path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72085616/cell_53
[ "text_plain_output_1.png" ]
X_valid_full.shape X_valid_full.columns
code
72085616/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count() melb_predictors = data.drop(['Price'], axis=1) melb_predictors.shape melb_predictors.dtypes X = melb_predictors.select_dtypes(exclude=['object']) X.shape X.dtypes
code
72085616/cell_71
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_train_full.shape X_valid_full.shape X_valid_full.columns cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] cols_with_missing X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] low_cardinality_cols numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] numerical_cols my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.shape cat_variables = X_train.dtypes == 'object' type(cat_variables) drop_X_train = X_train.select_dtypes(exclude=['object']) drop_X_valid = X_valid.select_dtypes(exclude=['object']) drop_X_train.shape
code
72085616/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape y = data.Price y.isnull().count()
code
72085616/cell_36
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') data.shape pd.set_option('display.max_columns', None) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] cols_with_missing test_cols_with_missing = [] for col in X_train.columns: if X_train[col].isnull().any(): test_cols_with_missing.append(col) test_cols_with_missing reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() X_valid_plus
code
322985/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model as sk full_data_set = pd.read_csv('../input/nflplaybyplay2015.csv', low_memory=False) Pass_Plays = full_data_set.loc[full_data_set.PlayType == 'Pass'] Sack_Plays = full_data_set.loc[full_data_set.PlayType == 'Sack'] P_S_data = pd.concat([Pass_Plays, Sack_Plays]) good_columns = ['Drive', 'qtr', 'down', 'TimeUnder', 'TimeSecs', 'PlayTimeDiff', 'yrdline100', 'ydstogo'] good_columns += ['ScoreDiff', 'PosTeamScore', 'DefTeamScore'] good_columns += ['Sack'] uncleaned_data = P_S_data[good_columns] uncleaned_data.qtr.unique()
code
322985/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model as sk full_data_set = pd.read_csv('../input/nflplaybyplay2015.csv', low_memory=False) Pass_Plays = full_data_set.loc[full_data_set.PlayType == 'Pass'] Sack_Plays = full_data_set.loc[full_data_set.PlayType == 'Sack'] P_S_data = pd.concat([Pass_Plays, Sack_Plays]) good_columns = ['Drive', 'qtr', 'down', 'TimeUnder', 'TimeSecs', 'PlayTimeDiff', 'yrdline100', 'ydstogo'] good_columns += ['ScoreDiff', 'PosTeamScore', 'DefTeamScore'] good_columns += ['Sack'] uncleaned_data = P_S_data[good_columns] uncleaned_data.head()
code
322985/cell_5
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.linear_model as sk full_data_set = pd.read_csv('../input/nflplaybyplay2015.csv', low_memory=False) Pass_Plays = full_data_set.loc[full_data_set.PlayType == 'Pass'] Sack_Plays = full_data_set.loc[full_data_set.PlayType == 'Sack'] P_S_data = pd.concat([Pass_Plays, Sack_Plays]) good_columns = ['Drive', 'qtr', 'down', 'TimeUnder', 'TimeSecs', 'PlayTimeDiff', 'yrdline100', 'ydstogo'] good_columns += ['ScoreDiff', 'PosTeamScore', 'DefTeamScore'] good_columns += ['Sack'] uncleaned_data = P_S_data[good_columns] uncleaned_data.qtr.unique() def quarter_binary(df, name, number): df[name] = np.where(df['qtr'] == number, 1, 0) return df for x in [['qt1', 1], ['qt2', 2], ['qt3', 3], ['qt4', 4], ['qt5', 5]]: uncleaned_data = quarter_binary(uncleaned_data, x[0], x[1]) del uncleaned_data['qtr'] uncleaned_data.head()
code
331783/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')['IndicatorName'].iloc[1] df_indo = df_indicators[df_indicators.CountryName == 'Indonesia'] len(df_indicators[df_indicators.CountryName == 'Indonesia']) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')
code
331783/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')['IndicatorName'].iloc[1]
code
331783/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')['IndicatorName'].iloc[1] df_indo = df_indicators[df_indicators.CountryName == 'Indonesia'] ind_code = 'SP.ADO.TFRT' data = df_indo[df_indo.IndicatorCode == ind_code] plt.grid() plt.ylabel('Value') plt.xlabel('Year') line1, = plt.plot(data['Year'], data['Value'], label=data['IndicatorCode']) plt.legend([line1])
code
331783/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
331783/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_indicators[df_indicators.CountryName == 'Indonesia'].drop_duplicates('IndicatorCode')['IndicatorName'].iloc[1] df_indo = df_indicators[df_indicators.CountryName == 'Indonesia'] len(df_indicators[df_indicators.CountryName == 'Indonesia'])
code
331783/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_countries = pd.read_csv('../input/Country.csv') df_indicators = pd.read_csv('../input/Indicators.csv') df_series = pd.read_csv('../input/Series.csv') df_countries[df_countries.CountryCode == 'IDN']
code
129018594/cell_9
[ "text_plain_output_1.png" ]
from datasets import load_dataset from sentence_transformers import InputExample from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from torch.utils.data import DataLoader dataset_train = load_dataset('stsb_multi_mt', name='it', split='train') dataset_test = load_dataset('stsb_multi_mt', name='it', split='test') gold_samples = [] batch_size = 16 for df in dataset_train: score = float(df['similarity_score']) / 5.0 gold_samples.append(InputExample(texts=[df['sentence1'], df['sentence2']], label=score)) gold_samples.append(InputExample(texts=[df['sentence2'], df['sentence1']], label=score)) train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) from sentence_transformers.cross_encoder import CrossEncoder model_checkpoint = 'dbmdz/bert-base-italian-uncased' cross_encoder = CrossEncoder(model_checkpoint, num_labels=1) from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator import math evaluator = CECorrelationEvaluator([[x['sentence1'], x['sentence2']] for x in dataset_test], [x / 5.0 for x in dataset_test['similarity_score']]) num_epochs = 4 evaluation_steps = 500 warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) cross_encoder.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, save_best_model=True, output_path='cross-encoder/')
code
129018594/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datasets import load_dataset dataset_train = load_dataset('stsb_multi_mt', name='it', split='train') dataset_test = load_dataset('stsb_multi_mt', name='it', split='test')
code
129018594/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
!pip install datasets
code
129018594/cell_1
[ "text_plain_output_1.png" ]
!pip install -U sentence-transformers
code
129018594/cell_10
[ "text_plain_output_1.png" ]
from datasets import load_dataset from sentence_transformers import InputExample from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator from torch.utils.data import DataLoader dataset_train = load_dataset('stsb_multi_mt', name='it', split='train') dataset_test = load_dataset('stsb_multi_mt', name='it', split='test') gold_samples = [] batch_size = 16 for df in dataset_train: score = float(df['similarity_score']) / 5.0 gold_samples.append(InputExample(texts=[df['sentence1'], df['sentence2']], label=score)) gold_samples.append(InputExample(texts=[df['sentence2'], df['sentence1']], label=score)) train_dataloader = DataLoader(gold_samples, shuffle=True, batch_size=batch_size) from sentence_transformers.cross_encoder import CrossEncoder model_checkpoint = 'dbmdz/bert-base-italian-uncased' cross_encoder = CrossEncoder(model_checkpoint, num_labels=1) from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator import math evaluator = CECorrelationEvaluator([[x['sentence1'], x['sentence2']] for x in dataset_test], [x / 5.0 for x in dataset_test['similarity_score']]) num_epochs = 4 evaluation_steps = 500 warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) cross_encoder.fit(train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, save_best_model=True, output_path='cross-encoder/') evaluator(cross_encoder)
code
18159419/cell_13
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data.head()
code
18159419/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data.head()
code
18159419/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) data.head()
code
18159419/cell_34
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.metrics import accuracy_score (train_df.shape, val_df.shape) accuracy_score(train_df['Reg_clicks_categorical'], train_df['prediction'])
code
18159419/cell_23
[ "text_plain_output_1.png" ]
from keras.preprocessing.text import Tokenizer import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns (train_df.shape, val_df.shape) embed_size = 100 max_features = 100000 maxlen = 1400 train_X = train_df['entire_text'].fillna('##').values val_X = val_df['entire_text'].fillna('##').values tokenizer = Tokenizer(num_words=max_features) tokenizer.fit_on_texts(list(data['entire_text'].fillna('##').values)) train_X = tokenizer.texts_to_sequences(train_X) val_X = tokenizer.texts_to_sequences(val_X) print('after tokenization') print(len(train_X)) print(len(val_X))
code
18159419/cell_30
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Input, CuDNNLSTM, Embedding, Dropout, Activation, CuDNNGRU, Conv1D from keras.layers import LSTM from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns (train_df.shape, val_df.shape) embed_size = 100 max_features = 100000 maxlen = 1400 train_X = train_df['entire_text'].fillna('##').values val_X = val_df['entire_text'].fillna('##').values tokenizer = Tokenizer(num_words=max_features) tokenizer.fit_on_texts(list(data['entire_text'].fillna('##').values)) train_X = tokenizer.texts_to_sequences(train_X) val_X = tokenizer.texts_to_sequences(val_X) train_X = pad_sequences(train_X, maxlen=maxlen) val_X = pad_sequences(val_X, maxlen=maxlen) train_y = train_df['Reg_clicks_categorical'].values val_y = val_df['Reg_clicks_categorical'].values train_y = to_categorical(train_y, num_classes=4) val_y = to_categorical(val_y, num_classes=4) model = Sequential() model.add(Embedding(max_features, embed_size, input_length=maxlen)) model.add(LSTM(256)) model.add(Dense(4, activation='softmax')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_X, train_y, epochs=2, batch_size=256, validation_data=(val_X, val_y)) y_prediction = model.predict(train_X, batch_size=512, verbose=1)
code
18159419/cell_33
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix from sklearn.metrics import confusion_matrix (train_df.shape, val_df.shape) confusion_matrix(train_df['Reg_clicks_categorical'], train_df['prediction'])
code
18159419/cell_20
[ "text_plain_output_1.png" ]
(train_df.shape, val_df.shape)
code
18159419/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data.head()
code
18159419/cell_29
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Input, CuDNNLSTM, Embedding, Dropout, Activation, CuDNNGRU, Conv1D from keras.layers import LSTM from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns (train_df.shape, val_df.shape) embed_size = 100 max_features = 100000 maxlen = 1400 train_X = train_df['entire_text'].fillna('##').values val_X = val_df['entire_text'].fillna('##').values tokenizer = Tokenizer(num_words=max_features) tokenizer.fit_on_texts(list(data['entire_text'].fillna('##').values)) train_X = tokenizer.texts_to_sequences(train_X) val_X = tokenizer.texts_to_sequences(val_X) train_X = pad_sequences(train_X, maxlen=maxlen) val_X = pad_sequences(val_X, maxlen=maxlen) train_y = train_df['Reg_clicks_categorical'].values val_y = val_df['Reg_clicks_categorical'].values train_y = to_categorical(train_y, num_classes=4) val_y = to_categorical(val_y, num_classes=4) model = Sequential() model.add(Embedding(max_features, embed_size, input_length=maxlen)) model.add(LSTM(256)) model.add(Dense(4, activation='softmax')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_X, train_y, epochs=2, batch_size=256, validation_data=(val_X, val_y))
code
18159419/cell_11
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data.head()
code
18159419/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from textblob import TextBlob import nltk import re from bs4 import BeautifulSoup from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score from scipy.sparse import coo_matrix, hstack import warnings warnings.filterwarnings('ignore') from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from keras.models import Sequential from keras.layers import LSTM from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Dense, Input, CuDNNLSTM, Embedding, Dropout, Activation, CuDNNGRU, Conv1D from keras.layers import Bidirectional, GlobalMaxPool1D, Flatten from keras.optimizers import Adam from keras.models import Model from keras.engine.topology import Layer from keras import initializers, regularizers, constraints, optimizers, layers from nltk.corpus import stopwords from keras.utils import to_categorical
code
18159419/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns plt.figure(figsize=(6, 4)) ax = sns.countplot(x='country_desc', data=data) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha='right') plt.tight_layout() plt.show()
code
18159419/cell_18
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data['Reg_clicks_categorical'].value_counts()
code
18159419/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns plt.figure(figsize=(6,4)) ax = sns.countplot(x="country_desc", data=data) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() plt.hist(data['length_of_text'], bins=1000)
code
18159419/cell_16
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data['knt'].describe()
code
18159419/cell_14
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/mondaq_data_adeel.csv', header=None) columns = ['article_id', 'knt', 'unknt', 'her_knt', 'unher_knt', 'company_id', 'company_name', 'country_id', 'country_desc', 'primary_topic_id', 'topic_desc', 'article_start_date', 'daysold', 'topics', 'coauthors', 'linkedinphoto', 'title', 'body'] data.columns = columns data['length_of_text'].describe()
code
18159419/cell_22
[ "image_output_1.png" ]
(train_df.shape, val_df.shape) train_X = train_df['entire_text'].fillna('##').values val_X = val_df['entire_text'].fillna('##').values print('before tokenization') print(train_X.shape) print(val_X.shape)
code
18159419/cell_27
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Input, CuDNNLSTM, Embedding, Dropout, Activation, CuDNNGRU, Conv1D from keras.layers import LSTM from keras.models import Sequential embed_size = 100 max_features = 100000 maxlen = 1400 model = Sequential() model.add(Embedding(max_features, embed_size, input_length=maxlen)) model.add(LSTM(256)) model.add(Dense(4, activation='softmax')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary())
code
17132918/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import random import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list3, bins=range(0,36), color="blue", alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list4, bins=range(0,36), color="red", alpha=0.8, ) plt.show() list_100 = [] multi_times(th_amount, 100, list_100) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(list_100, color="green", bins=range(275,425), alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of ' + str(th_amount) + ' dice throws') histy = 'step' ax.hist(my_list4, bins=range(2, 36), color='red', alpha=1.0) ax.hist(my_list3, bins=range(2, 36), color='blue', alpha=0.8) ax.hist(my_list2, bins=range(2, 36), color='green', alpha=0.7) ax.hist(my_list1, bins=range(2, 36), color='yellow', alpha=0.5) ax.legend(['6 dices', '5 dices', '4 dices', '3 dices']) plt.show()
code
17132918/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import random import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list3, bins=range(0,36), color="blue", alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of ' + str(th_amount) + ' dice throws') histy = 'step' ax.hist(my_list4, bins=range(0, 36), color='red', alpha=0.8) plt.show()
code
17132918/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import random import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of ' + str(th_amount) + ' dice throws') histy = 'step' ax.hist(my_list3, bins=range(0, 36), color='blue', alpha=0.8) plt.show()
code
17132918/cell_15
[ "image_output_1.png" ]
import random import seaborn as sns import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) import seaborn as sns sns.distplot(my_list1, kde=False)
code
17132918/cell_16
[ "image_output_1.png" ]
import random import seaborn as sns import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) import seaborn as sns sns.distplot(my_list1, kde=False) sns.distplot(my_list2, kde=False)
code
17132918/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import random import seaborn as sns import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list3, bins=range(0,36), color="blue", alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list4, bins=range(0,36), color="red", alpha=0.8, ) plt.show() list_100 = [] multi_times(th_amount, 100, list_100) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(list_100, color="green", bins=range(275,425), alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list4, bins=range(2,36), color="red", alpha=1.0, ) ax.hist(my_list3, bins=range(2,36), color="blue", alpha=0.8, ) ax.hist(my_list2, bins=range(2,36), color="green", alpha=0.7, ) ax.hist(my_list1, bins=range(2,36), color="yellow", alpha=0.5, ) ax.legend(["6 dices", "5 dices", "4 dices", "3 dices"]) plt.show() import seaborn as sns sns.distplot(my_list1, label='3 dices', kde=False) sns.distplot(my_list2, label='4 dices', kde=False) sns.distplot(my_list3, label='5 dices', kde=False) sns.distplot(my_list4, label='6 dices', kde=False) plt.legend()
code
17132918/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import random import random import matplotlib import matplotlib.pyplot as plt def throw(): global x x += random.randint(1, 6) def multi_throw(dice_amount, list_name): global x x = 0 for i in range(dice_amount): throw() list_name.append(x) def multi_times(time_amount, dice_amount, list_name): for i in range(time_amount): multi_throw(dice_amount, list_name) x = 0 th_amount = 1000000 my_list1 = [] my_list2 = [] my_list3 = [] my_list4 = [] multi_times(th_amount, 3, my_list1) multi_times(th_amount, 4, my_list2) multi_times(th_amount, 5, my_list3) multi_times(th_amount, 6, my_list4) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list3, bins=range(0,36), color="blue", alpha=0.8, ) plt.show() fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of '+str(th_amount)+' dice throws') histy='step' ax.hist(my_list4, bins=range(0,36), color="red", alpha=0.8, ) plt.show() list_100 = [] multi_times(th_amount, 100, list_100) fig, ax = plt.subplots() plt.xlabel('score') plt.ylabel('occurences') plt.title('Histogram of ' + str(th_amount) + ' dice throws') histy = 'step' ax.hist(list_100, color='green', bins=range(275, 425), alpha=0.8) plt.show()
code
2020321/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from datetime import datetime import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() entire['DateSold'] = entire['YrSold'].astype(str) + '/' + entire['MoSold'].astype(str) entire['DateSold'] = entire['DateSold'].apply(lambda x: datetime.strptime(x, '%Y/%m')) title = 'Evolution of SalePrice with DateSold' gpby = entire[entire.SalePrice.notnull()].groupby('DateSold') gpby['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) title = 'Evolution of SalePrice with YearBuilt' gpbyDate = entire.groupby('YearBuilt') gpbyDate['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) entire[(entire.PoolArea > 0) & entire.PoolQC.isnull()][['OverallQual', 'OverallCond', 'PoolQC', 'PoolArea', 'SalePrice']] for i in entire[(entire.PoolArea > 0) & entire.PoolQC.isnull()].index: print('Replacement of PoolQC at index {}'.format(i)) entire.set_value(i, 'PoolQC', 'Fa')
code
2020321/cell_9
[ "text_html_output_1.png" ]
train.groupby('Utilities')['SalePrice'].agg(['median', 'mean', 'std'])
code
2020321/cell_4
[ "text_plain_output_1.png" ]
categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) print('{} categorical features:\n'.format(len(categ_feat)), categ_feat) print('\n{} numerical features (float + int):\n'.format(len(num_feat)), num_feat) print('\n{} numerical features (int only):\n'.format(len(int_feat)), int_feat) features = categ_feat + num_feat
code
2020321/cell_19
[ "text_html_output_1.png" ]
from datetime import datetime import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() entire['DateSold'] = entire['YrSold'].astype(str) + '/' + entire['MoSold'].astype(str) entire['DateSold'] = entire['DateSold'].apply(lambda x: datetime.strptime(x, '%Y/%m')) title = 'Evolution of SalePrice with DateSold' gpby = entire[entire.SalePrice.notnull()].groupby('DateSold') gpby['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) title = 'Evolution of SalePrice with YearBuilt' gpbyDate = entire.groupby('YearBuilt') gpbyDate['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) entire[(entire.PoolArea > 0) & entire.PoolQC.isnull()][['OverallQual', 'OverallCond', 'PoolQC', 'PoolArea', 'SalePrice']]
code
2020321/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) plot_features(categ_feat, 'SalePrice', entire[entire.SalePrice.notnull()])
code
2020321/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts()
code
2020321/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
print('Total number of rows: {0}\n\t- {1} in training set\n\t- {2} in testing set\nNumber of features: {3}'.format(len(entire.index), len(train.index), len(test.index), len(train.columns)))
code
2020321/cell_17
[ "text_plain_output_1.png" ]
from datetime import datetime import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() entire['DateSold'] = entire['YrSold'].astype(str) + '/' + entire['MoSold'].astype(str) entire['DateSold'] = entire['DateSold'].apply(lambda x: datetime.strptime(x, '%Y/%m')) title = 'Evolution of SalePrice with DateSold' gpby = entire[entire.SalePrice.notnull()].groupby('DateSold') gpby['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) title = 'Evolution of SalePrice with YearBuilt' gpbyDate = entire.groupby('YearBuilt') gpbyDate['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) def show_nan(df, features, exclude='SalePrice'): """ Analyze a DataFrame and show if it contains missing values. Print the names of features containing missing values sorted by number of missing values Arguments: - df (DataFrame): dataset to analyse - features (list): feature names to be analysed - exclude (str): feature name not to be analysed """ features = [f for f in features if f != exclude] list_feat = [] for feat in features: if True in df[feat].isnull().values: miss_val = df[feat].isnull().value_counts()[True] prop = round(miss_val / df.Id.count(), 5) list_feat.append((feat, miss_val, prop)) list_feat = sorted(list_feat, key=lambda x: x[-1], reverse=True) show_nan(entire, features)
code
2020321/cell_14
[ "image_output_1.png" ]
from datetime import datetime import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() entire['DateSold'] = entire['YrSold'].astype(str) + '/' + entire['MoSold'].astype(str) entire['DateSold'] = entire['DateSold'].apply(lambda x: datetime.strptime(x, '%Y/%m')) title = 'Evolution of SalePrice with DateSold' gpby = entire[entire.SalePrice.notnull()].groupby('DateSold') gpby['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6)) title = 'Evolution of SalePrice with YearBuilt' gpbyDate = entire.groupby('YearBuilt') gpbyDate['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6))
code
2020321/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() plot_features(num_feat, 'SalePrice', entire[entire.SalePrice.notnull()])
code
2020321/cell_12
[ "text_plain_output_1.png" ]
from datetime import datetime import matplotlib.pyplot as plt import numpy as np import seaborn as sns categ_feat = sorted(list(entire.dtypes[entire.dtypes == 'object'].index)) num_feat = sorted(list(entire.dtypes[(entire.dtypes == 'int64') | (entire.dtypes == 'float64')].index)) int_feat = sorted(list(entire.dtypes[entire.dtypes == 'int64'].index)) features = categ_feat + num_feat def plot_features(x_list, y_name, df, threshold=0.5): """ Generate a figure with an axe per plot, each axe plotting y_name feature function of numerical or categorical features in x_list. Print the feature names and corresponding regression coefficients ordered by coefficient values Arguments: - x_list (list): list of feature names for x-axis - y_name (str): feature name for y-axis - df (pandas.DataFrame): dataset containing the data to plot - threshold (float): threshold value for regression coefficient printing """ colors = sns.color_palette(n_colors=len(x_list)) list_tup = [] # List of (feature_name, reg_coef) if not len(x_list)%2: row_nb = int(len(x_list)/2) else: row_nb = int(len(x_list)/2) + 1 size_y = row_nb * 5 fig = plt.figure(figsize=(15, size_y*1.05)) i = 1 for x_name in x_list: ax = fig.add_subplot(row_nb, 2, i) if df[x_name].dtypes == 'object': # Categorical feature sns.boxplot(x=x_name, y=y_name, data=df, ax=ax) else: # Numerical feature sns.regplot(x=x_name, y=y_name, data=df, ax=ax, color=colors[i-1]) corr = np.corrcoef(df[x_name], df[y_name])[0, 1] list_tup.append((x_name, corr)) ax.set_title('Regression coef: {:.2f}'.format(corr)) i += 1 list_tup = [tup for tup in list_tup if tup[1] >= threshold] list_tup = sorted(list_tup, key=lambda x: x[1], reverse=True) for tup in list_tup: print("Regression coefficient for {0}:\t{1:.2f}" .format(tup[0], tup[1])) entire.Utilities.value_counts() entire['DateSold'] = entire['YrSold'].astype(str) + '/' + entire['MoSold'].astype(str) entire['DateSold'] = entire['DateSold'].apply(lambda x: datetime.strptime(x, '%Y/%m')) title = 'Evolution of SalePrice with DateSold' gpby = entire[entire.SalePrice.notnull()].groupby('DateSold') gpby['SalePrice'].agg(['median', 'mean', 'std']).plot(grid=True, title=title, figsize=(8, 6))
code
48165213/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') top10_NA_sales = top_sales(games, 'NA_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig = go.Figure(data=[go.Bar(x=top10_NA_sales.Name, y=top10_NA_sales.NA_Sales)], layout_title_text='Top 10 Sales Games In NA') fig.show()
code
48165213/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') top10_NA_sales = top_sales(games, 'NA_Sales') top10_Global_sales = top_sales(games, 'Global_Sales') top10_Other_sales = top_sales(games, 'Other_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig = go.Figure(data=[go.Bar(x=top10_NA_sales.Name, y=top10_NA_sales.NA_Sales)], layout_title_text='Top 10 Sales Games In NA') fig = go.Figure(data=[go.Bar(x=top10_Global_sales.Name, y=top10_Global_sales.Global_Sales)], layout_title_text='Top 10 Sales Games Global') fig = go.Figure(data=[go.Bar(x=top10_Other_sales.Name, y=top10_Other_sales.Other_Sales)], layout_title_text='Top 10 Sales Games Other') publication_distr = games.Year.value_counts().sort_values(ascending=False) fig = px.bar(publication_distr, x=publication_distr.index, y=publication_distr.values, title='Year of Games Releasing & Distribution') fig.show()
code
48165213/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd from IPython.display import display import seaborn as sns import plotly import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objs as go plotly.offline.init_notebook_mode(connected=True) from plotly.subplots import make_subplots import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
48165213/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values=top_10_publishers.values, names=top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show()
code
48165213/cell_18
[ "image_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig.show()
code
48165213/cell_28
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') top10_NA_sales = top_sales(games, 'NA_Sales') top10_Global_sales = top_sales(games, 'Global_Sales') top10_Other_sales = top_sales(games, 'Other_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig = go.Figure(data=[go.Bar(x=top10_NA_sales.Name, y=top10_NA_sales.NA_Sales)], layout_title_text='Top 10 Sales Games In NA') fig = go.Figure(data=[go.Bar(x=top10_Global_sales.Name, y=top10_Global_sales.Global_Sales)], layout_title_text='Top 10 Sales Games Global') fig = go.Figure(data=[go.Bar(x=top10_Other_sales.Name, y=top10_Other_sales.Other_Sales)], layout_title_text='Top 10 Sales Games Other') publication_distr = games.Year.value_counts().sort_values(ascending=False) fig = px.bar(publication_distr, x=publication_distr.index, y=publication_distr.values, title= "Year of Games Releasing & Distribution") fig.show() top10_sales_games = games.groupby(['Name', 'Year'])['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) fig = px.pie(top10_sales_games, values=top10_sales_games.Year, names=top10_sales_games.Name, title='Top 10 Worldwide Sales Games Globally') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show()
code
48165213/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig.show()
code
48165213/cell_3
[ "text_html_output_1.png" ]
import pandas as pd games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') games
code
48165213/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') top10_NA_sales = top_sales(games, 'NA_Sales') top10_Global_sales = top_sales(games, 'Global_Sales') top10_Other_sales = top_sales(games, 'Other_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig = go.Figure(data=[go.Bar(x=top10_NA_sales.Name, y=top10_NA_sales.NA_Sales)], layout_title_text='Top 10 Sales Games In NA') fig = go.Figure(data=[go.Bar(x=top10_Global_sales.Name, y=top10_Global_sales.Global_Sales)], layout_title_text='Top 10 Sales Games Global') fig = go.Figure(data=[go.Bar(x=top10_Other_sales.Name, y=top10_Other_sales.Other_Sales)], layout_title_text='Top 10 Sales Games Other') fig.show()
code
48165213/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') top_10_publishers = games.Publisher.value_counts().sort_values(ascending=False).head(10) fig = px.pie(top_10_publishers, values= top_10_publishers.values, names= top_10_publishers.index, title='Top 10 Games Publishers') fig.update_traces(textposition='inside', textinfo='percent+label') fig.show() def top_sales(df, region): if region == 'JP_Sales': japan = games.groupby('Name')['JP_Sales'].sum().reset_index().sort_values('JP_Sales', ascending=False).head(10) return japan elif region == 'EU_Sales': eu = games.groupby('Name')['EU_Sales'].sum().reset_index().sort_values('EU_Sales', ascending=False).head(10) return eu elif region == 'NA_Sales': na = games.groupby('Name')['NA_Sales'].sum().reset_index().sort_values('NA_Sales', ascending=False).head(10) return na elif region == 'Global_Sales': globe = games.groupby('Name')['Global_Sales'].sum().reset_index().sort_values('Global_Sales', ascending=False).head(10) return globe else: other = games.groupby('Name')['Other_Sales'].sum().reset_index().sort_values('Other_Sales', ascending=False).head(10) return other top10_JP_sales = top_sales(games, 'JP_Sales') top10_EU_sales = top_sales(games, 'EU_Sales') top10_NA_sales = top_sales(games, 'NA_Sales') top10_Global_sales = top_sales(games, 'Global_Sales') fig = go.Figure(data=[go.Bar(x=top10_JP_sales.Name, y=top10_JP_sales.JP_Sales)], layout_title_text='Top 10 Sales Games In Japan') fig = go.Figure(data=[go.Bar(x=top10_EU_sales.Name, y=top10_EU_sales.EU_Sales)], layout_title_text='Top 10 Sales Games In EU') fig = go.Figure(data=[go.Bar(x=top10_NA_sales.Name, y=top10_NA_sales.NA_Sales)], layout_title_text='Top 10 Sales Games In NA') fig = go.Figure(data=[go.Bar(x=top10_Global_sales.Name, y=top10_Global_sales.Global_Sales)], layout_title_text='Top 10 Sales Games Global') fig.show()
code
48165213/cell_5
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns games = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') sns.set_style('whitegrid') fig, ax1 = plt.subplots(figsize=(20, 11)) plt.title('Number of different games per game platforms') sns.countplot(x='Platform', data=games, ax=ax1) plt.show()
code
329717/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('../input/people.csv') print(df.head())
code
128026337/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx def knight_moves(pos): x, y = pos moves = [(x + 1, y + 2), (x + 1, y - 2), (x - 1, y + 2), (x - 1, y - 2), (x + 2, y + 1), (x + 2, y - 1), (x - 2, y + 1), (x - 2, y - 1)] return [(a, b) for a, b in moves if 0 <= a < 8 and 0 <= b < 8] def create_chessboard_graph(): chess_graph = nx.Graph() for x in range(8): for y in range(8): pos = (x, y) chess_graph.add_node(pos, pos=pos) for move in knight_moves(pos): chess_graph.add_edge(pos, move) return chess_graph def draw_chessboard_graph(chess_graph): pos = nx.get_node_attributes(chess_graph, 'pos') def create_maze_graph(): maze_graph = nx.Graph() maze_graph.add_nodes_from(range(1, 22)) maze_graph.add_edges_from([(1, 2), (2, 3), (2, 5), (5, 4), (5, 6), (6, 7), (6, 9), (9, 8), (9, 10), (10, 11), (10, 13), (13, 12), (13, 14), (14, 17), (14, 15), (14, 21), (17, 16), (17, 18), (21, 19), (21, 22), (18, 20), (18, 21)]) return maze_graph def draw_maze_graph(maze_graph): pos = nx.spring_layout(maze_graph, seed=1) maze_graph = create_maze_graph() def create_water_vessels_graph(): vessels_graph = nx.DiGraph() states = [(8, 0, 0), (3, 5, 0), (3, 2, 3), (6, 2, 0), (6, 0, 2), (1, 5, 2), (1, 4, 3), (4, 4, 0)] vessels_graph.add_nodes_from(states) edges = [((8, 0, 0), (3, 5, 0)), ((3, 5, 0), (0, 5, 3)), ((0, 5, 3), (3, 2, 3)), ((3, 2, 3), (6, 2, 0)), ((6, 2, 0), (6, 0, 2)), ((6, 0, 2), (1, 5, 2)), ((1, 5, 2), (1, 4, 3)), ((1, 4, 3), (4, 4, 0))] vessels_graph.add_edges_from(edges) return vessels_graph def draw_water_jug_graph(vessels_graph): pos = nx.spring_layout(vessels_graph, seed=1) nx.draw(vessels_graph, pos, with_labels=True, node_size=1600) nx.draw_networkx_labels(vessels_graph, {x: (y[0], y[1] - 0.1) for x, y in pos.items()}, labels=dict(vessels_graph.degree()), font_size=10) plt.show() draw_water_jug_graph(create_water_vessels_graph())
code
128026337/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx def knight_moves(pos): x, y = pos moves = [(x + 1, y + 2), (x + 1, y - 2), (x - 1, y + 2), (x - 1, y - 2), (x + 2, y + 1), (x + 2, y - 1), (x - 2, y + 1), (x - 2, y - 1)] return [(a, b) for a, b in moves if 0 <= a < 8 and 0 <= b < 8] def create_chessboard_graph(): chess_graph = nx.Graph() for x in range(8): for y in range(8): pos = (x, y) chess_graph.add_node(pos, pos=pos) for move in knight_moves(pos): chess_graph.add_edge(pos, move) return chess_graph def draw_chessboard_graph(chess_graph): pos = nx.get_node_attributes(chess_graph, 'pos') def create_maze_graph(): maze_graph = nx.Graph() maze_graph.add_nodes_from(range(1, 22)) maze_graph.add_edges_from([(1, 2), (2, 3), (2, 5), (5, 4), (5, 6), (6, 7), (6, 9), (9, 8), (9, 10), (10, 11), (10, 13), (13, 12), (13, 14), (14, 17), (14, 15), (14, 21), (17, 16), (17, 18), (21, 19), (21, 22), (18, 20), (18, 21)]) return maze_graph def draw_maze_graph(maze_graph): pos = nx.spring_layout(maze_graph, seed=1) nx.draw(maze_graph, pos, with_labels=True, node_size=500) nx.draw_networkx_labels(maze_graph, {x: (y[0], y[1] - 0.08) for x, y in pos.items()}, labels=dict(maze_graph.degree()), font_size=10) plt.show() maze_graph = create_maze_graph() draw_maze_graph(maze_graph)
code
128026337/cell_10
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx def knight_moves(pos): x, y = pos moves = [(x + 1, y + 2), (x + 1, y - 2), (x - 1, y + 2), (x - 1, y - 2), (x + 2, y + 1), (x + 2, y - 1), (x - 2, y + 1), (x - 2, y - 1)] return [(a, b) for a, b in moves if 0 <= a < 8 and 0 <= b < 8] def create_chessboard_graph(): chess_graph = nx.Graph() for x in range(8): for y in range(8): pos = (x, y) chess_graph.add_node(pos, pos=pos) for move in knight_moves(pos): chess_graph.add_edge(pos, move) return chess_graph def draw_chessboard_graph(chess_graph): pos = nx.get_node_attributes(chess_graph, 'pos') def create_maze_graph(): maze_graph = nx.Graph() maze_graph.add_nodes_from(range(1, 22)) maze_graph.add_edges_from([(1, 2), (2, 3), (2, 5), (5, 4), (5, 6), (6, 7), (6, 9), (9, 8), (9, 10), (10, 11), (10, 13), (13, 12), (13, 14), (14, 17), (14, 15), (14, 21), (17, 16), (17, 18), (21, 19), (21, 22), (18, 20), (18, 21)]) return maze_graph def draw_maze_graph(maze_graph): pos = nx.spring_layout(maze_graph, seed=1) maze_graph = create_maze_graph() maze_graph.number_of_edges() * 2
code
128026337/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx def knight_moves(pos): x, y = pos moves = [(x + 1, y + 2), (x + 1, y - 2), (x - 1, y + 2), (x - 1, y - 2), (x + 2, y + 1), (x + 2, y - 1), (x - 2, y + 1), (x - 2, y - 1)] return [(a, b) for a, b in moves if 0 <= a < 8 and 0 <= b < 8] def create_chessboard_graph(): chess_graph = nx.Graph() for x in range(8): for y in range(8): pos = (x, y) chess_graph.add_node(pos, pos=pos) for move in knight_moves(pos): chess_graph.add_edge(pos, move) return chess_graph def draw_chessboard_graph(chess_graph): pos = nx.get_node_attributes(chess_graph, 'pos') nx.draw(chess_graph, pos, node_size=500, with_labels=True) nx.draw_networkx_labels(chess_graph, {x: (y[0], y[1] - 0.4) for x, y in pos.items()}, labels=dict(chess_graph.degree()), font_size=10) plt.show() draw_chessboard_graph(create_chessboard_graph())
code
128027620/cell_21
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum() colormap = sns.color_palette('Blues') train.head()
code
128027620/cell_13
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist()
code
128027620/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.phraseology.hist()
code
128027620/cell_25
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum() colormap = sns.color_palette('Blues') df = train.copy() target_vars = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions'] df.head()
code
128027620/cell_23
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd import seaborn as sns train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum() colormap = sns.color_palette('Blues') df = train.copy() target_vars = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions'] from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(smooth_idf=True, sublinear_tf=True, max_features=5000) vectorizer.fit(raw_documents=train.full_text)
code
128027620/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.cohesion.hist()
code
128027620/cell_26
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from tqdm import tqdm import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum() colormap = sns.color_palette('Blues') df = train.copy() target_vars = ['cohesion', 'syntax', 'vocabulary', 'phraseology', 'grammar', 'conventions'] from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(smooth_idf=True, sublinear_tf=True, max_features=5000) vectorizer.fit(raw_documents=train.full_text) def extract_vectors(x): vecs = vectorizer.transform(x) return vecs.toarray().flatten() df['vecs'] = train.full_text.apply(lambda x: extract_vectors([x])) feature_set = [] for i, row in tqdm(df.iterrows(), total=len(df)): vecs = row['vecs'] vals = row[target_vars].astype(float) features = np.hstack([vecs, vals]).flatten() feature_set.append(features) feature_set = np.array(feature_set)
code
128027620/cell_11
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.conventions.hist()
code
128027620/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.syntax.hist()
code
128027620/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.vocabulary.hist()
code
128027620/cell_16
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum()
code
128027620/cell_3
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.head()
code
128027620/cell_17
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) train.full_text.apply(lambda x: get_length_of_text(x)).hist() train.isna().sum() colormap = sns.color_palette('Blues') sns.heatmap(train.corr(), annot=True, cmap=colormap)
code
128027620/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') train.grammar.hist()
code
128027620/cell_12
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/feedback-prize-english-language-learning/train.csv') test = pd.read_csv('../input/feedback-prize-english-language-learning/test.csv') ss = pd.read_csv('../input/feedback-prize-english-language-learning/sample_submission.csv') def get_length_of_text(x): return len(x) print(f'Average length: {train.full_text.apply(lambda x: get_length_of_text(x)).mean():0.2f}') print(f'Std length: {train.full_text.apply(lambda x: get_length_of_text(x)).std():0.2f}') print(f'Min length: {train.full_text.apply(lambda x: get_length_of_text(x)).min():0.2f}') print(f'Max length: {train.full_text.apply(lambda x: get_length_of_text(x)).max():0.2f}')
code
129035281/cell_21
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.describe()
code
129035281/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd import pingouin as pg df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.dtypes pl = df[(df['League'] == 'Premier League') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) ll = df[(df['League'] == 'La Liga') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) print(f"Premier League Winner Points in 2009-2022 are normal -> {pg.normality(pl.Points.values)['normal'].values[0]}") print(f"LaLiga Winner Points in 2009-2022 are normal -> {pg.normality(ll.Points.values)['normal'].values[0]}")
code
129035281/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.dtypes df.info()
code
129035281/cell_20
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.tail()
code
129035281/cell_40
[ "text_html_output_1.png" ]
import pandas as pd import pingouin as pg df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.dtypes pl = df[(df['League'] == 'Premier League') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) ll = df[(df['League'] == 'La Liga') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) pg.ttest(ll.Points.values, pl.Points.values, correction=False, alternative='greater')
code
129035281/cell_11
[ "text_html_output_1.png" ]
!wget http://bit.ly/3ZLyF82 -O CSS.css -q from IPython.core.display import HTML with open('./CSS.css', 'r') as file: custom_css = file.read() HTML(custom_css)
code
129035281/cell_19
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.head()
code
129035281/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pingouin as pg
code
129035281/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.dtypes pl = df[(df['League'] == 'Premier League') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) ll = df[(df['League'] == 'La Liga') & (df['Rank'] == 1)][['League', 'Team', 'Start Season', 'End Season', 'Points', 'Wins']].reset_index(drop=True) print(f"La Liga Winners Average Points in 2009-2022 is -> {round(ll['Points'].mean(), 2)}") print(f"Premier League Winners Average Points in 2009-2022 is -> {round(pl['Points'].mean(), 2)}")
code
129035281/cell_14
[ "text_plain_output_1.png" ]
! pip install pingouin
code
129035281/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/performance-data-on-football-teams-09-to-22/Complete Dataset 2.csv') df.dtypes
code
49124084/cell_4
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/twitter-train/train.txt', delimiter='\n', header=None) data_array = data.to_numpy() x_array = np.reshape(data_array, (-1, 3)) print(x_array) column = ['Tweet', 'Target', 'Sentiment'] data = pd.DataFrame(data=x_array, columns=column) data
code
49124084/cell_6
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd data = pd.read_csv('../input/twitter-train/train.txt', delimiter='\n', header=None) data_array = data.to_numpy() x_array = np.reshape(data_array, (-1, 3)) column = ['Tweet', 'Target', 'Sentiment'] data = pd.DataFrame(data=x_array, columns=column) data my_dataset = data my_dataset = my_dataset.drop(['Target', 'Sentiment'], axis=1) my_target = data.drop(['Tweet', 'Sentiment'], axis=1) for i in my_dataset.index: x = my_dataset['Tweet'][i].find('$T$') s = my_dataset['Tweet'][1].replace('$T$', my_target['Target'][0]) j = 0 my_targetless_tweet = [] for i in range(6248): my_targetless_tweet.insert(i, my_dataset['Tweet'][i].replace('$T$', my_target['Target'][j])) j = j + 1 my_targetless_tweet = pd.DataFrame(my_targetless_tweet) my_targetless_tweet targetless_tweet = my_targetless_tweet.to_numpy() new_array = np.reshape(targetless_tweet, (-1, 1)) print(new_array) column = ['Tweet (no target)'] no_target_data = pd.DataFrame(data=new_array, columns=column) no_target_data
code