content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def OpenCredentials(cred_path: str):
"""
Opens and parses an AWS credentials file.
:param cred_path: Path to the file containing the credentials
:return: A dict containing the credentials
"""
with open(cred_path) as file:
keys, values = map(lambda s: s.strip().split(','), file)
credentials = dict(zip(keys, values))
return credentials | 2f224a92b6c3999a45f6d73bb90504663614a1ac | 705,465 |
def pkcs7_unpad_strict(data, block_size=16):
"""Same as `pkcs7_unpad`, but throw exception on incorrect padding.
Mostly used to showcase the padding oracle attack.
"""
pad = data[-1]
if ord(pad) < 1 or ord(pad) > block_size:
raise Exception('Invalid padding length')
for i in range(2, ord(pad)+1):
if data[-i] != pad:
raise Exception('Invalid padding character')
return data[:-ord(pad)] | 0cb7c2d66c30de8bac54ca714dfa05a29d4f0cbd | 705,466 |
def _remove_trailing_string(content, trailing):
"""
Strip trailing component `trailing` from `content` if it exists.
Used when generating names from view classes.
"""
if content.endswith(trailing) and content != trailing:
return content[:-len(trailing)]
return content | 775bafba5ea518e03499c9351b74ac472c265c9a | 705,467 |
def find_loop_size( public_key, subject=7 ):
"""
To transform a subject number, start with the value 1.
Then, a number of times called the loop size, perform the following steps:
- Set the value to itself multiplied by the subject number.
- Set the value to the remainder after dividing the value by 20201227
After the desired loop size, the subject number 7 is transformed into the
public key itself.
"""
loops = 0
value = 1
while value != public_key:
loops += 1
value *= subject
value = value % 20201227
return loops | 831f5f3e9867b06640493226fa35a89251f5aad5 | 705,468 |
def make_user_variable(
id_name, cluster_name, w_name, d_name, y_tree_name, y_name, x_name_ord,
x_name_unord, x_name_always_in_ord, z_name_list,
x_name_always_in_unord, z_name_split_ord, z_name_split_unord,
z_name_mgate, z_name_amgate, x_name_remain_ord, x_name_remain_unord,
x_balance_name_ord, x_balance_name_unord):
"""Put variable names in dictionary."""
def check_none(name):
if name is None:
return []
return name
variable_dict = {'id_name': check_none(id_name),
'cluster_name': check_none(cluster_name),
'w_name': check_none(w_name),
'd_name': check_none(d_name),
'y_tree_name': check_none(y_tree_name),
'y_name': check_none(y_name),
'x_name_ord': check_none(x_name_ord),
'x_name_unord': check_none(x_name_unord),
'x_name_always_in_ord': check_none(x_name_always_in_ord),
'z_name_list': check_none(z_name_list),
'x_name_always_in_unord': check_none(
x_name_always_in_unord),
'z_name_ord': check_none(z_name_split_ord),
'z_name_unord': check_none(z_name_split_unord),
'z_name_mgate': check_none(z_name_mgate),
'z_name_amgate': check_none(z_name_amgate),
'x_name_remain_ord': check_none(x_name_remain_ord),
'x_name_remain_unord': check_none(x_name_remain_unord),
'x_balance_name_ord': check_none(x_balance_name_ord),
'x_balance_name_unord': check_none(x_balance_name_unord),
}
return variable_dict | d7f9f85a75df28e1db7f3dee71d625bbe99c6106 | 705,469 |
import re
def get_skip_report_step_by_index(skip_report_list):
"""Parse the missed step from skip a report.
Based on the index within the skip report file (each line a report), the
missed step for this entry gets extracted. In case no step could be found,
the whole entry could not been parsed or no report for this index exists,
the step is 'None'.
"""
def extract_step(index):
skip_report_entry = (
skip_report_list[index] if index < len(skip_report_list) else ""
)
step_findings = re.findall(
"^([0-9]+),0x[0-9,a-f]+,[0-9,-]+ [0-9,:]+$", skip_report_entry.strip()
)
step = int(step_findings[0]) if len(step_findings) == 1 else None
return step
return extract_step | 7aa46050702aba07902ceec586175fce2226e1e3 | 705,470 |
def _prefix_with_swift_module(path, resource_info):
"""Prepends a path with the resource info's Swift module, if set.
Args:
path: The path to prepend.
resource_info: The resource info struct.
Returns: The path with the Swift module name prepended if it was set, or just
the path itself if there was no module name.
"""
swift_module = resource_info.swift_module
if swift_module:
return swift_module + "-" + path
return path | f2a12f59a3c30c09fa20d65b806779ad47f49b90 | 705,471 |
def parse_repeating_time_interval_to_days(date_str):
"""Parsea un string con un intervalo de tiempo con repetición especificado
por la norma ISO 8601 en una cantidad de días que representa ese intervalo.
Devuelve 0 en caso de que el intervalo sea inválido.
"""
intervals = {'Y': 365, 'M': 30, 'W': 7, 'D': 1, 'H': 0, 'S': 0}
if date_str.find('R/P') != 0: # Periodicity mal formada
return 0
date_str = date_str.strip('R/P')
days = 0
index = 0
for interval in intervals:
value_end = date_str.find(interval)
if value_end < 0:
continue
try:
days += int(float(date_str[index:value_end]) * intervals[interval])
# Valor de accrualPeriodicity inválido, se toma como 0
except ValueError:
continue
index = value_end
# Si el número de días es menor lo redondeamos a 1
return max(days, 1) | c417c0fc971ae0c94f651634ef5fb27f1accff24 | 705,472 |
def split_rdd(rdd):
"""
Separate a rdd into two weighted rdds train(70%) and test(30%)
:param rdd
"""
SPLIT_WEIGHT = 0.7
(rdd_train, rdd_test) = rdd.randomSplit([SPLIT_WEIGHT, 1 - SPLIT_WEIGHT])
return rdd_train, rdd_test | 082439fb41108da171610dc3d03ab1f8f9f021c5 | 705,474 |
def QuickSort(A, l, r):
"""
Arguments:
A -- total number list
l -- left index of input list
r -- right index of input list
Returns:
ASorted -- sorted list
cpNum -- Number of comparisons
"""
# Number of comparisons
cpNum = r - l
# Base case
if cpNum == 0:
return [A[l]], 0
elif cpNum < 0:
return [], 0
# Partition part
A[l], A[r] = A[r], A[l] # Swap the first and the last element
p = A[l]
i = l + 1
for j in range(l + 1, r + 1):
if A[j] < p:
A[j], A[i] = A[i], A[j]
i += 1
A[l], A[i-1] = A[i-1], A[l]
# Recursion call
ALeft, cpNumLeft = QuickSort(A, l, i-2)
ARight, cpNumRight = QuickSort(A, i, r)
ASorted = ALeft + [p] + ARight
cpNum = cpNum + cpNumLeft + cpNumRight
return ASorted, cpNum | 26092d222d93d8b931ab6f2d5c539ac5c9e00b2f | 705,475 |
from typing import Counter
def checksum(input):
""" Checksum by counting items that have duplicates and/or triplicates and multiplying"""
checksum_twos = 0
checksum_threes = 0
for id in input:
c = [v for k,v in Counter(id).items()]
if 2 in c:
checksum_twos += 1
if 3 in c:
checksum_threes += 1
return checksum_threes * checksum_twos | 8ba72e795b5868a852ce0c9c234ca35088057538 | 705,476 |
def extract_kernel_version(kernel_img_path):
"""
Extracts the kernel version out of the given image path.
The extraction logic is designed to closely mimick the logic Zipl configuration to BLS
conversion script works, so that it is possible to identify the possible issues with kernel
images.
:param str kernel_img_path: The path to the kernel image.
:returns: Extracted kernel version from the given path
:rtype: str
"""
# Mimick bash substitution used in the conversion script, see:
# https://github.com/ibm-s390-linux/s390-tools/blob/b5604850ab66f862850568a37404faa647b5c098/scripts/zipl-switch-to-blscfg#L168
if 'vmlinuz-' in kernel_img_path:
fragments = kernel_img_path.rsplit('/vmlinuz-', 1)
return fragments[1] if len(fragments) > 1 else fragments[0]
fragments = kernel_img_path.rsplit('/', 1)
return fragments[1] if len(fragments) > 1 else fragments[0] | 2f75b220ff3e68b8c2ae2a046b7c604a786b05b8 | 705,477 |
def concat_strings(string_list):
"""
Concatenate all the strings in possibly-nested string_list.
@param list[str]|str string_list: a list of strings
@rtype: str
>>> list_ = (["The", "cow", "goes", "moo", "!"])
>>> concat_strings(list_)
'The cow goes moo !'
>>> list_ = (["This", "sentence", "is actually", \
"constructed", ["from", ["other"], "smaller"], "strings"])
>>> concat_strings(list_)
'This sentence is actually constructed from other smaller strings'
"""
if isinstance(string_list, str):
# string_list is a str
return string_list
else:
return " ".join([concat_strings(elem) for elem in string_list]) | bbeb884e2cd4c689ce6e61c147558c993acc5f09 | 705,478 |
def match(input_character, final_answer):
"""
:param input_character: str, allow users to input a string that will be verified whether
there are any matches with the final answer.
:param final_answer: str, the final answer.
:return: str, return the matching result that could consist of '-' and letters.
"""
result = ""
for f in final_answer:
if f == input_character:
result += input_character
else:
result += '-'
if final_answer.find(input_character) != -1:
print('You are correct!')
else:
print('There is no ' + input_character + '\'s in the word.')
return result | 4323cd2eefa00126baad11576cdc9a29fe94ec0b | 705,479 |
import argparse
def create_parser(args):
""" Function which add the command line arguments required for the cyclomatic complexity report parser"""
# Create the parser
cyclo_parser = argparse.ArgumentParser(description='cyclomatic complexity gate Parser')
# Add the arguments
cyclo_parser.add_argument('--cyclo', metavar='--c', type=int, help='cyclo benchmark')
return cyclo_parser.parse_args(args) | 46ddafdf458c20d323bc86974525f91320a33ae3 | 705,480 |
import calendar
def get_month_day_range(date):
"""
For a date 'date' returns the start and end date for the month of 'date'.
Month with 31 days:
>>> date = datetime.date(2011, 7, 27)
>>> get_month_day_range(date)
(datetime.date(2011, 7, 1), datetime.date(2011, 7, 31))
Month with 28 days:
>>> date = datetime.date(2011, 2, 15)
>>> get_month_day_range(date)
(datetime.date(2011, 2, 1), datetime.date(2011, 2, 28))
"""
first_day = date.replace(day = 1)
last_day = date.replace(day = calendar.monthrange(date.year, date.month)[1])
return first_day, last_day | 610ff43b0e637afba780119c76181c6ff033a299 | 705,481 |
def leia_dinheiro(msg):
"""
-> Recebe um valor digitado pelo usuário e verifica se é um
valor númerico válido
:param msg: Mensagem a ser mostrada ao usuário
:return: Retorno o valor digitado pelo usuário caso seja válido
"""
while True:
num = input(msg).strip().replace(',', '.') # Substitui as vírgulas por pontos
if num.replace('.', '').isdigit(): # 'Exluí' os pontos
num = float(num)
break
else:
print(f'\033[1;31mERRO! \"{num}\" não é um preço válido.\033[m')
return num | aa8e21243009af1fde6d6c5e9cb611acff36369e | 705,482 |
def _octet_bits(o):
"""
Get the bits of an octet.
:param o: The octets.
:return: The bits as a list in LSB-to-MSB order.
:rtype: list
"""
if not isinstance(o, int):
raise TypeError("o should be an int")
if not (0 <= o <= 255):
raise ValueError("o should be between 0 and 255 inclusive")
bits = [0] * 8
for i in range(8):
if 1 == o & 1:
bits[i] = 1
o = o >> 1
return bits | f472a2ab65702e59439b7693260abf040d4e7742 | 705,483 |
import resource
def __limit_less(lim1, lim2):
"""Helper function for comparing two rlimit values, handling "unlimited" correctly.
Params:
lim1 (integer): first rlimit
lim2 (integer): second rlimit
Returns:
true if lim1 <= lim2
"""
if lim2 == resource.RLIM_INFINITY:
return True
if lim1 == resource.RLIM_INFINITY:
return False
return lim1 <= lim2 | 8c8faebd4cc1eecfbd8e0a73b16b2bee0a433572 | 705,484 |
from typing import List
def getswarmlocations() -> List[str]:
"""
checks if the provided location is a location where a swarm can happen.
:param location: the provided location
:return: boolean if location is in the list of locations where swarms can happen,
"""
swarmlocationlist = open("commands/data/swarmlocations.csv").read().split(",")
swarmlocationlist = [location.lower() for location in swarmlocationlist]
swarmlocationlist = list(set(swarmlocationlist)) # remove duplicates just in case
swarmlocationlist.sort()
return swarmlocationlist | 3a7db13c8a0176a4cc9a9dda38b23041639917a9 | 705,485 |
import os
import json
import logging
def get_project_id():
""" Gets the project ID. It defaults to the project declared in the
enviorment variable PROJECT but if it can't find it there it will
try looking for a service account and take the project ID from there
Args:
Returns:
"""
service_acc_address = os.environ.get('GOOGLE_APPLICATION_CREDENTIALS', None)
if service_acc_address:
service_acc = open(service_acc_address, 'r').read()
service_acc_project_id = json.loads(service_acc)['project_id']
else:
service_acc_project_id = None
project_id = os.environ.get('PROJECT', service_acc_project_id)
if service_acc_project_id != None and project_id != service_acc_project_id:
logging.critical("Warning the project in ENV VAR PROJECT is \
not the same as your service account project")
return project_id | ce06f65be2fa70898a71f10d4f848afdf944da48 | 705,486 |
def val_err_str(val: float, err: float) -> str:
"""
Get a float representation of a value/error pair and create a string representation
12.345 +/- 1.23 --> 12.3(12)
12.345 +/- 0.012 -> 12.345(12
12345 +/- 654 ---> 12340(650)
:param val: float representing the value
:param err: float representing the error in the value
:return: a string representation of the value/error pair
"""
err_sig_figs = 2 # future upgrade path is to allow user to set this
dps = 2 - err_sig_figs
if err < 10:
while err < 10.:
err *= 10
dps += 1
err = round(err, 0)
else: # err > 10
while err > 100.:
err /= 10
dps -= 1
err = round(err, 0) * 10 ** (-dps)
val = round(val, dps)
return f"{val:.{max(0, dps)}f}({err:.0f})" | 5b759ff8e6996704edb7f6b68f6cb7e307593c9e | 705,487 |
def port_name(name, nr=0):
"""Map node output number to name."""
return name + ":" + str(nr) | a82e0b9940fa6b7f11f1a11fbd8a1b9b1a57c07b | 705,488 |
def _stringify(values):
"""internal method: used to convert values to a string suitable for an xml attribute"""
if type(values) == list or type(values) == tuple:
return " ".join([str(x) for x in values])
elif type(values) == type(True):
return "1" if values else "0"
else:
return str(values) | a8f3c290ef949a254ca5dca9744ff3f4c602c4d2 | 705,489 |
def xml_safe(s):
"""Returns the XML-safe version of a given string.
"""
new_string = s.replace("&", "&").replace("<", "<")
new_string = new_string.replace("\r", "").replace("\n", "<br/>")
return new_string | 166bf2b78441b4f22bf3a89f8be56efb756fe72f | 705,490 |
from typing import List
from typing import Dict
def group_by_author(commits: List[dict]) -> Dict[str, List[dict]]:
"""Group GitHub commit objects by their author."""
grouped: Dict[str, List[dict]] = {}
for commit in commits:
name = commit["author"]["login"]
if name not in grouped:
grouped[name] = []
grouped[name].append(commit)
return grouped | 239c523317dc8876017d4b61bc2ad8887444085e | 705,491 |
def non_empty_string(value):
"""Must be a non-empty non-blank string"""
return bool(value) and bool(value.strip()) | 707d6c39a52b1ec0e317d156e74fef78170739d9 | 705,493 |
import pwd
def get_uid_from_user(user):
"""Return UID from user name
Looks up UID matching the supplied user name;
returns None if no matching name can be found.
NB returned UID will be an integer.
"""
try:
return pwd.getpwnam(str(user)).pw_uid
except KeyError:
return None | dd4f6f839f985b923199b438216c567e1e84327d | 705,494 |
from pathlib import Path
def get_base_folder():
"""Return the base folder of ProfileQC."""
return Path(__file__).parent | e0a49bbbe018333dd107466a5178c5579327edc1 | 705,495 |
def u16le_list_to_byte_list(data):
"""! @brief Convert a halfword array into a byte array"""
byteData = []
for h in data:
byteData.extend([h & 0xff, (h >> 8) & 0xff])
return byteData | 6e4dd1fe69a24f135d0dfa38d5d0ba109ad24b9e | 705,496 |
def process_IBM_strings(string):
"""
Format all the IBM string in the same way, creating a single string of lowercase characters
:param string:
:return:
"""
parts = string.split()
result = str(parts[0].lower())
for part in parts[1:]:
result += " " + str(part.lower())
return result | 72216b014a18c72d4dec9ec54f24f13de0d46583 | 705,497 |
from typing import Dict
from typing import Any
def get_context() -> Dict[str, Any]:
"""
Retrieve the current Server Context.
Returns:
- Dict[str, Any]: the current context
"""
ctx = _context.get() # type: ignore
if ctx is not None:
assert isinstance(ctx, dict)
return ctx.copy()
else:
return {} | dad971abb645fa7c194db5cd9ce45e7c38166f31 | 705,498 |
import pandas as pd
def kiinteisto_alueiksi(kiinteisto):
"""
kiinteist: kiinteisto/property register
An artificial property / constituency division will be made for the regionalization of postal codes.
A brute-force distribution is used, where the relative number of residential properties in the constituency is divided into postcodes.
Generally, constituencies are smaller than postcode areas.
The paid property data (kiinteistorekisteri) also includes the number of apartments in the property data. In this way, the division would be more accurate.
In various inspections, the division seemed competent.
This returns the estimate of shares
Returns:
kiintosuus
"""
#new kiint and kiintpnrot -dataframes, with muncipality, constituency area and postcode
kiint=kiinteisto[kiinteisto['Käyttötarkoitus']==1].reset_index().groupby(['Kuntanumero','Alue','Postinumero'],as_index=False ).count()
kiint=kiint[['Alue','Postinumero','index']]
kiintpnrot=kiint.reset_index().groupby(['Postinumero', 'Alue'],as_index=False ).sum()[['Alue','Postinumero','index']]
kiintalueet=kiint.reset_index().groupby(['Alue'],as_index=False).sum()[['Alue','index']]
#join them by constituency area
kiintosuus= pd.merge(kiintpnrot, kiintalueet, how='inner', on='Alue',
left_index=False, right_index=False,
suffixes=('_x', '_y'), copy=True, indicator=False,
validate=None)
#brute-force calculation of share of areas based on the amount of properties
kiintosuus['Osuus']=kiintosuus['index_x']/kiintosuus['index_y']
kiintosuus=kiintosuus[['Alue','Postinumero','Osuus']]
return(kiintosuus) | fee095ccc4cb82b735c2d314a96ab20bf0790a9a | 705,499 |
def optional_observation_map(env, inner_obs):
"""
If the env implements the `observation` function (i.e. if one of the
wrappers is an ObservationWrapper), call that `observation` transformation
on the observation produced by the inner environment
"""
if hasattr(env, 'observation'):
return env.observation(inner_obs)
else:
return inner_obs | b1b57e74e498e520df80a310f95d1c79799a517d | 705,500 |
def RunMetadataLabels(run_metadata):
"""Returns all labels in run_metadata."""
labels = []
for dev_stats in run_metadata.step_stats.dev_stats:
for node_stats in dev_stats.node_stats:
labels.append(node_stats.timeline_label)
return labels | 277745263c75c4c6037f8b7a26b9421699bec3a5 | 705,501 |
import torch
def step(x, b):
"""
The step function for ideal quantization function in test stage.
"""
y = torch.zeros_like(x)
mask = torch.gt(x - b, 0.0)
y[mask] = 1.0
return y | bac5dd8cbaa4da41219f03a85e086dd3bdd1e554 | 705,502 |
import pickle
import time
def dump_ensure_space(file, value, fun_err=None):
"""
Only dump value if space enough in disk.
If is not enough space, then it retry until have space
Note: this method is less efficient and slowly than simple dump
>>> with open("test_ensure_space.tmp", "wb") as f:
... dump_ensure_space(f, "test_value")
:param file: file where dump
:param value: value to dump
:param fun_err: event previous to sleep if error, with params:
times_waiting: times retrying until now
time_to_retry: time to next retry in seconds
err: msg error
:return: None
"""
if fun_err is None:
def fun_err_default(_, __, ___):
return None
fun_err = fun_err_default
times_waiting = 0
retry = True
while retry:
try:
pickle.dump(value, file, pickle.HIGHEST_PROTOCOL)
retry = False
except IOError as err:
if "No space left on device" in str(err):
retry = True
times_waiting += 1
time_to_retry = 0.1 * times_waiting
if time_to_retry > 3600:
time_to_retry = 3600
fun_err(times_waiting, time_to_retry, err)
time.sleep(time_to_retry)
else:
raise | 622ed232a3e747e55004ab28225418fc3c6570ef | 705,503 |
def generate_output_file_name(input_file_name):
"""
Generates an output file name from input file name.
:type input_file_name: str
"""
assert isinstance(input_file_name, str)
output_file_name = input_file_name + ".gen.ipynb"
return output_file_name | e638d676048e062711ca1a09d88a12d76fb9239d | 705,505 |
import string
def getApproximateArialStringWidth(st: str) -> float:
"""Calculate rough width of a word in a variable width font.
By https://stackoverflow.com/users/234270/speedplane
Args:
st (str): The string you need a width for
Returns:
float: The rough width in picas
To make sure that the names will fit in the space, at the given font size etc.,
if the space can fit 13 M chars across, then getApproximateArialStringWidth("M"*13) gives 10.53,
so the space is 10 picas wide, and we can exclude wider names.
"""
size = 0 # in milinches
for s in st:
if s in "lij|' ":
size += 37
elif s in "![]fI.,:;/\\t":
size += 50
elif s in '`-(){}r"':
size += 60
elif s in "*^zcsJkvxy":
size += 85
elif s in "aebdhnopqug#$L+<>=?_~FZT" + string.digits:
size += 95
elif s in "BSPEAKVXY&UwNRCHD":
size += 112
elif s in "QGOMm%W@":
size += 135
else:
size += 50
return size * 6 / 1000.0 | d37cc49e4ffd347ddace5de1d420bc8c3c37b615 | 705,507 |
def prepare_text(input_string):
"""Converts an input string into a list containing strings.
Parameters
----------
input_string : string
String to convert to a list of string.
Returns
-------
out_list : list
List containing the input string.
"""
# Converting a string into lower cases
temp_string = input_string.lower()
# Spliting up the characters of the string in lower cases
out_list = temp_string.split()
return out_list | ddf060728127380ef3ec689f7ee8104b9c12ebea | 705,508 |
def fill_bin_content(ax, sens, energy_bin, gb, tb):
"""
Parameters
--------
Returns
--------
"""
for i in range(0,gb):
for j in range(0,tb):
theta2 = 0.005+0.005/2+((0.05-0.005)/tb)*j
gammaness = 0.1/2+(1/gb)*i
text = ax.text(theta2, gammaness, "%.2f %%" % sens[energy_bin][i][j],
ha="center", va="center", color="w", size=8)
return ax | aa2121697429d330da3ec18f08f36248e3f57152 | 705,509 |
import os
def get_unique_filepath(stem):
"""NOT thread-safe!
return stems or stem# where # is the smallest
positive integer for which the path does not exist.
useful for temp dirs where the client code wants an
obvious ordering.
"""
fp = stem
if os.path.exists(stem):
n = 1
fp = stem + str(n)
while os.path.exists(fp):
n += 1
fp = stem + str(n)
return fp | 29f853bcb1df4bd2b989948ad2b7b8985bff83e9 | 705,510 |
import ast
from typing import Set
def all_statements(tree: ast.AST) -> Set[ast.stmt]:
"""
Return the set of all ast.stmt nodes in a tree.
"""
return {node for node in ast.walk(tree) if isinstance(node, ast.stmt)} | 9f7cc367f01ec3bb90869879e79eb9cbe6636820 | 705,511 |
def _fi18n(text):
"""Used to fake translations to ensure pygettext retrieves all the strings we want to translate.
Outside of the aforementioned use case, this is exceptionally useless,
since this just returns the given input string without
any modifications made.
"""
return text | e505b58f4ff1e64c07b4496f69bee8b6e86b5129 | 705,512 |
def is_required_version(version, specified_version):
"""Check to see if there's a hard requirement for version
number provided in the Pipfile.
"""
# Certain packages may be defined with multiple values.
if isinstance(specified_version, dict):
specified_version = specified_version.get("version", "")
if specified_version.startswith("=="):
return version.strip() == specified_version.split("==")[1].strip()
return True | 6c8bfe0fe77f7a7d14e1ca2dd8005a8d82d0998c | 705,513 |
def key(i):
"""
Helper method to generate a meaningful key.
"""
return 'key{}'.format(i) | 04658ebead9581ff97406111c9b85e361ee49ff8 | 705,514 |
def mark(symbol):
"""Wrap the symbol's result in a tuple where the first element is `symbol`.
Used where the information about "which branch of the grammar was used"
must be propagated upwards for further checks.
"""
def mark_action(x):
return (symbol, x)
return mark_action << symbol | 3180c96d4d2a68df2909f23a544879918016fb37 | 705,515 |
def validate_search_inputs(row_id, search_column, search_value):
"""Function that determines if row_id, search_column and search_value are defined correctly"""
return_value = {
"valid": True,
"msg": None
}
a_search_var_defined = True if search_column or search_value else False
if row_id and a_search_var_defined:
return_value["valid"] = False
return_value["msg"] = "Only 'row_id' or the 'search_column and search_value' pair can be defined"
elif not row_id and not a_search_var_defined:
return_value["valid"] = False
return_value["msg"] = "You must define either 'row_id' or the 'search_column and search_value' pair"
return return_value | ce85ce1b973beab6b0476dfc05edc594fac8c420 | 705,517 |
import os
def avi_common_argument_spec():
"""
Returns common arguments for all Avi modules
:return: dict
"""
credentials_spec = dict(
controller=dict(default=os.environ.get('AVI_CONTROLLER', '')),
username=dict(default=os.environ.get('AVI_USERNAME', '')),
password=dict(default=os.environ.get('AVI_PASSWORD', ''), no_log=True),
api_version=dict(default='16.4.4', type='str'),
tenant=dict(default='admin'),
tenant_uuid=dict(default='', type='str'),
port=dict(type='int'),
token=dict(default='', type='str', no_log=True),
timeout=dict(default=300, type='int'),
session_id=dict(default='', type='str', no_log=True),
csrftoken=dict(default='', type='str', no_log=True)
)
return dict(
controller=dict(default=os.environ.get('AVI_CONTROLLER', '')),
username=dict(default=os.environ.get('AVI_USERNAME', '')),
password=dict(default=os.environ.get('AVI_PASSWORD', ''), no_log=True),
tenant=dict(default='admin'),
tenant_uuid=dict(default=''),
api_version=dict(default='16.4.4', type='str'),
avi_credentials=dict(default=None, type='dict',
options=credentials_spec),
api_context=dict(type='dict'),
avi_disable_session_cache_as_fact=dict(default=False, type='bool')) | dfac1913e3b5af435ce8e9e8b53bf2d0d00aad11 | 705,518 |
import re
def find_first_in_register_stop(seq):
"""
Find first stop codon on lowercase seq that starts at an index
that is divisible by three
"""
# Compile regexes for stop codons
regex_stop = re.compile('(taa|tag|tga)')
# Stop codon iterator
stop_iterator = regex_stop.finditer(seq)
# Find next stop codon that is in register
for stop in stop_iterator:
if stop.end() % 3 == 0:
return stop.end()
# Return -1 if we failed to find a stop codon
return -1 | 56741828c42ecf0cb96044d03c8d1b6bc4994e01 | 705,519 |
def find_parents(candidate, branches):
"""Find parents genre of a given genre, ordered from the closest to
the further parent.
"""
for branch in branches:
try:
idx = branch.index(candidate.lower())
return list(reversed(branch[:idx + 1]))
except ValueError:
continue
return [candidate] | 17934d9ee1d3098cc3d08f38d9e3c387df6b7c19 | 705,520 |
def max_sum_naive(arr: list, length: int, index: int, prev_max: int) -> int:
"""
We can either take or leave the current number depending on previous max number
"""
if index >= length:
return 0
cur_max = 0
if arr[index] > prev_max:
cur_max = arr[index] + max_sum_naive(arr, length, index + 1, arr[index])
return max(cur_max, max_sum_naive(arr, length, index + 1, prev_max)) | 644b5cb294e78a10add253cad96d3c3e2c3d67d7 | 705,521 |
def _table_row(line):
"""
Return all elements of a data line.
Return all elements of a data line. Simply splits it.
Parameters
----------
line: string
A stats line.
Returns
-------
list of strings
A list of strings, containing the data on the line, split at white space.
"""
return line.split() | dc5d76db80059b0da257b45f12513d75c2765d55 | 705,522 |
def range2d(range_x, range_y):
"""Creates a 2D range."""
range_x = list(range_x)
return [ (x, y) for y in range_y for x in range_x ] | ca33799a277f0f72e99836e81a7ffc98b191fc37 | 705,523 |
import os
def filename_fixture():
"""The name of the cities csv file for testing"""
return os.path.join('tests', 'fixtures', 'cities.csv') | d96b38d2ab616de9297526712521207c656593ea | 705,524 |
import json
def is_json(payload):
"""Check if a payload is valid JSON."""
try:
json.loads(payload)
except (TypeError, ValueError):
return False
else:
return True | a02499ffd0a890fa4697f1002c5deb0fc894cac0 | 705,525 |
def _seconds_to_hours(time):
"""Convert time: seconds to hours"""
return time / 3600.0 | d6abd9144882587833601e64d5c2226446f1bbdc | 705,526 |
import operator
def process_fuel(context):
"""
Reformats Fuel consumed
"""
fuel = {
0: 'Petrol',
1: 'Desiel'
}
data = []
totals = []
for index, type in enumerate(context['Fuel']):
litresSold = operator.sub(type.closing_meter, type.opening_meter)
total = operator.mul(litresSold, type.unit_price)
totals.append(total)
data.append([
{'type': fuel[index],
'opening_meter': type.opening_meter,
'closing_meter': type.closing_meter,
'unit_price': type.unit_price,
'litresSold': litresSold,
'total': total}])
return {
'data': data,
'total': totals
} | fea31cb306417cf1dfcef8859ed2585c2903849b | 705,527 |
import click
def generate_list_display(object, attrs):
"""Generate a display string for an object based on some attributes.
Args:
object: An object which has specific attributes.
attrs: An interable of strings containing attributes to get from
the above object.
Returns:
A string containing a list display of the object with respect to
the passed in attributes.
"""
return "\n".join(
click.style(attr, bold=True) + ": %s" % getattr(object, attr)
for attr in attrs
) | 17c876261bede0c38d91b4bd3e7b0048616f8cbf | 705,528 |
def discover_fields(layout):
"""Discover all fields defined in a layout object
This is used to avoid defining the field list in two places --
the layout object is instead inspected to determine the list
"""
fields = []
try:
comps = list(layout)
except TypeError:
return fields
for comp in comps:
if isinstance(comp, str):
fields.append(comp)
else:
fields.extend(discover_fields(comp))
return fields | 359a6ed1d23e1c56a699895e8c15a93bce353750 | 705,529 |
def collocations_table_exist(con):
"""Return True if the collocations table exist"""
query = con.query(
"select 1 from information_schema.tables "
"where table_name='collocations'")
return bool(list(query.dictresult())) | 9ffa05f698056d9fab6bb9651427b6bc64f414ea | 705,530 |
from bs4 import BeautifulSoup
import re
def ftp_profile(publish_settings):
"""Takes PublishSettings, extracts ftp user, password, and host"""
soup = BeautifulSoup(publish_settings, 'html.parser')
profiles = soup.find_all('publishprofile')
ftp_profile = [profile for profile in profiles if profile['publishmethod'] == 'FTP'][0]
matches = re.search('ftp://(.+)/site/wwwroot', ftp_profile['publishurl'])
host = matches.group(1) if matches else ''
username = ftp_profile['username'].replace("\\$", "%5C%24")
password = ftp_profile['userpwd']
return host, username, password, ftp_profile['publishurl'] | 003218e6d58d01afcbf062a14e68294d0033b8af | 705,531 |
def _temp_dict_file_name():
"""Name of the expected python dictionary as a json file from run_external_python().
.. versionadded:: 9.1
"""
return '__shared_dictionary__' | 94f33562d775b041387b477d838a5efadfe38f00 | 705,532 |
def get_list_from_file(filename):
"""
Returns a list of containers stored in a file (one on each line)
"""
with open(filename) as fh:
return [_ for _ in fh.read().splitlines() if _] | 8d9a271aa4adea81f62bf74bb1d3c308870f1baf | 705,533 |
def accumulator(init, update):
"""
Generic accumulator function.
.. code-block:: python
# Simplest Form
>>> a = 'this' + ' '
>>> b = 'that'
>>> c = functools.reduce(accumulator, a, b)
>>> c
'this that'
# The type of the initial value determines output type.
>>> a = 5
>>> b = Hello
>>> c = functools.reduce(accumulator, a, b)
>>> c
10
:param init: Initial Value
:param update: Value to accumulate
:return: Combined Values
"""
return (
init + len(update)
if isinstance(init, int) else
init + update
) | 6a4962932c8dba4d5c01aa8936787b1332a6323f | 705,534 |
def himmelblau(individual):
"""The Himmelblau's function is multimodal with 4 defined minimums in
:math:`[-6, 6]^2`.
.. list-table::
:widths: 10 50
:stub-columns: 1
* - Type
- minimization
* - Range
- :math:`x_i \in [-6, 6]`
* - Global optima
- :math:`\mathbf{x}_1 = (3.0, 2.0)`, :math:`f(\mathbf{x}_1) = 0`\n
:math:`\mathbf{x}_2 = (-2.805118, 3.131312)`, :math:`f(\mathbf{x}_2) = 0`\n
:math:`\mathbf{x}_3 = (-3.779310, -3.283186)`, :math:`f(\mathbf{x}_3) = 0`\n
:math:`\mathbf{x}_4 = (3.584428, -1.848126)`, :math:`f(\mathbf{x}_4) = 0`\n
* - Function
- :math:`f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 -7)^2`
.. plot:: code/benchmarks/himmelblau.py
:width: 67 %
"""
return (individual[0] * individual[0] + individual[1] - 11)**2 + \
(individual[0] + individual[1] * individual[1] - 7)**2, | 2fcf348e01f33a54d847dfc7f9a225ed043e36a4 | 705,536 |
def _recursive_pairwise_outer_join(
dataframes_to_merge, on, lsuffix, rsuffix, npartitions, shuffle
):
"""
Schedule the merging of a list of dataframes in a pairwise method. This is a recursive function that results
in a much more efficient scheduling of merges than a simple loop
from:
[A] [B] [C] [D] -> [AB] [C] [D] -> [ABC] [D] -> [ABCD]
to:
[A] [B] [C] [D] -> [AB] [CD] -> [ABCD]
Note that either way, n-1 merges are still required, but using a pairwise reduction it can be completed in parallel.
:param dataframes_to_merge: A list of Dask dataframes to be merged together on their index
:return: A single Dask Dataframe, comprised of the pairwise-merges of all provided dataframes
"""
number_of_dataframes_to_merge = len(dataframes_to_merge)
merge_options = {
"on": on,
"lsuffix": lsuffix,
"rsuffix": rsuffix,
"npartitions": npartitions,
"shuffle": shuffle,
}
# Base case 1: just return the provided dataframe and merge with `left`
if number_of_dataframes_to_merge == 1:
return dataframes_to_merge[0]
# Base case 2: merge the two provided dataframe to be merged with `left`
if number_of_dataframes_to_merge == 2:
merged_ddf = dataframes_to_merge[0].join(
dataframes_to_merge[1], how="outer", **merge_options
)
return merged_ddf
# Recursive case: split the list of dfs into two ~even sizes and continue down
else:
middle_index = number_of_dataframes_to_merge // 2
merged_ddf = _recursive_pairwise_outer_join(
[
_recursive_pairwise_outer_join(
dataframes_to_merge[:middle_index], **merge_options
),
_recursive_pairwise_outer_join(
dataframes_to_merge[middle_index:], **merge_options
),
],
**merge_options,
)
return merged_ddf | 7d65d01cce313ed0517fd685045978dee6d7cb08 | 705,537 |
def signum(x):
"""cal signum
:param x:
:return:
"""
if x > 0:
return 1.0
if x < 0:
return -1.0
if x == 0:
return 0 | 0f8e67eb8fa3267ec341d17440270ce68ca8b446 | 705,538 |
import re
def is_date(word):
"""
is_date()
Purpose: Checks if word is a date.
@param word. A string.
@return the matched object if it is a date, otherwise None.
>>> is_date('2015-03-1') is not None
True
>>> is_date('2014-02-19') is not None
True
>>> is_date('03-27-1995') is not None
True
>>> is_date('201') is not None
False
>>> is_date('0') is not None
False
"""
regex = r'^(\d\d\d\d-\d\d-\d|\d\d?-\d\d?-\d\d\d\d?|\d\d\d\d-\d\d?-\d\d?)$'
return re.search(regex, word) | 004bef4ac50f3ebd859cb35086c6e820f4c6e231 | 705,539 |
def forestvar(z_in):
""" Return intrinsic variance of LyaF variance for weighting. This
estimate is roughly from McDonald et al 2006
Parameters
----------
z_in : float or ndarray
Returns
-------
fvar : float or ndarray
Variance
"""
fvar = 0.065 * ((1.+z_in)/(1.+2.25))**3.8
# Return
return fvar | d3523510ee29b0cc12138da93001635f5ffe6a11 | 705,540 |
def adjust_age_groups(age_labels):
"""
for each pair of cols to aggregate, takes the first number of the first element, and the last number for the last element
for instance: ["0-4",'5-10'] -> ['0-10']
"""
i=0
new_age_labels=[]
label=""
for element in age_labels:
if i%2==0:
label+=element.split('-')[0]
i+=1
elif i%2==1:
label=label+'-'+element.split('-')[-1]
new_age_labels.append(label)
label=""
i+=1
#making the last agegroup based on the first number +
new_age_labels[-1]= new_age_labels[-1].split("-")[0]+"+"
return(new_age_labels) | 521a2f6779ae8fa3f3a53801e0f935844245cffc | 705,541 |
def exploration_function(q_space, x_space, index_, action_space_n, k):
"""returns exploration value"""
x_value = float('-inf')
for i in range(action_space_n):
x_value = max(x_value, q_space[index_][i] + k/(1 + x_space[index_][i]))
#print("q={}, q+x_bonus={}".format(max(q_space[index_]), x_value))
return x_value | 9c6f1aa2943436d75c9a7735b4efa2c44c8a08d1 | 705,542 |
import sqlite3
def user_has_registered(userID):
"""Checks if a particular user has been registered in database"""
database = sqlite3.connect("users.db")
cursor = database.cursor()
cursor.execute(f"SELECT user_id FROM profile WHERE user_id = {userID}")
result = cursor.fetchone()
if result is None:
return False
return True | e98f83b272a52828638f276575596489bebe1fcf | 705,543 |
def key_gen(**kwargs):
"""
Key generator for linux. Determines key based on
parameters supplied in kwargs.
Keyword Parameters:
@keyword geounit1: portable_id of a geounit
@keyword geounit2: portable_id of a geounit
@keyword region: region abbreviation
"""
if 'geounit1' in kwargs and 'geounit2' in kwargs:
return 'adj:geounit1:%s:geounit2:%s' % (kwargs['geounit1'],
kwargs['geounit2'])
if 'region' in kwargs:
return 'adj:region:%s' % kwargs['region'] | 02426fbf49e7a4d85094896546980828e2c6bc20 | 705,544 |
import math
def lafferty_wyatt_point(lowedge, highedge, expo_slope):
"""calculates the l-w point for a bin where the true distribution is an
exponential characterized by expo_slope.
"""
rhs = (math.exp(expo_slope*highedge) - math.exp(expo_slope*lowedge))
rhs /= expo_slope
rhs /= (highedge - lowedge)
return math.log(rhs) / expo_slope | 326acddc1926f1a142f34e8cff9109554ec850d3 | 705,546 |
def check_list(data):
"""check if data is a list, if it is not a list, it will return a list as [data]"""
if type(data) is not list:
return [data]
else:
return data | 00ae7a857c3f969ca435928edf98ed5bb36c1c34 | 705,548 |
import base64
def encode_base64(filename):
"""encode image to string.
Args
filename: image file path.
Returns:
a bites string.
"""
with open(filename, "rb")as f:
bs64 = base64.b64encode(f.read()).decode()
return bs64 | 9eab28ec1cb9619411ea28a9640a2fa8b02e61a3 | 705,549 |
def Doxyfile_emitter(target, source, env):
"""
Modify the target and source lists to use the defaults if nothing
else has been specified.
Dependencies on external HTML documentation references are also
appended to the source list.
"""
doxyfile_template = env.File(env['DOXYFILE_FILE'])
source.insert(0, doxyfile_template)
return target, source | 41928a8c837d7eb00d6b4a4a2f407e2d75217620 | 705,550 |
def _clean_annotated_text(text):
"""Cleans text from the format that it was presented to annotators in the
S.M.A.R.T data annotation tool. Splits the title from the abstract text
and strips any trailing whitespace.
Returns:
title (str): The project title
text (str): The project abstract
"""
text = text.split('=====')
title = text[1].strip()
abstract = text[-1].strip()
return title, abstract | 356cdf893225c41d303e83f1cf2f3418544c76ae | 705,551 |
from typing import Dict
def swim_for_a_day(life_counts: Dict[int, int]):
"""Process the shoal, decrement the life_counts:
any that get to -1 have procreated in the last day, their offspring are
created with 8 day life_counts, whilst they get reset to 6 days… and are
added to the count of any fish that moved down from 7 days.
"""
new_counts = {d - 1: p for d, p in life_counts.items()}
if -1 in new_counts.keys():
new_counts[8] = new_counts[-1]
new_counts[6] = new_counts[-1] + new_counts.get(6, 0)
del new_counts[-1]
return new_counts | 3d5d3f48942a5a1f4eba3100e903df592d933e23 | 705,552 |
def page_not_found (error):
"""
Generic Error Message
"""
return "Unable to find Distill." | ed764c2c2814487c33f9945b17b85a234ae45645 | 705,553 |
import itertools
import re
def _apply_constraints(password_hash, size, is_non_alphanumeric):
"""
Fiddle with the password a bit after hashing it so that it will
get through most website filters. We require one upper and lower
case, one digit, and we look at the user's password to determine
if there should be at least one alphanumeric or not.
"""
starting_size = 0 if size < 4 else size - 4
result = password_hash[:starting_size]
extras = itertools.chain((ord(ch) for ch in password_hash[starting_size:]),
itertools.repeat(0))
extra_chars = (chr(ch) for ch in extras)
def next_between(start, end):
interval = ord(end) - ord(start) + 1
offset = next(extras) % interval
return chr(ord(start) + offset)
chars_ranges = (("A", "Z"), ("a", "z"), ("0", "9"))
for first, last in chars_ranges:
any_of_chars = re.compile("[{}-{}]".format(first, last))
if any_of_chars.search(result):
result += next(extra_chars)
else:
result += next_between(first, last)
non_word = re.compile(r"\W")
if non_word.search(result) and is_non_alphanumeric:
result += next(extra_chars)
else:
result += "+"
while non_word.search(result) and not is_non_alphanumeric:
result = non_word.sub(next_between("A", "Z"), result, 1)
flip_place = next(extras) % len(result)
result = result[flip_place:] + result[:flip_place]
return result.strip("\x00") | 8757c3197052fb1606a95dfa417a13ba833cdb43 | 705,555 |
import argparse
def get_arguments():
"""Parsing the arguments"""
parser = argparse.ArgumentParser(description="",
usage='''
______________________________________________________________________
BiG-MAP map: maps the reads to the predicted MGCs
______________________________________________________________________
Generic command: python3 BiG-MAP.map.py {-I1 [mate-1s] -I2 [mate-2s] | -U [samples]} -O [outdir] -F [family] [Options*]
Maps the metagenomic/metatranscriptomic reads to the fasta reference
file and outputs RPKM read counts in .csv and BIOM format. Use
BiG-MAP_process conda environment.
Data inputs: either paired or unpaired
-I1 Provide the mate 1s of the paired metagenomic and/or
metatranscriptomic samples here. These samples should be
provided in fastq-format (.fastq, .fq, .fq.gz). Also, this
can be a space separated list from the command line.
-I2 Provide the mate 2s of the paired metagenomic and/or
metatranscriptomic samples here. These samples should be
provided in fastq-format (.fastq, .fq, .fq.gz). Also, this
can be a space separated list from the command line.
-U Provide the unpaired metagenomic/metatranscriptomic samples
here. These samples should be provided in fastq-format
(.fastq, .fq, .fq.gz). Also, this can be a space separated
list from the command line.
File inputs: either separated or pickled:
-F Directory with all the output files from the family module
-P Input files are in pickled format (named: BiG-MAP.[name].pickle).
The format of the pickled file: fasta file, GCF json file, and
optionally a bed file and/or BiG-SCAPE GCF dictionary.
Obligatory arguments:
-O Name of the output directory for where the output files are going
to be written. Default = current folder (.)
Options:
-b Outputs the resulting read counts in biom format (v1.0) as
well. This will be useful to analyze the results in
BiG-MAP.analyse. Therefore, it is important to include
the metadata here as well: this metagenomical data should
be in the same format as the example metadata
-f Input files are in fasta format (.fna, .fa, .fasta): True/False.
Default = False.
-s Bowtie2 setting:
END-TO-END mode: very-fast, fast, sensitive, very-sensitive
LOCAL mode: very-fast-local, fast-local, sensitive-local,
very-sensitive-local. Default = fast
-a Ouput read average values across GCFs instead of summed counts:
True/False. Default = False.
-th Number of used threads in the bowtie2 mapping step. Default = 6
______________________________________________________________________
''')
parser.add_argument("-O", "--outdir", help=argparse.SUPPRESS, required=True)
parser.add_argument("-I1","--fastq1", nargs='+',help=argparse.SUPPRESS, required=False)
parser.add_argument("-I2","--fastq2",nargs='+',help=argparse.SUPPRESS, required = False)
parser.add_argument("-U","--U_fastq",nargs='+',help=argparse.SUPPRESS, required = False)
parser.add_argument("-F", "--family", help=argparse.SUPPRESS, required=False)
parser.add_argument("-P", "--pickle_file", help=argparse.SUPPRESS, required=False)
parser.add_argument( "-b", "--biom_output",
help=argparse.SUPPRESS, type=str, required = False)
parser.add_argument( "-f", "--fasta", help=argparse.SUPPRESS,
type=str, required = False, default=False)
parser.add_argument( "-a", "--average", help=argparse.SUPPRESS,
type=str, required = False, default=False)
parser.add_argument( "-s", "--bowtie2_setting", help=argparse.SUPPRESS,
type=str, required = False, default="fast")
parser.add_argument( "-th", "--threads", help=argparse.SUPPRESS,
type=int, required = False, default=6)
return(parser, parser.parse_args()) | 79173e468d640457f7374ebd5aa23d7da9f7684c | 705,556 |
def replace_ensembl_ids(expression_df, gene_id_mapping):
"""
Replaces ensembl gene ids with hgnc symbols
Arguments
---------
expression_df: df
gene expression data matrix (sample x gene)
gene_id_mapping: df
Dataframe mapping ensembl ids (used in DE_stats_file) to hgnc symbols,
used in Crow et. al.
NOTE:
-----
This function is deprecated due to large memory usage: when `expression_df`
is a large dataframe, manipulating it inside the momory becomes very slow
(and sometimes even impossible) due to large memory consumption.
The same functionality has been refactored into `get_renamed_columns()` and
`map_recount2_data()` functions in this module.
THIS FUNCTION IS KEPT AS A REFERENCE ONLY.
"""
# Some columns are duplicates, for example:
# (ENSG00000223773.7, ENSG00000223773) --> CD99P1
# (ENSG00000124334.17, ENSG00000124334) --> IL9R
# We keep the first occurence of duplicated ensembl ids
updated_mapping = gene_id_mapping.loc[
~gene_id_mapping.index.duplicated(keep="first")
]
# Same ensembl ids are mapped to different gene symbol twice (CCL3L1, CCL3L3)
# ENSG00000187510.7 ENSG00000187510 C12orf74
# ENSG00000187510.7 ENSG00000187510 PLEKHG7
# Manually mapping them based on what is found on ensembl site
manual_mapping = {
"ENSG00000187510.7": "PLEKHG7",
"ENSG00000230417.11": "LINC00595",
"ENSG00000255374.3": "TAS2R45",
"ENSG00000276085.1": "CCL3L1",
}
# Apply manual mappings to `updated_mapping`
for ensembl_id, gene_symbol in manual_mapping.items():
updated_mapping.loc[ensembl_id].hgnc_symbol = gene_symbol
# Remove paralogs.
# Some ensembl ids are paralogs (for example, "geneA" and "geneA_PAR_Y").
# They map to the same hgnc symbol. Homologous sequences are paralogous
# if they were separated by a gene duplication event: if a gene in an
# organism is duplicated to occupy two different positions in the same
# genome, then the two copies are paralogous.
updated_expression_df = expression_df.iloc[
:, ~expression_df.columns.str.contains("PAR_Y")
]
# Replace ensembl ids with gene symbol
updated_expression_df.columns = updated_expression_df.columns.map(
updated_mapping["hgnc_symbol"]
)
# Remove columns whose mapped ensembl id is an empty string
updated_expression_df = updated_expression_df.iloc[
:, updated_expression_df.columns != ""
]
# Remove columns whose mapped ensembl id is `NaN`
updated_expression_df = updated_expression_df.iloc[
:, updated_expression_df.columns.notnull()
]
return updated_expression_df | db21341c337481f897da47e482a6667b3e4b9c8e | 705,557 |
def ssl_allowed(fn):
"""
Decorator - marks a route as allowing ssl, but not requiring it. It can be served over http and https.
NOTE: This must go BEFORE the route!
"""
fn.ssl_allowed = True
return fn | d8a22ed69a356189bca69a08516fd0a1187e4866 | 705,558 |
import argparse
def get_parser():
""" return a parser """
parser = argparse.ArgumentParser("cli")
parser.add_argument('registryimage', help="registry/image:tag - tag is optional")
# Username and password come last to make them optional later
parser.add_argument('username', help='username')
parser.add_argument('password', help='password')
return parser | e7bf6233cce887bf3fff1a1360ddef2134fe3eb6 | 705,559 |
def format_date(date):
"""
Format date for creation of Twitter URL and Facebook API.
Format a datetime object to a string in the form of '%Y-%m-%d', e.g. '2018-01-21'
Parameters
----------
date : datetime
date to be formated
Returns
-------
str
date in string representation
"""
return date.strftime('%Y-%m-%d') | d76e81613d2c3b06623cadb30d706c537555ad51 | 705,560 |
import base64
def basic_token(username, password):
"""Generate the Authorization token for Resource Orchestrator (SO-ub container).
Args:
username (str): the SO-ub username
password (str): the SO-ub password
Returns:
str: the Basic token
"""
if not isinstance(username, str):
raise TypeError("The given type of username is `{}`. Expected str.".format(type(username)))
if not isinstance(password, str):
raise TypeError("The given type of password is `{}`. Expected str.".format(type(password)))
credentials = str.encode(username + ":" + password)
return bytes.decode(base64.b64encode(credentials)) | 054fccad28d1c18a34d630a664742f77e15ee4fe | 705,561 |
import csv
def read_alias(alias_csv_path):
"""Reads alias.csv at the specified path.
Then returns a dict mapping from alias to monster id.
"""
with open(alias_csv_path) as alias_csv:
return {
alias: int(monster_id)
for alias, monster_id in csv.reader(alias_csv)} | 3a3818b81a916b4dd18ca7cab5fbcbe1b4050d03 | 705,562 |
def get_nodes_str (name, nodes):
"""
helper function to dump nodes as a list of names
"""
nodes_str = " %s nodes = %d\n" % (name, len(nodes))
nodes_str += " " + ", ".join(map(lambda x: x._name, nodes)) + "\n"
return nodes_str | cafb9fd0aa202c2172aede97eabbf829dc9a1b53 | 705,563 |
def fibonacci_thrid(n):
"""计算斐波那契数列3"""
return n if n < 2 else fibonacci_thrid(n - 2) + fibonacci_thrid(n - 1) | b98251e9bd4ec507933338738c2b65faea8700b2 | 705,564 |
def is_collision_ray_cell(map_obj, cell):
"""
cell : cell r, c index from left bottom.
"""
idx = cell[0] + map_obj.mapdim[0] * cell[1]
if (cell[0] < 0) or (cell[1] < 0) or (cell[0] >= map_obj.mapdim[0]) or (cell[1] >= map_obj.mapdim[1]):
return True
#elif (map_obj.map is not None) and map_obj.map[cell[0], cell[1]] == 1:
elif (map_obj.map is not None) and map_obj.map_linear[idx] == 1:
return True
else:
return False | 6eaf38710843c4c4e82e8411db9f1e1d97fb1710 | 705,566 |
def transform_resource_name(ctx, param, value):
"""Callback to transform resource_name into title case."""
if value is not None:
return value.title()
return value | b708c3318b731d652a7acad216093c96bc18fe2e | 705,567 |
def extrema (im):
"""
Return the minimum and maximum of an image.
Arguments:
im image whose extrema are to be found
"""
return [im.min(), im.max()] | 303d9c50cca91c3e73341d7b40195aceb02aef7a | 705,568 |
def _create_statement(name, colnames):
"""Create table if not exists foo (...).
Note:
Every type is numeric.
Table name and column names are all lowercased
"""
# every col is numeric, this may not be so elegant but simple to handle.
# If you want to change this, Think again
schema = ', '.join([col + ' ' + 'numeric' for col in colnames])
return "create table if not exists %s (%s)" % (name, schema) | 53c7fc9486274645c5dc7dea2257fda3cf496f9e | 705,569 |
def binary_or(a: int, b: int):
"""
Take in 2 integers, convert them to binary, and return a binary number that is the
result of a binary or operation on the integers provided.
>>> binary_or(25, 32)
'0b111001'
>>> binary_or(37, 50)
'0b110111'
>>> binary_or(21, 30)
'0b11111'
>>> binary_or(58, 73)
'0b1111011'
>>> binary_or(0, 255)
'0b11111111'
>>> binary_or(0, 256)
'0b100000000'
>>> binary_or(0, -1)
Traceback (most recent call last):
...
ValueError: the value of both input must be positive
>>> binary_or(0, 1.1)
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> binary_or("0", "1")
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
"""
if a < 0 or b < 0:
raise ValueError("the value of both input must be positive")
a_binary = str(bin(a))[2:] # remove the leading "0b"
b_binary = str(bin(b))[2:]
max_len = max(len(a_binary), len(b_binary))
return "0b" + "".join(
str(int("1" in (char_a, char_b)))
for char_a, char_b in zip(a_binary.zfill(max_len), b_binary.zfill(max_len))
) | 514fa4a02b778dfa91c4097bb8916522339cda33 | 705,570 |
def tempConvert(temp, unit):
""" Convert Fahrenheit to Celsius """
if unit == 'F':
celsius = (temp-32) * 5/9
return celsius
else:
return temp | 224c7b5bd72ff5d209bfaf2b10d94cc24ac8681d | 705,571 |
import fnmatch
def allowed_file(filename, allowed_exts):
"""
The validator for blueimp that limits which file extensions are allowed.
Args:
filename (str): a filepath
allowed_exts (str): set of allowed file extensions
Returns:
bool: True if extension is an allowed file type, False otherwise
"""
allowed_extensions = ["*."+str(e) for e in list(allowed_exts)]
for ext in allowed_extensions:
if fnmatch.fnmatch(filename.lower(), ext):
return True
return False | af23f6017ffa76e5402800a77cf794a2c1bce330 | 705,572 |
import os
def return_file_size(file_path):
"""This is taking the final size of the pre-processed file, and this number will be used in the rendering process.
"""
size = os.path.getsize(file_path)
return size | dbda1f7cbdbff81588636a52d72be3ab0a0269e9 | 705,573 |
import os
def get_file_size(file):
"""Get file size.
Args:
file (str): Input file.
Returns:
int: Return size of the file in bytes.
"""
return os.stat(file).st_size | 2838f88bd36445b5fe5bda5e4637080116f24cd9 | 705,574 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.