path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73083438/cell_11
[ "text_html_output_1.png" ]
from termcolor import colored import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') print('Number of numerical columns is:', colored(len(num_col), 'green'), '\nNumber of categorical columsn is:', colored(len(cat_cols), 'green'))
code
73083438/cell_7
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.info()
code
73083438/cell_18
[ "text_plain_output_1.png" ]
from termcolor import colored import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') list(test.columns) == list(features.columns) test.isnull().sum() lis = [] for i in features[cat_cols].columns: test_vals = set(test[i].unique()) train_vals = set(features[i].unique()) lis.append(test_vals.issubset(train_vals)) print(colored(all(lis), 'green'))
code
73083438/cell_28
[ "text_plain_output_1.png" ]
from termcolor import colored import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') list(test.columns) == list(features.columns) test.isnull().sum() fig = plt.figure(figsize=(10,5)) sns.barplot(y=train[cat_cols].nunique().values, x=train[cat_cols].nunique().index, color='blue', alpha=.5) plt.xticks(rotation=0) plt.title('Number of categorical unique values',fontsize=16); fig = plt.figure(figsize=(26,10)) grid = gridspec.GridSpec(2,5,figure=fig,hspace=.2,wspace=.2) n =0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) order = list(train['cat'+str(n)].value_counts().index) sns.countplot(data= train, x='cat'+str(n),ax=ax, alpha =0.8,order=order,palette='viridis') ax.set_title('cat'+str(n),fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Train categorical features unique values count', fontsize=16,y=.93); fig = plt.figure(figsize=(26, 10)) grid = gridspec.GridSpec(2, 5, figure=fig, hspace=0.2, wspace=0.2) n = 0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) order = list(test['cat' + str(n)].value_counts().index) sns.countplot(data=test, x='cat' + str(n), ax=ax, alpha=0.8, order=order, palette='viridis') ax.set_title('cat' + str(n), fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Test categorical features unique values count', fontsize=16, y=0.93)
code
73083438/cell_8
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum()
code
73083438/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) list(test.columns) == list(features.columns) test.info()
code
73083438/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) list(test.columns) == list(features.columns) test.isnull().sum()
code
73083438/cell_31
[ "text_plain_output_1.png" ]
from termcolor import colored import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') list(test.columns) == list(features.columns) test.isnull().sum() fig = plt.figure(figsize=(10,5)) sns.barplot(y=train[cat_cols].nunique().values, x=train[cat_cols].nunique().index, color='blue', alpha=.5) plt.xticks(rotation=0) plt.title('Number of categorical unique values',fontsize=16); fig = plt.figure(figsize=(26,10)) grid = gridspec.GridSpec(2,5,figure=fig,hspace=.2,wspace=.2) n =0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) order = list(train['cat'+str(n)].value_counts().index) sns.countplot(data= train, x='cat'+str(n),ax=ax, alpha =0.8,order=order,palette='viridis') ax.set_title('cat'+str(n),fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Train categorical features unique values count', fontsize=16,y=.93); fig = plt.figure(figsize=(26,10)) grid = gridspec.GridSpec(2,5,figure=fig,hspace=.2,wspace=.2) n =0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) order = list(test['cat'+str(n)].value_counts().index) sns.countplot(data= test, x='cat'+str(n),ax=ax, alpha =0.8,order=order,palette='viridis') ax.set_title('cat'+str(n),fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Test categorical features unique values count', fontsize=16,y=.93); fig = plt.figure(figsize=(26, 10)) grid = gridspec.GridSpec(2, 5, figure=fig, hspace=0.2, wspace=0.2) n = 0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) sns.barplot(data=train, y='target', x='cat' + str(n), ax=ax, alpha=0.6, ci=95, color='darkblue', dodge=False) ax.set_title('cat' + str(n), fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Distribution of categorical features unique values and target', fontsize=16, y=0.93)
code
73083438/cell_24
[ "text_html_output_1.png" ]
from termcolor import colored import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') fig = plt.figure(figsize=(10, 5)) sns.barplot(y=train[cat_cols].nunique().values, x=train[cat_cols].nunique().index, color='blue', alpha=0.5) plt.xticks(rotation=0) plt.title('Number of categorical unique values', fontsize=16)
code
73083438/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) list(test.columns) == list(features.columns) test.describe()
code
73083438/cell_27
[ "text_plain_output_1.png" ]
from termcolor import colored import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.isnull().sum() features = train.drop(['target'], axis=1) num_col = list(train.select_dtypes(include='float64').columns) cat_cols = list(train.select_dtypes(include='object').columns) num_col.remove('target') fig = plt.figure(figsize=(10,5)) sns.barplot(y=train[cat_cols].nunique().values, x=train[cat_cols].nunique().index, color='blue', alpha=.5) plt.xticks(rotation=0) plt.title('Number of categorical unique values',fontsize=16); fig = plt.figure(figsize=(26, 10)) grid = gridspec.GridSpec(2, 5, figure=fig, hspace=0.2, wspace=0.2) n = 0 for i in range(2): for j in range(5): ax = fig.add_subplot(grid[i, j]) order = list(train['cat' + str(n)].value_counts().index) sns.countplot(data=train, x='cat' + str(n), ax=ax, alpha=0.8, order=order, palette='viridis') ax.set_title('cat' + str(n), fontsize=14) ax.set_xlabel('') ax.set_ylabel('') n += 1 fig.suptitle('Train categorical features unique values count', fontsize=16, y=0.93)
code
73083438/cell_5
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.head()
code
34133665/cell_6
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34133665/cell_17
[ "text_plain_output_1.png" ]
from lightgbm import LGBMRegressor from math import sqrt from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder import pandas as pd train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv', index_col=[0]) test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv', index_col=[0]) sample = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv', index_col=[0]) train_clean = train.drop(columns=['MiscFeature', 'Fence', 'PoolQC', 'FireplaceQu', 'Alley']) X = train_clean.drop(columns=['SalePrice']) y = train_clean[['SalePrice']] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) num_feat = X_train.select_dtypes(include='number').columns.to_list() cat_feat = X_train.select_dtypes(exclude='number').columns.to_list() num_pipe = Pipeline([('imputer', SimpleImputer(strategy='mean')), ('scaler', StandardScaler())]) cat_pipe = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]) ct = ColumnTransformer(remainder='drop', transformers=[('numerical', num_pipe, num_feat), ('categorical', cat_pipe, cat_feat)]) model = Pipeline([('transformer', ct), ('predictor', LGBMRegressor())]) model.fit(X_train, y_train) y_pred_train = model.predict(X_train) y_pred_test = model.predict(X_test) print('In sample error: ', sqrt(mean_squared_log_error(y_pred_train, y_train))) print('Out sample error: ', sqrt(mean_squared_log_error(y_pred_test, y_test)))
code
34133665/cell_12
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv', index_col=[0]) test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv', index_col=[0]) sample = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv', index_col=[0]) train_clean = train.drop(columns=['MiscFeature', 'Fence', 'PoolQC', 'FireplaceQu', 'Alley']) X = train_clean.drop(columns=['SalePrice']) y = train_clean[['SalePrice']] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
code
74062774/cell_21
[ "text_html_output_1.png" ]
from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) train_smote_Y.value_counts().plot(kind='bar').set_xlabel('Cancelend')
code
74062774/cell_4
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum()
code
74062774/cell_23
[ "text_html_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_
code
74062774/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import recall_score from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import recall_score print('Recall for RF on test data: ', recall_score(test_Y, pred))
code
74062774/cell_33
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_curve from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(test_Y, pred) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr, tpr) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show()
code
74062774/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] train_Y.value_counts().plot(kind='bar').set_xlabel('Cancelend')
code
74062774/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data
code
74062774/cell_29
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import accuracy_score print('Accuracy for RF on test data: ', accuracy_score(test_Y, pred))
code
74062774/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import confusion_matrix CF = confusion_matrix(test_Y, pred) CF
code
74062774/cell_2
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data
code
74062774/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data data.info()
code
74062774/cell_32
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import roc_auc_score print('ROC for RF on test data: ', roc_auc_score(test_Y, pred))
code
74062774/cell_28
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import classification_report target_names = ['Not Cancel', 'Cancel'] print(classification_report(test_Y, pred, target_names=target_names))
code
74062774/cell_3
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.info()
code
74062774/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) data
code
74062774/cell_31
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_score from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import precision_score print('Precision for RF on test data: ', precision_score(test_Y, pred))
code
74062774/cell_22
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y)
code
74062774/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import sklearn.model_selection as ms import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('seaborn') pd.set_option('display.max_columns', None) data = pd.read_csv('../input/hotel-booking/hotel_booking.csv') data data.isna().sum() data = data.drop(['agent', 'company', 'required_car_parking_spaces', 'reservation_status', 'reservation_status_date', 'country', 'name', 'email', 'phone-number', 'credit_card'], axis=1) data a_month = {'arrival_date_month': {'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6, 'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12}} data.replace(a_month, inplace=True) meal = {'meal': {'Undefined': 0, 'SC': 1, 'BB': 2, 'HB': 3, 'FB': 4}} data.replace(meal, inplace=True) segment = {'market_segment': {'Aviation': 1, 'Complementary': 2, 'Corporate': 3, 'Direct': 4, 'Groups': 5, 'Offline TA/TO': 6, 'Online TA': 7}} data.replace(segment, inplace=True) distribution = {'distribution_channel': {'GDS': 1, 'Corporate': 2, 'Direct': 3, 'TA/TO': 4}} data.replace(distribution, inplace=True) deposit = {'deposit_type': {'Refundable': 1, 'Non Refund': 0, 'No Deposit': 2}} data.replace(deposit, inplace=True) customer = {'customer_type': {'Contract': 2, 'Group': 3, 'Transient-Party': 1, 'Transient': 0}} data.replace(customer, inplace=True) import sklearn.model_selection as ms train, test = ms.train_test_split(data, test_size=0.2, random_state=42) train_X = train.drop(labels='is_canceled', axis=1) train_Y = train['is_canceled'] test_X = test.drop(labels='is_canceled', axis=1) test_Y = test['is_canceled'] from imblearn.over_sampling import SMOTE os = SMOTE(sampling_strategy='minority', random_state=42, k_neighbors=5) train_smote_X, train_smote_Y = os.fit_resample(train_X, train_Y) train_smote_X = pd.DataFrame(data=train_smote_X, columns=train_X.columns) train_smote_Y = pd.DataFrame(data=train_smote_Y) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(random_state=42) param_grid = {'n_estimators': (100, 1000, 2000), 'criterion': ['gini', 'entropy'], 'max_features': ['auto', 'sqrt', 'log2']} from sklearn.model_selection import GridSearchCV CV_rf = GridSearchCV(estimator=clf, param_grid=param_grid, n_jobs=1, cv=2, verbose=1, return_train_score=True) CV_rf.fit(train_smote_X, train_smote_Y) CV_rf.best_params_ pred = CV_rf.predict(test_X) from sklearn.metrics import confusion_matrix CF = confusion_matrix(test_Y, pred) CF sns.heatmap(CF, annot=True, fmt='d')
code
129008932/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000
code
129008932/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 wii_average_sales = over10000[over10000['Platform'] == 'Wii']['Global_Sales'].mean() other_platforms_average_sales = over10000[over10000['Platform'] != 'Wii']['Global_Sales'].mean() if wii_average_sales > other_platforms_average_sales: print('The average number of sales for the Nintendo Wii is higher than all the other platforms.') else: print('The average number of sales for the Nintendo Wii is lower than all the other platforms.')
code
129008932/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 over10000['Publisher'].value_counts().index[0]
code
129008932/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129008932/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 top_selling_game_sales = over10000['NA_Sales'].max() mean_sales = over10000['NA_Sales'].mean() std_sales = over10000['NA_Sales'].std() standard_deviations = (top_selling_game_sales - mean_sales) / std_sales print("The top-selling game's sales for North America are", standard_deviations, 'standard deviations above the mean.')
code
129008932/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 over10000['Platform'].value_counts().index[0]
code
129008932/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 na_median_sales = over10000['NA_Sales'].median() ten_games_surrounding_median = over10000[over10000['NA_Sales'].between(na_median_sales - 0.5, na_median_sales + 0.5)][['Name', 'NA_Sales']] ten_games_surrounding_median = ten_games_surrounding_median.sort_values('NA_Sales', ascending=False) print('Ten games surrounding the median sales output for North American video game sales:') print(ten_games_surrounding_median)
code
129008932/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df
code
129008932/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 top_3_publishers_total_sales = over10000.groupby('Publisher')['Global_Sales'].sum().nlargest(3) platform_sales = over10000.groupby('Platform')['Global_Sales'].sum().sort_values(ascending=False) print('Global sales by platform:') print(platform_sales)
code
129008932/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 na_median_sales = over10000['NA_Sales'].median() print('The median for North American video game sales is:', na_median_sales)
code
129008932/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 top_3_publishers_total_sales = over10000.groupby('Publisher')['Global_Sales'].sum().nlargest(3) print('Top 3 publishers with the highest total sales:') print(top_3_publishers_total_sales)
code
129008932/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 over10000['Genre'].value_counts().index[0]
code
129008932/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df over10000 = df[df['Global_Sales'] > 0.01] over10000 over10000[['Name', 'Global_Sales']].sort_values('Global_Sales', ascending=False)[0:20]
code
128027348/cell_13
[ "text_plain_output_1.png" ]
from gensim.models import keyedvectors import gensim from gensim.models import keyedvectors w2v = keyedvectors.load_word2vec_format('/kaggle/input/tencent/tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt', binary=False) w2v[['的', '在']]
code
128027348/cell_4
[ "text_plain_output_1.png" ]
import io import pandas as pd root_path = '/kaggle/input/test-train' train_path = '/kaggle/input/test-train/train_clean.txt' import pandas as pd import io with open('/kaggle/input/test-train/train_clean.txt', 'r') as f: train_text = f.read() train_data = pd.read_csv(io.StringIO(train_text), sep='\t', names=['label', 'comment']) train_data['comment'] = train_data['comment'].astype(str) comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x).split())) comments_len comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x))) comments_len train_data['comments_len'] = comments_len from collections import Counter words = [] for i in range(len(train_data)): com = train_data['comment'][i].split() words = words + com len(words)
code
128027348/cell_6
[ "text_plain_output_1.png" ]
from collections import Counter import io import os import pandas as pd root_path = '/kaggle/input/test-train' train_path = '/kaggle/input/test-train/train_clean.txt' import pandas as pd import io with open('/kaggle/input/test-train/train_clean.txt', 'r') as f: train_text = f.read() train_data = pd.read_csv(io.StringIO(train_text), sep='\t', names=['label', 'comment']) train_data['comment'] = train_data['comment'].astype(str) comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x).split())) comments_len comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x))) comments_len train_data['comments_len'] = comments_len from collections import Counter words = [] for i in range(len(train_data)): com = train_data['comment'][i].split() words = words + com len(words) Freq = 30 import os with open(os.path.join('/kaggle/working/', 'word_freq.txt'), 'w', encoding='utf-8') as fout: for word, freq in Counter(words).most_common(): if freq > Freq: fout.write(word + '\n') with open(os.path.join('/kaggle/working/', 'word_freq.txt'), encoding='utf-8') as fin: vocab = [i.strip() for i in fin] vocab = set(vocab) word2idx = {i: index for index, i in enumerate(vocab)} idx2word = {index: i for index, i in enumerate(vocab)} vocab_size = len(vocab) len(vocab)
code
128027348/cell_2
[ "text_plain_output_1.png" ]
import io import pandas as pd root_path = '/kaggle/input/test-train' train_path = '/kaggle/input/test-train/train_clean.txt' import pandas as pd import io with open('/kaggle/input/test-train/train_clean.txt', 'r') as f: train_text = f.read() train_data = pd.read_csv(io.StringIO(train_text), sep='\t', names=['label', 'comment']) train_data['comment'] = train_data['comment'].astype(str) comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x).split())) comments_len
code
128027348/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
pad_id = 923 print(pad_id)
code
128027348/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
print(len(data_input)) print(len(data_input[7]))
code
128027348/cell_16
[ "text_plain_output_1.png" ]
from collections import Counter from gensim.models import keyedvectors import io import numpy as np import os import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as Data root_path = '/kaggle/input/test-train' train_path = '/kaggle/input/test-train/train_clean.txt' import pandas as pd import io with open('/kaggle/input/test-train/train_clean.txt', 'r') as f: train_text = f.read() train_data = pd.read_csv(io.StringIO(train_text), sep='\t', names=['label', 'comment']) train_data['comment'] = train_data['comment'].astype(str) comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x).split())) comments_len comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x))) comments_len train_data['comments_len'] = comments_len from collections import Counter words = [] for i in range(len(train_data)): com = train_data['comment'][i].split() words = words + com len(words) Freq = 30 import os with open(os.path.join('/kaggle/working/', 'word_freq.txt'), 'w', encoding='utf-8') as fout: for word, freq in Counter(words).most_common(): if freq > Freq: fout.write(word + '\n') with open(os.path.join('/kaggle/working/', 'word_freq.txt'), encoding='utf-8') as fin: vocab = [i.strip() for i in fin] vocab = set(vocab) word2idx = {i: index for index, i in enumerate(vocab)} idx2word = {index: i for index, i in enumerate(vocab)} vocab_size = len(vocab) len(vocab) pad_id = 923 sequence_length = 62 def tokenizer(): inputs = [] sentence_char = [str(i).split() for i in train_data['comment']] for index, i in enumerate(sentence_char): temp = [word2idx.get(j, pad_id) for j in i] if len(i) < sequence_length: for _ in range(sequence_length - len(i)): temp.append(pad_id) else: temp = temp[:sequence_length] inputs.append(temp) return inputs data_input = tokenizer() import torch import torch.nn as nn import torch.utils.data as Data import torch.optim as optim import torch.nn.functional as F import numpy as np device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') Embedding_size = 100 Batch_Size = 32 Kernel = 3 Filter_num = 20 Epoch = 100 Dropout = 0.5 Learning_rate = 0.001 class TextCNNDataSet(Data.Dataset): def __init__(self, data_inputs, data_targets): self.inputs = torch.LongTensor(data_inputs) self.label = torch.LongTensor(data_targets) def __getitem__(self, index): return (self.inputs[index], self.label[index]) def __len__(self): return len(self.inputs) TextCNNDataSet = TextCNNDataSet(data_input, list(train_data['label'])) train_size = int(len(data_input) * 0.8) test_size = int(len(data_input) * 0.15) val_size = len(data_input) - train_size - test_size train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(TextCNNDataSet, [train_size, val_size, test_size]) TrainDataLoader = Data.DataLoader(train_dataset, batch_size=Batch_Size, shuffle=True) TestDataLoader = Data.DataLoader(test_dataset, batch_size=Batch_Size, shuffle=True) import gensim from gensim.models import keyedvectors w2v = keyedvectors.load_word2vec_format('/kaggle/input/tencent/tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt', binary=False) def word2vec(x): x2v = np.ones((len(x), x.shape[1], Embedding_size)) for i in range(len(x)): try: x2v[i] = w2v[[idx2word[j.item()] for j in x[i]]] except Exception as e: x2v[i] = np.random.randn(62, 100) return torch.tensor(x2v, dtype=torch.float32) num_classs = 2 class TextCNN(nn.Module): def __init__(self): super(TextCNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) out_channel = Filter_num self.conv = nn.Sequential(nn.Conv2d(1, out_channel, (2, Embedding_size)), nn.ReLU(), nn.MaxPool2d((sequence_length - 1, 1))) self.dropout = nn.Dropout(Dropout) self.fc = nn.Linear(out_channel, num_classs) def forward(self, X): batch_size = X.shape[0] X = self.embedding(X) X = X.unsqueeze(1) conved = self.conv(X) conved = self.dropout(conved) flatten = conved.view(batch_size, -1) output = self.fc(flatten) return F.log_softmax(output) vocab_size = 2000000 embedding_size = 100 model = TextCNN().to(device) optimizer = optim.Adam(model.parameters(), lr=Learning_rate) def binary_acc(pred, y): """ 计算模型的准确率 :param pred: 预测值 :param y: 实际真实值 :return: 返回准确率 """ correct = torch.eq(pred, y).float() acc = correct.sum() / len(correct) return acc.item() def train(): avg_acc = [] model.train() for index, (batch_x, batch_y) in enumerate(TrainDataLoader): batch_x, batch_y = (batch_x.to(device), batch_y.to(device)) batch_x = batch_x.long() pred = model(batch_x) loss = F.nll_loss(pred, batch_y) acc = binary_acc(torch.max(pred, dim=1)[1], batch_y) avg_acc.append(acc) optimizer.zero_grad() loss.backward() optimizer.step() avg_acc = np.array(avg_acc).mean() return avg_acc model_train_acc, model_test_acc = ([], []) for epoch in range(Epoch): train_acc = train() print('epoch = {}, 训练准确率={}'.format(epoch + 1, train_acc)) model_train_acc.append(train_acc)
code
128027348/cell_3
[ "text_plain_output_1.png" ]
import io import pandas as pd root_path = '/kaggle/input/test-train' train_path = '/kaggle/input/test-train/train_clean.txt' import pandas as pd import io with open('/kaggle/input/test-train/train_clean.txt', 'r') as f: train_text = f.read() train_data = pd.read_csv(io.StringIO(train_text), sep='\t', names=['label', 'comment']) train_data['comment'] = train_data['comment'].astype(str) comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x).split())) comments_len comments_len = train_data.iloc[:, 1].apply(lambda x: len(str(x))) comments_len train_data['comments_len'] = comments_len train_data['comments_len'].describe(percentiles=[0.5, 0.95])
code
128027348/cell_14
[ "text_plain_output_1.png" ]
from gensim.models import keyedvectors import gensim from gensim.models import keyedvectors w2v = keyedvectors.load_word2vec_format('/kaggle/input/tencent/tencent-ailab-embedding-zh-d100-v0.2.0-s/tencent-ailab-embedding-zh-d100-v0.2.0-s.txt', binary=False) print(len(w2v.key_to_index))
code
34139450/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd df_train = pd.read_csv('titanic/titanic.csv') df_train.head()
code
73089201/cell_13
[ "image_output_5.png", "image_output_4.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D from pandas.plotting import autocorrelation_plot import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection = '3d') def dscat(data,label1,label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel("pembanding") ax.set_ylabel("chanel") ax.set_zlabel("index chanel") ax.scatter(x, y, z,s=10, c=x, marker='o',alpha=1) return dscat( data_clean, 'Fp1','Fp2') dscat( data_clean, 'F3','F4' ) dscat( data_clean, 'C4','C3' ) dscat( data_clean, 'P3','P4' ) dscat( data_clean, 'O1','O2' ) dscat( data_clean, 'A1','A2' ) dscat( data_clean, 'F7','F8' ) dscat( data_clean, 'T3','T4' ) dscat( data_clean, 'T5','T6' ) dscat( data_clean, 'Fz','Cz' ) dscat( data_clean, 'Pz','X5' ) import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap df = (data_clean).unstack().reset_index() df.columns=["X","Y","Z"] df['X'] = pd.Categorical(df['X']) df['X'] = df['X'].cat.codes x = np.array(df['X']) y = np.array(df['Y']) z = df['Z'] print(x.shape,y.shape,z.shape) fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) cmap = ListedColormap(sns.color_palette("husl", 256).as_hex()) sc = ax.scatter(x, y, z, s=40, c=x, marker='o', cmap=cmap, alpha=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2) plt.rcParams['figure.figsize'] = (5, 5) import pandas as pd import seaborn as sns pd.plotting.radviz(data_clean, 'label')
code
73089201/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import scipy.io as sp import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') pd.plotting.scatter_matrix(data_clean, figsize=(15, 15))
code
73089201/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import scipy.io as sp import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) sns.heatmap(datakorelasi, cmap='Blues', annot=True)
code
73089201/cell_11
[ "image_output_1.png" ]
from pandas.plotting import autocorrelation_plot import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') def dscat(data, label1, label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel('pembanding') ax.set_ylabel('chanel') ax.set_zlabel('index chanel') ax.scatter(x, y, z, s=10, c=x, marker='o', alpha=1) return dscat(data_clean, 'Fp1', 'Fp2') dscat(data_clean, 'F3', 'F4') dscat(data_clean, 'C4', 'C3') dscat(data_clean, 'P3', 'P4') dscat(data_clean, 'O1', 'O2') dscat(data_clean, 'A1', 'A2') dscat(data_clean, 'F7', 'F8') dscat(data_clean, 'T3', 'T4') dscat(data_clean, 'T5', 'T6') dscat(data_clean, 'Fz', 'Cz') dscat(data_clean, 'Pz', 'X5')
code
73089201/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import scipy.io as sp import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] print(load['sampFreq']) print(load['nS']) print(load.dtype) return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') datadf.head()
code
73089201/cell_7
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import scipy.io as sp import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] print(data_label_0.label.unique(), data_label_0.label.shape)
code
73089201/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import scipy.io as sp import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data, label1, label2, label3, label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot(data[label1], label=label1) ax[0].legend() pd.plotting.lag_plot(data[label1], lag=1, ax=ax[1], label=label1) ax[1].legend() ax[2].plot(data[label2], label=label2) ax[2].legend() pd.plotting.lag_plot(data[label2], lag=1, ax=ax[3], label=label2) ax[3].legend() ax[4].plot(data[label3], label=label3) ax[4].legend() pd.plotting.lag_plot(data[label3], lag=1, ax=ax[5], label=label3) ax[5].legend() ax[6].plot(data[label4], label=label4) ax[6].legend() pd.plotting.lag_plot(data[label4], lag=1, ax=ax[7], label=label4) ax[7].legend() return def plot2_lag(data, label1, label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot(data[label1], label=label1) ax[0].legend() pd.plotting.lag_plot(data[label1], lag=1, ax=ax[1], label=label1) ax[1].legend() ax[2].plot(data[label2], label=label2) ax[2].legend() pd.plotting.lag_plot(data[label2], lag=1, ax=ax[3], label=label2) ax[3].legend() return plt_4_1 = plot4_lag(data_clean, 'Fp1', 'Fp2', 'F3', 'F4') plt_4_2 = plot4_lag(data_clean, 'C3', 'C4', 'P3', 'P4') plt_4_3 = plot4_lag(data_clean, 'O1', 'O2', 'A1', 'A2') plt_4_4 = plot4_lag(data_clean, 'F7', 'F8', 'T3', 'T4') plt_4_5 = plot4_lag(data_clean, 'T5', 'T6', 'Fz', 'Cz') plt_2 = plot2_lag(data_clean, 'Pz', 'X5')
code
73089201/cell_16
[ "image_output_1.png" ]
from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D from pandas.plotting import autocorrelation_plot from sklearn.decomposition import PCA, NMF from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection = '3d') def dscat(data,label1,label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel("pembanding") ax.set_ylabel("chanel") ax.set_zlabel("index chanel") ax.scatter(x, y, z,s=10, c=x, marker='o',alpha=1) return dscat( data_clean, 'Fp1','Fp2') dscat( data_clean, 'F3','F4' ) dscat( data_clean, 'C4','C3' ) dscat( data_clean, 'P3','P4' ) dscat( data_clean, 'O1','O2' ) dscat( data_clean, 'A1','A2' ) dscat( data_clean, 'F7','F8' ) dscat( data_clean, 'T3','T4' ) dscat( data_clean, 'T5','T6' ) dscat( data_clean, 'Fz','Cz' ) dscat( data_clean, 'Pz','X5' ) import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap df = (data_clean).unstack().reset_index() df.columns=["X","Y","Z"] df['X'] = pd.Categorical(df['X']) df['X'] = df['X'].cat.codes x = np.array(df['X']) y = np.array(df['Y']) z = df['Z'] print(x.shape,y.shape,z.shape) fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) cmap = ListedColormap(sns.color_palette("husl", 256).as_hex()) sc = ax.scatter(x, y, z, s=40, c=x, marker='o', cmap=cmap, alpha=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2) plt.rcParams['figure.figsize'] = (5, 5) import pandas as pd import seaborn as sns pd.plotting.radviz(data_clean, 'label') from sklearn.decomposition import PCA, NMF from sklearn.preprocessing import StandardScaler data_pca = data_clean.drop(['label'], axis=1) st = StandardScaler() data_std = st.fit_transform(data_pca) tpca = PCA(n_components=6) data_pca = pd.DataFrame(tpca.fit_transform(data_std)) data_pca.columns = ['f1', 'f2', 'f3', 'f4', 'f5', 'f6'] data_pca plot4_lag(data_pca, 'f1', 'f2', 'f3', 'f4') plot2_lag(data_pca, 'f5', 'f6')
code
73089201/cell_3
[ "image_output_1.png" ]
import pandas as pd import scipy.io as sp import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape) data_asli.info()
code
73089201/cell_17
[ "image_output_1.png" ]
from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D from pandas.plotting import autocorrelation_plot from sklearn.decomposition import PCA, NMF from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection = '3d') def dscat(data,label1,label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel("pembanding") ax.set_ylabel("chanel") ax.set_zlabel("index chanel") ax.scatter(x, y, z,s=10, c=x, marker='o',alpha=1) return dscat( data_clean, 'Fp1','Fp2') dscat( data_clean, 'F3','F4' ) dscat( data_clean, 'C4','C3' ) dscat( data_clean, 'P3','P4' ) dscat( data_clean, 'O1','O2' ) dscat( data_clean, 'A1','A2' ) dscat( data_clean, 'F7','F8' ) dscat( data_clean, 'T3','T4' ) dscat( data_clean, 'T5','T6' ) dscat( data_clean, 'Fz','Cz' ) dscat( data_clean, 'Pz','X5' ) import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap df = (data_clean).unstack().reset_index() df.columns=["X","Y","Z"] df['X'] = pd.Categorical(df['X']) df['X'] = df['X'].cat.codes x = np.array(df['X']) y = np.array(df['Y']) z = df['Z'] print(x.shape,y.shape,z.shape) fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) cmap = ListedColormap(sns.color_palette("husl", 256).as_hex()) sc = ax.scatter(x, y, z, s=40, c=x, marker='o', cmap=cmap, alpha=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2) plt.rcParams['figure.figsize'] = (5, 5) import pandas as pd import seaborn as sns pd.plotting.radviz(data_clean, 'label') from sklearn.decomposition import PCA, NMF from sklearn.preprocessing import StandardScaler data_pca = data_clean.drop(['label'], axis=1) st = StandardScaler() data_std = st.fit_transform(data_pca) tpca = PCA(n_components=6) data_pca = pd.DataFrame(tpca.fit_transform(data_std)) data_pca.columns = ['f1', 'f2', 'f3', 'f4', 'f5', 'f6'] data_pca pd.plotting.scatter_matrix(data_pca, figsize=(15, 15))
code
73089201/cell_14
[ "image_output_1.png" ]
from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D from pandas.plotting import autocorrelation_plot import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection = '3d') def dscat(data,label1,label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel("pembanding") ax.set_ylabel("chanel") ax.set_zlabel("index chanel") ax.scatter(x, y, z,s=10, c=x, marker='o',alpha=1) return dscat( data_clean, 'Fp1','Fp2') dscat( data_clean, 'F3','F4' ) dscat( data_clean, 'C4','C3' ) dscat( data_clean, 'P3','P4' ) dscat( data_clean, 'O1','O2' ) dscat( data_clean, 'A1','A2' ) dscat( data_clean, 'F7','F8' ) dscat( data_clean, 'T3','T4' ) dscat( data_clean, 'T5','T6' ) dscat( data_clean, 'Fz','Cz' ) dscat( data_clean, 'Pz','X5' ) import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap df = (data_clean).unstack().reset_index() df.columns=["X","Y","Z"] df['X'] = pd.Categorical(df['X']) df['X'] = df['X'].cat.codes x = np.array(df['X']) y = np.array(df['Y']) z = df['Z'] print(x.shape,y.shape,z.shape) fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) cmap = ListedColormap(sns.color_palette("husl", 256).as_hex()) sc = ax.scatter(x, y, z, s=40, c=x, marker='o', cmap=cmap, alpha=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2) plt.rcParams['figure.figsize'] = (5, 5) import pandas as pd import seaborn as sns pd.plotting.radviz(data_clean, 'label') data = data_clean plt.rcParams['figure.figsize'] = (5, 5) plt.hist(data.label)
code
73089201/cell_10
[ "text_plain_output_1.png" ]
from pandas.plotting import autocorrelation_plot import matplotlib.pyplot as plt import pandas as pd import scipy.io as sp import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) autocorrelation_plot(data_clean)
code
73089201/cell_12
[ "text_plain_output_1.png" ]
from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D from pandas.plotting import autocorrelation_plot import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import pandas as pd import scipy.io as sp import seaborn as sns import seaborn as sns import scipy.io as sp import numpy as np import pandas as pd def load_data(file): file = sp.loadmat(file) load = file['o'] data = pd.DataFrame(load['data'][0, 0]) marker = pd.DataFrame(load['marker'][0, 0]) datadf = pd.concat([data, marker], axis=1) datadf.columns = ['Fp1', 'Fp2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'A1', 'A2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'Fz', 'Cz', 'Pz', 'X5', 'label'] return datadf datadf = load_data('../input/bigdatasfinger/5F-SubjectB-151110-5St-SGLHand.mat') data_asli = datadf.head(50000) print(data_asli.shape,) data_asli.info() data_clean = data_asli import matplotlib.pyplot as plt import seaborn as sns datakorelasi = data_clean.drop(['label'], axis=1).corr() * 100 plt.rcParams['figure.figsize'] = (15, 15) data_label_0 = data_clean[data_clean.label == 0] from pandas.plotting import lag_plot def plot4_lag(data,label1,label2,label3,label4): fig, ax = plt.subplots(1, 8, figsize=(20, 5)) ax[0].plot( data[label1] ,label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() ax[4].plot( data[label3],label =label3) ax[4].legend() pd.plotting.lag_plot(data[label3],lag=1,ax =ax[5],label =label3); ax[5].legend() ax[6].plot( data[label4],label =label4) ax[6].legend() pd.plotting.lag_plot(data[label4],lag=1,ax =ax[7],label =label4); ax[7].legend() return def plot2_lag(data,label1,label2): fig, ax = plt.subplots(1, 4, figsize=(20, 5)) ax[0].plot( data[label1],label =label1) ax[0].legend() pd.plotting.lag_plot(data[label1],lag=1,ax =ax[1],label =label1); ax[1].legend() ax[2].plot( data[label2],label =label2) ax[2].legend() pd.plotting.lag_plot(data[label2],lag=1,ax =ax[3],label =label2); ax[3].legend() return plt_4_1 = plot4_lag(data_clean,'Fp1','Fp2','F3','F4') plt_4_2 = plot4_lag(data_clean,'C3','C4','P3','P4') plt_4_3 = plot4_lag(data_clean,'O1','O2','A1','A2') plt_4_4 = plot4_lag(data_clean,'F7','F8','T3','T4') plt_4_5 = plot4_lag(data_clean,'T5','T6','Fz','Cz') plt_2 = plot2_lag(data_clean,'Pz','X5') from pandas.plotting import autocorrelation_plot plt.rcParams['figure.figsize'] = (15, 15) import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection = '3d') def dscat(data,label1,label2): x = data[label1] y = data[label1] z = data[label2] ax.set_xlabel("pembanding") ax.set_ylabel("chanel") ax.set_zlabel("index chanel") ax.scatter(x, y, z,s=10, c=x, marker='o',alpha=1) return dscat( data_clean, 'Fp1','Fp2') dscat( data_clean, 'F3','F4' ) dscat( data_clean, 'C4','C3' ) dscat( data_clean, 'P3','P4' ) dscat( data_clean, 'O1','O2' ) dscat( data_clean, 'A1','A2' ) dscat( data_clean, 'F7','F8' ) dscat( data_clean, 'T3','T4' ) dscat( data_clean, 'T5','T6' ) dscat( data_clean, 'Fz','Cz' ) dscat( data_clean, 'Pz','X5' ) import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap df = data_clean.unstack().reset_index() df.columns = ['X', 'Y', 'Z'] df['X'] = pd.Categorical(df['X']) df['X'] = df['X'].cat.codes x = np.array(df['X']) y = np.array(df['Y']) z = df['Z'] print(x.shape, y.shape, z.shape) fig = plt.figure(figsize=(6, 6)) ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) cmap = ListedColormap(sns.color_palette('husl', 256).as_hex()) sc = ax.scatter(x, y, z, s=40, c=x, marker='o', cmap=cmap, alpha=1) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2)
code
104127284/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.layers import GRU, Input, Dense, Activation, RepeatVector, Bidirectional, LSTM, Dropout, Embedding from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from keras.preprocessing.text import Tokenizer from sklearn.metrics import confusion_matrix, classification_report, f1_score from sklearn.model_selection import train_test_split,StratifiedKFold import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import pandas as pd import numpy as np import matplotlib as plt import seaborn as sns import tensorflow as tf import keras from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Model, Sequential from keras.layers import GRU, Input, Dense, Activation, RepeatVector, Bidirectional, LSTM, Dropout, Embedding from keras.layers.embeddings import Embedding from sklearn.model_selection import train_test_split from keras.losses import sparse_categorical_crossentropy from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from keras.callbacks import EarlyStopping from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.metrics import confusion_matrix, classification_report, f1_score import collections from tensorflow.python.client import device_lib import matplotlib.pyplot as plt import seaborn as sns import re import string import emoji tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) SEED = 10 df = pd.read_csv('../input/nlp-getting-started/train.csv') df_test = pd.read_csv('../input/nlp-getting-started/test.csv') df.dropna(subset=['text'], inplace=True) X = df['text'] y = df['target'] X_test = df_test['text'] def get_model(): model = tf.keras.Sequential([Input(name='inputs', shape=[MAX_LEN]), Embedding(len(tok.word_index), 128), Bidirectional(tf.keras.layers.LSTM(128, return_sequences=True)), Bidirectional(tf.keras.layers.LSTM(64)), Dense(64, activation='relu'), Dropout(0.5), Dense(1, activation='sigmoid')]) model.compile(loss=tf.keras.losses.BinaryCrossentropy(), optimizer=tf.keras.optimizers.Adam(0.0001), metrics=['accuracy']) return model skf = StratifiedKFold(n_splits=5, random_state=SEED, shuffle=True) CV_score_array = [] y_test_list = [] for fold, (train_idx, test_idx) in enumerate(skf.split(X, y)): print(f'Fold: {fold + 1},', end=' ') X_train, X_valid = (X[train_idx], X[test_idx]) y_train, y_valid = (y[train_idx], y[test_idx]) MAX_LEN = 50 tok = Tokenizer() tok.fit_on_texts(X_train) sequences = tok.texts_to_sequences(X_train) valid_sequences = tok.texts_to_sequences(X_valid) test_sequences = tok.texts_to_sequences(X_test) X_train_seq = sequence.pad_sequences(sequences, maxlen=MAX_LEN) X_valid_seq = sequence.pad_sequences(valid_sequences, maxlen=MAX_LEN) X_test_seq = sequence.pad_sequences(test_sequences, maxlen=MAX_LEN) model = get_model() history = model.fit(X_train_seq, y_train, epochs=10, validation_data=(X_valid_seq, y_valid), batch_size=32, callbacks=[EarlyStopping(monitor='val_accuracy', mode='max', patience=3, verbose=False, restore_best_weights=True)]) yhat_valid = np.where(model.predict(X_valid_seq) >= 0.5, 1, 0) f_score = f1_score(y_valid, yhat_valid) print('F1 Score: ' + str(f_score)) print(classification_report(y_valid, yhat_valid)) y_test_list.append(model.predict(X_test_seq)) CV_score_array.append(f_score) print('Average F1 Score 5 Folds: ' + str(np.array(CV_score_array).mean()))
code
104127284/cell_9
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import matplotlib as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('../input/nlp-getting-started/train.csv') df_test = pd.read_csv('../input/nlp-getting-started/test.csv') df.dropna(subset=['text'], inplace=True) X = df['text'] y = df['target'] X_test = df_test['text'] df['num_words'] = df['text'].apply(lambda x: len(x.split())) plt.figure(figsize=(20, 6)) sns.histplot(df['num_words'], bins=range(1, 50, 2), palette='Set1', alpha=0.8) plt.title('Distribution of the word count')
code
104127284/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104127284/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('../input/nlp-getting-started/train.csv') df_test = pd.read_csv('../input/nlp-getting-started/test.csv') df.dropna(subset=['text'], inplace=True) X = df['text'] y = df['target'] X_test = df_test['text'] plt.figure(figsize=(10, 6)) sns.countplot(x=df['target'], palette='Set1', alpha=0.8) plt.title('Distribution of the Target Label')
code
32068545/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2, 5, sharex=False, sharey=True, figsize=(25, 10)) for i, ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line', x='time', y=['signal'], ax=ax, linewidth=0.1) ax.set_title('Batch_' + str(i)) ax.set_ylim(-5, 14) ax.legend() fig.suptitle('Training Data', y=1.05) plt.tight_layout()
code
32068545/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') train.head()
code
32068545/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068545/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2,5,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,14) ax.legend() fig.suptitle('Training Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(1,4,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): test.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,11) ax.legend() fig.suptitle('Testing Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(2,5,sharex=True,sharey=True, figsize=(20,8)) for i,ax in enumerate(axes.ravel()): sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 0')['signal'],ax=ax,label='0') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 1')['signal'],ax=ax,label='1') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 2')['signal'],ax=ax,label='2') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 3')['signal'],ax=ax,label='3') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 4')['signal'],ax=ax,label='4') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 5')['signal'],ax=ax,label='5') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 6')['signal'],ax=ax,label='6') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 7')['signal'],ax=ax,label='7') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 8')['signal'],ax=ax,label='8') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 9')['signal'],ax=ax,label='9') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 10')['signal'],ax=ax,label='10') ax.set_title('Batch_'+str(i)) ax.legend() fig.suptitle('Training Data',y=1.05) ax.set_ylim(0,2) plt.tight_layout() train_seg_boundaries = np.concatenate([[0, 500000, 600000], np.arange(1000000, 5000000 + 1, 500000)]) train_signal = np.split(np.zeros(5000000), train_seg_boundaries[1:-1]) test_seg_boundaries = np.concatenate([np.arange(0, 1000000 + 1, 100000), [1500000, 2000000]]) test_signal = np.split(np.zeros(2000000), test_seg_boundaries[1:-1]) test['signal_type'] = np.concatenate([test_signal[0] + 1, test_signal[1] + 3, test_signal[2] + 4, test_signal[3] + 1, test_signal[4] + 2, test_signal[5] + 5, test_signal[6] + 4, test_signal[7] + 5, test_signal[8] + 1, test_signal[9] + 3, test_signal[10] + 1, test_signal[11] + 1]) test['signal'].plot(kind='line', linewidth=0.2, label='Test Signal') test['signal_type'].plot(kind='line', label='Signal Type') plt.legend() del test_signal
code
32068545/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2,5,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,14) ax.legend() fig.suptitle('Training Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(1,4,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): test.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,11) ax.legend() fig.suptitle('Testing Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(2,5,sharex=True,sharey=True, figsize=(20,8)) for i,ax in enumerate(axes.ravel()): sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 0')['signal'],ax=ax,label='0') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 1')['signal'],ax=ax,label='1') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 2')['signal'],ax=ax,label='2') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 3')['signal'],ax=ax,label='3') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 4')['signal'],ax=ax,label='4') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 5')['signal'],ax=ax,label='5') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 6')['signal'],ax=ax,label='6') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 7')['signal'],ax=ax,label='7') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 8')['signal'],ax=ax,label='8') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 9')['signal'],ax=ax,label='9') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 10')['signal'],ax=ax,label='10') ax.set_title('Batch_'+str(i)) ax.legend() fig.suptitle('Training Data',y=1.05) ax.set_ylim(0,2) plt.tight_layout() train_seg_boundaries = np.concatenate([[0, 500000, 600000], np.arange(1000000, 5000000 + 1, 500000)]) train_signal = np.split(np.zeros(5000000), train_seg_boundaries[1:-1]) test_seg_boundaries = np.concatenate([np.arange(0, 1000000 + 1, 100000), [1500000, 2000000]]) test_signal = np.split(np.zeros(2000000), test_seg_boundaries[1:-1]) test['signal_type'] = np.concatenate([test_signal[0] + 1, test_signal[1] + 3, test_signal[2] + 4, test_signal[3] + 1, test_signal[4] + 2, test_signal[5] + 5, test_signal[6] + 4, test_signal[7] + 5, test_signal[8] + 1, test_signal[9] + 3, test_signal[10] + 1, test_signal[11] + 1]) del test_signal train['signal_type'] = np.concatenate([train_signal[0] + 1, train_signal[1] + 1, train_signal[2] + 1, train_signal[3] + 2, train_signal[4] + 3, train_signal[5] + 5, train_signal[6] + 4, train_signal[7] + 2, train_signal[8] + 3, train_signal[9] + 4, train_signal[10] + 5]) train['signal'].plot(kind='line', linewidth=0.2, label='Train Signal') train['signal_type'].plot(kind='line', label='Signal Type') plt.legend() del train_signal
code
32068545/cell_24
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from scipy.optimize import minimize from sklearn.metrics import f1_score, classification_report import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2,5,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,14) ax.legend() fig.suptitle('Training Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(1,4,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): test.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,11) ax.legend() fig.suptitle('Testing Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(2,5,sharex=True,sharey=True, figsize=(20,8)) for i,ax in enumerate(axes.ravel()): sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 0')['signal'],ax=ax,label='0') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 1')['signal'],ax=ax,label='1') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 2')['signal'],ax=ax,label='2') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 3')['signal'],ax=ax,label='3') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 4')['signal'],ax=ax,label='4') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 5')['signal'],ax=ax,label='5') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 6')['signal'],ax=ax,label='6') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 7')['signal'],ax=ax,label='7') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 8')['signal'],ax=ax,label='8') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 9')['signal'],ax=ax,label='9') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 10')['signal'],ax=ax,label='10') ax.set_title('Batch_'+str(i)) ax.legend() fig.suptitle('Training Data',y=1.05) ax.set_ylim(0,2) plt.tight_layout() means = train.groupby(['signal_type', 'open_channels']).mean().signal train['scaled_signal'] = train['signal'] test['scaled_signal'] = test['signal'] def shift_model(x, sig_type): scaled = (train.loc[train.signal_type == sig_type, 'signal'] - x[0]) * x[1] target = train.loc[train.signal_type == sig_type, 'open_channels'] return -f1_score(target, scaled.clip(0, 10).round(), average='weighted') for i in range(1, 5): print(i) min_f = minimize(shift_model, [means.loc[i, 0], 1 / (means.loc[i, 1] - means.loc[i, 0])], args=i, method='Powell') train.loc[train.signal_type == i, 'scaled_signal'] = (train.loc[train.signal_type == i, 'signal'] - min_f['x'][0]) * min_f['x'][1] test.loc[test.signal_type == i, 'scaled_signal'] = (test.loc[test.signal_type == i, 'signal'] - min_f['x'][0]) * min_f['x'][1] i = 5 min_f = minimize(shift_model, [means.loc[i, 1] - 1, 5 / (means.loc[i, 6] - means.loc[i, 1])], args=i, method='Powell') train.loc[train.signal_type == i, 'scaled_signal'] = (train.loc[train.signal_type == i, 'signal'] - min_f['x'][0]) * min_f['x'][1] test.loc[test.signal_type == i, 'scaled_signal'] = (test.loc[test.signal_type == i, 'signal'] - min_f['x'][0]) * min_f['x'][1] del means
code
32068545/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2,5,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,14) ax.legend() fig.suptitle('Training Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(1, 4, sharex=False, sharey=True, figsize=(25, 10)) for i, ax in enumerate(axes.ravel()): test.iloc[batch_indices[i]].plot(kind='line', x='time', y=['signal'], ax=ax, linewidth=0.1) ax.set_title('Batch_' + str(i)) ax.set_ylim(-5, 11) ax.legend() fig.suptitle('Testing Data', y=1.05) plt.tight_layout()
code
32068545/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') batch_indices = [slice(500000 * i, 500000 * (i + 1)) for i in range(10)] fig, axes = plt.subplots(2,5,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): train.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,14) ax.legend() fig.suptitle('Training Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(1,4,sharex=False,sharey=True, figsize=(25,10)) for i,ax in enumerate(axes.ravel()): test.iloc[batch_indices[i]].plot(kind='line',x='time',y=['signal'],ax=ax,linewidth=.1) ax.set_title('Batch_'+str(i)) ax.set_ylim(-5,11) ax.legend() fig.suptitle('Testing Data',y=1.05) plt.tight_layout() fig, axes = plt.subplots(2, 5, sharex=True, sharey=True, figsize=(20, 8)) for i, ax in enumerate(axes.ravel()): sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 0')['signal'], ax=ax, label='0') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 1')['signal'], ax=ax, label='1') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 2')['signal'], ax=ax, label='2') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 3')['signal'], ax=ax, label='3') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 4')['signal'], ax=ax, label='4') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 5')['signal'], ax=ax, label='5') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 6')['signal'], ax=ax, label='6') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 7')['signal'], ax=ax, label='7') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 8')['signal'], ax=ax, label='8') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 9')['signal'], ax=ax, label='9') sns.distplot(train.iloc[batch_indices[i]].query('open_channels == 10')['signal'], ax=ax, label='10') ax.set_title('Batch_' + str(i)) ax.legend() fig.suptitle('Training Data', y=1.05) ax.set_ylim(0, 2) plt.tight_layout()
code
32068545/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/data-without-drift/train_clean.csv') test = pd.read_csv('/kaggle/input/data-without-drift/test_clean.csv') train.info()
code
17098455/cell_21
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB spam_filter = Pipeline([('vectorizer', TfidfVectorizer(analyzer=process)), ('classifier', MultinomialNB())]) spam_filter.fit(x_train, y_train) predictions = spam_filter.predict(x_test) count = 0 for i in range(len(y_test)): if y_test.iloc[i] != predictions[i]: count += 1 x_test[y_test != predictions]
code
17098455/cell_13
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd import string df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe() def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text tfidfv = TfidfVectorizer(analyzer=process) data = tfidfv.fit_transform(df['Message']) mess = df.iloc[2]['Message'] print(tfidfv.transform([mess]))
code
17098455/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe() sns.countplot(data=df, x='Label')
code
17098455/cell_23
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB spam_filter = Pipeline([('vectorizer', TfidfVectorizer(analyzer=process)), ('classifier', MultinomialNB())]) spam_filter.fit(x_train, y_train) predictions = spam_filter.predict(x_test) def detect_spam(s): return spam_filter.predict([s])[0] detect_spam('Your cash-balance is currently 500 pounds - to maximize your cash-in now, send COLLECT to 83600.')
code
17098455/cell_20
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB spam_filter = Pipeline([('vectorizer', TfidfVectorizer(analyzer=process)), ('classifier', MultinomialNB())]) spam_filter.fit(x_train, y_train) predictions = spam_filter.predict(x_test) count = 0 for i in range(len(y_test)): if y_test.iloc[i] != predictions[i]: count += 1 print('Total number of test cases', len(y_test)) print('Number of wrong of predictions', count)
code
17098455/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.head()
code
17098455/cell_1
[ "text_plain_output_1.png" ]
import os print(os.listdir('../input')) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import string from nltk.corpus import stopwords from nltk import PorterStemmer as Stemmer
code
17098455/cell_7
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text process('It\\s has been a long day running.')
code
17098455/cell_18
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB spam_filter = Pipeline([('vectorizer', TfidfVectorizer(analyzer=process)), ('classifier', MultinomialNB())]) spam_filter.fit(x_train, y_train)
code
17098455/cell_8
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import string df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe() def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text df['Message'][:20].apply(process)
code
17098455/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe()
code
17098455/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd import string df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe() def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text tfidfv = TfidfVectorizer(analyzer=process) data = tfidfv.fit_transform(df['Message']) mess = df.iloc[2]['Message'] j = tfidfv.transform([mess]).toarray()[0] print('index\tidf\ttfidf\tterm') for i in range(len(j)): if j[i] != 0: print(i, format(tfidfv.idf_[i], '.4f'), format(j[i], '.4f'), tfidfv.get_feature_names()[i], sep='\t')
code
17098455/cell_22
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline import string def process(text): text = text.lower() text = ''.join([t for t in text if t not in string.punctuation]) text = [t for t in text.split() if t not in stopwords.words('english')] st = Stemmer() text = [st.stem(t) for t in text] return text from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB spam_filter = Pipeline([('vectorizer', TfidfVectorizer(analyzer=process)), ('classifier', MultinomialNB())]) spam_filter.fit(x_train, y_train) predictions = spam_filter.predict(x_test) count = 0 for i in range(len(y_test)): if y_test.iloc[i] != predictions[i]: count += 1 from sklearn.metrics import classification_report print(classification_report(predictions, y_test))
code
17098455/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.DataFrame(pd.read_csv('../input/spam.csv', encoding='latin-1')[['v1', 'v2']]) df.columns = ['Label', 'Message'] df.groupby('Label').describe() mess = df.iloc[2]['Message'] print(mess)
code
74067865/cell_13
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd import plotly.graph_objects as go import plotly.graph_objects as go healthsysdf = pd.read_csv('../input/world-bank-wdi-212-health-systems/2.12_Health_systems.csv') healthsysdf = healthsysdf.drop(columns='Province_State') healthsysdf = healthsysdf.drop(columns='Country_Region') healthsysdf['Total_Gov_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_public_pct_2016, axis=1) healthsysdf['Outofpocket_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_out_of_pocket_pct_2016, axis=1) healthsysdf['Other_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 - row.Total_Gov_Spend - row.Outofpocket_Spend, axis=1) countrycodes = ['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'ATG', 'ARG', 'ARM', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'CMR', 'CAN', '', 'CAF', 'TCD', '', 'CHL', 'CHN', '', '', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', '', 'FJI', 'FIN', 'FRA', '', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', '', 'GRD', '', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', '', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', '', 'KOR', '', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', '', '', 'LTU', 'LUX', 'MDG', 'MWI', 'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', '', 'NZL', 'NGA', 'NER', 'NGA', 'MKD', '', 'NOR', 'OMN', 'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', '', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', '', 'SVK', 'SVN', 'SLB', '', 'ZAF', '', 'ESP', 'LKA', 'KNA', 'LCA', '', 'VCT', 'SDN', 'SUR', 'SWE', 'CHE', '', 'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', '', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', '', '', 'YEM', 'ZMB', 'ZWE'] healthsysdf['Country_Codes'] = countrycodes bginfo = pd.read_csv('../input/undata-country-profiles/country_profile_variables.csv') bginfo.rename(columns={'country': 'World_Bank_Name'}, inplace=True) bginfo = bginfo.replace({'United States of America': 'United States', 'Viet Nam': 'Vietnam'}) healthsysdf = healthsysdf.replace({'Yemen, Rep.': 'Yemen'}) healthsysdf = pd.merge(healthsysdf, bginfo, on='World_Bank_Name', how='outer') healthsysdf = healthsysdf.dropna(thresh=3) badgdp = healthsysdf[healthsysdf['GDP: Gross domestic product (million current US$)'] < 0].index healthsysdf.drop(badgdp, inplace=True) healthsysdf.replace({'SouthernAsia': 'Asia', 'WesternAsia': 'Asia', 'EasternAsia': 'Asia', 'CentralAsia': 'Asia', 'South-easternAsia': 'Asia', 'WesternEurope': 'Europe', 'SouthernEurope': 'Europe', 'EasternEurope': 'Europe', 'NorthernEurope': 'Europe', 'NorthernAfrica': 'Africa', 'MiddleAfrica': 'Africa', 'WesternAfrica': 'Africa', 'EasternAfrica': 'Africa', 'SouthernAfrica': 'Africa', 'SouthAmerica': 'Americas', 'Caribbean': 'Americas', 'CentralAmerica': 'Americas', 'NorthernAmerica': 'Americas', 'Polynesia': 'Oceania', 'Melanesia': 'Oceania', 'Micronesia': 'Oceania'}, inplace=True) total_exp = healthsysdf.sort_values('Health_exp_pct_GDP_2016', ascending = False) top_ten_exp = total_exp.head(10) total_exp = total_exp.sort_values('Health_exp_pct_GDP_2016') low_ten_exp = total_exp.head(10) fig = make_subplots(rows=1, cols=2, shared_yaxes=True) fig.add_trace( go.Bar(x=top_ten_exp['World_Bank_Name'], y=top_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=1 ) fig.add_trace( go.Bar(x=low_ten_exp['World_Bank_Name'], y=low_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=2 ) fig.update_layout( title={ 'text': "Ten highest and lowest spenders", 'y':0.9, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor= 'white', paper_bgcolor= 'white', yaxis_title="% of GDP spent on healthcare", showlegend=False, font=dict( family="Courier New, monospace", size=14, color="#7f7f7f" ) ) fig.show() import plotly.graph_objects as go import pandas as pd fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Health_exp_pct_GDP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Percentage of GDP spent on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Total_Gov_Spend'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Government Spending on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['per_capita_exp_PPP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Healthcare Spending per Capita', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig.show()
code
74067865/cell_9
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd import plotly.graph_objects as go import plotly.graph_objects as go healthsysdf = pd.read_csv('../input/world-bank-wdi-212-health-systems/2.12_Health_systems.csv') healthsysdf = healthsysdf.drop(columns='Province_State') healthsysdf = healthsysdf.drop(columns='Country_Region') healthsysdf['Total_Gov_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_public_pct_2016, axis=1) healthsysdf['Outofpocket_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_out_of_pocket_pct_2016, axis=1) healthsysdf['Other_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 - row.Total_Gov_Spend - row.Outofpocket_Spend, axis=1) countrycodes = ['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'ATG', 'ARG', 'ARM', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'CMR', 'CAN', '', 'CAF', 'TCD', '', 'CHL', 'CHN', '', '', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', '', 'FJI', 'FIN', 'FRA', '', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', '', 'GRD', '', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', '', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', '', 'KOR', '', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', '', '', 'LTU', 'LUX', 'MDG', 'MWI', 'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', '', 'NZL', 'NGA', 'NER', 'NGA', 'MKD', '', 'NOR', 'OMN', 'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', '', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', '', 'SVK', 'SVN', 'SLB', '', 'ZAF', '', 'ESP', 'LKA', 'KNA', 'LCA', '', 'VCT', 'SDN', 'SUR', 'SWE', 'CHE', '', 'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', '', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', '', '', 'YEM', 'ZMB', 'ZWE'] healthsysdf['Country_Codes'] = countrycodes bginfo = pd.read_csv('../input/undata-country-profiles/country_profile_variables.csv') bginfo.rename(columns={'country': 'World_Bank_Name'}, inplace=True) bginfo = bginfo.replace({'United States of America': 'United States', 'Viet Nam': 'Vietnam'}) healthsysdf = healthsysdf.replace({'Yemen, Rep.': 'Yemen'}) healthsysdf = pd.merge(healthsysdf, bginfo, on='World_Bank_Name', how='outer') healthsysdf = healthsysdf.dropna(thresh=3) badgdp = healthsysdf[healthsysdf['GDP: Gross domestic product (million current US$)'] < 0].index healthsysdf.drop(badgdp, inplace=True) healthsysdf.replace({'SouthernAsia': 'Asia', 'WesternAsia': 'Asia', 'EasternAsia': 'Asia', 'CentralAsia': 'Asia', 'South-easternAsia': 'Asia', 'WesternEurope': 'Europe', 'SouthernEurope': 'Europe', 'EasternEurope': 'Europe', 'NorthernEurope': 'Europe', 'NorthernAfrica': 'Africa', 'MiddleAfrica': 'Africa', 'WesternAfrica': 'Africa', 'EasternAfrica': 'Africa', 'SouthernAfrica': 'Africa', 'SouthAmerica': 'Americas', 'Caribbean': 'Americas', 'CentralAmerica': 'Americas', 'NorthernAmerica': 'Americas', 'Polynesia': 'Oceania', 'Melanesia': 'Oceania', 'Micronesia': 'Oceania'}, inplace=True) total_exp = healthsysdf.sort_values('Health_exp_pct_GDP_2016', ascending = False) top_ten_exp = total_exp.head(10) total_exp = total_exp.sort_values('Health_exp_pct_GDP_2016') low_ten_exp = total_exp.head(10) fig = make_subplots(rows=1, cols=2, shared_yaxes=True) fig.add_trace( go.Bar(x=top_ten_exp['World_Bank_Name'], y=top_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=1 ) fig.add_trace( go.Bar(x=low_ten_exp['World_Bank_Name'], y=low_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=2 ) fig.update_layout( title={ 'text': "Ten highest and lowest spenders", 'y':0.9, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor= 'white', paper_bgcolor= 'white', yaxis_title="% of GDP spent on healthcare", showlegend=False, font=dict( family="Courier New, monospace", size=14, color="#7f7f7f" ) ) fig.show() import plotly.graph_objects as go import pandas as pd fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Health_exp_pct_GDP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Percentage of GDP spent on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig.show()
code
74067865/cell_11
[ "text_html_output_2.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd import plotly.graph_objects as go import plotly.graph_objects as go healthsysdf = pd.read_csv('../input/world-bank-wdi-212-health-systems/2.12_Health_systems.csv') healthsysdf = healthsysdf.drop(columns='Province_State') healthsysdf = healthsysdf.drop(columns='Country_Region') healthsysdf['Total_Gov_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_public_pct_2016, axis=1) healthsysdf['Outofpocket_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 / 100 * row.Health_exp_out_of_pocket_pct_2016, axis=1) healthsysdf['Other_Spend'] = healthsysdf.apply(lambda row: row.Health_exp_pct_GDP_2016 - row.Total_Gov_Spend - row.Outofpocket_Spend, axis=1) countrycodes = ['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'ATG', 'ARG', 'ARM', 'AUS', 'AUT', 'AZE', 'BHS', 'BHR', 'BGD', 'BRB', 'BLR', 'BEL', 'BLZ', 'BEN', 'BTN', 'BOL', 'BIH', 'BWA', 'BRA', 'BRN', 'BGR', 'BFA', 'BDI', 'CPV', 'KHM', 'CMR', 'CAN', '', 'CAF', 'TCD', '', 'CHL', 'CHN', '', '', 'COL', 'COM', 'COD', 'COG', 'CRI', 'CIV', 'HRV', 'CUB', 'CYP', 'CZE', 'DNK', 'DJI', 'DMA', 'DOM', 'ECU', 'EGY', 'SLV', 'GNQ', 'ERI', 'EST', 'SWZ', 'ETH', '', 'FJI', 'FIN', 'FRA', '', 'GAB', 'GMB', 'GEO', 'DEU', 'GHA', 'GRC', '', 'GRD', '', 'GTM', 'GIN', 'GNB', 'GUY', 'HTI', 'HND', 'HUN', 'ISL', 'IND', 'IDN', 'IRN', 'IRQ', 'IRL', '', 'ISR', 'ITA', 'JAM', 'JPN', 'JOR', 'KAZ', 'KEN', 'KIR', '', 'KOR', '', 'KWT', 'KGZ', 'LAO', 'LVA', 'LBN', 'LSO', 'LBR', '', '', 'LTU', 'LUX', 'MDG', 'MWI', 'MYS', 'MDV', 'MLI', 'MLT', 'MHL', 'MRT', 'MUS', 'MEX', 'FSM', 'MDA', 'MCO', 'MNG', 'MNE', 'MAR', 'MOZ', 'MMR', 'NAM', 'NPL', 'NLD', '', 'NZL', 'NGA', 'NER', 'NGA', 'MKD', '', 'NOR', 'OMN', 'PAK', 'PLW', 'PAN', 'PNG', 'PRY', 'PER', 'PHL', 'POL', 'PRT', '', 'QAT', 'ROU', 'RUS', 'RWA', 'WSM', 'SMR', 'STP', 'SAU', 'SEN', 'SRB', 'SYC', 'SLE', 'SGP', '', 'SVK', 'SVN', 'SLB', '', 'ZAF', '', 'ESP', 'LKA', 'KNA', 'LCA', '', 'VCT', 'SDN', 'SUR', 'SWE', 'CHE', '', 'TJK', 'TZA', 'THA', 'TLS', 'TGO', 'TON', 'TTO', 'TUN', 'TUR', 'TKM', '', 'TUV', 'UGA', 'UKR', 'ARE', 'GBR', 'USA', 'URY', 'UZB', 'VUT', 'VEN', 'VNM', '', '', 'YEM', 'ZMB', 'ZWE'] healthsysdf['Country_Codes'] = countrycodes bginfo = pd.read_csv('../input/undata-country-profiles/country_profile_variables.csv') bginfo.rename(columns={'country': 'World_Bank_Name'}, inplace=True) bginfo = bginfo.replace({'United States of America': 'United States', 'Viet Nam': 'Vietnam'}) healthsysdf = healthsysdf.replace({'Yemen, Rep.': 'Yemen'}) healthsysdf = pd.merge(healthsysdf, bginfo, on='World_Bank_Name', how='outer') healthsysdf = healthsysdf.dropna(thresh=3) badgdp = healthsysdf[healthsysdf['GDP: Gross domestic product (million current US$)'] < 0].index healthsysdf.drop(badgdp, inplace=True) healthsysdf.replace({'SouthernAsia': 'Asia', 'WesternAsia': 'Asia', 'EasternAsia': 'Asia', 'CentralAsia': 'Asia', 'South-easternAsia': 'Asia', 'WesternEurope': 'Europe', 'SouthernEurope': 'Europe', 'EasternEurope': 'Europe', 'NorthernEurope': 'Europe', 'NorthernAfrica': 'Africa', 'MiddleAfrica': 'Africa', 'WesternAfrica': 'Africa', 'EasternAfrica': 'Africa', 'SouthernAfrica': 'Africa', 'SouthAmerica': 'Americas', 'Caribbean': 'Americas', 'CentralAmerica': 'Americas', 'NorthernAmerica': 'Americas', 'Polynesia': 'Oceania', 'Melanesia': 'Oceania', 'Micronesia': 'Oceania'}, inplace=True) total_exp = healthsysdf.sort_values('Health_exp_pct_GDP_2016', ascending = False) top_ten_exp = total_exp.head(10) total_exp = total_exp.sort_values('Health_exp_pct_GDP_2016') low_ten_exp = total_exp.head(10) fig = make_subplots(rows=1, cols=2, shared_yaxes=True) fig.add_trace( go.Bar(x=top_ten_exp['World_Bank_Name'], y=top_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=1 ) fig.add_trace( go.Bar(x=low_ten_exp['World_Bank_Name'], y=low_ten_exp['Health_exp_pct_GDP_2016']), row=1, col=2 ) fig.update_layout( title={ 'text': "Ten highest and lowest spenders", 'y':0.9, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, plot_bgcolor= 'white', paper_bgcolor= 'white', yaxis_title="% of GDP spent on healthcare", showlegend=False, font=dict( family="Courier New, monospace", size=14, color="#7f7f7f" ) ) fig.show() import plotly.graph_objects as go import pandas as pd fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Health_exp_pct_GDP_2016'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Percentage of GDP spent on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig = go.Figure(data=go.Choropleth(locations=healthsysdf['Country_Codes'], z=healthsysdf['Total_Gov_Spend'], text=healthsysdf['World_Bank_Name'], colorscale='blues', autocolorscale=False, colorbar_tickprefix='% ', marker_line_color='darkgray', marker_line_width=0.5)) fig.update_layout(title_text='Government Spending on Healthcare', font=dict(family='Courier New, monospace', size=14), geo=dict(showframe=False, showcoastlines=False, projection_type='equirectangular')) fig.show()
code
74067865/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import math import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib as mpl import matplotlib.pyplot as plt from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly.express as px
code