_depth=10, max_features=3, min_samples_split=12, n_estimators=100, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) train_predict = clf.predict(X_train) test_predict = clf.predict(X_test) print('Accuracy on testing data: ', metrics.accuracy_score(y_test, test_predict)) print('Precision on testing data:', metrics.precision_score(y_test, test_predict)) print('Recall on testing data: ', metrics.recall_score(y_test, test_predict))
code
122247764/cell_56
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) param_grid = {'bootstrap': [False, True], 'max_depth': [5, 8, 10, 20], 'max_features': [3, 4, 5, None], 'min_samples_split': [2, 10, 12], 'n_estimators': [100, 200, 300]} rfc = RandomForestClassifier() clf = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) clf = RandomForestClassifier(bootstrap=False, max_depth=10, max_features=3, min_samples_split=12, n_estimators=100, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) train_predict = clf.predict(X_train) print('Precision on training data:', metrics.precision_score(y_train, train_predict)) print('Recall on training data:', metrics.recall_score(y_train, train_predict))
code
122247764/cell_23
[ "text_html_output_1.png" ]
import pandas as pd student = pd.read_csv('/kaggle/input/higher-education-predictors-of-student-retention/dataset.csv') student.shape student.columns student.sample(4) student.drop(student.index[student['Target'] == 'Enrolled'], inplace=True) student.dtypes
code
122247764/cell_55
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) param_grid = {'bootstrap': [False, True], 'max_depth': [5, 8, 10, 20], 'max_features': [3, 4, 5, None], 'min_samples_split': [2, 10, 12], 'n_estimators': [100, 200, 300]} rfc = RandomForestClassifier() clf = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) clf = RandomForestClassifier(bootstrap=False, max_depth=10, max_features=3, min_samples_split=12, n_estimators=100, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Without CV: ', accuracy_score(y_test, y_pred)) scores = cross_val_score(clf, X_train, y_train, cv=10) print('With CV: ', scores.mean()) print('Precision Score: ', precision_score(y_test, y_pred, average='micro')) print('Recall Score: ', recall_score(y_test, y_pred, average='micro')) print('F1 Score: ', f1_score(y_test, y_pred, average='micro'))
code
122247764/cell_54
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) param_grid = {'bootstrap': [False, True], 'max_depth': [5, 8, 10, 20], 'max_features': [3, 4, 5, None], 'min_samples_split': [2, 10, 12], 'n_estimators': [100, 200, 300]} rfc = RandomForestClassifier() clf = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5, n_jobs=-1, verbose=1) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Accuracy: ', accuracy_score(y_test, y_pred)) print(clf.best_params_) print(clf.best_estimator_)
code
122247764/cell_52
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Without Scaling and without CV: ', accuracy_score(y_test, y_pred)) scores = cross_val_score(clf, X_train, y_train, cv=10) print('Without Scaling and With CV: ', scores.mean())
code
122247764/cell_49
[ "text_plain_output_1.png" ]
print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape)
code
122247764/cell_3
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import plotly.express as px from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn import metrics from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score import pickle import warnings warnings.filterwarnings('ignore')
code
122247764/cell_46
[ "text_html_output_1.png" ]
import pandas as pd student = pd.read_csv('/kaggle/input/higher-education-predictors-of-student-retention/dataset.csv') student.shape student.columns student.sample(4) student.drop(student.index[student['Target'] == 'Enrolled'], inplace=True) student.dtypes student.corr()['Target'] student_df = student.iloc[:, [1, 11, 13, 14, 15, 16, 17, 20, 22, 23, 26, 28, 29, 34]] student_df.corr()['Target'] X = student_df.iloc[:, 0:13] y = student_df.iloc[:, -1] X
code
122247764/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd student = pd.read_csv('/kaggle/input/higher-education-predictors-of-student-retention/dataset.csv') student.shape student.columns student.sample(4) student.drop(student.index[student['Target'] == 'Enrolled'], inplace=True) student.dtypes student.describe()
code
122247764/cell_22
[ "text_html_output_1.png" ]
import pandas as pd student = pd.read_csv('/kaggle/input/higher-education-predictors-of-student-retention/dataset.csv') student.shape student.columns student.sample(4) student.drop(student.index[student['Target'] == 'Enrolled'], inplace=True) student
code
122247764/cell_53
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import cross_val_score clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) scores = cross_val_score(clf, X_train, y_train, cv=10) clf = RandomForestClassifier(max_depth=10, random_state=0) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print('Without CV: ', accuracy_score(y_test, y_pred)) scores = cross_val_score(clf, X_train, y_train, cv=10) print('With CV: ', scores.mean()) print('Precision Score: ', precision_score(y_test, y_pred, average='macro')) print('Recall Score: ', recall_score(y_test, y_pred, average='macro')) print('F1 Score: ', f1_score(y_test, y_pred, average='macro'))
code
129012199/cell_21
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) # north_american_median = df['NA_Sales'].median() # print(north_american_median) # north_american_median_index = df.index[df.NA_Sales == north_american_median][0] # print(df.iloc[north_american_median_index-5:north_american_median_index+5]['Name']) median_value = df["NA_Sales"].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values("NA_Sales", ascending=False) print(median_value) new_df top_seller = df.head(1) top_seller platform_avgs = df.groupby(by='Platform')['Global_Sales'].mean().sort_values(ascending=False) platform_avgs df.tail(1)
code
129012199/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) median_value = df['NA_Sales'].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values('NA_Sales', ascending=False) print(median_value) new_df
code
129012199/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre
code
129012199/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) # north_american_median = df['NA_Sales'].median() # print(north_american_median) # north_american_median_index = df.index[df.NA_Sales == north_american_median][0] # print(df.iloc[north_american_median_index-5:north_american_median_index+5]['Name']) median_value = df["NA_Sales"].median() df_sorted = df.iloc[(df['NA_Sales'] - median_value).abs().argsort()][::-1].reset_index(drop=True) diff = (df['NA_Sales'] - median_value).abs() df_sorted = df.assign(diff=diff).sort_values(['diff', 'NA_Sales']) above_median_indices = df_sorted[df_sorted['NA_Sales'] > median_value].head(5).index below_median_indices = df_sorted[df_sorted['NA_Sales'] < median_value].head(5).index new_df = df.loc[above_median_indices.union(below_median_indices)].sort_values("NA_Sales", ascending=False) print(median_value) new_df top_seller = df.head(1) top_seller platform_avgs = df.groupby(by='Platform')['Global_Sales'].mean().sort_values(ascending=False) platform_avgs yearly_sales_by_pub = df.groupby(['Year', 'Publisher'])['Global_Sales'].sum() idx = yearly_sales_by_pub.groupby('Year').idxmax() yearly_sales_by_pub.loc[idx]
code
129012199/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df most_common_pub = df.groupby('Publisher').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_pub most_common_platform = df.groupby('Platform').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_platform most_common_genre = df.groupby('Genre').count().sort_values(by='Rank', ascending=False).head(1).index[0] most_common_genre top_games = df.sort_values('Global_Sales', ascending=False) top_games.head(20)
code