path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74067865/cell_7
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import plotly.graph_objects as go healthsysdf = pd.read_csv('../input/world-bank-wdi-212-health-systems/2.12_Health_systems.csv') healthsysdf = healthsysdf.drop(columns='Province_State') healthsysdf = healthsysdf.drop(columns='Country_Region') healthsysdf['Total_Gov_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_public_pct_2016, axis=1) healthsysdf['Outofpocket_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_out_of_pocket_pct_2016, axis=1) healthsysdf['Other_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 - row.Total_Gov_Spend - row.Outofpocket_Spend, axis=1) countrycodes = ['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'ATG', 'ARG', 'ARM', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'CMR', 'CAN', '', 'CAF', 'TCD', '', 'CHL', 'CHN', '', '', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', '', 'FJI', 'FIN', 'FRA', '', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', '', 'GRD', '', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', '', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', '', 'KOR', '', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', '', '', 'LTU', 'LUX', 'MDG', 'MWI', 'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', '', 'NZL', 'NGA', 'NER', 'NGA', 'MKD', '', 'NOR', 'OMN', 'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', '', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', '', 'SVK', 'SVN', 'SLB', '', 'ZAF', '', 'ESP', 'LKA', 'KNA', 'LCA', '', 'VCT', 'SDN', 'SUR', 'SWE', 'CHE', '', 'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', '', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', '', '', 'YEM', 'ZMB', 'ZWE'] healthsysdf['Country_Codes'] = countrycodes bginfo = pd.read_csv('../input/undata-country-profiles/country_profile_variables.csv') bginfo.rename(columns={'country': 'World_Bank_Name'}, inplace=True) bginfo = bginfo.replace({'United States of America': 'United States', 'Viet Nam': 'Vietnam'}) healthsysdf = healthsysdf.replace({'Yemen, Rep.': 'Yemen'}) healthsysdf = pd.merge(healthsysdf, bginfo, on='World_Bank_Name', how='outer') healthsysdf = healthsysdf.dropna(thresh=3) badgdp = healthsysdf[healthsysdf['GDP: Gross domestic product (million current US$)'] < 0].index healthsysdf.drop(badgdp, inplace=True) healthsysdf.replace({'SouthernAsia': 'Asia', 'WesternAsia': 'Asia', 'EasternAsia': 'Asia', 'CentralAsia': 'Asia', 'South-easternAsia': 'Asia', 'WesternEurope': 'Europe', 'SouthernEurope': 'Europe', 'EasternEurope': 'Europe', 'NorthernEurope': 'Europe', 'NorthernAfrica': 'Africa', 'MiddleAfrica': 'Africa', 'WesternAfrica': 'Africa', 'EasternAfrica': 'Africa', 'SouthernAfrica': 'Africa', 'SouthAmerica': 'Americas', 'Caribbean': 'Americas', 'CentralAmerica': 'Americas', 'NorthernAmerica': 'Americas', 'Polynesia': 'Oceania', 'Melanesia': 'Oceania', 'Micronesia': 'Oceania'}, inplace=True) total_exp = healthsysdf.sort_values('Health_exp_pct_GDP_2016', ascending=False) top_ten_exp = total_exp.head(10) total_exp = total_exp.sort_values('Health_exp_pct_GDP_2016') low_ten_exp = total_exp.head(10) fig = make_subplots(rows=1, cols=2, shared_yaxes=True) fig.add_trace(go.Bar(x=top_ten_exp['World_Bank_Name'], y=top_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=1) fig.add_trace(go.Bar(x=low_ten_exp['World_Bank_Name'], y=low_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=2) fig.update_layout(title={'text': 'Ten highest and lowest spenders', 'y': 0.9, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor='white', paper_bgcolor='white', yaxis_title='% of GDP spent on healthcare', showlegend=False, font=dict(family='Courier New, monospace', size=14, color='#7f7f7f')) fig.show()
code
74067865/cell_15
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd import plotly.graph_objects as go import plotly.graph_objects as go healthsysdf = pd.read_csv('../input/world-bank-wdi-212-health-systems/2.12_Health_systems.csv') healthsysdf = healthsysdf.drop(columns='Province_State') healthsysdf = healthsysdf.drop(columns='Country_Region') healthsysdf['Total_Gov_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_public_pct_2016, axis=1) healthsysdf['Outofpocket_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_out_of_pocket_pct_2016, axis=1) healthsysdf['Other_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 - row.Total_Gov_Spend - row.Outofpocket_Spend, axis=1) countrycodes = ['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'ATG', 'ARG', 'ARM', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'CMR', 'CAN', '', 'CAF', 'TCD', '', 'CHL', 'CHN', '', '', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', '', 'FJI', 'FIN', 'FRA', '', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', '', 'GRD', '', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', '', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', '', 'KOR', '', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', '', '', 'LTU', 'LUX', 'MDG', 'MWI', 'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', '', 'NZL', 'NGA', 'NER', 'NGA', 'MKD', '', 'NOR', 'OMN', 'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', '', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', '', 'SVK', 'SVN', 'SLB', '', 'ZAF', '', 'ESP', 'LKA', 'KNA', 'LCA', '', 'VCT', 'SDN', 'SUR', 'SWE', 'CHE', '', 'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', '', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', '', '', 'YEM', 'ZMB', 'ZWE'] healthsysdf['Country_Codes'] = countrycodes bginfo = pd.read_csv('../input/undata-country-profiles/country_profile_variables.csv') bginfo.rename(columns={'country': 'World_Bank_Name'}, inplace=True) bginfo = bginfo.replace({'United States of America': 'United States', 'Viet Nam': 'Vietnam'}) healthsysdf = healthsysdf.replace({'Yemen, Rep.': 'Yemen'}) healthsysdf = pd.merge(healthsysdf, bginfo, on='World_Bank_Name', how='outer') healthsysdf = healthsysdf.dropna(thresh=3) badgdp = healthsysdf[healthsysdf['GDP: Gross domestic product (million current US$)'] < 0].index healthsysdf.drop(badgdp, inplace=True) healthsysdf.replace({'SouthernAsia': 'Asia', 'WesternAsia': 'Asia', 'EasternAsia': 'Asia', 'CentralAsia': 'Asia', 'South-easternAsia': 'Asia', 'WesternEurope': 'Europe', 'SouthernEurope': 'Europe', 'EasternEurope': 'Europe', 'NorthernEurope': 'Europe', 'NorthernAfrica': 'Africa', 'MiddleAfrica': 'Africa', 'WesternAfrica': 'Africa', 'EasternAfrica': 'Africa', 'SouthernAfrica': 'Africa', 'SouthAmerica': 'Americas', 'Caribbean': 'Americas', 'CentralAmerica': 'Americas', 'NorthernAmerica': 'Americas', 'Polynesia': 'Oceania', 'Melanesia': 'Oceania', 'Micronesia': 'Oceania'}, inplace=True) total_exp = healthsysdf.sort_values('Health_exp_pct_GDP_2016', ascending = False) top_ten_exp = total_exp.head(10) total_exp = total_exp.sort_values('Health_exp_pct_GDP_2016') low_ten_exp = total_exp.head(10) fig = make_subplots(rows=1, cols=2, shared_yaxes=True) fig.add_trace( go.Bar(x=top_ten_exp['World_Bank_Name'], y=top_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=1 ) fig.add_trace( go.Bar(x=low_ten_exp['World_Bank_Name'], y=low_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=2 ) fig.update_layout( title={ 'text': "Ten highest and lowest spenders", 'y':0.9, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor= 'white', paper_bgcolor= 'white', yaxis_title="% of GDP spent on healthcare", showlegend=False, font=dict( family="Courier New, monospace", size=14, color="#7f7f7f" ) ) fig.show() import plotly.graph_objects as go import pandas as pd fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Health_exp_pct_GDP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Percentage of GDP spent on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Total_Gov_Spend'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Government Spending on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['per_capita_exp_PPP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Healthcare Spending per Capita', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) g8_list = ['Canada', 'United Kingdom', 'United States', 'Russian Federation', 'Germany', 'France', 'Japan', 'China'] g8_sub = healthsysdf.loc[healthsysdf['World_Bank_Name'].isin(g8_list)] g8_sub = g8_sub.sort_values('Health_exp_pct_GDP_2016', ascending=False) fig = go.Figure() fig.add_trace(go.Bar(x=g8_sub['World_Bank_Name'], y=g8_sub['Health_exp_pct_GDP_2016'], name='Total Spending', marker_color='darkblue')) fig.add_trace(go.Bar(x=g8_sub['World_Bank_Name'], y=g8_sub['Total_Gov_Spend'], name='Government Spending', marker_color='mediumaquamarine')) fig.add_trace(go.Bar(x=g8_sub['World_Bank_Name'], y=g8_sub['Outofpocket_Spend'], name='Private (out of pocket) Spending', marker_color='lightsteelblue')) fig.add_trace(go.Bar(x=g8_sub['World_Bank_Name'], y=g8_sub['Other_Spend'], name='Other', marker_color='grey')) fig.update_layout(barmode='group', title={'text': 'G8 Healthcare spending', 'y': 0.9, 'x': 0.4, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor='white', paper_bgcolor='white', yaxis_title='% of GDP spent on healthcare', showlegend=True, font=dict(family='Courier New, monospace', size=14, color='#7f7f7f')) fig.show()
code
89136628/cell_21
[ "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['quote']['marketCap'], 'N/A', data[symbol]['stats']['year1ChangePercent'], 'N/A', data[symbol]['stats']['month6ChangePercent'], 'N/A', data[symbol]['stats']['month3ChangePercent'], 'N/A', data[symbol]['stats']['month1ChangePercent'], 'N/A', 'N/A'], index=hqm_columns), ignore_index=True) hqm_dataframe.columns hqm_dataframe.head()
code
89136628/cell_9
[ "text_html_output_1.png" ]
from kaggle_secrets import UserSecretsClient import requests import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data
code
89136628/cell_25
[ "text_html_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['quote']['marketCap'], 'N/A', data[symbol]['stats']['year1ChangePercent'], 'N/A', data[symbol]['stats']['month6ChangePercent'], 'N/A', data[symbol]['stats']['month3ChangePercent'], 'N/A', data[symbol]['stats']['month1ChangePercent'], 'N/A', 'N/A'], index=hqm_columns), ignore_index=True) hqm_dataframe.columns hqm_dataframe.sort_values('One-Year Price Return', ascending=False, inplace=True) hqm_dataframe = hqm_dataframe[:51] hqm_dataframe.reset_index(drop=True, inplace=True) len(hqm_dataframe) hqm_dataframe[hqm_dataframe.isnull().any(axis=1)] hqm_dataframe.dropna(axis=0, inplace=True) len(hqm_dataframe[hqm_dataframe.isnull().any(axis=1)].index)
code
89136628/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') momentum_srategy.head()
code
89136628/cell_23
[ "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['quote']['marketCap'], 'N/A', data[symbol]['stats']['year1ChangePercent'], 'N/A', data[symbol]['stats']['month6ChangePercent'], 'N/A', data[symbol]['stats']['month3ChangePercent'], 'N/A', data[symbol]['stats']['month1ChangePercent'], 'N/A', 'N/A'], index=hqm_columns), ignore_index=True) hqm_dataframe.columns hqm_dataframe.sort_values('One-Year Price Return', ascending=False, inplace=True) hqm_dataframe = hqm_dataframe[:51] hqm_dataframe.reset_index(drop=True, inplace=True) len(hqm_dataframe)
code
89136628/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') recommended_trades.head()
code
89136628/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89136628/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') def chunks(lst, n): for i in range(0, len(lst), n): yield lst[i:i + n] symbol_groups = list(chunks(trades['Ticker'], 100)) symbol_strings = [] for i in range(0, len(symbol_groups)): symbol_strings.append(','.join(symbol_groups[i])) symbol_strings
code
89136628/cell_19
[ "text_html_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['quote']['marketCap'], 'N/A', data[symbol]['stats']['year1ChangePercent'], 'N/A', data[symbol]['stats']['month6ChangePercent'], 'N/A', data[symbol]['stats']['month3ChangePercent'], 'N/A', data[symbol]['stats']['month1ChangePercent'], 'N/A', 'N/A'], index=hqm_columns), ignore_index=True) hqm_dataframe.columns
code
89136628/cell_7
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') trades.head()
code
89136628/cell_17
[ "text_html_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) len(hqm_dataframe)
code
89136628/cell_14
[ "text_html_output_1.png" ]
from kaggle_secrets import UserSecretsClient import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data
code
89136628/cell_27
[ "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient from scipy import stats import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import requests value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') import requests from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() IEX_CLOUD_API_TOKEN = 'Tpk_ddf77a77f6e7464390bb2adc85a2be11' secret_value_0 = user_secrets.get_secret('IEX_CLOUD_API_TOKEN') symbol = 'AAPL' api_url = f'https://sandbox.iexapis.com/stable/stock/{symbol}/quote?token={IEX_CLOUD_API_TOKEN}' data = requests.get(api_url).json() data trades[trades['Ticker'] == 'VIAC'] trades.drop(index=trades[trades['Ticker'] == 'VIAC'].index, inplace=True) my_columns = ['Ticker', 'Price', 'One-Year Price Return', 'Number of Shares to Buy'] trades_data = pd.DataFrame(columns=my_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/v1/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): trades_data = trades_data.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['stats']['year1ChangePercent'], 'N/A'], index=my_columns), ignore_index=True) trades_data hqm_columns = ['Ticker', 'Price', 'Market Capitalization', 'Number of Shares to Buy', 'One-Year Price Return', 'One-Year Return Percentile', 'Six-Month Price Return', 'Six-Month Return Percentile', 'Three-Month Price Return', 'Three-Month Return Percentile', 'One-Month Price Return', 'One-Month Return Percentile', 'HQM Score'] hqm_dataframe = pd.DataFrame(columns=hqm_columns) for symbol_string in trades['Ticker']: batch_api_call_url = f'https://sandbox.iexapis.com/stable/stock/market/batch/?types=stats,quote&symbols={symbol_string}&token={IEX_CLOUD_API_TOKEN}' data = requests.get(batch_api_call_url).json() for symbol in symbol_string.split(','): hqm_dataframe = hqm_dataframe.append(pd.Series([symbol, data[symbol]['quote']['latestPrice'], data[symbol]['quote']['marketCap'], 'N/A', data[symbol]['stats']['year1ChangePercent'], 'N/A', data[symbol]['stats']['month6ChangePercent'], 'N/A', data[symbol]['stats']['month3ChangePercent'], 'N/A', data[symbol]['stats']['month1ChangePercent'], 'N/A', 'N/A'], index=hqm_columns), ignore_index=True) hqm_dataframe.columns hqm_dataframe.sort_values('One-Year Price Return', ascending=False, inplace=True) hqm_dataframe = hqm_dataframe[:51] hqm_dataframe.reset_index(drop=True, inplace=True) len(hqm_dataframe) hqm_dataframe[hqm_dataframe.isnull().any(axis=1)] hqm_dataframe.dropna(axis=0, inplace=True) len(hqm_dataframe[hqm_dataframe.isnull().any(axis=1)].index) from scipy import stats time_periods = ['One-Year', 'Six-Month', 'Three-Month', 'One-Month'] for row in hqm_dataframe.index: for time_period in time_periods: hqm_dataframe.loc[row, f'{time_period} Return Percentile'] = stats.percentileofscore(hqm_dataframe[f'{time_period} Price Return'], hqm_dataframe.loc[row, f'{time_period} Price Return']) / 100 for time_period in time_periods: print(hqm_dataframe[f'{time_period} Return Percentile'] * 100) hqm_dataframe
code
89136628/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) value_strategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/value_strategy_1.csv.csv') recommended_trades = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/recommended_trades_1.csv.csv') momentum_srategy = pd.read_csv('/kaggle/input/algorithmic-trading-dataset/momentum_strategy_1.csv.csv') trades = pd.read_csv('/kaggle/input/sp-500-stocks/sp_500_stocks.csv') value_strategy.head()
code
50244989/cell_9
[ "text_plain_output_1.png" ]
from autoviml.Auto_NLP import Auto_NLP train_x, test_x, final, predicted = Auto_NLP(input_feature, train, test, target, score_type='balanced_accuracy', top_num_features=100, modeltype='Classification', verbose=2, build_model=True)
code
50244989/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
test.head()
code
50244989/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
!pip install autoviml
code
50244989/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd df = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/train_E6oV3lV.csv') testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') from sklearn.model_selection import train_test_split from autoviml.Auto_NLP import Auto_NLP train, test = train_test_split(df, test_size=0.2)
code
50244989/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/train_E6oV3lV.csv') testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') final.predict(test_x[input_feature]) testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') final.predict(testing[input_feature]) sample = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/sample_submission_gfvA5FD.csv') sample['label'] = final.predict(testing[input_feature])
code
50244989/cell_10
[ "text_plain_output_1.png" ]
final.predict(test_x[input_feature])
code
50244989/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/train_E6oV3lV.csv') testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') final.predict(test_x[input_feature]) testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') final.predict(testing[input_feature])
code
50244989/cell_5
[ "text_plain_output_3.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/train_E6oV3lV.csv') testing = pd.read_csv('../input/twitter-sentiment-analysis-analytics-vidya/test_tweets_anuFYb8.csv') df.head()
code
16168103/cell_4
[ "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls()
code
16168103/cell_20
[ "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001))
code
16168103/cell_6
[ "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) print(f'Classes: \n {data.classes}') data.show_batch(rows=8, figsize=(10, 10))
code
16168103/cell_26
[ "text_html_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001)) inter = ClassificationInterpretation.from_learner(learn) inter.plot_confusion_matrix(figsize=(10, 10))
code
16168103/cell_18
[ "text_html_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.recorder.plot()
code
16168103/cell_8
[ "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.recorder.plot()
code
16168103/cell_16
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2)
code
16168103/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001)) inter = ClassificationInterpretation.from_learner(learn) inter.plot_top_losses(10, figsize=(20, 20))
code
16168103/cell_22
[ "text_html_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.save('overwatch-stage-1') learn.unfreeze() learn.fit_one_cycle(2) learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.0001)) learn.recorder.plot_losses()
code
16168103/cell_10
[ "text_plain_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5)
code
16168103/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
path = Path('../input/heroes/heroes/') path.ls() data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.1, ds_tfms=get_transforms(max_warp=0, flip_vert=True, do_flip=True), size=128, bs=16).normalize(imagenet_stats) learn = create_cnn(data, models.resnet50, metrics=accuracy, model_dir='/tmp/model/') learn.lr_find() learn.fit_one_cycle(5) learn.recorder.plot_losses()
code
334111/cell_9
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split test.shape train = train[train['Semana'] > 8] ids = test['id'] test = test.drop(['id'], axis=1) y = train['Demanda_uni_equil'] X = train[test.columns.values] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1729) del train print('Division_Set_Shapes:', X.shape, y.shape) print('Validation_Set_Shapes:', X_train.shape, X_test.shape) del X del y
code
334111/cell_6
[ "text_plain_output_1.png" ]
test.shape
code
334111/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import xgboost as xgb import pandas as pd import math import os import sys from sklearn.cross_validation import train_test_split from ml_metrics import rmsle
code
334111/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
num_rounds = 50 del xg_train
code
334111/cell_7
[ "text_plain_output_1.png" ]
dtype = {'Semana': np.uint8, 'Agencia_ID': np.uint16, 'Canal_ID': np.uint8, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint16} filename = '../input/train.csv' train.head()
code
334111/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
train = train[train['Semana'] > 8] print('Training_Shape:', train.shape)
code
334111/cell_15
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from ml_metrics import rmsle from sklearn.cross_validation import train_test_split import math import numpy as np import xgboost as xgb def evalerror(preds, dtrain): labels = dtrain.get_label() assert len(preds) == len(labels) labels = labels.tolist() preds = preds.tolist() terms_to_sum = [(math.log(labels[i] + 1) - math.log(max(0, preds[i]) + 1)) ** 2.0 for i, pred in enumerate(labels)] return ('error', (sum(terms_to_sum) * (1.0 / len(preds))) ** 0.5) test.shape train = train[train['Semana'] > 8] ids = test['id'] test = test.drop(['id'], axis=1) y = train['Demanda_uni_equil'] X = train[test.columns.values] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1729) del train del X del y params = {} params['objective'] = 'reg:linear' params['eta'] = 0.1 params['max_depth'] = 5 params['subsample'] = 0.8 params['colsample_bytree'] = 0.6 params['silent'] = True params['booster'] = 'gbtree' test_preds = np.zeros(test.shape[0]) xg_train = xgb.DMatrix(X_train, label=y_train) del X_train del y_train xg_test = xgb.DMatrix(X_test) del X_test watchlist = [(xg_train, 'train')] preds = xgclassifier.predict(xg_test, ntree_limit=xgclassifier.best_iteration) print('RMSLE Score:', rmsle(y_test, preds)) del preds del y_test
code
334111/cell_14
[ "text_plain_output_1.png" ]
from ml_metrics import rmsle from sklearn.cross_validation import train_test_split import math import numpy as np import xgboost as xgb def evalerror(preds, dtrain): labels = dtrain.get_label() assert len(preds) == len(labels) labels = labels.tolist() preds = preds.tolist() terms_to_sum = [(math.log(labels[i] + 1) - math.log(max(0, preds[i]) + 1)) ** 2.0 for i, pred in enumerate(labels)] return ('error', (sum(terms_to_sum) * (1.0 / len(preds))) ** 0.5) test.shape train = train[train['Semana'] > 8] ids = test['id'] test = test.drop(['id'], axis=1) y = train['Demanda_uni_equil'] X = train[test.columns.values] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1729) del train del X del y params = {} params['objective'] = 'reg:linear' params['eta'] = 0.1 params['max_depth'] = 5 params['subsample'] = 0.8 params['colsample_bytree'] = 0.6 params['silent'] = True params['booster'] = 'gbtree' test_preds = np.zeros(test.shape[0]) xg_train = xgb.DMatrix(X_train, label=y_train) del X_train del y_train xg_test = xgb.DMatrix(X_test) del X_test watchlist = [(xg_train, 'train')] preds = xgclassifier.predict(xg_test, ntree_limit=xgclassifier.best_iteration) xgb.plot_importance(xgclassifier)
code
334111/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from ml_metrics import rmsle from sklearn.cross_validation import train_test_split import math import numpy as np import xgboost as xgb def evalerror(preds, dtrain): labels = dtrain.get_label() assert len(preds) == len(labels) labels = labels.tolist() preds = preds.tolist() terms_to_sum = [(math.log(labels[i] + 1) - math.log(max(0, preds[i]) + 1)) ** 2.0 for i, pred in enumerate(labels)] return ('error', (sum(terms_to_sum) * (1.0 / len(preds))) ** 0.5) test.shape train = train[train['Semana'] > 8] ids = test['id'] test = test.drop(['id'], axis=1) y = train['Demanda_uni_equil'] X = train[test.columns.values] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1729) del train del X del y params = {} params['objective'] = 'reg:linear' params['eta'] = 0.1 params['max_depth'] = 5 params['subsample'] = 0.8 params['colsample_bytree'] = 0.6 params['silent'] = True params['booster'] = 'gbtree' test_preds = np.zeros(test.shape[0]) xg_train = xgb.DMatrix(X_train, label=y_train) del X_train del y_train xg_test = xgb.DMatrix(X_test) del X_test watchlist = [(xg_train, 'train')] preds = xgclassifier.predict(xg_test, ntree_limit=xgclassifier.best_iteration) print('RMSLE Score:', rmsle(y_test, preds))
code
334111/cell_5
[ "text_plain_output_1.png" ]
print('Loading Test...') dtype_test = {'id': np.uint32, 'Semana': np.uint8, 'Agencia_ID': np.uint16, 'Canal_ID': np.uint8, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16} test.head()
code
17144046/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df movie_df = pd.read_csv('../input/u.item', sep='|', encoding='latin-1', header=None) movie_df = movie_df[[0, 1]] movie_df.columns = ['movie_id', 'movie_name'] movie_df mean_ratings = ratings_df.groupby('movie_id').agg({'rating': 'mean'}).reset_index().rename({'rating': 'mean_rating'}, axis=1) count_ratings = ratings_df.groupby('movie_id').agg({'rating': 'count'}).reset_index().rename({'rating': 'count_rating'}, axis=1) mean_ratings base_model_df = movie_df.merge(mean_ratings).merge(count_ratings) base_model_df sns.scatterplot(x='count_rating', y='mean_rating', data=base_model_df)
code
17144046/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df movie_df = pd.read_csv('../input/u.item', sep='|', encoding='latin-1', header=None) movie_df = movie_df[[0, 1]] movie_df.columns = ['movie_id', 'movie_name'] movie_df
code
17144046/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df mean_ratings = ratings_df.groupby('movie_id').agg({'rating': 'mean'}).reset_index().rename({'rating': 'mean_rating'}, axis=1) count_ratings = ratings_df.groupby('movie_id').agg({'rating': 'count'}).reset_index().rename({'rating': 'count_rating'}, axis=1) mean_ratings
code
17144046/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df
code
17144046/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17144046/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df movie_df = pd.read_csv('../input/u.item', sep='|', encoding='latin-1', header=None) movie_df = movie_df[[0, 1]] movie_df.columns = ['movie_id', 'movie_name'] movie_df mean_ratings = ratings_df.groupby('movie_id').agg({'rating': 'mean'}).reset_index().rename({'rating': 'mean_rating'}, axis=1) count_ratings = ratings_df.groupby('movie_id').agg({'rating': 'count'}).reset_index().rename({'rating': 'count_rating'}, axis=1) mean_ratings base_model_df = movie_df.merge(mean_ratings).merge(count_ratings) base_model_df
code
17144046/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df ratings_df['rating'].max()
code
17144046/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df movie_df = pd.read_csv('../input/u.item', sep='|', encoding='latin-1', header=None) movie_df = movie_df[[0, 1]] movie_df.columns = ['movie_id', 'movie_name'] movie_df mean_ratings = ratings_df.groupby('movie_id').agg({'rating': 'mean'}).reset_index().rename({'rating': 'mean_rating'}, axis=1) count_ratings = ratings_df.groupby('movie_id').agg({'rating': 'count'}).reset_index().rename({'rating': 'count_rating'}, axis=1) mean_ratings base_model_df = movie_df.merge(mean_ratings).merge(count_ratings) base_model_df sns.lmplot(x='count_rating', y='mean_rating', data=base_model_df)
code
17144046/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ratings_df = pd.read_csv('../input/u.data', sep='\t', names=['user_id', 'movie_id', 'rating', 'ts']) ratings_df movie_df = pd.read_csv('../input/u.item', sep='|', encoding='latin-1', header=None) movie_df = movie_df[[0, 1]] movie_df.columns = ['movie_id', 'movie_name'] movie_df user_df = pd.read_csv('../input/u.user', sep='|', encoding='latin-1', header=None) user_df = user_df[[0, 1]] user_df.columns = ['user_id', 'age'] user_df
code
89139708/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from pathlib import Path from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape print(torch.min(orig_image)) print(torch.max(orig_image))
code
89139708/cell_9
[ "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_1.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
from pytorch_lightning.loggers import WandbLogger wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger)
code
89139708/cell_25
[ "image_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.trainer import Trainer from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger) class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} data_mod = CelebADataModule(csv_path=csv_path, image_dir=img_path, train_transforms=image_transforms['train'], val_transforms=image_transforms['val'], batch_size=32, num_workers=3) checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch') trainer = Trainer(gpus=1, max_epochs=6, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer.fit(model, data_mod)
code
89139708/cell_34
[ "text_html_output_2.png", "text_html_output_1.png" ]
from IPython.core.display import display, HTML from PIL import Image from io import BytesIO from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.trainer import Trainer from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import base64 import matplotlib.pyplot as plt import os import pandas as pd import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger) class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape def show_image(image_tensor): image_tensor = torch.permute(image_tensor.cpu(), (1, 2, 0)) plt.axis('off') image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} transformed_image = Image.open(single_image_path).convert('RGB') transformed_image = image_transforms['train'](transformed_image) class CelebADataModule(pl.LightningDataModule): def __init__(self, csv_path: str, image_dir: str, train_transforms, val_transforms, batch_size=16, **dataloader_kwargs): super(CelebADataModule, self).__init__() dataloader_kwargs.setdefault('num_workers', 2) self.csv_path = csv_path self.image_dir = image_dir self.transforms = {'train': train_transforms, 'val': val_transforms} self.bs = batch_size self.dataloader_kwargs = dataloader_kwargs self._label_to_node_idx = {-1: 0, 1: 1} self.image_labels = None self.train_dataset = None self.val_dataset = None self.test_dataset = None def setup(self, stage=None): attributes = pd.read_csv(self.csv_path) self.image_labels = [] for i in range(len(attributes)): ith_sample = attributes.iloc[i] image_name = ith_sample[0] label = ith_sample['Male'] label = self._label_to_node_idx[label] self.image_labels.append((image_name, label)) total_d = len(self.image_labels) train_data = self.image_labels[:total_d - 5000] test_data = self.image_labels[total_d - 5000:total_d - 2500] val_data = self.image_labels[total_d - 2500:] self.train_dataset = CelebADataset(train_data, self.image_dir, self.transforms['train']) self.test_dataset = CelebADataset(test_data, self.image_dir, self.transforms['val']) self.val_dataset = CelebADataset(val_data, self.image_dir, self.transforms['val']) def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.bs, shuffle=True, **self.dataloader_kwargs) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.bs, **self.dataloader_kwargs) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=self.bs, **self.dataloader_kwargs) data_mod = CelebADataModule(csv_path=csv_path, image_dir=img_path, train_transforms=image_transforms['train'], val_transforms=image_transforms['val'], batch_size=32, num_workers=3) checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch') trainer = Trainer(gpus=1, max_epochs=6, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer.fit(model, data_mod) trainer.validate(model, data_mod) best_model_path = trainer.checkpoint_callback.best_model_path model = LitModel.load_from_checkpoint(best_model_path, n_classes=2) from io import BytesIO import base64 gender_target = {0: 'Female', 1: 'Male'} def img_to_display(filename): i = Image.open(filename) i.thumbnail((200, 200), Image.LANCZOS) with BytesIO() as buffer: i.save(buffer, 'jpeg') return base64.b64encode(buffer.getvalue()).decode() def display_result(filename, prediction, target): """ Display the results in HTML """ gender = 'Male' gender_icon = 'https://i.imgur.com/nxWan2u.png' if prediction[1] <= 0.5: gender_icon = 'https://i.imgur.com/oAAb8rd.png' gender = 'Female' display_html = '\n <div style="overflow: auto; border: 2px solid #D8D8D8;\n padding: 5px; width: 420px;" >\n <img src="data:image/jpeg;base64,{}" style="float: left;" width="200" height="200">\n <div style="padding: 10px 0px 0px 20px; overflow: auto;">\n <img src="{}" style="float: left;" width="40" height="40">\n <h3 style="margin-left: 50px; margin-top: 2px;">{}</h3>\n <p style="margin-left: 50px; margin-top: -6px; font-size: 12px">{} prob.</p>\n <p style="margin-left: 50px; margin-top: -16px; font-size: 12px">Real Target: {}</p>\n <p style="margin-left: 50px; margin-top: -16px; font-size: 12px">Filename: {}</p>\n </div>\n </div>\n '.format(gender_icon, gender, '{0:.2f}%'.format(round(torch.max(prediction).item() * 100, 2)), gender_target[target.item()], filename) def visualize_results(model, images, labels): model.eval() preds = model(images).softmax(dim=-1) for idx, (image, pred, label) in enumerate(zip(images, preds, labels)): test_vis_image_dir = Path('test-visualisation-images') if not test_vis_image_dir.exists(): test_vis_image_dir.mkdir() filename = test_vis_image_dir / f'{idx}.jpg' torchvision.utils.save_image(image, filename) data_mod.setup() train_data = data_mod.test_dataloader() img, label = next(iter(train_data)) img, label = (img[:8], label[:8]) visualize_results(model.cpu(), img, label)
code
89139708/cell_30
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient from kaggle_secrets import UserSecretsClient from torch import nn from torchmetrics import Accuracy import pytorch_lightning as pl import torch import torchvision import wandb class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer from kaggle_secrets import UserSecretsClient secret_label = 'wandb' wandb_key = UserSecretsClient().get_secret(secret_label) from kaggle_secrets import UserSecretsClient secret_label = 'wandb' secret_value = UserSecretsClient().get_secret(secret_label) wandb.login(key=secret_value) wandb.finish()
code
89139708/cell_29
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.trainer import Trainer from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger) class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} data_mod = CelebADataModule(csv_path=csv_path, image_dir=img_path, train_transforms=image_transforms['train'], val_transforms=image_transforms['val'], batch_size=32, num_workers=3) checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch') trainer = Trainer(gpus=1, max_epochs=6, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer.fit(model, data_mod) trainer.validate(model, data_mod) best_model_path = trainer.checkpoint_callback.best_model_path model = LitModel.load_from_checkpoint(best_model_path, n_classes=2) trainer.test(model, data_mod)
code
89139708/cell_26
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.trainer import Trainer from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger) class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} data_mod = CelebADataModule(csv_path=csv_path, image_dir=img_path, train_transforms=image_transforms['train'], val_transforms=image_transforms['val'], batch_size=32, num_workers=3) checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch') trainer = Trainer(gpus=1, max_epochs=6, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer.fit(model, data_mod) trainer.validate(model, data_mod)
code
89139708/cell_16
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} transformed_image = Image.open(single_image_path).convert('RGB') transformed_image = image_transforms['train'](transformed_image) print(f'Shape of the image after transform: {transformed_image.shape}')
code
89139708/cell_3
[ "text_plain_output_1.png" ]
!pip install --upgrade wandb
code
89139708/cell_17
[ "image_output_1.png" ]
from PIL import Image from pathlib import Path from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import matplotlib.pyplot as plt import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape def show_image(image_tensor): image_tensor = torch.permute(image_tensor.cpu(), (1, 2, 0)) plt.axis('off') image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} transformed_image = Image.open(single_image_path).convert('RGB') transformed_image = image_transforms['train'](transformed_image) show_image(transformed_image)
code
89139708/cell_24
[ "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient from kaggle_secrets import UserSecretsClient from torch import nn from torchmetrics import Accuracy import pytorch_lightning as pl import torch import torchvision import wandb class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer from kaggle_secrets import UserSecretsClient secret_label = 'wandb' wandb_key = UserSecretsClient().get_secret(secret_label) from kaggle_secrets import UserSecretsClient secret_label = 'wandb' secret_value = UserSecretsClient().get_secret(secret_label) wandb.login(key=secret_value)
code
89139708/cell_14
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import matplotlib.pyplot as plt import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape def show_image(image_tensor): image_tensor = torch.permute(image_tensor.cpu(), (1, 2, 0)) plt.axis('off') plt.imshow(image_tensor) show_image(orig_image)
code
89139708/cell_27
[ "application_vnd.jupyter.stderr_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.trainer import Trainer from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer wandb_logger = WandbLogger(project='gender-detection-vit') model = LitModel(2, wandb_logger=wandb_logger) class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape image_transforms = {'train': transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()]), 'val': transforms.Compose([transforms.Resize(size=(218, 178)), transforms.ToTensor()])} data_mod = CelebADataModule(csv_path=csv_path, image_dir=img_path, train_transforms=image_transforms['train'], val_transforms=image_transforms['val'], batch_size=32, num_workers=3) checkpoint_callback = ModelCheckpoint(monitor='val_loss_epoch') trainer = Trainer(gpus=1, max_epochs=6, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer.fit(model, data_mod) trainer.validate(model, data_mod) best_model_path = trainer.checkpoint_callback.best_model_path print(f'Best model {best_model_path}') model = LitModel.load_from_checkpoint(best_model_path, n_classes=2)
code
89139708/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from torch import nn from torch.utils.data import Dataset, DataLoader from torchmetrics import Accuracy from torchvision import transforms import os import pytorch_lightning as pl import torch import torchvision import wandb img_path = Path('../input/celeba-dataset/img_align_celeba/img_align_celeba') csv_path = Path('../input/celeba-dataset/list_attr_celeba.csv') class LitModel(pl.LightningModule): def __init__(self, n_classes, download_pretrained=True, wandb_logger=None, **kwargs): super().__init__() self.model = torchvision.models.resnet18(pretrained=True) self.model.fc = nn.Linear(512, n_classes) self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() self.loss = nn.CrossEntropyLoss() self.wandb_logger = wandb_logger self.opt_params = {'lr': 0.001} def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) loss = self.loss(y_hat_logits, y) train_acc = self.train_accuracy(y_hat_logits, y) self.log('train_acc', train_acc, prog_bar=True) self.log('train_loss', loss) return {'loss': loss, 'progress_bar': {'train_acc': train_acc}} def training_epoch_end(self, outputs): avg_train_loss = torch.stack([x['loss'] for x in outputs]).mean() self.log('train_avg_loss', avg_train_loss, on_epoch=True) self.log('train_acc_epoch', self.train_accuracy, on_epoch=True) def validation_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.val_accuracy(y_hat_logits, y) val_loss = self.loss(y_hat_logits, y) return {'val_loss': val_loss, 'out_logits': y_hat_logits} def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx) -> None: if not self.wandb_logger: return if batch_idx == 0: outputs = outputs['out_logits'] n = 20 x, y = batch images = [img for img in x[:n]] assert len(outputs.shape) == 2 assert outputs.shape[-1] == 2 preds = outputs[:n].softmax(dim=-1) pred_prob, pred_class = preds.max(dim=-1) columns = ['image', 'pred_class', 'true_class', 'pred_prob'] label_to_text = {0: 'Female', 1: 'Male'} td = [] for image, y_pred_class, y_real, y_pred_prob in zip(x[:n], pred_class, y[:n], pred_prob): pred_class = label_to_text[y_pred_class.item()] true_class = label_to_text[y_real.item()] td.append([wandb.Image(image), pred_class, true_class, y_pred_prob]) self.wandb_logger.log_table(key='samples', columns=columns, data=td) def validation_epoch_end(self, outputs): avg_val_loss = torch.stack([x['val_loss'] for x in outputs]).mean() self.log('val_acc_epoch', self.val_accuracy, on_epoch=True, prog_bar=True) self.log('val_loss_epoch', avg_val_loss, on_epoch=True, prog_bar=True) return {'val_loss': avg_val_loss} def test_step(self, batch, batch_idx): x, y = batch y_hat_logits = self.forward(x) self.test_accuracy(y_hat_logits, y) test_loss = self.loss(y_hat_logits, y) self.log('test_loss', test_loss, on_epoch=True) self.log('test_acc', self.test_accuracy, on_epoch=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), **self.opt_params) return optimizer class CelebADataset(Dataset): def __init__(self, image_attr_ordered_map, base_image_dir: str, transforms): self.image_attr_ordered_map = image_attr_ordered_map self.base_image_dir = base_image_dir self.transforms = transforms def __len__(self): return len(self.image_attr_ordered_map) def __getitem__(self, index): img_name, labels = self.image_attr_ordered_map[index] image_path = os.path.join(self.base_image_dir, img_name) image = Image.open(image_path).convert('RGB') tensor_x = self.transforms(image) return (tensor_x, labels) single_image_path = img_path / '000002.jpg' orig_image = Image.open(single_image_path).convert('RGB') orig_image = transforms.ToTensor()(orig_image) orig_image.shape
code
18139890/cell_42
[ "text_plain_output_1.png" ]
from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) aux_columns = ['capitals', 'exclamation_points', 'total_length'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy'])
code
18139890/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum()
code
18139890/cell_56
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.utils import np_utils import numpy as np import pandas as pd import re train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) """Adding additional informative columns, as most toxic tweets contain exclamations, capitalized words that can serve as important markers""" regex = re.compile('[@_!#$%^&*()<>?/\\|}{~:]') train_data['capitals'] = train_data['comment_text'].apply(lambda x: sum((1 for c in x if c.isupper()))) train_data['exclamation_points'] = train_data['comment_text'].apply(lambda x: len(regex.findall(x))) train_data['total_length'] = train_data['comment_text'].apply(len) features_added = ('capitals', 'exclamation_points', 'total_length') features_existing = ('target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat', 'funny', 'wow', 'sad', 'likes', 'disagree', 'sexual_explicit', 'identity_annotator_count', 'toxicity_annotator_count') rows = [{c: train_data[f].corr(train_data[c]) for c in features_existing} for f in features_added] train_correlations = pd.DataFrame(rows, index=features_added) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) aux_columns = ['capitals', 'exclamation_points', 'total_length'] X = train_data[aux_columns + ['comment_text']] y = train_data['target'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([sequences_matrix, train_meta_features], y_train, batch_size=128, epochs=5, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)]) test_sequences = tok.texts_to_sequences(x_test) test_sequences_matrix = sequence.pad_sequences(test_sequences, maxlen=max_len) score = model.evaluate([test_sequences_matrix, test_meta_features], y_test, verbose=True) X = train_data['comment_text'] y = train_data['target'] data_sequences = tok.texts_to_sequences(X) data_matrix = sequence.pad_sequences(data_sequences) y = np_utils.to_categorical(y, num_classes=2) X_meta_features = np.asarray(train_data[aux_columns]) max_len = data_matrix.shape[1] model = Meta_RNN() model.compile(loss='binary_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([data_matrix, X_meta_features], y, batch_size=512, epochs=5, validation_split=0.0, verbose=True) test_data = pd.read_csv('../input/test.csv') meta_features = np.asarray(test_data[aux_columns]) data = test_data['comment_text'] sequences = tok.texts_to_sequences(data) test_sequences_matrix = sequence.pad_sequences(sequences, maxlen=max_len) print(test_sequences_matrix.shape) print(meta_features.shape)
code
18139890/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/train.csv') train_data.sample(5) sns.set_style('darkgrid') sns.distplot(train_data['target'])
code
18139890/cell_41
[ "text_plain_output_1.png" ]
from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) aux_columns = ['capitals', 'exclamation_points', 'total_length'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) print(sequences_matrix.shape) print(train_meta_features.shape)
code
18139890/cell_2
[ "text_html_output_1.png" ]
import os import os print(os.listdir('../input'))
code
18139890/cell_50
[ "text_plain_output_1.png" ]
from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.utils import np_utils import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) aux_columns = ['capitals', 'exclamation_points', 'total_length'] X = train_data[aux_columns + ['comment_text']] y = train_data['target'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) test_sequences = tok.texts_to_sequences(x_test) test_sequences_matrix = sequence.pad_sequences(test_sequences, maxlen=max_len) X = train_data['comment_text'] y = train_data['target'] data_sequences = tok.texts_to_sequences(X) data_matrix = sequence.pad_sequences(data_sequences) y = np_utils.to_categorical(y, num_classes=2) X_meta_features = np.asarray(train_data[aux_columns]) print(data_matrix.shape) print(X_meta_features.shape) print(y.shape)
code
18139890/cell_52
[ "text_plain_output_1.png" ]
import pandas as pd import re train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) """Adding additional informative columns, as most toxic tweets contain exclamations, capitalized words that can serve as important markers""" regex = re.compile('[@_!#$%^&*()<>?/\\|}{~:]') train_data['capitals'] = train_data['comment_text'].apply(lambda x: sum((1 for c in x if c.isupper()))) train_data['exclamation_points'] = train_data['comment_text'].apply(lambda x: len(regex.findall(x))) train_data['total_length'] = train_data['comment_text'].apply(len) features_added = ('capitals', 'exclamation_points', 'total_length') features_existing = ('target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat', 'funny', 'wow', 'sad', 'likes', 'disagree', 'sexual_explicit', 'identity_annotator_count', 'toxicity_annotator_count') rows = [{c: train_data[f].corr(train_data[c]) for c in features_existing} for f in features_added] train_correlations = pd.DataFrame(rows, index=features_added) test_data = pd.read_csv('../input/test.csv') test_data.head(5)
code
18139890/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import numpy as np import pandas as pd import seaborn as sns from nltk.tokenize import word_tokenize import re from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) from sklearn.preprocessing import LabelEncoder from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() from sklearn.model_selection import train_test_split from keras.utils import np_utils from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.optimizers import adam from keras.models import Sequential, Model from keras.callbacks import EarlyStopping
code
18139890/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100
code
18139890/cell_45
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.utils import np_utils import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) aux_columns = ['capitals', 'exclamation_points', 'total_length'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([sequences_matrix, train_meta_features], y_train, batch_size=128, epochs=5, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)]) test_sequences = tok.texts_to_sequences(x_test) test_sequences_matrix = sequence.pad_sequences(test_sequences, maxlen=max_len) score = model.evaluate([test_sequences_matrix, test_meta_features], y_test, verbose=True) print('Test loss:', score[0]) print('Test accuracy:', score[1])
code
18139890/cell_51
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.utils import np_utils import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) aux_columns = ['capitals', 'exclamation_points', 'total_length'] X = train_data[aux_columns + ['comment_text']] y = train_data['target'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([sequences_matrix, train_meta_features], y_train, batch_size=128, epochs=5, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)]) test_sequences = tok.texts_to_sequences(x_test) test_sequences_matrix = sequence.pad_sequences(test_sequences, maxlen=max_len) score = model.evaluate([test_sequences_matrix, test_meta_features], y_test, verbose=True) X = train_data['comment_text'] y = train_data['target'] data_sequences = tok.texts_to_sequences(X) data_matrix = sequence.pad_sequences(data_sequences) y = np_utils.to_categorical(y, num_classes=2) X_meta_features = np.asarray(train_data[aux_columns]) max_len = data_matrix.shape[1] model = Meta_RNN() model.compile(loss='binary_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([data_matrix, X_meta_features], y, batch_size=512, epochs=5, validation_split=0.0, verbose=True)
code
18139890/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5)
code
18139890/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import re import seaborn as sns train_data = pd.read_csv('../input/train.csv') train_data.sample(5) sns.set_style('darkgrid') train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) """Adding additional informative columns, as most toxic tweets contain exclamations, capitalized words that can serve as important markers""" regex = re.compile('[@_!#$%^&*()<>?/\\|}{~:]') train_data['capitals'] = train_data['comment_text'].apply(lambda x: sum((1 for c in x if c.isupper()))) train_data['exclamation_points'] = train_data['comment_text'].apply(lambda x: len(regex.findall(x))) train_data['total_length'] = train_data['comment_text'].apply(len) features_added = ('capitals', 'exclamation_points', 'total_length') features_existing = ('target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat', 'funny', 'wow', 'sad', 'likes', 'disagree', 'sexual_explicit', 'identity_annotator_count', 'toxicity_annotator_count') rows = [{c: train_data[f].corr(train_data[c]) for c in features_existing} for f in features_added] train_correlations = pd.DataFrame(rows, index=features_added) sns.set() sns.heatmap(train_correlations)
code
18139890/cell_43
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.layers import CuDNNLSTM, Activation, Dense, Dropout, Input, Embedding, concatenate, Bidirectional from keras.models import Sequential, Model from keras.optimizers import adam from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.utils import np_utils import numpy as np import pandas as pd train_data = pd.read_csv('../input/train.csv') train_data.sample(5) train_data['target'].value_counts()[0] / train_data.shape[0] * 100 train_data.isna().sum() train_data.drop(['id'], axis=1, inplace=True) X = train_data['comment_text'] y = train_data['target'] max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(X) y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) aux_columns = ['capitals', 'exclamation_points', 'total_length'] train_meta_features = np.asarray(x_train[aux_columns]) test_meta_features = np.asarray(x_test[aux_columns]) x_train = x_train['comment_text'] x_test = x_test['comment_text'] y_train = np_utils.to_categorical(y_train, num_classes=2) y_test = np_utils.to_categorical(y_test, num_classes=2) max_words = 10000 tok = Tokenizer(num_words=max_words) tok.fit_on_texts(x_train) sequences = tok.texts_to_sequences(x_train) sequences_matrix = sequence.pad_sequences(sequences) max_len = sequences_matrix.shape[1] def Meta_RNN(): nlp_input = Input(shape=(max_len,), name='nlp_input') meta_input = Input(shape=(3,), name='meta_input') embedding_layer = Embedding(max_words, 64, input_length=max_len)(nlp_input) nlp_out = Bidirectional(CuDNNLSTM(64))(embedding_layer) combined_input = concatenate([nlp_out, meta_input]) layer = Dense(256, name='fc1')(combined_input) layer = Activation('relu')(layer) layer = Dropout(0.5)(layer) layer = Dense(2, name='out_layer')(layer) layer = Activation('softmax')(layer) model = Model(inputs=[nlp_input, meta_input], outputs=layer) return model model = Meta_RNN() model.summary() model.compile(loss='categorical_crossentropy', optimizer=adam(lr=0.001, amsgrad=True), metrics=['accuracy']) model.fit([sequences_matrix, train_meta_features], y_train, batch_size=128, epochs=5, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)])
code
73089284/cell_21
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import plot_confusion_matrix import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') logmodel = LogisticRegression(fit_intercept=True) logmodel.max_iter = 1000 logit_result = logmodel.fit(X_train, Y_train) ylm_predicted = logit_result.predict(X_test) rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) imp = pd.DataFrame(rf_clf.feature_importances_, index=X_test.columns, columns=['POLICY_PRICE_CHANGE']) imp.sort_values('POLICY_PRICE_CHANGE').plot(kind='barh', figsize=(12, 8)) titles_options = [("Normalized cm in log regression", 'true')] #normalized in logisticregression. ("Confusion matrix, without normalization", None) for title, normalize in titles_options: disp = plot_confusion_matrix(logmodel, X_test, Y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() titles_options = [('Normalized cm in rf', 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(rf_clf, X_test, Y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show()
code
73089284/cell_20
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import plot_confusion_matrix import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') logmodel = LogisticRegression(fit_intercept=True) logmodel.max_iter = 1000 logit_result = logmodel.fit(X_train, Y_train) ylm_predicted = logit_result.predict(X_test) rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) imp = pd.DataFrame(rf_clf.feature_importances_, index=X_test.columns, columns=['POLICY_PRICE_CHANGE']) imp.sort_values('POLICY_PRICE_CHANGE').plot(kind='barh', figsize=(12, 8)) titles_options = [('Normalized cm in log regression', 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(logmodel, X_test, Y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show()
code
73089284/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape df.head()
code
73089284/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape df = df.copy() df.reset_index(drop=True) df.dropna(axis=0, inplace=True) obj_columns = df.select_dtypes(['object']).columns df[obj_columns] = df[obj_columns].apply(lambda x: x.astype('category')) df[obj_columns] = df[obj_columns].apply(lambda x: x.cat.codes) df.head(2)
code
73089284/cell_19
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) imp = pd.DataFrame(rf_clf.feature_importances_, index=X_test.columns, columns=['POLICY_PRICE_CHANGE']) imp.sort_values('POLICY_PRICE_CHANGE').plot(kind='barh', figsize=(12, 8)) X_test
code
73089284/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape df = df.copy() df.reset_index(drop=True)
code
73089284/cell_18
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) imp = pd.DataFrame(rf_clf.feature_importances_, index=X_test.columns, columns=['POLICY_PRICE_CHANGE']) imp.sort_values('POLICY_PRICE_CHANGE').plot(kind='barh', figsize=(12, 8))
code
73089284/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape df = df.copy() df.reset_index(drop=True) df.info()
code
73089284/cell_16
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import plot_confusion_matrix import matplotlib.pyplot as plt logmodel = LogisticRegression(fit_intercept=True) logmodel.max_iter = 1000 logit_result = logmodel.fit(X_train, Y_train) ylm_predicted = logit_result.predict(X_test) plot_confusion_matrix(logmodel, X_test, Y_test) plt.show()
code
73089284/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import plot_confusion_matrix import matplotlib.pyplot as plt logmodel = LogisticRegression(fit_intercept=True) logmodel.max_iter = 1000 logit_result = logmodel.fit(X_train, Y_train) ylm_predicted = logit_result.predict(X_test) rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) plot_confusion_matrix(rf_clf, X_test, Y_test) plt.show()
code
73089284/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') rf_clf = RandomForestClassifier(bootstrap=False) result_clf = rf_clf.fit(X_train, Y_train) yrf_predicted = rf_clf.predict(X_test) imp = pd.DataFrame(rf_clf.feature_importances_, index=X_test.columns, columns=['POLICY_PRICE_CHANGE']) imp.sort_values('POLICY_PRICE_CHANGE').plot(kind='barh', figsize=(12, 8)) imp = pd.DataFrame(rf.feature_importances_, index=x_train.columns, columns=['importance']) imp.sort_values('importance').plot(kind='barh', figsize=(12, 8))
code
73089284/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape df = df.copy() df.reset_index(drop=True) df.dropna(axis=0, inplace=True) obj_columns = df.select_dtypes(['object']).columns df[obj_columns] = df[obj_columns].apply(lambda x: x.astype('category')) df[obj_columns] = df[obj_columns].apply(lambda x: x.cat.codes) df.info()
code
73089284/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/kasco-dataset-russian/Задача 1/Прогнозирование пролонгации/Данные для задачи.txt', sep=';') df.shape
code
122251329/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns csv_path = '/kaggle/input/heart-failure-prediction/heart.csv' hrz = pd.read_csv(csv_path) target = ['HeartDisease'] num_attribs = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak'] cat_nom_attribs = ['ChestPainType', 'RestingECG', 'ST_Slope'] cat_bin_attribs = ['Sex', 'FastingBS', 'ExerciseAngina'] cat_attribs = cat_nom_attribs + cat_bin_attribs attribs = num_attribs + target sns.pairplot(hrz[attribs], hue='HeartDisease', diag_kind='kde')
code
122251329/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd csv_path = '/kaggle/input/heart-failure-prediction/heart.csv' hrz = pd.read_csv(csv_path) hrz.head()
code
122251329/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns csv_path = '/kaggle/input/heart-failure-prediction/heart.csv' hrz = pd.read_csv(csv_path) target = ['HeartDisease'] num_attribs = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak'] cat_nom_attribs = ['ChestPainType', 'RestingECG', 'ST_Slope'] cat_bin_attribs = ['Sex', 'FastingBS', 'ExerciseAngina'] cat_attribs = cat_nom_attribs + cat_bin_attribs attribs = num_attribs + target ncol = 3 nrow = int(np.ceil(len(num_attribs)/ncol)) fig, axs = plt.subplots(nrow, ncol, figsize=(10, 5), facecolor=None) i = 1 for col in num_attribs: plt.subplot(nrow, ncol, i) ax = sns.histplot(data=hrz, x=col, hue=target[0], multiple="stack", palette='colorblind') #kdeplot ax.set_xlabel(col, fontsize=12) ax.set_ylabel("count", fontsize=12) sns.despine(right=True) sns.despine(offset=0, trim=False) i+=1 fig.delaxes(axs[nrow-1, ncol-1]) plt.suptitle('Distribution of Numerical Features', fontsize = 14); plt.tight_layout() ncol = 3 nrow = int(np.ceil(len(num_attribs) / ncol)) f, axes = plt.subplots(nrow, ncol, figsize=(8, 6)) for name, ax in zip(num_attribs, axes.flatten()): sns.boxplot(y=name, x='HeartDisease', data=hrz, orient='v', ax=ax) f.delaxes(axes[nrow - 1, ncol - 1]) plt.suptitle('Box-and-whisker plot', fontsize=14) plt.tight_layout()
code
122251329/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns csv_path = '/kaggle/input/heart-failure-prediction/heart.csv' hrz = pd.read_csv(csv_path) target = ['HeartDisease'] num_attribs = ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak'] cat_nom_attribs = ['ChestPainType', 'RestingECG', 'ST_Slope'] cat_bin_attribs = ['Sex', 'FastingBS', 'ExerciseAngina'] cat_attribs = cat_nom_attribs + cat_bin_attribs attribs = num_attribs + target ncol = 3 nrow = int(np.ceil(len(num_attribs) / ncol)) fig, axs = plt.subplots(nrow, ncol, figsize=(10, 5), facecolor=None) i = 1 for col in num_attribs: plt.subplot(nrow, ncol, i) ax = sns.histplot(data=hrz, x=col, hue=target[0], multiple='stack', palette='colorblind') ax.set_xlabel(col, fontsize=12) ax.set_ylabel('count', fontsize=12) sns.despine(right=True) sns.despine(offset=0, trim=False) i += 1 fig.delaxes(axs[nrow - 1, ncol - 1]) plt.suptitle('Distribution of Numerical Features', fontsize=14) plt.tight_layout()
code