content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def is_coroutine_generator(obj):
"""
Returns whether the given `obj` is a coroutine generator created by an `async def` function, and can be used inside
of an `async for` loop.
Returns
-------
is_coroutine_generator : `bool`
"""
if isinstance(obj, AsyncGeneratorType):
code = obj.ag_code
elif isinstance(obj, CoroutineType):
code = obj.cr_code
elif isinstance(obj, GeneratorType):
code = obj.gi_code
else:
return False
if code.co_flags&CO_ASYNC_GENERATOR:
return True
return False | 4,500 |
def get_scheme(scheme_id):
"""
Retrieve the scheme dict identified by the supplied scheme ID
Returns: An scheme dict
"""
for node in sd["nodes"]:
if scheme_id == node["id"]:
return node | 4,501 |
def compute_vtable(cls: ClassIR) -> None:
"""Compute the vtable structure for a class."""
if cls.vtable is not None: return
if not cls.is_generated:
cls.has_dict = any(x.inherits_python for x in cls.mro)
for t in cls.mro[1:]:
# Make sure all ancestors are processed first
compute_vtable(t)
# Merge attributes from traits into the class
if not t.is_trait:
continue
for name, typ in t.attributes.items():
if not cls.is_trait and not any(name in b.attributes for b in cls.base_mro):
cls.attributes[name] = typ
cls.vtable = {}
if cls.base:
assert cls.base.vtable is not None
cls.vtable.update(cls.base.vtable)
cls.vtable_entries = specialize_parent_vtable(cls, cls.base)
# Include the vtable from the parent classes, but handle method overrides.
entries = cls.vtable_entries
# Traits need to have attributes in the vtable, since the
# attributes can be at different places in different classes, but
# regular classes can just directly get them.
if cls.is_trait:
# Traits also need to pull in vtable entries for non-trait
# parent classes explicitly.
for t in cls.mro:
for attr in t.attributes:
if attr in cls.vtable:
continue
cls.vtable[attr] = len(entries)
entries.append(VTableAttr(t, attr, is_setter=False))
entries.append(VTableAttr(t, attr, is_setter=True))
all_traits = [t for t in cls.mro if t.is_trait]
for t in [cls] + cls.traits:
for fn in itertools.chain(t.methods.values()):
# TODO: don't generate a new entry when we overload without changing the type
if fn == cls.get_method(fn.name):
cls.vtable[fn.name] = len(entries)
# If the class contains a glue method referring to itself, that is a
# shadow glue method to support interpreted subclasses.
shadow = cls.glue_methods.get((cls, fn.name))
entries.append(VTableMethod(t, fn.name, fn, shadow))
# Compute vtables for all of the traits that the class implements
if not cls.is_trait:
for trait in all_traits:
compute_vtable(trait)
cls.trait_vtables[trait] = specialize_parent_vtable(cls, trait) | 4,502 |
def Axicon(phi, n1, x_shift, y_shift, Fin):
"""
Fout = Axicon(phi, n1, x_shift, y_shift, Fin)
:ref:`Propagates the field through an axicon. <Axicon>`
Args::
phi: top angle of the axicon in radians
n1: refractive index of the axicon material
x_shift, y_shift: shift from the center
Fin: input field
Returns::
Fout: output field (N x N square array of complex numbers).
Example:
:ref:`Bessel beam with axicon <BesselBeam>`
"""
Fout = Field.copy(Fin)
k = 2*_np.pi/Fout.lam
theta = _np.arcsin(n1*_np.cos(phi/2)+phi/2-_np.pi/2)
Ktheta = k * theta
yy, xx = Fout.mgrid_cartesian
xx -= x_shift
yy -= y_shift
fi = -Ktheta*_np.sqrt(xx**2+yy**2)
Fout.field *= _np.exp(1j*fi)
return Fout | 4,503 |
def addrAndNameToURI(addr, sname):
"""addrAndNameToURI(addr, sname) -> URI
Create a valid corbaname URI from an address string and a stringified name"""
# *** Note that this function does not properly check the address
# string. It should raise InvalidAddress if the address looks
# invalid.
import urllib
if type(addr) is not types.StringType or \
type(sname) is not types.StringType:
raise CORBA.BAD_PARAM(omniORB.BAD_PARAM_WrongPythonType, COMPLETED_NO)
if addr == "":
raise CosNaming.NamingContextExt.InvalidAddress()
if sname == "":
return "corbaname:" + addr
else:
stringToName(sname) # This might raise InvalidName
return "corbaname:" + addr + "#" + urllib.quote(sname) | 4,504 |
def blkdev_uname_to_taptype(uname):
"""Take a blkdev uname and return the blktap type."""
return parse_uname(uname)[1] | 4,505 |
def _write_ldif(lines, dn, keytab, admin_principal):
"""Issue an update to LDAP via ldapmodify in the form of lines of an LDIF
file.
:param lines: ldif file as a sequence of lines
"""
cmd = 'kinit -t {keytab} {principal} ldapmodify'.format(
keytab=keytab,
principal=admin_principal,
)
child = pexpect.spawn(cmd, timeout=10)
child.expect('SASL data security layer installed.')
for line in lines:
child.sendline(line)
child.sendeof()
child.expect('entry "{}"'.format(dn))
child.expect(pexpect.EOF)
output_after_adding = child.before.decode('utf8').strip()
if 'Already exists (68)' in output_after_adding:
raise ValueError('Tried to create duplicate entry.')
elif 'No such object (32)' in output_after_adding:
raise ValueError('Tried to modify nonexistent entry.')
if output_after_adding != '':
send_problem_report(
dedent(
'''\
Unknown problem occured when trying to write to LDAP; the code
should be updated to handle this case.
dn: {dn}
keytab: {keytab}
principal: {principal}
Unexpected output:
{output_after_adding}
Lines passed to ldapadd:
{lines}
'''
).format(
dn=dn,
keytab=keytab,
principal=admin_principal,
output_after_adding=output_after_adding,
lines='\n'.join(' ' + line for line in lines)
)
)
raise ValueError('Unknown LDAP failure was encountered.') | 4,506 |
def detection_layer(inputs, n_classes, anchors, img_size, data_format):
"""Creates Yolo final detection layer.
Detects boxes with respect to anchors.
Args:
inputs: Tensor input.
n_classes: Number of labels.
anchors: A list of anchor sizes.
img_size: The input size of the model.
data_format: The input format.
Returns:
Tf value [box_centers, box_shapes, confidence, classes]
"""
n_anchors = len(anchors)
inputs = tf.keras.layers.Conv2D(filters=n_anchors * (5 + n_classes),
kernel_size=1, strides=1, use_bias=True,
data_format=data_format)(inputs)
# Shape of each cell in image
shape = inputs.get_shape().as_list()
grid_shape = shape[2:4] if data_format == 'channel_first' else shape[1:3]
if data_format == 'channels_first':
# Put the channel's dim to the last position
inputs = tf.transpose(inputs, [0, 2, 3, 1])
inputs = tf.reshape(inputs,
[-1, n_anchors * grid_shape[0] * grid_shape[1], 5 + n_classes])
# Strides = # of cells in an image
strides = (img_size[0] // grid_shape[0], img_size[1] // grid_shape[1])
box_centers, box_shapes, confidence, classes = \
tf.split(inputs, [2, 2, 1, n_classes], axis=-1)
x = tf.range(grid_shape[0], dtype=tf.float32)
y = tf.range(grid_shape[1], dtype=tf.float32)
x_offset, y_offset = tf.meshgrid(x, y)
x_offset = tf.reshape(x_offset, (-1, 1))
y_offset = tf.reshape(y_offset, (-1, 1))
x_y_offset = tf.concat([x_offset, y_offset], axis=-1)
x_y_offset = tf.tile(x_y_offset, [1, n_anchors])
x_y_offset = tf.reshape(x_y_offset, [1, -1, 2])
box_centers = tf.nn.sigmoid(box_centers)
box_centers = (box_centers + x_y_offset) * strides
anchors = tf.tile(anchors, [grid_shape[0] * grid_shape[1], 1])
box_shapes = tf.exp(box_shapes) * tf.cast(anchors, dtype=tf.float32)
confidence = tf.nn.sigmoid(confidence)
classes = tf.nn.sigmoid(classes)
inputs = tf.concat([box_centers, box_shapes,
confidence, classes], axis=-1)
return inputs | 4,507 |
def main():
"""
Prepares an :obj:`~PyQt5.QtWidgets.QApplication` instance and starts the
*GuiPy* application.
"""
# Obtain application instance
qapp = QW.QApplication.instance()
# If qapp is None, create a new one
if qapp is None:
QW.QApplication.setAttribute(QC.Qt.AA_EnableHighDpiScaling)
qapp = QW.QApplication([APP_NAME])
# Set name of application
qapp.setApplicationName(APP_NAME)
# Make sure that the application quits when last window closes
qapp.lastWindowClosed.connect(qapp.quit, QC.Qt.QueuedConnection)
# Initialize main window and draw (show) it
main_window = MainWindow()
main_window.show()
main_window.raise_()
main_window.activateWindow()
# Replace KeyboardInterrupt error by system's default handler
signal.signal(signal.SIGINT, signal.SIG_DFL)
# Set MPL's backend to 'Agg'
plt.switch_backend('Agg')
# Start application
qapp.exec_() | 4,508 |
def create_position_tear_sheet(returns, positions,
show_and_plot_top_pos=2, hide_positions=False,
sector_mappings=None, transactions=None,
estimate_intraday='infer', return_fig=False):
"""
Generate a number of plots for analyzing a
strategy's positions and holdings.
- Plots: gross leverage, exposures, top positions, and holdings.
- Will also print the top positions held.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in create_full_tear_sheet.
positions : pd.DataFrame
Daily net position values.
- See full explanation in create_full_tear_sheet.
show_and_plot_top_pos : int, optional
By default, this is 2, and both prints and plots the
top 10 positions.
If this is 0, it will only plot; if 1, it will only print.
hide_positions : bool, optional
If True, will not output any symbol names.
Overrides show_and_plot_top_pos to 0 to suppress text output.
sector_mappings : dict or pd.Series, optional
Security identifier to sector mapping.
Security ids as keys, sectors as values.
transactions : pd.DataFrame, optional
Prices and amounts of executed trades. One row per trade.
- See full explanation in create_full_tear_sheet.
estimate_intraday: boolean or str, optional
Approximate returns for intraday strategies.
See description in create_full_tear_sheet.
return_fig : boolean, optional
If True, returns the figure that was plotted on.
"""
positions = utils.check_intraday(estimate_intraday, returns,
positions, transactions)
if hide_positions:
show_and_plot_top_pos = 0
vertical_sections = 7 if sector_mappings is not None else 6
fig = plt.figure(figsize=(14, vertical_sections * 6))
gs = gridspec.GridSpec(vertical_sections, 3, wspace=0.5, hspace=0.5)
ax_exposures = plt.subplot(gs[0, :])
ax_top_positions = plt.subplot(gs[1, :], sharex=ax_exposures)
ax_max_median_pos = plt.subplot(gs[2, :], sharex=ax_exposures)
ax_holdings = plt.subplot(gs[3, :], sharex=ax_exposures)
ax_long_short_holdings = plt.subplot(gs[4, :])
ax_gross_leverage = plt.subplot(gs[5, :], sharex=ax_exposures)
positions_alloc = pos.get_percent_alloc(positions)
plotting.plot_exposures(returns, positions, ax=ax_exposures)
plotting.show_and_plot_top_positions(
returns,
positions_alloc,
show_and_plot=show_and_plot_top_pos,
hide_positions=hide_positions,
ax=ax_top_positions)
plotting.plot_max_median_position_concentration(positions,
ax=ax_max_median_pos)
plotting.plot_holdings(returns, positions_alloc, ax=ax_holdings)
plotting.plot_long_short_holdings(returns, positions_alloc,
ax=ax_long_short_holdings)
plotting.plot_gross_leverage(returns, positions,
ax=ax_gross_leverage)
if sector_mappings is not None:
sector_exposures = pos.get_sector_exposures(positions,
sector_mappings)
if len(sector_exposures.columns) > 1:
sector_alloc = pos.get_percent_alloc(sector_exposures)
sector_alloc = sector_alloc.drop('cash', axis='columns')
ax_sector_alloc = plt.subplot(gs[6, :], sharex=ax_exposures)
plotting.plot_sector_allocations(returns, sector_alloc,
ax=ax_sector_alloc)
for ax in fig.axes:
plt.setp(ax.get_xticklabels(), visible=True)
if return_fig:
return fig | 4,509 |
def statement_view(request, statement_id=None):
"""Send a CSV version of the statement with the given
``statement_id`` to the user's browser.
"""
statement = get_object_or_404(
Statement, pk=statement_id, account__user=request.user)
response = HttpResponse(mimetype='text/csv')
filename = "%s (%s).csv" % (statement.title,
statement.from_date.strftime('%B %Y'))
response['Content-Disposition'] = 'attachment; filename=%s' % (filename,)
writer = csv.writer(response)
headings = ["Tag pool name", "Tag name", "Message direction", "Total cost"]
writer.writerow(headings)
line_item_list = statement.lineitem_set.all()
for line_item in line_item_list:
writer.writerow([
line_item.tag_pool_name, line_item.tag_name,
line_item.message_direction, line_item.total_cost])
return response | 4,510 |
def get_proton_gamma(energy):
"""Returns relativistic gamma for protons."""
return energy / PROTON_MASS | 4,511 |
def test_login_and_authenticated(server):
"""
Whitebox test. Check the internal client variables are being set on login.
"""
add_mock_user(server, 'u1', 'password')
# Before Login
with server.application.test_request_context('/'):
user = server.application.restful_auth.storage.get_client_by_username('u1')
assert user.is_authenticated == False
assert user.token == None
response = server.post(
'/user/login',
headers={"Authorization": "Basic " + valid_credentials}
)
# If the assertion below fails, also check the test_basic_auth_login test.
# After Login
with server.application.test_request_context('/'):
user = server.application.restful_auth.storage.get_client_by_username('u1')
assert user.is_authenticated == True
assert user.token is not None
return | 4,512 |
def generate_heatmap_cube(locus_generator, overlap_df, snp_df, peak_df, heatmap_folder, color_scheme, specific_locus=None, show_plots=True):
"""
This function is under maintence as in I ran out of time to finish this. Nevertheless.
the goal of this function is to show a 3D version of the overlap memberships. Ideally,
this will be an active feature once the data for more tissues becomes available.
:param locus_generator: the generator for each membership dataframe
:param overlap_df: the bedtools output in dataframe form
:param snp_df: the imputed snps in dataframe form
:param peak_df: the peak desc file in a dataframe
:param heatmap_folder: the folder that will contain all the generated heatmaps
:param color_scheme: the color scheme list for the heatmap
:param specific_locus: if the user wants to focus on a particular locus input a string
:param show_plots: a boolean to interactively show each generated heatmap usually safe to keep false
:return: none but a 3D image will be generated
"""
values = map(lambda x: list(x.rgb) + [1], color_scheme)
values[3][3] = 0.2
tissues = peak_df["Tissue"].unique()
if specific_locus:
fig = plt.figure()
ax = fig.gca(projection='3d')
for i, data in enumerate(locus_generator(overlap_df, snp_df, peak_df, specific_locus=specific_locus, keep_rsq=False)):
tissue, current_locus, locus_df = data
display_df = locus_df
if i == 0:
critical_columns = list(peak_df[(peak_df["Tissue"] == tissue) & (peak_df["Priority"] == 1)]["Label"].unique())
display_df = display_df.T.sort_values(critical_columns, ascending=True)
display_df = display_df[(display_df[critical_columns] != 0).any(axis=1)]
display_df = display_df.T
selected_snps = list(display_df.columns)
mark_length = len(peak_df["Label"].unique())
snp_length = display_df.shape[1]
X = np.arange(0, mark_length, 1)
Y = np.arange(0, len(tissues), 1)
Z = np.arange(0, snp_length, 1)
X, Y, Z = np.meshgrid(X, Y, Z)
else:
display_df = locus_df[selected_snps]
surface_map = np.zeros((mark_length, snp_length, 4))
display_df = display_df + 3
for z, snp in enumerate(display_df.columns):
for x, mark in enumerate(display_df.index):
location = display_df.loc[mark][snp]
surface_map[x][z] = values[location]
surf = ax.plot_surface(X[i], Y[i], Z[i], facecolors=surface_map)
ax.set_xticklabels(list(display_df.index))
ax.set_yticks(np.arange(0, 8, 1))
ax.set_yticklabels(tissues)
ax.set_zticks(np.arange(0, display_df.shape[1], 1))
ax.set_zticklabels(list(display_df.columns))
plt.savefig("{}/{}_3D.png".format(heatmap_folder, locus))
else:
for locus in snp_df["Locus"].unique():
fig = plt.figure()
fig.subplots_adjust(bottom=0.2)
ax = fig.gca(projection='3d')
# TODO create a function that will return a list of dataframes and the important snps
for i, data in enumerate(locus_generator(overlap_df, snp_df, peak_df, specific_locus=locus, keep_rsq=False)):
tissue, current_locus, locus_df = data
display_df = locus_df
if i == 0:
critical_columns = list(peak_df[(peak_df["Tissue"] == tissue) & (peak_df["Priority"] == 1)]["Label"].unique())
display_df = display_df.T.sort_values(critical_columns, ascending=True)
display_df = display_df[(display_df[critical_columns] != 0).any(axis=1)]
display_df = display_df.T
selected_snps = list(display_df.columns)
mark_length = len(peak_df["Label"].unique())
snp_length = display_df.shape[1]
X = np.arange(0, mark_length, 1)
Y = np.arange(0, len(tissues), 1)
Z = np.arange(0, snp_length, 1)
X, Y, Z = np.meshgrid(X, Y, Z)
else:
display_df = locus_df[selected_snps]
if display_df.empty:
break
surface_map = np.zeros((mark_length, snp_length, 4))
print surface_map.shape
display_df = display_df + 3
for z, snp in enumerate(display_df.columns):
for x, mark in enumerate(display_df.index):
location = display_df.loc[mark][snp]
surface_map[x][z] = values[location]
print Y.shape
surf = ax.plot_surface(X[i], Y[i], Z[i], facecolors=surface_map)
print display_df.shape
if display_df.empty or display_df.shape[0] < 2:
continue
ax.set_xticklabels(list(display_df.index))
ax.set_yticks(np.arange(0, 8, 1))
ax.set_yticklabels(tissues)
ax.set_zticks(np.arange(0, display_df.shape[1], 1))
ax.set_zticklabels(list(display_df.columns))
ax.set_title("Locus: {}".format(locus))
plt.savefig("{}/{}_3D.png".format(heatmap_folder, locus))
plt.clf()
plt.close() | 4,513 |
def demandNameItem(listDb,phrase2,mot):
"""
put database name of all items in string to insert in database
listDb: list with datbase name of all items
phrase2: string with database name of all items
mot: database name of an item
return a string with database name of all items separated with ','
"""
for i in range(len(listDb)):
mot = str(listDb[i])
phrase2 += mot
if not i == len(listDb)-1:
phrase2 += ','
return phrase2 | 4,514 |
def escape_yaml(data: str) -> str:
"""
Jinja2 фильтр для экранирования строк в yaml
экранирует `$`
"""
return data.replace("$", "$$") | 4,515 |
def test_empty_result():
"""Test the client when POST to tefas returns empty list"""
Crawler._do_post = MagicMock(return_value=[])
crawler = Crawler()
crawler.fetch(start="2020-11-20") | 4,516 |
def stokes_linear(theta):
"""Stokes vector for light polarized at angle theta from the horizontal plane."""
if np.isscalar(theta):
return np.array([1, np.cos(2*theta), np.sin(2*theta), 0])
theta = np.asarray(theta)
return np.array([np.ones_like(theta),
np.cos(2*theta),
np.sin(2*theta),
np.zeros_like(theta)]).T | 4,517 |
def validate_item_field(attr_value, attr_form):
"""
:param attr_value: item的属性
:param attr_form: item category的属性规则
:return:
"""
if not isinstance(attr_form, dict):
return -1, {"error": "attr_form is not a dict."}
required = attr_form.get('required')
if required == 'false':
return 0, {"msg": "success"}
field = attr_form.get('field')
if not field:
return -1, {"error": "field missed."}
if field == "string":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a string."}
if len(attr_value) < int(attr_form["min_length"]) or len(attr_value) > int(attr_form["max_length"]):
return -1, {"error": "invalid string length."}
if attr_form.get('valid_rule') == "none":
return 0, {"msg": "success"}
elif attr_form.get('valid_rule') == "IPaddress":
pattern = re.compile(r'\d+\.\d+\.\d+\.\d+') # 匹配IP地址有待改进
elif attr_form.get('valid_rule') == "email":
pattern = re.compile(r'^(\w)+(\.\w+)*@(\w)+((\.\w+)+)$')
elif attr_form.get('valid_rule') == "phone":
pattern = re.compile(r'^\d{11}$')
else:
return -1, {"error": "invalid valid_rule."}
match = pattern.match(attr_value)
if not match:
return -1, {"error": "did not match rule: %s" % attr_form.get('valid_rule')}
elif field == "text":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a string."}
if len(attr_value) < int(attr_form["min_length"]) or len(attr_value) > int(attr_form["max_length"]):
return -1, {"error": "invalid string length."}
elif field == "select":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a dict."}
if attr_value not in attr_form["choice"][1:-1].split("|"):
return -1, {"error": "invalid choice."}
elif field == "multiple_select":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a dict."}
for each in attr_value.split("|"):
if each not in attr_form["choice"][1:-1].split("|"):
return -1, {"error": "invalid choice."}
elif field == "integer":
if not isinstance(attr_value, int):
return -1, {"error": "attr_value is not a integer."}
if attr_value < int(attr_form["min_value"]) or attr_value > int(attr_form["max_value"]):
return -1, {"error": "invalid integer value."}
elif field == "datetime":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a string."}
try:
date_object = datetime.datetime.strptime(
attr_value, '%Y%m%d%H%M%S')
except ValueError:
return -1, {"error": "time data '%s' does not match format" % attr_value}
elif field == "reference":
if not isinstance(attr_value, str):
return -1, {"error": "attr_value is not a string."}
item_obj = Item.objects(id=attr_value)
if not item_obj:
return -1, {"error": "unknown item."}
if item_obj.category.id != attr_form["reference"]:
return -1, {"error": "wrong category."}
return 0, {"msg": "success"} | 4,518 |
def display_instances(image, boxes, masks, ids, names, scores):
"""
take the image and results and apply the mask, box, and Label
"""
n_instances = boxes.shape[0]
colors = random_colors(n_instances)
if not n_instances:
print('NO INSTANCES TO DISPLAY')
else:
assert boxes.shape[0] == masks.shape[-1] == ids.shape[0]
for i, color in enumerate(colors):
# we want the colours to only ne in one color: SIFR orange ff5722
# color = (255, 87, 34)
if not np.any(boxes[i]):
continue
y1, x1, y2, x2 = boxes[i]
label = names[ids[i]]
score = scores[i] if scores is not None else None
caption = '{} {:.2f}'.format(label, score) if score else label
mask = masks[:, :, i]
image = apply_mask(image, mask, color)
image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
image = cv2.putText(
image, caption, (x1, y1), cv2.FONT_HERSHEY_COMPLEX, 0.7, color, 2
)
return image | 4,519 |
def run():
"""
Run game.
"""
words = load_words(WORDFILE)
wrangler = provided.WordWrangler(words, remove_duplicates,
intersect, merge_sort,
gen_all_strings)
provided.run_game(wrangler) | 4,520 |
def read_squad_examples(input_file, is_training):
"""Read a SQuAD json file into a list of SquadExample."""
with tf.io.gfile.GFile(input_file, "r") as reader:
input_data = json.load(reader)["data"]
examples = []
for entry in input_data:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position = None
orig_answer_text = None
is_impossible = False
if is_training:
if FLAGS.train_version == "v2":
is_impossible = qa["is_impossible"]
if (len(qa["answers"]) != 1) and (not is_impossible):
raise ValueError(
"For training, each question should have exactly 1 answer.")
if not is_impossible:
answer = qa["answers"][0]
orig_answer_text = answer["text"]
start_position = answer["answer_start"]
else:
start_position = -1
orig_answer_text = ""
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
paragraph_text=paragraph_text,
orig_answer_text=orig_answer_text,
start_position=start_position,
is_impossible=is_impossible)
examples.append(example)
return examples | 4,521 |
def load_gamma_telescope():
"""https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope"""
url='https://archive.ics.uci.edu/ml/machine-learning-databases/magic/magic04.data'
filepath = os.path.join(get_data_dir(), "magic04.data")
maybe_download(filepath, url)
data = pd.read_csv(filepath)
data.columns = ['fLength', 'fWidth', 'fSize', 'fConc',
'fConc1', 'fAsym', 'fM3Long', 'fM3Trans', 'fAlpha',
'fDist', 'class']
X = data.drop(['class'], axis=1)
y = data['class']
return X, y | 4,522 |
def qarange(start, end, step):
"""
Convert the cyclic measurement and control data into the required array
:param start:
:param end:
:param step:
:return: np.array
"""
if Decimal(str(end)) - Decimal(str(start)) < Decimal(str(step)) or step == 0:
return [start]
start_decimal = str(start)[::-1].find('.')
step_decimal = str(step)[::-1].find('.')
data_decimal = max([step_decimal, start_decimal])
if data_decimal == -1:
data_decimal = 0
data_number = int((Decimal(str(end)) - Decimal(str(start))) / Decimal(str(step)))
end_data = round(start + data_number * step, data_decimal)
data_np = np.linspace(start, end_data, data_number + 1)
data_list = [round(data, data_decimal) for data in data_np]
return data_list | 4,523 |
def checkFull(t, e, maxval, minval):
"""Check the maximum and minimum bounds for the type given by e"""
checkType(t, e, maxval, 1)
checkType(t, e, minval, -1) | 4,524 |
def get_default_render_layer():
"""Returns the default render layer
:return:
"""
return pm.ls(type='renderLayer')[0].defaultRenderLayer() | 4,525 |
def translation(shift):
"""Translation Matrix for 2D"""
return np.asarray(planar.Affine.translation(shift)).reshape(3, 3) | 4,526 |
def pad(adjacency_matrices, size):
"""Pads adjacency matricies to the desired size
This will pad the adjacency matricies to the specified size, appending
zeros as required. The output adjacency matricies will all be of size
'size' x 'size'.
Args:
adjacency_matrices: The input list of adjacency matricies.
size: The desired dimension of the output matricies.
Returns:
The resulting list of adjacency matricies.
"""
padding = size - adjacency_matrices.shape[1]
return np.pad(adjacency_matrices,
[(0, 0), (0, padding), (0, padding)],
mode='constant') | 4,527 |
def test_merge_configuration():
""" Test merging two simple configurations works as expected. """
one = {"alpha": [0, 1], BernoulliNB: {"fit_prior": [True, False]}}
two = {"alpha": [0, 2], GaussianNB: {"fit_prior": [True, False]}}
expected_merged = {
"alpha": [0, 1, 2],
GaussianNB: {"fit_prior": [True, False]},
BernoulliNB: {"fit_prior": [True, False]},
}
actual_merged = merge_configurations(one, two)
assert expected_merged == actual_merged | 4,528 |
def test_launch_with_longer_multiword_domain_name() -> None:
"""This test is important because we want to make it convenient for users to launch nodes with
an arbitrary number of words."""
# COMMAND: "hagrid launch United Nations"
args: List[str] = ["United", "States", "of", "America"]
verb = cli.get_launch_verb()
grammar = cli.parse_grammar(args=tuple(args), verb=verb)
verb.load_grammar(grammar=grammar)
cmd = cli.create_launch_cmd(verb=verb, kwargs={}, ignore_docker_version_check=True)
print(cmd)
# check that it's a domain by default
assert "NODE_TYPE=domain" in cmd
# check that the node has a name
assert "DOMAIN_NAME='united_states_of_america'" in cmd
# check that tail is on by default
assert " -d " not in cmd | 4,529 |
def mapping_activities_from_log(log, name_of_activity):
"""
Returns mapping activities of activities.
:param name_of_activity:
:param log:
:return: mapping
"""
mapping_activities = dict()
unique_activities = unique_activities_from_log(log, name_of_activity)
for index, activity in enumerate(unique_activities):
mapping_activities[activity] = index
return mapping_activities | 4,530 |
def bubble_sort(nums) -> List[int]:
"""Sorts numbers from in ascending order.
It is:
- quadratic time
- constant space
- stable
- iterative
- mutative
- internal algorithm
"""
# TODO: implement the algorithm!
pass | 4,531 |
def pad(x, paddings, axes=None):
"""
Pads a tensor with zeroes along each of its dimensions.
TODO: clean up slice / unslice used here
Arguments:
x: the tensor to be padded
paddings: the length of the padding along each dimension.
should be an array with the same length as x.axes.
Each element of the array should be either an integer,
in which case the padding will be symmetrical, or a tuple
of the form (before, after)
axes: the axes to be given to the padded tensor.
If unsupplied, we create new axes of the correct lengths.
Returns:
TensorOp: symbolic expression for the padded tensor
"""
if len(x.axes) != len(paddings):
raise ValueError((
"pad's paddings has length {pad} which needs to be the same "
"as the number of axes in x ({x})"
).format(
pad=len(paddings),
x=len(x.axes),
))
def pad_to_tuple(pad):
if isinstance(pad, int):
pad = (pad, pad)
return pad
def to_slice(pad):
s = (pad[0], -pad[1])
s = tuple(None if p == 0 else p for p in s)
return slice(s[0], s[1], 1)
paddings = tuple(pad_to_tuple(pad) for pad in paddings)
if axes is None:
axes = make_axes(
make_axis(length=axis.length + pad[0] + pad[1], name=axis.name)
if pad != (0, 0) else axis
for axis, pad in zip(x.axes, paddings)
)
slices = tuple(to_slice(p) for p in paddings)
return _unslice(x, slices, axes) | 4,532 |
def labels_to_1hotmatrix(labels, dtype=int):
"""
Maps restricted growth string to a one-hot flag matrix. The input and
the output are equivalent representations of a partition of a set of
n elelements.
labels: restricted growth string: n-vector with entries in {0,...,n-1}.
The first entry is 0. Other entries cannot exceed any previous
entry by more than 1.
dtype: optional, default=int. Element data type for returned matrix. bool
or float can also be used.
Returns (m,n) matrix, with 0/1 entries, where m is the number of blocks in
the partition and n is the numer of elements in the partitioned set.
Columns are one-hot. If return_matrix[i,j], then element j is in
block i.
"""
m = 1 + labels.max()
B = np.arange(m).reshape(-1,1) == labels
return B.astype(dtype,copy=False) | 4,533 |
def model_counter_increment(instance):
"""Word Count map function."""
instance.counter += 1
instance.save()
yield (instance.pk, "{0}".format(instance.counter)) | 4,534 |
def gen_cues_adp(model_type, thresh, batch_size, size, cues_dir, set_name, is_verbose):
"""Generate weak segmentation cues for ADP (helper function)
Parameters
----------
model_type : str
The name of the model to use for generating cues (i.e. 'M1', 'M2', 'M3', 'M4', 'M5', 'M6', 'M7', 'X1.7', 'M7',
'M7bg', 'VGG16', or 'VGG16bg')
thresh: float
Confidence value for thresholding activation maps [0-1]
batch_size : int
The batch size (>0)
size : int
The length of the resized input image
cues_dir : str
The directory to save the cues to
set_name : str
The name of the name of the evaluation set (i.e. 'tuning' or 'segtest')
is_verbose : bool, optional
Whether to activate message verbosity
"""
ac = ADPCues('ADP_' + model_type, batch_size, size, model_dir=MODEL_ROOT)
seed_size = 41
# Load network and thresholds
cues_dirs = {}
for htt_class in ['morph', 'func']:
cues_dirs[htt_class] = os.path.join(cues_dir, htt_class)
makedir_if_nexist([cues_dirs[htt_class]])
ac.build_model()
# Load Grad-CAM weights
if not os.path.exists('data'):
os.makedirs('data')
if is_verbose:
print('\tGetting Grad-CAM weights for given network')
alpha = ac.get_grad_cam_weights(np.zeros((1, size, size, 3)))
# Read in image names
img_names = ac.get_img_names(set_name)
# Process images in batches
n_batches = len(img_names) // batch_size + 1
for iter_batch in range(n_batches):
start_time = time.time()
if is_verbose:
print('\tBatch #%d of %d' % (iter_batch + 1, n_batches))
start_idx = iter_batch * batch_size
end_idx = min(start_idx + batch_size - 1, len(img_names) - 1)
cur_batch_sz = end_idx - start_idx + 1
img_batch_norm, img_batch = ac.read_batch(img_names[start_idx:end_idx + 1])
# Determine passing classes
predicted_scores = ac.model.predict(img_batch_norm)
is_pass_threshold = np.greater_equal(predicted_scores, ac.thresholds)
# Generate Grad-CAM
H = ac.grad_cam(alpha, img_batch_norm, is_pass_threshold)
H = np.transpose(H, (0, 3, 1, 2))
H = resize_stack(H, (seed_size, seed_size))
# Split Grad-CAM into {morph, func}
H_split = {}
H_split['morph'], H_split['func'] = ac.split_by_httclass(H)
is_pass = {}
is_pass['morph'], is_pass['func'] = ac.split_by_httclass(is_pass_threshold)
# Modify Grad-CAM for each HTT type separately
seeds = {}
for htt_class in ['morph', 'func']:
seeds[htt_class] = np.zeros((cur_batch_sz, len(ac.classes['valid_' + htt_class]), seed_size, seed_size))
seeds[htt_class][:, ac.classinds[htt_class + '2valid']] = H[:, ac.classinds['all2' + htt_class]]
class_inds = [ac.classinds_arr[htt_class + '2valid'][is_pass[htt_class][i]] for i in range(cur_batch_sz)]
# Modify heatmaps
if htt_class == 'morph':
seeds[htt_class] = ac.modify_by_htt(seeds[htt_class], img_batch, ac.classes['valid_' + htt_class])
elif htt_class == 'func':
class_inds = [np.append(1, x) for x in class_inds]
adipose_inds = [i for i, x in enumerate(ac.classes['morph']) if x in ['A.W', 'A.B', 'A.M']]
gradcam_adipose = seeds['morph'][:, adipose_inds]
seeds[htt_class] = ac.modify_by_htt(seeds[htt_class], img_batch, ac.classes['valid_' + htt_class],
gradcam_adipose=gradcam_adipose)
# Update localization cues
ac.update_cues(seeds[htt_class], class_inds, htt_class, list(range(start_idx, end_idx + 1)), thresh)
elapsed_time = time.time() - start_time
if is_verbose:
print('\t\tElapsed time: %s seconds (%s seconds/image)' % (elapsed_time, elapsed_time / cur_batch_sz))
# Save localization cues
if is_verbose:
print('\tSaving localization cues')
pickle.dump(ac.cues['morph'], open(os.path.join(cues_dirs['morph'], 'localization_cues.pickle'), 'wb'))
pickle.dump(ac.cues['func'], open(os.path.join(cues_dirs['func'], 'localization_cues.pickle'), 'wb')) | 4,535 |
def recall(logits, target, topk=[1,5,10], typeN=8):
"""Compute top K recalls of a batch.
Args:
logits (B x max_entities, B x max_entities x max_rois):
target (B x max_entities, B x max_entities x max_rois):
topk: top k recalls to compute
Returns:
N: number of entities in the batch
TPs: topk true positives in the batch
bound: max number of groundable entities
"""
logits, target, N, types = select(logits, target)
topk = [topk] if isinstance(topk, int) else sorted(topk)
TPs = [0] * len(topk)
bound = target.max(-1, False)[0].sum().item() # at least one detected
typeTPs = th.zeros(typeN, device=types.device)
typeN = th.zeros_like(typeTPs)
#print("target entity type count: ", types.shape, types.sum(dim=0), target.shape)
if max(topk) == 1:
top1 = th.argmax(logits, dim=1)
one_hots = th.zeros_like(target)
one_hots.scatter_(1, top1.view(-1, 1), 1)
TPs = (one_hots * target).sum().item()
hits = (one_hots * target).sum(dim=1) >= 1
typeTPs += types[hits].sum(dim=0)
typeN += types.sum(dim=0)
else:
logits = th.sort(logits, 1, descending=True)[1]
for i, k in enumerate(topk):
one_hots = th.zeros_like(target)
one_hots.scatter_(1, logits[:, :k], 1)
TPs[i] = ((one_hots * target).sum(dim=1) >= 1).float().sum().item() # hit if at least one matched
if i == 0:
hits = (one_hots * target).sum(dim=1) >= 1
typeTPs += types[hits].sum(dim=0)
typeN += types.sum(dim=0)
#print(TPs, N)
#print(typeTPs)
#print(typeN)
return N, th.Tensor(TPs + [bound]), (typeTPs.cpu(), typeN.cpu()) | 4,536 |
def n(request) -> int:
"""A test fixture enumerate values for `n`."""
return request.param | 4,537 |
def create_color_lot(x_tick_labels, y_tick_labels, data, xlabel, ylabel, colorlabel, title):
"""
Generate 2D plot for the given data and labels
"""
fig, ax = plot.subplots()
heatmap = ax.pcolor(data)
colorbar = plot.colorbar(heatmap)
colorbar.set_label(colorlabel, rotation=90)
ax.set_xticks(arange(len(x_tick_labels)) + 0.5, minor=False)
ax.set_yticks(arange(len(y_tick_labels)) + 0.5, minor=False)
ax.set_xticklabels(x_tick_labels, minor=False)
ax.set_yticklabels(y_tick_labels, minor=False)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plot.title(title)
plot.show()
# plot.savefig(title+".png")
# fig.clf()
# fig.clear()
# ax.cla()
# ax.clear()
# plot.cla()
# plot.clf()
# plot.close()
| 4,538 |
def decode(ciphered_text):
"""
Decodes the ciphered text into human readable text.
Returns a string.
"""
text = ciphered_text.replace(' ', '') # We remove all whitespaces
return ''.join([decode_map[x] if decode_map.get(x) else x for x in text]) | 4,539 |
def _collect_fields(resource):
"""Collect fields from the JSON.
:param resource: ResourceBase or CompositeField instance.
:returns: generator of tuples (key, field)
"""
for attr in dir(resource.__class__):
field = getattr(resource.__class__, attr)
if isinstance(field, Field):
yield (attr, field) | 4,540 |
def parse(s):
""" Date parsing tool.
Change the formats here cause a changement in the whole application.
"""
formats = ['%Y-%m-%dT%H:%M:%S.%fZ','%d/%m/%Y %H:%M:%S','%d/%m/%Y%H:%M:%S', '%d/%m/%Y','%H:%M:%S']
d = None
for format in formats:
try:
d = datetime.strptime(s, format)
break
except ValueError:
pass
return d | 4,541 |
def openstack(request):
""" Context processor necessary for OpenStack Dashboard functionality.
The following variables are added to the request context:
``authorized_tenants``
A list of tenant objects which the current user has access to.
``regions``
A dictionary containing information about region support, the current
region, and available regions.
"""
context = {}
# Auth/Keystone context
context.setdefault('authorized_tenants', [])
current_dash = request.horizon['dashboard']
needs_tenants = getattr(current_dash, 'supports_tenants', False)
if request.user.is_authenticated() and needs_tenants:
context['authorized_tenants'] = request.user.authorized_tenants
# Region context/support
available_regions = getattr(settings, 'AVAILABLE_REGIONS', [])
regions = {'support': len(available_regions) > 1,
'current': {'endpoint': request.session.get('region_endpoint'),
'name': request.session.get('region_name')},
'available': [{'endpoint': region[0], 'name':region[1]} for
region in available_regions]}
context['regions'] = regions
context['cluster'] = {'title': "Cluster"}
return context | 4,542 |
def get_align_mismatch_pairs(align, ref_genome_dict=None) -> list:
"""input a pysam AlignedSegment object
Args:
align (pysam.AlignedSeqment object): pysam.AlignedSeqment object
ref_genome_dict (dict, optional): returned dict from load_reference_fasta_as_dict(). Defaults to None.
Returns:
list/None:
it returns mismatch_pair_list, just like [ref_index, align_index, ref_base, align_base];
and the "ref_index" is the same coordinate with UCSC genome browser;
When NM == 0, it returns None.
"""
# No mismatch
try:
if align.get_tag("NM") == 0:
return None
except:
return None
MD_tag_state = align.has_tag("MD")
if MD_tag_state:
# parse softclip, insertion and deletion
info_index_list = []
accu_index = 0
for cigar_type, cigar_len in align.cigartuples:
if cigar_type == 1 or cigar_type == 4:
info_index_list.append((accu_index + 1, cigar_len))
elif cigar_type == 2:
info_index_list.append((accu_index + 1, -cigar_len))
accu_index += cigar_len
# parse MD tag
mismatch_pair_list = []
cur_base = ""
cur_index = 0
bases = align.get_tag("MD")
i = 0
while i < len(bases):
base = bases[i]
if base.isdigit():
cur_base += base
i += 1
else:
cur_index += int(cur_base)
cur_base = ""
if base == "^":
i += 1
del_str = ""
while (bases[i].isalpha()) and (i < len(bases)):
del_str += bases[i]
i += 1
cur_index += len(del_str)
del_str = ""
elif base.isalpha():
cur_index += 1
ref_base = base
i += 1
# add into list
fix_index = cur_index + back_indel_shift(info_index_list, cur_index)
if fix_index < len(align.query_sequence):
mismatch_pair_list.append(
[
cur_index + align.reference_start,
cur_index - 1,
ref_base,
align.query_sequence[fix_index - 1],
]
)
else:
return None
return mismatch_pair_list
else:
mismatch_pair_list = []
for align_idx, ref_idx in align.get_aligned_pairs():
if (align_idx is not None) and (ref_idx is not None):
align_base = align.query_sequence[align_idx]
ref_base = ref_genome_dict[align.reference_name][ref_idx]
if align_base != ref_base:
mismatch_pair_list.append(
[ref_idx + 1, align_idx, ref_base, align_base]
)
return mismatch_pair_list | 4,543 |
def get_int(name, default=None):
"""
:type name: str
:type default: int
:rtype: int
"""
return int(get_parameter(name, default)) | 4,544 |
def display_instances(image, boxes, masks, keypoints, class_id=1, class_name='person',
scores=None, title="",
figsize=(16, 16), ax=None,
show_mask=True, show_bbox=True,
show_keypoint=True,
colors=None, captions=None):
"""
boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
masks: [height, width, num_instances]
class_ids: 1 for person
class_name: class name of the dataset
scores: (optional) confidence scores for each box
title: (optional) Figure title
show_mask, show_bbox: To show masks and bounding boxes or not
figsize: (optional) the size of the image
colors: (optional) An array or colors to use with each object
captions: (optional) A list of strings to use as captions for each object
"""
# Number of instances
N = boxes.shape[0]
if not N:
print("\n*** No instances to display *** \n")
else:
assert boxes.shape[0] == masks.shape[0]
# If no axis is passed, create one and automatically call show()
auto_show = False
if not ax:
_, ax = plt.subplots(1, figsize=figsize)
auto_show = True
# Generate random colors
colors = colors or random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
ax.set_ylim(height + 10, -10)
ax.set_xlim(-10, width + 10)
ax.axis('off')
ax.set_title(title)
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
# Bounding box
if not np.any(boxes[i]):
# Skip this instance. Has no bbox. Likely lost in image cropping.
continue
y1, x1, y2, x2 = boxes[i]
if show_bbox:
p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
alpha=0.7, linestyle="dashed",
edgecolor=color, facecolor='none')
ax.add_patch(p)
# Label
if not captions:
class_id = class_id
score = scores[i] if scores is not None else None
label = class_name
caption = "{} {:.3f}".format(label, score) if score else label
else:
caption = captions[i]
ax.text(x1, y1 + 8, caption,
color='w', size=11, backgroundcolor="none")
# Mask
mask = masks[i, :, :]
keypoint = keypoints[i]
if show_mask:
masked_image = apply_mask(masked_image, mask, color)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
padded_mask = np.zeros(
(mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
padded_mask[1:-1, 1:-1] = mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
if show_keypoint:
masked_image = apply_keypoint(masked_image, keypoint)
ax.imshow(masked_image.astype(np.uint8))
if auto_show:
plt.show() | 4,545 |
def run_test(series: pd.Series, randtest_name, **kwargs) -> TestResult:
"""Run a statistical test on RNG output
Parameters
----------
series : ``Series``
Output of the RNG being tested
randtest_name : ``str``
Name of statistical test
**kwargs
Keyword arguments to pass to statistical test
Returns
-------
result : ``TestResult`` or ``MultiTestResult``
Data containers of the test's result(s).
Raises
------
TestNotFoundError
If `randtest_name` does not match any available statistical tests
TestError
Errors raised when running ``randtest_name``
"""
try:
func = getattr(_randtests, randtest_name)
except AttributeError as e:
raise TestNotFoundError() from e
with Progress(*columns, console=console, transient=True) as progress:
abbrv = f_randtest_abbreviations[randtest_name]
task = progress.add_task(abbrv)
try:
result = func(series, ctx=(progress, task), **kwargs)
color = "yellow" if result.failures else "green"
print_randtest_name(randtest_name, color)
console.print(result)
return result
except TestError as e:
print_randtest_name(randtest_name, "red")
print_error(e)
raise e | 4,546 |
def radians(x):
"""
Convert degrees to radians
"""
if isinstance(x, UncertainFunction):
mcpts = np.radians(x._mcpts)
return UncertainFunction(mcpts)
else:
return np.radians(x) | 4,547 |
def screen_poisson_objective(pp_image, hp_w,hp_b, data):
"""Objective function."""
return (stencil_residual(pp_image, hp_w,hp_b, data) ** 2).sum() | 4,548 |
def remove_auto_shutdown_jobs():
"""
clears the job scheduler off auto shutdown jobs
"""
jobs = schedule.get_jobs("auto_off")
if jobs:
#print(jobs)
schedule.clear("auto_off")
#print("auto shutdown cancelled") | 4,549 |
async def test_no_port(event_loop, test_log, mock_server_command):
"""Check that process that didn't bind any endpoints is handled correctly.
"""
# Case 1: process didn't bind an endpoint in time.
PORT_TIMEOUT = 0.5
process = polled_process.PolledProcess(
mock_server_command(socket_count=0),
None
)
with pytest.raises(polled_process.ProcessStartTimeoutError):
await process.start(port_timeout=PORT_TIMEOUT)
# Case 2: process exits without binding an endpoint.
process = polled_process.PolledProcess(
mock_server_command(socket_count=0, exit_delay=0),
None
)
with pytest.raises(polled_process.ProcessExitedError):
await process.start() | 4,550 |
def learn(request, artwork_genre=None):
"""
Returns an art genre.
"""
_genre = get_object_or_404(Genre, slug=artwork_genre)
return render_to_response('t_learn.html',
{'genre': _genre},
context_instance=RequestContext(request)) | 4,551 |
def plot_corr_matrix(corr_dat, labels, save_out=False, fig_info=FigInfo()):
"""Plot correlation data.
Parameters
----------
corr_data : 2d array
Matrix of correlation data to plot.
labels : list of str
Labels for the rows & columns of `corr_data`.
save_out : boolean, optional (default = False)
Whether to save out a copy of the figure.
"""
# Plot Settings
t_fs = fig_info.t_fs # Title Font Size
ti_fs = fig_info.ti_fs # Axis ticks font size
# Set colormap to use
cmap = plt.get_cmap('seismic')
# Create the plot
#im = plt.matshow(corr_data, vmin=-1, vmax=1, cmap=cmap, interpolation='none')
im = plt.matshow(corr_data, vmin=-1, vmax=1, cmap=cmap, interpolation='nearest')
# Notes on using nearest here:
# https://github.com/matplotlib/matplotlib/issues/2972/
# Add title
if fig_info.add_title:
plt.title('Osc Band Correlations', {'fontsize': t_fs, 'fontweight': 'bold'}, y=1.15)
# Set tick labels
nums = list(range(len(labels)))
plt.xticks(nums, labels, rotation=45, ha='left')
plt.yticks(nums, labels)
# Set ticks font size
plt.tick_params(axis='both', which='major', labelsize=ti_fs)
# Add a colorbar - add padding to offset further from plot
plt.colorbar(pad=0.15)
save_figure(save_out, '106-CorrMat', fig_info) | 4,552 |
def plot_column(path: str, column: str, outpath: str = ""):
"""Plot a single column and save to file."""
df = to_df(path)
col_df = df.set_index(["name", "datetime"])[column].unstack("name")
ax = col_df.plot(grid=True)
ax.set_xlabel("Time")
ax.set_ylabel(LABEL_MAP[column])
if outpath:
ax.get_figure().savefig(outpath, bbox_inches="tight")
return ax | 4,553 |
def get_loader():
"""Returns torch.utils.data.DataLoader for custom Pypipes dataset. """
data_loader = None
return data_loader | 4,554 |
def attention_decoder_cell_fn(decoder_rnn_cell, memories, attention_type,
decoder_type, decoder_num_units, decoder_dropout,
mode, batch_size, beam_width=1, decoder_initial_state=None, reuse=False):
"""Create an decoder cell with attention. It takes decoder cell as argument
Args:
- memories: (encoder_outputs, encoder_state, input_length) tuple
- attention_type: "luong", "bahdanau"
- mode: "train", "test"
"""
if mode == "train":
beam_width = 1
with tf.variable_scope('attention_decoder_cell', reuse=reuse):
attention_mechanisms = []
attention_layers = []
for idx, (encoder_outputs, encoder_state, input_length) in enumerate(memories):
# Tile batch for beam search, if beam_width == 1, then nothing happens
encoder_outputs, input_length, encoder_state, beam_batch_size = prepare_beam_search_decoder_inputs(
beam_width, encoder_outputs, input_length, encoder_state, batch_size)
# Temporal attention along time step
if attention_type == "luong":
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
decoder_num_units, memory=encoder_outputs, memory_sequence_length=input_length)
elif attention_type == "bahdanau":
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(
decoder_num_units, memory=encoder_outputs, memory_sequence_length=input_length)
attention_layer = tf.layers.Dense(decoder_num_units, name="{}th_attention".format(idx),
use_bias=False, dtype=tf.float32, _reuse=reuse)
attention_mechanisms.append(attention_mechanism)
attention_layers.append(attention_layer)
#decoder_rnn_cell = single_rnn_cell(decoder_type, decoder_num_units, decoder_dropout, mode, reuse=reuse)
attention_rnn_cell = tf.contrib.seq2seq.AttentionWrapper(
decoder_rnn_cell, attention_mechanisms, attention_layer=attention_layers,
initial_cell_state=None, name="AttentionWrapper")
# Set decoder initial state
initial_state = attention_rnn_cell.zero_state(dtype=tf.float32, batch_size=beam_batch_size)
if decoder_initial_state:
decoder_initial_state = tf.contrib.seq2seq.tile_batch(decoder_initial_state, multiplier=beam_width)
initial_state = initial_state.clone(cell_state=decoder_initial_state)
return attention_rnn_cell, initial_state | 4,555 |
def scan_recurse(path: PrettyPath, _resolved: ResolvedDotfilesJson) -> ActionResult:
"""Scan action: Recurse into this directory for more dotfiles.
""" | 4,556 |
def test_json_to_spark_schema_invalid(invalid_schema, missed_key):
"""json_to_spark_schema should raise KeyError for missing key."""
# Arrange & Act
with pytest.raises(KeyError) as key_error:
json_to_spark_schema(create_json_schema(invalid_schema))
# Assert
assert "Missing key: '{0}'. Valid format: {1}".format(
missed_key, "All schema columns must have a name, type and nullable key"
) in str(key_error) | 4,557 |
async def post_user_income(user: str, income: Income):
"""
This functions create a new income in the DB. It checks whether
the user exists and returns a message in case no user exists.
In the other case, creates a new document in DB with the users
new Income.
user: users uuid.
income: Income (check pyndatic model) parameters to save in DB.
"""
user_bool = user_exist(user)
if user_bool:
income_created = await create_new_income(income)
if income_created:
return {"Message": "sucesful", "payload": "Income creates sucessfully."}
else:
return {"Message": "error", "payload": "There was an error creating Income."}
else:
return {"Message": "error", "payload": "User not found."} | 4,558 |
def process_axfr_response(origin, nameserver, owner, overwrite=False):
"""
origin: string domain name
nameserver: IP of the DNS server
"""
origin = Name((origin.rstrip('.') + '.').split('.'))
axfr_query = dns.query.xfr(nameserver, origin, timeout=5, relativize=False, lifetime=10)
try:
zone = dns.zone.from_xfr(axfr_query, relativize=False)
if not str(zone.origin).rstrip('.'):
raise UnknownOrigin
process_and_import_zone_data(zone, owner, overwrite)
except NoSOA:
raise Exception('The zone has no SOA RR at its origin')
except NoNS:
raise Exception('The zone has no NS RRset at its origin')
except UnknownOrigin:
raise Exception('The zone\'s origin is unknown')
except BadZone:
raise Exception('The zone is malformed')
except DNSException, e:
if not str(e):
raise Exception('Transfer Failed')
raise Exception(str(e)) | 4,559 |
def bind_rng_to_host_device(rng: jnp.ndarray,
axis_name: str,
bind_to: Optional[str] = None) -> jnp.ndarray:
"""Binds a rng to the host/device we are on.
Must be called from within a pmapped function. Note that when binding to
"device", we also bind the rng to hosts, as we fold_in the rng with axis_index
which is unique for devices across all hosts.
Args:
rng: A jax.random.PRNGKey.
axis_name: The axis of the devices we are binding rng across.
bind_to: Must be one of the 'host' or 'device'. None means no binding.
Returns:
jax.random.PRNGKey specialized to host/device.
"""
if bind_to is None:
return rng
if bind_to == 'host':
return jax.random.fold_in(rng, jax.process_index())
elif bind_to == 'device':
return jax.random.fold_in(rng, jax.lax.axis_index(axis_name))
else:
raise ValueError(
"`bind_to` should be one of the `[None, 'host', 'device']`") | 4,560 |
async def snobpic(ctx):
"""command for personalised profile picture, input a color (RGB or HEX) output a reply with the profile picture"""
await snobBot.snobpic(ctx) | 4,561 |
def get_child_ids(pid, models, myself=True, ids: set = None) -> set:
"""
获取models模型的子id集合
:param pid: models模型类ID
:param models: models模型对象
:param myself: 是否包含pid
:param ids: 所有ID集合(默认为None)
:return: ids(所有ID集合)
"""
if ids is None:
ids = set()
queryset = models.objects.filter(pid=pid)
for instance in queryset:
ids.add(instance.id)
get_child_ids(instance.id, models, myself, ids)
if myself:
ids.add(pid)
return ids | 4,562 |
def get_tenant_id(khoros_object, community_details=None):
"""This function retrieves the tenant ID of the environment.
.. versionadded:: 2.1.0
:param khoros_object: The core :py:class:`khoros.Khoros` object
:type khoros_object: class[khoros.Khoros]
:param community_details: Dictionary containing community details (optional)
:type community_details: dict, None
:returns: The tenant ID in string format
:raises: :py:exc:`khoros.errors.exceptions.GETRequestError`
"""
return get_community_field(khoros_object, 'id', community_details) | 4,563 |
def pretty_print_output(critter, matches, contigs, pd, mc, mp):
"""Write some nice output to stdout"""
unique_matches = sum([1 for node, uce in matches.iteritems()])
out = "\t {0}: {1} ({2:.2f}%) uniques of {3} contigs, {4} dupe probe matches, " + \
"{5} UCE probes matching multiple contigs, {6} contigs matching multiple UCE probes"
print out.format(
critter,
unique_matches,
float(unique_matches) / contigs * 100,
contigs,
len(pd),
len(mp),
len(mc)
) | 4,564 |
def obfuscatable_variable(tokens, index):
"""
Given a list of *tokens* and an *index* (representing the current position),
returns the token string if it is a variable name that can be safely
obfuscated.
Returns '__skipline__' if the rest of the tokens on this line should be skipped.
Returns '__skipnext__' if the next token should be skipped.
If *ignore_length* is ``True``, even variables that are already a single
character will be obfuscated (typically only used with the ``--nonlatin``
option).
"""
tok = tokens[index]
token_type = tok[0]
token_string = tok[1]
line = tok[4]
if token_type != tokenize.NAME:
return None # Skip this token
if token_string in analyze.storageLocation_scope_words:
return None # Skip this token
if token_string == "pragma" or token_string == "import":
return "__skipline__"
if token_string == '_':
return None
# skipnext = ['(', ')', '{', '}', ';']
# if token_string in skipnext:
# return '__skipnext__'
if index > 0:
prev_tok = tokens[index-1]
else: # Pretend it's a newline (for simplicity)
prev_tok = (54, '\n', (1, 1), (1, 2), '#\n')
prev_tok_type = prev_tok[0]
prev_tok_string = prev_tok[1]
if index > 1:
pre_prev_tok = tokens[index-2]
else: # Pretend it's a newline (for simplicity)
pre_prev_tok = (54, '\n', (1, 1), (1, 2), '#\n')
pre_prev_tok_type = pre_prev_tok[0]
pre_prev_tok_string = pre_prev_tok[1]
try:
next_tok = tokens[index+1]
except IndexError: # Pretend it's a newline
next_tok = (54, '\n', (1, 1), (1, 2), '#\n')
next_tok_string = next_tok[1]
# if token_string == "=":
# return '__skipline__'
if prev_tok_string == '.' and pre_prev_tok_string in ('msg', 'abi', 'block', 'tx'):
return None
if prev_tok_string == '.' and token_string in ('balance', 'send', 'transfer'):
return None
#if token_string.startswith('__'):
# return None
if next_tok_string == ".":
if token_string in analyze.global_variable:
return None
#if prev_tok_string == 'import':
# return '__skipline__'
# if prev_tok_string == ".":
# return '__skipnext__'
if prev_tok_string in analyze.type_words: # declare variable
return token_string
if prev_tok_string in analyze.storageLocation_scope_words and pre_prev_tok_string in analyze.type_words: # declare variable
return token_string
if token_string[0:5] == 'fixed' or token_string[0:6] =='ufixed':
return None
if prev_tok_string[0:5] =='fixed' or prev_tok_string[0:6] =='ufixed': # declare variable
return token_string
if pre_prev_tok_string[0:5] =='fixed' or pre_prev_tok_string[0:6] =='ufixed':
if prev_tok_string in analyze.storageLocation_scope_words: # declare variable
return token_string
# if token_string == ']' and prev_tok_string == '[':
# if next_tok_string in analyze.storageLocation_scope_words:
# return '__skipnext__'
# if prev_tok_string == "for":
# if len(token_string) > 2:
# return token_string
if token_string in analyze.reserved_words:
return None
# if token_string in keyword_args.keys():
# return None
# if prev_tok_type != tokenize.INDENT and next_tok_string != '=':
# return '__skipline__'
# if not ignore_length:
# if len(token_string) < 3:
# return None
# if token_string in RESERVED_WORDS:
# return None
return token_string | 4,565 |
def concat_data(labelsfile, notes_file):
"""
INPUTS:
labelsfile: sorted by hadm id, contains one label per line
notes_file: sorted by hadm id, contains one note per line
"""
with open(labelsfile, 'r') as lf:
print("CONCATENATING")
with open(notes_file, 'r') as notesfile:
outfilename = '%s/notes_labeled.csv' % MIMIC_3_DIR
with open(outfilename, 'w') as outfile:
w = csv.writer(outfile)
w.writerow(['SUBJECT_ID', 'HADM_ID', 'TEXT', 'LABELS'])
labels_gen = next_labels(lf)
notes_gen = next_notes(notesfile)
for i, (subj_id, text, hadm_id) in enumerate(notes_gen):
if i % 10000 == 0:
print(str(i) + " done")
cur_subj, cur_labels, cur_hadm = next(labels_gen)
if cur_hadm == hadm_id:
w.writerow([subj_id, str(hadm_id), text, ';'.join(cur_labels)])
else:
print("couldn't find matching hadm_id. data is probably not sorted correctly")
break
return outfilename | 4,566 |
def replace_text_comment(comments, new_text):
"""Replace "# text = " comment (if any) with one using new_text instead."""
new_text = new_text.replace('\n', ' ') # newlines cannot be represented
new_text = new_text.strip(' ')
new_comments, replaced = [], False
for comment in comments:
if comment.startswith('# text ='):
new_comments.append('# text = {}'.format(new_text))
replaced = True
else:
new_comments.append(comment)
if not replaced:
new_comments.append('# text = {}'.format(new_text))
return new_comments | 4,567 |
def mkSmartMask(**kwargs):
"""Routine to produce sky maps, according to defined macro-bins.
"""
logger.info('SmartMask production...')
assert(kwargs['config'].endswith('.py'))
get_var_from_file(kwargs['config'])
macro_bins = data.MACRO_BINS
mask_label = data.MASK_LABEL
in_labels_list = data.IN_LABELS_LIST
micro_bin_file = data.MICRO_BINS_FILE
emin, emax, emean = get_energy_from_fits(micro_bin_file, \
minbinnum=macro_bins[0][0], maxbinnum=macro_bins[-1][1])
E_MIN, E_MAX = emin[0], emax[-1]
logger.info('Checking PSF file...')
PSF_FILE = kwargs['psffile']
if PSF_FILE is not None:
logger.info('Using %s'%PSF_FILE)
else:
logger.info('ATT: File not found: %s'%PSF_FILE)
logger.info('Creating PSF file with gtpsf...')
try:
IRFS = kwargs['irfs']
except:
logger.info('ERROR: provide IRFS!')
sys.exit()
try:
EVTYPE = kwargs['evtype']
except:
logger.info('ERROR: provide event type!')
sys.exit()
try:
LT_FILE = data.LT_FILE
except:
LT_FILE = ''
if os.path.exists(LT_FILE):
logger.info('Livetime file found.')
else:
try:
LT_FILE = kwargs['ltfile']
except:
logger.info('ERROR: provide livetime file or list!')
sys.exit()
if LT_FILE.lower().endswith(('.txt', '.dat')):
lt_dict = {'infile1' : LT_FILE,
'outfile' : 'DEFAULT',
'chatter': 4,
'clobber': 'no'}
from Xgam.utils.ScienceTools_ import gtltsum
label_lt = IRFS + '_evt' + str(EVTYPE)
out_gtltsum = gtltsum(label_lt,lt_dict)
expcube = out_gtltsum
else:
expcube = LT_FILE
from Xgam.utils.ScienceTools_ import gtpsf
label_psf = IRFS + '_evt' + str(EVTYPE)
psf_dict = {'expcube' : expcube,
'outfile' : 'DEFAULT',
'irfs' : IRFS,
'evtype' : EVTYPE,
'ra' : 45.0,
'dec' : 45.0,
'emin' : E_MIN,
'emax' : E_MAX,
'nenergies' : 500,
'thetamax' : 30.0,
'ntheta' : 100,
'chatter': 4,
'clobber': 'no'}
PSF_FILE = gtpsf(label_psf, psf_dict)
#NOTE: IMPLEMENT TYPE2 ??
if kwargs['typesrcmask'] == 1:
from Xgam.utils.mkmask_ import mask_src_fluxPSFweighted_1 as mask_src
else:
from Xgam.utils.mkmask_ import mask_src_fluxPSFweighted_2 as mask_src
from Xgam.utils.mkmask_ import mask_gp
from Xgam.utils.parsing_ import get_psf_en_univariatespline
nside = kwargs['nside']
out_label = kwargs['outflabel']
npix = hp.nside2npix(nside)
src_cat = kwargs['srccat']
src_ext_cat = kwargs['srcextcat']
out_name_list = os.path.join(X_OUT, 'fits/MaskSmart_'+out_label+'_list.txt')
out_list = []
for i, (minb, maxb) in enumerate(macro_bins):
logger.info('Considering bins from %i to %i...' %(minb, maxb))
emin, emax, emean = get_energy_from_fits(micro_bin_file, minbinnum=minb, maxbinnum=maxb)
E_MIN, E_MAX = emin[0], emax[-1]
E_MEAN = np.sqrt(emax[0]*emin[-1])
logger.info('Energies %.1f - %.1f [MeV]' %(E_MIN, E_MAX))
out_name = os.path.join(X_OUT, 'fits/MaskSmart_'+out_label+'_%.1f_MeV.fits'%(E_MIN))
out_list.append(out_name)
if os.path.exists(out_name) and not kwargs['overwrite']:
logger.info('ATT: %s already exists! \n'%out_name)
else:
bad_pix = []
mask = np.ones(npix)
bad_pix += mask_gp(kwargs['gpcut'], nside)
psf_spline = get_psf_en_univariatespline(PSF_FILE)
bad_pix += mask_src(src_cat, src_ext_cat, psf_spline, E_MIN, nside)
for bpix in np.unique(bad_pix):
mask[bpix] = 0
if not os.path.exists(os.path.join(X_OUT, 'fits')):
os.system('mkdir %s' %os.path.join(X_OUT, 'fits'))
fsky = 1-(len(np.unique(bad_pix))/float(npix))
logger.info('fsky = %.3f'%fsky)
hp.write_map(out_name, mask, coord='G', overwrite=True)
logger.info('Created %s \n' %out_name)
if kwargs['show'] == True:
import matplotlib.pyplot as plt
hp.mollview(mask, cmap='bone')
plt.show()
logger.info('Writing list of output files: %s'%out_name_list)
np.savetxt(out_name_list, out_list, fmt='%s')
logger.info('Done!') | 4,568 |
def init_show_booking_loader(response, item=None):
"""
init ShowingBookingLoader with optional ShowingBooking item
"""
loader = ShowingBookingLoader(response=response)
if item:
loader.add_value(None, item)
return loader | 4,569 |
def main(args):
"""Entry point"""
args.entry_point(args) | 4,570 |
def get_dpifac():
"""get user dpi, source: node_wrangler.py"""
prefs = bpy.context.preferences.system
return prefs.dpi * prefs.pixel_size / 72 | 4,571 |
def seq_row(
repeats: int = 1,
trigger: str = Trigger.IMMEDIATE,
position: int = 0,
half_duration: int = MIN_PULSE,
live: int = 0,
dead: int = 0,
) -> List:
"""Create a 50% duty cycle pulse with phase1 having given live/dead values"""
row = [
repeats,
trigger,
position,
# Phase1
half_duration,
live,
dead,
0,
0,
0,
0,
# Phase2
half_duration,
0,
0,
0,
0,
0,
0,
]
return row | 4,572 |
def github_repos(message):
"""
リポジトリの一覧を返す
"""
text = ""
for repo in org.get_repos():
text += "- <{}|{}> {}\n".format(repo.html_url,
repo.name,
repo.description)
attachments = [{
'pretext': '{} のリポジトリ一覧'.format(settings.GITHUB_ORGANIZATION),
'text': text,
'mrkdwn_in': ['text'],
}]
botwebapi(message, attachments) | 4,573 |
def call_nelder_mead_method(
f,
verts,
x_tolerance=1e-6,
y_tolerance=1e-6,
computational_budget=1000,
f_difference=10,
calls=0,
terminate_criterion=terminate_criterion_x,
alpha=1,
gamma=2,
rho=0.5,
sigma=0.5,
values=[],
):
"""Return an approximation of a local optimum.
Args:
f: a real valued n_dimensional function
verts: an array with n+1 n-dimensional vectors
dim: a integer (equal to n)
f_difference: the difference between the last and second last best approximation
calls: the number of evaluations of f so far
terminate_criterion: the termination criterion we are using (a function that returns a boolean)
x_tolerance: A positive real number
y_tolerance: A positive real number
computational_budget: An integer: the maximum number of funciton evaluations
alpha, gamma, rho, sigma: positive real numbers that influence how the algorithms behaves
values: previously evaluated function values
Returns:
out_1: an approximation of a local optimum of the function
out_2: number of evaluations of f
"""
# Pseudo code can be found on: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
# 0 Order
if values == []:
values = np.array([f(vert) for vert in verts])
calls = calls + len(verts)
indexes = np.argsort(values)
x_0 = np.array([0, 0])
for index in indexes[:-1]:
x_0 = x_0 + verts[index]
x_0 = x_0 / (len(verts) - 1)
x_r = x_0 + alpha * (x_0 - verts[indexes[-1]])
x_e = x_0 + gamma * (x_r - x_0)
x_c = x_0 + rho * (verts[indexes[-1]] - x_0)
# 1 Termination
if (
terminate_criterion(verts, f_difference, x_tolerance, y_tolerance)
or f_difference < y_tolerance
or calls >= computational_budget
):
return [np.array(np.round(verts[indexes[0]])), calls]
# 3 Reflection
f_x_r = f(x_r)
calls += 1
if values[indexes[0]] <= f_x_r:
if f_x_r < values[indexes[-2]]:
f_difference = abs(f_x_r - values[indexes[0]])
values[indexes[-1]] = f_x_r
return call_nelder_mead_method(
f,
nm_replace_final(verts, indexes, x_r),
x_tolerance,
y_tolerance,
computational_budget,
f_difference,
calls,
terminate_criterion,
alpha,
gamma,
rho,
sigma,
values,
)
# 4 Expansion
if f_x_r < values[indexes[0]]:
# x_e = x_0 + gamma * (x_r - x_0)
f_x_e = f(x_e)
calls += 1
if f_x_e < f_x_r:
f_difference = abs(f_x_e - values[indexes[0]])
values[indexes[-1]] = f_x_e
return call_nelder_mead_method(
f,
nm_replace_final(verts, indexes, x_e),
x_tolerance,
y_tolerance,
computational_budget,
f_difference,
calls,
terminate_criterion,
alpha,
gamma,
rho,
sigma,
values,
)
else:
f_difference = abs(f_x_r - values[indexes[0]])
values[indexes[-1]] = f_x_r
return call_nelder_mead_method(
f,
nm_replace_final(verts, indexes, x_r),
x_tolerance,
y_tolerance,
computational_budget,
f_difference,
calls,
terminate_criterion,
alpha,
gamma,
rho,
sigma,
values,
)
# 5 Contraction
# x_c = x_0 + rho * (verts[indexes[-1]] - x_0)
f_x_c = f(x_c)
if f_x_c < f(verts[indexes[-1]]):
calls += 1
f_difference = abs(f_x_c - values[indexes[0]])
values[indexes[-1]] = f_x_c
return call_nelder_mead_method(
f,
nm_replace_final(verts, indexes, x_c),
x_tolerance,
y_tolerance,
computational_budget,
f_difference,
calls,
terminate_criterion,
alpha,
gamma,
rho,
sigma,
values,
)
# 6 Shrink
return call_nelder_mead_method(
f,
nm_shrink(verts, indexes, sigma),
x_tolerance,
y_tolerance,
computational_budget,
f_difference,
calls,
terminate_criterion,
alpha,
gamma,
rho,
sigma,
values,
) | 4,574 |
def get_auth_claims_from_request(request):
"""Authenticates the request and returns claims about its authorizer.
Oppia specifically expects the request to have a Subject Identifier for the
user (Claim Name: 'sub'), and an optional custom claim for super-admin users
(Claim Name: 'role').
Args:
request: webapp2.Request. The HTTP request to authenticate.
Returns:
AuthClaims|None. Claims about the currently signed in user. If no user
is signed in, then returns None.
"""
claims = _verify_id_token(request.headers.get('Authorization', ''))
auth_id = claims.get('sub', None)
email = claims.get('email', None)
role_is_super_admin = (
claims.get('role', None) == feconf.FIREBASE_ROLE_SUPER_ADMIN)
if auth_id:
return auth_domain.AuthClaims(auth_id, email, role_is_super_admin)
return None | 4,575 |
def decrypt(**kwargs):
"""
Returns a CryptoResult containing decrypted bytes.
This function requires that 'data' is in the format generated by the
encrypt functionality in this SDK as well as other OCI SDKs that support
client side encryption.
Note this function cannot decrypt data encrypted by the KMS 'encrypt' APIs.
:param oci.encryption.MasterKeyProvider master_key_provider: (required)
A MasterKeyProvider to use for decrypting the data.
:param bytes data: (required)
The data to be decrypted. If a string is passed, it will be converted to
bytes using UTF-8 encoding. Note that this conversion will require creating
a copy of the data which may be undesirable for large payloads.
:rtype: oci.encryption.CryptoResult
"""
_ensure_required_kwargs_present(required_kwargs=['master_key_provider', 'data'], provided_kwargs=kwargs)
# leaves input alone if it is alread bytes, otherwise converts to bytes using default encoding
# this is for convenience of the caller, but will create a copy of the data if it is not already a
# bytes-like object
data = convert_to_bytes(kwargs.get('data'))
# as long as we only read from the stream, BytesIO does not create a copy of the data so this doesn't
# add memory overhead
with io.BytesIO(data) as stream_to_decrypt:
decryptor = StreamDecryptor(
stream_to_decrypt=stream_to_decrypt, master_key_provider=kwargs.get('master_key_provider')
)
return CryptoResult(data=decryptor.read(), encryption_context=decryptor.get_encryption_context()) | 4,576 |
def format_result(result: Union[Pose, PackedPose]) -> Tuple[str, Dict[Any, Any]]:
"""
:param: result: Pose or PackedPose object.
:return: tuple of (pdb_string, metadata)
Given a `Pose` or `PackedPose` object, return a tuple containing
the pdb string and a scores dictionary.
"""
_pdbstring = io.to_pdbstring(result)
_scores_dict = io.to_dict(result)
_scores_dict.pop("pickled_pose", None)
return (_pdbstring, _scores_dict) | 4,577 |
def str_array( listString):
"""
Becase the way tha Python prints an array is different from CPLEX,
this function goes the proper CPLEX writing of Arrays
:param listString: A list of values
:type listString: List[]
:returns: The String printing of the array, in CPLEX format
:rtype: String
"""
ret = "{"
for i in range(0, len(listString)-1):
ret = ret + "\"" + listString[i] + "\","
ret = ret + "\"" + listString[i] + "\"}"
return ret | 4,578 |
def read_gene_annos(phenoFile):
"""Read in gene-based metadata from an HDF5 file
Args:
phenoFile (str): filename for the relevant HDF5 file
Returns:
dictionary with feature annotations
"""
fpheno = h5py.File(phenoFile,'r')
# Feature annotations:
geneAnn = {}
for key in fpheno['gene_info'].keys():
geneAnn[key] = fpheno['gene_info'][key][:]
fpheno.close()
return geneAnn | 4,579 |
def update_rating_deviation(session_id, dict):
"""
updates the rating_deviations of music genres in the database with new ratings_deviations as a Json(dict)
Args:
session_id (int): id of a user's session
dict (dict): dictionary of rating_deviations
"""
cursor, connection = open_db_connection()
cursor.execute(
f"update session_ranking_data set rating_deviation_dict = {Json(dict)} where session_id = {session_id}")
close_db_connection(cursor, connection) | 4,580 |
def cache(builds, cache_dir, ssl_verify=True):
"""
Download all the builds' artifacts into our cache directory.
:param set builds: set of Build objects
:param str cache_dir: path to a destination directory
:param ssl_verify: verify HTTPS connection or not (default: True)
"""
session = requests.Session()
session.verify = ssl_verify
for build in builds:
for binary in build.binaries:
binary.download(cache_dir, session=session)
for source in build.sources:
source.download(cache_dir, session=session) | 4,581 |
def hex_xformat_decode(s: str) -> Optional[bytes]:
"""
Reverse :func:`hex_xformat_encode`.
The parameter is a hex-encoded BLOB like
.. code-block:: none
"X'CDE7A24B1A9DBA3148BCB7A0B9DA5BB6A424486C'"
Original purpose and notes:
- SPECIAL HANDLING for BLOBs: a string like ``X'01FF'`` means a hex-encoded
BLOB. Titanium is rubbish at BLOBs, so we encode them as special string
literals.
- SQLite uses this notation: https://sqlite.org/lang_expr.html
- Strip off the start and end and convert it to a byte array:
http://stackoverflow.com/questions/5649407
"""
if len(s) < 3 or not s.startswith("X'") or not s.endswith("'"):
return None
return binascii.unhexlify(s[2:-1]) | 4,582 |
def threshold(data, direction):
"""
Find a suitable threshold value which maximizes explained variance of the data projected onto direction.
NOTE: the chosen hyperplane would be described mathematically as $ x \dot direction = threshold $.
"""
projected_data = np.inner(data, direction)
sorted_x = np.sort(projected_data)
best_sep_index = explained_variance_list(sorted_x).argmax()
return (sorted_x[best_sep_index] + sorted_x[best_sep_index + 1]) / 2 | 4,583 |
def StrType_any(*x):
""" Ignores all parameters to return a StrType """
return StrType() | 4,584 |
def _download(url, dest, timeout=30):
"""Simple HTTP/HTTPS downloader."""
# Optional import: requests is not needed for local big data setup.
import requests
dest = os.path.abspath(dest)
with requests.get(url, stream=True, timeout=timeout) as r:
with open(dest, 'w+b') as data:
for chunk in r.iter_content(chunk_size=0x4000):
data.write(chunk)
return dest | 4,585 |
def height(tree):
"""Return the height of tree."""
if tree.is_empty():
return 0
else:
return 1+ max(height(tree.left_child()),\
height(tree.right_child())) | 4,586 |
def applyTelluric(model, tell_alpha=1.0, airmass=1.5, pwv=0.5):
"""
Apply the telluric model on the science model.
Parameters
----------
model : model object
BT Settl model
alpha : float
telluric scaling factor (the power on the flux)
Returns
-------
model : model object
BT Settl model times the corresponding model
"""
# read in a telluric model
wavelow = model.wave[0] - 10
wavehigh = model.wave[-1] + 10
#telluric_model = smart.getTelluric(wavelow=wavelow, wavehigh=wavehigh, alpha=alpha, airmass=airmass)
telluric_model = smart.Model()
telluric_model.wave, telluric_model.flux = smart.InterpTelluricModel(wavelow=wavelow, wavehigh=wavehigh, airmass=airmass, pwv=pwv)
# apply the telluric alpha parameter
telluric_model.flux = telluric_model.flux**(tell_alpha)
#if len(model.wave) > len(telluric_model.wave):
# print("The model has a higher resolution ({}) than the telluric model ({})."\
# .format(len(model.wave),len(telluric_model.wave)))
# model.flux = np.array(smart.integralResample(xh=model.wave,
# yh=model.flux, xl=telluric_model.wave))
# model.wave = telluric_model.wave
# model.flux *= telluric_model.flux
#elif len(model.wave) < len(telluric_model.wave):
## This should be always true
telluric_model.flux = np.array(smart.integralResample(xh=telluric_model.wave, yh=telluric_model.flux, xl=model.wave))
telluric_model.wave = model.wave
model.flux *= telluric_model.flux
#elif len(model.wave) == len(telluric_model.wave):
# model.flux *= telluric_model.flux
return model | 4,587 |
def max_power_rule(mod, g, tmp):
"""
**Constraint Name**: DAC_Max_Power_Constraint
**Enforced Over**: DAC_OPR_TMPS
Power consumption cannot exceed capacity.
"""
return (
mod.DAC_Consume_Power_MW[g, tmp]
<= mod.Capacity_MW[g, mod.period[tmp]] * mod.Availability_Derate[g, tmp]
) | 4,588 |
async def list_subs(request: Request):
"""
List all subscription objects
"""
# Check for master token
if not request.headers.get("Master") == os.environ.get("MASTER_TOKEN"):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication token",
)
subs = await engine.find(Subscription)
return subs | 4,589 |
def check_archs(
copied_libs, # type: Mapping[Text, Mapping[Text, Text]]
require_archs=(), # type: Union[Text, Iterable[Text]]
stop_fast=False, # type: bool
):
# type: (...) -> Set[Union[Tuple[Text, FrozenSet[Text]], Tuple[Text, Text, FrozenSet[Text]]]] # noqa: E501
"""Check compatibility of archs in `copied_libs` dict
Parameters
----------
copied_libs : dict
dict containing the (key, value) pairs of (``copied_lib_path``,
``dependings_dict``), where ``copied_lib_path`` is a library real path
that has been copied during delocation, and ``dependings_dict`` is a
dictionary with key, value pairs where the key is a path in the target
being delocated (a wheel or path) depending on ``copied_lib_path``, and
the value is the ``install_name`` of ``copied_lib_path`` in the
depending library.
require_archs : str or sequence, optional
Architectures we require to be present in all library files in wheel.
If an empty sequence, just check that depended libraries do have the
architectures of the depending libraries, with no constraints on what
these architectures are. If a sequence, then a set of required
architectures e.g. ``['i386', 'x86_64']`` to specify dual Intel
architectures. If a string, then a standard architecture name as
returned by ``lipo -info``, or the string "intel", corresponding to the
sequence ``['i386', 'x86_64']``, or the string "universal2",
corresponding to ``['x86_64', 'arm64']``.
stop_fast : bool, optional
Whether to give up collecting errors after the first
Returns
-------
bads : set
set of length 2 or 3 tuples. A length 2 tuple is of form
``(depending_lib, missing_archs)`` meaning that an arch in
`require_archs` was missing from ``depending_lib``. A length 3 tuple
is of form ``(depended_lib, depending_lib, missing_archs)`` where
``depended_lib`` is the filename of the library depended on,
``depending_lib`` is the library depending on ``depending_lib`` and
``missing_archs`` is a set of missing architecture strings giving
architectures present in ``depending_lib`` and missing in
``depended_lib``. An empty set means all architectures were present as
required.
"""
if isinstance(require_archs, str):
require_archs = _ARCH_LOOKUP.get(require_archs, [require_archs])
require_archs_set = frozenset(require_archs)
bads = (
[]
) # type: List[Union[Tuple[Text, FrozenSet[Text]], Tuple[Text, Text, FrozenSet[Text]]]] # noqa: E501
for depended_lib, dep_dict in copied_libs.items():
depended_archs = get_archs(depended_lib)
for depending_lib, install_name in dep_dict.items():
depending_archs = get_archs(depending_lib)
all_required = depending_archs | require_archs_set
all_missing = all_required.difference(depended_archs)
if len(all_missing) == 0:
continue
required_missing = require_archs_set.difference(depended_archs)
if len(required_missing):
bads.append((depending_lib, required_missing))
else:
bads.append((depended_lib, depending_lib, all_missing))
if stop_fast:
return set(bads)
return set(bads) | 4,590 |
def create_data_table(headers, columns, match_tol=20) -> pd.DataFrame:
"""Based on headers and column data, create the data table."""
# Store the bottom y values of all of the row headers
header_tops = np.array([h.top for h in headers])
# Set up the grid: nrows by ncols
nrows = len(headers)
ncols = len(columns) + 1
# Initialize the grid
grid = np.empty((nrows, ncols), dtype=object)
grid[:, :] = "" # Default value
# Add in the headers
grid[:, 0] = [h.text for h in headers]
# Loop over each column
for col_num, xval in enumerate(columns):
col = columns[xval]
word_tops = np.array([w.top for w in col])
# Find closest row header
for row_num, h in enumerate(headers):
# Find closest word ot this row heasder
word_diff = np.abs(word_tops - h.top)
word_diff[word_diff > match_tol] = np.nan
# Make sure the row header is vertically close enough
if np.isnan(word_diff).sum() < len(word_diff):
# Get the matching word for this row header
notnull = ~np.isnan(word_diff)
order = np.argsort(word_diff[notnull])
for word_index in np.where(notnull)[0][order]:
word = col[word_index]
# IMPORTANT: make sure this is the closest row header
# Sometimes words will match to more than one header
header_diff = np.abs(header_tops - word.top)
header_index = np.argmin(header_diff)
closest_header = headers[header_index]
if closest_header == h:
grid[row_num, col_num + 1] = col[word_index].text
break
return pd.DataFrame(grid) | 4,591 |
def interp2d_vis(model, model_lsts, model_freqs, data_lsts, data_freqs, flags=None,
kind='cubic', flag_extrapolate=True, medfilt_flagged=True, medfilt_window=(3, 7),
fill_value=None):
"""
Interpolate complex visibility model onto the time & frequency basis of
a data visibility. See below for notes on flag propagation if flags is provided.
Parameters:
-----------
model : type=DataContainer, holds complex visibility for model
keys are antenna-pair + pol tuples, values are 2d complex visibility
with shape (Ntimes, Nfreqs).
model_lsts : 1D array of the model time axis, dtype=float, shape=(Ntimes,)
model_freqs : 1D array of the model freq axis, dtype=float, shape=(Nfreqs,)
data_lsts : 1D array of the data time axis, dtype=float, shape=(Ntimes,)
data_freqs : 1D array of the data freq axis, dtype=float, shape=(Nfreqs,)
flags : type=DataContainer, dictionary containing model flags. Can also contain model wgts
as floats and will convert to booleans appropriately.
kind : type=str, kind of interpolation, options=['linear', 'cubic', 'quintic']
medfilt_flagged : type=bool, if True, before interpolation, replace flagged pixels with output from
a median filter centered on each flagged pixel.
medfilt_window : type=tuple, extent of window for median filter across the (time, freq) axes.
Even numbers are rounded down to odd number.
flag_extrapolate : type=bool, flag extrapolated data_lsts if True.
fill_value : type=float, if fill_value is None, extrapolated points are extrapolated
else they are filled with fill_value.
Output: (new_model, new_flags)
-------
new_model : interpolated model, type=DataContainer
new_flags : flags associated with interpolated model, type=DataContainer
Notes:
------
If the data has flagged pixels, it is recommended to turn medfilt_flagged to True. This runs a median
filter on the flagged pixels and replaces their values with the results, but they remain flagged.
This happens *before* interpolation. This means that interpolation near flagged pixels
aren't significantly biased by their presence.
In general, if flags are fed, flags are propagated if a flagged pixel is a nearest neighbor
of an interpolated pixel.
"""
# make flags
new_model = odict()
new_flags = odict()
# get nearest neighbor points
freq_nn = np.array(list(map(lambda x: np.argmin(np.abs(model_freqs - x)), data_freqs)))
time_nn = np.array(list(map(lambda x: np.argmin(np.abs(model_lsts - x)), data_lsts)))
freq_nn, time_nn = np.meshgrid(freq_nn, time_nn)
# get model indices meshgrid
mod_F, mod_L = np.meshgrid(np.arange(len(model_freqs)), np.arange(len(model_lsts)))
# raise warning on flags
if flags is not None and medfilt_flagged is False:
print("Warning: flags are fed, but medfilt_flagged=False. \n"
"This may cause weird behavior of interpolated points near flagged data.")
# ensure flags are booleans
if flags is not None:
if np.issubdtype(flags[list(flags.keys())[0]].dtype, np.floating):
flags = DataContainer(odict(list(map(lambda k: (k, ~flags[k].astype(np.bool)), flags.keys()))))
# loop over keys
for i, k in enumerate(list(model.keys())):
# get model array
m = model[k]
# get real and imag separately
real = np.real(m)
imag = np.imag(m)
# median filter flagged data if desired
if medfilt_flagged and flags is not None:
# get extent of window along freq and time
f_ext = int((medfilt_window[1] - 1) / 2.)
t_ext = int((medfilt_window[0] - 1) / 2.)
# set flagged data to nan
real[flags[k]] *= np.nan
imag[flags[k]] *= np.nan
# get flagged indices
f_indices = mod_F[flags[k]]
l_indices = mod_L[flags[k]]
# construct fill arrays
real_fill = np.empty(len(f_indices), np.float)
imag_fill = np.empty(len(f_indices), np.float)
# iterate over flagged data and replace w/ medfilt
for j, (find, tind) in enumerate(zip(f_indices, l_indices)):
tlow, thi = tind - t_ext, tind + t_ext + 1
flow, fhi = find - f_ext, find + f_ext + 1
ll = 0
while True:
# iterate until window has non-flagged data in it
# with a max of 10 iterations
if tlow < 0:
tlow = 0
if flow < 0:
flow = 0
r_med = np.nanmedian(real[tlow:thi, flow:fhi])
i_med = np.nanmedian(imag[tlow:thi, flow:fhi])
tlow -= 2
thi += 2
flow -= 2
fhi += 2
ll += 1
if not (np.isnan(r_med) or np.isnan(i_med)):
break
if ll > 10:
break
real_fill[j] = r_med
imag_fill[j] = i_med
# fill real and imag
real[l_indices, f_indices] = real_fill
imag[l_indices, f_indices] = imag_fill
# flag residual nans
resid_nans = np.isnan(real) + np.isnan(imag)
flags[k] += resid_nans
# replace residual nans
real[resid_nans] = 0.0
imag[resid_nans] = 0.0
# propagate flags to nearest neighbor
if flags is not None:
f = flags[k][time_nn, freq_nn]
# check f is boolean type
if np.issubdtype(f.dtype, np.floating):
f = ~(f.astype(np.bool))
else:
f = np.zeros_like(real, bool)
# interpolate
interp_real = interpolate.interp2d(model_freqs, model_lsts, real, kind=kind, copy=False, bounds_error=False, fill_value=fill_value)(data_freqs, data_lsts)
interp_imag = interpolate.interp2d(model_freqs, model_lsts, imag, kind=kind, copy=False, bounds_error=False, fill_value=fill_value)(data_freqs, data_lsts)
# flag extrapolation if desired
if flag_extrapolate:
time_extrap = np.where((data_lsts > model_lsts.max() + 1e-6) | (data_lsts < model_lsts.min() - 1e-6))
freq_extrap = np.where((data_freqs > model_freqs.max() + 1e-6) | (data_freqs < model_freqs.min() - 1e-6))
f[time_extrap, :] = True
f[:, freq_extrap] = True
# rejoin
new_model[k] = interp_real + 1j * interp_imag
new_flags[k] = f
return DataContainer(new_model), DataContainer(new_flags) | 4,592 |
def eps_divide(n, d, eps=K.epsilon()):
""" perform division using eps """
return (n + eps) / (d + eps) | 4,593 |
def generate_preflib_election(experiment=None, model=None, name=None,
num_voters=None, num_candidates=None, folder=None,
selection_method='random'):
""" main function: generate elections"""
votes = generate_votes_preflib(model, selection_method=selection_method,
num_voters=num_voters, num_candidates=num_candidates,
folder=folder)
path = os.path.join("experiments", experiment.experiment_id, "elections", name + ".soc")
file_ = open(path, 'w')
file_.write(str(num_candidates) + "\n")
for i in range(num_candidates):
file_.write(str(i) + ', c' + str(i) + "\n")
c = Counter(map(tuple, votes))
counted_votes = [[count, list(row)] for row, count in c.items()]
counted_votes = sorted(counted_votes, reverse=True)
file_.write(str(num_voters) + ', ' + str(num_voters) + ', ' + str(len(counted_votes)) + "\n")
for i in range(len(counted_votes)):
file_.write(str(counted_votes[i][0]) + ', ')
for j in range(num_candidates):
file_.write(str(counted_votes[i][1][j]))
if j < num_candidates - 1:
file_.write(", ")
else:
file_.write("\n")
file_.close() | 4,594 |
def display_multi_grid(kline_settings={}):
"""显示多图"""
from vnpy.trader.ui import create_qapp
qApp = create_qapp()
w = GridKline(kline_settings=kline_settings)
w.showMaximized()
sys.exit(qApp.exec_()) | 4,595 |
def test_invalid_interface():
"""An invalid interface should raise a 'ValueError'."""
psutil.net_if_addrs = MagicMock(return_value=test_net_if_addrs)
with pytest.raises(ValueError):
interface_subnets('invalid') | 4,596 |
def bootstrapping_state_tomography(data_dict, keys_in, store_rhos=False,
verbose=False, **params):
"""
Computes bootstrapping statistics of the density matrix fidelity.
:param data_dict: OrderedDict containing thresholded shots specified by
keys_in, and where processed results will be stored
:param keys_in: list of key names or dictionary keys paths in
data_dict for the data to be analyzed (expects thresholded shots)
:param store_rhos: whether to store the density matrices in addition to
the bootstrapping fidelities.
:param verbose: whether to show progress print statements
:param params: keyword arguments
Expects to find either in data_dict or in params:
- Nbstrp: int specifying the number of bootstrapping cycles,
i.e. sample size for estimating errors, the number of times
the raw data is resampled
- timestamps: list of with the timestamps of the state tomo msmt
:return: stores in data_dict:
- {estimation_type}.bootstrapping_fidelities
- (optionally) {estimation_type}.bootstrapping_rhos
for estimation_type in estimation_types
Assumptions:
- CURRENTLY ONLY SUPPORTS DATA FROM HDF FILES!
- !! This function calls state_tomography_analysis so all required input
params needed there must also be here
"""
Nbstrp = hlp_mod.get_param('Nbstrp', data_dict, raise_error=True, **params)
data_to_proc_dict = hlp_mod.get_data_to_process(data_dict, keys_in)
prep_params = hlp_mod.get_param('preparation_params', data_dict,
default_value={}, **params)
preselection = prep_params.get('preparation_type', 'wait') == 'preselection'
n_readouts = hlp_mod.get_param('n_readouts', data_dict, raise_error=True,
**params)
raw_data = np.concatenate([np.reshape(arr, (len(arr), 1))
for arr in data_to_proc_dict.values()],
axis=1)
n_shots = len(raw_data[:, 1]) // n_readouts
timestamp = hlp_mod.get_param('timestamps', data_dict, raise_error=True,
**params)
if len(timestamp) > 1:
raise ValueError(f'Bootstrapping can only be done for one data file. '
f'{len(timestamp)} timestamps were found.')
data_dict_temp = {}
hlp_mod.add_param('cal_points',
hlp_mod.get_param('cal_points', data_dict, **params),
data_dict_temp)
hlp_mod.add_param('meas_obj_value_names_map',
hlp_mod.get_param('meas_obj_value_names_map',
data_dict, **params),
data_dict_temp)
hlp_mod.add_param('preparation_params',
hlp_mod.get_param('preparation_params',
data_dict, **params),
data_dict_temp)
hlp_mod.add_param('rho_target',
hlp_mod.get_param('rho_target', data_dict),
data_dict_temp)
data_dict_temp = dat_extr_mod.extract_data_hdf(timestamps=timestamp,
data_dict=data_dict_temp)
estimation_types = hlp_mod.get_param('estimation_types', data_dict,
default_value=('least_squares',
'max_likelihood'),
**params)
fidelities = {est_type: np.zeros(Nbstrp) for est_type in estimation_types}
if store_rhos:
rhos = {est_type: Nbstrp*[''] for est_type in estimation_types}
params.pop('do_plotting', False)
params.pop('prepare_plotting', False)
replace_value = params.pop('replace_value', False)
# do bootstrapping Nbstrp times
for n in range(Nbstrp):
if verbose:
print('Bootstrapping run state tomo: ', n)
sample_i = bootstrapping(measured_data=raw_data, n_readouts=n_readouts,
n_shots=n_shots, preselection=preselection)
for i, keyi in enumerate(data_to_proc_dict):
hlp_mod.add_param(keyi, sample_i[:, i], data_dict_temp,
add_param_method='replace')
state_tomography_analysis(data_dict_temp, keys_in=keys_in,
do_plotting=False, prepare_plotting=False,
replace_value=True, **params)
for estimation_type in estimation_types:
fidelities[estimation_type][n] = hlp_mod.get_param(
f'{estimation_type}.fidelity', data_dict_temp, raise_error=True)
if store_rhos:
rhos[estimation_type][n] = hlp_mod.get_param(
f'{estimation_type}.rho', data_dict_temp, raise_error=True)
params['replace_value'] = replace_value
hlp_mod.add_param('Nbstrp', Nbstrp, data_dict, **params)
for estimation_type in fidelities:
hlp_mod.add_param(f'{estimation_type}.bootstrapping_fidelities',
fidelities[estimation_type], data_dict, **params)
if store_rhos:
hlp_mod.add_param(f'{estimation_type}.bootstrapping_rhos',
rhos[estimation_type], data_dict, **params) | 4,597 |
def get_mc_uuid(username):
"""Gets the Minecraft UUID for a username"""
url = f"https://api.mojang.com/users/profiles/minecraft/{username}"
res = requests.get(url)
if res.status_code == 204:
raise ValueError("Users must have a valid MC username")
else:
return res.json().get("id") | 4,598 |
def _resolve_credentials(fqdn, login):
"""Look up special forms of credential references."""
result = login
if "$" in result:
result = os.path.expandvars(result)
if result.startswith("netrc:"):
result = result.split(':', 1)[1]
if result:
result = os.path.abspath(os.path.expanduser(result))
accounts = netrc.netrc(result or None)
account = accounts.authenticators(fqdn)
if not account or not(account[0] or account[1]):
raise dputhelper.DputUploadFatalException("Cannot find account for host %s in %s netrc file" % (
fqdn, result or "default"))
# account is (login, account, password)
user, pwd = account[0] or account[1], account[2] or ""
result = "%s:%s" % (user, pwd)
else:
if result.startswith("file:"):
result = os.path.abspath(os.path.expanduser(result.split(':', 1)[1]))
with closing(open(result, "r")) as handle:
result = handle.read().strip()
try:
user, pwd = result.split(':', 1)
except ValueError:
user, pwd = result, ""
trace("Resolved login credentials to %(user)s:%(pwd)s", user=user, pwd='*' * len(pwd))
return result | 4,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.