content
stringlengths
22
815k
id
int64
0
4.91M
def init_validator(required, cls, *additional_validators): """ Create an attrs validator based on the cls provided and required setting. :param bool required: whether the field is required in a given model. :param cls: the expected class type of object value. :return: attrs validator chained correctly (e.g. optional(instance_of)) """ validator = validators.instance_of(cls) if additional_validators: additional_validators = list(additional_validators) additional_validators.append(validator) validator = composite(*additional_validators) return validator if required else validators.optional(validator)
4,700
def test_network_switch_forwards_packets_received_from_network_interfaces(): """Validate packet with destination matching one interface is routed up. We send three packets: one from 'eth', one from 'wifi' and one from 'user'. Make sure that in any case the packet is routed to user. """ sim, ns, wifi, eth = Mock(), Mock(), Mock(), Mock() switch = NetworkSwitch(sim) eth.address = 1 eth_rev_conn = Mock() eth.connections.set = Mock(return_value=eth_rev_conn) wifi.address = 20 wifi_rev_conn = Mock() wifi.connections.set = Mock(return_value=wifi_rev_conn) switch.connections.set('user', ns, reverse=False) switch.connections.set('eth', eth, rname='network') wifi_conn = switch.connections.set('wifi', wifi, rname='network') switch.table.add(10, connection='eth', next_hop=2) switch.table.add(30, connection='wifi', next_hop=23) pkt_1 = NetworkPacket(destination_address=10, originator_address=5, osn=8) pkt_2 = NetworkPacket(destination_address=30, originator_address=17, osn=4) switch.handle_message(pkt_1, connection=wifi, sender=wifi_conn) sim.schedule.assert_called_once_with( 0, eth.handle_message, args=(pkt_1,), kwargs={ 'connection': eth_rev_conn, 'sender': switch, } ) sim.schedule.reset_mock() switch.handle_message(pkt_2, connection=wifi, sender=wifi_conn) sim.schedule.assert_called_once_with( 0, wifi.handle_message, args=(pkt_2,), kwargs={ 'connection': wifi_rev_conn, 'sender': switch, } )
4,701
def upload_results(target_folder, local_folder_path): """ Uploads results folder containing the bam file (and associated output) :param bam_s3_path: S3 path to upload the alignment results to :param local_folder_path: local path containing the alignment results """ upload_folder(target_folder, local_folder_path)
4,702
def init_app(app): """添加日志记录器""" app.logger.addHandler(_file_handler())
4,703
def next_search(request, *args, **kwargs): """ Handle search requests :param request: :return: """ server = FhirServerUrl() in_fmt = "json" get_fmt = get_format(request.GET) if settings.DEBUG: print("Server:", server) print("Kwargs:",kwargs) context = {'display':"Search", 'name': "Search", 'server': server, 'in_fmt': in_fmt, 'get_fmt': get_fmt, 'template': 'v1api/search.html', } request_string = "?" for item in request.GET: request_string += item +"=" + request.GET[item] +"&" if request_string[:0] =="&": request_string = request_string[:-1] if not "patient=Patient/" in request_string: try: xwalk = Crosswalk.objects.get(user=request.user) patient_id = xwalk.fhir_url_id request_string += "&patient=Patient/"+patient_id except Crosswalk.DoesNotExist: return kickout_404("ID for this user not found:%s" % request.user) if settings.DEBUG: print("Gets:", request_string) try: r = requests.get(server+request_string) context = process_page(request, r, context) return publish_page(request, context) except requests.ConnectionError: print("Whoops - Problem connecting to FHIR Server") messages.error(request, "FHIR Server is unreachable. " "Are you on the CMS Network?") return render_to_response(context['template'], RequestContext(request, context, ))
4,704
def ShiftRight(x, **unused_kwargs): """Layer to shift the tensor to the right by padding on axis 1.""" if not isinstance(x, (list, tuple)): # non-chunked inputs pad_widths = [(0, 0)] * len(x.shape) pad_widths[1] = (1, 0) # Padding on axis=1 padded = np.pad(x, pad_widths, mode='constant') return padded[:, :-1] # Handling chunked inputs. Recall that the list of chunks represents a big # sequence (the concatenation of the chunks). We want to shift that sequence, # so we put a 0 in the beginning of the first chunk and the last element of # that chunk is used as the new first element of the next chunk, and so on. padded = [] last_value = np.zeros_like(x[0][:, -1]) for chunk in x: padded_chunk = np.concatenate([last_value[:, np.newaxis], chunk], axis=1) last_value = chunk[:, -1] padded.append(padded_chunk[:, :-1]) return padded
4,705
def calc_weights(): """ Initialize focus weights matrix following parabolic equation. Used to give higher priority to pixels located closer to the center of the ROI. """ global focusWeights focusWeights = np.empty((looseBound[3], looseBound[2]), np.float32) # weight = a * sqr(x - b) + c b = looseBound[2] / 2.0 a = -1.0 / (b * b) c = 1.0 curr_right = looseBound[2] - 1 curr_bottom = looseBound[3] - 1 for offset in range(0, (looseBound[2] + 1) // 2): val = a * ((offset - b) ** 2) + c cv2.rectangle(focusWeights, (offset, offset), (curr_right, curr_bottom), val) curr_right -= 1 curr_bottom -= 1
4,706
def connect_kafka_producer(): """Return a MSK client to publish the streaming messages.""" # Use a global variable so Lambda can reuse the persisted client on future invocations global kafka_client if kafka_client is None: logger.debug('Creating new Kafka client.') try: kafka_client = KafkaProducer(bootstrap_servers=os.environ['MSK_BOOTSTRAP_SRV']) except Exception as ex: logger.error('Failed to create new Kafka client: {}'.format(ex)) send_sns_alert(str(ex)) raise return kafka_client
4,707
def empty_record(): """Create an empty record.""" record = dump_empty(Marc21RecordSchema) record["metadata"] = "<record> <leader>00000nam a2200000zca4500</leader></record>" record["is_published"] = False record["files"] = {"enabled": True} return record
4,708
def illuminanceToPhotonPixelRate(illuminance, objective_numerical_aperture=1.0, illumination_wavelength=0.55e-6, camera_pixel_size=6.5e-6, objective_magnification=1, system_magnification=1, sample_quantum_yield=1., **kwargs): """ Function which converts source illuminance and microscope parameters to photons / px / s. Based heavily on the publication: "When Does Computational Imaging Improve Performance?," O. Cossairt, M. Gupta and S.K. Nayar, IEEE Transactions on Image Processing, Vol. 22, No. 2, pp. 447–458, Aug. 2012. However, this function implements the same result for microscopy, replacing f/# with NA, removing reflectance, and including magnification. Args: exposure_time: Integration time, s source_illuminance: Photometric source illuminance, lux numerical_aperture: System numerical aperture pixel_size: Pixel size of detector, um magnification: Magnification of imaging system Returns: Photon counts at the camera. """ # Conversion factor from radiometric to photometric cordinates # https://www.thorlabs.de/catalogPages/506.pdf K = 1 / 680 # Planck's constant # h_bar = 6.626176e-34 h_bar = 1.054572e-34 # Speed of light c = 2.9979e8 # Constant term const = K * illumination_wavelength / h_bar / c # Calculate photon_pixel_rate photon_pixel_rate = sample_quantum_yield * const * (objective_numerical_aperture ** 2) * illuminance * (camera_pixel_size / (system_magnification * objective_magnification)) ** 2 # Return return photon_pixel_rate
4,709
def stop_tuning(step): """ stop tuning the current step method """ if hasattr(step, 'tune'): step.tune = False elif hasattr(step, 'methods'): step.methods = [stop_tuning(s) for s in step.methods] return step
4,710
def assemble_english(): """Assemble each statement into """ if request.method == 'OPTIONS': return {} response = request.body.read().decode('utf-8') body = json.loads(response) stmts_json = body.get('statements') stmts = stmts_from_json(stmts_json) sentences = {} for st in stmts: enga = EnglishAssembler() enga.add_statements([st]) model_str = enga.make_model() sentences[st.uuid] = model_str res = {'sentences': sentences} return res
4,711
def test_json_schema_component_to_modelldcatno_returns_empty() -> None: """Test that empty ParsedSchema is returned if invalid JSON Schema is passed.""" json_schema_dict: Dict[str, str] = {} base_uri = "http://uri.com" schema = Schema(base_uri, json_schema_dict) path: List[str] = [] parsed_schema = json_schema_component_to_modelldcatno(schema, path) assert ParsedSchema() == parsed_schema
4,712
def schema_class(classname, schema, schemarepr=None, basename='SchemaBase'): """Generate code for a schema class Parameters ---------- classname : string The name of the class to generate schema : dict The dictionary defining the schema class basename : string (default: "SchemaBase") The name of the base class to use in the class definition schemarepr : CodeSnippet or object, optional An object whose repr will be used in the place of the explicit schema. This can be useful, for example, when the generated code should reference a predefined schema object. The user must ensure that the schema within the evaluated code is identical to the schema used to generate the code. """ return SCHEMA_CLASS_TEMPLATE.format( classname=classname, basename=basename, schema=schema if schemarepr is None else schemarepr, docstring=docstring(classname, schema, indent=4), init_code=init_code(classname, schema, indent=4) )
4,713
def orthology_events(ids='R-HSA-6799198,R-HSA-168256,R-HSA-168249', species='49633'): """ Reactome uses the set of manually curated human reactions to computationally infer reactions in twenty evolutionarily divergent eukaryotic species for which high-quality whole-genome sequence data are available, and hence a comprehensive and high-quality set of protein predictions exists. Thus, this method retrieves the orthologies for any given set of events or entities in the specified species. :param ids: The events identifiers for which the orthology is requested :param species: The species id for which the orthology is requested :return: Json dictionary object of the orthologies of a given set of events or entities """ headers = { 'accept': 'application/json', 'content-type': 'text/plain', } data = ids url = 'https://reactome.org/ContentService/data/orthologies/ids/species/%s' % species try: response = requests.post(url=url, headers=headers, data=data) except ConnectionError as e: print(e) if response.status_code == 200: return response.json() else: print('Status code returned a value of %s' % response.status_code)
4,714
def judge(name): """ Return some sort of score for automatically ranking names based on all the features we can extract so far. I guess we'll just add the scores * weights up for now. """ score = 0 for scoreID, scorer, weight in weights: subscore = scorer(name) score += subscore * weight name.scores[scoreID] = subscore name.score = score return score
4,715
def parse_year(inp, option='raise'): """ Attempt to parse a year out of a string. Parameters ---------- inp : str String from which year is to be parsed option : str Return option: - "bool" will return True if year is found, else False. - Return year int / raise a RuntimeError otherwise Returns ------- out : int | bool Year int parsed from inp, or boolean T/F (if found and option is bool). Examples -------- >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str) 2018 >>> year_str = "NSRDB_2018.h5" >>> parse_year(year_str, option='bool') True >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str) RuntimeError: Cannot parse year from NSRDB_TMY.h5 >>> year_str = "NSRDB_TMY.h5" >>> parse_year(year_str, option='bool') False """ # char leading year cannot be 0-9 # char trailing year can be end of str or not 0-9 regex = r".*[^0-9]([1-2][0-9]{3})($|[^0-9])" match = re.match(regex, inp) if match: out = int(match.group(1)) if 'bool' in option: out = True else: if 'bool' in option: out = False else: raise RuntimeError('Cannot parse year from {}'.format(inp)) return out
4,716
def retry_import(e, **kwargs): """ When an exception occurs during channel/content import, if * there is an Internet connection error or timeout error, or HTTPError where the error code is one of the RETRY_STATUS_CODE, return return True to retry the file transfer * the file does not exist on the server or disk, skip the file and return False. This only applies to content import not channel import. * otherwise, raise the exception. return value: * True - needs retry. * False - file is skipped. Does not need retry. """ skip_404 = kwargs.pop("skip_404") if ( isinstance(e, ConnectionError) or isinstance(e, Timeout) or isinstance(e, ChunkedEncodingError) or (isinstance(e, HTTPError) and e.response.status_code in RETRY_STATUS_CODE) or (isinstance(e, SSLERROR) and "decryption failed or bad record mac" in str(e)) ): return True elif skip_404 and ( (isinstance(e, HTTPError) and e.response.status_code == 404) or (isinstance(e, OSError) and e.errno == 2) ): return False else: raise e
4,717
def register_random_state_impl(clz=None, *, scalar=None, batch=None): """ Register an implementation for the function generating random state for the given Hilbert space class. The rule can be implemented both as a scalar rule and as a batched rule, but the best performance will be obtained by implementing the batched version. The missing rule will be auto-implemented from the over. scalar must have signature (hilb, key, dtype) -> vector batch must have signature (hilb, key, size, dtype) -> matrix of states The function will be jit compiled, so make sure to use jax.numpy. Hilbert is passed as a static object. Arguments: clz: The class of the hilbert space scalar: The function computing a single random state batch: the function computing batches of random states """ if scalar is None and batch is None: raise ValueError("You must at least provide a scalar or batch rule.") scalar_rule = scalar batch_rule = batch if scalar is None: if clz is None: clz = list(batch.__annotations__.items())[0] scalar_rule = partial(_random_state_scalar_default_impl, batch_rule=batch_rule) if batch is None: if clz is None: clz = list(scalar.__annotations__.items())[0] batch_rule = partial(_random_state_batch_default_impl, scalar_rule=scalar_rule) random_state_scalar.register(clz, scalar_rule) random_state_batch.register(clz, batch_rule)
4,718
def cvCloneMat(*args): """cvCloneMat(CvMat mat) -> CvMat""" return _cv.cvCloneMat(*args)
4,719
def run_episode(kwargs) -> [Trajectory]: """ Runs a single episode and collects the trajectories of each agent """ total_controller_time = 0 env_dict: Callable = kwargs.get("env_dict") obs_builder = kwargs.get("obs_builder") controller_creator: Callable = kwargs.get("controller_creator") episode_id: int = kwargs.get("episode_id") max_episode_length: int = kwargs.get("max_episode_length", 1000) render: bool = kwargs.get("render", False) # Create and Start Environment _env = load_env(env_dict, obs_builder_object=obs_builder) obs, info = _env.reset(regenerate_rail=False, regenerate_schedule=True, ) score = 0 _trajectories = [Trajectory() for _ in _env.get_agent_handles()] # Create and Start Controller controller: AbstractController = controller_creator() start = time.time() controller.start_of_round(obs=obs, env=_env) total_controller_time += time.time() - start if render: env_renderer = RenderTool(_env) env_renderer.reset() for step in range(max_episode_length): start = time.time() action_dict, processed_obs = controller.act(observation=obs) total_controller_time += time.time() - start next_obs, all_rewards, done, info = _env.step(action_dict) if render: env_renderer.render_env(show=True, show_observations=True, show_predictions=False) # Save actions and rewards for each agent [_trajectories[agent_handle].add_row( state=processed_obs[agent_handle], action=action_dict[agent_handle], reward=all_rewards[agent_handle], done=done[agent_handle]) for agent_handle in _env.get_agent_handles()] score += sum(all_rewards) obs = next_obs.copy() if done['__all__']: break if render: env_renderer.close_window() # print(f"\nController took a total time of: {total_controller_time} seconds", flush=True) return _trajectories
4,720
def init_output_logging(): """ Initialize output logger """ global output_logger if output_logger is None: output_logger = OutputLogger() sys.stdout = TeeOutputStream([sys.stdout, output_logger], autoflush=True) sys.stderr = TeeOutputStream([sys.stderr, output_logger], autoflush=True)
4,721
async def _reverse_proxy_handler(request: web.Request) -> web.Response: """ - Adds auth layer - Adds access layer - Forwards request to catalog service SEE https://gist.github.com/barrachri/32f865c4705f27e75d3b8530180589fb """ user_id = request[RQT_USERID_KEY] # path & queries backend_url = to_backend_service( request.rel_url, request.app[f"{__name__}.catalog_origin"], request.app[f"{__name__}.catalog_version_prefix"], ) # FIXME: hack if "/services" in backend_url.path: backend_url = backend_url.update_query({"user_id": user_id}) logger.debug("Redirecting '%s' -> '%s'", request.url, backend_url) # body raw = None if request.can_read_body: raw: bytes = await request.read() # injects product discovered by middleware in headers fwd_headers = request.headers.copy() product_name = request[RQ_PRODUCT_KEY] fwd_headers.update({X_PRODUCT_NAME_HEADER: product_name}) # forward request return await _request_catalog( request.app, request.method, backend_url, fwd_headers, raw )
4,722
def get_data(request: Request): """ Get the data page. Parameters ---------- request : Request The request object. Returns ------- HTMLResponse The data page. """ return templates.TemplateResponse("data.html", {"request": request})
4,723
def remove_last_measurements(dag_circuit, perform_remove=True): """Removes all measurements that occur as the last operation on a given qubit for a DAG circuit. Measurements that are followed by additional gates are untouched. This operation is done in-place on the input DAG circuit if perform_pop=True. Parameters: dag_circuit (qiskit.dagcircuit._dagcircuit.DAGCircuit): DAG circuit. perform_remove (bool): Whether to perform removal, or just return node list. Returns: list: List of all measurements that were removed. """ removed_meas = [] try: meas_nodes = dag_circuit.get_named_nodes('measure') except DAGCircuitError: return removed_meas for idx in meas_nodes: _, succ_map = dag_circuit._make_pred_succ_maps(idx) if len(succ_map) == 2: # All succesors of the measurement are outputs, one for qubit and one for cbit # (As opposed to more gates being applied), and it is safe to remove the # measurement node and add it back after the swap mapper is done. removed_meas.append(dag_circuit.multi_graph.node[idx]) if perform_remove: dag_circuit._remove_op_node(idx) return removed_meas
4,724
def get_html(url): """ Given a URL, will return the HTML using urllib3. :param url: The url to extract the HTML from :return: If extracted successfully, the HTML is returned. If there is a failure, a message with HTTP status. If an exception is thrown, -1 is returned witha description of the error """ try: # urllib3.disable_warnings() # Try with new where function, but sometimes it failes # so then try old where function # Read more: https://github.com/certifi/python-certifi#usage try: http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.where() ) except: http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.old_where() ) r = http.request('GET', url, timeout=5.0) if str(r.status).startswith("2"): html = r.data.decode("utf-8") return html else: return "Failed to get html, status: " + str(r.status) except Exception as e: sys.stdout.write(str(e)) return "-1: " + str(e)
4,725
def J(*args, **kwargs): """Wrapper around jsonify that sets the Content-Type of the response to application/vnd.api+json. """ response = jsonify(*args, **kwargs) response.mimetype = "application/vnd.api+json" return response
4,726
def readable_dir(prospective_dir): """ check if dir is exist or acessable""" if not os.path.isdir(prospective_dir): sys.exit("{} is not a valid path".format(prospective_dir)) if os.access(prospective_dir, os.R_OK): return prospective_dir else: sys.exit("{} is not a readable dir".format(prospective_dir))
4,727
def is_gzipped(filename): """ Returns True if the target filename looks like a GZIP'd file. """ with open(filename, 'rb') as fh: return fh.read(2) == b'\x1f\x8b'
4,728
def test_tan(): """Test of tan method.""" # Test for sin with Rnode objects x = Rnode(1.0) z = Elem.tan(x) z.grad_value = 1.0 try: assert z.value == np.tan(x.value) assert x.grad() == 1 / (np.cos(x.value) ** 2) except AssertionError as e: print(e) # Test for tan with two Dual objects val1 = Dual(3, [4, 1]) val2 = Dual(2, [3, 1]) val = val1 - val2 z = Elem.tan(val) try: assert z.val == np.tan(val.val) assert z.der[0] == 1/np.cos(val.val)**2 * val.der[0] assert z.der[1] == 1/np.cos(val.val)**2 * val.der[1] except AssertionError as e: print(e) raise AssertionError # Test for tan with int, x = 3 fx = Elem.tan(x) try: assert fx == np.tan(x) except AssertionError as e: print(e) raise AssertionError
4,729
def load_schedule_data( neo4j_session: neo4j.Session, data: List[Dict], update_tag: int, ) -> None: """ Transform and load schedule information """ ingestion_cypher_query = """ UNWIND {Schedules} AS schedule MERGE (u:PagerDutySchedule{id: schedule.id}) ON CREATE SET u.html_url = schedule.html_url, u.firstseen = timestamp() SET u.type = schedule.type, u.summary = schedule.summary, u.name = schedule.name, u.time_zone = schedule.time_zone, u.description = schedule.description, u.lastupdated = {update_tag} """ logger.info(f"Loading {len(data)} pagerduty schedules.") users: List[Dict[str, Any]] = [] layers: List[Dict[str, Any]] = [] for schedule in data: if schedule.get("users"): for user in schedule["users"]: users.append({"schedule": schedule["id"], "user": user["id"]}) if schedule.get("schedule_layers"): for layer in schedule["schedule_layers"]: layer["_schedule_id"] = schedule["id"] layers.append(layer) neo4j_session.run( ingestion_cypher_query, Schedules=data, update_tag=update_tag, ) _attach_users(neo4j_session, users, update_tag) _attach_layers(neo4j_session, layers, update_tag)
4,730
def load_data(loc='./data/'): """ Load the SICK semantic-relatedness dataset """ trainA, trainB, devA, devB, testA, testB = [],[],[],[],[],[] trainS, devS, testS = [],[],[] with open(os.path.join(loc, 'sick_train.txt'), 'r') as f: for line in f: text = line.strip().split('\t') trainA.append(text[0]) trainB.append(text[1]) trainS.append(text[2]) with open(os.path.join(loc, 'sick_dev.txt'), 'r') as f: for line in f: text = line.strip().split('\t') devA.append(text[0]) devB.append(text[1]) devS.append(text[2]) with open(os.path.join(loc, 'sick_test.txt'), 'r') as f: for line in f: text = line.strip().split('\t') testA.append(text[0]) testB.append(text[1]) testS.append(text[2]) trainS = [float(s) for s in trainS] devS = [float(s) for s in devS] testS = [float(s) for s in testS] return [trainA, trainB], [devA, devB], [testA, testB], [trainS, devS, testS]
4,731
def tag_helper(tag, items, locked=True, remove=False): """ Simple tag helper for editing a object. """ if not isinstance(items, list): items = [items] data = {} if not remove: for i, item in enumerate(items): tagname = '%s[%s].tag.tag' % (tag, i) data[tagname] = item if remove: tagname = '%s[].tag.tag-' % tag data[tagname] = ','.join(items) data['%s.locked' % tag] = 1 if locked else 0 return data
4,732
def send_email_updates(poller_name): """ Takes a school name and updates its course data and then sends all open course notifications. """ requests = UpdateDB(poller_name) for request in requests: emails = [] for entry in request[0]: emails.append(entry.email) db.session.delete(entry) send_email(emails, request[1], request[1])
4,733
def _check_stata_output(output): """.. Check Stata output""" regex = "end of do-file[\s]*r\([0-9]*\);" if re.search(regex, output): error_message = 'Stata program executed with errors.' error_message = format_message(error_message) raise_from(ProgramError(error_message, 'See makelog for more detail.'), None)
4,734
def test_ap_wps_upnp_http_proto_chunked(dev, apdev): """WPS AP and UPnP/HTTP protocol testing for chunked encoding""" ap_uuid = "27ea801a-9e5c-4e73-bd82-f89cbcd10d7e" add_ssdp_ap(apdev[0], ap_uuid) location = ssdp_get_location(ap_uuid) url = urlparse(location) conn = HTTPConnection(url.netloc) #conn.set_debuglevel(1) headers = { "Transfer-Encoding": 'chunked' } conn.request("POST", "hello", "a\r\nabcdefghij\r\n" + "2\r\nkl\r\n" + "0\r\n\r\n", headers) resp = conn.getresponse() if resp.status != 404: raise Exception("Unexpected HTTP response: %d" % resp.status) conn.close() conn.putrequest("POST", "hello") conn.putheader('Transfer-Encoding', 'chunked') conn.endheaders() conn.send(b"a\r\nabcdefghij\r\n") time.sleep(0.1) conn.send(b"2\r\nkl\r\n") conn.send(b"0\r\n\r\n") resp = conn.getresponse() if resp.status != 404: raise Exception("Unexpected HTTP response: %d" % resp.status) conn.close() conn.putrequest("POST", "hello") conn.putheader('Transfer-Encoding', 'chunked') conn.endheaders() completed = False try: for i in range(20000): conn.send(b"1\r\nZ\r\n") conn.send(b"0\r\n\r\n") resp = conn.getresponse() completed = True except Exception as e: pass conn.close() if completed: raise Exception("Too long chunked request did not result in connection reset") headers = { "Transfer-Encoding": 'chunked' } conn.request("POST", "hello", "80000000\r\na", headers) try: resp = conn.getresponse() except Exception as e: pass conn.close() conn.request("POST", "hello", "10000000\r\na", headers) try: resp = conn.getresponse() except Exception as e: pass conn.close()
4,735
def test_buchtitelgenerator_returns_mocked_books(mock_buchtitelgenerator: Mock) -> None: """It returns a list.""" books = randombuch.buchtitelgenerator() assert "Foo" in books
4,736
def get_keys_from_file(csv): """Extract the credentials from a csv file.""" lines = tuple(open(csv, 'r')) creds = lines[1] access = creds.split(',')[2] secret = creds.split(',')[3] return access, secret
4,737
def _handle_api_error_with_json(http_exc, jsondata, response): """Handle YOURLS API errors. requests' raise_for_status doesn't show the user the YOURLS json response, so we parse that here and raise nicer exceptions. """ if 'code' in jsondata and 'message' in jsondata: code = jsondata['code'] message = jsondata['message'] if code == 'error:noloop': raise YOURLSNoLoopError(message, response=response) elif code == 'error:nourl': raise YOURLSNoURLError(message, response=response) elif 'message' in jsondata: message = jsondata['message'] raise YOURLSHTTPError(message, response=response) http_error_message = http_exc.args[0] raise YOURLSHTTPError(http_error_message, response=response)
4,738
async def roll(ctx, *, param:re_convert=re_convert.defaults): """Rolls a dice in NdN format.""" rolls, limit = map(int, param["dice"].split('d')) result = ', '.join(str(random.randint(1, limit)) for r in range(rolls)) await ctx.send(result)
4,739
def fix_model(project, models, invert=False): """Fix model name where file attribute is different from values accepted by facets >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC']) ['CESM1(BGC)', 'CESM1(BGC)'] >>> fix_model('CMIP5', ['CESM1(BGC)', 'CESM1-BGC'], invert=True) ['CESM1-BGC', 'CESM1-BGC'] Args: project (str): data project models (list) models to convert invert (bool): Invert the conversion (so go from ``CESM1(BGC)`` to ``CESM1-BGC``) """ project = project.upper().split('-')[0] if project in ['CMIP5', 'CORDEX']: mfile = pkg_resources.resource_filename(__name__, 'data/'+project+'_model_fix.json') with open(mfile, 'r') as f: mdict = json.loads(f.read()) if invert: mfix = {v: k for k, v in mdict.items()} else: mfix = mdict return [mfix[m] if m in mfix.keys() else m for m in models]
4,740
def rectified_linear_unit(x): """ Returns the ReLU of x, or the maximum between 0 and x.""" # TODO return np.maximum(0, X)
4,741
def register_npzd_data(vs, tracer): """ Add tracer to the NPZD data set and create node in interaction graph Tracers added are available in the npzd dynamics and is automatically included in transport equations Parameters ---------- tracer An instance of :obj:`veros.core.npzd_tracer.NPZD_tracer` to be included in biogeochemistry calculations """ if tracer.name in vs.npzd_tracers.keys(): raise ValueError('{name} has already been added to the NPZD data set'.format(name=tracer.name)) vs.npzd_tracers[tracer.name] = tracer if tracer.transport: vs.npzd_transported_tracers.append(tracer.name)
4,742
def create_save_directory(path, directory_name): """ This function makes the directory to save the data. Parameters ---------- path : string Where the the directory_name will be. directory_name : string The directory name where the plots will be save Returns ---------- succes : bool True if the directories were created successfully. """ try: if not os.path.isdir(f'{path}'): os.mkdir(f'{path}') os.mkdir(f'{path}\\{directory_name}') return True except OSError: print('Error creating directories') return False
4,743
def bwt_compress(filename): """Compress with bwt.""" with open(filename, "rb") as in_stream: with open(filename + ".bwt", "wb") as out_stream: bwt_encoded = bwt_encode(in_stream) rle_encoded = rle_encode(bwt_encoded) out_stream.write(rle_encoded) os.remove(filename)
4,744
def encode_to_filename(folder, animal, session, ftypes="processed_all"): """ :param folder: str folder for data storage :param animal: str animal name: e.g. A2A-15B-B_RT :param session: str session name: e.g. p151_session1_FP_RH :param ftype: list or str: list (or a single str) of typed files to return 'exper': .mat files 'bin_mat': binary file 'green': green fluorescence 'red': red FP 'behavior': .mat behavior file 'FP': processed dff hdf5 file if ftypes=="all" :return: returns all 5 files in a dictionary; otherwise return all file types in a dictionary, None if not found """ # TODO: enable aliasing paths = [os.path.join(folder, animal, session), os.path.join(folder, animal+'_'+session), os.path.join(folder, animal), folder] if ftypes == "raw all": ftypes = ["exper", "bin_mat", "green", "red"] elif ftypes == "processed_all": ftypes = ["processed", "green", "red", "FP"] elif isinstance(ftypes, str): ftypes = [ftypes] results = {ft: None for ft in ftypes} registers = 0 for p in paths: if os.path.exists(p): for f in os.listdir(p): opt = decode_from_filename(f) if opt is not None: ift = opt['ftype'] check_mark = opt['animal'] == animal and opt['session'] == session #print(opt['session'], animal, session) check_mark_mdl = (opt['animal'] == animal) and (opt['session'] in session) cm_mdl = (ift == 'modeling' and check_mark_mdl) # TODO: temporary hacky method for modeling #print(opt['session'], animal, session, check_mark_mdl, ift, cm_mdl) if ift in ftypes and results[ift] is None and (check_mark or cm_mdl): results[ift] = os.path.join(p, f) registers += 1 if registers == len(ftypes): return results if len(results) > 1 else results[ift] return results if len(results) > 1 else list(results.values())[0]
4,745
def _get_choices(choices: Union[str, List]) -> List[Tuple[str, str]]: """Returns list of choices, used for the ChoiceFields""" result = [('', '')] if isinstance(choices, str): result.append((choices, choices)) else: for choice in choices: result.append((choice, choice)) return result
4,746
def invalid_file(): """Create an invalid filename string.""" return "/tmp/INVALID.FILE"
4,747
def ingest_aw1c_manifest(): """ Entrypoint for CVL AW1C Manifest Ingestion workflow """ with GenomicJobController(GenomicJob.AW1C_INGEST, bucket_name=None, bucket_name_list=config.GENOMIC_CENTER_BUCKET_NAME, sub_folder_name=config.GENOMIC_CVL_AW1C_MANIFEST_SUBFOLDER) as controller: controller.run_aw1c_workflow()
4,748
def get_model(app_label, model_name): """ Fetches a Django model using the app registery. All other methods to acces models might raise an exception about registery not being ready yet. This doesn't require that an app with the given app label exists, which makes it safe to call when the registery is being populated. Raises LookupError if model isn't found """ try: return apps.get_model(app_label, model_name) except AppRegistryNotReady: if apps.apps_ready and not apps.models_ready: # if this function is called while `apps.populate()` is # loading models, ensure that the module thar defines # the target model has been imorted and try looking the # model up in the app registery. This effectiveness emulates # `from path.to.app.models import Model` where we use # `Model = get_model('app', 'Model')` instead app_config = apps.get_app_config(app_label) # `app_config.import_models()` cannot be used here because # it would interfere with `app.populate()` import_module("%s.%s" % (app_config.name, MODELS_MODULE_NAME)) # In order to account for case-insensitivity of model_name, # look up the model through a private API of the app registry. return apps.get_registered_model(app_label, model_name) else: # This must be a different case (e.g. the model really doesn't # exist). We just re-raise the exception. raise
4,749
def main(): """main""" pass
4,750
def add_title(file: '_io.TextIOWrapper', ext: str, title: str, link: str) -> None: """Add title and link of URL to the document. Format depends on file ext. @param File file: File to add to. @param str ext: File extension. @param str title: URL title. @param str link: URL link. @return: Nothing.""" title_text = title + " " if is_html(ext): title_text = "<h1>" + title_text + "<a href=\"" + link + "\">" + link + "</a></h1>" else: title_text += link title_text += "\n" file.write(title_text)
4,751
def hexdump(adr_data_tuple, output=sys.stdout): """\ Print a hex dump. :param adr: address :param memstr: memory contents (bytes/string) :param output: file like object to write to """ adr, memstr = adr_data_tuple # conversion to byte array only needed for python 2.xx as bytes would return # characters instead of ints for address, row in sixteen(adr, bytearray(memstr)): values = ' '.join('{:02x}'.format(x) for x in row) ascii = ''.join(chr(x) if (32 <= x < 128) else '.' for x in row) # pad width values += ' ' * (47 - len(values)) ascii += ' ' * (16 - len(values)) # output line, insert gap at 8 output.write('{:08x}: {} {} {} {}\n'.format( address, values[:24], values[24:], ascii[:8], ascii[8:]))
4,752
def test_main() -> None: """Should load dry (no config) and with empty config""" filename = f"tests/fixtures/temp_{NOW}" assert not os.path.isfile(filename) with patch.object(prfile, "CONFIG_FILE", filename): with patch("builtins.input", lambda user_in: "mock"): with patch.object(prfile, "run_user_prompt"): with patch.object(prfile, "RepoActions"): with pytest.raises(FileNotFoundError): prfile.main(prfile.cli_parser(MOCK_FILES)) result = prfile.main(prfile.cli_parser(VALID_FILES)) assert os.path.isfile(filename) os.remove(filename) assert result == 0
4,753
def affaires_view(request): """ Return all affaires """ # Check connected if not check_connected(request): raise exc.HTTPForbidden() query = request.dbsession.query(VAffaire).order_by(VAffaire.id.desc()).all() return Utils.serialize_many(query)
4,754
def metric_try_to_float(s: str) -> Union[float, str]: """ Try to convert input string to float value. Return float value on success or input value on failure. """ v = s try: if "%" in v: v = v[:-1] return float(v) except ValueError: return str(s)
4,755
def calculate_boot_time(pngs_dir, fps, refer_end_pic): """ 通过一系列的截图文件,计算出启动时间 :param pngs_dir: 截图所在目录 :param fps: 帧数 :param refer_end_pic: 结束位置参考图片 :return: 启动时间 """ # 找启动的开始(点击响应)、结束时间(渲染首页内容)点 pngs = os.listdir(pngs_dir) pngs.sort() start_t, end_t, boot_time = 0, 0, 0 # 找开始点,对比和第一张图的相似度 refer_start_pic = os.path.join(pngs_dir, pngs[0]) for png in pngs[1:]: dest_png = os.path.join(pngs_dir, png) factor = ssim.compute_ssim(refer_start_pic, dest_png) logging.info("%s 相似度:%f" % (png, factor)) if factor < 0.9: start_t = int(png.split('.png')[0]) break if start_t > 0: # 继续找结束点,和灰度的连续匹配两次的最后位置 third_f, second_f, first_f = 0, 0, 0 for png in pngs[start_t:]: dest_png = os.path.join(pngs_dir, png) current_f = ssim.compute_ssim(refer_end_pic, dest_png) logging.info("%s 相似度:%f" % (png, current_f)) third_f = second_f second_f = first_f first_f = current_f # TODO 这个范围根据实际的业务场景自己确定 if third_f > 0.96 and second_f > 0.96 and first_f < 0.96: end_t = int(png.split('.png')[0]) break # 有效性判断和时间计算 if start_t == 0 or end_t == 0: logging.warning("没有找到开始或者结束图片") elif end_t == len(pngs): logging.warning("结束位置错误") else: boot_time = int((end_t - start_t) * 1000 / fps) logging.info("开始位置:%d,结束位置:%d,本次启动耗时:%d毫秒", start_t, end_t, boot_time) return boot_time
4,756
def _table_difference(left: TableExpr, right: TableExpr): """ Form the table set difference of two table expressions having identical schemas. A set difference returns only the rows present in the left table that are not present in the right table Parameters ---------- left : TableExpr right : TableExpr Returns ------- difference : TableExpr """ return ops.Difference(left, right).to_expr()
4,757
def test_timerange_ispropersuperset(): """timerange_ispropersuperset(TimeRange, TimeRange) -> bool""" timerange_a = TimeRange(Time(1000), Time(2000)) timerange_b = TimeRange(Time(2500), Time(3000)) timerange_c = TimeRange(Time(2000), Time(2500)) timerange_d = TimeRange(Time(1500), Time(2500)) timerange_e = TimeRange(Time(1000), Time(2000)) timerange_f = TimeRange(Time(500), Time(1500)) timerange_g = TimeRange(Time(500), Time(1000)) timerange_h = TimeRange(Time(0), Time(500)) timerange_i = TimeRange(Time(1500), Time(2000)) timerange_j = TimeRange(Time(1200), Time(1800)) timerange_k = TimeRange(Time(1000), Time(1500)) timerange_l = TimeRange(Time(1000), Time(2500)) timerange_m = TimeRange(Time(500), Time(2500)) timerange_n = TimeRange(Time(500), Time(2000)) assert timerange_ispropersuperset(timerange_a, timerange_b) is False assert timerange_ispropersuperset(timerange_a, timerange_c) is False assert timerange_ispropersuperset(timerange_a, timerange_d) is False assert timerange_ispropersuperset(timerange_a, timerange_e) is False assert timerange_ispropersuperset(timerange_a, timerange_f) is False assert timerange_ispropersuperset(timerange_a, timerange_g) is False assert timerange_ispropersuperset(timerange_a, timerange_h) is False assert timerange_ispropersuperset(timerange_a, timerange_i) is False assert timerange_ispropersuperset(timerange_a, timerange_j) is False assert timerange_ispropersuperset(timerange_a, timerange_k) is False assert timerange_ispropersuperset(timerange_a, timerange_l) is True assert timerange_ispropersuperset(timerange_a, timerange_m) is True assert timerange_ispropersuperset(timerange_a, timerange_n) is True
4,758
def select(receivers, senders, exceptions, timeout): """ receivers - list of one element, the simulated receiver socket senders - list of one element, the simulated sender socket exceptions - empty list, the simulated sockets with exceptions ignore timeout - there is no real concurrency here """ # print 'select: recv buffers "%s", send buffers "%s", bufsize %d' % \ # (''.join(receivers[0].buffers), ''.join(senders[0].buffers), bufsize) #DEBUG inputready = receivers if len(receivers[0].buffers) > 0 else [] outputready = senders if (socket_simulator.bufsize - len(senders[0].buffers)) > 0 else [] exceptions = [] return inputready, outputready, exceptions
4,759
def _create_local_database(db_file_path): """Create a new local database""" conn = sql.connect(db_file_path) cur = conn.cursor() table = str('CREATE TABLE config (' 'ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,' 'Name TEXT UNIQUE NOT NULL,' 'Value TEXT);') cur.execute(table) if conn: conn.close()
4,760
def parse_args(): """ It parses the command-line arguments. Parameters ---------- args : list[str] List of command-line arguments to parse Returns ------- parsed_args : argparse.Namespace It contains the command-line arguments that are supplied by the user """ parser = ap.ArgumentParser(description="Encoding algorithm.") parser.add_argument("docking_program", type=str, help="Path to folder containing the PDB files.") parser.add_argument("output", type=str, help="Path to the output file.") parser.add_argument("-c","--n_proc", type=int, help='Number of processor.', default = 1) parser.add_argument("--chain", type=str, help='Chain ID from the ligand protein.', default = 'B') parser.add_argument("--score", type=str, help='Path to normalized scoring file to add in the ' + 'encoding.') parsed_args = parser.parse_args() return parsed_args
4,761
def parse_row(row, entity_dict, span_capture_list, previous_entity): """ updates the entity dict and span capture list based on row contents """ bio_tag, entity = parse_tag(row.tag) if bio_tag == 'B': # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) # start collecting new entity span_capture_list = [row.word] previous_entity = entity elif bio_tag == 'I': # continue collecting entity span_capture_list.append(row.word) else: # update with previous entity, if applicable entity_dict, span_capture_list, previous_entity = update_entity_dict(entity_dict, span_capture_list, previous_entity) previous_entity = None return entity_dict, span_capture_list, previous_entity
4,762
def _is_fn_init( tokens: list[Token] | Token, errors_handler: ErrorsHandler, path: str, namehandler: NameHandler, i: int = 0 ): """ "fn" <fn-name> "("<arg>*")" (":" <returned-type>)? <code-body>""" tokens = extract_tokens_with_code_body(tokens, i) if tokens is None or not is_kw(tokens[0], 'fn'): return False has_type_annotation = len(tokens) >= 4 and is_op(tokens[3], '->') if len(tokens) < 4 or not is_base_name(tokens[1]) or tokens[2].type != TokenTypes.PARENTHESIS \ or not _is_code_body(tokens[-1]) or ( has_type_annotation and not _is_type_expression(tokens[:-1], errors_handler, path, namehandler, 4) ) or (not has_type_annotation and len(tokens) != 4): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', tokens[-1], fill=True ) return False args_tokens = tokens[2].value if args_tokens: if args_tokens[0].type == TokenTypes.TUPLE: has_default_argument = False for arg_tokens in args_tokens[0].value: if not arg_tokens: break if not _is_setvalue_expression(arg_tokens, errors_handler, path, namehandler, init_type='let'): errors_handler.final_push_segment( path, 'SyntaxError: invalid syntax', arg_tokens[0], fill=True ) return False if DummyToken(TokenTypes.OP, '=') in arg_tokens: has_default_argument = True elif has_default_argument: errors_handler.final_push_segment( path, 'SyntaxError: non-default argument follows default argument', arg_tokens[0], fill=True ) return False elif not _is_setvalue_expression(args_tokens, errors_handler, path, namehandler, init_type='let'): return False return True
4,763
def _toggle_options(event, params): """Toggle options (projectors) dialog""" import matplotlib.pyplot as plt if len(params['projs']) > 0: if params['fig_opts'] is None: _draw_proj_checkbox(event, params, draw_current_state=False) else: # turn off options dialog plt.close(params['fig_opts']) del params['proj_checks'] params['fig_opts'] = None
4,764
async def http_connect(address: str, port: int) -> HttpConnection: """Open connection to a remote host.""" loop = asyncio.get_event_loop() _, connection = await loop.create_connection(HttpConnection, address, port) return cast(HttpConnection, connection)
4,765
def internal_copied_filegroup(name, srcs, strip_prefix, dest, **kwargs): """Macro to copy files to a different directory and then create a filegroup. This is used by the //:protobuf_python py_proto_library target to work around an issue caused by Python source files that are part of the same Python package being in separate directories. Args: srcs: The source files to copy and add to the filegroup. strip_prefix: Path to the root of the files to copy. dest: The directory to copy the source files into. **kwargs: extra arguments that will be passesd to the filegroup. """ outs = [_RelativeOutputPath(s, strip_prefix, dest) for s in srcs] native.genrule( name = name + "_genrule", srcs = srcs, outs = outs, cmd = " && ".join( ["cp $(location %s) $(location %s)" % (s, _RelativeOutputPath(s, strip_prefix, dest)) for s in srcs]), ) native.filegroup( name = name, srcs = outs, **kwargs)
4,766
def debug(debug_on=True): """Turn debugging of DICOM file reading and writing on or off. When debugging is on, file location and details about the elements read at that location are logged to the 'pydicom' logger using python's logging module. :param debug_on: True (default) to turn on debugging, False to turn off. """ global logger, debugging if debug_on: logger.setLevel(logging.DEBUG) debugging = True else: logger.setLevel(logging.WARNING) debugging = False
4,767
async def run(): """Run the monitoring.""" set_log_levels( logger="info", logger_pyinsteon="info", logger_messages="info", logger_topics=True, ) # await async_connect(host=HOST, username=USERNAME, password=PASSWORD) await async_connect(device=DEVICE) devices.subscribe(device_added) await devices.async_load(workdir=PATH, id_devices=0) await devices.async_save(workdir=PATH) address = "453194" device = devices[address] if device: await device.async_read_op_flags() await device.async_read_ext_properties() _LOGGER.info( "LED_BLINK_ON_TX_ON: %s", device.operating_flags[MOMENTARY_ON_OFF_TRIGGER].value, ) device.operating_flags[MOMENTARY_ON_OFF_TRIGGER].new_value = True await device.async_write_op_flags() await device.async_write_ext_properties() await device.async_read_op_flags() await device.async_read_ext_properties() _LOGGER.info( "LED_BLINK_ON_TX_ON: %s", device.operating_flags[MOMENTARY_ON_OFF_TRIGGER].value, ) else: _LOGGER.info("No device found for address: %s", address) await devices.async_save(workdir=PATH) await async_close()
4,768
def make_parallel_transformer_config() -> t5_architecture.EncoderDecoder: """Returns an EncoderDecoder with parallel=True.""" dtype = jnp.bfloat16 num_attn_heads = 8 make_dropout = lambda: nn.Dropout(rate=0.1, broadcast_dims=(-2,)) make_layer_norm = layer_norm.T5LayerNorm def _make_encoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.EncoderLayer( attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_decoder_layer(shared_relative_position_bias): assert shared_relative_position_bias is None return t5_architecture.DecoderLayer( self_attention=make_attention1(num_attn_heads, dtype), encoder_decoder_attention=make_attention1(num_attn_heads, dtype), mlp=make_mlp1(dtype), dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, relative_position_bias_factory=( lambda: _make_relative_position_bias(num_attn_heads, dtype)), parallel=True, ) def _make_encoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Encoder( num_layers=3, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_encoder_layer, input_dropout_factory=make_dropout, output_dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, dtype=dtype, ) def _make_decoder(shared_token_embedder): assert shared_token_embedder is None return t5_architecture.Decoder( num_layers=2, token_embedder_factory=lambda: make_token_emb1(2_000, dtype), layer_factory=_make_decoder_layer, dropout_factory=make_dropout, layer_norm_factory=make_layer_norm, output_logits_factory=None, dtype=dtype, ) return t5_architecture.EncoderDecoder( shared_token_embedder_factory=lambda: None, encoder_factory=_make_encoder, decoder_factory=_make_decoder, )
4,769
def commands(): """ Serve models on RedisAI. To serve a model associated with a run on a tracking server, set the MLFLOW_TRACKING_URI environment variable to the URL of the desired server. """ pass
4,770
def get_device_mapping(embedding_sizes, num_gpus, data_parallel_bottom_mlp, experimental_columnwise_split, num_numerical_features): """Get device mappings for hybrid parallelism Bottom MLP running on device 0. Embeddings will be distributed across among all the devices. Optimal solution for partitioning set of N embedding tables into K devices to minimize maximal subset sum is an NP-hard problem. Additionally, embedding tables distribution should be nearly uniform due to the performance constraints. Therefore, suboptimal greedy approach with max bucket size is used. Args: embedding_sizes (Sequence[int]): embedding tables sizes num_gpus (int): Default 8. Returns: device_mapping (dict): """ if num_numerical_features == 0: bottom_mlp_ranks = [] elif data_parallel_bottom_mlp: bottom_mlp_ranks = list(range(num_gpus)) else: bottom_mlp_ranks = [0] if experimental_columnwise_split: gpu_buckets = num_gpus * [list(range(len(embedding_sizes)))] vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if num_numerical_features > 0: vectors_per_gpu[0] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu) if num_gpus > 4 and not data_parallel_bottom_mlp and num_numerical_features > 0: # for higher no. of GPUs, make sure the one with bottom mlp has no embeddings gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus - 1) # leave one device out for the bottom MLP gpu_buckets.insert(0, []) else: gpu_buckets = distribute_to_buckets(embedding_sizes, num_gpus) vectors_per_gpu = [len(bucket) for bucket in gpu_buckets] if not data_parallel_bottom_mlp: for rank in bottom_mlp_ranks: vectors_per_gpu[rank] += 1 # count bottom mlp return MultiGpuMetadata(bottom_mlp_ranks=bottom_mlp_ranks, rank_to_categorical_ids=gpu_buckets, rank_to_feature_count=vectors_per_gpu)
4,771
def _generate_relative_positions_embeddings(length, depth, max_relative_position, name): """Generates tensor of size [length, length, depth].""" with tf.variable_scope(name): relative_positions_matrix = _generate_relative_positions_matrix( length, max_relative_position) vocab_size = max_relative_position * 2 + 1 # Generates embedding for each relative position of dimension depth. embeddings_table = tf.get_variable("embeddings", [vocab_size, depth]) embeddings = tf.gather(embeddings_table, relative_positions_matrix) return embeddings
4,772
def annotation(): """Annotation file utilities."""
4,773
def continTapDetector( fs: int, x=[], y=[], z=[], side='right', ): """ Detect the moments of finger-raising and -lowering during a fingertapping task. Function detects the axis with most variation and then first detects several large/small pos/neg peaks, then the function determines sample-wise in which part of a movement or tap the acc-timeseries is, and defines the exact moments of finger-raising, finger-lowering, and the in between stopping moments. Input: - x, y, z (arr): all three one-dimensional data- arrays containing one acc-axis each. Exact labeling x/y/z is not important. Should have equal lengths. Typically timeseries from one run. - fs (int): corresponding sample frequency - side (string): side where acc-data origin from Return: - tapTimes (list of lists): each list contains 4 timestamps (in seconds from array-start) indicating moments of: [finger-raise start, finger raise end, finger-lowering start, finger-lowering end] - moveTimes, restTimes: idem but then for 'other movements' and rest periods (of > 1 sec), each list contains the first and last timestamp of move/rest period. """ # input sanity checks if x != [] and y != []: assert len(x) == len(y), f'Arrays X and Y should' ' have equal lengths' if x != [] and z != []: assert len(x) == len(z), f'Arrays X and Z should' ' have equal lengths' if z != [] and y != []: assert len(y) == len(z), f'Arrays X and Z should' ' have equal lengths' assert side in ['left', 'right'], f'Side should be ' 'left or right' ax_arrs = [] for ax in [x, y, z]: if ax != []: ax_arrs.append(ax) # Find axis with most variation maxVar = np.argmax([variation(arr) for arr in ax_arrs]) # maxRMS = np.argmax([sum(arr) for arr in ax_arrays]) sig = ax_arrs[maxVar] # acc-signal to use # check data for pos/neg and order of magn sig = check_PosNeg_and_Order(sig, fs) # add differential of signal sigdf = np.diff(sig) # timestamps from start (in sec) timeStamps = np.arange(0, len(sig), 1 / fs) # Thresholds for movement detection posThr = np.mean(sig) negThr = -np.mean(sig) # Find peaks to help movement detection peaksettings = { 'peak_dist': 0.1, 'cutoff_time': .25, } # find relevant positive peaks posPeaks = find_peaks( sig, height=(posThr, np.max(sig)), distance=fs * .05, # settings[task]['peak_dist'] )[0] # select Pos-peaks with surrounding >> Pos and Neg Diff endPeaks = [np.logical_or( any(sigdf[i -3:i + 3] < np.percentile(sig, 10)), any(sigdf[i -3:i + 3] > np.percentile(sig, 90)) ) for i in posPeaks] endPeaks = posPeaks[endPeaks] # delete endPeaks from posPeaks for i in endPeaks: idel = np.where(posPeaks == i) posPeaks = np.delete(posPeaks, idel) # delete endPeaks which are too close after each other # by starting with std False before np.diff, the diff- # scores represent the distance to the previous peak tooclose = endPeaks[np.append( np.array(False), np.diff(endPeaks) < (fs / 6))] for p in tooclose: i = np.where(endPeaks == p) endPeaks = np.delete(endPeaks, i) posPeaks = np.append(posPeaks, p) # double check endPeaks with np.diff hop = 3 endP2 = [] for n in np.arange(hop, sig.shape[0]): if np.logical_and( any(np.diff(sig)[n - hop:n] > np.percentile(sig, 90)), any(np.diff(sig)[n- hop:n] < np.percentile(sig, 10)) ): # if diff is above extremes within hop-distance endP2.append(n) endP2 = list(compress(endP2, np.diff(endP2) > hop)) for p2 in endP2: # add to endPeaks if not containing if min(abs(p2 - endPeaks)) > 5: endPeaks = np.append(endPeaks, p2) smallNeg = find_peaks( -1 * sig, # convert pos/neg for negative peaks height=(-.5e-7, abs(np.min(sig)) * .5), distance=fs * peaksettings['peak_dist'] * .5, prominence=abs(np.min(sig)) * .05, # wlen=40, )[0] # largeNeg = find_peaks( # -1 * sig, # height=abs(np.min(sig)) * .4, # # first value is min, second is max # distance=fs * peaksettings['peak_dist'], # # prominence=np.min(yEpoch) * .1, # # wlen=40, # )[0] # Lists to store collected indices and timestamps tapi = [] # list to store indices of tap movei = [] # list to store indices of other move resti = [] # list to store indices of rest resttemp = [] # temp-list to collect rest-indices [1st, Last] starttemp = [np.nan] * 6 # for during detection process # [startUP, fastestUp, stopUP, # startDown, fastestDown, stopDown] tempi = starttemp.copy() # to start process state = 'lowRest' # Sample-wise movement detection for n, y in enumerate(sig[:-1]): if state == 'otherMov': # PM LEAVE OUT OTHER-MOV-STATE if n in endPeaks: # during other Move: end Tap tempi[-1] = n # finish and store index list if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) # save if long enough state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue try: next10 = sum([negThr < Y < posThr for Y in sig[range(n, n + int(fs * .2) )]]) if next10 > (fs * .2) * .8: # End 'other move' if 8 / 10 next samples are inactive tempi[-1] = n # END of OTHER MOVE if (tempi[-1] - tempi[0]) > fs * .1: movei.append(tempi) tempi = starttemp.copy() # after end: start lowRest state = 'lowRest' except IndexError: # prevent indexerror out of range for next10 # print('end of timeseries') continue elif state == 'lowRest': if np.logical_and( y > posThr, # if value is over pos-threshold sigdf[n] > np.percentile(sigdf, 75) # AND diff is over Thr # any([Y in posPeaks for Y in range(n, n + int(fs * .2))]) # USED IN PAUSED ): if resttemp: # close and store active rest period resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='upAcc1' tempi[0] = n # START TIME Tap-UP # print('save start UP', n) # elif np.logical_or( # np.logical_or(n in posPeaks, n in smallNeg[0]), # ~ (negThr < y < posThr) # ): # if resttemp: # close and store active rest period # resttemp.append(n) # Add second and last rest-ind # if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec # resti.append(resttemp) # add finished rest-indices # resttemp = [] # reset resttemp list # state = 'otherMov' # tempi.append(n) # START TIME Othermovement elif n in endPeaks: # during lowRest, endPeak found resttemp.append(n) # Add second and last rest-ind if (resttemp[1] - resttemp[0]) > fs: # if rest > 1 sec resti.append(resttemp) # add finished rest-indices resttemp = [] # reset resttemp list state='lowRest' tempi = starttemp.copy() # after end: start lowRest continue else: # lowRest stays lowRest if not resttemp: # if rest-temp list is empty resttemp.append(n) # start of rest period elif state == 'upAcc1': if n in posPeaks: state='upAcc2' # acc getting less, veloc still increasing # print('acc-peakUP detected', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upAcc2': if y < 0: # crossing zero-line, start of decelleration tempi[1] = n # save n as FASTEST MOMENT UP state='upDec1' # print('fastest point UP', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state=='upDec1': if n in smallNeg: state='upDec2' elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'upDec2': if np.logical_or(y > 0, sigdf[n] < 0): # if acc is pos, or goes into acceleration # phase of down movement state='highRest' # end of UP-decell tempi[2]= n # END OF UP !!! elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found elif state == 'highRest': if np.logical_and( y < negThr, sigdf[n] < 0 #np.percentile(sigdf, 25) # from highRest: LOWERING starts when acc # gets below negative-threshold AND when # differential is negative ): state='downAcc1' tempi[3] = n # START OF LOWERING # print('LOWERING START', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif state == 'downAcc1': # if n in largeNeg[0]: # state='downAcc2' # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added # elif state == 'downAcc2': elif state == 'downAcc1': if np.logical_and( y > 0, sigdf[n] > 0 ): # if acceleration gets positive again and keeps # one increasing (sigdf) downwards acceleration # is finished -> ADD FASTEST DOWNW MOMENT state='downDec1' tempi[4] = n # print('fastest DOWN @', n) elif n in endPeaks: state = 'downDec2' # emergency out if endPeak is found # elif n - tempi[2] > (fs * peaksettings[task]['cutoff_time']): # # if down-move takes > defined cutoff time # state = 'otherMov' # reset to start-state # movei.append(tempi) # newly added # tempi = [] # newly added elif state == 'downDec1': if n in endPeaks: state = 'downDec2' elif state=='downDec2': if np.logical_or( y < 0, sigdf[n] < 0 ): # after large pos-peak, before around impact # artefectual peaks state='lowRest' tempi[5] = n # store current indices tapi.append(tempi) tempi = starttemp.copy() # restart w/ 6*nan # drop first tap due to starting time tapi = tapi[1:] # convert detected indices-lists into timestamps tapTimes = [] # list to store timeStamps of tap # moveTimes = [] # alternative list for movements # restTimes = [] # list to sore rest-timestamps for tap in tapi: tapTimes.append( [timeStamps[I] for I in tap if I is not np.nan] ) # for tap in movei: moveTimes.append(timeStamps[tap]) # for tap in resti: restTimes.append(timeStamps[tap]) return tapi, tapTimes, endPeaks
4,774
def parallelize(df, func): """ Split data into max core partitions and execute func in parallel. https://www.machinelearningplus.com/python/parallel-processing-python/ Parameters ---------- df : pandas Dataframe func : any functions Returns ------- data : pandas Dataframe Returned dataframe of func. """ cores = cpu_count() data_split = np.array_split(df, cores) pool = Pool(cores) data = pd.concat(pool.map(func, data_split), ignore_index=1) pool.close() pool.join() return data
4,775
def get_functional_groups(alkoxy_mol): """ given a molecule object `alkoxy_mol`. This method returns a dictionary of groups used in the Vereecken SAR with the key being the group and the value being the number of occurances it has. """ #print 'getting groups from {}'.format(alkoxy_mol.toSMILES()) alkoxy_mol.assignAtomIDs() labeled_atoms = alkoxy_mol.getLabeledAtoms() assert labeled_atoms['*1'].symbol == 'C' assert labeled_atoms['*3'].symbol == 'C', alkoxy_mol.toAdjacencyList() + str(labeled_atoms) alpha_groups = get_atom_groups(labeled_atoms['*1']) beta_groups = get_atom_groups(labeled_atoms['*3']) # find cyclic groups here (after project finished) all_groups = {} for label, num in alpha_groups.items(): all_groups['alpha{}'.format(label)] = num for label, num in beta_groups.items(): all_groups['beta{}'.format(label)] = num return all_groups
4,776
def rough(material, coverage, scale, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=True, bf=True, xtraParams=defaultXtraParams): """rough(material, coverage, scale, det, [e0=20.0], [withPoisson=True], [nTraj=defaultNumTraj], [dose = 120.0], [sf=True], [bf=True], [xtraParams={}]) Monte Carlo simulate a spectrum from a rough surface with roughness modeled as square pillars of the specified scale and fractional coverage. The features are also offset by a randomized x,y offset of size approximately scale to ensure that the beam doesn't always strike at the same sort of a position. + material - Composition of material + coverage of pillars on surface (0.0 to 1.0 -> 0% to 100%) + scale - height and width of pillars + depth - Depth of trough""" tmp = u"MC simulation of a %0.2lg um %d%% coverage rough surface of %s at %0.1f keV%s%s" % (1.0e6 * scale, int(100.0 * coverage), material, e0, (" + CSF" if sf else ""), (" + BSF" if bf else "")) return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildRough, { "Scale" : scale, "Coverage" : coverage, "Size" : 1.0e-5, "Material" : material }, xtraParams)
4,777
def test_string_with_correct_type(): """String type""" assert val.is_string('test', desc='test') == 'test'
4,778
def jsonify(comment_lower: str) -> str: """pyNastran: SPOINT={'id':10, 'xyz':[10.,10.,10.]}""" sline = comment_lower.split('=') rhs = sline[1].rstrip() return rhs.replace("'", '"').replace('}', ',}').replace(',,}', ',}')
4,779
def set_attributes_polling(test_case, device_proxy, device_server, poll_periods): """Set attribute polling and restore after test Parameters ---------- test_case : unittest.TestCase instance device_proxy : tango.DeviceProxy instance device_server : tango.Device instance The instance of the device class `device_proxy` is talking to poll_periods : dict {"attribute_name" : poll_period} `poll_poriod` in milliseconds as per Tango APIs, 0 or falsy to disable polling. Return value ------------ restore_polling : function This function can be used to restore polling if it is to happen before the end of the test. Should be idempotent if only one set_attributes_polling() is called per test. """ # TODO (NM 2016-04-11) check if this is still needed after upgrade to Tango 9.x For # some reason it only works if the device_proxy is used to set polling, but the # device_server is used to clear the polling. If polling is cleared using device_proxy # it seem to be impossible to restore the polling afterwards. attributes = poll_periods.keys() initial_polling = { attr: device_proxy.get_attribute_poll_period(attr) for attr in attributes } retry_time = 0.5 for attr in attributes: initial_period = initial_polling[attr] new_period = poll_periods[attr] # Disable polling for attributes with poll_period of zero / falsy # zero initial_period implies no polling currently configed if not new_period and initial_period != 0: LOGGER.debug("not setting polling for {}".format(attr)) device_server.stop_poll_attribute(attr) else: # Set the polling LOGGER.debug("setting polling for {}".format(attr)) try: device_proxy.poll_attribute(attr, new_period) # TODO See (NM 2016-04-11) comment below about back-to-back calls time.sleep(0.05) except Exception: retry = True LOGGER.warning( "Setting polling of attribute {} in {} due to unhandled" "exception in poll_attribute command".format(attr, retry_time), exc_info=True, ) else: retry = False if retry: time.sleep(retry_time) device_proxy.poll_attribute(attr, new_period) def restore_polling(): """Restore initial polling, for use during cleanup / teardown""" for attr, period in initial_polling.items(): if period == 0: continue # zero period implies no polling, nothing to do try: device_proxy.poll_attribute(attr, period) # TODO (NM 2016-04-11) For some reason Tango doesn't seem to handle # back-to-back calls, and even with the sleep it sometimes goes bad. Need # to check if this is fixed (and core dumps) when we upgrade to Tango 9.x time.sleep(0.05) except Exception: retry = True LOGGER.warning( "retrying restore of attribute {} in {} due to unhandled" "exception in poll_attribute command".format(attr, retry_time), exc_info=True, ) else: retry = False if retry: time.sleep(retry_time) device_proxy.poll_attribute(attr, period) test_case.addCleanup(restore_polling) return restore_polling
4,780
def test_process_covid_csv_data() -> None: """Checks function test_process_covid_csv_data calculates correct data from set file nation_2021-10-28.csv""" last7days_cases , current_hospital_cases , total_deaths = \ process_covid_csv_data ( parse_csv_data ( 'nation_2021-10-28.csv' ) ) assert last7days_cases == 240_299 assert current_hospital_cases == 7_019 assert total_deaths == 141_544
4,781
def get_available_engine( fp16: bool = False, ddp: bool = False, amp: bool = False, apex: bool = False ) -> "IEngine": """Returns available engine based on given arguments. Args: fp16 (bool): option to use fp16 for training. Default is `False`. ddp (bool): option to use DDP for training. Default is `False`. amp (bool): option to use APEX for training. Default is `False`. apex (bool): option to use APEX for training. Default is `False`. Returns: IEngine which match requirements. """ from catalyst.engines.torch import ( DataParallelEngine, DeviceEngine, DistributedDataParallelEngine, ) if fp16 and not amp and not apex: amp = SETTINGS.amp_required or (SETTINGS.amp_required and SETTINGS.apex_required) apex = SETTINGS.apex_required and (not SETTINGS.amp_required) if amp: assert ( SETTINGS.amp_required ), "catalyst[amp] is not available, to install it, run `pip install catalyst[amp]`." assert not apex, "Could not use both apex and amp engines" from catalyst.engines.amp import ( AMPEngine, DataParallelAMPEngine, DistributedDataParallelAMPEngine, ) if apex: assert ( SETTINGS.apex_required ), "catalyst[apex] is not available, to install it, run `pip install catalyst[apex]`." assert not amp, "Could not use both apex and amp engines" from catalyst.engines.apex import ( APEXEngine, DataParallelAPEXEngine, DistributedDataParallelAPEXEngine, ) is_multiple_gpus = NUM_CUDA_DEVICES > 1 if not IS_CUDA_AVAILABLE: return DeviceEngine("cpu") elif is_multiple_gpus: if ddp: if amp: return DistributedDataParallelAMPEngine() elif apex: return DistributedDataParallelAPEXEngine() else: return DistributedDataParallelEngine() else: if amp: return DataParallelAMPEngine() elif apex: return DataParallelAPEXEngine() else: return DataParallelEngine() else: if amp: return AMPEngine() elif apex: return APEXEngine() else: return DeviceEngine("cuda")
4,782
def disk_usage(pathname): """Return disk usage statistics for the given path""" ### Return tuple with the attributes total,used,free in bytes. ### usage(total=118013599744, used=63686647808, free=48352747520) return shutil.disk_usage(pathname)
4,783
def get_default_log_config(): """Get the default logging configuration. Returns: dict: The default logging configuration. """ root = os.path.dirname(__file__) config_file = os.path.join(root, "logging.yaml") with open(config_file, "r") as file_object: data = yaml.load(file_object, yaml.FullLoader) return data["logging"]
4,784
def create_new_deployment( runner: Runner, deployment_arg: str, expose: PortMapping, add_custom_nameserver: bool ) -> Tuple[str, str]: """ Create a new Deployment, return its name and Kubernetes label. """ span = runner.span() run_id = runner.session_id runner.show( "Starting network proxy to cluster using " "new Deployment {}".format(deployment_arg) ) def remove_existing_deployment(quiet=False): if not quiet: runner.show("Cleaning up Deployment {}".format(deployment_arg)) runner.check_call( runner.kubectl( "delete", "--ignore-not-found", "svc,deploy", "--selector=telepresence=" + run_id, ) ) runner.add_cleanup("Delete new deployment", remove_existing_deployment) remove_existing_deployment(quiet=True) command = [ "run", # This will result in using Deployment: "--restart=Always", "--limits=cpu=100m,memory=256Mi", "--requests=cpu=25m,memory=64Mi", deployment_arg, "--image=" + get_image_name(expose), "--labels=telepresence=" + run_id, ] # Provide a stable argument ordering. Reverse it because that happens to # make some current tests happy but in the long run that's totally # arbitrary and doesn't need to be maintained. See issue 494. for port in sorted(expose.remote(), reverse=True): command.append("--port={}".format(port)) if expose.remote(): command.append("--expose") # If we're on local VM we need to use different nameserver to prevent # infinite loops caused by sshuttle: if add_custom_nameserver: command.append( "--env=TELEPRESENCE_NAMESERVER=" + get_alternate_nameserver() ) try: runner.check_call(runner.kubectl(command)) except CalledProcessError as exc: raise runner.fail( "Failed to create deployment {}:\n{}".format( deployment_arg, exc.stderr ) ) span.end() return deployment_arg, run_id
4,785
def score_latency( references, reference_wavs, partial_translations, target_language="en-US" ): """Measures the "final" translation lag after all corrections have been made.""" logger = logging.getLogger("evaluation") tokenizer = get_tokenizer(target_language) min_len = min(len(partial_translations), len(references)) if len(partial_translations) != len(references): logger.warning( f"Found {len(references)} references, {len(partial_translations)} partial " + f"translations. Evaluating only the first {min_len}" ) partial_translations = partial_translations[:min_len] references = references[:min_len] # Make case insensitive and tokenize partial_translations_tokenized = [ [(t_time, tokenizer.tokenize(t.upper())) for t_time, t in transcript] for transcript in partial_translations ] references = [tokenizer.tokenize(r.upper()) for r in references] # Compute total lag output_words, total_lag = 0, 0 for reference, (_, reference_wav), partial_translation in zip( references, reference_wavs, partial_translations_tokenized ): if len(partial_translation) == 0: continue final_time, final_translation = partial_translation[-1] reference_duration = get_duration_seconds(reference_wav) for j in range(1, len(final_translation) + 1): # Compare a time a word was finalized in the output # to the time its corresponding word was uttered finalization_time = get_finalization_time( final_translation, j, partial_translation ) original_token = int(j * len(reference) / len(final_translation)) original_time = get_token_time( original_token, reference, reference_duration ) total_lag += max(0, finalization_time - original_time) output_words += 1 return total_lag / max(1, output_words)
4,786
def stack_analysis_benchmark(queue, threads, stack_analysis, thread_count, python_payload, maven_payload, npm_payload): """Stack analysis benchmark.""" # TODO: read automagically from the filelist manifests = ( ("maven", "clojure_1_6_0.xml"), ("maven", "clojure_1_7_0.xml"), ("maven", "clojure_1_8_0.xml"), ("maven", "clojure_junit.xml"), ("pypi", "click_6_star.txt"), ("pypi", "array_split.txt"), ("pypi", "fastlog_urllib_requests.txt"), ("pypi", "requests_latest.txt"), ("pypi", "numpy_latest.txt"), ("pypi", "flask_latest.txt"), ("pypi", "scipy_latest.txt"), ("pypi", "pygame_latest.txt"), ("pypi", "pyglet_latest.txt"), ("pypi", "dash_latest.txt"), ("pypi", "pudb_latest.txt"), ("pypi", "pytest_latest.txt"), ("pypi", "numpy_1_11_0.txt"), ("pypi", "numpy_1_12_0.txt"), ("pypi", "numpy_1_16_2.txt"), ("pypi", "numpy_1_16_3.txt"), ("pypi", "numpy_scipy.txt"), ("pypi", "pytest_2_0_0.txt"), ("pypi", "pytest_2_0_1.txt"), ("pypi", "pytest_3_2_2.txt"), ("pypi", "requests_2_20_0.txt"), ("pypi", "requests_2_20_1.txt"), ("pypi", "requests_2_21_0.txt"), ("pypi", "scipy_1_1_0.txt"), ("pypi", "scipy_1_2_0.txt"), ("pypi", "scipy_1_2_1.txt"), ("npm", "array.json"), ("npm", "dependency_array.json"), ("npm", "dependency_emitter_component.json"), ("npm", "dependency_jquery.json"), ("npm", "dependency_jquery_react.json"), ("npm", "dependency_lodash.json"), ("npm", "dependency_lodash_react_jquery.json"), ("npm", "dependency_react.json"), ("npm", "dependency_to_function.json"), ("npm", "dependency_to_function_vue_array.json"), ("npm", "dependency_underscore.json"), ("npm", "dependency_underscore_react_jquery.json"), ("npm", "dependency_vue.json"), ("npm", "dependency_vue_to_function.json"), ("npm", "empty.json"), ("npm", "jquery.json"), ("npm", "lodash.json"), ("npm", "mocha.json"), ("npm", "no_requirements.json"), ("npm", "underscore.json"), ("npm", "wisp.json"), ) for t in range(thread_count): manifest_idx = randint(0, len(manifests) - 1) manifest = manifests[manifest_idx] with log.indent(): log.info("Stack analysis") ecosystem = manifest[0] manifest_file = manifest[1] t = Thread(target=stack_analysis.start, args=(t, ecosystem, manifest_file, queue)) t.start() threads.append(t)
4,787
def shapelet_with_w_term( coords, frequency, coeffs, beta, delta_lm, lm, dtype=np.complex128 ): """ shapelet: outputs visibilities corresponding to that of a shapelet Inputs: coords: coordinates in (u,v) space with shape (nrow, 3) frequency: frequency values with shape (nchan,) coeffs: shapelet coefficients with shape, where coeffs[3, 4] = coeffs_l[3] * coeffs_m[4] (nsrc, nmax1, nmax2) beta: characteristic shapelet size with shape (nsrc, 2) delta_l: pixel size in l dim delta_m: pixel size in m dim lm: source center coordinates of shape (nsource, 2) Returns: out_shapelets: Shapelet with shape (nrow, nchan, nsrc) """ nrow = coords.shape[0] nsrc = coeffs.shape[0] nchan = frequency.shape[0] out_shapelets = np.empty((nrow, nchan, nsrc), dtype=np.complex128) delta_l, delta_m = delta_lm for row in range(nrow): u, v, w = coords[row, :] for chan in range(nchan): fu = u * 2 * np.pi * frequency[chan] / lightspeed fv = v * 2 * np.pi * frequency[chan] / lightspeed for src in range(nsrc): nmax1, nmax2 = coeffs[src, :, :].shape beta_u, beta_v = beta[src, :] l, m = lm[src, :] if beta_u == 0 or beta_v == 0: out_shapelets[row, chan, src] = 1 continue tmp_shapelet = 0 + 0j for n1 in range(nmax1): for n2 in range(nmax2): tmp_shapelet += ( 0 if coeffs[src][n1, n2] == 0 else coeffs[src][n1, n2] * basis_function( n1, fu, beta_u, True, delta_x=delta_l ) * basis_function( n2, fv, beta_v, True, delta_x=delta_m ) ) w_term = phase_steer_and_w_correct( (u, v, w), (l, m), frequency[chan] ) out_shapelets[row, chan, src] = tmp_shapelet * w_term return out_shapelets
4,788
async def mocktext(ctx, *texts): """Converts input into a mocking sentence""" sentence = " ".join(texts[:]) sentence.lower() msg = "".join(choice((str.upper, str.lower))(c) for c in sentence) await ctx.send(msg)
4,789
def test_person__DeletePersonForm__2(person_data, browser): """`DeletePersonForm` can be cancelled.""" browser.login('editor') browser.open(browser.PERSON_DELETE_URL) browser.getControl('No, cancel').click() assert 'Deletion canceled.' == browser.message assert browser.PERSON_EDIT_URL == browser.url
4,790
def renderLayerPostProcess(q=1,ki=1,sn="string"): """ http://help.autodesk.com/cloudhelp/2019/ENU/Maya-Tech-Docs/CommandsPython/renderLayerPostProcess.html ----------------------------------------- renderLayerPostProcess is NOT undoable, queryable, and NOT editable. Post process the results when rendering is done with. Presently this generates a layered PSD file using individual iff files. ----------------------------------------- Return Value: None In query mode, return type is based on queried flag. ----------------------------------------- Flags: ----------------------------------------- ki : keepImages [boolean] ['query'] When set to on, the original iff images are kept after the conversion to PSD. Default is to remove them. ----------------------------------------- sn : sceneName [string] Specifies the scene name for interactive batch rendering. """
4,791
def CylindricalVectorsToCartesian(coordinates, data): """ Project the supplied cylindrical coordinates (r-phi-z) vectors to 3D Cartesian (x-y-z). coordinates must be in Cartesian. """ if optimise.DebuggingEnabled(): assert(len(coordinates) == len(data)) for i, coord in enumerate(coordinates): assert(len(coord) == 3) assert(len(data[i]) == 3) newData = numpy.empty((len(data), 3)) for i, coord in enumerate(coordinates): datum = data[i] rMag = L2Norm(coord[:2]) x = [coord[0] / rMag, -coord[1] / rMag] y = [-x[1], x[0]] newData[i, :] = [datum[0] * x[0] + datum[1] * x[1], datum[0] * y[0] + datum[1] * y[1], datum[2]] return newData
4,792
def _entropy_counter2(arr): """ calculate the base 2 entropy of the distribution given in `arr` using a `Counter` and the `values` method (for python3) """ arr_len = len(arr) if arr_len == 0: return 0 log_arr_len = np.log2(len(arr)) return -sum(val * (np.log2(val) - log_arr_len) for val in Counter(arr).values()) / arr_len
4,793
def update_deleted_strain(_, strain_to_del): """Update ``deleted-strain`` var. This happens after a user clicks the OK btn in the confirm strain deletion modal. We also delete the files associated with the strain at this step. :param _: User clicked the OK btn :param strain_to_del: Strain corresponding to del btn user clicked :type strain_to_del: str """ remove(path.join(USER_DATA_DIR, strain_to_del + ".gvf")) rmtree(path.join(USER_SURVEILLANCE_REPORTS_DIR, strain_to_del)) return strain_to_del
4,794
def get_changes_between_models(model1, model2, excludes=None): """ Return a dict of differences between two model instances """ if excludes is None: excludes = [] changes = {} for field in model1._meta.fields: if (isinstance(field, (fields.AutoField, fields.related.RelatedField)) or field.name in excludes): continue if field.value_from_object(model1) != field.value_from_object(model2): changes[field.verbose_name] = (field.value_from_object(model1), field.value_from_object(model2)) return changes
4,795
def write_transaction(connection, signed_transaction): """Write a transaction to the backlog table. Args: signed_transaction (dict): a signed transaction. Returns: The result of the operation. """ raise NotImplementedError
4,796
def get_intersect(x1, y1, x2, y2): """ Returns the point of intersection of the lines or None if lines are parallel Ex. p1=(x1,x2)... line_intersection((p1,p2), (p3,p4)) a1: [x, y] a point on the first line a2: [x, y] another point on the first line b1: [x, y] a point on the second line b2: [x, y] another point on the second line """ s = np.vstack([x1, y1, x2, y2]) # s for stacked h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous l1 = np.cross(h[0], h[1]) # get first line l2 = np.cross(h[2], h[3]) # get second line x, y, z = np.cross(l1, l2) # point of intersection if z == 0: # lines are parallel return None, None return x / z, y / z
4,797
def removeDuplicateColumns(df): """ Removes columns that have a duplicate name. :return pd.DataFrame: """ duplicates = getDuplicates(df.columns) done = False idx = 0 df_result = df.copy() additions_dict = {} while not done: if idx >= len(df_result.columns): done = True break column = df_result.columns[idx] if column in duplicates: df1 = df_result[column] values = df1.iloc[:,1] del df_result[column] duplicates.remove(column) additions_dict[column] = values else: idx += 1 df_add = pd.DataFrame(additions_dict) df_result = pd.concat([df_result, df_add], axis=1, sort=True) return df_result
4,798
def load_files(file_path_smh, file_path_ic, datastruct): """Load the files by asking the controller the filepaths smh and ic provided by the user and store the appropriate data in the data structure object (dictionary). Before storing, the data are verified""" dm3_meta_smh = dm3_lib.DM3(file_path_smh) dm3_meta_ic = dm3_lib.DM3(file_path_ic) verify_i(dm3_meta_smh.imagedata, dm3_meta_ic.imagedata) pixel_smh = dm3_meta_smh.pxsize pixel_ic = dm3_meta_ic.pxsize verify_p(pixel_smh[0], pixel_ic[0]) verify_p_unit(pixel_smh[1].decode("ascii"), pixel_ic[1].decode("ascii")) data.SMGData.store(datastruct, 'ISMHexp', dm3_meta_smh.imagedata) data.SMGData.store(datastruct, 'p', pixel_smh[0]) data.SMGData.store(datastruct, 'ICref', dm3_meta_ic.imagedata) data.SMGData.store(datastruct, 'pref', pixel_ic[0]) print('Files loaded') print('Pixel size SMH: ', pixel_smh[0], 'nm') print('Pixel size Reference: ', pixel_ic[0], 'nm')
4,799