path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2007984/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') print(train.shape) train.head()
code
2007984/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px x_train.reshape
code
2007984/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Lambda, Flatten from keras.optimizers import Adam, RMSprop from sklearn.model_selection import train_test_split from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2007984/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px
code
2007984/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense,Dropout, Activation,Lambda,Flatten from keras.models import Sequential from keras.optimizers import Adam , RMSprop from keras.preprocessing import image from keras.utils.np_utils import to_categorical from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px x_train.reshape model = Sequential() model.add(Lambda(standardize, input_shape=(28, 28, 1))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.summary() model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) from keras.preprocessing import image gen = image.ImageDataGenerator() X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=34) batches = gen.flow(X_train, Y_train, batch_size=64) val_batches = gen.flow(X_val, Y_val, batch_size=64) cache = model.fit_generator(batches, batches.n, nb_epoch=1, validation_data=val_batches, nb_val_samples=val_batches.n) model.optimizer.lr = 0.01 gen = image.ImageDataGenerator() batches = gen.flow(X_train, Y_train, batch_size=64) history = model.fit_generator(batches, batches.n, nb_epoch=1) history.history
code
2007984/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing import image from keras.utils.np_utils import to_categorical from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px x_train.reshape from keras.preprocessing import image gen = image.ImageDataGenerator() X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=34) batches = gen.flow(X_train, Y_train, batch_size=64) val_batches = gen.flow(X_val, Y_val, batch_size=64)
code
2007984/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28)
code
2007984/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.utils.np_utils import to_categorical import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') y_train.shape from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10)
code
2007984/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.utils.np_utils import to_categorical import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') y_train.shape from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape
code
2007984/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') print(test.shape) test.head()
code
2007984/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape index = 678 from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape print(y_train[index]) plt.plot(y_train[index]) plt.xticks(range(10)) plt.show()
code
2007984/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense,Dropout, Activation,Lambda,Flatten from keras.models import Sequential from keras.optimizers import Adam , RMSprop from keras.preprocessing import image from keras.utils.np_utils import to_categorical from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px x_train.reshape model = Sequential() model.add(Lambda(standardize, input_shape=(28, 28, 1))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.summary() model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) from keras.preprocessing import image gen = image.ImageDataGenerator() X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=34) batches = gen.flow(X_train, Y_train, batch_size=64) val_batches = gen.flow(X_val, Y_val, batch_size=64) cache = model.fit_generator(batches, batches.n, nb_epoch=1, validation_data=val_batches, nb_val_samples=val_batches.n) model.optimizer.lr = 0.01 gen = image.ImageDataGenerator() batches = gen.flow(X_train, Y_train, batch_size=64) history = model.fit_generator(batches, batches.n, nb_epoch=1) preds = model.predict_classes(x_test, verbose=0) subs = pd.DataFrame({'ImageId': list(range(1, len(preds) + 1)), 'Label': preds}) subs.to_csv('sub1.csv', index=False, header=True)
code
2007984/cell_31
[ "text_plain_output_1.png" ]
from keras.layers import Dense,Dropout, Activation,Lambda,Flatten from keras.models import Sequential from keras.optimizers import Adam , RMSprop from keras.preprocessing import image from keras.utils.np_utils import to_categorical from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=10) y_train.shape mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px x_train.reshape model = Sequential() model.add(Lambda(standardize, input_shape=(28, 28, 1))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.summary() model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) from keras.preprocessing import image gen = image.ImageDataGenerator() X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=34) batches = gen.flow(X_train, Y_train, batch_size=64) val_batches = gen.flow(X_val, Y_val, batch_size=64) cache = model.fit_generator(batches, batches.n, nb_epoch=1, validation_data=val_batches, nb_val_samples=val_batches.n) model.optimizer.lr = 0.01 gen = image.ImageDataGenerator() batches = gen.flow(X_train, Y_train, batch_size=64) history = model.fit_generator(batches, batches.n, nb_epoch=1)
code
2007984/cell_24
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense,Dropout, Activation,Lambda,Flatten from keras.models import Sequential import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) (x_train.shape, x_test.shape) mean_px = x_train.mean().astype(np.float32) std_px = x_train.std().astype(np.float32) def standardize(x): return (x - mean_px) / std_px model = Sequential() model.add(Lambda(standardize, input_shape=(28, 28, 1))) model.add(Flatten()) model.add(Dense(10, activation='softmax'))
code
2007984/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape y_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape index = 678 plt.imshow(x_train[index]) print('Number is', y_train[index])
code
2007984/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28) x_train.shape x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
code
2007984/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') x_train = train[:, 1:].values.astype('float32') y_train = train[:, 0].values.astype('int32') x_test = test.values.astype('float32') x_train.shape
code
88091391/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) df['CarName'].unique()
code
88091391/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T def check_df(dataframe, head=5): pass check_df(df)
code
88091391/cell_4
[ "image_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88091391/cell_30
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) df_v = pd.DataFrame(df['fueltype'].value_counts()) plot = df_v.plot.pie(y='fueltype', figsize=(5, 5))
code
88091391/cell_33
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) ax = sns.pairplot(df[num_col]) f= plt.figure(figsize=(12,5)) ax=f.add_subplot(121) sns.distplot(df[(df.fueltype== 'gas')]["price"],color='b',ax=ax) ax.set_title('Distribution of price of gas vehicles') ax=f.add_subplot(122) sns.distplot(df[(df.fueltype == 'diesel')]['price'],color='r',ax=ax) ax.set_title('Distribution of ages of diesel vehicles'); sns.boxplot(x='fueltype', y='price', data=df, palette='Pastel1')
code
88091391/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns num_col
code
88091391/cell_6
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T
code
88091391/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) ax = sns.pairplot(df[num_col])
code
88091391/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns cat_col
code
88091391/cell_32
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) ax = sns.pairplot(df[num_col]) f = plt.figure(figsize=(12, 5)) ax = f.add_subplot(121) sns.distplot(df[df.fueltype == 'gas']['price'], color='b', ax=ax) ax.set_title('Distribution of price of gas vehicles') ax = f.add_subplot(122) sns.distplot(df[df.fueltype == 'diesel']['price'], color='r', ax=ax) ax.set_title('Distribution of ages of diesel vehicles')
code
88091391/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) ax = sns.pairplot(df[num_col]) plt.figure(figsize=(20, 15)) plt.subplot(3, 3, 1) sns.boxplot(x='doornumber', y='price', data=df) plt.subplot(3, 3, 2) sns.boxplot(x='fueltype', y='price', data=df) plt.subplot(3, 3, 3) sns.boxplot(x='aspiration', y='price', data=df) plt.subplot(3, 3, 4) sns.boxplot(x='carbody', y='price', data=df) plt.subplot(3, 3, 5) sns.boxplot(x='enginetype', y='price', data=df) plt.subplot(3, 3, 6) sns.boxplot(x='fuelsystem', y='price', data=df) plt.show()
code
88091391/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) df['CarName'].unique()
code
88091391/cell_35
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) ax = sns.pairplot(df[num_col]) df_v=pd.DataFrame(df['fueltype'].value_counts()) plot = df_v.plot.pie(y='fueltype', figsize=(5, 5)) f= plt.figure(figsize=(12,5)) ax=f.add_subplot(121) sns.distplot(df[(df.fueltype== 'gas')]["price"],color='b',ax=ax) ax.set_title('Distribution of price of gas vehicles') ax=f.add_subplot(122) sns.distplot(df[(df.fueltype == 'diesel')]['price'],color='r',ax=ax) ax.set_title('Distribution of ages of diesel vehicles'); df_v = pd.DataFrame(df['aspiration'].value_counts()) plot = df_v.plot.pie(y='aspiration', figsize=(5, 5))
code
88091391/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v=pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index':'car_name','CarName': 'count'}) plot = sns.barplot(y='car_name',x='count',data=df_v) plot=plt.setp(plot.get_xticklabels(), rotation=80) plt.figure(figsize=(8, 8)) plt.title('Car Price Distribution Plot') sns.distplot(df['price'])
code
88091391/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] df.shape df = df.drop(['car_ID'], axis=1) cat_col = df.select_dtypes(include=['object']).columns num_col = df.select_dtypes(exclude=['object']).columns df_v = pd.DataFrame(df['CarName'].value_counts()).reset_index().rename(columns={'index': 'car_name', 'CarName': 'count'}) plot = sns.barplot(y='car_name', x='count', data=df_v) plot = plt.setp(plot.get_xticklabels(), rotation=80)
code
88091391/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.describe().T outliers = ['price'] plt.rcParams['figure.figsize'] = [8, 8] sns.boxplot(data=df[outliers], orient='v', palette='Set1', whis=1.5, saturation=1, width=0.7) plt.title('Outliers Variable Distribution', fontsize=14, fontweight='bold') plt.ylabel('Price Range', fontweight='bold') plt.xlabel('Continuous Variable', fontweight='bold') df.shape
code
88091391/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/car-price-prediction/CarPrice_Assignment.csv') df.head()
code
18115740/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os from keras.optimizers import * import keras from keras.layers import * from keras.models import * from sklearn.model_selection import train_test_split from sklearn.preprocessing import *
code
18115740/cell_8
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df['Test'] = False test_df = pd.read_csv('../input/test.csv') test_df['Test'] = True df = pd.concat([train_df, test_df], sort=False) corr = abs(train_df.corr()) price_corr = corr['SalePrice'].sort_values() columns = list(price_corr[price_corr > 0.4].index) columns.append('Test') columns.append('Id') prepared_data = df[columns].copy() id_col = df['Id'] uniq = prepared_data.apply(lambda x: x.nunique()) idxs = np.array((uniq <= 10) & (uniq > 2)) dummies_columns = prepared_data.iloc[:, idxs].columns cont_cols = set(prepared_data.columns) - set(dummies_columns) have_garage_cards = np.where(prepared_data['GarageCars'] >= 1, 1, 0) have_full_bath = np.where(prepared_data['FullBath'] >= 1, 1, 0) is_new = np.where(prepared_data['YearBuilt'] > 2005, 1, 0) have_firplaces = np.where(prepared_data['Fireplaces'] >= 1, 1, 0) prepared_data = pd.get_dummies(prepared_data, columns=dummies_columns) prepared_data.fillna(0, inplace=True) price_multy = prepared_data['SalePrice'].max() scaler = MinMaxScaler() prepared_data.loc[:, cont_cols] /= prepared_data.loc[:, cont_cols].max() prepared_data[['Id', 'Test']] = df[['Id', 'Test']] prepared_data['HaveCar'] = have_garage_cards prepared_data['HaveFullBath'] = have_garage_cards prepared_data['IsNew'] = is_new prepared_data['HaveFirplaces'] = have_firplaces train_data = prepared_data.loc[prepared_data['Test'] != True] train_y = train_data['SalePrice'] train_x = train_data.drop(columns=['SalePrice', 'Id']) X_train, X_test, y_train, y_test = train_test_split(train_x, train_y, test_size=0.2, random_state=42) from sklearn.linear_model import * from sklearn.metrics import * results = [] models = [RidgeCV(), LinearRegression(), Ridge(), Lasso(alpha=0.1), BayesianRidge()] fit_models = [] for regr in models: regr.fit(X_train, y_train) pred = regr.predict(X_test) mse = mean_squared_error(pred, y_test) results.append(mse) fit_models.append(regr) best_idx = np.argmin(results) regr = fit_models[best_idx] result_df = prepared_data.loc[prepared_data['Test'] == True] id_col = result_df['Id'] result_df = result_df.drop(columns=['SalePrice', 'Id']) predictions = regr.predict(result_df) res_df = pd.DataFrame(predictions * price_multy, columns=['SalePrice']) res_df['Id'] = id_col res_df.to_csv('sub.csv', index=None, header=True) res_df.head()
code
18115740/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df['Test'] = False test_df = pd.read_csv('../input/test.csv') test_df['Test'] = True df = pd.concat([train_df, test_df], sort=False) corr = abs(train_df.corr()) price_corr = corr['SalePrice'].sort_values() columns = list(price_corr[price_corr > 0.4].index) columns.append('Test') columns.append('Id') df[columns].head()
code
2026584/cell_4
[ "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() proc_data = data[data.color == 'BLACK'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.bar(y_pos, corrCount) plt.xticks(y_pos, dogSpecies) plt.show()
code
2026584/cell_6
[ "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() proc_data = data[data.color == 'BLACK'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BROWN'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.bar(y_pos, corrCount) plt.xticks(y_pos, dogSpecies) plt.show()
code
2026584/cell_2
[ "image_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() print(colorData[0:5])
code
2026584/cell_8
[ "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() proc_data = data[data.color == 'BLACK'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BROWN'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'WHITE'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.bar(y_pos, corrCount) plt.xticks(y_pos, dogSpecies) plt.show()
code
2026584/cell_10
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() proc_data = data[data.color == 'BLACK'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BROWN'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'WHITE'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BLK WHT'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.bar(y_pos, corrCount) plt.xticks(y_pos, dogSpecies) plt.show()
code
2026584/cell_12
[ "image_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output data = pd.read_csv('../input/Health_AnimalBites.csv') colorData = data.color.value_counts() proc_data = data[data.color == 'BLACK'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BROWN'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'WHITE'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'BLK WHT'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.xticks(y_pos, dogSpecies) proc_data = data[data.color == 'TAN'].BreedIDDesc.value_counts() dogSpecies = list(proc_data.keys()) corrCount = list(proc_data[proc_data.keys()]) dogSpecies = dogSpecies[0:5] corrCount = corrCount[0:5] y_pos = np.arange(len(dogSpecies)) plt.bar(y_pos, corrCount) plt.xticks(y_pos, dogSpecies) plt.show()
code
122260010/cell_13
[ "text_plain_output_1.png" ]
import numpy import numpy import numpy sampleArray = numpy.array([[3, 8, 9, 11], [15, 18, 21, 24], [27, 29, 33, 34], [39, 42, 45, 48], [51, 52, 57, 53]]) import numpy sampleArray = numpy.array([[3, 8, 9, 11], [15, 18, 21, 24], [27, 29, 33, 34], [39, 42, 45, 48], [51, 52, 57, 53]]) sampleArray[0:5:2, 1:4:2]
code
122260010/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr r, c = np.shape(arr) r arr = np.ones((10, 10)) arr[0:-1:2, 0:-1:2] = 0 arr
code
122260010/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr r, c = np.shape(arr) r
code
122260010/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr r, c = np.shape(arr) r for i in range(r): print(np.unique(arr[i]))
code
122260010/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr r, c = np.shape(arr) r arr = np.ones((10, 10)) arr[0:-1:2, 0:-1:2] = 0 arr Input: np.array([1, 2, 9, 1, 3, 7, 1, 2, 10]) arr2 = np.array([1, 2, 9, 1, 3, 7, 1, 2, 10]) for i in range(len(arr2)): try: if arr2[i] > arr2[i - 1] and arr2[i] > arr2[i + 1]: print(arr2[i]) except: print('')
code
122260010/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr
code
122260010/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np np.random.seed(100) arr = np.random.randint(1, 11, size=(6, 10)) arr r, c = np.shape(arr) r for i in range(r): print(np.unique(arr[i]))
code
73079382/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) df_test_shop = set(df_test.shop_id.unique()) df_train_shop = set(df_sale_train.shop_id.unique()) print(df_test.head(1)) print(df_sale_train.head(1)) print(df_submission.head(1))
code
73079382/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) print(len(df_test_item)) print(len(df_train_item)) print(df_sale_train.columns)
code
73079382/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib as plot import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73079382/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') print('items En ' + str(len(df_item_en))) print('submission En ' + str(len(df_submission_en))) print('items category En ' + str(len(df_item_cat_en))) print('sales train En ' + str(len(df_sale_train_en))) print('shops En ' + str(len(df_shop_en))) print('tests En ' + str(len(df_test_en))) print('----------------------------------------') print('items ' + str(len(df_item))) print('submission ' + str(len(df_submission))) print('items category ' + str(len(df_item_cat))) print('sales train ' + str(len(df_sale_train))) print('shops ' + str(len(df_shop))) print('tests ' + str(len(df_test)))
code
73079382/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') print(df_test.groupby('item_id').count()) print(df_sale_train.groupby('item_id').count())
code
73079382/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) df_test_shop = set(df_test.shop_id.unique()) df_train_shop = set(df_sale_train.shop_id.unique()) df_sale_train['date'] = pd.to_datetime(df_sale_train['date']) print(df_sale_train.date.head(10)) print(df_sale_train.date.value_counts().head(10)) train_dates = df_sale_train.date.value_counts() train_dates = train_dates.sort_index() print(train_dates.head(10))
code
73079382/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) df_test_shop = set(df_test.shop_id.unique()) df_train_shop = set(df_sale_train.shop_id.unique()) df_sale_train['date'] = pd.to_datetime(df_sale_train['date']) train_dates = df_sale_train.date.value_counts() train_dates = train_dates.sort_index() train_dates.plot(kind='line') plt.show()
code
73079382/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) df_test_shop = set(df_test.shop_id.unique()) df_train_shop = set(df_sale_train.shop_id.unique()) print(len(df_test_shop)) print(len(df_train_shop))
code
73079382/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') df_test_item = set(df_test.item_id.unique()) df_train_item = set(df_sale_train.item_id.unique()) df_test_shop = set(df_test.shop_id.unique()) df_train_shop = set(df_sale_train.shop_id.unique()) df_item.head(1) print(df_test.columns) print(df_sale_train.columns) print(df_submission.columns) print(df_item.columns) print(df_item_cat.columns) print(df_shop.columns)
code
73079382/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_item_en = pd.read_csv('/kaggle/input/english-converted-datasets/items.csv') df_submission_en = pd.read_csv('/kaggle/input/english-converted-datasets/sample_submission.csv') df_item_cat_en = pd.read_csv('/kaggle/input/english-converted-datasets/item_categories.csv') df_sale_train_en = pd.read_csv('/kaggle/input/english-converted-datasets/sales_train.csv') df_shop_en = pd.read_csv('/kaggle/input/english-converted-datasets/shops.csv') df_test_en = pd.read_csv('/kaggle/input/english-converted-datasets/test.csv') df_item = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') df_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') df_item_cat = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') df_sale_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') df_shop = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') df_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') print(df_item.columns) print(df_submission.columns) print(df_item_cat.columns) print(df_sale_train.columns) print(df_shop.columns) print(df_test.columns) print(df_item.dtypes) print(df_submission.dtypes) print(df_item_cat.dtypes) print(df_sale_train.dtypes) print(df_shop.dtypes) print(df_test.dtypes)
code
90156742/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data plt.xlim(2004, 2017) new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data np.random.seed(14) NUM = 1000 p = 0.5 q = 1 - p feat1_cl1 = np.random.normal(10, 1, int(NUM * p)) feat2_cl1 = np.random.normal(4, 2, int(NUM * p)) * 0.2 * feat1_cl1 + np.random.random(int(NUM * p)) t_cl1 = np.array([0] * int(NUM * p)) feat1_cl2 = np.random.normal(3, 2, int(NUM * q)) feat2_cl2 = np.random.normal(-1, 1, int(NUM * q)) * 2 * feat1_cl2 + np.random.random(int(NUM * q)) t_cl2 = np.array([1] * int(NUM * q)) plt.style.use('seaborn') boston = pd.read_csv('/kaggle/input/others/House_Price.csv') import seaborn as sns sns.distplot(boston['price']) plt.show()
code
90156742/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data plt.plot(data['year'], data['manager_m'] - data['manager_f'], label='ManagerInnen') plt.plot(data['year'], data['operator_m'] - data['operator_f'], label='OperatorInnen') plt.plot(data['year'], data['sales_m'] - data['sales_f'], label='Sales') plt.plot(data['year'], np.zeros(len(data['year'])), color='red', linestyle='--') plt.title('Lohndifferenz Entwicklung') plt.ylabel('Differenz in US $') plt.xlabel('Jahre') plt.legend() plt.xlim(2004, 2017) plt.show()
code
90156742/cell_6
[ "text_html_output_1.png" ]
import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data
code
90156742/cell_2
[ "image_output_1.png" ]
import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data
code
90156742/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90156742/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data for beruf in new_data.columns: print(beruf)
code
90156742/cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data plt.xlim(2004, 2017) new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data for beruf in new_data.columns: plt.bar(beruf, new_data.loc[2012, beruf]) plt.title('Differenz des mittleren Stundenlohns zwischen Mann und Frau 2012') plt.ylabel('Durchschnittliche Lohndifferenz in $') plt.show()
code
90156742/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data plt.xlim(2004, 2017) new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data np.random.seed(14) NUM = 1000 p = 0.5 q = 1 - p feat1_cl1 = np.random.normal(10, 1, int(NUM * p)) feat2_cl1 = np.random.normal(4, 2, int(NUM * p)) * 0.2 * feat1_cl1 + np.random.random(int(NUM * p)) t_cl1 = np.array([0] * int(NUM * p)) feat1_cl2 = np.random.normal(3, 2, int(NUM * q)) feat2_cl2 = np.random.normal(-1, 1, int(NUM * q)) * 2 * feat1_cl2 + np.random.random(int(NUM * q)) t_cl2 = np.array([1] * int(NUM * q)) plt.style.use('seaborn') boston = pd.read_csv('/kaggle/input/others/House_Price.csv') import seaborn as sns sns.heatmap(boston.corr(), annotation=True) plt.show()
code
90156742/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data plt.xlim(2004, 2017) new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data np.random.seed(14) NUM = 1000 p = 0.5 q = 1 - p feat1_cl1 = np.random.normal(10, 1, int(NUM * p)) feat2_cl1 = np.random.normal(4, 2, int(NUM * p)) * 0.2 * feat1_cl1 + np.random.random(int(NUM * p)) t_cl1 = np.array([0] * int(NUM * p)) feat1_cl2 = np.random.normal(3, 2, int(NUM * q)) feat2_cl2 = np.random.normal(-1, 1, int(NUM * q)) * 2 * feat1_cl2 + np.random.random(int(NUM * q)) t_cl2 = np.array([1] * int(NUM * q)) plt.scatter(feat1_cl1, feat2_cl1, color='red', label='Klasse 1') plt.scatter(feat1_cl2, feat2_cl2, color='green', label='Klasse 2') plt.title('feat1 vs feat2') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.legend() plt.style.use('seaborn') plt.show()
code
90156742/cell_12
[ "image_output_1.png" ]
import pandas as pd earning = pd.read_csv('/kaggle/input/cusersmarildownloadsearningcsv/earning.csv', delimiter=';') data = earning[['year', 'femalesmanagers', 'malemanagers', 'personmanagers', 'femalemachineryoperatorsanddrivers', 'malemachineryoperatorsanddrivers', 'personmachineryoperatorsanddrivers', 'femalesalesworkers', 'malesalesworkers', 'personsalesworkers']] data.columns = ['year', 'manager_f', 'manager_m', 'manager_tot', 'operator_f', 'operator_m', 'operator_tot', 'sales_f', 'sales_m', 'sales_tot'] data new_data = pd.DataFrame({'year': data['year'], 'manager': data['manager_m'] - data['manager_f'], 'operator': data['operator_m'] - data['operator_f'], 'sales': data['sales_m'] - data['sales_f']}) new_data.index = new_data['year'] new_data = new_data.drop('year', axis=1) new_data boston = pd.read_csv('/kaggle/input/others/House_Price.csv') boston.head()
code
88092667/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
1004716/cell_21
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import pandas as pd import seaborn as sns df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] df1 = df.corr() df1 = df1[df1 < 1] sns.heatmap(df1, annot=True)
code
1004716/cell_13
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] KNClassifier = KNeighborsClassifier() KNClassifier.fit(xtrain, ytrain)
code
1004716/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import ensemble from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] RMClassifier = ensemble.RandomForestClassifier() RMClassifier.fit(xtrain, ytrain)
code
1004716/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.utils import shuffle import pandas as pd import seaborn as sns df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] df1 = df.corr() df1 = df1[df1 < 1] df.groupby(by='Type').mean() sns.countplot(data=df, x='Type')
code
1004716/cell_11
[ "text_plain_output_1.png" ]
from sklearn import ensemble from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] RMClassifier = ensemble.RandomForestClassifier() RMClassifier.fit(xtrain, ytrain) RMClassifier.score(xtest, ytest) type(RMClassifier.score(xtest, ytest))
code
1004716/cell_19
[ "text_plain_output_1.png" ]
from sklearn import tree from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit(xtrain, ytrain) clf.score(xtest, ytest)
code
1004716/cell_18
[ "text_plain_output_1.png" ]
from sklearn import tree from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] from sklearn import tree clf = tree.DecisionTreeClassifier() clf.fit(xtrain, ytrain)
code
1004716/cell_15
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] print(df['Type'].value_counts().sort_values(ascending=False)) print()
code
1004716/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/glass.csv') df.head()
code
1004716/cell_14
[ "text_plain_output_1.png" ]
from sklearn.neighbors import KNeighborsClassifier from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] KNClassifier = KNeighborsClassifier() KNClassifier.fit(xtrain, ytrain) KNClassifier.score(xtest, ytest)
code
1004716/cell_22
[ "text_plain_output_1.png" ]
from sklearn.utils import shuffle import pandas as pd import seaborn as sns df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] df1 = df.corr() df1 = df1[df1 < 1] df.groupby(by='Type').mean()
code
1004716/cell_10
[ "text_html_output_1.png" ]
from sklearn import ensemble from sklearn.utils import shuffle import pandas as pd df = pd.read_csv('../input/glass.csv') from sklearn.utils import shuffle df = shuffle(df) X = df.ix[:, :-1] Y = df.ix[:, -1] xtest = X.ix[:100,] ytest = Y.ix[:100,] xtrain = X.ix[100:,] ytrain = Y.ix[100:,] RMClassifier = ensemble.RandomForestClassifier() RMClassifier.fit(xtrain, ytrain) RMClassifier.score(xtest, ytest)
code
16150848/cell_4
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import os spotify_data = pd.read_csv('../input/data.csv') print(spotify_data.columns) print(spotify_data.shape)
code
16150848/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import os import pandas as pd import numpy as np import pandas as pd import os spotify_data = pd.read_csv('../input/data.csv') print(max(spotify_data['Streams'])) print(np.where(spotify_data['Streams'] == max(spotify_data['Streams']))) print(spotify_data['Track Name'][3145443])
code
16150848/cell_2
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import os print(os.listdir('../input')) spotify_data = pd.read_csv('../input/data.csv')
code
16150848/cell_3
[ "text_html_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import os spotify_data = pd.read_csv('../input/data.csv') spotify_data.head()
code
74058977/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda,Flatten from keras.models import Model,Sequential from keras.optimizers import Adam from keras.models import Model, Sequential from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda, Flatten from keras.optimizers import Adam from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D def model_1(): model = Sequential() model.add(Conv2D(60, (3, 3), input_shape=(512, 512, 1), activation='relu')) model.add(Conv2D(60, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(30, (3, 3), activation='relu')) model.add(Conv2D(30, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(500, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(activation='softmax')) model.compile(Adam(lr=0.0002), loss='binary_crossentropy', metrics=['accuracy']) return model model = model_1() print(model.summary())
code
74058977/cell_2
[ "text_plain_output_1.png" ]
import cv2 import numpy as np # linear algebra import os import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt SIZE = 256 X_test = '../input/test-images' Y_test = '../input/test-labels' X_train = '../input/train-images' Y_train = '../input/train-labels' X_val = '../input/validation-images' Y_val = '../input/validation-labels' def load_dataset(): xtrainlist, xtestlist, xvallist = ([], [], []) for image in os.listdir(X_train): path = os.path.join(X_train, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.equalizeHist(img) xtrainlist.append(img) for image in os.listdir(X_test): path = os.path.join(X_test, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) xtestlist.append(img) for image in os.listdir(X_val): path = os.path.join(X_val, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) xvallist.append(img) x_train = np.array(xtrainlist) x_test = np.array(xtestlist) x_val = np.array(xvallist) classes_list = [b'messy', b'clean'] classes = np.array(classes_list) return (x_train, x_test, x_val, classes) x_train, x_test, x_val, classes = load_dataset() x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_val = np.expand_dims(x_val, axis=3) x_train, x_test, x_val = (x_train / 255.0, x_test / 255.0, x_val / 255.0) print('train_set_x_flatten shape: ' + str(x_train.shape)) print('train_set_y shape: ' + str(x_test.shape)) print('test_set_x_flatten shape: ' + str(x_val.shape))
code
74058977/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import numpy as np # linear algebra import os import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt SIZE = 256 X_test = '../input/test-images' Y_test = '../input/test-labels' X_train = '../input/train-images' Y_train = '../input/train-labels' X_val = '../input/validation-images' Y_val = '../input/validation-labels' def load_dataset(): xtrainlist, xtestlist, xvallist = ([], [], []) for image in os.listdir(X_train): path = os.path.join(X_train, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.equalizeHist(img) xtrainlist.append(img) for image in os.listdir(X_test): path = os.path.join(X_test, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) xtestlist.append(img) for image in os.listdir(X_val): path = os.path.join(X_val, image) img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) xvallist.append(img) x_train = np.array(xtrainlist) x_test = np.array(xtestlist) x_val = np.array(xvallist) classes_list = [b'messy', b'clean'] classes = np.array(classes_list) return (x_train, x_test, x_val, classes) x_train, x_test, x_val, classes = load_dataset() x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_val = np.expand_dims(x_val, axis=3) x_train, x_test, x_val = (x_train / 255.0, x_test / 255.0, x_val / 255.0) plt.imshow(x_train[300], cmap='gray')
code
33101435/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd nRowsRead = None df1 = pd.read_csv('/kaggle/input/tennis-20112019/atp.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'atp.csv' nRow, nCol = df1.shape print(f'There are {nRow} rows and {nCol} columns')
code
33101435/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd nRowsRead = None df1 = pd.read_csv('/kaggle/input/tennis-20112019/atp.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'atp.csv' nRow, nCol = df1.shape plotPerColumnDistribution(df1, 10, 5)
code
33101435/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33101435/cell_5
[ "text_html_output_1.png" ]
import pandas as pd nRowsRead = None df1 = pd.read_csv('/kaggle/input/tennis-20112019/atp.csv', delimiter=',', nrows=nRowsRead) df1.dataframeName = 'atp.csv' nRow, nCol = df1.shape df1.head(5)
code
90130223/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score pd.options.display.max_rows = None pd.options.display.max_columns = None SEED = 581 data = pd.read_csv('/kaggle/input/mushroom-classification/mushrooms.csv') data.isna().any() mapping = {'e': 1, 'p': 0} data.rename({'class': 'edible'}, axis=1, inplace=True) data['edible'] = data['edible'].replace(mapping) data = data.astype('category') data.dtypes sum = 0 for n in data.nunique(): sum += n sum = sum - data.shape[1] print(sum)
code
90130223/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score pd.options.display.max_rows = None pd.options.display.max_columns = None SEED = 581 data = pd.read_csv('/kaggle/input/mushroom-classification/mushrooms.csv') data.info()
code
90130223/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score pd.options.display.max_rows = None pd.options.display.max_columns = None SEED = 581 data = pd.read_csv('/kaggle/input/mushroom-classification/mushrooms.csv') data.isna().any() mapping = {'e': 1, 'p': 0} data.rename({'class': 'edible'}, axis=1, inplace=True) data['edible'] = data['edible'].replace(mapping) data = data.astype('category') data.dtypes sum = 0 for n in data.nunique(): sum += n sum = sum - data.shape[1] data = pd.get_dummies(data, drop_first=True) data.rename({'edible_1': 'edible'}, axis=1, inplace=True) data.head()
code
90130223/cell_26
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score pd.options.display.max_rows = None pd.options.display.max_columns = None SEED = 581 data = pd.read_csv('/kaggle/input/mushroom-classification/mushrooms.csv') data.isna().any() mapping = {'e': 1, 'p': 0} data.rename({'class': 'edible'}, axis=1, inplace=True) data['edible'] = data['edible'].replace(mapping) data = data.astype('category') data.dtypes sum = 0 for n in data.nunique(): sum += n sum = sum - data.shape[1] data = pd.get_dummies(data, drop_first=True) data.rename({'edible_1': 'edible'}, axis=1, inplace=True) X = data.iloc[:, 1:].values y = data.iloc[:, 0].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=SEED) print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape)
code
90130223/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score pd.options.display.max_rows = None pd.options.display.max_columns = None SEED = 581 data = pd.read_csv('/kaggle/input/mushroom-classification/mushrooms.csv') data.isna().any() data.describe()
code
90130223/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code