path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105186076/cell_17
[ "image_output_1.png" ]
from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np X, y = make_regression(n_samples=4, n_features=1, n_informative=1, n_targets=1, noise=80, random_state=13) from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X, y) (reg.coef_, reg.intercept_) y_pred = (78.35 * X + 0).reshape(4) X.ravel()[:5] m = 78.35 b1 = 100 loss_slope = -2 * np.sum(y - m * X.ravel() - b1) lr = 0.1 step_size = loss_slope * lr b1 = b1 - step_size b1 y_pred1 = (78.35 * X + b1).reshape(4) loss_slope = -2 * np.sum(y - m * X.ravel() - b1) step_size = loss_slope * lr b2 = b1 - step_size b2 y_pred2 = (78.35 * X + b2).reshape(4) loss_slope = -2 * np.sum(y - m * X.ravel() - b2) step_size = loss_slope * lr b3 = b2 - step_size b3 y_pred3 = (78.35 * X + b3).reshape(4) b = -100 m = 78.35 lr = 0.01 epochs = 100 plt.figure(figsize=(18, 6)) for i in range(epochs): loss_slope = -2 * np.sum(y - m * X.ravel() - b) b = b - lr * loss_slope y_pred = m * X + b plt.plot(X, y_pred) plt.scatter(X, y)
code
105186076/cell_14
[ "image_output_1.png" ]
from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np X, y = make_regression(n_samples=4, n_features=1, n_informative=1, n_targets=1, noise=80, random_state=13) from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X, y) (reg.coef_, reg.intercept_) y_pred = (78.35 * X + 0).reshape(4) X.ravel()[:5] m = 78.35 b1 = 100 loss_slope = -2 * np.sum(y - m * X.ravel() - b1) lr = 0.1 step_size = loss_slope * lr b1 = b1 - step_size b1 y_pred1 = (78.35 * X + b1).reshape(4) loss_slope = -2 * np.sum(y - m * X.ravel() - b1) step_size = loss_slope * lr b2 = b1 - step_size b2 y_pred2 = (78.35 * X + b2).reshape(4) plt.figure(figsize=(18, 6)) plt.scatter(X, y) plt.plot(X, reg.predict(X), color='green', label='OLS') plt.plot(X, y_pred2, color='#ffb347', label='b2 = {}_updated@step2'.format(b2)) plt.plot(X, y_pred1, color='#f8b878', label='b1 = {}_updated@step1'.format(b1)) plt.plot(X, y_pred, color='#ffa500', label='b = 0_initial_random') plt.legend() plt.show()
code
105186076/cell_10
[ "image_output_1.png" ]
X.ravel()[:5]
code
105186076/cell_12
[ "text_plain_output_1.png" ]
from sklearn.datasets import make_regression from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np X, y = make_regression(n_samples=4, n_features=1, n_informative=1, n_targets=1, noise=80, random_state=13) from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X, y) (reg.coef_, reg.intercept_) y_pred = (78.35 * X + 0).reshape(4) X.ravel()[:5] m = 78.35 b1 = 100 loss_slope = -2 * np.sum(y - m * X.ravel() - b1) lr = 0.1 step_size = loss_slope * lr b1 = b1 - step_size b1 y_pred1 = (78.35 * X + b1).reshape(4) plt.figure(figsize=(18, 6)) plt.scatter(X, y) plt.plot(X, reg.predict(X), color='green', label='OLS') plt.plot(X, y_pred1, color='#ffdab9', label='b1 = {}_updated'.format(b1)) plt.plot(X, y_pred, color='#ffa500', label='b = 0_initial_random') plt.legend() plt.show()
code
105186076/cell_5
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression reg = LinearRegression() reg.fit(X, y) (reg.coef_, reg.intercept_)
code
105207876/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape del y['overall'] y.z_total.value_counts()
code
105207876/cell_4
[ "text_plain_output_1.png" ]
import glob as glob len(glob.glob('../input/jpg-images/train_jpg/*jpg'))
code
105207876/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') meta_vir.head()
code
105207876/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape del y['overall'] y.z_total.value_counts() labels = np.array(y) labels.shape X_train, X_valid, y_train, y_valid = train_test_split(image_files_list, labels, random_state=20, test_size=0.3, stratify=labels) (len(X_train), len(X_valid), y_train.shape, y_valid.shape)
code
105207876/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape
code
105207876/cell_8
[ "image_output_1.png" ]
import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape y['overall'] = y['C1'] + y['C2'] + y['C3'] + y['C4'] + y['C5'] + y['C6'] + y['C7'] y['z_total'] = y['overall'].apply(lambda x: x if x == 0 else 1) y['z_total'].value_counts()
code
105207876/cell_17
[ "text_plain_output_1.png" ]
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=5)
code
105207876/cell_14
[ "text_html_output_1.png" ]
from torchvision import datasets,models,transforms import PIL import glob as glob import matplotlib.pyplot as plt import numpy as np import pandas as pd len(glob.glob('../input/jpg-images/train_jpg/*jpg')) len(glob.glob('../input/jpg-images/test_jpg/*jpg')) meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape del y['overall'] y.z_total.value_counts() labels = np.array(y) labels.shape train_transforms = Compose([LoadImage(image_only=True), transforms.ToTensor(), EnsureChannelFirst(), ScaleIntensity(), RandRotate(range_x=np.pi / 12, prob=0.5, keep_size=True), RandFlip(spatial_axis=0, prob=0.5), RandZoom(min_zoom=0.9, max_zoom=1.1, prob=0.5)]) val_transforms = Compose([LoadImage(image_only=True), transforms.ToTensor(), EnsureChannelFirst(), ScaleIntensity()]) image_files_list = glob.glob('../input/jpg-images/train_jpg/*.jpg') plt.subplots(3, 3, figsize=(8, 8)) for i in range(9): im = PIL.Image.open(image_files_list[i]) arr = np.array(im) plt.subplot(3, 3, i + 1) plt.imshow(arr, cmap='gray') plt.tight_layout() plt.show()
code
105207876/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd meta_vir = pd.read_csv('../input/rsna-2022-spine-fracture-detection-metadata/meta_train_with_vertebrae.csv') y = meta_vir.iloc[:3408, 9:] y.shape del y['overall'] y.z_total.value_counts() labels = np.array(y) labels.shape
code
105207876/cell_5
[ "text_plain_output_1.png" ]
import glob as glob len(glob.glob('../input/jpg-images/train_jpg/*jpg')) len(glob.glob('../input/jpg-images/test_jpg/*jpg'))
code
1001162/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape student_data.dtypes x = np.arange(0, 5, 1) y = np.sin(x) fig, ax = plt.subplots() ind = np.arange(len(student_data.studytime.unique())) ax.bar(ind, student_data.studytime)
code
1001162/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape
code
1001162/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape student_data.dtypes print(student_data[student_data.sex == 'F'].sex.count()) print(student_data[student_data.sex == 'M'].sex.count())
code
1001162/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1001162/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape student_data.dtypes plt.hist(student_data.studytime)
code
1001162/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape student_data.dtypes x = np.arange(0, 5, 1) y = np.sin(x) plt.plot(student_data.studytime)
code
1001162/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data
code
1001162/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) student_data = pd.read_csv('../input/student-mat.csv') student_data.shape student_data.dtypes
code
16113958/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts()
code
16113958/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique()
code
16113958/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :]
code
16113958/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df.info()
code
16113958/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts() df.Place.value_counts()
code
16113958/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts()
code
16113958/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum()
code
16113958/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts() df.Place.value_counts() df = df.drop(columns='BCHC Requested Methodology') df.columns
code
16113958/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns
code
16113958/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16113958/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :]
code
16113958/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df.head()
code
16113958/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts()
code
16113958/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts() df.Place.value_counts() df['BCHC Requested Methodology'].value_counts()
code
16113958/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts()
code
16113958/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts() df['Race/ Ethnicity'].value_counts()
code
16113958/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df.Indicator.nunique() df.Indicator.value_counts() df = df.drop(columns='Indicator') df.Year.value_counts() df = df[~df.Year.str.contains('-')] df.Year.value_counts() df.Gender.value_counts() df.Place.value_counts() df = df.drop(columns='BCHC Requested Methodology') df.columns df.Source.value_counts()
code
16113958/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)] df.duplicated().sum() df.iloc[12320:12325, :] df = df.drop_duplicates() df.iloc[12320:12325, :] df.columns df['Indicator Category'].value_counts()
code
16113958/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') df[df.duplicated(keep=False)]
code
88082047/cell_21
[ "text_plain_output_5.png", "text_plain_output_4.png", "image_output_5.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from pycaret.classification import *
code
88082047/cell_13
[ "text_html_output_1.png" ]
!pip install autoviz
code
88082047/cell_9
[ "text_html_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_house = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_HOUSEHOLD_VICTIMIZATION_1993-2014.csv') df_personal = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv') df_dict = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/data_dict.csv') df_personal.head()
code
88082047/cell_4
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88082047/cell_30
[ "image_output_1.png" ]
nb = create_model('nb') plot_model(nb, plot='pr')
code
88082047/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
pip install pycaret --ignore-installed llvmlite numba
code
88082047/cell_29
[ "text_html_output_1.png" ]
nb = create_model('nb') plot_model(nb, plot='auc')
code
88082047/cell_19
[ "text_html_output_2.png", "text_plain_output_1.png" ]
from autoviz.AutoViz_Class import AutoViz_Class import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_house = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_HOUSEHOLD_VICTIMIZATION_1993-2014.csv') df_personal = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv') df_dict = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/data_dict.csv') AV = AutoViz_Class() url1 = '../input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv' df_viz = pd.read_csv(url1, index_col=None, thousands=',') target = 'injury' dft = AV.AutoViz(depVar=target, dfte=df_viz, header=0, verbose=0, lowess=False, chart_format='svg', max_rows_analyzed=1500000, max_cols_analyzed=300, filename='', sep=',')
code
88082047/cell_28
[ "text_html_output_1.png", "text_plain_output_1.png" ]
nb = create_model('nb') plot_model(nb, plot='confusion_matrix')
code
88082047/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_house = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_HOUSEHOLD_VICTIMIZATION_1993-2014.csv') df_personal = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv') df_dict = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/data_dict.csv') url1 = '../input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv' df_viz = pd.read_csv(url1, index_col=None, thousands=',') print(df_viz.shape) df_viz.head()
code
88082047/cell_31
[ "image_output_1.png" ]
nb = create_model('nb') optimize_threshold(nb)
code
88082047/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_house = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_HOUSEHOLD_VICTIMIZATION_1993-2014.csv') df_personal = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv') df_dict = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/data_dict.csv') df1 = df_personal.drop(['treatment', 'weight', 'year'], axis=1) model = setup(df1, target='injury', silent=True, session_id=1)
code
88082047/cell_14
[ "text_plain_output_1.png" ]
from autoviz.AutoViz_Class import AutoViz_Class
code
88082047/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_house = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_HOUSEHOLD_VICTIMIZATION_1993-2014.csv') df_personal = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/NCVS_PERSONAL_VICTIMIZATION_1993-2014.csv') df_dict = pd.read_csv('/kaggle/input/bjs-crime-victim-statisticse/data_dict.csv') df_personal.info()
code
88082047/cell_27
[ "text_html_output_1.png" ]
nb = create_model('nb')
code
73091762/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] df.head(5)
code
73091762/cell_20
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go import re df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import plotly.graph_objects as go import math df_type = pd.DataFrame(df['type'].value_counts()) df_type fig = go.Figure(data=go.Bar(x=df_type.index, y=df_type['type'])) '{:.2f}'.format(13.95) df_country = pd.DataFrame(df['country'].value_counts()) # Let's examine how many countries we have df_country.shape # we will be only visualize for top 15 countries df_country.sort_values(by = ["country"], ascending = False, inplace = True) df_count15 = df_country.head(15) from plotly.subplots import make_subplots # Let's do ead for the df_country fig = go.Figure(data=go.Bar(x = df_count15.index, y = df_count15["country"])) fig = make_subplots(rows=1, cols=2, column_widths=[0.7, 0.3]) fig.add_trace(go.Bar(x=df_count15.index, y=df_count15["country"]), row=1, col=1) fig.add_trace(go.Scatter(x=df_count15.index, y=df_count15["country"]), row=1, col=2) fig.show() df_rating = pd.DataFrame(df['rating'].value_counts()) fig = go.Figure(data=[go.Pie(labels=df_rating.index, values=df_rating['rating'])]) import re merged_cat = '' for i in df['listed_in']: merged_cat += i merged_cat += '@' merged = re.split(', |&|@', merged_cat) merged = [i.strip() for i in merged] list_value = pd.DataFrame(merged).value_counts() list_value = pd.DataFrame(list_value) list_value.columns = ['list'] type(list(list_value.index)[0][0]) a = [i[0] for i in list(list_value.index)] a fig = go.Figure(data=go.Bar(x=a, y=list_value['list'])) fig.show()
code
73091762/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.head(10)
code
73091762/cell_2
[ "text_html_output_1.png" ]
import os import os import numpy as np import pandas as pd import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73091762/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns
code
73091762/cell_19
[ "text_html_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import re merged_cat = '' for i in df['listed_in']: merged_cat += i merged_cat += '@' merged = re.split(', |&|@', merged_cat) merged = [i.strip() for i in merged] print(f'in total we have {df.shape[0]} tv series and movies and overall it is defined by {len(merged)} which accounts for {len(merged) / df.shape[0]} per show')
code
73091762/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape
code
73091762/cell_18
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import plotly.graph_objects as go import math df_type = pd.DataFrame(df['type'].value_counts()) df_type fig = go.Figure(data=go.Bar(x=df_type.index, y=df_type['type'])) '{:.2f}'.format(13.95) df_country = pd.DataFrame(df['country'].value_counts()) # Let's examine how many countries we have df_country.shape # we will be only visualize for top 15 countries df_country.sort_values(by = ["country"], ascending = False, inplace = True) df_count15 = df_country.head(15) from plotly.subplots import make_subplots # Let's do ead for the df_country fig = go.Figure(data=go.Bar(x = df_count15.index, y = df_count15["country"])) fig = make_subplots(rows=1, cols=2, column_widths=[0.7, 0.3]) fig.add_trace(go.Bar(x=df_count15.index, y=df_count15["country"]), row=1, col=1) fig.add_trace(go.Scatter(x=df_count15.index, y=df_count15["country"]), row=1, col=2) fig.show() df_rating = pd.DataFrame(df['rating'].value_counts()) df_rating.head() fig = go.Figure(data=[go.Pie(labels=df_rating.index, values=df_rating['rating'])]) fig.show()
code
73091762/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.head()
code
73091762/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import plotly.graph_objects as go import math df_type = pd.DataFrame(df['type'].value_counts()) df_type fig = go.Figure(data=go.Bar(x=df_type.index, y=df_type['type'])) '{:.2f}'.format(13.95) df_country = pd.DataFrame(df['country'].value_counts()) df_country.head()
code
73091762/cell_17
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import plotly.graph_objects as go import math df_type = pd.DataFrame(df['type'].value_counts()) df_type fig = go.Figure(data=go.Bar(x=df_type.index, y=df_type['type'])) '{:.2f}'.format(13.95) df_country = pd.DataFrame(df['country'].value_counts()) # Let's examine how many countries we have df_country.shape # we will be only visualize for top 15 countries df_country.sort_values(by = ["country"], ascending = False, inplace = True) df_count15 = df_country.head(15) from plotly.subplots import make_subplots fig = go.Figure(data=go.Bar(x=df_count15.index, y=df_count15['country'])) fig = make_subplots(rows=1, cols=2, column_widths=[0.7, 0.3]) fig.add_trace(go.Bar(x=df_count15.index, y=df_count15['country']), row=1, col=1) fig.add_trace(go.Scatter(x=df_count15.index, y=df_count15['country']), row=1, col=2) fig.show()
code
73091762/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.columns df = df[['type', 'title', 'country', 'month_added', 'day_added', 'year_added', 'release_year', 'rating', 'duration', 'listed_in', 'description', 'director', 'cast']] import plotly.graph_objects as go import math df_type = pd.DataFrame(df['type'].value_counts()) df_type fig = go.Figure(data=go.Bar(x=df_type.index, y=df_type['type'])) fig.show() '{:.2f}'.format(13.95) print(f" Netflix has more {float(df_type.loc['Movie'] / df_type.loc['TV Show'])} times more movie than TV Shows.")
code
73091762/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/netflix-shows/netflix_titles.csv') df.shape df.drop(columns=['show_id'], inplace=True) df.drop(columns=['null1'], inplace=True) df['day_added'] = df['day_added'].str.replace(',', '') df.head()
code
129024743/cell_23
[ "text_plain_output_1.png" ]
from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor reg = MLPRegressor(max_iter=300) reg.fit(X_train, y_train) reg.score(X_test, y_test)
code
129024743/cell_33
[ "text_plain_output_1.png" ]
from sklearn import datasets from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt digits = datasets.load_digits() X, y = datasets.load_digits(return_X_y=True) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score import numpy as np X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False) y = y.astype(np.uint8) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129024743/cell_1
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn import datasets import matplotlib.pyplot as plt from sklearn import datasets from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt digits = datasets.load_digits() plt.figure(1, figsize=(3, 3)) plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest') plt.show()
code
129024743/cell_18
[ "text_plain_output_1.png" ]
from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test)
code
129024743/cell_28
[ "text_plain_output_1.png" ]
from sklearn.neural_network import MLPRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor reg = MLPRegressor(max_iter=300) reg.fit(X_train, y_train) reg.score(X_test, y_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X2_train = scaler_mm.fit_transform(X2_train) X2_test = scaler_mm.transform(X2_test) from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor reg = MLPRegressor(max_iter=300) reg.fit(X2_train, y2_train) reg.score(X2_test, y2_test)
code
129024743/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.neural_network import MLPClassifier clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129024743/cell_15
[ "text_plain_output_1.png" ]
from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129024743/cell_38
[ "text_plain_output_1.png" ]
from sklearn import datasets from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np from sklearn import datasets from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt digits = datasets.load_digits() X, y = datasets.load_digits(return_X_y=True) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score import numpy as np X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False) y = y.astype(np.uint8) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if i == 0 else 0 for i in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score import numpy as np X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False) y = y.astype(np.uint8) y_binary = [1 if i == 0 else 0 for i in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129024743/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.datasets import fetch_openml X2, y2 = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
code
129024743/cell_31
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt from sklearn import datasets from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt digits = datasets.load_digits() X, y = datasets.load_digits(return_X_y=True) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
129024743/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.neural_network import MLPClassifier clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test)
code
129024743/cell_36
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import datasets from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.datasets import fetch_openml import matplotlib.pyplot as plt digits = datasets.load_digits() X, y = datasets.load_digits(return_X_y=True) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) scaler = StandardScaler() scaler.fit(X2_train) X2_train = scaler.transform(X2_train) X2_test = scaler.transform(X2_test) clf = MLPClassifier(random_state=1) clf.fit(X2_train, y2_train) clf.score(X2_test, y2_test) import seaborn as sns from sklearn.preprocessing import MinMaxScaler scaler_mm = MinMaxScaler() X_train = scaler_mm.fit_transform(X_train) X_test = scaler_mm.transform(X_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score import numpy as np X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False) y = y.astype(np.uint8) y_binary = [1 if val % 2 != 0 else 0 for val in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score X, y = datasets.load_digits(return_X_y=True) y_binary = [1 if i == 0 else 0 for i in y] X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size=0.2, random_state=42) clf = MLPClassifier(random_state=1) clf.fit(X_train, y_train) clf.score(X_test, y_test)
code
105206572/cell_13
[ "text_html_output_1.png" ]
import datetime as dt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm = rfm[['CustomerID', 'Recency', 'Frequency', 'Monetory']] rfm['R'] = pd.qcut(rfm['Recency'], 5, labels=[5, 4, 3, 2, 1]) rfm['F'] = pd.qcut(rfm['Frequency'], 5, labels=[1, 2, 3, 4, 5]) rfm['M'] = pd.qcut(rfm['Monetory'], 5, labels=[1, 2, 3, 4, 5]) rfm['RFM_Score'] = rfm['R'].astype(str) + rfm['F'].astype(str) + rfm['M'].astype(str) rfm.head()
code
105206572/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm.head()
code
105206572/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df.head()
code
105206572/cell_11
[ "text_html_output_1.png" ]
import datetime as dt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm = rfm[['CustomerID', 'Recency', 'Frequency', 'Monetory']] rfm.head()
code
105206572/cell_19
[ "text_html_output_1.png" ]
import datetime as dt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm = rfm[['CustomerID', 'Recency', 'Frequency', 'Monetory']] rfm['R'] = pd.qcut(rfm['Recency'], 5, labels=[5, 4, 3, 2, 1]) rfm['F'] = pd.qcut(rfm['Frequency'], 5, labels=[1, 2, 3, 4, 5]) rfm['M'] = pd.qcut(rfm['Monetory'], 5, labels=[1, 2, 3, 4, 5]) rfm['RFM_Score'] = rfm['R'].astype(str) + rfm['F'].astype(str) + rfm['M'].astype(str) seg_map = {'[1-2][1-2]': 'Hibernating', '[1-2][3-4]': 'At Risk', '[1-2][5]': "Can't Loose", '3[1-2]': 'about to sleep', '33': 'Attention', '[3-4][4-5]': 'Loyal Customers', '41': 'Promosing', '51': 'New Customers', '[4-5][2-3]': 'Potential ', '5[4-5]': 'Champions'} rfm['Segment'] = rfm['R'].astype(str) + rfm['F'].astype(str) rfm['Segment'] = rfm['Segment'].replace(seg_map, regex=True) rfm1 = rfm.groupby('Segment', as_index=False).agg(No_Cxs=('CustomerID', 'count'), Recency_mean=('Recency', 'mean'), Frequency_mean=('Frequency', 'mean'), Monetory_mean=('Monetory', 'mean')).sort_values('No_Cxs', ascending=False) rfm1
code
105206572/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105206572/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date df.head()
code
105206572/cell_15
[ "text_html_output_1.png" ]
import datetime as dt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm = rfm[['CustomerID', 'Recency', 'Frequency', 'Monetory']] rfm['R'] = pd.qcut(rfm['Recency'], 5, labels=[5, 4, 3, 2, 1]) rfm['F'] = pd.qcut(rfm['Frequency'], 5, labels=[1, 2, 3, 4, 5]) rfm['M'] = pd.qcut(rfm['Monetory'], 5, labels=[1, 2, 3, 4, 5]) rfm['RFM_Score'] = rfm['R'].astype(str) + rfm['F'].astype(str) + rfm['M'].astype(str) seg_map = {'[1-2][1-2]': 'Hibernating', '[1-2][3-4]': 'At Risk', '[1-2][5]': "Can't Loose", '3[1-2]': 'about to sleep', '33': 'Attention', '[3-4][4-5]': 'Loyal Customers', '41': 'Promosing', '51': 'New Customers', '[4-5][2-3]': 'Potential ', '5[4-5]': 'Champions'} rfm['Segment'] = rfm['R'].astype(str) + rfm['F'].astype(str) rfm['Segment'] = rfm['Segment'].replace(seg_map, regex=True) rfm.head()
code
105206572/cell_17
[ "text_html_output_1.png" ]
import datetime as dt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm = rfm[['CustomerID', 'Recency', 'Frequency', 'Monetory']] rfm['R'] = pd.qcut(rfm['Recency'], 5, labels=[5, 4, 3, 2, 1]) rfm['F'] = pd.qcut(rfm['Frequency'], 5, labels=[1, 2, 3, 4, 5]) rfm['M'] = pd.qcut(rfm['Monetory'], 5, labels=[1, 2, 3, 4, 5]) rfm['RFM_Score'] = rfm['R'].astype(str) + rfm['F'].astype(str) + rfm['M'].astype(str) seg_map = {'[1-2][1-2]': 'Hibernating', '[1-2][3-4]': 'At Risk', '[1-2][5]': "Can't Loose", '3[1-2]': 'about to sleep', '33': 'Attention', '[3-4][4-5]': 'Loyal Customers', '41': 'Promosing', '51': 'New Customers', '[4-5][2-3]': 'Potential ', '5[4-5]': 'Champions'} rfm['Segment'] = rfm['R'].astype(str) + rfm['F'].astype(str) rfm['Segment'] = rfm['Segment'].replace(seg_map, regex=True) plt.rcParams['figure.figsize'] = [20, 15] plt.rcParams['figure.autolayout'] = True f, axes = plt.subplots(3, 1) sns.barplot(x='Segment', y='Recency', data=rfm, ax=axes[0], ci=None) sns.barplot(x='Segment', y='Frequency', data=rfm, ax=axes[1], ci=None) sns.barplot(x='Segment', y='Monetory', data=rfm, ax=axes[2], ci=None)
code
105206572/cell_10
[ "text_plain_output_1.png" ]
import datetime as dt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape df = df[df['Country'] == 'Germany'] df['Value'] = df['Quantity'] * df['UnitPrice'] df['InvoiceDate'] = pd.DatetimeIndex(df['InvoiceDate']).date rfm = df.groupby('CustomerID', as_index=False).agg(Recent_date=('InvoiceDate', 'max'), Frequency=('InvoiceNo', 'count'), Monetory=('Value', 'sum')) rfm['Recency'] = rfm['Recent_date'].apply(lambda x: (dt.date(2011, 12, 31) - x).days) rfm.head()
code
105206572/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import time, warnings import datetime as dt import squarify import matplotlib.pyplot as plt warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-trans/data.csv', encoding='ISO-8859-1', dtype={'CustomerID': str, 'InvoiceNo': str}) df.shape
code
90103033/cell_21
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train)
code
90103033/cell_23
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) model.predict(X_test) model.score(X_test, y_test)
code
90103033/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hr-analytics/HR_comma_sep.csv') left = df[df.left == 1] left.shape retained = df[df.left == 0] retained.shape
code
90103033/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hr-analytics/HR_comma_sep.csv') left = df[df.left == 1] left.shape retained = df[df.left == 0] retained.shape df.groupby('left').mean()
code
90103033/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hr-analytics/HR_comma_sep.csv') left = df[df.left == 1] left.shape retained = df[df.left == 0] retained.shape df.groupby('left').mean() df_new = df[['satisfaction_level', 'average_montly_hours', 'promotion_last_5years', 'salary']] dummy_salary = pd.get_dummies(df_new.salary, prefix='salary') dummy_salary.head()
code
90103033/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hr-analytics/HR_comma_sep.csv') left = df[df.left == 1] left.shape retained = df[df.left == 0] retained.shape df.groupby('left').mean() df_new = df[['satisfaction_level', 'average_montly_hours', 'promotion_last_5years', 'salary']] dummy_salary = pd.get_dummies(df_new.salary, prefix='salary') df_new_with_dummy = pd.concat([df_new, dummy_salary], axis='columns') df_new_with_dummy.head()
code
90103033/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hr-analytics/HR_comma_sep.csv') df.head()
code