path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
16127029/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() X = pd.get_dummies(data[['term', 'verification_status', 'purpose', 'policy_code', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'emp_length', 'addr_state']]) count_class_0, count_class_1 = data.target.value_counts() data_class_0 = data[data['target'] == 1] data_class_1 = data[data['target'] == 0] data_class_0_under = data_class_0.sample(count_class_1) data_test_under = pd.concat([data_class_0_under, data_class_1], axis=0) print('Random under-sampling:') print(data_test_under.target.value_counts()) data_test_under.target.value_counts().plot(kind='bar', title='Count (targe t)')
code
16127029/cell_26
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() X = pd.get_dummies(data[['term', 'verification_status', 'purpose', 'policy_code', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'emp_length', 'addr_state']]) X.shape y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape clf = RandomForestClassifier(n_estimators=100, max_depth=4, random_state=42) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) y_pred = np.ones(y_test.shape) accuracy_score(y_test, y_pred)
code
16127029/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean()
code
16127029/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() X = pd.get_dummies(data[['term', 'verification_status', 'purpose', 'policy_code', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'emp_length', 'addr_state']]) X.shape
code
16127029/cell_1
[ "text_plain_output_1.png" ]
import os import os import numpy as np import pandas as pd from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt print(os.listdir('../input'))
code
16127029/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt plt.hist(x) plt.ylabel('No. of loans') plt.xlabel('Amnt of loan ($)') plt.show()
code
16127029/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean()
code
16127029/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() total_loaned = grade_groups['funded_amnt'].sum() total_received = grade_groups['total_pymnt'].sum() (total_received / total_loaned - 1) * 100
code
16127029/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() data['application_type'].value_counts()
code
16127029/cell_24
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() X = pd.get_dummies(data[['term', 'verification_status', 'purpose', 'policy_code', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'emp_length', 'addr_state']]) X.shape y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape clf = RandomForestClassifier(n_estimators=100, max_depth=4, random_state=42) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy_score(y_test, y_pred)
code
16127029/cell_22
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() X = pd.get_dummies(data[['term', 'verification_status', 'purpose', 'policy_code', 'loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'emp_length', 'addr_state']]) X.shape y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) X_train.shape clf = RandomForestClassifier(n_estimators=100, max_depth=4, random_state=42) clf.fit(X_train, y_train)
code
16127029/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() data.boxplot('int_rate', by='term')
code
16127029/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape x = data.loan_amnt term_groups = data.groupby('term') term_groups['int_rate'].mean() grade_groups = data.groupby('grade') grade_groups['int_rate'].mean() grade_groups['int_rate'].mean().max()
code
16127029/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/loan.csv', low_memory=False) data = data[(data.loan_status == 'Fully Paid') | (data.loan_status == 'Default')] data['target'] = data.loan_status == 'Fully Paid' data.shape
code
34126743/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/homicide-reports/database.csv') df.head()
code
34126743/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/homicide-reports/database.csv')
code
34126743/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/homicide-reports/database.csv') plt.style.use('fivethirtyeight') years = pd.DataFrame(df, columns=['Year']) count_years = years.stack().value_counts() homicides = count_years.sort_index(axis=0, ascending=False) print(homicides.plot(kind='barh', fontsize=10, width=0.5, figsize=(12, 10), title='Отчеты об убийствах в США 1980-2014 '))
code
89138279/cell_25
[ "text_plain_output_1.png" ]
from datasets import Dataset import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size() df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) print(type(dataset_train[0])) dataset_train[0]
code
89138279/cell_4
[ "text_plain_output_1.png" ]
!pip install -U transformers
code
89138279/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size() df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' print(df_meta.shape) ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' print('size of training_dataset=', len(df_meta[df_meta.split == 'train']), '---- size of test_dataset=', len(df_meta[df_meta.split == 'test'])) df_meta
code
89138279/cell_30
[ "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont from datasets import Dataset from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import LayoutLMv2Processor import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df) df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) from PIL import Image, ImageDraw, ImageFont example = dataset_train_with_bboxs[0] image = Image.open(example['image_path']) image = image.convert('RGB') image from PIL import Image from transformers import LayoutLMv2Processor from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import pipeline processor = LayoutLMv2Processor.from_pretrained('microsoft/layoutlmv2-base-uncased', revision='no_ocr') features = Features({'image': Array3D(dtype='int64', shape=(3, 224, 224)), 'input_ids': Sequence(feature=Value(dtype='int64')), 'attention_mask': Sequence(Value(dtype='int64')), 'token_type_ids': Sequence(Value(dtype='int64')), 'bbox': Array2D(dtype='int64', shape=(512, 4)), 'labels': Sequence(ClassLabel(names=labels))}) def preprocess_data(examples): images = [Image.open(path).convert('RGB') for path in examples['image_path']] words = examples['words'] boxes = examples['bboxes'] word_labels = examples['classes'] encoded_inputs = processor(image, words, boxes=boxes, word_labels=word_labels, padding='max_length', truncation=True) return encoded_inputs train_dataset = dataset_train_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_train_with_bboxs.column_names, features=features) test_dataset = dataset_test_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_test_with_bboxs.column_names, features=features)
code
89138279/cell_33
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont from datasets import Dataset from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import LayoutLMv2Processor import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df) df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) from PIL import Image, ImageDraw, ImageFont example = dataset_train_with_bboxs[0] image = Image.open(example['image_path']) image = image.convert('RGB') image from PIL import Image from transformers import LayoutLMv2Processor from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import pipeline processor = LayoutLMv2Processor.from_pretrained('microsoft/layoutlmv2-base-uncased', revision='no_ocr') features = Features({'image': Array3D(dtype='int64', shape=(3, 224, 224)), 'input_ids': Sequence(feature=Value(dtype='int64')), 'attention_mask': Sequence(Value(dtype='int64')), 'token_type_ids': Sequence(Value(dtype='int64')), 'bbox': Array2D(dtype='int64', shape=(512, 4)), 'labels': Sequence(ClassLabel(names=labels))}) def preprocess_data(examples): images = [Image.open(path).convert('RGB') for path in examples['image_path']] words = examples['words'] boxes = examples['bboxes'] word_labels = examples['classes'] encoded_inputs = processor(image, words, boxes=boxes, word_labels=word_labels, padding='max_length', truncation=True) return encoded_inputs train_dataset = dataset_train_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_train_with_bboxs.column_names, features=features) test_dataset = dataset_test_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_test_with_bboxs.column_names, features=features) processor.tokenizer.decode(train_dataset['input_ids'][11])
code
89138279/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageFont import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df)
code
89138279/cell_6
[ "text_plain_output_1.png" ]
import torch, torchvision print(torch.__version__, torch.cuda.is_available())
code
89138279/cell_29
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont from datasets import Dataset import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df) df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) from PIL import Image, ImageDraw, ImageFont example = dataset_train_with_bboxs[0] print(example['image_path']) print('--------------------') print(example.keys()) print('--------------------') image = Image.open(example['image_path']) image = image.convert('RGB') image
code
89138279/cell_26
[ "text_html_output_1.png" ]
from datasets import Dataset import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1)
code
89138279/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' print(df1.shape) df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' print(df2.shape) df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' print(df3.shape) df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' print(df4.shape) df = pd.concat([df1, df2, df3, df4]) print(df.shape)
code
89138279/cell_7
[ "text_plain_output_1.png" ]
!python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
code
89138279/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size() df
code
89138279/cell_8
[ "text_plain_output_1.png" ]
!pip install -U datasets seqeval
code
89138279/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() print(type(labels)) print(labels)
code
89138279/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} print(label2id) print(id2label)
code
89138279/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size()
code
89138279/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont from datasets import Dataset from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import LayoutLMv2Processor import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df) df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) from PIL import Image, ImageDraw, ImageFont example = dataset_train_with_bboxs[0] image = Image.open(example['image_path']) image = image.convert('RGB') image from PIL import Image from transformers import LayoutLMv2Processor from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import pipeline processor = LayoutLMv2Processor.from_pretrained('microsoft/layoutlmv2-base-uncased', revision='no_ocr') features = Features({'image': Array3D(dtype='int64', shape=(3, 224, 224)), 'input_ids': Sequence(feature=Value(dtype='int64')), 'attention_mask': Sequence(Value(dtype='int64')), 'token_type_ids': Sequence(Value(dtype='int64')), 'bbox': Array2D(dtype='int64', shape=(512, 4)), 'labels': Sequence(ClassLabel(names=labels))}) def preprocess_data(examples): images = [Image.open(path).convert('RGB') for path in examples['image_path']] words = examples['words'] boxes = examples['bboxes'] word_labels = examples['classes'] encoded_inputs = processor(image, words, boxes=boxes, word_labels=word_labels, padding='max_length', truncation=True) return encoded_inputs train_dataset = dataset_train_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_train_with_bboxs.column_names, features=features) test_dataset = dataset_test_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_test_with_bboxs.column_names, features=features) train_dataset.set_format(type='torch', device='cuda') test_dataset.set_format(type='torch', device='cuda') train_dataset.features.keys()
code
89138279/cell_31
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from PIL import Image from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont from datasets import Dataset from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import LayoutLMv2Processor import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() label2color = {'title': 'Red', 'text': 'Green'} def Draw_BBox(image_path, _bbox_labeled: pd.DataFrame): actual_boxes = [] for idx, row in _bbox_labeled.iterrows(): x0 = row['left'] y0 = row['top'] x1 = row['width'] + row['left'] y1 = row['height'] + row['top'] label = row['label'] conf = row['conf'] color = label2color[label] actual_box = [x0, y0, x1, y1] draw = ImageDraw.Draw(image, 'RGB') draw.rectangle(actual_box, outline=color, width=1) draw.text((actual_box[0] + 10, actual_box[1] - 10), text=f'{label}', fill=color) return image sample_filename = df['image_id'].iloc[0] sample_dir = df['imgdir'].iloc[0] from PIL import Image, ImageDraw, ImageFont image = Image.open(f'{sample_dir}/{sample_filename}') image = image.convert('RGB').resize((1000, 1000)) sample_image_df = df[df['image_id'] == sample_filename] sample_image_df = sample_image_df Draw_BBox(image, sample_image_df) df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) from PIL import Image, ImageDraw, ImageFont example = dataset_train_with_bboxs[0] image = Image.open(example['image_path']) image = image.convert('RGB') image from PIL import Image from transformers import LayoutLMv2Processor from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D from transformers import pipeline processor = LayoutLMv2Processor.from_pretrained('microsoft/layoutlmv2-base-uncased', revision='no_ocr') features = Features({'image': Array3D(dtype='int64', shape=(3, 224, 224)), 'input_ids': Sequence(feature=Value(dtype='int64')), 'attention_mask': Sequence(Value(dtype='int64')), 'token_type_ids': Sequence(Value(dtype='int64')), 'bbox': Array2D(dtype='int64', shape=(512, 4)), 'labels': Sequence(ClassLabel(names=labels))}) def preprocess_data(examples): images = [Image.open(path).convert('RGB') for path in examples['image_path']] words = examples['words'] boxes = examples['bboxes'] word_labels = examples['classes'] encoded_inputs = processor(image, words, boxes=boxes, word_labels=word_labels, padding='max_length', truncation=True) return encoded_inputs train_dataset = dataset_train_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_train_with_bboxs.column_names, features=features) test_dataset = dataset_test_with_bboxs.map(preprocess_data, batched=True, batch_size=1, remove_columns=dataset_test_with_bboxs.column_names, features=features) train_dataset[0].keys()
code
89138279/cell_24
[ "text_plain_output_1.png" ]
from datasets import Dataset import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) df.groupby(['label']).size() df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) print(dataset_train) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) print(dataset_test)
code
89138279/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) print(df.shape) df.head()
code
89138279/cell_27
[ "image_output_1.png" ]
from datasets import Dataset import pandas as pd df1 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_valid.csv') df1['imgdir'] = '../input/newspaper-articles/articles/validation' df2 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train1.csv') df2['imgdir'] = '../input/newspaper-articles/articles/training' df3 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train2.csv') df3['imgdir'] = '../input/newspaper-articles/articles/training' df4 = pd.read_csv('../input/newspaper-articles-csv-ocr/ocr/df_train3.csv') df4['imgdir'] = '../input/newspaper-articles/articles/training' df = pd.concat([df1, df2, df3, df4]) df = df[df.text.apply(lambda x: len(str(x)) > 1)] df = df.reset_index(drop=True) labels = df['label'].unique() labels = labels.tolist() id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} df.groupby(['label']).size() df_meta = df df_meta = df_meta.drop_duplicates(subset=['image_id']) df_meta = df_meta.reset_index(drop=True) df_meta['id'] = df_meta.index df_meta['image_path'] = df_meta['imgdir'] + '/' + df_meta['image_id'] df_meta = df_meta[['image_id', 'image_path']] df_meta['split'] = 'train' ratio_split = int(len(df_meta) * 0.2) df_meta.loc[df_meta.index[-ratio_split:], 'split'] = 'test' df_meta from datasets import Dataset train_meta = df_meta[df_meta.split == 'train'] train_meta = train_meta.drop(columns=['split']) train_meta = train_meta.reset_index(drop=True) dataset_train = Dataset.from_pandas(train_meta) test_meta = df_meta[df_meta.split == 'test'] test_meta = test_meta.drop(columns=['split']) test_meta = test_meta.reset_index(drop=True) dataset_test = Dataset.from_pandas(test_meta) def get_words_and_boxes(examples): image_id = examples['image_id'] record = {} objs1 = [] objs2 = [] objs3 = [] for index2, row in df.query('image_id == @image_id').iterrows(): class_id = label2id[row['label']] word = row['text'] bbox_resized = [int(row['left']), int(row['top']), int(row['left']) + int(row['width']), int(row['top']) + int(row['height'])] obj1 = word obj2 = bbox_resized obj3 = class_id objs1.append(obj1) objs2.append(obj2) objs3.append(obj3) record['words'] = objs1 record['bboxes'] = objs2 record['classes'] = objs3 examples['words'] = [objs1] examples['bboxes'] = [objs2] examples['classes'] = [objs3] return examples dataset_train_with_bboxs = dataset_train.map(get_words_and_boxes, batched=True, batch_size=1) dataset_test_with_bboxs = dataset_test.map(get_words_and_boxes, batched=True, batch_size=1) print(type(dataset_train_with_bboxs)) print('##############################') print(type(dataset_train_with_bboxs[0])) print('##############################') dataset_train_with_bboxs
code
89138279/cell_5
[ "text_plain_output_1.png" ]
pip install -U transformers tokenizers
code
128034962/cell_9
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "text_plain_output_20.png", "image_output_23.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "image_output_18.png", "image_output_21.png", "text_plain_output_27.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_25.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_22.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "text_plain_output_26.png", "image_output_27.png", "image_output_6.png", "text_plain_output_23.png", "image_output_12.png", "image_output_22.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import tensorflow as tf import os import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt data_dir = 'images/' img_width, img_height = (128, 128) batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2) train_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='training') validation_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='validation') def create_alexnet(input_shape, num_classes, activation): model = tf.keras.Sequential([Conv2D(96, (11, 11), activation=activation, input_shape=input_shape, strides=(4, 4), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(256, (5, 5), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(256, (3, 3), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Flatten(), Dense(4096, activation=activation), Dropout(0.5), Dense(4096, activation=activation), Dropout(0.5), Dense(num_classes, activation='softmax')]) return model '\n# Define learning rate adjustment schemes\ndef lr_schedule_1(epoch, lr):\n if epoch < 20:\n return lr\n elif epoch < 40:\n return lr * 0.1\n else:\n return lr * 0.01\n\ndef lr_schedule_2(epoch, lr):\n return lr * (1 / (1 + 0.1 * epoch))\n' num_classes = 8 input_shape = (img_width, img_height, 1) activations = ['relu', 'sigmoid', 'tanh'] optimizers = [tf.keras.optimizers.legacy.Adam(learning_rate=0.001), tf.keras.optimizers.legacy.Adam(learning_rate=0.0001), tf.keras.optimizers.legacy.Adam(learning_rate=1e-05), tf.keras.optimizers.legacy.SGD(learning_rate=0.001), tf.keras.optimizers.legacy.SGD(learning_rate=0.0001), tf.keras.optimizers.legacy.SGD(learning_rate=1e-05), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.001), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.0001), tf.keras.optimizers.legacy.RMSprop(learning_rate=1e-05)] adams = optimizers[:3] sgds = optimizers[3:6] rmsprops = optimizers[6:] for activation in activations: for optimizer in adams: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'Adam' model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) for activation in activations: for optimizer in sgds: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'SGD' print(f'Training with {activation} activation and optimizer {optimizer._name} with {initial_lr}') model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(history.history['loss'], label='Train Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.title(f'Loss per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.subplot(1, 2, 2) plt.plot(history.history['accuracy'], label='Train Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.title(f'Accuracy per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.show()
code
128034962/cell_6
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_9.png" ]
code
128034962/cell_8
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_9.png" ]
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import tensorflow as tf import os import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt data_dir = 'images/' img_width, img_height = (128, 128) batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2) train_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='training') validation_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='validation') def create_alexnet(input_shape, num_classes, activation): model = tf.keras.Sequential([Conv2D(96, (11, 11), activation=activation, input_shape=input_shape, strides=(4, 4), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(256, (5, 5), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(256, (3, 3), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Flatten(), Dense(4096, activation=activation), Dropout(0.5), Dense(4096, activation=activation), Dropout(0.5), Dense(num_classes, activation='softmax')]) return model '\n# Define learning rate adjustment schemes\ndef lr_schedule_1(epoch, lr):\n if epoch < 20:\n return lr\n elif epoch < 40:\n return lr * 0.1\n else:\n return lr * 0.01\ndef lr_schedule_2(epoch, lr):\n return lr * (1 / (1 + 0.1 * epoch))\n' num_classes = 8 input_shape = (img_width, img_height, 1) activations = ['relu', 'sigmoid', 'tanh'] optimizers = [tf.keras.optimizers.legacy.Adam(learning_rate=0.001), tf.keras.optimizers.legacy.Adam(learning_rate=0.0001), tf.keras.optimizers.legacy.Adam(learning_rate=1e-05), tf.keras.optimizers.legacy.SGD(learning_rate=0.001), tf.keras.optimizers.legacy.SGD(learning_rate=0.0001), tf.keras.optimizers.legacy.SGD(learning_rate=1e-05), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.001), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.0001), tf.keras.optimizers.legacy.RMSprop(learning_rate=1e-05)] adams = optimizers[:3] sgds = optimizers[3:6] rmsprops = optimizers[6:] for activation in activations: for optimizer in adams: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'Adam' print(f'Training with {activation} activation and optimizer {optimizer._name} with {initial_lr}') model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(history.history['loss'], label='Train Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.title(f'Loss per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.subplot(1, 2, 2) plt.plot(history.history['accuracy'], label='Train Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.title(f'Accuracy per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.show()
code
128034962/cell_10
[ "image_output_11.png", "image_output_24.png", "text_plain_output_5.png", "image_output_17.png", "image_output_14.png", "image_output_23.png", "text_plain_output_4.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_21.png", "text_plain_output_6.png", "image_output_7.png", "image_output_20.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "image_output_16.png", "text_plain_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_22.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png", "image_output_19.png" ]
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import tensorflow as tf import os import numpy as np import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt data_dir = 'images/' img_width, img_height = (128, 128) batch_size = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, validation_split=0.2) train_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='training') validation_generator = train_datagen.flow_from_directory(data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', color_mode='grayscale', subset='validation') def create_alexnet(input_shape, num_classes, activation): model = tf.keras.Sequential([Conv2D(96, (11, 11), activation=activation, input_shape=input_shape, strides=(4, 4), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(256, (5, 5), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(384, (3, 3), activation=activation, strides=(1, 1), padding='same'), Conv2D(256, (3, 3), activation=activation, strides=(1, 1), padding='same'), MaxPooling2D(pool_size=(3, 3), strides=(2, 2)), Flatten(), Dense(4096, activation=activation), Dropout(0.5), Dense(4096, activation=activation), Dropout(0.5), Dense(num_classes, activation='softmax')]) return model '\n# Define learning rate adjustment schemes\ndef lr_schedule_1(epoch, lr):\n if epoch < 20:\n return lr\n elif epoch < 40:\n return lr * 0.1\n else:\n return lr * 0.01\n\ndef lr_schedule_2(epoch, lr):\n return lr * (1 / (1 + 0.1 * epoch))\n' num_classes = 8 input_shape = (img_width, img_height, 1) activations = ['relu', 'sigmoid', 'tanh'] optimizers = [tf.keras.optimizers.legacy.Adam(learning_rate=0.001), tf.keras.optimizers.legacy.Adam(learning_rate=0.0001), tf.keras.optimizers.legacy.Adam(learning_rate=1e-05), tf.keras.optimizers.legacy.SGD(learning_rate=0.001), tf.keras.optimizers.legacy.SGD(learning_rate=0.0001), tf.keras.optimizers.legacy.SGD(learning_rate=1e-05), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.001), tf.keras.optimizers.legacy.RMSprop(learning_rate=0.0001), tf.keras.optimizers.legacy.RMSprop(learning_rate=1e-05)] adams = optimizers[:3] sgds = optimizers[3:6] rmsprops = optimizers[6:] for activation in activations: for optimizer in adams: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'Adam' model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) for activation in activations: for optimizer in sgds: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'SGD' model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) for activation in activations: for optimizer in rmsprops: initial_lr = round(float(optimizer.learning_rate), 5) optimizer._name = 'RMSprop' print(f'Training with {activation} activation and optimizer {optimizer._name} with {initial_lr}') model = create_alexnet(input_shape, num_classes, activation) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=50, validation_data=validation_generator) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(history.history['loss'], label='Train Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.title(f'Loss per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.subplot(1, 2, 2) plt.plot(history.history['accuracy'], label='Train Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.title(f'Accuracy per epoch with {activation} and optimizer {optimizer._name} with {initial_lr}') plt.legend() plt.show()
code
128034962/cell_5
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_9.png" ]
from IPython.display import Image, display from random import randint, random from sklearn.model_selection import train_test_split import cv2 import numpy as np import os import os import random import os import cv2 import numpy as np from random import randint, random from sklearn.model_selection import train_test_split def random_color(): return randint(128, 255) def random_polygon(image, vertices): center = (randint(10, 118), randint(10, 118)) radius = randint(5, 60) color = random_color() angle = 2 * np.pi / vertices pts = [] for i in range(vertices): x = int(center[0] + radius * np.cos(i * angle)) y = int(center[1] + radius * np.sin(i * angle)) pts.append((x, y)) pts = np.array(pts, np.int32) cv2.fillPoly(image, [pts], color) def random_oval(image): thickness = -1 center = (randint(10, 118), randint(10, 118)) axes = (randint(5, 60), randint(5, 60)) angle = randint(0, 360) color = random_color() cv2.ellipse(image, center, axes, angle, 0, 360, color, thickness) def random_rectangle(image): thickness = -1 pt1 = (randint(5, 123), randint(5, 123)) pt2 = (randint(5, 123), randint(5, 123)) color = random_color() cv2.rectangle(image, pt1, pt2, color, thickness) def random_triangle(image): thickness = -1 pts = np.array([[randint(5, 123), randint(5, 123)], [randint(5, 123), randint(5, 123)], [randint(5, 123), randint(5, 123)]], np.int32) color = random_color() cv2.fillPoly(image, [pts], color) def random_star(image, vertices): center = (randint(10, 118), randint(10, 118)) inner_radius = randint(5, 30) outer_radius = randint(inner_radius + 1, 60) color = random_color() angle = 2 * np.pi / vertices inner_pts = [] outer_pts = [] for i in range(vertices): inner_x = int(center[0] + inner_radius * np.cos(i * angle)) inner_y = int(center[1] + inner_radius * np.sin(i * angle)) outer_x = int(center[0] + outer_radius * np.cos(i * angle + angle / 2)) outer_y = int(center[1] + outer_radius * np.sin(i * angle + angle / 2)) inner_pts.append((inner_x, inner_y)) outer_pts.append((outer_x, outer_y)) pts = [pt for pair in zip(inner_pts, outer_pts) for pt in pair] pts = np.array(pts, np.int32) cv2.fillPoly(image, [pts], color) def add_salt_pepper_noise(image, prob): row, col = image.shape sp_image = np.copy(image) num_salt = np.ceil(prob * image.size) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape] sp_image[tuple(coords)] = 255 num_pepper = np.ceil(prob * image.size) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] sp_image[tuple(coords)] = 0 return sp_image def generate_images(num_images, shape_func, shape_name): for i in range(num_images): image = np.zeros((128, 128), dtype=np.uint8) shape_func(image) image_with_noise = add_salt_pepper_noise(image, 0.01) cv2.imwrite(f'images/{shape_name}/{shape_name}_{i:04d}.png', image_with_noise) def create_directory_structure(): os.makedirs('images', exist_ok=True) for shape in ['oval', 'rectangle', 'triangle', 'poly5', 'poly6', 'poly7', 'star5', 'star8']: os.makedirs(f'images/{shape}', exist_ok=True) def main(): create_directory_structure() np.random.seed(42) num_images = 1000 generate_images(num_images, random_oval, 'oval') generate_images(num_images, random_rectangle, 'rectangle') generate_images(num_images, random_triangle, 'triangle') for sides in [5, 6, 7]: generate_images(num_images, lambda img: random_polygon(img, sides), f'poly{sides}') generate_images(num_images, lambda img: random_star(img, 5), 'star5') generate_images(num_images, lambda img: random_star(img, 8), 'star8') X = [] y = [] for i, shape in enumerate(['oval', 'rectangle', 'triangle', 'poly5', 'poly6', 'poly7', 'star5', 'star8']): for j in range(num_images): img = cv2.imread(f'images/{shape}/{shape}_{j:04d}.png') X.append(img) y.append(i) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) np.save('X_train.npy', X_train) np.save('X_test.npy', X_test) np.save('y_train.npy', y_train) np.save('y_test.npy', y_test) main() import os from IPython.display import Image, display import random shapes = ['oval', 'poly5', 'poly6', 'poly7', 'rectangle', 'star5', 'star8', 'triangle'] for shape in shapes: print(f'\nSample images for {shape}:') files = os.listdir(f'./images/{shape}') for i in range(3): file = random.choice(files) display(Image(f'./images/{shape}/{file}'))
code
333930/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
library(ggplot2) library(readr) library(dplyr) library(tidyr) library(DT) system('ls ../input')
code
121151894/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df.sample(3) x = df[['Prev Close', 'Open Price', 'High Price', 'Low Price', 'Close Price', 'Deliverable Qty', '% Dly Qt to Traded Qty']] x
code
121151894/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df.sample(3) y = df.iloc[:, 9] df.shape
code
121151894/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.model_selection import train_test_split,cross_val_score lr = LinearRegression() lr.fit(x_train, y_train) lr.predict(x_test) y_pred = lr.predict(x_test) cross_val_score(lr, x_train, y_train, scoring='r2').mean()
code
121151894/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.preprocessing import StandardScaler,MinMaxScaler ss = StandardScaler() x_train_ss = ss.fit_transform(x_train) x_test_ss = ss.fit_transform(x_test) lr2 = LinearRegression() lr2.fit(x_train_ss, y_train)
code
121151894/cell_11
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression lr = LinearRegression() lr.fit(x_train, y_train)
code
121151894/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df.sample(3) y = df.iloc[:, 9] df.shape df.isnull().sum()
code
121151894/cell_18
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df2 = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv', usecols=['Open Price', 'Low Price', 'Close Price', 'Deliverable Qty', '% Dly Qt to Traded Qty', 'Average Price']) df2.head()
code
121151894/cell_28
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.metrics import accuracy_score,r2_score from sklearn.preprocessing import StandardScaler,MinMaxScaler ss = StandardScaler() x_train_ss = ss.fit_transform(x_train) x_test_ss = ss.fit_transform(x_test) lr2 = LinearRegression() lr2.fit(x_train_ss, y_train) y_pred1 = lr2.predict(x_test_ss) r2_score(y_pred1, y_test)
code
121151894/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df.sample(3) y = df.iloc[:, 9] df.shape df.isnull().sum() df.info()
code
121151894/cell_15
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.model_selection import train_test_split,cross_val_score lr = LinearRegression() lr.fit(x_train, y_train) lr.predict(x_test) y_pred = lr.predict(x_test) cross_val_score(lr, x_train, y_train, scoring='r2').mean()
code
121151894/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/reliance-nse-stock-data/RILO - Copy.csv') df.sample(3)
code
121151894/cell_14
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression from sklearn.metrics import accuracy_score,r2_score lr = LinearRegression() lr.fit(x_train, y_train) lr.predict(x_test) y_pred = lr.predict(x_test) r2_score(y_pred, y_test)
code
121151894/cell_10
[ "text_html_output_1.png" ]
x_train.head()
code
121151894/cell_12
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression,LogisticRegression lr = LinearRegression() lr.fit(x_train, y_train) lr.predict(x_test)
code
128024365/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx") stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title() stimulus.info() stimulus.head() gsr_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Multimodal_Use.xlsx') gsr_data['filename'] = 'GSRdata_s' + gsr_data['Session ID'].astype(str) + 'p' + gsr_data['Participant Id'].astype(str) + 'v' + gsr_data['Video ID'].astype(str) + '.dat' PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Multimodal/GSR/' gsr_data['filename'] = gsr_data['filename'].str.replace('GSRdata_s2p9v3.dat', 'GSRdata_S2p9v3.dat', regex=False) gsr_data['GSR_list'] = gsr_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x).iloc[:, 0])) gsr_data = gsr_data.merge(stimulus.iloc[:, 0:3], on=['Session ID', 'Video ID']) gsr_data.to_csv('gsr_data.csv', index=False) gsr_data = pd.read_csv('/kaggle/working/gsr_data.csv') gsr_data.info() gsr_data.head()
code
128024365/cell_23
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,roc_auc_score,roc_curve,ConfusionMatrixDisplay,RocCurveDisplay from sklearn.model_selection import train_test_split import ast import matplotlib.pyplot as plt import pandas as pd stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx") stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title() stimulus.info() stimulus.head() gsr_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Multimodal_Use.xlsx') gsr_data['filename'] = 'GSRdata_s' + gsr_data['Session ID'].astype(str) + 'p' + gsr_data['Participant Id'].astype(str) + 'v' + gsr_data['Video ID'].astype(str) + '.dat' PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Multimodal/GSR/' gsr_data['filename'] = gsr_data['filename'].str.replace('GSRdata_s2p9v3.dat', 'GSRdata_S2p9v3.dat', regex=False) gsr_data['GSR_list'] = gsr_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x).iloc[:, 0])) gsr_data = gsr_data.merge(stimulus.iloc[:, 0:3], on=['Session ID', 'Video ID']) gsr_data.to_csv('gsr_data.csv', index=False) gsr_data = pd.read_csv('/kaggle/working/gsr_data.csv') gsr_proc = gsr_data[['Emotion', 'GSR_list']].copy() gsr_proc['GSR_list'] = gsr_proc['GSR_list'].apply(lambda x: ast.literal_eval(x)) gsr_proc = pd.concat([gsr_proc, pd.DataFrame(gsr_proc['GSR_list'].tolist())], axis=1).drop(columns=['GSR_list']) for i in range(gsr_proc.shape[1] - 1): gsr_proc[i] = pd.to_numeric(gsr_proc[i]) gsr_proc.to_csv('gsr_proc.csv', index=False) gsr_proc = pd.read_csv('/kaggle/working/gsr_proc.csv') emos = ['Happy', 'Mixed', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Neutral', 'Anger'] cm = confusion_matrix(gsr_data['Target Emotion'], gsr_data['Emotion'], labels=emos) def plot_signals(data_arr, title=''): plt.clf() for index, row in data_arr.iterrows(): y = row plt.tight_layout() plt def model_eval(model, proc_data, label_name): train_data, test_data = train_test_split(proc_data, test_size=0.3, random_state=3) model.fit(train_data.drop(columns=[label_name]), train_data[label_name]) y_pred = model.predict(test_data.drop([label_name], axis=1)) emos = ['Happy', 'Mixed', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Neutral', 'Anger'] cm = confusion_matrix(test_data[label_name], y_pred, labels=emos) model_eval(RandomForestClassifier(), gsr_proc, 'Emotion')
code
128024365/cell_15
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,roc_auc_score,roc_curve,ConfusionMatrixDisplay,RocCurveDisplay import matplotlib.pyplot as plt import pandas as pd stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx") stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title() stimulus.info() stimulus.head() gsr_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Multimodal_Use.xlsx') gsr_data['filename'] = 'GSRdata_s' + gsr_data['Session ID'].astype(str) + 'p' + gsr_data['Participant Id'].astype(str) + 'v' + gsr_data['Video ID'].astype(str) + '.dat' PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Multimodal/GSR/' gsr_data['filename'] = gsr_data['filename'].str.replace('GSRdata_s2p9v3.dat', 'GSRdata_S2p9v3.dat', regex=False) gsr_data['GSR_list'] = gsr_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x).iloc[:, 0])) gsr_data = gsr_data.merge(stimulus.iloc[:, 0:3], on=['Session ID', 'Video ID']) gsr_data.to_csv('gsr_data.csv', index=False) gsr_data = pd.read_csv('/kaggle/working/gsr_data.csv') emos = ['Happy', 'Mixed', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Neutral', 'Anger'] cm = confusion_matrix(gsr_data['Target Emotion'], gsr_data['Emotion'], labels=emos) ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=emos).plot(cmap='YlGnBu') plt.ylabel('Intended Video Emotion', fontsize=14) plt.xlabel("Subject's Emotion after Watching", fontsize=14) plt.show()
code
128024365/cell_17
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score,roc_auc_score,roc_curve,ConfusionMatrixDisplay,RocCurveDisplay import ast import matplotlib.pyplot as plt import pandas as pd stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx") stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title() stimulus.info() stimulus.head() gsr_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Multimodal_Use.xlsx') gsr_data['filename'] = 'GSRdata_s' + gsr_data['Session ID'].astype(str) + 'p' + gsr_data['Participant Id'].astype(str) + 'v' + gsr_data['Video ID'].astype(str) + '.dat' PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Multimodal/GSR/' gsr_data['filename'] = gsr_data['filename'].str.replace('GSRdata_s2p9v3.dat', 'GSRdata_S2p9v3.dat', regex=False) gsr_data['GSR_list'] = gsr_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x).iloc[:, 0])) gsr_data = gsr_data.merge(stimulus.iloc[:, 0:3], on=['Session ID', 'Video ID']) gsr_data.to_csv('gsr_data.csv', index=False) gsr_data = pd.read_csv('/kaggle/working/gsr_data.csv') gsr_proc = gsr_data[['Emotion', 'GSR_list']].copy() gsr_proc['GSR_list'] = gsr_proc['GSR_list'].apply(lambda x: ast.literal_eval(x)) gsr_proc = pd.concat([gsr_proc, pd.DataFrame(gsr_proc['GSR_list'].tolist())], axis=1).drop(columns=['GSR_list']) for i in range(gsr_proc.shape[1] - 1): gsr_proc[i] = pd.to_numeric(gsr_proc[i]) gsr_proc.to_csv('gsr_proc.csv', index=False) gsr_proc = pd.read_csv('/kaggle/working/gsr_proc.csv') emos = ['Happy', 'Mixed', 'Sad', 'Surprise', 'Fear', 'Disgust', 'Neutral', 'Anger'] cm = confusion_matrix(gsr_data['Target Emotion'], gsr_data['Emotion'], labels=emos) def plot_signals(data_arr, title=''): plt.clf() plt.figure(figsize=(12, 4)) for index, row in data_arr.iterrows(): y = row plt.plot(y) plt.tight_layout() plt.title(title) plt plt.show() for i in emos: plot_signals(gsr_proc[gsr_proc['Emotion'] == i].iloc[:, 1:4998:500], 'GSR Signal - ' + i)
code
128024365/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import ast import pandas as pd stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx") stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title() stimulus.info() stimulus.head() gsr_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Multimodal_Use.xlsx') gsr_data['filename'] = 'GSRdata_s' + gsr_data['Session ID'].astype(str) + 'p' + gsr_data['Participant Id'].astype(str) + 'v' + gsr_data['Video ID'].astype(str) + '.dat' PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Multimodal/GSR/' gsr_data['filename'] = gsr_data['filename'].str.replace('GSRdata_s2p9v3.dat', 'GSRdata_S2p9v3.dat', regex=False) gsr_data['GSR_list'] = gsr_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x).iloc[:, 0])) gsr_data = gsr_data.merge(stimulus.iloc[:, 0:3], on=['Session ID', 'Video ID']) gsr_data.to_csv('gsr_data.csv', index=False) gsr_data = pd.read_csv('/kaggle/working/gsr_data.csv') gsr_proc = gsr_data[['Emotion', 'GSR_list']].copy() gsr_proc['GSR_list'] = gsr_proc['GSR_list'].apply(lambda x: ast.literal_eval(x)) gsr_proc = pd.concat([gsr_proc, pd.DataFrame(gsr_proc['GSR_list'].tolist())], axis=1).drop(columns=['GSR_list']) for i in range(gsr_proc.shape[1] - 1): gsr_proc[i] = pd.to_numeric(gsr_proc[i]) gsr_proc.to_csv('gsr_proc.csv', index=False) gsr_proc = pd.read_csv('/kaggle/working/gsr_proc.csv') gsr_proc.info() gsr_proc.head()
code
128024365/cell_5
[ "text_plain_output_5.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd stimulus = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx') stimulus['Target Emotion'] = stimulus['Target Emotion'].str.title() stimulus.info() stimulus.head()
code
88076802/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/nlp-getting-started/train.csv') test_data = pd.read_csv('../input/nlp-getting-started/test.csv') sns.countplot(x=val_df['target'], palette='vlag')
code
88076802/cell_25
[ "text_plain_output_1.png" ]
import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' print(device)
code
88076802/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/nlp-getting-started/train.csv') test_data = pd.read_csv('../input/nlp-getting-started/test.csv') sns.countplot(x=train_data['target'], palette='vlag')
code
88076802/cell_23
[ "text_plain_output_1.png" ]
from datasets import load_dataset from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') train_dataset = train_dataset.rename_column('text', 'sentence1') train_dataset = train_dataset.rename_column('target', 'label') val_dataset = val_dataset.rename_column('text', 'sentence1') val_dataset = val_dataset.rename_column('target', 'label') test_dataset = test_dataset.rename_column('text', 'sentence1') checkpoint = '../input/transformers/roberta-base' tokenizer = AutoTokenizer.from_pretrained(checkpoint) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) def tokenize_function(dset): return tokenizer(dset['sentence1']) tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True) tokenized_val_dataset = val_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True) tokenized_train_dataset
code
88076802/cell_30
[ "text_plain_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import f1_score, accuracy_score from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import numpy as np import torch train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') train_dataset = train_dataset.rename_column('text', 'sentence1') train_dataset = train_dataset.rename_column('target', 'label') val_dataset = val_dataset.rename_column('text', 'sentence1') val_dataset = val_dataset.rename_column('target', 'label') test_dataset = test_dataset.rename_column('text', 'sentence1') checkpoint = '../input/transformers/roberta-base' tokenizer = AutoTokenizer.from_pretrained(checkpoint) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) def tokenize_function(dset): return tokenizer(dset['sentence1']) tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True) tokenized_val_dataset = val_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2).to(device) def compute_metrics(p): pred, labels = p pred = np.argmax(pred, axis=1) f1 = f1_score(y_true=labels, y_pred=pred) return {'f1_score': f1} training_args = TrainingArguments(output_dir='trainer_dir', report_to='all', num_train_epochs=3) trainer = Trainer(model, training_args, train_dataset=tokenized_train_dataset['train'], eval_dataset=tokenized_val_dataset['train'], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics) trainer.train()
code
88076802/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import f1_score, accuracy_score from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import numpy as np import torch train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') train_dataset = train_dataset.rename_column('text', 'sentence1') train_dataset = train_dataset.rename_column('target', 'label') val_dataset = val_dataset.rename_column('text', 'sentence1') val_dataset = val_dataset.rename_column('target', 'label') test_dataset = test_dataset.rename_column('text', 'sentence1') checkpoint = '../input/transformers/roberta-base' tokenizer = AutoTokenizer.from_pretrained(checkpoint) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) def tokenize_function(dset): return tokenizer(dset['sentence1']) tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True) tokenized_val_dataset = val_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2).to(device) def compute_metrics(p): pred, labels = p pred = np.argmax(pred, axis=1) f1 = f1_score(y_true=labels, y_pred=pred) return {'f1_score': f1} training_args = TrainingArguments(output_dir='trainer_dir', report_to='all', num_train_epochs=3) trainer = Trainer(model, training_args, train_dataset=tokenized_train_dataset['train'], eval_dataset=tokenized_val_dataset['train'], data_collator=data_collator, tokenizer=tokenizer, compute_metrics=compute_metrics)
code
88076802/cell_26
[ "text_plain_output_1.png" ]
from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import torch checkpoint = '../input/transformers/roberta-base' device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2).to(device)
code
88076802/cell_18
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from datasets import load_dataset train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') train_dataset = train_dataset.rename_column('text', 'sentence1') train_dataset = train_dataset.rename_column('target', 'label') val_dataset = val_dataset.rename_column('text', 'sentence1') val_dataset = val_dataset.rename_column('target', 'label') test_dataset = test_dataset.rename_column('text', 'sentence1') val_dataset
code
88076802/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from datasets import load_dataset train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv')
code
88076802/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from datasets import load_dataset train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') val_dataset
code
88076802/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/nlp-getting-started/train.csv') test_data = pd.read_csv('../input/nlp-getting-started/test.csv') train_data.tail()
code
88076802/cell_22
[ "text_plain_output_1.png" ]
from datasets import load_dataset from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments train_dataset = load_dataset('csv', data_files='train_data_clean.csv') val_dataset = load_dataset('csv', data_files='val_data_clean.csv') test_dataset = load_dataset('csv', data_files='test_data_clean.csv') train_dataset = train_dataset.rename_column('text', 'sentence1') train_dataset = train_dataset.rename_column('target', 'label') val_dataset = val_dataset.rename_column('text', 'sentence1') val_dataset = val_dataset.rename_column('target', 'label') test_dataset = test_dataset.rename_column('text', 'sentence1') checkpoint = '../input/transformers/roberta-base' tokenizer = AutoTokenizer.from_pretrained(checkpoint) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) def tokenize_function(dset): return tokenizer(dset['sentence1']) tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True) tokenized_val_dataset = val_dataset.map(tokenize_function, batched=True) tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True)
code
88076802/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/nlp-getting-started/train.csv') test_data = pd.read_csv('../input/nlp-getting-started/test.csv') train_data = train_data.drop(['keyword', 'location'], axis=1) test_data = test_data.drop(['keyword', 'location'], axis=1) train_data.tail()
code
88076802/cell_27
[ "text_plain_output_1.png" ]
from transformers import DataCollatorWithPadding, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import torch checkpoint = '../input/transformers/roberta-base' device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2).to(device) model
code
88076802/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/nlp-getting-started/train.csv') test_data = pd.read_csv('../input/nlp-getting-started/test.csv') sns.countplot(x=train_df['target'], palette='vlag')
code
89141106/cell_63
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Glicemia', None, None, False)
code
89141106/cell_21
[ "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T
code
89141106/cell_25
[ "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T
code
89141106/cell_83
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Incl. ST', None, None, False)
code
89141106/cell_117
[ "text_html_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec from sklearn import preprocessing from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T colunas = ['Sexo', 'Tipo de dor', 'Glicemia', 'Eletro', 'Dor por exec.', 'Incl. ST', 'DCV'] sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) colunas = [coluna for coluna in dados.columns if dados[coluna].dtype == 'object'] codificador = preprocessing.LabelEncoder() for coluna in colunas: dados[coluna] = codificador.fit_transform(dados[coluna]) mascara = np.triu(dados.corr()) rfc = RandomForestClassifier(n_jobs=-1, n_estimators=500, max_depth=70, max_features=2, random_state=0) knn = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree', weights='uniform', n_jobs=-1) gbc = GradientBoostingClassifier(learning_rate=0.01, loss='exponential', max_depth=70, max_features=2, n_estimators=500, random_state=0) knn.fit(X_treino, y_treino) # Para avaliar as métricas e a matriz de confusão, vamos criar uma função para facilitar a nossa vida def metricas(X_teste, y_teste, classificador, nome_clf): # Prever o resultado y_pred = classificador.predict(X_teste) # Métrica de acurácia acuracia = accuracy_score(y_teste, y_pred) # Métrica de precisão precisao = precision_score(y_teste, y_pred) # Métrica de revocação revocacao = recall_score(y_teste, y_pred) # Métrica de pontuação F1 f1 = f1_score(y_teste, y_pred) # Mostrar os valores das métricas print(f'''{nome_clf} Acurácia: {acuracia:.3f} Precisão: {precisao:.3f} Revocação: {revocacao:.3f} Pontuação F1: {f1:.3f}''') # Criar a matriz de confusão matriz = confusion_matrix(y_teste, y_pred) # Criar um DataFrame para aramazenar os dados de "y_pred" e "y_teste" df_mc = pd.DataFrame(matriz, index=['DCV', 'Normal'], columns=['DCV', 'Normal']) # Determinar o tamanho da plotagem plt.figure(figsize=(15, 10)) # Criar a plotagem mapa_calor = sns.heatmap(data=df_mc, annot=True, cmap='Blues', fmt='.5g', annot_kws={'size': 20}) # Colocar o título da matriz de confusão mapa_calor.set_title(f'Matriz de Confusão {nome_clf}', fontsize=25, y=1.05) # Adicionar a legenda nos eixos plt.xlabel('Valores Previstos', fontsize=20) plt.ylabel('Valores Reais', fontsize=20) # Mostrar a matriz de confusão plt.show() metricas(X_teste, y_teste, knn, 'kNN')
code
89141106/cell_79
[ "text_plain_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Oldpeak', [-0.1, 0.3, 0.8, 1.3, 1.8, 2.3, 2.8, 3.3, 3.8, 4.3, 4.8, 7.0], ['-0.1-0.3', '0.3-0.8', '0.8-1.3', '1.3-1.8', '1.8-2.3', '2.3-2.8', '2.8-3.3', '3.3-3.8', '3.8-4.3', '4.3-4.8', '5.0+'])
code
89141106/cell_90
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec from sklearn import preprocessing import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T colunas = ['Sexo', 'Tipo de dor', 'Glicemia', 'Eletro', 'Dor por exec.', 'Incl. ST', 'DCV'] sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) colunas = [coluna for coluna in dados.columns if dados[coluna].dtype == 'object'] codificador = preprocessing.LabelEncoder() for coluna in colunas: dados[coluna] = codificador.fit_transform(dados[coluna]) dados
code
89141106/cell_44
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_distribuicao(dados, 'Idade', 'Idade')
code
89141106/cell_55
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Pressão', [75, 100, 125, 150, 175, 200], ['75-100', '100-125', '125-150', '150-175', '175-200'])
code
89141106/cell_74
[ "text_html_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Dor por exec.', ('#140E36', '#091AAB'), (0.05, 0.05), 'Angina por exercício físico', 25)
code
89141106/cell_116
[ "text_html_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec from sklearn import preprocessing from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T colunas = ['Sexo', 'Tipo de dor', 'Glicemia', 'Eletro', 'Dor por exec.', 'Incl. ST', 'DCV'] sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) colunas = [coluna for coluna in dados.columns if dados[coluna].dtype == 'object'] codificador = preprocessing.LabelEncoder() for coluna in colunas: dados[coluna] = codificador.fit_transform(dados[coluna]) mascara = np.triu(dados.corr()) rfc = RandomForestClassifier(n_jobs=-1, n_estimators=500, max_depth=70, max_features=2, random_state=0) knn = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree', weights='uniform', n_jobs=-1) gbc = GradientBoostingClassifier(learning_rate=0.01, loss='exponential', max_depth=70, max_features=2, n_estimators=500, random_state=0) rfc.fit(X_treino, y_treino) # Para avaliar as métricas e a matriz de confusão, vamos criar uma função para facilitar a nossa vida def metricas(X_teste, y_teste, classificador, nome_clf): # Prever o resultado y_pred = classificador.predict(X_teste) # Métrica de acurácia acuracia = accuracy_score(y_teste, y_pred) # Métrica de precisão precisao = precision_score(y_teste, y_pred) # Métrica de revocação revocacao = recall_score(y_teste, y_pred) # Métrica de pontuação F1 f1 = f1_score(y_teste, y_pred) # Mostrar os valores das métricas print(f'''{nome_clf} Acurácia: {acuracia:.3f} Precisão: {precisao:.3f} Revocação: {revocacao:.3f} Pontuação F1: {f1:.3f}''') # Criar a matriz de confusão matriz = confusion_matrix(y_teste, y_pred) # Criar um DataFrame para aramazenar os dados de "y_pred" e "y_teste" df_mc = pd.DataFrame(matriz, index=['DCV', 'Normal'], columns=['DCV', 'Normal']) # Determinar o tamanho da plotagem plt.figure(figsize=(15, 10)) # Criar a plotagem mapa_calor = sns.heatmap(data=df_mc, annot=True, cmap='Blues', fmt='.5g', annot_kws={'size': 20}) # Colocar o título da matriz de confusão mapa_calor.set_title(f'Matriz de Confusão {nome_clf}', fontsize=25, y=1.05) # Adicionar a legenda nos eixos plt.xlabel('Valores Previstos', fontsize=20) plt.ylabel('Valores Reais', fontsize=20) # Mostrar a matriz de confusão plt.show() metricas(X_teste, y_teste, rfc, 'Random Forest Classifier')
code
89141106/cell_48
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Sexo', ('#140E36', '#091AAB'), (0.05, 0.05), 'Sexo', 25)
code
89141106/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'DCV', ('#140E36', '#091AAB'), (0.05, 0.05), 'Doença Cardiovascular', 25)
code
89141106/cell_54
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_distribuicao(dados, 'Pressão', 'Pressão arterial')
code
89141106/cell_67
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Eletro', None, None, False)
code
89141106/cell_50
[ "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) grafico_pizza(dados, 'Tipo de dor', ('#5735FD', '#3C78E8', '#2E90FF', '#6186b0'), (0.05, 0.05, 0.05, 0.05), 'Tipo de dor', 17)
code
89141106/cell_107
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier rfc = RandomForestClassifier(n_jobs=-1, n_estimators=500, max_depth=70, max_features=2, random_state=0) knn = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree', weights='uniform', n_jobs=-1) gbc = GradientBoostingClassifier(learning_rate=0.01, loss='exponential', max_depth=70, max_features=2, n_estimators=500, random_state=0) gbc.fit(X_treino, y_treino)
code
89141106/cell_106
[ "text_html_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier rfc = RandomForestClassifier(n_jobs=-1, n_estimators=500, max_depth=70, max_features=2, random_state=0) knn = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree', weights='uniform', n_jobs=-1) gbc = GradientBoostingClassifier(learning_rate=0.01, loss='exponential', max_depth=70, max_features=2, n_estimators=500, random_state=0) knn.fit(X_treino, y_treino)
code
89141106/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import style from matplotlib.gridspec import GridSpec import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.describe().T dados = dados[dados['Colesterol'] != 0] dados = dados[dados['Pressão'] != 0] dados.describe().T sns.set_theme() style.use('fivethirtyeight') cores = ['lightcoral', 'deepskyblue', 'orchid', 'tomato', 'teal', 'darkcyan', 'limegreen', 'darkorange'] # Definir a função do gráfico de pizza def grafico_pizza(data_frame, coluna, cores, explode, titulo, fonte): # Fazer contagem dos valores da coluna selecionada df = data_frame[coluna].value_counts() # Determinar o tamannho da plotagem plt.figure(figsize=(15, 10)) # Criar o gráfico de pizza _, _, pacotes = plt.pie(df, colors=cores, labels=df.index, explode=explode, shadow=True, startangle=90, autopct='%1.1f%%', textprops={'fontsize': fonte, 'color': 'black', 'weight': 'bold', 'family': 'serif'}) # Plotar o gráfico de pizza plt.setp(pacotes, color='white') # Colocar o título do gráfico plt.title(titulo, size=45) # Desenhar o círculo interno circulo_centro = plt.Circle((0, 0), 0.40, fc='white') fig = plt.gcf() fig.gca().add_artist(circulo_centro) # Definir o gráfico da função de distribuição def grafico_distribuicao(data_frame, coluna, titulo): # Armazenar os dados da coluna dados = data_frame[coluna] # Determinar a figura e seu tamanho fig = plt.figure(figsize=(17, 7)) # Criar a grade em que os gráficos serão plotados grade = GridSpec(nrows=2, ncols=1, figure=fig) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Motrar o valor de assimetria dos dados print(f'Assimetria de {titulo}: {np.round(dados.skew(), 3)}') # Plotar o histograma ax0 = fig.add_subplot(grade[0, :]) ax0.set_title(f'Histograma e BoxPlot de {titulo}', y=1.05) sns.histplot(data=dados, ax=ax0, color=cor) # Plotar o BoxPlot ax1 = fig.add_subplot(grade[1, :]) plt.axis('off') sns.boxplot(x=dados, ax=ax1, color=cor) # Definir o gráfico de influência def grafico_influencia(data_frame, coluna, bins, labels, com_bins=True): # Armazenar os dados da coluna influencia = data_frame.loc[:, [coluna, 'DCV']] # Se os dados de "coluna" não forem como classe, então terá intervalos ("bins" e "labels") if com_bins: influencia[coluna] = pd.cut(influencia[coluna], bins=bins, labels=labels) # Escolher uma das cores para o gráfico cor = np.random.choice(cores, 1)[0] # Determinar o tamanho da figura plt.figure(figsize=(15, 5)) # Criar o gráfico grafico = sns.pointplot(x=coluna, y='DCV', dodge=0.1, capsize=.1, data=influencia, color=cor) # Colocar o título do gráfico grafico.set_title(f'{coluna} influência', fontsize=25) grafico_influencia(dados, 'Idade', [0, 30, 40, 50, 60, 70, 100], ['<30', '30-40', '40-50', '50-60', '60-70', '70+'])
code
89141106/cell_18
[ "image_output_1.png" ]
import pandas as pd arquivo = '../input/heart-failure-prediction/heart.csv' dados = pd.read_csv(arquivo) dados trocar_nomes = {'Age': 'Idade', 'Sex': 'Sexo', 'ChestPainType': 'Tipo de dor', 'RestingBP': 'Pressão', 'Cholesterol': 'Colesterol', 'FastingBS': 'Glicemia', 'RestingECG': 'Eletro', 'MaxHR': 'BPM', 'ExerciseAngina': 'Dor por exec.', 'ST_Slope': 'Incl. ST', 'HeartDisease': 'DCV'} dados = dados.rename(columns=trocar_nomes) dados dados.info()
code