content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
from typing import Dict
from typing import List
import pathlib
import json
def json_loader(path_to_json_file: str) -> Dict[str, List[str]]:
"""Reads a JSON file and converts its content in a dictionary.
Parameters
----------
path_to_json_file: str
The path to the JSON file.
Returns
-------
Dict[str, List[str]]
A dictionary of source codes with the corresponding lists of instrument symbols of
interest for each source.
"""
with pathlib.Path(path_to_json_file).open('r') as infile:
return json.loads(infile.read()) | d3f26504078e72e1522981a4d8ca5b60c3b8cf23 | 706,233 |
import time
import json
def create_elasticsearch_domain(name, account_id, boto_session, lambda_role, cidr):
"""
Create Elastic Search Domain
"""
boto_elasticsearch = boto_session.client('es')
total_time = 0
resource = "arn:aws:es:ap-southeast-2:{0}:domain/{1}/*".format(account_id, name)
access_policy = {"Version": "2012-10-17", "Statement": [
{"Effect": "Allow", "Principal": {"AWS": str(lambda_role)}, "Action": "es:*", "Resource": resource},
{"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", "Resource": resource,
"Condition": {"IpAddress": {"aws:SourceIp": "{0}".format(cidr)}}}
]}
endpoint = None
time.sleep(5)
try:
print('Creating elasticsearch domain: {0}'.format(name))
boto_elasticsearch.create_elasticsearch_domain(
DomainName=name,
ElasticsearchVersion='2.3',
ElasticsearchClusterConfig={
'InstanceType': 't2.micro.elasticsearch',
'InstanceCount': 1,
'DedicatedMasterEnabled': False,
'ZoneAwarenessEnabled': False
},
EBSOptions={
'EBSEnabled': True,
'VolumeType': 'gp2',
'VolumeSize': 20
}
)
time.sleep(10)
attempts = 1
while True:
print('Trying to apply access policies to elasticsearch domain: {0} (attempt: {1})'.format(name, attempts))
try:
boto_elasticsearch.update_elasticsearch_domain_config(
DomainName=name,
AccessPolicies=json.dumps(access_policy)
)
break
except Exception as e:
attempts += 1
if attempts > 3:
print('Failed to apply access policies. Please run this script again with `-a delete -n {0}`'
'and wait approx 20 minutes before trying again'.format(name))
print('Full error was: {0}'.format(e))
exit(1)
else:
time.sleep(2)
except Exception as e:
print('Could not create elasticsearch domain: {0}.'.format(name))
print('Error was: {0}'.format(e))
exit(1)
while True:
try:
es_status = boto_elasticsearch.describe_elasticsearch_domain(DomainName=name)
processing = es_status['DomainStatus']['Processing']
if not processing:
endpoint = es_status['DomainStatus']['Endpoint']
print('Domain: {0} has been created!'.format(name))
break
else:
print('Domain: {0} is still processing. Waiting for 120 seconds before checking again'.format(name))
time.sleep(120)
except Exception:
print('Domain: {0} is still processing. Waiting for 120 seconds before checking again'.format(name))
total_time += 120
if total_time > 1800:
print('Script has been running for over 30 minutes... This likely means that your elastic search domain'
' has not created successfully. Please check the Elasticsearch Service dashboard in AWS console'
' and delete the domain named {0} if it exists before trying again'.format(name))
exit(1)
time.sleep(120)
return endpoint | 5e33bd1454a2b3d1ce3bc1cc181b44497ce6035a | 706,234 |
def interp(x, x1, y1, x2, y2):
"""Find a point along a line"""
return ((x2 - x) * y1 + (x - x1) * y2) / (x2 - x1) | 3af4575c017a32619a5bb2866a7faea5ff5c760d | 706,237 |
import time
def getLocalUtcTimeStamp():
"""
Get the universal timestamp for this machine.
"""
t = time.mktime(time.gmtime())
isDst = time.localtime().tm_isdst
return t - isDst * 60 * 60 | 54eed0893d03f3b6a76de0d36fc3f1ff5b35f64f | 706,238 |
from typing import List
def extract_text(html_text) -> List[List[str]]:
"""
:param html_text:
:return:
"""
lines = [i.text.replace("\xa0", "") for i in html_text.find("div", attrs={"class": "contentus"}).findAll("h3")]
return [line.split(" ") for line in lines if line] | 19dfdd513e48f2662dc51661bfeca4b1155762a3 | 706,239 |
def set_payout_amount():
"""
define amount of insurance payout
NB must match what was defined in contract constructor at deployment
"""
return 500000e18 | 30ff7b07cbbe28b3150be2f1f470236875c8d0e3 | 706,241 |
def rucklidge(XYZ, t, k=2, a=6.7):
"""
The Rucklidge Attractor.
x0 = (0.1,0,0)
"""
x, y, z = XYZ
x_dt = -k * x + y * (a - z)
y_dt = x
z_dt = -z + y**2
return x_dt, y_dt, z_dt | 9d10aa89fb684a95474d45399ae09a38b507913c | 706,242 |
def add_bold_line(latex: str, index: int) -> str:
"""Makes a provided line number bold
"""
lines = latex.splitlines()
cells = lines[index].split("&")
lines[index] = r'\bfseries ' + r'& \bfseries '.join(cells)
return '\n'.join(lines) | 637338ea9ec576c780ccfa0b37d47a670465cdbb | 706,243 |
def _unwrap_function(func):
"""Unwrap decorated functions to allow fetching types from them."""
while hasattr(func, "__wrapped__"):
func = func.__wrapped__
return func | 8c7a9f5b08dc91b9ae2c8387fbd4860bb554d561 | 706,244 |
def read_file(repo, name):
"""Read JSON files."""
with open(repo + '/' + name + '.txt') as file:
data = [d.rstrip() for d in file.readlines()]
file.close()
return data | 4d91e4c68a4f132dc6ebb41cc51df66bd555107a | 706,245 |
def add_end_slash(value: str):
""" Added a slash at the end of value """
if type(value) != str:
return value
return value if value.endswith("/") else value + "/" | bc8f41898c50120ad7ca8b814ff03d19c1c64c27 | 706,246 |
def _none_or_int_or_list(val):
"""Input conversion - expecting None, int, or a list of ints"""
if val is None:
return None
elif isinstance(val, list):
return list(map(int, val))
else:
return int(val) | 1958c64175a1cd63f8a42044b40b84d7cf8baed2 | 706,248 |
def hour_of_day(datetime_col):
"""Returns the hour from a datetime column."""
return datetime_col.dt.hour | 18b2f6e16ccbcb488f3863968466fda14f669d8b | 706,249 |
def sum_naturals(n):
"""Sum the first N natural numbers
>>> sum_naturals(5)
15
"""
total = 0
k = 1
while k <= n:
total += k
k += 1
return total | 4c59057cd82083d615c72a59f682dd218a657ea0 | 706,250 |
def sort_list_files(list_patches, list_masks):
"""
Sorts a list of patches and masks depending on their id.
:param list_patches: List of name of patches in the folder, that we want to sort.
:param list_masks: List of name of masks in the folder, that we want to sort.
:return: List of sorted lists, respectively of patches and masks.
"""
return sorted(list_patches, key=lambda x: int(x[1])), sorted(list_masks, key=lambda x: int(x[1])) | 91557475bf145862ea88ad9f86cef82135eddd6c | 706,251 |
def xor(*args):
"""True if exactly one of the arguments of the iterable is True.
>>> xor(0,1,0,)
True
>>> xor(1,2,3,)
False
>>> xor(False, False, False)
False
>>> xor("kalimera", "kalinuxta")
False
>>> xor("", "a", "")
True
>>> xor("", "", "")
False
"""
return sum([bool(i) for i in args]) == 1 | 86bbe0350dd18a2508120cec9672661e1aa56ce0 | 706,252 |
import copy
def dfa2nfa(dfa):
"""Copy DFA to an NFA, so remove determinism restriction."""
nfa = copy.deepcopy(dfa)
nfa.transitions._deterministic = False
nfa.automaton_type = 'Non-Deterministic Finite Automaton'
return nfa | eed8e651a51e71599a38288665604add3d8a0a3d | 706,253 |
def correct_predictions(output_probabilities, targets):
"""
计算与模型输出中的某些目标类匹配的预测数量
Args:
output_probabilities: 不同输出类的概率张量
targets: 实际目标类的索引
Returns:
返回:“output_probabilities”中正确预测的数量
"""
_, out_classes = output_probabilities.max(dim=1)
correct = (out_classes == targets).sum()
return correct.item() | 0e39f3bfa00fc20334cf679aa77d89523a34454c | 706,255 |
import re
def split_value(s, splitters=["/", "&", ","]):
"""Splits a string. The first match in 'splitters' is used as the
separator; subsequent matches are intentionally ignored."""
if not splitters:
return [s.strip()]
values = s.split("\n")
for spl in splitters:
spl = re.compile(r"\b\s*%s\s*\b" % re.escape(spl), re.UNICODE)
if not filter(spl.search, values):
continue
new_values = []
for v in values:
new_values.extend([st.strip() for st in spl.split(v)])
return new_values
return values | a9227a4dcf4c49393e6c784337754d1e2b1d30b4 | 706,256 |
from typing import List
def parse_text(text):
"""
Parse raw text format playlists, each line must contain a single.
track with artist and title separated by a single dash. eg Queen - Bohemian Rhapsody
:param str text:
:return: A list of tracks
"""
tracks: List[tuple] = []
for line in text.split("\n"):
line = line.strip()
if not line or line.startswith("#"):
continue
parts = line.split("-", 1)
if len(parts) != 2:
continue
artist, track = list(map(str.strip, parts))
if not artist or not track or (artist, track) in tracks:
continue
tracks.append((artist, track))
return tracks | 1307d7ced966aa388e570456964c5921ac54ccca | 706,257 |
import os
def get_absolute_path(file_name, package_level=True):
"""Get file path given file name.
:param: [package_level] - Wheather the file is in/out side the
`gmail_api_wrapper` package
"""
if package_level:
# Inside `gmail_api_wrapper`
dirname = os.path.dirname(__file__)
else:
# Outside `gmail_api_wrapper`
dirname = os.path.join(os.path.dirname(__file__), os.pardir)
file_path = os.path.abspath(os.path.join(dirname, file_name))
return file_path | 70206d9f8b94603b3efaf89c1b53573e1e01ca4d | 706,258 |
def thanos(planet: dict, finger: int) -> int:
""" Thanos can kill half lives of a world with a snap of the finger """
keys = planet.keys()
for key in keys:
if (++finger & 1) == 1:
# kill it
planet.pop(key)
return finger | 5b6325297cb8f259c27b3eb7fa5618edd1486b9c | 706,259 |
from typing import List
def ordered_list_item_to_percentage(ordered_list: List[str], item: str) -> int:
"""Determine the percentage of an item in an ordered list.
When using this utility for fan speeds, do not include "off"
Given the list: ["low", "medium", "high", "very_high"], this
function will return the following when when the item is passed
in:
low: 25
medium: 50
high: 75
very_high: 100
"""
if item not in ordered_list:
raise ValueError
list_len = len(ordered_list)
list_position = ordered_list.index(item) + 1
return (list_position * 100) // list_len | 2aa1b0574664e53da6080ae4bc99d1f3c93fad96 | 706,260 |
def dirty(graph):
"""
Return a set of all dirty nodes in the graph.
"""
# Reverse the edges to get true dependency
return {n: v for n, v in graph.node.items() if v.get('build') or v.get('test')} | 06835b52d7741716f1c67d951c0ab74758f476b4 | 706,261 |
def _ibp_sub(lhs, rhs):
"""Propagation of IBP bounds through a substraction.
Args:
lhs: Lefthand side of substraction.
rhs: Righthand side of substraction.
Returns:
out_bounds: IntervalBound.
"""
return lhs - rhs | 45ed06feea14275ddd64e1ec60727123db52a5cd | 706,262 |
import os
import sys
def import_module_from_path(full_path, global_name):
"""
Import a module from a file path and return the module object.
Allows one to import from anywhere, something ``__import__()`` does not do.
The module is added to ``sys.modules`` as ``global_name``.
:param full_path:
The absolute path to the module .py file
:param global_name:
The name assigned to the module in sys.modules. To avoid
confusion, the global_name should be the same as the variable to which
you're assigning the returned module.
"""
path, filename = os.path.split(full_path)
module, ext = os.path.splitext(filename)
sys.path.append(path)
try:
mymodule = __import__(module)
sys.modules[global_name] = mymodule
except ImportError:
raise ImportError('Module could not be imported from %s.' % full_path)
finally:
del sys.path[-1]
return mymodule | d7f73dce4e51715e79a71616cf509f86c8106f27 | 706,263 |
def civic_eid26_statement():
"""Create a test fixture for CIViC EID26 statement."""
return {
"id": "civic.eid:26",
"description": "In acute myloid leukemia patients, D816 mutation is associated with earlier relapse and poorer prognosis than wildtype KIT.", # noqa: E501
"direction": "supports",
"evidence_level": "civic.evidence_level:B",
"proposition": "proposition:001",
"variation_origin": "somatic",
"variation_descriptor": "civic.vid:65",
"disease_descriptor": "civic.did:3",
"method": "method:001",
"supported_by": ["pmid:16384925"],
"type": "Statement"
} | bdad5e8d5f6fe063d43bb600bf4158fadc1f38ca | 706,264 |
import re
def validate_user(username, minlen):
"""Checks if the received username matches the required conditions."""
if type(username) != str:
raise TypeError("username must be a string")
if minlen < 1:
raise ValueError("minlen must be at least 1")
"""
Username should not be shorter than minlen
Username should always starts with letter and should consists of letters, numbers, dots and underscore
"""
if (len(username) < minlen):
return False
if not re.match(r'^[a-z][a-z0-9._]*$', username): # made changes in Regex
return False
return True | 7d7ad86eccba2639158a9f5da9fb093f9f4abff9 | 706,266 |
def get_type_name_value(obj):
"""
Returns object type name from LLDB value.
It returns type name with asterisk if object is a pointer.
:param lldb.SBValue obj: LLDB value object.
:return: Object type name from LLDB value.
:rtype: str | None
"""
return None if obj is None else obj.GetTypeName() | c87a5acf7d8ef794eab97c90b82bbd9574fb0e2b | 706,267 |
def lang_add(cursor, lang, trust):
"""Adds language for db"""
if trust:
query = 'CREATE TRUSTED LANGUAGE "%s"' % lang
else:
query = 'CREATE LANGUAGE "%s"' % lang
cursor.execute(query)
return True | f5a1ac9264efca070b4528505ee6bee6892b3e80 | 706,268 |
def format_time(time):
""" It formats a datetime to print it
Args:
time: datetime
Returns:
a formatted string representing time
"""
m, s = divmod(time, 60)
h, m = divmod(m, 60)
d, h = divmod(h, 24)
return ('{:02d}d {:02d}h {:02d}m {:02d}s').format(int(d), int(h), int(m), int(s)) | 67c6404cbc5076358f9e85dc169e1d7b976b7d60 | 706,269 |
def percent_list(part_list, whole_list):
"""return percent of the part"""
w = len(whole_list)
if not w:
return (w,0)
p = 100 * float(len(part_list))/float(w)
return (w,round(100-p, 2)) | f9b3697c96c04c402972351e73395b7f7ed18350 | 706,270 |
def capacity_rule(mod, g, p):
"""
The capacity of projects of the *gen_ret_bin* capacity type is a
pre-specified number for each of the project's operational periods
multiplied with 1 minus the binary retirement variable.
"""
return mod.gen_ret_bin_capacity_mw[g, p] \
* (1 - mod.GenRetBin_Retire[g, p]) | ba4ccad8d620da084912a65a80793f54fb84b374 | 706,271 |
def secure_request(request, ssl: bool):
"""
:param ssl:
:param request:
:return:
"""
# request.headers['Content-Security-Policy'] = "script-src 'self' cdnjs.cloudflare.com ; "
request.headers['Feature-Policy'] = "geolocation 'none'; microphone 'none'; camera 'self'"
request.headers['Referrer-Policy'] = 'no-referrer'
request.headers['x-frame-options'] = 'SAMEORIGIN'
request.headers['X-Content-Type-Options'] = 'nosniff'
request.headers['X-Permitted-Cross-Domain-Policies'] = 'none'
request.headers['X-XSS-Protection'] = '1; mode=block'
if ssl:
request.headers['expect-ct'] = 'max-age=60, enforce'
request.headers["Content-Security-Policy"] = "upgrade-insecure-requests"
request.headers['Strict-Transport-Security'] = "max-age=60; includeSubDomains; preload"
return request | e1c19aa89930e6aeb1c548c24da374859987e090 | 706,272 |
def _get_prefixed_values(data, prefix):
"""Collect lines which start with prefix; with trimming"""
matches = []
for line in data.splitlines():
line = line.strip()
if line.startswith(prefix):
match = line[len(prefix):]
match = match.strip()
matches.append(match)
return matches | d0fe7ff11321ccbf06397963a303f0e79181ebba | 706,273 |
def bytes_to_msg(seq, standard="utf-8"):
"""Decode bytes to text."""
return seq.decode(standard) | 5664d97b3fec5d119daa2171bcb431ca5a4b5f33 | 706,274 |
def bonferroni_correction(pvals):
"""
Bonferroni correction.
Reference: http://en.wikipedia.org/wiki/Bonferroni_correction
"""
n = len(pvals)
return [min(x * n , 1.0) for x in pvals] | f57ffd6b77a0a74a61904334604d1cb0eb08f8ff | 706,275 |
from itertools import accumulate, chain, repeat
def make_fib():
"""Returns a function that returns the next Fibonacci number
every time it is called.
>>> fib = make_fib()
>>> fib()
0
>>> fib()
1
>>> fib()
1
>>> fib()
2
>>> fib()
3
>>> fib2 = make_fib()
>>> fib() + sum([fib2() for _ in range(5)])
12
"""
return map(lambda x_y: x_y[0], accumulate(chain(((0, 1),), repeat(None)), lambda x_y, _: (x_y[1], x_y[0] + x_y[1]))).__next__ | e546ce79c4b441418f5325b0ac5d7c3faf6ac35e | 706,276 |
def text_in_bytes(text, binary_data, encoding="utf-8"):
"""Return True of the text can be found in the decoded binary data"""
return text in binary_data.decode(encoding) | e416057989c452718fa27b5f84286e347b986117 | 706,277 |
def normalize_v(v):
""" Normalize velocity to [-1, 1].
Ref: https://github.com/microsoft/AirSim-Drone-Racing-VAE-Imitation/blob/e651be52ff8274c9f595e88b13fe42d51302403d/racing_utils/dataset_utils.py#L20 """
# normalization of velocities from whatever to [-1, 1] range
v_x_range = [-1, 7]
v_y_range = [-3, 3]
v_z_range = [-3, 3]
v_yaw_range = [-1, 1]
if len(v.shape) == 1:
# means that it's a 1D vector of velocities
v[0] = 2.0 * (v[0] - v_x_range[0]) / (v_x_range[1] - v_x_range[0]) - 1.0
v[1] = 2.0 * (v[1] - v_y_range[0]) / (v_y_range[1] - v_y_range[0]) - 1.0
v[2] = 2.0 * (v[2] - v_z_range[0]) / (v_z_range[1] - v_z_range[0]) - 1.0
v[3] = 2.0 * (v[3] - v_yaw_range[0]) / (v_yaw_range[1] - v_yaw_range[0]) - 1.0
elif len(v.shape) == 2:
# means that it's a 2D vector of velocities
v[:, 0] = 2.0 * (v[:, 0] - v_x_range[0]) / (v_x_range[1] - v_x_range[0]) - 1.0
v[:, 1] = 2.0 * (v[:, 1] - v_y_range[0]) / (v_y_range[1] - v_y_range[0]) - 1.0
v[:, 2] = 2.0 * (v[:, 2] - v_z_range[0]) / (v_z_range[1] - v_z_range[0]) - 1.0
v[:, 3] = 2.0 * (v[:, 3] - v_yaw_range[0]) / (v_yaw_range[1] - v_yaw_range[0]) - 1.0
else:
raise Exception('Error in data format of V shape: {}'.format(v.shape))
return v
# Note: The version used in Shuang's code base is below, which should be equivalent to the above version.
# self.targets[:, 0] = 2. * (self.targets[:, 0] + 1.) / (7. + 1.) - 1.
# self.targets[:, 1] = 2. * (self.targets[:, 1] + 3.) / (3. + 3.) - 1.
# self.targets[:, 2] = 2. * (self.targets[:, 2] + 3.) / (3. + 3.) - 1.
# self.targets[:, 3] = 2. * (self.targets[:, 3] + 1.) / (1. + 1.) - 1. | cd47c8d3498e677a1f566b64199224f23a4b5896 | 706,278 |
def second_smallest(numbers):
"""Find second smallest element of numbers."""
m1, m2 = float('inf'), float('inf')
for x in numbers:
if x <= m1:
m1, m2 = x, m1
elif x < m2:
m2 = x
return m2 | 0ca7b297da68651e4a8b56377e08f09d4d82cfb7 | 706,279 |
from datetime import datetime
import socket
def get_run_name():
""" A unique name for each run """
return datetime.now().strftime(
'%b%d-%H-%M-%S') + '_' + socket.gethostname() | 26f57e72912e896fe192de61b6477ef65051fccd | 706,280 |
def compute_win_state_str_row(n_rows, n_cols, n_connects):
"""Each win state will be a string of 0s and 1s which can
then converted into an integer in base 2.
I assume that at the maximum n_rows = n_cols = 5, which means
that a 31 bit integer (since in Python it's always signed)
should be more than enough for a 25 bit string.
"""
n_cells = n_rows * n_cols
win_states = list()
# each iteration in the for loop computes the possible
# winning states for a particular row, e.g.,
# - if n_connects == n_cols, there's just one winning state
for row_ind in range(n_rows):
prefix = '0' * (row_ind * n_cols)
row_end = (row_ind * n_cols) + n_cols
win_start_ind = row_ind * n_cols
win_end_ind = win_start_ind + n_connects
while win_end_ind <= row_end:
# save the winning state
suffix = '0' * (n_cells - win_end_ind)
win_state = prefix + '1' * n_connects + suffix
win_states.append(win_state)
# update for the next possible win state of the row
win_start_ind = win_start_ind + 1
win_end_ind = win_start_ind + n_connects
prefix += '0'
return win_states | b0f0f2846de7506b4b69f90bb8a0b1641a421659 | 706,281 |
import hmac
import hashlib
def hmac_sha512(key: bytes, data: bytes) -> bytes:
"""
Return the SHA512 HMAC for the byte sequence ``data`` generated with the
secret key ``key``.
Corresponds directly to the "HMAC-SHA512(Key = ..., Data = ...)" function
in BIP32
(https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#conventions).
:param key: The secret key used for HMAC calculation.
:param data: The data for which an HMAC should be calculated.
:return: A byte sequence containing the HMAC of ``data`` generated with the
secret key ``key``.
"""
h = hmac.new(key, data, hashlib.sha512)
return h.digest() | 64850ea2d5e921138d8e0ebc2d021f8eaf5a7357 | 706,282 |
def validate(data):
"""Validates incoming data
Args:
data(dict): the incoming data
Returns:
True if the data is valid
Raises:
ValueError: the data is not valid
"""
if not isinstance(data, dict):
raise ValueError("data should be dict")
if "text" not in data or not isinstance(data["text"],
str) or len(data["text"]) < 1:
raise ValueError("text field is required and should not be empty")
if "markdown" in data and not isinstance(data["markdown"], bool):
raise ValueError("markdown field should be bool")
if "attachments" in data:
if not isinstance(data["attachments"], list):
raise ValueError("attachments field should be list")
for attachment in data["attachments"]:
if "text" not in attachment and "title" not in attachment:
raise ValueError("text or title is required in attachment")
return True | ae8b7e74bd7607a7c8f5079014a0f5e3af5bc011 | 706,283 |
def stripExtra(name):
"""This function removes paranthesis from a string
*Can later be implemented for other uses like removing other characters from string
Args:
name (string): character's name
Returns:
string: character's name without paranthesis
"""
startIndexPer=name.find('(')
start = 0
if(startIndexPer!=-1):
start = startIndexPer
if(start==0):
return name
else:
return name[0:start-1] | fd9b8c2d6f513f06d8b1df067520c7f05cff023d | 706,284 |
def sort_car_models(car_db):
"""return a copy of the cars dict with the car models (values)
sorted alphabetically"""
sorted_db = {}
for model in car_db:
sorted_db[model] = sorted(car_db[model])
return sorted_db | a478f16ece83058ba411480b91584e4c61026141 | 706,285 |
import gc
def at(addr):
"""Look up an object by its id."""
for o in gc.get_objects():
if id(o) == addr:
return o
return None | f408b9a63afad1638f156163c6249e0e8095bff4 | 706,286 |
def voltage(raw_value, v_min=0, v_max=10, res=32760, gain=1):
"""Converts a raw value to a voltage measurement.
``V = raw_value / res * (v_max - v_min) * gain``
"""
return (float(raw_value) / res * (v_max - v_min) * gain, "V") | b4ea7d2521e1fa856a21b98ace2a9490f8a3b043 | 706,287 |
def extract_characteristics_from_string(species_string):
"""
Species are named for the SBML as species_name_dot_characteristic1_dot_characteristic2
So this transforms them into a set
Parameters:
species_string (str) = species string in MobsPy for SBML format (with _dot_ instead of .)
"""
return set(species_string.split('_dot_')) | abfcc0d3e425e8f43d776a02254a04b0e85dc6d1 | 706,288 |
def _diff_bearings(bearings, bearing_thresh=40):
"""
Identify kinked nodes (nodes that change direction of an edge) by diffing
Args:
bearings (list(tuple)): containing (start_node, end_node, bearing)
bearing_thresh (int): threshold for identifying kinked nodes (range 0, 360)
Returns:
list[str] of kinked nodes
"""
kinked_nodes = []
# diff bearings
nodes = [b[0] for b in bearings]
bearings_comp = [b[2] for b in bearings]
bearing_diff = [y - x for x, y in zip(bearings_comp, bearings_comp[1:])]
node2bearing_diff = list(zip(nodes[1:-1], bearing_diff))
# id nodes to remove
for n in node2bearing_diff:
# controlling for differences on either side of 360
if min(abs(n[1]), abs(n[1] - 360)) > bearing_thresh:
kinked_nodes.append(n[0])
return kinked_nodes | a29c3cdd009065d7a73dd993ae66f81853d5e2bc | 706,289 |
def _convert_steplist_to_string(step_data):
"""Converts list of step data into a single string.
Parameters
----------
step_data : list
List of step data
Returns
-------
str
A space delimited string where every 6th value is followed by a newline.
"""
text = ''
for i, datum in enumerate(step_data):
if i == 0:
text += f'\n{datum}\n'
else:
if i%6 == 0:
text += f'{datum}\n'
else:
text += f'{datum} '
return text | 112495edbafc3db39946d7abeefff6466e2dff94 | 706,290 |
import re
def parse_transceiver_dom_sensor(output_lines):
"""
@summary: Parse the list of transceiver from DB table TRANSCEIVER_DOM_SENSOR content
@param output_lines: DB table TRANSCEIVER_DOM_SENSOR content output by 'redis' command
@return: Return parsed transceivers in a list
"""
result = []
p = re.compile(r"TRANSCEIVER_DOM_SENSOR\|(Ethernet\d+)")
for line in output_lines:
m = p.match(line)
assert m, "Unexpected line %s" % line
result.append(m.group(1))
return result | 367d6a744add04e7649c971ef8fec3788ed8db88 | 706,291 |
def group_node_intro_times(filt, groups, n_sents):
"""
Returns lists of addition times of nodes into particular groups
"""
devs = [[] for _ in range(len(set(groups)))]
for i in range(len(groups)):
intro = int(filt[i, i])
devs[groups[i]].append(intro/n_sents) # still normalize addition time
return devs | b5da0e97c76683201a9b81fce1b1f1c7f25e4d6d | 706,292 |
import re
def youku(link):
"""Find youku player URL."""
pattern = r'http:\/\/v\.youku\.com\/v_show/id_([\w]+)\.html'
match = re.match(pattern, link)
if not match:
return None
return 'http://player.youku.com/embed/%s' % match.group(1) | efcf1394cc02503a1ae18d91abee34777958e545 | 706,293 |
def combinationSum(candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
result = []
candidates = sorted(candidates)
def dfs(remain, stack):
if remain == 0:
result.append(stack)
return
for item in candidates:
if item > remain:
break
if stack and item < stack[-1]:
continue
else:
dfs(remain - item, stack + [item])
dfs(target, [])
return result | e8739c196c84aa7d15712ba1007e602a330fd625 | 706,294 |
def format_time(data, year):
"""Format any time variables in US.
Parameters
----------
data : pd.DataFrame
Data without time formatting.
year : int
The `year` of the wave being processed.
Returns
-------
data : pd.DataFrame
Data with time formatting.
"""
# See to do messages at the top of the file.
# Theres some wierd overlap in the pidp data. Theres essentially a gap in September 2008 with noone in it from
# BHPS which makes transition models fail.
# Following 2 lines are a stupid work around.
# if self.year <= 2008:
# self.year += 1
data["time"] = year
return data | 858d7e48143a16e644d4f1241cd8918385dc7c5f | 706,295 |
def plot(plot, x, y, **kwargs):
"""
Adds series to plot. By default this is displayed as continuous line.
Refer to matplotlib.pyplot.plot() help for more info. X and y coordinates
are expected to be in user's data units.
Args:
plot: matplotlib.pyplot
Plot to which series should be added.
x: (float,)
Collection of x-coordinates in user units.
y: (float,)
Collection of y-coordinates in user units.
title: str
Series legend.
"""
# add series
return plot.plot(x, y, **kwargs) | 1e861243a87b61461fb49dcadf19ec9099fa5a1f | 706,296 |
def interval_to_errors(value, low_bound, hi_bound):
"""
Convert error intervals to errors
:param value: central value
:param low_bound: interval low bound
:param hi_bound: interval high bound
:return: (error minus, error plus)
"""
error_plus = hi_bound - value
error_minus = value - low_bound
return error_minus, error_plus | ffee403968ddf5fd976df79a90bdbb62474ede11 | 706,297 |
def expsign(sign, exp):
"""
optimization of sign ** exp
"""
if sign == 1:
return 1
assert sign == -1
return -1 if exp % 2 else 1 | d770aaa2a4d20c9530a213631047d1d0f9cca3f7 | 706,299 |
import re
def _newline_to_ret_token(instring):
"""Replaces newlines with the !RET token.
"""
return re.sub(r'\n', '!RET', instring) | 4fcf60025f79811e99151019a479da04f25ba47c | 706,300 |
def _ComputeLineCounts(old_lines, chunks):
"""Compute the length of the old and new sides of a diff.
Args:
old_lines: List of lines representing the original file.
chunks: List of chunks as returned by patching.ParsePatchToChunks().
Returns:
A tuple (old_len, new_len) representing len(old_lines) and
len(new_lines), where new_lines is the list representing the
result of applying the patch chunks to old_lines, however, without
actually computing new_lines.
"""
old_len = len(old_lines)
new_len = old_len
if chunks:
(_, old_b), (_, new_b), old_lines, _ = chunks[-1]
new_len += new_b - old_b
return old_len, new_len | ba99714016b69d87f260c8e7b8793468a2f7b04d | 706,301 |
def _read_int(file_handle, data_size):
"""
Read a signed integer of defined data_size from file.
:param file_handle: The file handle to read from at current position
:param data_size: The data size in bytes of the integer to read
:returns: The integer read and decoded
"""
return int.from_bytes(file_handle.read(data_size), byteorder="little", signed=True) | 4d2a7e82e9daa828c0e5b180250834f2fa9977d5 | 706,302 |
import numpy
def quaternion_to_matrix(quat):
"""OI
"""
qw = quat[0][0]
qx = quat[1][0]
qy = quat[2][0]
qz = quat[3][0]
rot = numpy.array([[1 - 2*qy*qy - 2*qz*qz, 2*qx*qy - 2*qz*qw, 2*qx*qz + 2*qy*qw],
[2*qx*qy + 2*qz*qw, 1 - 2*qx*qx - 2*qz*qz, 2*qy*qz - 2*qx*qw],
[2*qx*qz - 2*qy*qw, 2*qy*qz + 2*qx*qw, 1 - 2*qx*qx - 2*qy*qy]])
return rot | 67f02ea97db1af4a763c3a97957f36de29da0157 | 706,303 |
def list_check(lst):
"""Are all items in lst a list?
>>> list_check([[1], [2, 3]])
True
>>> list_check([[1], "nope"])
False
"""
t = [1 if isinstance(x, list) else 0 for x in lst]
return len(lst) == sum(t) | 9e2c55cb6e15f89ff2b73a78d5f15310d3cac672 | 706,304 |
def recover_label(pred_variable, gold_variable, mask_variable, label_alphabet, word_recover, sentence_classification=False):
"""
input:
pred_variable (batch_size, sent_len): pred tag result
gold_variable (batch_size, sent_len): gold result variable
mask_variable (batch_size, sent_len): mask variable
"""
pred_variable = pred_variable[word_recover]
# print("reordered labels: {}".format(pred_variable))
gold_variable = gold_variable[word_recover]
mask_variable = mask_variable[word_recover]
batch_size = gold_variable.size(0)
if sentence_classification:
pred_tag = pred_variable.cpu().data.numpy().tolist()
gold_tag = gold_variable.cpu().data.numpy().tolist()
pred_label = [label_alphabet.get_instance(pred) for pred in pred_tag]
gold_label = [label_alphabet.get_instance(gold) for gold in gold_tag]
else:
seq_len = gold_variable.size(1)
mask = mask_variable.cpu().data.numpy()
pred_tag = pred_variable.cpu().data.numpy()
gold_tag = gold_variable.cpu().data.numpy()
batch_size = mask.shape[0]
pred_label = []
gold_label = []
for idx in range(batch_size):
pred = [label_alphabet.get_instance(pred_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0]
gold = [label_alphabet.get_instance(gold_tag[idx][idy]) for idy in range(seq_len) if mask[idx][idy] != 0]
assert(len(pred)==len(gold))
pred_label.append(pred)
gold_label.append(gold)
return pred_label, gold_label | 7f3efef4a0e9041e329c8d1c0c5641bf0c79ff58 | 706,305 |
import json
def all_cells_run(event_str: str, expected_count: int) -> bool:
"""Wait for an event signalling all cells have run.
`execution_count` should equal number of nonempty cells.
"""
try:
event = json.loads(event_str)
msg_type = event["msg_type"]
content = event["content"]
execution_count = content["execution_count"]
status = content["status"]
except (TypeError, KeyError):
return False
return all(
(
msg_type == "execute_reply",
execution_count == expected_count,
status == "ok",
)
) | c3e1bb23f38ffdd09d4cc2ea3326d40b7cf54034 | 706,306 |
def searchInsert(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
try:
return nums.index(target)
except ValueError:
nums.append(target)
nums.sort()
return nums.index(target) | 56a719b1595502a773c108d26c597fb5ac0201bb | 706,307 |
import json
def jsonify(value):
"""
Convert a value into a JSON string that can be used for JSONB queries in
Postgres.
If a string happens to contain the character U+0000, which cannot be
represented in a PostgreSQL value, remove the escape sequence representing
that character, effectively stripping out that character from all strings.
"""
return json.dumps(value, ensure_ascii=False).replace("\\u0000", "") | 7fff497b302822f8f79f0e68b2576c26458df99c | 706,308 |
import os
import json
import urllib3
import certifi
def add_generated_report_header(report_header):
"""
Upload report history and return the id of the header that was generated
on the server.
Parameters
----------
report_header:
Required Parmeters:
A dictionary of parameters that will be used to describe the report that consist of:
- report: Name of the report
- executionTimeMS: The number of milliseconds it took to generate the report
- scheduled: True if the report was scheduled, false if it was not
- note: Any notes to be added to the report
- user: An Entity Header (dictionary of id and text) of the user (which could be a system user) that requested the report.
- contentType: Mime type of the report, generally this is application/pdf
- fileName: name of the file (not including the path) of the report
- reportTitle: tile of the report as it was generated
Optional Parameters
- reportSummary: report summary as returned from the generatred report
- reportDate: date of for the report
- device: An Entity Header (dictionary of id and text) of the device that this report is for, if this is provided reports for specific devices will be available in the dashboard
Returns
-------
out: string
Returns the id of the generated report that can be used to upload a report.
"""
job_server = os.environ.get('JOB_SERVER_URL')
if(job_server is None):
raise Exception("Missing environment variable [JOB_SERVER_URL]")
headers={'Content-Type':'application/json'}
generated_report_json = json.dumps(report_header)
url = "%s/api/generatedreport/header" % (job_server)
encoded_data = generated_report_json.encode('utf-8')
http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=certifi.where())
r = http.request('POST', url,
headers=headers,
preload_content=False,
body=encoded_data)
responseText = ''
responseStatus = r.status
for chunk in r.stream(32):
responseText += chunk.decode("utf-8")
responseJSON = json.loads(responseText)
r.release_conn()
if responseStatus > 299:
print('Failed http call, response code: ' + str(responseStatus))
print('Url: ' + url)
print(responseJSON)
print('--------------------------------------------------------------------------------')
print()
raise Exception("Could not upload report header to %s" % url)
if(responseJSON["successful"]):
return responseJSON["result"]
else:
raise Exception(responseJSON["errors"][0]["message"]) | d1c1923e4a61ae82f4f9319b471a18ed2bcbf562 | 706,309 |
def getAsciiFileExtension(proxyType):
"""
The file extension used for ASCII (non-compiled) proxy source files
for the proxies of specified type.
"""
return '.proxy' if proxyType == 'Proxymeshes' else '.mhclo' | cb2b27956b3066d58c7b39efb511b6335b7f2ad6 | 706,310 |
def dist(s1, s2):
"""Given two strings, return the Hamming distance (int)"""
return abs(len(s1) - len(s2)) + sum(
map(lambda p: 0 if p[0] == p[1] else 1, zip(s1.lower(), s2.lower()))) | ef7b3bf24e24a2e49f0c7acfd7bcb8f23fa9af2e | 706,311 |
import pickle
def read_bunch(path):
""" read bunch.
:param path:
:return:
"""
file = open(path, 'rb')
bunch = pickle.load(file)
file.close()
return bunch | aec87c93e20e44ddeeda6a8dfaf37a61e837c714 | 706,312 |
def col_index_list(info, key, value):
"""Given a list of dicts 'info', return a list of indices corresponding to
columns in which info[key] == value. Use to build lists of default columns,
non-exportable columns, etc."""
index_list = list()
if info != None:
for i in range(0, len(info)):
if info[i].get(key) == value:
index_list.append(i)
return index_list | af46b03c2fe5bce2ceb7305fd670ce1f0f52ae38 | 706,313 |
def retr_radihill(smax, masscomp, massstar):
"""
Return the Hill radius of a companion
Arguments
peri: orbital period
rsma: the sum of radii of the two bodies divided by the semi-major axis
cosi: cosine of the inclination
"""
radihill = smax * (masscomp / 3. / massstar)**(1. / 3.) # [AU]
return radihill | 5010f66026db7e2544b85f70fd1449f732c024b4 | 706,314 |
def profiling_csv(stage, phases, durations):
"""
Dumps the profiling information into a CSV format.
For example, with
stage: `x`
phases: ['a', 'b', 'c']
durations: [1.42, 2.0, 3.4445]
The output will be:
```
x,a,1.42
x,b,2.0
x,c,3.444
```
"""
assert all(hasattr(p, "name") for p in phases), "expected to have name attribute."
return "\n".join(
[f"{stage},{p.name},{round(t, 3)}" for (p, t) in zip(phases, durations)]
) | d40ee5601aa201904741870ce75c4b5bfde0f9bc | 706,315 |
def view_filestorage_file(self, request):
""" Renders the given filestorage file in the browser. """
return getattr(request.app, self.storage).getsyspath(self.path) | ad65b83b9462c8b8efec7626d4751685df3aba8b | 706,316 |
def fib(n):
"""Returns the nth Fibonacci number."""
if n == 0:
return 1
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2) | 397d5714f45491dde68c13379fe2a6acafe55002 | 706,318 |
def split_sample(labels):
"""
Split the 'Sample' column of a DataFrame into a list.
Parameters
----------
labels: DataFrame
The Dataframe should contain a 'Sample' column for splitting.
Returns
-------
DataFrame
Updated DataFrame has 'Sample' column with a list of strings.
"""
sample_names = labels["Sample"].str.split(" ", n=1, expand=False)
labels['Sample'] = sample_names
return labels | 483f1b78e07a2156aa3e48ae6c1f5ce41f5e60fe | 706,320 |
import hashlib
def get_text_hexdigest(data):
"""returns md5 hexadecimal checksum of string/unicode data
NOTE
----
The md5 sum of get_text_hexdigest can differ from get_file_hexdigest.
This will occur if the line ending character differs from being read in
'rb' versus 'r' modes.
"""
data_class = data.__class__
# fmt: off
if data_class in ("".__class__, u"".__class__):
data = data.encode("utf-8")
elif data.__class__ != b"".__class__:
raise TypeError("can only checksum string, unicode or bytes data")
# fmt: on
md5 = hashlib.md5()
md5.update(data)
return md5.hexdigest() | 762115178406c0b49080b3076859a3d1c13ad356 | 706,321 |
def escape_env_var(varname):
"""
Convert a string to a form suitable for use as an environment variable.
The result will be all uppercase, and will have all invalid characters
replaced by an underscore.
The result will match the following regex: [a-zA-Z_][a-zA-Z0-9_]*
Example:
"my.private.registry/cat/image" will become
"MY_PRIVATE_REGISTRY_CAT_IMAGE"
"""
varname = list(varname.upper())
if not varname[0].isalpha():
varname[0] = "_"
for i, c in enumerate(varname):
if not c.isalnum() and c != "_":
varname[i] = "_"
return "".join(varname) | c1e57ff3b9648e93a540202f00d0325f91bccde1 | 706,323 |
def is_in(a_list):
"""Returns a *function* that checks if its argument is in list.
Avoids recalculation of list at every comparison."""
def check(arg): return arg in a_list
return check | 34afbc269c164f0e095b1cbbf4e9576bafc7a9e1 | 706,324 |
def get_log_record_extra_fields(record):
"""Taken from `common` repo logging module"""
# The list contains all the attributes listed in
# http://docs.python.org/library/logging.html#logrecord-attributes
skip_list = (
'args', 'asctime', 'created', 'exc_info', 'exc_text', 'filename',
'funcName', 'id', 'levelname', 'levelno', 'lineno', 'module',
'msecs', 'msecs', 'message', 'msg', 'name', 'pathname', 'process',
'processName', 'relativeCreated', 'thread', 'threadName', 'extra',
'stack_info', 'exc_type', 'exc_msg')
easy_types = (str, bool, dict, float, int, list, type(None))
fields = {}
for key, value in record.__dict__.items():
if key not in skip_list:
if isinstance(value, easy_types):
fields[key] = value
else:
fields[key] = repr(value)
return fields | 95fe6a74cd169c14ac32728f0bb1d16a2aa9e874 | 706,325 |
def _dtype(a, b=None):
"""Utility for getting a dtype"""
return getattr(a, 'dtype', getattr(b, 'dtype', None)) | c553851231f0c4be544e5f93738b43fa98e65176 | 706,327 |
def get_decay_fn(initial_val, final_val, start, stop):
"""
Returns function handle to use in torch.optim.lr_scheduler.LambdaLR.
The returned function supplies the multiplier to decay a value linearly.
"""
assert stop > start
def decay_fn(counter):
if counter <= start:
return 1
if counter >= stop:
return final_val / initial_val
time_range = stop - start
return 1 - (counter - start) * (1 - final_val / initial_val) / time_range
assert decay_fn(start) * initial_val == initial_val
assert decay_fn(stop) * initial_val == final_val
return decay_fn | d84c0f0305d239834429d83ba4bd5c6d6e945b69 | 706,328 |
def _vars_to_add(new_query_variables, current_query_variables):
"""
Return list of dicts representing Query Variables not yet persisted
Keyword Parameters:
new_query_variables -- Dict, representing a new inventory of Query
Variables, to be associated with a DWSupport Query
current_query_variables -- Dict, representing the Query Variables
currently associated with the 'new_query_variables' Query mapped
by tuple(table_name, column_name)
>>> from pprint import pprint
>>> test_new_vars = { 'great_fact': ['measure_a', 'measure_b']
... ,'useful_dim': ['field_one']
... ,'occasionally_useful_dim': ['field_two']}
>>> persisted_vars = { ('great_fact', 'measure_a'): object() #fake
... ,('useful_dim', 'field_one'): object()#objects
... ,('useful_dim', 'field_two'): object()}
>>> out = _vars_to_add(test_new_vars, persisted_vars)
>>> pprint(out) # check detected additions
{'great_fact': ['measure_b'], 'occasionally_useful_dim': ['field_two']}
"""
additional_fields_by_table_name = {} # Values to return
# detect additions
for new_variable_table_name, table_columns in new_query_variables.items():
for column_name in table_columns:
key = (new_variable_table_name, column_name) #table+column tuple
if key not in current_query_variables:
# New Query Variable - add variable name to table's list
table_variables = additional_fields_by_table_name.setdefault(
new_variable_table_name
,list()) #default to new, empty list (if none exists yet)
table_variables.append(column_name)
return additional_fields_by_table_name | fd5ea2209b374ab9987a05c139ba1f28805f3eff | 706,329 |
def Ak(Y2d, H, k):
"""
Calculate Ak for Sk(x)
Parameters
----------
Y2d : list
list of y values with the second derived
H : list
list of h values from spline
k : int
index from Y2d and H
Returns
-------
float
Ak from cubic spline
"""
return (Y2d[k] - Y2d[k - 1]) / (6 * H[k - 1]) | baea453b9c7b023b78c1827dc23bacbd8fd6b057 | 706,330 |
def cycle_list_next(vlist, current_val):
"""Return the next element of *current_val* from *vlist*, if
approaching the list boundary, starts from begining.
"""
return vlist[(vlist.index(current_val) + 1) % len(vlist)] | 48e2ac31178f51f981eb6a27ecf2b35d44b893b4 | 706,331 |
import requests
def id_convert(values, idtype=None):
"""
Get data from the id converter API.
https://www.ncbi.nlm.nih.gov/pmc/tools/id-converter-api/
"""
base = 'http://www.pubmedcentral.nih.gov/utils/idconv/v1.0/'
params = {
'ids': values,
'format': 'json',
}
if idtype is not None:
params['idtype'] = idtype
resp = requests.get(base, params=params)
raw = resp.json()
records = raw.get('records')
if records is None:
return None
status = records[0].get('status')
if status == u"error":
return None
return raw['records'][0] | a60698fb20ba94445bbd06384b8523e92bfb91a3 | 706,332 |
def get_secondary_connections(network, user):
"""
Finds all the secondary connections (i.e. connections of connections)
of a given user.
Arguments:
network: the gamer network data structure.
user: a string containing the name of the user.
Returns:
A list containing the secondary connections (connections of connections).
- If the user is not in the network, returns None.
- If a user has no primary connections to begin with,
returns an empty list.
NOTE:
It is OK if a user's list of secondary connections includes the user
himself/herself. It is also OK if the list contains a user's primary
connection that is a secondary connection as well.
"""
if user not in network:
return None
if network[user][0] == []:
return []
return [person
for group in
[network[connection][0] for connection in network[user][0]]
for person in group] | 4e53f6e43f2fb132932381370efa4b3a3cd4793c | 706,333 |
def get_regression_function(model, model_code):
"""
Method which return prediction function for trained regression model
:param model: trained model object
:return: regression predictor function
"""
return model.predict | fca4a0767b1e741952534baf59ac07cece2c9342 | 706,334 |
def beam_motion_banding_filter(img, padding=20):
"""
:param img: numpy.array.
2d projection image or sinogram. The left and right side of the image should be
empty. So that `padding` on the left and right will be used to create an beam motion
banding image and be normalized from the original image.
:param padding: int.
The size of on the left and right empty area to be used to find the average value
where there is no object.
:return img_new: numpy.array
Smoothed image.
"""
nx = img.shape[1]
mean_left = img[:, 0:padding].mean(axis=1)
mean_right = img[:, -padding:].mean(axis=1)
mean_middle = (mean_left + mean_right) / 2
slope = (mean_right - mean_left) / (nx - padding)
# Make an image with only bandings.
img_banding = img * 0.0
for i in range(img_banding.shape[1]): # iterate cols
img_banding[:, i] = mean_middle + (i - nx / 2) * slope
# Subtract the banding from the original.
img_new = img-img_banding
return img_new | 5191c1f3022711459ce81cfbf0c4d6c6fb7dcd41 | 706,335 |
def log(session):
"""Clear nicos log handler content"""
handler = session.testhandler
handler.clear()
return handler | 086e362c8195b917c826fc8b20d3095210ac82fd | 706,336 |
def _find_additional_age_entities(request, responder):
"""
If the user has a query such as 'list all employees under 30', the notion of age is
implicit rather than explicit in the form of an age entity. Hence, this function is
beneficial in capturing the existence such implicit entities.
Returns a true/false depending on the existence or lack of the combination of
numerical entities and comparators, thereby indicating an implicit age entitiy or
lack of it, respectively.
"""
try:
comparator_entity = [e for e in request.entities if e['type'] == 'comparator'][0]
num_entity = [float(e['value'][0]['value'])
for e in request.entities
if e['type'] == 'sys_number']
# if any token in the text query is numeric that was missed by the num_entity,
# add it to the list
for i in request.text.split():
try:
num_entity.append(float(i))
except ValueError:
continue
except (IndexError, ValueError):
comparator_entity = []
num_entity = []
return True if comparator_entity and num_entity else False | 971bc0805c607134b6947e0d61ebab6f217c6961 | 706,337 |
import argparse
def parse_args():
"""Process arguments"""
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--train', '-t', required=True, type=str, help="Training ProteinNet data")
parser.add_argument('--val', '-v', type=str, help="Validation ProteinNet data")
parser.add_argument('--no_gpu', '-n', action="store_true",
help="Prevent GPU usage for ESM1b even when available")
parser.add_argument('--threshold', '-r', default=None, type=float,
help="Perform frequency classification at given threshold")
parser.add_argument('--model', '-m', default="esm_top_model.pth", help="Path to save model")
parser.add_argument('--epochs', '-e', default=3, type=int, help="Epochs to train for")
parser.add_argument('--report_batch', '-p', default=1000, type=int,
help="Batch multiple to report at")
return parser.parse_args() | c37d11327cb0d0baf3049943320c5bed6fb18e18 | 706,338 |
def RefundablePayrollTaxCredit(was_plus_sey_p, was_plus_sey_s,
RPTC_c, RPTC_rt,
rptc_p, rptc_s, rptc):
"""
Computes refundable payroll tax credit amounts.
"""
rptc_p = min(was_plus_sey_p * RPTC_rt, RPTC_c)
rptc_s = min(was_plus_sey_s * RPTC_rt, RPTC_c)
rptc = rptc_p + rptc_s
return (rptc_p, rptc_s, rptc) | e282139921045fe8e286abbde6bb4ae44151a50d | 706,339 |
def email_sent_ipn(path: str) -> tuple:
"""
**email_sent_ipn**
Delivered ipn for mailgun
:param path: organization_id
:return: OK, 200
"""
# NOTE: Delivered ipn will end up here
if path == "delivered":
pass
elif path == "clicks":
pass
elif path == "opens":
pass
elif path == "failure":
pass
elif path == "spam":
pass
elif path == "unsubscribe":
pass
return "OK", 200 | 4bbfed4f86916ddc2b68ade0c8739e25a562bbda | 706,340 |
import sys
def decode(path: str) -> str:
"""
utility fct to encode/decode
"""
return path.encode(sys.stdout.encoding, 'ignore').decode(sys.stdout.encoding) | 9e75e04928e7df4646feaed85a799a137693fa77 | 706,341 |
def klucb(x, d, div, upperbound, lowerbound=-float("inf"), precision=1e-6):
"""The generic klUCB index computation.
Input args.:
x,
d,
div:
KL divergence to be used.
upperbound,
lowerbound=-float('inf'),
precision=1e-6,
"""
l = max(x, lowerbound)
u = upperbound
while u - l > precision:
m = (l + u) / 2
if div(x, m) > d:
u = m
else:
l = m
return (l + u) / 2 | 82aa51e248568d201e0d9d5621bf043532df8572 | 706,342 |
def wavelength_to_energy(wavelength):
"""
Converts wavelength (A) to photon energy (keV)
"""
return 12.39842/wavelength | 4e2d11f2de8ed4890df5d885801cd492644817d8 | 706,343 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.