content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import requests
def query_yelp_lookup(biz_id):
""" Lookup resturant using id """
headers = {'Authorization': ('Bearer '
'w5JFtwCUKq05GlSpm8cKo51dBYDQ6r9tyzo-qRsKt4wDyB5'
'_ro6gW5gnG9hS6bvnNHNxOQLHfw7o_9S1e86nkvgcU7DQI_'
'sM6GVt9rqcq_rRYKtagQrexuH0zsU0WXYx')}
url = 'https://api.yelp.com/v3/businesses/' + biz_id
query = requests.get(url, headers=headers)
return query.json() | ab2087d42833f0092229870ab3208a24bd041b95 | 706,344 |
def northing_and_easting(dictionary):
"""
Retrieve and return the northing and easting strings to be used as
dictionary keys
Parameters
----------
dictionary : dict
Returns
-------
northing, easting : tuple
"""
if not 'x' and 'y' in dictionary.keys():
northing = 'latitude'
easting = 'longitude'
else:
northing = 'x'
easting = 'y'
return northing, easting | 2f41d8b681d27f6ef29265c1945591ea18bba79f | 706,345 |
import sys
def decode_path(name):
""" Attempt to decode path with correct encoding """
return name.decode(sys.getfilesystemencoding()) | 14da12b60c1f734e59ee5daec249c3658f3a23e4 | 706,346 |
import os
import pickle
def save_account(account):
"""
Function that serializes the account such
that it can be saved.
"""
root_dir = "./accounts/"+account.name+"/"
if not os.path.exists(root_dir):
os.makedirs(root_dir)
with open(root_dir+account.name, "wb+") as f:
pickle.dump(account, f)
return 0 | 08e0253764695dd71e767190c70dd32189839988 | 706,347 |
def totaled_no_review_url(cc, sql_time_specification): # pragma: no cover
"""Counts the number of commits with no review url in a given timeframe
Args:
cc(cursor)
sql_time_specification(str): a sql command to limit the dates of the
returned results
Return:
count(int): a count of all commits with no review_url
results(list): a list of lists with all tbr'ed commits with no lgtm in the
format [rietveld_url, git_timestamp, git_subject, git_hash]
"""
cc.execute("""SELECT git_commit.review_url, git_commit.timestamp,
git_commit.subject, git_commit.hash
FROM git_commit
WHERE git_commit.review_url = ''
AND %s""" % sql_time_specification)
result = cc.fetchall()
count = len(result)
formatted_data = []
for data in result:
subject = data[2]
formatted_data.append([data[0], data[1].strftime("%Y-%m-%d %H:%M:%S"),
subject.replace('-', ' '), data[3]])
results = sorted(formatted_data, key=lambda x: x[1], reverse=True)
return count, results | 027f49b13316ecb36eed3e7dde880848b261e3b4 | 706,348 |
def sort(obs, pred):
"""
Return sorted obs and pred time series'
"""
obs = obs.sort_values(ascending=True)
pred = pred.sort_values(ascending=True)
return obs,pred | 11c44c1fd605611a2722321b3c3d58a822b9c643 | 706,349 |
import random
def random_point_of_triangle(vertices):
"""Compute a random point of the triangle with given vertices"""
p, q, r = vertices
pq = q-p
pr = r-p
while True:
x = random.random()
y = random.random()
if x + y <= 1:
return p + pq*x + pr*y | ba3bf9183ddae4a16561a06b6f2455ce0ede6c8f | 706,350 |
import time
def get_minutes(hour:str) -> int:
""" Get total number of minutes from time in %H:%M .
Args:
hour (str): String containing time in 24 hour %H:%M format
Returns:
int: Returns total number of minutes
"""
t = time.strptime(hour, '%H:%M')
minutes = t[3] * 60 + t[4]
return minutes | 069835bdb6b0919d6206e0379a1933986ad2d5bd | 706,351 |
def snr2Ivar(flux, snr):
"""
Estimate the inverse variance given flux and S/N.
Parameters
----------
flux : scalar or array of float
Flux of the obejct.
snr : scalar or array of float
Signal to noise ratio
"""
return 1.0 / ((flux / snr) ** 2.0) | 91c76cd942a8f37f57a227ccb35cf4968a16193b | 706,353 |
import csv
def readCSV(name,shape = [None], delimiter = ","):
""" Lectura de archivo csv name
Devuelve matriz con los datos y cabecera
"""
data = []
with open(name, 'r') as f:
reader = csv.reader(f,delimiter = delimiter)
for row in reader:
data.append(row[slice(*shape)])
return data | 789341daf51b2f1e92086a42698ea0fef1130505 | 706,354 |
import os
import time
def wait_for_save(filename, timeout=5):
"""Waits for FILENAME to update, waiting up to TIMEOUT seconds.
Returns True if a save was detected, and False otherwise.
"""
modification_time = os.path.getmtime(filename)
start_time = time.time()
while time.time() < start_time + timeout:
if (os.path.getmtime(filename) > modification_time and
os.path.getsize(filename) > 0):
return True
time.sleep(0.2)
return False | fa65a638188d32dba9904bb19e2327f5b0390996 | 706,355 |
def preprocess_dataframe(data):
"""Helper method to preprocess the dataframe.
Creates new columns for year,month,recalls and percentage change.
Limits the date range for the experiment (these data are trustworthy)."""
data['recalls'] = data['doc_count'] + 1
data.drop(columns=['product', 'Unnamed: 0', 'key', 'key_as_string', 'doc_count'], inplace=True)
data = data.resample("M").sum()
mask = (data.index > '2007-05-31') & (data.index < '2019-09-30')
data = data.loc[mask]
data['pct'] = data['recalls'].pct_change()
return data | f6670cac1319108c88ee9ee409ce0ecdd1eca746 | 706,356 |
def is_solution(x:int, y:int) -> bool:
"""Returns try if (x, y) is a solution."""
# x and y are the values in a sequence of 15 terms of the following form:
# xxxxyxxxxxyxxxx
# x must be a positive integer
if x <= 0:
return False
# y must be a negative integer
if y >= 0:
return False
# a run of 6 consecutive terms must be positive
if 5 * x + y <= 0:
return False
# a run of 11 consecutive terms must be negative
if 9 * x + 2 * y >= 0:
return False
# x must be <= 16 or y must be >= 16
return x <= 16 or y >= -16 | 5e620fc390f6a79fd25d00c8c8b51d0af788d48c | 706,357 |
def normalize(a, seqlength=None, rv=None):
"""
Normalize the VSA vector
:param a: input VSA vector
:param seqlength: Optional, for BSC vectors must be set to a valid.
:param rv: Optional random vector, used for splitting ties on binary and ternary VSA vectors.
:return: new VSA vector
"""
return a.normalize(a, seqlength, rv) | ef8ec307add55a56be5991bb13579bc989726d3c | 706,358 |
def default_context(plugin, context):
"""
Return the default context for plugins rendered with a template, which
simply is a single variable named ``plugin`` containing the plugin
instance.
"""
return {"plugin": plugin} | 5f7a88c02b6c11a150197e50a5be1847cba422b0 | 706,359 |
import torch
def make_positions(tensor, padding_idx, left_pad):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1.
Padding symbols are ignored, but it is necessary to specify whether padding
is added on the left side (left_pad=True) or right side (left_pad=False).
"""
max_pos = padding_idx + 1 + tensor.size(1)
device = tensor.get_device()
buf_name = f'range_buf_{device}'
if not hasattr(make_positions, buf_name):
setattr(make_positions, buf_name, tensor.new())
setattr(make_positions, buf_name, getattr(make_positions, buf_name).type_as(tensor))
if getattr(make_positions, buf_name).numel() < max_pos:
torch.arange(padding_idx + 1, max_pos, out=getattr(make_positions, buf_name))
mask = tensor.ne(padding_idx)
positions = getattr(make_positions, buf_name)[:tensor.size(1)].expand_as(tensor)
if left_pad:
positions = positions - mask.size(1) + mask.long().sum(dim=1).unsqueeze(1)
new_tensor = tensor.clone()
return new_tensor.masked_scatter_(mask, positions[mask]).long() | 8e65c68daae2e40710c777d6e74f048b8b0ad547 | 706,360 |
def adjust_labels(data_y, dataset, pred_type='actions'):
"""
Transforms original labels into the range [0, nb_labels-1]
:param data_y: numpy integer array
Sensor labels
:param pred_type: string, ['gestures', 'locomotion', 'actions', 'tasks']
Type of activities to be recognized
:return: numpy integer array
Modified sensor labels
"""
data_y[data_y == "null_class"] = 0
if dataset == 'wetlab':
if pred_type == 'tasks': # Labels for tasks are adjusted
data_y[data_y == "1solvent"] = 1
data_y[data_y == "2catalysator"] = 2
data_y[data_y == "3cutting"] = 3
data_y[data_y == "4mixing"] = 4
data_y[data_y == "5catalysator"] = 5
data_y[data_y == "6waterbath"] = 6
data_y[data_y == "7solvent"] = 7
data_y[data_y == "8catalysator"] = 8
data_y[data_y == "9cutting"] = 9
data_y[data_y == "10mixing"] = 10
data_y[data_y == "11catalysator"] = 11
data_y[data_y == "12waterbath"] = 12
data_y[data_y == "13waterbath"] = 13
data_y[data_y == "14catalysator"] = 14
data_y[data_y == "15pestling"] = 15
data_y[data_y == "16filtrate"] = 16
data_y[data_y == "17catalysator"] = 17
data_y[data_y == "18pouring"] = 18
data_y[data_y == "19detect"] = 19
data_y[data_y == "20waterbath"] = 20
data_y[data_y == "21catalysator"] = 21
data_y[data_y == "22pestling"] = 22
data_y[data_y == "23filtrate"] = 23
data_y[data_y == "24catalysator"] = 24
data_y[data_y == "25pouring"] = 25
data_y[data_y == "26detect"] = 26
data_y[data_y == "27end"] = 27
elif pred_type == 'actions': # Labels for actions are adjusted
data_y[data_y == "cutting"] = 1
data_y[data_y == "inverting"] = 2
data_y[data_y == "peeling"] = 3
data_y[data_y == "pestling"] = 4
data_y[data_y == "pipetting"] = 5
data_y[data_y == "pouring"] = 6
data_y[data_y == "pour catalysator"] = 6
data_y[data_y == "stirring"] = 7
data_y[data_y == "transfer"] = 8
elif dataset == 'sbhar':
data_y[data_y == 'walking'] = 1
data_y[data_y == 'walking_upstairs'] = 2
data_y[data_y == 'walking_downstairs'] = 3
data_y[data_y == 'sitting'] = 4
data_y[data_y == 'standing'] = 5
data_y[data_y == 'lying'] = 6
data_y[data_y == 'stand-to-sit'] = 7
data_y[data_y == 'sit-to-stand'] = 8
data_y[data_y == 'sit-to-lie'] = 9
data_y[data_y == 'lie-to-sit'] = 10
data_y[data_y == 'stand-to-lie'] = 11
data_y[data_y == 'lie-to-stand'] = 12
elif dataset == 'rwhar' or dataset == 'rwhar_3sbjs':
data_y[data_y == 'climbing_down'] = 0
data_y[data_y == 'climbing_up'] = 1
data_y[data_y == 'jumping'] = 2
data_y[data_y == 'lying'] = 3
data_y[data_y == 'running'] = 4
data_y[data_y == 'sitting'] = 5
data_y[data_y == 'standing'] = 6
data_y[data_y == 'walking'] = 7
elif dataset == 'hhar':
data_y[data_y == 'bike'] = 1
data_y[data_y == 'sit'] = 2
data_y[data_y == 'stand'] = 3
data_y[data_y == 'walk'] = 4
data_y[data_y == 'stairsup'] = 5
data_y[data_y == 'stairsdown'] = 6
elif dataset == 'opportunity' or 'opportunity_ordonez':
if pred_type == 'locomotion':
data_y[data_y == "stand"] = 1
data_y[data_y == "walk"] = 2
data_y[data_y == "sit"] = 3
data_y[data_y == "lie"] = 4
elif pred_type == 'gestures':
data_y[data_y == 'open_door_1'] = 1
data_y[data_y == 'open_door_2'] = 2
data_y[data_y == 'close_door_1'] = 3
data_y[data_y == 'close_door_2'] = 4
data_y[data_y == 'open_fridge'] = 5
data_y[data_y == 'close_fridge'] = 6
data_y[data_y == 'open_dishwasher'] = 7
data_y[data_y == 'close_dishwasher'] = 8
data_y[data_y == 'open_drawer_1'] = 9
data_y[data_y == 'close_drawer_1'] = 10
data_y[data_y == 'open_drawer_2'] = 11
data_y[data_y == 'close_drawer_2'] = 12
data_y[data_y == 'open_drawer_3'] = 13
data_y[data_y == 'close_drawer_3'] = 14
data_y[data_y == 'clean_table'] = 15
data_y[data_y == 'drink_from_cup'] = 16
data_y[data_y == 'toggle_switch'] = 17
return data_y | 1d201a20a8865cd505c0ee6b5385622a0ae28817 | 706,361 |
def is_str_or_bytes(x):
""" True if x is str or bytes.
This doesn't use rpartial to avoid infinite recursion.
"""
return isinstance(x, (str, bytes, bytearray)) | ff4bf19177ffe62f24713e077824e48ec45f8587 | 706,362 |
def _type_convert(new_type, obj):
"""
Convert type of `obj` to `force`.
"""
return new_type(obj) | fc47c100508d41caa7ffc786746b58e3d6f684e2 | 706,363 |
def _process_labels(labels, label_smoothing):
"""Pre-process a binary label tensor, maybe applying smoothing.
Parameters
----------
labels : tensor-like
Tensor of 0's and 1's.
label_smoothing : float or None
Float in [0, 1]. When 0, no smoothing occurs. When positive, the binary
ground truth labels `y_true` are squeezed toward 0.5, with larger values
of `label_smoothing` leading to label values closer to 0.5.
Returns
-------
torch.Tensor
The processed labels.
"""
assert label_smoothing is not None
labels = (1 - label_smoothing) * labels + label_smoothing * 0.5
return labels | 5a71ded8ac9d3ef4b389542814a170f35ef18fdd | 706,364 |
import sys
import traceback
def format_exc(limit=None):
"""Like print_exc() but return a string. Backport for Python 2.3."""
try:
etype, value, tb = sys.exc_info()
return ''.join(traceback.format_exception(etype, value, tb, limit))
finally:
etype = value = tb = None | 29bdbfbff4a1ce2d399a95c3a4685467a4022eaf | 706,366 |
def _escape_value(value):
"""Escape a value."""
value = value.replace(b"\\", b"\\\\")
value = value.replace(b"\n", b"\\n")
value = value.replace(b"\t", b"\\t")
value = value.replace(b'"', b'\\"')
return value | b58a3236c0686c7fb6a33859986123dc2b8089cc | 706,367 |
def getLinkToSong(res):
"""
getLinkToSong(res): link to all songs
:param: res: information about the playlist -> getResponse(pl_id)
:returns: list of links to each song
"""
return res['items'][0]['track']['external_urls']['spotify'] | e59fe598ed900a90dcf5376d265eedfc51d8e0a7 | 706,368 |
def parse_playing_now_message(playback):
"""parse_playing_now_message
:param playback: object
:returns str
"""
track = playback.get("item", {}).get("name", False)
artist = playback.get("item", {}).get("artists", [])
artist = map(lambda a: a.get("name", ""), artist)
artist = ", ".join(list(artist))
message = "Playing '%s' from '%s' now!" % (track, artist)
if not track:
message = "Could not get current track!"
return message | 88d7c35257c2aaee44d1bdc1ec06640603c6a286 | 706,369 |
def _create_preactivation_hook(activations):
"""
when we add this hook to a model's layer, it is called whenever
it is about to make the forward pass
"""
def _linear_preactivation_hook(module, inputs):
activations.append(inputs[0].cpu())
return _linear_preactivation_hook | 7f4cc10f7e051ed8e30556ee054a65c4878f6c0f | 706,371 |
import importlib
def import_by_path(path):
"""
Given a dotted/colon path, like project.module:ClassName.callable,
returns the object at the end of the path.
"""
module_path, object_path = path.split(":", 1)
target = importlib.import_module(module_path)
for bit in object_path.split("."):
target = getattr(target, bit)
return target | 939b3426f36b3a188f7a48e21551807d42cfa254 | 706,372 |
def _exceeded_threshold(number_of_retries: int, maximum_retries: int) -> bool:
"""Return True if the number of retries has been exceeded.
Args:
number_of_retries: The number of retry attempts made already.
maximum_retries: The maximum number of retry attempts to make.
Returns:
True if the maximum number of retry attempts have already been
made.
"""
if maximum_retries is None:
# Retry forever.
return False
return number_of_retries >= maximum_retries | c434e1e752856f9160d40e25ac20dde0583e50a6 | 706,373 |
def moveb_m_human(agents, self_state, self_name, c, goal):
"""
This method implements the following block-stacking algorithm:
If there's a block that can be moved to its final position, then
do so and call move_blocks recursively. Otherwise, if there's a
block that needs to be moved and can be moved to the table, then
do so and call move_blocks recursively. Otherwise, no blocks need
to be moved.
"""
if self_name in self_state.isReachableBy[c] and c in goal.isOnStack and goal.isOnStack[c] and not self_state.isOnStack[c]:
return [("human_pick", c), ("human_stack",)]
return [] | f99fd14b2091a1e8d0426dcef57ce33b96fc1352 | 706,374 |
def is_ipv4(line):
"""检查是否是IPv4"""
if line.find("ipv4") < 6: return False
return True | bd602f5a9ac74d2bd115fe85c90490556932e068 | 706,375 |
import torch
def bert_text_preparation(text, tokenizer):
"""Preparing the input for BERT
Takes a string argument and performs
pre-processing like adding special tokens,
tokenization, tokens to ids, and tokens to
segment ids. All tokens are mapped to seg-
ment id = 1.
Args:
text (str): Text to be converted
tokenizer (obj): Tokenizer object
to convert text into BERT-re-
adable tokens and ids
Returns:
list: List of BERT-readable tokens
obj: Torch tensor with token ids
obj: Torch tensor segment ids
"""
marked_text = "[CLS] " + text + " [SEP]"
tokenized_text = tokenizer.tokenize(marked_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
segments_ids = [1]*len(indexed_tokens)
# Convert inputs to PyTorch tensors
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
return tokenized_text, tokens_tensor, segments_tensors | f9b3de4062fd0cc554e51bd02c750daea0a8250c | 706,376 |
def possibly_equal(first, second):
"""Equality comparison that propagates uncertainty.
It represents uncertainty using its own function object."""
if first is possibly_equal or second is possibly_equal:
return possibly_equal #Propagate the possibilities
return first == second | 12662df45d6ee0c6e1aadb6a5c4c0ced9352af35 | 706,377 |
def chroms_from_build(build):
""" Get list of chromosomes from a particular genome build
Args:
build str
Returns:
chrom_list list
"""
chroms = {'grch37': [str(i) for i in range(1, 23)],
'hg19': ['chr{}'.format(i) for i in range(1, 23)]
# chroms = {'grch37': [i for i in range(1, 23)] + ['X', 'Y'],
}
try:
return chroms[build]
except KeyError:
raise ValueError("Oops, I don't recognize the build {}".format(build)) | c87431911c07c00aaa63357771258394cfff859e | 706,378 |
def LU_razcep(A):
""" Vrne razcep A kot ``[L\\U]`` """
# eliminacija
for p, pivot_vrsta in enumerate(A[:-1]):
for i, vrsta in enumerate(A[p + 1:]):
if pivot_vrsta[p]:
m = vrsta[p] / pivot_vrsta[p]
vrsta[p:] = vrsta[p:] - pivot_vrsta[p:] * m
vrsta[p] = m
return A | 79d6a00b4e16254739b987228fd506cae133907b | 706,379 |
from typing import Union
from datetime import datetime
import pytz
def api_timestamp_to_datetime(api_dt: Union[str, dict]):
"""Convertes the datetime string returned by the API to python datetime object"""
"""
Somehow this string is formatted with 7 digits for 'microsecond' resolution, so crop the last digit (and trailing Z)
The cropped string will be written into api_dt_str_mod
"""
api_dt_str_mod = None
if isinstance(api_dt, str):
api_dt_str_mod = api_dt[:-2]
elif isinstance(api_dt, dict):
api_dt_str_mod = api_dt["dateTime"][:-2]
else:
raise
dt = datetime.strptime(api_dt_str_mod, "%Y-%m-%dT%H:%M:%S.%f")
dt = pytz.utc.localize(dt)
return dt | 26f4828a19d17c883a8658eb594853158d70fbcf | 706,381 |
import os
import subprocess
def run_command(command, filename=None, repeat=1, silent=False):
"""
Run `command` with `filename` positional argument in the directory of the
`filename`. If `filename` is not given, run only the command.
"""
if filename is not None:
fdir = os.path.dirname(os.path.abspath(filename))
fname = os.path.basename(filename)
cmd = command + ' ' + fname
else:
fdir = None
cmd = command
status = 0
for ii in range(repeat):
if silent:
with open(os.devnull, 'w') as devnull:
st = subprocess.call(cmd.split(), cwd=fdir,
stdout=devnull, stderr=devnull)
else:
st = subprocess.call(cmd.split(), cwd=fdir)
status = status or st
return status | 0f24c79f9d557198645de75fe7160af41638ecb6 | 706,382 |
import os
def attempt_input_load(input_path):
"""Attempts to load the file at the provided path and return it as an array
of lines. If the file does not exist we will exit the program since nothing
useful can be done."""
if not os.path.isfile(input_path):
print("Input file does not exist: %s" % input_path)
exit()
print("Loading input from file: %s" % input_path)
with open(input_path, "r", encoding='utf-8') as f:
lines = f.readlines()
return lines | f75e95258c803175d1f13d82c6479987cfdecbf9 | 706,383 |
def __discount_PF(i, n):
"""
Present worth factor
Factor: (P/F, i, N)
Formula: P = F(1+i)^N
:param i:
:param n:
:return:
Cash Flow:
F
|
|
--------------
|
P
"""
return (1 + i) ** (-n) | b6e7424647921b945a524a22d844925573b6490a | 706,384 |
def shortstr(s,max_len=144,replace={'\n':';'}):
""" Obtain a shorter string """
s = str(s)
for k,v in replace.items():
s = s.replace(k,v)
if max_len>0 and len(s) > max_len:
s = s[:max_len-4]+' ...'
return s | 396794506583dcf39e74941a20f27ac63de325ec | 706,385 |
def FTCS(Uo, diffX, diffY=None):
"""Return the numerical solution of dependent variable in the model eq.
This routine uses the explicit Forward Time/Central Space method
to obtain the solution of the 1D or 2D diffusion equation.
Call signature:
FTCS(Uo, diffX, diffY)
Parameters
----------
Uo: ndarray[float], =1d, 2d
The dependent variable at time level, n within the entire domain.
diffX : float
Diffusion number for x-component of the parabolic/diffusion
equation.
diffY : float, Default=None for 1-D applications
Diffusion number for y-component of the parabolic/diffusion
equation.
Returns
-------
U: ndarray[float], =1d, 2d
The dependent variable at time level, n+1 within the entire domain.
"""
shapeU = Uo.shape # Obtain Dimension
U = Uo.copy() # Initialize U
if len(shapeU) == 1:
U[1:-1] = (
Uo[1:-1] + diffX*(Uo[2:] - 2.0*Uo[1:-1] + Uo[0:-2])
)
elif len(shapeU) == 2:
U[1:-1, 1:-1] = (
Uo[1:-1, 1:-1]
+ diffX*(Uo[2:, 1:-1] - 2.0*Uo[1:-1, 1:-1] + Uo[0:-2, 1:-1])
+ diffY*(Uo[1:-1, 2:] - 2.0*Uo[1:-1, 1:-1] + Uo[1:-1, 0:-2])
)
return U | 4b02749f3f50a2cff74abb75146159289d42b99e | 706,387 |
def maplist(f, xs):
"""Implement `maplist` in pure Python."""
return list(map(f, xs)) | 894a58f9e2cd66fe9c327ea65433b8210051ed60 | 706,388 |
def write_code():
"""
Code that checks the existing path and snaviewpath
in the environmental viriables/PATH
"""
msg = """\n\n[Code]\n"""
msg += """function InstallVC90CRT(): Boolean;\n"""
msg += """begin\n"""
msg += """ Result := not DirExists('C:\WINDOWS\WinSxS\\x86_Microsoft.VC90."""
msg += """CRT_1fc8b3b9a1e18e3b_9.0.21022.8_x-ww_d08d0375');\n"""
msg += """end;\n\n"""
msg += """function NeedsAddPath(): boolean;\n"""
msg += """var\n"""
msg += """ oldpath: string;\n"""
msg += """ newpath: string;\n"""
msg += """ pathArr: TArrayOfString;\n"""
msg += """ i: Integer;\n"""
msg += """begin\n"""
msg += """ RegQueryStringValue(HKEY_CURRENT_USER,'Environment',"""
msg += """'PATH', oldpath)\n"""
msg += """ oldpath := oldpath + ';';\n"""
msg += """ newpath := '%SASVIEWPATH%';\n"""
msg += """ i := 0;\n"""
msg += """ while (Pos(';', oldpath) > 0) do begin\n"""
msg += """ SetArrayLength(pathArr, i+1);\n"""
msg += """ pathArr[i] := Copy(oldpath, 0, Pos(';', oldpath)-1);\n"""
msg += """ oldpath := Copy(oldpath, Pos(';', oldpath)+1,"""
msg += """ Length(oldpath));\n"""
msg += """ i := i + 1;\n"""
msg += """ // Check if current directory matches app dir\n"""
msg += """ if newpath = pathArr[i-1] \n"""
msg += """ then begin\n"""
msg += """ Result := False;\n"""
msg += """ exit;\n"""
msg += """ end;\n"""
msg += """ end;\n"""
msg += """ Result := True;\n"""
msg += """end;\n"""
msg += """\n"""
return msg | 429eb64485a4fe240c1bebbfd2a2a89613b4fddd | 706,389 |
import re
def get_filenames(filename):
"""
Return list of unique file references within a passed file.
"""
try:
with open(filename, 'r', encoding='utf8') as file:
words = re.split("[\n\\, \-!?;'//]", file.read())
#files = filter(str.endswith(('csv', 'zip')), words)
files = set(filter(lambda s: s.endswith(('.csv', '.zip', '.pdf', '.txt', '.tsv', '.cfg', '.ini')), words))
return list(files)
except Exception as e:
print(e)
return [] | a1d8c396245cfc682ecc37edb3e673f87939b6fa | 706,390 |
def format_filename_gen(prefix, seq_len, tgt_len, bi_data, suffix,
src_lang,tgt_lang,uncased=False,):
"""docs."""
if not uncased:
uncased_str = ""
else:
uncased_str = "uncased."
if bi_data:
bi_data_str = "bi"
else:
bi_data_str = "uni"
file_name = "{}-{}_{}.seqlen-{}.tgtlen-{}.{}{}.gen.{}".format(
src_lang[:2],tgt_lang[:2],
prefix, seq_len, tgt_len, uncased_str,
bi_data_str, suffix)
return file_name | 4a54c1fbfe371d628c1d7019c131b8fa6755f900 | 706,391 |
def token_groups(self):
"""The groups the Token owner is a member of."""
return self.created_by.groups | 9db411660db1def09b8dc52db800ca4c09a38cce | 706,392 |
import requests
def get_html_content_in_text(url):
"""
Grab all the content in webpage url and return it's content in text.
Arguments:
url -- a webpage url string.
Returns:
r.text -- the content of webpage in text.
"""
r = requests.get(url)
return r.text | fd8ddc992f34c186051ca8985ffb110c50004970 | 706,393 |
import optparse
def _GetOptionsParser():
"""Get the options parser."""
parser = optparse.OptionParser(__doc__)
parser.add_option('-i',
'--input',
dest='inputs',
action='append',
default=[],
help='One or more input files to calculate dependencies '
'for. The namespaces in this file will be combined with '
'those given with the -n flag to form the set of '
'namespaces to find dependencies for.')
parser.add_option('-n',
'--namespace',
dest='namespaces',
action='append',
default=[],
help='One or more namespaces to calculate dependencies '
'for. These namespaces will be combined with those given '
'with the -i flag to form the set of namespaces to find '
'dependencies for. A Closure namespace is a '
'dot-delimited path expression declared with a call to '
'goog.provide() (e.g. "goog.array" or "foo.bar").')
parser.add_option('--root',
dest='roots',
action='append',
default=[],
help='The paths that should be traversed to build the '
'dependencies.')
parser.add_option('-o',
'--output_mode',
dest='output_mode',
type='choice',
action='store',
choices=['list', 'script', 'compiled'],
default='list',
help='The type of output to generate from this script. '
'Options are "list" for a list of filenames, "script" '
'for a single script containing the contents of all the '
'files, or "compiled" to produce compiled output with '
'the Closure Compiler. Default is "list".')
parser.add_option('-c',
'--compiler_jar',
dest='compiler_jar',
action='store',
help='The location of the Closure compiler .jar file.')
parser.add_option('-f',
'--compiler_flags',
dest='compiler_flags',
default=[],
action='append',
help='Additional flags to pass to the Closure compiler. '
'To pass multiple flags, --compiler_flags has to be '
'specified multiple times.')
parser.add_option('--output_file',
dest='output_file',
action='store',
help=('If specified, write output to this path instead of '
'writing to standard output.'))
return parser | e1ec0530357ad3bebbac80c86b9d9b1010e6688c | 706,394 |
def update_security_schemes(spec, security, login_headers, security_schemes,
unauthorized_schema):
"""Patch OpenAPI spec to include security schemas.
Args:
spec: OpenAPI spec dictionary
Returns:
Patched spec
"""
# login_headers = {'Set-Cookie':
# {'schema':
# {'type': 'string',
# 'example': 'session=abcde12345; Path=/; HttpOnly'}}}
# security_schemes = {'cookieAuth': {'description': 'Session Cookie',
# 'type': 'apiKey',
# 'in': 'cookie',
# 'name': 'session'}}
# unauthorized_schema = {'UnauthorizedError':
# {'description': "The auth cookie isn't present",
# 'properties':
# {'schema': {'type': 'string', 'example': 'Unauthorized'}}}}
spec["components"]["securitySchemes"] = security_schemes
spec["security"] = security
spec["paths"]["/login"]["post"]["responses"][200]["headers"] = login_headers.copy()
return spec | 1ecb5cc3a121fc151794e4e24cd4aca4bc07ce46 | 706,395 |
def inherits_from(obj, parent):
"""
Takes an object and tries to determine if it inherits at *any*
distance from parent.
Args:
obj (any): Object to analyze. This may be either an instance
or a class.
parent (any): Can be either instance, class or python path to class.
Returns:
inherits_from (bool): If `parent` is a parent to `obj` or not.
Notes:
What differs this function from e.g. `isinstance()` is that `obj`
may be both an instance and a class, and parent may be an
instance, a class, or the python path to a class (counting from
the evennia root directory).
"""
if callable(obj):
# this is a class
obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.mro()]
else:
obj_paths = ["%s.%s" % (mod.__module__, mod.__name__) for mod in obj.__class__.mro()]
if isinstance(parent, str):
# a given string path, for direct matching
parent_path = parent
elif callable(parent):
# this is a class
parent_path = "%s.%s" % (parent.__module__, parent.__name__)
else:
parent_path = "%s.%s" % (parent.__class__.__module__, parent.__class__.__name__)
return any(1 for obj_path in obj_paths if obj_path == parent_path) | 9d7e0665b4e4fe2a3f7c136436a2502c8b72527c | 706,396 |
def name(model):
"""A repeatable way to get the formatted model name."""
return model.__name__.replace('_', '').lower() | 3d9ca275bfbfff6d734f49a47459761c559d906e | 706,397 |
import imp
import os
def pseudo_import( pkg_name ):
"""
return a new module that contains the variables of pkg_name.__init__
"""
init = os.path.join( pkg_name, '__init__.py' )
# remove imports and 'from foo import'
lines = open(init, 'r').readlines()
lines = filter( lambda l: l.startswith('__'), lines)
code = '\n'.join(lines)
module = imp.new_module(pkg_name)
exec(code, module.__dict__)
return module | 5982282d545c361d5198459073498ce5cba740a8 | 706,398 |
import socket
def get_hostname(ipv) -> str:
"""
Get hostname from IPv4 and IPv6.
:param ipv: ip address
:return: hostname
"""
return socket.gethostbyaddr(ipv)[0] | e7d660dc3c5e30def646e56fa628099e997145be | 706,399 |
import os
def find_invalid_filenames(filenames, repository_root):
"""Find files that does not exist, are not in the repo or are directories.
Args:
filenames: list of filenames to check
repository_root: the absolute path of the repository's root.
Returns: A list of errors.
"""
errors = []
for filename in filenames:
if not os.path.abspath(filename).startswith(repository_root):
errors.append((filename, 'Error: File %s does not belong to '
'repository %s' % (filename, repository_root)))
if not os.path.exists(filename):
errors.append((filename,
'Error: File %s does not exist' % (filename,)))
if os.path.isdir(filename):
errors.append((filename, 'Error: %s is a directory. Directories are'
' not yet supported' % (filename,)))
return errors | c207442e08fa7a2188ab8e792ee76d596b4f19f0 | 706,400 |
def get_score(true, predicted):
"""Returns F1 per instance"""
numerator = len(set(predicted.tolist()).intersection(set(true.tolist())))
p = numerator / float(len(predicted))
r = numerator / float(len(true))
if r == 0.:
return 0.
return 2 * p * r / float(p + r) | 115a4847e3d991f47415554401df25d72d74bb2f | 706,401 |
import torch
def proto_factor_cosine(local_proto, global_proto):
"""
[C, D]: D is 64 or 4
"""
# factor = 1
norm_local = torch.norm(local_proto, dim=-1, keepdim=False)
norm_global = torch.norm(global_proto, dim=-1, keepdim=False) # [C]
factor_refined = torch.sum(local_proto*global_proto, dim=-1, keepdim=False)/(norm_local*norm_global+1e-6)
return factor_refined | 6e9f7540ec1339efe3961b103633f5175cb38c49 | 706,402 |
def esc_quotes(strng):
""" Return the input string with single and double quotes escaped out.
"""
return strng.replace('"', '\\"').replace("'", "\\'") | 25956257e06901d4f59088dd2c17ddd5ea620407 | 706,403 |
def jaccard(set1, set2):
"""
computes the jaccard coefficient between two sets
@param set1: first set
@param set2: second set
@return: the jaccard coefficient
"""
if len(set1) == 0 or len(set2) == 0:
return 0
inter = len(set1.intersection(set2))
return inter / (len(set1) + len(set2) - inter) | 9a99c6c5251bdb7cb10f6d3088ac6ac52bb02a55 | 706,404 |
def to_numeric(arg):
"""
Converts a string either to int or to float.
This is important, because e.g. {"!==": [{"+": "0"}, 0.0]}
"""
if isinstance(arg, str):
if '.' in arg:
return float(arg)
else:
return int(arg)
return arg | e82746e1c5c84b57e59086030ff7b1e93c89a8ec | 706,405 |
def read_tracker(file_name):
"""
"""
with open(file_name, "r") as f:
return int(f.readline()) | 9d1f43b8f833b5ca86c247760ae79e18f33aa019 | 706,406 |
def purelin(n):
"""
Linear
"""
return n | 493c4ae481702194fe32eec44e589e5d15614b99 | 706,407 |
def point_in_fence(x, y, points):
"""
计算点是否在围栏内
:param x: 经度
:param y: 纬度
:param points: 格式[[lon1,lat1],[lon2,lat2]……]
:return:
"""
count = 0
x1, y1 = points[0]
x1_part = (y1 > y) or ((x1 - x > 0) and (y1 == y)) # x1在哪一部分中
points.append((x1, y1))
for point in points[1:]:
x2, y2 = point
x2_part = (y2 > y) or ((x2 > x) and (y2 == y)) # x2在哪一部分中
if x2_part == x1_part:
x1, y1 = x2, y2
continue
mul = (x1 - x) * (y2 - y) - (x2 - x) * (y1 - y)
if mul > 0: # 叉积大于0 逆时针
count += 1
elif mul < 0:
count -= 1
x1, y1 = x2, y2
x1_part = x2_part
if count == 2 or count == -2:
return True
else:
return False | bb25f399eadf818fbafdeee6c8adbb1254a579f7 | 706,408 |
def validate_output(value):
"""Validate "output" parameter."""
if value is not None:
if isinstance(value, str):
value = value.split(",")
# filter out empty names
value = list(filter(None, value))
return value | f00773674868ebde741f64b47fdc3372ad6a1e7d | 706,409 |
def euler(derivative):
"""
Euler method
"""
return lambda t, x, dt: (t + dt, x + derivative(t, x) * dt) | 08d636ec711f4307ab32f9a8bc3672197a3699d9 | 706,410 |
import os
def GetFilesToConcatenate(input_directory):
"""Get list of files to concatenate.
Args:
input_directory: Directory to search for files.
Returns:
A list of all files that we would like to concatenate relative
to the input directory.
"""
file_list = []
for dirpath, _, files in os.walk(input_directory):
for input_file in files:
file_list.append(
os.path.relpath(
os.path.join(dirpath, input_file),
input_directory))
return file_list | f8e2805b94171645ef9c4d51ded83a8f2f9e7675 | 706,411 |
import numpy
import math
def rotation_matrix_from_quaternion(quaternion):
"""Return homogeneous rotation matrix from quaternion."""
q = numpy.array(quaternion, dtype=numpy.float64)[0:4]
nq = numpy.dot(q, q)
if nq == 0.0:
return numpy.identity(4, dtype=numpy.float64)
q *= math.sqrt(2.0 / nq)
q = numpy.outer(q, q)
return numpy.array((
(1.0-q[1,1]-q[2,2], q[0,1]-q[2,3], q[0,2]+q[1,3], 0.0),
( q[0,1]+q[2,3], 1.0-q[0,0]-q[2,2], q[1,2]-q[0,3], 0.0),
( q[0,2]-q[1,3], q[1,2]+q[0,3], 1.0-q[0,0]-q[1,1], 0.0),
( 0.0, 0.0, 0.0, 1.0)
), dtype=numpy.float64) | 51b169ffa702e3798f7a6138271b415b369566ba | 706,412 |
def format_channel(channel):
""" Returns string representation of <channel>. """
if channel is None or channel == '':
return None
elif type(channel) == int:
return 'ch{:d}'.format(channel)
elif type(channel) != str:
raise ValueError('Channel must be specified in string format.')
elif 'ch' in channel:
return channel
elif channel.lower() in 'rgb':
return format_channel('rgb'.index(channel.lower()))
elif channel.lower() in ('red', 'green', 'blue'):
return format_channel('rgb'.index(channel.lower()[0]))
else:
raise ValueError('Channel string not recognized.') | 4eeb42899762d334599df831b7520a956998155a | 706,413 |
import random
def shuffle_sequence(sequence: str) -> str:
"""Shuffle the given sequence.
Randomly shuffle a sequence, maintaining the same composition.
Args:
sequence: input sequence to shuffle
Returns:
tmp_seq: shuffled sequence
"""
tmp_seq: str = ""
while len(sequence) > 0:
max_num = len(sequence)
rand_num = random.randrange(max_num)
tmp_char = sequence[rand_num]
tmp_seq += tmp_char
tmp_str_1 = sequence[:rand_num]
tmp_str_2 = sequence[rand_num + 1:]
sequence = tmp_str_1 + tmp_str_2
return tmp_seq | 9e833aed9e5a17aeb419a77176713e76566d2d06 | 706,414 |
import os
def _get_next_foldername_index(name_to_check,dir_path):
"""Finds folders with name_to_check in them in dir_path and extracts which one has the hgihest index.
Parameters
----------
name_to_check : str
The name of the network folder that we want to look repetitions for.
dir_path : str
The folder where we want to look for network model repetitions.
Returns
-------
str
If there are no name matches, it returns the string '1'. Otherwise, it returns str(highest index found + 1)
"""
dir_content = os.listdir(dir_path)
dir_name_indexes = [int(item.split('.')[-1]) for item in dir_content if os.path.isdir(item) and name_to_check in item] #extracting the counter in the folder name and then we find the maximum
if len(dir_name_indexes) == 0:
return '1'
else:
highest_idx = max(dir_name_indexes)
return str(highest_idx + 1)
#find all folders that have name_to_check in them: | c8239f8ae8a34c2ae8432e7a9482f169ce0962ce | 706,415 |
import torch
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return torch.nn.functional.relu
if activation == "gelu":
return torch.nn.functional.gelu
if activation == "glu":
return torch.nn.functional.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | ecc690e9b9ec6148b6ea8df4bd08ff2d0c1c322e | 706,416 |
def make_05dd():
"""移動ロック終了(イベント終了)"""
return "" | bb85e01a4a4515ac88688690cacd67e7c9351034 | 706,417 |
import pandas as pd
import pkgutil
def check_is_pandas_dataframe(log):
"""
Checks if a log object is a dataframe
Parameters
-------------
log
Log object
Returns
-------------
boolean
Is dataframe?
"""
if pkgutil.find_loader("pandas"):
return type(log) is pd.DataFrame
return False | 93fa02445302cf695fd86beb3e4836d58660e376 | 706,418 |
from pathlib import Path
def get_root_path():
"""
this is to get the root path of the code
:return: path
"""
path = str(Path(__file__).parent.parent)
return path | bc01b4fb15569098286fc24379a258300ff2dfa0 | 706,419 |
import os
def _bin_file(script):
"""Return the absolute path to scipt in the bin directory"""
return os.path.abspath(os.path.join(__file__, "../../../bin", script)) | 3b7dbe4061ff88bd42da91f854f561715df101df | 706,420 |
def rotate_2d_list(squares_list):
"""
http://stackoverflow.com/questions/8421337/rotating-a-two-dimensional-array-in-python
"""
return [x for x in zip(*squares_list[::-1])] | a6345ce6954643b8968ffb4c978395baf777fca4 | 706,421 |
def icecreamParlor4(m, arr):
"""I forgot about Python's nested for loops - on the SAME array - and how
that's actually -possible-, and it makes things so much simplier.
It turns out, that this works, but only for small inputs."""
# Augment the array of data, so that it not only includes the item, but
# also the item's index into the array.
decorated_arr = []
for index, item in enumerate(arr):
decorated_arr.append((item, index))
# Iterate each combination of index, and see if conditions are met with
# them. There are 2 things we care about: both amounts equal to m, and
# they both aren't the same item.
for i in decorated_arr:
for j in decorated_arr:
if (i[0] + j[1]) == m and i[1] != j[1]:
return [i[1] + 1, j[1] + 1] | 6af2da037aa3e40c650ac48ebeb931399f1a6eaa | 706,422 |
import os
import sys
def findBaseDir(basename, max_depth=5, verbose=False):
"""
Get relative path to a BASEDIR.
:param basename: Name of the basedir to path to
:type basename: str
:return: Relative path to base directory.
:rtype: StringIO
"""
MAX_DEPTH = max_depth
BASEDIR = os.path.abspath(os.path.dirname(__file__))
print("STARTING AT: %s\n Looking for: %s" % (BASEDIR, basename))
for level in range(MAX_DEPTH):
if verbose:
print('LEVEL %d: %s\n Current basename: %s' %
(level, BASEDIR, os.path.basename(BASEDIR)))
if os.path.basename(BASEDIR) == basename:
break
else:
BASEDIR = os.path.abspath(os.path.dirname(BASEDIR))
if level == MAX_DEPTH - 1:
sys.exit('Could not find correct basedir\n Currently at %s' % BASEDIR)
return os.path.relpath(BASEDIR) | 75d11503ef02cb0671803ab7b13dcd6d77322330 | 706,424 |
import math
def inverse_gamma(data, alpha=0.1, beta=0.1):
"""
Inverse gamma distributions
:param data: Data value
:param alpha: alpha value
:param beta: beta value
:return: Inverse gamma distributiion
"""
return (pow(beta, alpha) / math.gamma(alpha)) *\
pow(alpha, data-1) * math.exp(-beta/data) | c13f5e4a05e111ae0082b7e69ef5b31498d2c221 | 706,425 |
import statistics
def linear_regression(xs, ys):
"""
Computes linear regression coefficients
https://en.wikipedia.org/wiki/Simple_linear_regression
Returns a and b coefficients of the function f(y) = a * x + b
"""
x_mean = statistics.mean(xs)
y_mean = statistics.mean(ys)
num, den = 0.0, 0.0
for x, y in zip(xs, ys):
num += (x - x_mean) * (y - y_mean)
den += (x - x_mean) * (x - x_mean)
a = num / den
b = y_mean - a * x_mean
return a, b | 6b6ecbd31262e5fe61f9cf7793d741a874327598 | 706,426 |
import torch
def collate_fn_feat_padded(batch):
"""
Sort a data list by frame length (descending order)
batch : list of tuple (feature, label). len(batch) = batch_size
- feature : torch tensor of shape [1, 40, 80] ; variable size of frames
- labels : torch tensor of shape (1)
ex) samples = collate_fn([batch])
batch = [dataset[i] for i in batch_indices]. ex) [Dvector_train_dataset[i] for i in [0,1,2,3,4]]
batch[0][0].shape = torch.Size([1,64,774]). "774" is the number of frames per utterance.
"""
batch.sort(key=lambda x: x[0].shape[2], reverse=True)
feats, labels = zip(*batch)
# Merge labels => torch.Size([batch_size,1])
labels = torch.stack(labels, 0)
labels = labels.view(-1)
# Merge frames
lengths = [feat.shape[2] for feat in feats] # in decreasing order
max_length = lengths[0]
# features_mod.shape => torch.Size([batch_size, n_channel, dim, max(n_win)])
padded_features = torch.zeros(len(feats), feats[0].shape[0], feats[0].shape[1], feats[0].shape[2]).float() # convert to FloatTensor (it should be!). torch.Size([batch, 1, feat_dim, max(n_win)])
for i, feat in enumerate(feats):
end = lengths[i]
num_frames = feat.shape[2]
while max_length > num_frames:
feat = torch.cat((feat, feat[:,:,:end]), 2)
num_frames = feat.shape[2]
padded_features[i, :, :, :] = feat[:,:,:max_length]
return padded_features, labels | b901b6c3eacfd4d0bac93e1569d59ad944365fd2 | 706,428 |
def getCubePixels(cubeImages):
"""
Returns a list containing the raw pixels from the `bpy.types.Image` images
in the list `cubeImages`. Factoring this functionality out into its own
function is useful for performance profiling.
"""
return [face.pixels[:] for face in cubeImages] | cdb2ba02ce9466e1b92a683dbea409e66b60c8da | 706,430 |
import torch
def shuffle_tensor(input):
"""
Returns a new tensor whose elements correspond to a randomly shuffled version of the the elements of the input.
Args:
input (`torch.Tensor`): input tensor.
Returns:
(`torch.Tensor`): output tensor.
"""
return input[torch.randperm(input.nelement())] | e7c3ff4180123de1fe6322296ba08863de9766a4 | 706,433 |
def make_word_list1():
"""Reads lines from a file and builds a list using append."""
t = []
fin = open('words.txt')
for line in fin:
word = line.strip()
t.append(word)
return t | 7af7b0697557e8bba891d73bd8217860350b810e | 706,434 |
from datetime import datetime
def filter_posts(posts: list, parsing_date: datetime) -> list:
"""Отфильтровывает лишние посты, которые не входят в месяц парсинга"""
res = []
for post in posts:
post_date = datetime.fromtimestamp(post['date'])
if post_date.month == parsing_date.month:
res.append(post)
return res | 381d5cb37e4ae3439c335a7962352431ad3ca17c | 706,435 |
import codecs
def open_file(path):
"""open_file."""
return codecs.open(path, encoding='utf8').read() | f7fd375ea76e8e7872e465e89eea5c02f3396115 | 706,436 |
def get_api_status():
"""Get API status"""
return "<h4>API Is Up</h4>" | 5c88fc39bc5a970c4d223d8fe87c4fa3ad473b50 | 706,437 |
def create_alert_from_slack_message(payload, time):
"""
Create a new raw alert (json) from the new alert form in Slack
"""
alert_json = {}
values = payload['view']['state']['values']
for value in values:
for key in values[value]:
if key == 'severity':
alert_json[key] = \
values[value][key]['selected_option']['text']['text']
else:
alert_json[key] = values[value][key]['value']
alert_json['datetime'] = time
return alert_json | 1ae8b93a6b9f8bd7532ac193cb6dfde58bf8d409 | 706,438 |
def get_cell_ids(num_celltypes=39):
"""get valid cell ids by removing cell types with missing data.
Return:
A cell id list.
"""
missing_ids = [8,23,25,30,32,33,34,35,38,39,17]
return [item for item in list(range(1,num_celltypes+1)) if item not in missing_ids] | a7c8f881ad62af9c4287cd50b9b01118f724c4f8 | 706,439 |
import re
def proper_units(text: str) -> str:
"""
Function for changing units to a better form.
Args:
text (str): text to check.
Returns:
str: reformatted text with better units.
"""
conv = {
r"degK": r"K",
r"degC": r"$^{\circ}$C",
r"degrees\_celsius": r"$^{\circ}$C",
r"degrees\_north": r"$^{\circ}$N",
r"degrees\_east": r"$^{\circ}$E",
r"degrees\_west": r"$^{\circ}$W",
r"I metric": r"$\mathcal{I}$--metric",
}
regex = re.compile(
"|".join(
re.escape(key) for key in sorted(conv.keys(), key=lambda item: -len(item))
)
)
return regex.sub(lambda match: conv[match.group()], text) | 5113d227db1a75ec8fa407c5f9edd5a897960d82 | 706,440 |
def does_algorithm_implementation_have_capabilities_to_execute_parameter(parameter_kisao_id, algorithm_specs):
""" Determine if an implementation of an algorithm has the capabilities to execute a model langugae
Args:
parameter_kisao_id (:obj:`str`): KiSAO id for an algorithm parameter
algorithm_specs (:obj:`dict` with schema ``https://api.biosimulators.org/openapi.json#/components/schemas/Algorithm``):
specifications of the implementation of an algorithm
Returns:
:obj:`bool`: whether the implementation of the algorithm has the capabilities to execute the SED parameter
"""
for parameter_specs in algorithm_specs['parameters']:
if parameter_specs['kisaoId']['id'] == parameter_kisao_id:
return True
return False | 653712ae621bd014547e04009243cefe4c9eb8e1 | 706,441 |
def has_remove_arg(args):
"""
Checks if remove argument exists
:param args: Argument list
:return: True if remove argument is found, False otherwise
"""
if "remove" in args:
return True
return False | 9b07fe70cecfbdf6e6e2274e5b3e715f903331c7 | 706,442 |
def convert_to_boolean(value):
"""Turn strings to bools if they look like them
Truthy things should be True
>>> for truthy in ['true', 'on', 'yes', '1']:
... assert convert_to_boolean(truthy) == True
Falsey things should be False
>>> for falsey in ['false', 'off', 'no', '0']:
... assert convert_to_boolean(falsey) == False
Other things should be unchanged
>>> for value in ['falsey', 'other', True, 0]:
... assert convert_to_boolean(value) == value
"""
if isinstance(value, str):
if value.lower() in ['t', 'true', 'on', 'yes', '1']:
return True
elif value.lower() in ['f', 'false', 'off', 'no', '0']:
return False
return value | 7cbf7a8fd601904c7aa8b685f6a3b3f5eaaa5c51 | 706,443 |
def getSampleBandPoints(image, region, **kwargs):
"""
Function to perform sampling of an image over a given region, using ee.Image.samp;e(image, region, **kwargs)
Args:
image (ee.Image): an image to sample
region (ee.Geometry): the geometry over which to sample
Returns:
An ee.FeatureCollection of sampled points along with coordinates
"""
dargs = {
'numPixels': 1000,
'region': region
}
dargs.update(kwargs)
sample = image.sample(**dargs)
return sample | 4cfbc3c180b805abe52c718f81cc16c409693922 | 706,444 |
def updateRIPCount(idx,RIPtracker,addRev=0,addFwd=0,addNonRIP=0):
"""Add observed RIP events to tracker by row."""
TallyRev = RIPtracker[idx].revRIPcount + addRev
TallyFwd = RIPtracker[idx].RIPcount + addFwd
TallyNonRIP = RIPtracker[idx].nonRIPcount + addNonRIP
RIPtracker[idx] = RIPtracker[idx]._replace(revRIPcount=TallyRev,RIPcount=TallyFwd,nonRIPcount=TallyNonRIP)
return RIPtracker | 7f83c547d9acd6c697174fffa1ccb3aec6e91a24 | 706,445 |
def get_text(cell):
""" get stripped text from a BeautifulSoup td object"""
return ''.join([x.strip() + ' ' for x in cell.findAll(text=True)]).strip() | 08037cbe5d2058206de029417f03d211d350820f | 706,447 |
import torch
def test_augmentation(text, text_lengths, augmentation_class):
"""
test_augmentation method is written for augment input text in evaluation
:param text: input text
:param text_lengths: text length
:param augmentation_class: augmentation class
:return:
"""
augmentation_text = augmentation_class.test_augment(text, text_lengths)
augmentation_text.append(text)
augmentation_text = torch.FloatTensor(augmentation_text).long()
return augmentation_text | 2f83ec9fa0afa110d05f05f52e85cae65a28c6f9 | 706,449 |
import math
def ToMercPosition(lat_deg, num_tiles):
"""Calculate position of a given latitude on qt grid.
LOD is log2(num_tiles)
Args:
lat_deg: (float) Latitude in degrees.
num_tiles: (integer) Number of tiles in the qt grid.
Returns:
Floating point position of latitude in tiles relative to equator.
"""
lat_rad = lat_deg / 180.0 * math.pi
y_merc = math.log(math.tan(lat_rad / 2.0 + math.pi / 4.0))
return num_tiles / 2.0 * (1 + y_merc / math.pi) | 1ae7e7b2da9ec3ee20756ef7ffa13d99485aaea7 | 706,450 |
def check_output_filepath(filepath):
"""
Check and return an appropriate output_filepath parameter.
Ensures the file is a csv file. Ensures a value is set. If
a value is not set or is not a csv, it will return a
default value.
:param filepath: string filepath name
:returns: a string representing a filepath location.
"""
if filepath.endswith('.csv'):
return filepath
return "clean_rules_report.csv" | 63fcf697dbde9a62cc39311b4d234955520f6394 | 706,451 |
def _single_value_set(target_list, value):
"""
Return true if this constraint has only one value and it is
this one.
"""
return len(target_list) == 1 and target_list[0] == value | 472ebe1aa9726c70642423d05fa55723496e9bc5 | 706,452 |
def get_positive_input(message, float_parse=False, allow_zero=False):
""" Obtains and returns a positive int from the user.
Preconditions:
message: non-empty string
float_parse: bool defaulted to False
allow_zero: bool defaulted to False
Parameters:
message: The message that is printed when obtaining the input.
float_parse: Whether to parse input to float or int
allow_zero: Whether to allow zero as an input
Postconditions:
num: The valid inputted number.
"""
# use ternary operator to determine the sign to use
sign = ">=" if allow_zero else ">"
# try to parse input to either a float or int
try:
if float_parse:
num = float(input("(must be " + sign + " 0), " + message).strip())
else:
num = int(input("(must be " + sign + " 0), " + message).strip())
# raise a ValueError if input was invalid
if (not allow_zero) and (num <= 0):
raise ValueError()
elif num < 0:
raise ValueError()
return num
# catch any ValueErrors.
except ValueError:
print("Not a valid input.")
# recurse the method until proper input was found
return get_positive_input(message, float_parse, allow_zero) | 17982ff069907464c70df7b6efb1f42d3811962e | 706,453 |
def flights_preclean(df):
"""
Input: Raw dataframe of Flights table.
Output: Cleaned flights table:
- Remove cancelled rows, made available in new dataframe "df_can"
- Drop columns ['Unnamed: 0', 'branded_code_share',
'mkt_carrier', 'cancelled', 'cancellation_code', 'flights', 'air_time',
'first_dep_time', 'total_add_gtime', 'longest_add_gtime', 'no_name']
- Fill null values in delay columns
- Drop remaining null values
"""
global df_can
df_can = df[df.cancelled == 1].copy()
print("Removed cancelled flights - now available in dataframe 'df_can'")
df = df[df.cancelled == 0]
df = df.drop(columns=['Unnamed: 0', 'branded_code_share',
'mkt_carrier', 'cancelled', 'cancellation_code', 'flights', 'air_time',
'first_dep_time', 'total_add_gtime', 'longest_add_gtime', 'no_name'])
for col in ['carrier_delay', 'weather_delay', 'nas_delay', 'security_delay', 'late_aircraft_delay']:
df[col] = df[col].fillna(value=0)
df = df.dropna()
return df | 61dcfa6afd6ec7dd0abb5525187938d6ab978996 | 706,454 |
def convert_spectral_kernel_quint(sequences, list_seq_to_id):
""" Return a list seq of nb of time the seq in list_seq_to_id appear in sequence"""
final = []
for j in range(len(sequences)):
sequence = sequences[j]
dico_appear = {seq: 0 for seq in list_seq_to_id}
for i in range(len(sequence) - 4):
seq_to_add = sequence[i] + sequence[i+1] + sequence[i+2] + sequence[i+3] + sequence[i+4]
dico_appear[seq_to_add] += 1
final.append([dico_appear[k] for k in list_seq_to_id])
return final | 49f727dd26822834bad2c9a448136288dc1c426c | 706,455 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.