content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
import math def squeezenet1_0_fpn_feature_shape_fn(img_shape): """ Takes an image_shape as an input to calculate the FPN output sizes Ensure that img_shape is of the format (..., H, W) Args img_shape : image shape as torch.Tensor not torch.Size should have H, W as last 2 axis Returns P3_shape, P4_shape, P5_shape, P6_shape, P7_shape : as 5 (2,) Tensors """ C0_shape = img_shape[-2:] C1_shape = (math.floor((C0_shape[0] - 5) / 2), math.floor((C0_shape[1] - 5) / 2)) C2_shape = (math.ceil((C1_shape[0] - 1) / 2), math.ceil((C1_shape[1] - 1) / 2)) P3_shape = (math.ceil((C2_shape[0] - 1) / 2), math.ceil((C2_shape[1] - 1) / 2)) P4_shape = (math.ceil((P3_shape[0] - 1) / 2), math.ceil((P3_shape[1] - 1) / 2)) P5_shape = (math.ceil((P4_shape[0] - 1) / 2), math.ceil((P4_shape[1] - 1) / 2)) P6_shape = (math.ceil(P5_shape[0] / 2), math.ceil(P5_shape[1] / 2)) P7_shape = (math.ceil(P6_shape[0] / 2), math.ceil(P6_shape[1] / 2)) return C2_shape, P3_shape, P4_shape, P5_shape, P6_shape, P7_shape
d56fe3d834bcd9633727defe3ad9a27ea756ed40
705,239
def clip_alpha(aj, H, L): """ cLips alpha vaLues tHat are greater tHan H or Less tHan L """ if aj > H: aj = H if L > aj: aj = L return aj
d272e2703c1b6008fc4840e887ce842005dfad62
705,240
import types def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError("fn is not callable: %s" % fn) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__)
37fca64ddaadfc8a6a24dce012af2143038cacd2
705,241
import random def get_codename(): """Helper for generating a random codename to represent a voter in the admin interface. To protect voting privacy of our voters, we are using hashes to make it slightly more difficult to reveal/infer who voted for who. On the admin interface, however, instead of using a less human-friendly hash, we are representing voters with randomly generated codenames, which still obscures who they are but looks a bit better. The codename is always randomly generated and does not stay the same like the hash, since we don't need to use it to track anything. """ codename = random.choice(['Black', 'Blue', 'Red', 'Brown', 'Gray', 'Green', 'Yellow', 'Purple', 'White', 'Orange', 'Pink']) codename += " " + random.choice(['Mamba', 'Raptor', 'Eagle', 'Hawk', 'Sparrow', 'Snake', 'Mosquito', 'Turkey', 'Opossum', 'Narwhal', 'Seabass','Octopus', 'Jellyfish', 'Armadillo', 'Lemur', 'Tiger', 'Whale', 'Elephant','Turtle', 'Dragon', 'Horse', 'Donkey', 'Coyote', 'Penguin', 'Fox', 'Mouse', 'Albatross', 'Mammoth', 'Tiger', 'Bear', 'Weasel']) return codename
6baf9cc8dd774f0d5541980d7a48be98cb4c66a0
705,242
def getTJstr(text, glyphs, simple, ordering): """ Return a PDF string enclosed in [] brackets, suitable for the PDF TJ operator. Notes: The input string is converted to either 2 or 4 hex digits per character. Args: simple: no glyphs: 2-chars, use char codes as the glyph glyphs: 2-chars, use glyphs instead of char codes (Symbol, ZapfDingbats) not simple: ordering < 0: 4-chars, use glyphs not char codes ordering >=0: a CJK font! 4 chars, use char codes as glyphs """ if text.startswith("[<") and text.endswith(">]"): # already done return text if not bool(text): return "[<>]" if simple: # each char or its glyph is coded as a 2-byte hex if glyphs is None: # not Symbol, not ZapfDingbats: use char code otxt = "".join(["%02x" % ord(c) if ord(c) < 256 else "b7" for c in text]) else: # Symbol or ZapfDingbats: use glyphs otxt = "".join(["%02x" % glyphs[ord(c)][0] if ord(c) < 256 else "b7" for c in text]) return "[<" + otxt + ">]" # non-simple fonts: each char or its glyph is coded as 4-byte hex if ordering < 0: # not a CJK font: use the glyphs otxt = "".join(["%04x" % glyphs[ord(c)][0] for c in text]) else: # CJK: use the char codes otxt = "".join(["%04x" % ord(c) for c in text]) return "[<" + otxt + ">]"
bd5b7abd1b5ceb0b273e99e30ecc248482ed7476
705,245
def check_skip(timestamp, filename): """ Checks if a timestamp has been given and whether the timestamp corresponds to the given filename. Returns True if this condition is met and False Otherwise" """ if ((len(timestamp) > 0) and not(timestamp in filename)): return True elif ((len(timestamp) > 0) and (timestamp in filename)): return False
738043fb554f20b79fa3ac8861f9e60d0d697e5e
705,246
def is_tabledap(url): """ Identify a dataset as an ERDDAP TableDAP dataset. Parameters ---------- url (str) : URL to dataset Returns ------- bool """ return "tabledap" in url
9f4650bc3a3bc0794637b042c1779a84d7c02779
705,247
def generate_timestamp(time_to_use, stamp_type="default"): """ Genrate a text timestamp """ new_stamp = time_to_use.strftime("%Y%m%d-%H%M%S") return new_stamp
1b386ed7375b3158867d980796c764a627c68338
705,248
def choices_on_ballots(L, printing_wanted=False): """ Return a dict of the choices shown on ballot list L, with counts. Args: L (list): list of ballots Returns: C (dict): dict of distinct strings appearing in ballots in L, each with count of number of occurrences. Example: """ C = dict() ballot_no = 0 for ballot in L: ballot_no += 1 for choice in ballot: if False and choice not in C: print("Choice {} first seen in ballot {}" .format(choice, ballot_no)) C[choice] = 1 + C.get(choice, 0) return C
e489eef70ee0efd0f40f5163c2135a5549c8893e
705,249
import random def person_split(whole_data, train_names, valid_names, test_names): """Split data by person.""" random.seed(30) random.shuffle(whole_data) train_data = [] valid_data = [] test_data = [] for idx, data in enumerate(whole_data): # pylint: disable=unused-variable if data["name"] in train_names: train_data.append(data) elif data["name"] in valid_names: valid_data.append(data) elif data["name"] in test_names: test_data.append(data) print("train_length:" + str(len(train_data))) print("valid_length:" + str(len(valid_data))) print("test_length:" + str(len(test_data))) return train_data, valid_data, test_data
ef0475fbc515af1352401c576be27351cda81a35
705,250
import torch def cal_area(group_xyz): """ Calculate Area of Triangle :param group_xyz: [B, N, K, 3] / [B, N, G, K, 3]; K = 3 :return: [B, N, 1] / [B, N, G, 1] """ pad_shape = group_xyz[..., 0, None].shape det_xy = torch.det(torch.cat([group_xyz[..., 0, None], group_xyz[..., 1, None], torch.ones(pad_shape)], dim=-1)) det_yz = torch.det(torch.cat([group_xyz[..., 1, None], group_xyz[..., 2, None], torch.ones(pad_shape)], dim=-1)) det_zx = torch.det(torch.cat([group_xyz[..., 2, None], group_xyz[..., 0, None], torch.ones(pad_shape)], dim=-1)) area = torch.sqrt(det_xy ** 2 + det_yz ** 2 + det_zx ** 2).unsqueeze(-1) return area
bbafa626c1833b5bde81303b4038081dae7bc965
705,251
def get_jquery_min_js(): """ Return the location of jquery.min.js. It's an entry point to adapt the path when it changes in Django. """ return 'admin/js/vendor/jquery/jquery.min.js'
86315a0992dc181435f6899b24eb93abc0a47941
705,252
def quicksort(inputArray): """input: array output: new sorted array features: stable efficiency O(n^2) (worst case), O(n log(n)) (avg case), O(n) (best case): space complexity: O(n) method: Pick the last element in the array as the pivot. Separate values into arrays based on whether they are greater than, less than, or equal to the pivot. Recursively sort the greater than and less than arrays. Return an new array merging the sorted arrays and the pivot. """ if len(inputArray) <= 1: return inputArray pivot = inputArray[-1] lesser = [] greater = [] equal = [] for value in inputArray[:-1]: if value > pivot: greater.append(value) elif value < pivot: lesser.append(value) elif value == pivot: equal.append(value) lesser = quicksort(lesser) greater = quicksort(greater) return lesser + equal + [pivot] + greater
2a8036ba038f4f7a8e817175d9a810184911ce4b
705,253
def get_paypal_currency_code(iso_currency_code): """ Function will map the currency code to paypal currency code """ if iso_currency_code == 124: return 'CAD' if iso_currency_code == 840: return 'USD' if iso_currency_code == 484: return 'MXN' return 'CAD'
af9579a6d12e44dd3263956eb41ece9eadeacaee
705,254
import socket def get_own_ip(): """ returns own ip original from: https://stackoverflow.com/a/25850698/3990615 """ s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 1)) # connect() for UDP doesn't send packets local_ip_address = s.getsockname()[0] return local_ip_address
53195ee3880a9025ba525c120f2e4ccc0e676a93
705,255
import time def chaperone(method): """ Wraps all write, read and query methods of the adapters; monitors and handles communication issues :param method: (callable) method to be wrapped :return: (callable) wrapped method """ def wrapped_method(self, *args, validator=None, **kwargs): if not self.connected: raise ConnectionError(f'Adapter is not connected for instrument at address {self.instrument.address}') while self.busy: # wait for turn to talk to the instrument time.sleep(0.05) self.busy = True # block other methods from talking to the instrument # Catch communication errors and either try to repeat communication or reset the connection attempts = 0 reconnects = 0 while reconnects <= self.max_reconnects: while attempts < self.max_attempts: try: response = method(self, *args, **kwargs) if validator: valid_response = validator(response) else: valid_response = (response != '') * (response != float('nan')) * (response is not None) if not valid_response: raise ValueError(f'invalid response, {response}, from {method.__name__} method') elif attempts > 0 or reconnects > 0: print('Resolved') self.busy = False return response except BaseException as err: print(f'Encountered {err} while trying to talk to {self.instrument.name}') print('Trying again...') attempts += 1 # repeats have maxed out, so try reconnecting with the instrument print('Reconnecting...') self.disconnect() time.sleep(self.delay) self.connect() attempts = 0 reconnects += 1 # Getting here means that both repeats and reconnects have been maxed out raise ConnectionError(f'Unable to communicate with {self.instrument.name}!') wrapped_method.__doc__ = method.__doc__ # keep method doc string return wrapped_method
ec224565208428c9daacdb2e3d15ae0dbb4ee9b1
705,256
import re def preprocess_text(text, lower=True): """ Prepsocess text. """ text = text.replace("ä", "äe").replace("ö", "oe").replace("ü", "ue").replace("ß", "ss") # Remove punctuations and numbers text = re.sub("[^a-zA-Z]+", " ", text) # Single character removal text = re.sub(r"\b[a-zA-Z]\b", "", text) # Removing multiple spaces text = re.sub(r"\s+", " ", text) if lower==True: text = text.lower() return text
fb0c982b8ce3dce2d78918dd8a6ce469a33c93eb
705,257
def separate_last_day(df_): """ takes a dataset which has the target and features built and separates it into the last day """ # take the last period last_period = df_.iloc[-1] # the last period is now a series, so it's name will be the timestamp training_data = df_.loc[df_.index < last_period.name] return last_period, training_data
0e7e7ea31a55c6f648e218b44845290689e344ab
705,258
def cubic_spline_breaksToknots(bvec): """ Given breakpoints generated from _cubic_spline_breaks, [x0, x0, x0, x0, x1, x2, ..., xN-2, xf, xf, xf, xf], return the spline knots [x0, x1, ..., xN-1=xf]. This function ``undoes" _cubic_spline_breaks: knot_vec = _cubic_spline_breaks2knots(_cubic_spline_breaks(knot_vec)) """ return bvec[3:-3]
15a73dea4b001e05bd67075ec21e15247db1f031
705,259
def tamper_nt_response(data, vars): """The connection is sometimes terminated if NTLM is successful, this prevents that""" print("Tamper with NTLM response") nt_response = vars["nt_response"] fake_response = bytes([(nt_response[0] + 1 ) % 0xFF]) + nt_response[1:] return data.replace(nt_response, fake_response)
cf2acad343f457b5ea5529d91653169d2093d500
705,260
def pascal_classes(): """Get Pascal VOC classes :return: mapping from class name to an integer """ return { 'aeroplane': 1, 'bicycle' : 2, 'bird' : 3, 'boat' : 4, 'bottle' : 5, 'bus' : 6, 'car' : 7, 'cat' : 8, 'chair' : 9, 'cow' : 10, 'diningtable': 11, 'dog' : 12, 'horse' : 13, 'motorbike': 14, 'person' : 15, 'potted-plant': 16, 'sheep' : 17, 'sofa' : 18, 'train' : 19, 'tv/monitor' : 20 }
e6f488df00075ed6977024466e0eebb995b98605
705,262
def filenames_per_batch (gen): """ arg = name of the data generator (datagen.flow_from_dataframe) """ img_paths_per_batch=[] batches_per_epoch = gen.samples // gen.batch_size + (gen.samples % gen.batch_size > 0) for i in range(batches_per_epoch): batch = next(gen) current_index = ((gen.batch_index-1) * gen.batch_size) if current_index < 0: if gen.samples % gen.batch_size > 0: current_index = max(0, gen.samples - gen.samples % gen.batch_size) else: current_index = max(0,gen.samples - gen.batch_size) index_array = gen.index_array[current_index:current_index + gen.batch_size].tolist() img_paths = [gen.filepaths[idx] for idx in index_array] img_paths_per_batch.append(img_paths) return img_paths_per_batch
23ea9dfbbfe64fc51796af22c83a470847c9f698
705,264
def ethtype_to_int_priv_pubv(priv, pubv): """ 将 priv 和 pubv 转换为 weidentity 支持的格式(十进制) :param priv: type: bytes :param pubv: type: hex :return: priv int, pubv int """ private_key = int.from_bytes(priv, byteorder='big', signed=False) public_key = eval(pubv) return {"priv": str(private_key), "pubv": str(public_key)}
763a284015029a43257061818634b50d69417de5
705,265
import argparse def build_arg_parse() -> argparse.ArgumentParser: """Builds the arguments parser.""" parser = argparse.ArgumentParser( description="This script updates the python extension micro version based on the release or pre-release channel." ) parser.add_argument( "--release", action="store_true", help="Treats the current build as a release build.", ) parser.add_argument( "--build-id", action="store", type=int, default=None, help="If present, will be used as a micro version.", required=False, ) parser.add_argument( "--for-publishing", action="store_true", help="Removes `-dev` or `-rc` suffix.", ) return parser
8151e3366c7a2acecb7f40cb05684af368dc9e1f
705,266
def _SanitizeDoc(doc, leader): """Cleanup the doc string in several ways: * Convert None to empty string * Replace new line chars with doxygen comments * Strip leading white space per line """ if doc is None: return '' return leader.join([line.lstrip() for line in doc.split('\n')])
7ca6f17296c9b23c05239092e28c8d6b4df7c725
705,267
def pop_execute_query_kwargs(keyword_arguments): """ pop the optional execute query arguments from arbitrary kwargs; return non-None query kwargs in a dict """ query_kwargs = {} for key in ('transaction', 'isolate', 'pool'): val = keyword_arguments.pop(key, None) if val is not None: query_kwargs[key] = val return query_kwargs
d4ae2df3158660f62e21153d943922692f633b76
705,268
def get_long_description(readme_file='README.md'): """Returns the long description of the package. @return str -- Long description """ return "".join(open(readme_file, 'r').readlines()[2:])
604c57fce1f9b8c32df4b64dc9df4fe61120d680
705,269
def extract_versions(): """ Extracts version values from the main matplotlib __init__.py and returns them as a dictionary. """ with open('lib/matplotlib/__init__.py') as fd: for line in fd.readlines(): if (line.startswith('__version__numpy__')): exec(line.strip()) return locals()
b54733ffdae76206400e7203f792e3b809cf6c30
705,270
def lico2_ocp_Ramadass2004(sto): """ Lithium Cobalt Oxide (LiCO2) Open Circuit Potential (OCP) as a a function of the stochiometry. The fit is taken from Ramadass 2004. Stretch is considered the overhang area negative electrode / area positive electrode, in Ramadass 2002. References ---------- .. [1] P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph White, and Branko N. Popov. "Development of First Principles Capacity Fade Model for Li-Ion Cells." (2004) Parameters ---------- sto : :class:`pybamm.Symbol` Stochiometry of material (li-fraction) """ stretch = 1.13 sto = stretch * sto u_eq = ((- 4.656 + 88.669 * (sto ** 2) - 401.119 * (sto ** 4) + 342.909 * (sto ** 6) - 462.471 * (sto ** 8) + 433.434 * (sto ** 10)) / ( - 1 + 18.933 * (sto ** 2) - 79.532 * (sto ** 4) + 37.311 * (sto ** 6) - 73.083 * (sto ** 8) + 95.96 * (sto ** 10)) ) return u_eq
2c0902e1d1cdec9ac7626038e34092933665bf84
705,272
import doctest def doctestobj(*args, **kwargs): """ Wrapper for doctest.run_docstring_examples that works in maya gui. """ return doctest.run_docstring_examples(*args, **kwargs)
1efccd1a887636bbcf80e762f12934e7d03efe28
705,273
def _return_model_names_for_plots(): """Returns models to be used for testing plots. Needs - 1 model that has prediction interval ("theta") - 1 model that does not have prediction interval ("lr_cds_dt") - 1 model that has in-sample forecasts ("theta") - 1 model that does not have in-sample forecasts ("lr_cds_dt") """ model_names = ["theta", "lr_cds_dt"] return model_names
bd180134c5c74f4d1782384bc8e3b13abff8b125
705,274
import time def find_workflow_component_figures(page): """ Returns workflow component figure elements in `page`. """ time.sleep(0.5) # Pause for stable display. root = page.root or page.browser return root.find_elements_by_class_name('WorkflowComponentFigure')
1a56a0a348803394c69478e3443cbe8c6cb0ce9c
705,276
import configparser def get_headers(path='.credentials/key.conf'): """Get the authentication key header for all requests""" config = configparser.ConfigParser() config.read(path) headers = { 'Ocp-Apim-Subscription-Key': config['default']['primary'] } return headers
d40c1b6246efb728040adc47b6180f50aa4dc3e8
705,277
def Sdif(M0, dM0M1, alpha): """ :math:`S(\\alpha)`, as defined in the paper, computed using `M0`, `M0 - M1`, and `alpha`. Parameters ---------- M0 : ndarray or matrix A symmetric indefinite matrix to be shrunk. dM0M1 : ndarray or matrix M0 - M1, where M1 is a positive definite target matrix. alpha : float A shrinking parameter. Returns ------- S(alpha) : float The convex combination :math:`(1-\\alpha) M_0 + \\alpha M_1`. """ return M0 - alpha * dM0M1
6463cb04d7dcfaad93358c7db38f4674a51654b2
705,278
import os def env_world_size(): """World size for distributed training. Is set in torch.distributed.launch as args.nproc_per_node * args.nnodes. For example, when running on 1 node with 4 GPUs per node, the world size is 4. see: https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py""" if 'WORLD_SIZE' in os.environ: return int(os.environ['WORLD_SIZE']) return 1
58587f8f4462fd18e156834214385f5dfebfaa2a
705,279
from typing import Dict def get_sanitized_bot_name(dict: Dict[str, int], name: str) -> str: """ Cut off at 31 characters and handle duplicates. :param dict: Holds the list of names for duplicates :param name: The name that is being sanitized :return: A sanitized version of the name """ # This doesn't work someimtes in continue_and_spawn because it doesn't understand the names already in the match # which may be kept if the spawn IDs match. In that case it's the caller's responsibility to figure it out upstream. name = name[:31] base_name = name count = 2 while name in dict: name = f'{base_name[:27]} ({count})' # Truncate at 27 because we can have up to '(10)' appended count += 1 dict[name] = 1 return name
42d432610602b15b1206f0ce1bc007fdaef6b23f
705,280
def query_left(tree, index): """Returns sum of values between 1-index inclusive. Args: tree: BIT index: Last index to include to the sum Returns: Sum of values up to given index """ res = 0 while index: res += tree[index] index -= (index & -index) return res
e293194c86ad1c53a005be290ba61ef2fff097c8
705,282
def maxsum(sequence): """Return maximum sum.""" maxsofar, maxendinghere = 0, 0 for x in sequence: # invariant: ``maxendinghere`` and ``maxsofar`` are accurate for ``x[0..i-1]`` maxendinghere = max(maxendinghere + x, 0) maxsofar = max(maxsofar, maxendinghere) return maxsofar
884d8b5dd20a0a35ff79c64bc6151b0d8ae7f5a0
705,283
def get_conserved_sequences(cur): """docstring for get_conserved_sequences""" cur.execute("SELECT sureselect_probe_counts.'sureselect.seq', \ sureselect_probe_counts.cnt, \ sureselect_probe_counts.data_source, \ cons.cons \ FROM sureselect_probe_counts, cons \ WHERE sureselect_probe_counts.'sureselect.id' = cons.id \ AND data_source = 'conservation'") return cur.fetchall()
e518d22b7ac2ba072c75a76f72114009eed6ce7c
705,284
from typing import Any def delete_empty_keys(data: Any): """Build dictionary copy sans empty fields""" # Remove empty field from dict # https://stackoverflow.com/questions/5844672/delete-an-element-from-a-dictionary#5844700 dic = data.dict() # if isinstance(data, BaseModel): # dic = **data.dict() return { i:dic[i] for i in dic if dic[i] != None }
db190b021bb00ae3870e205bc27bf28dd09e29c3
705,285
def find_language(article_content): """Given an article's xml content as string, returns the article's language""" if article_content.Language is None: return None return article_content.Language.string
4a228779992b156d01bc25501677556a5c9b7d39
705,286
import re def geturls(str1): """returns the URIs in a string""" URLPAT = 'https?:[\w/\.:;+\-~\%#\$?=&,()]+|www\.[\w/\.:;+\-~\%#\$?=&,()]+|' +\ 'ftp:[\w/\.:;+\-~\%#?=&,]+' return re.findall(URLPAT, str1)
3d127a3c4250d7b013d9198e21cfb87f7909de8d
705,287
def reduce_to(n): """processor to reduce list""" def reduce(list): if len(list) < n: return n else: return list[0:n] return reduce
b9a1fb6091ef9801957c6cc64cab5485091d6801
705,288
import os def readfiles(meta): """ Reads in the files saved in datadir and saves them into a list Parameters ----------- meta metadata object Returns ---------- meta metadata object but adds segment_list to metadata containing the sorted data fits files Notes: ---------- History: Written by Sebastian Zieba December 2021 """ meta.segment_list = [] for fname in os.listdir(str(meta.datadir)): if fname.endswith(meta.suffix + '.fits'): meta.segment_list.append(str(meta.datadir) +'/'+ fname) return meta
be62cd892e25f4b5cd5a1671b734bac6893c1df9
705,289
def read_file(file_name, encoding='utf-8'): """ 读文本文件 :param encoding: :param file_name: :return: """ with open(file_name, 'rb') as f: data = f.read() if encoding is not None: data = data.decode(encoding) return data
4e4a90512727b4b40d4968930479f226dc656acb
705,290
import os import json def get_storcli_dall_show(c): """ Gets data from json resource :param c: unused :return: """ del c with open(os.path.join(os.path.dirname(__file__), '../resources/storcli_dall_show.json')) as fp: data = json.load(fp) controller_list = [] for controller in data['Controllers']: # Account for some crazy JSON schema controller_list.append( controller['Response Data']['Response Data'] ) return controller_list
24b0ea1065443d17078971c6567989e05da0cd60
705,291
import os import re def generatePSSMProfile(fastas, outDir, blastpgp, db): """ Generate PSSM file by using the blastpgp program in NCBI blast-2.2.18 package. Parameters ---------- file : file the file, which include the protein sequences in fasta format. blastpgp: string the path of blastpgp program. db: string the uniref50 data base, which is formated by the 'formatdb' program in blast package. Returns ------- a string: A directory name, which include the predicted protein PSSM information. """ if os.path.exists(outDir) == False: os.mkdir(outDir) for i in fastas: name, sequence = re.sub('\|', '', i[0]), i[1] with open(name + '.txt', 'w') as f: f.write('>'+name+'\n'+sequence + '\n') myCmd = blastpgp + ' -i ' + name + '.txt' + ' -d ' + db + ' -b 0 -v 5000 -j 3 -h 0.001 -Q ' + outDir + '/' + name +'.pssm' print('Doing psiblast for protein: ' + name) os.system(myCmd) os.remove(name + '.txt') return outDir
2e7cc5f3fae9820d1ecdef1b3674c835bc73e640
705,292
def safe_encode(s, coding='utf-8', errors='surrogateescape'): """encode str to bytes, with round-tripping "invalid" bytes""" return s.encode(coding, errors)
1b1ba8439db8ec4c82c571197e5007e58f397c87
705,293
import collections def extract_stats(output): """Extract stats from `git status` output """ lines = output.splitlines() return collections.Counter([x.split()[0] for x in lines])
41d8aef4df3401ee8127ad0b72402ff9c54c41e3
705,294
def _expr_rshift_as_multiplication_of_reverse_order(lhs, rhs): """The multiply express will reverse order. """ return rhs * lhs
4f245d8a8071cf4bcfc6543e0abae24cb1cdde9d
705,296
import numpy def CalculateHarmonicTopoIndex(mol): """ ################################################################# Calculation of harmonic topological index proposed by Narnumi. ---->Hato Usage: result=CalculateHarmonicTopoIndex(mol) Input: mol is a molecule object Output: result is a numeric value ################################################################# """ deltas = [x.GetDegree() for x in mol.GetAtoms()] while 0 in deltas: deltas.remove(0) deltas = numpy.array(deltas, "d") nAtoms = mol.GetNumAtoms() res = nAtoms / sum(1.0 / deltas) return res
65984702d49071f18089cdf17b1ba4a21b70357e
705,297
def add_custom_encoder_arguments(group): """Define arguments for Custom encoder.""" group.add_argument( "--enc-block-arch", type=eval, action="append", default=None, help="Encoder architecture definition by blocks", ) group.add_argument( "--enc-block-repeat", default=0, type=int, help="Repeat N times the provided encoder blocks if N > 1", ) group.add_argument( "--custom-enc-input-layer", type=str, default="conv2d", choices=["conv2d", "vgg2l", "linear", "embed"], help="Custom encoder input layer type", ) group.add_argument( "--custom-enc-positional-encoding-type", type=str, default="abs_pos", choices=["abs_pos", "scaled_abs_pos", "rel_pos"], help="Custom encoder positional encoding layer type", ) group.add_argument( "--custom-enc-self-attn-type", type=str, default="self_attn", choices=["self_attn", "rel_self_attn"], help="Custom encoder self-attention type", ) group.add_argument( "--custom-enc-pw-activation-type", type=str, default="relu", choices=["relu", "hardtanh", "selu", "swish"], help="Custom encoder pointwise activation type", ) group.add_argument( "--custom-enc-conv-mod-activation-type", type=str, default="swish", choices=["relu", "hardtanh", "selu", "swish"], help="Custom encoder convolutional module activation type", ) return group
f49a778b78351a08bdb411e8004d00da0ccd96a4
705,298
import argparse def get_parser() -> argparse.ArgumentParser: """ Create a command line parser. Returns: argparse.ArgumentParser: Created parser """ parser = argparse.ArgumentParser() parser.add_argument( "-l", "--list", required=False, action="store_true", help="list of all highways" ) parser.add_argument( "-r", "--roadworks", type=str, required=False, help="list of roadworks" ) parser.add_argument( "-p", "--parking", type=str, required=False, help="list of service areas" ) parser.add_argument( "-v", "--version", required=False, action="store_true", help="show the version" ) return parser
c17895029da4e41a5bbc0e0cc9a689680fb2c80e
705,299
def sign(x): """Returns sign of x""" if x==0: return 0 return x/abs(x)
677dfd796b0ee354fbcaf78b58cf7a5a660446b5
705,300
from datetime import datetime def handler_callback(callback, user): """ A method for handling callbacks :param user: user object :param callback: callback from telebot.types.CallbackQuery :return: datetime.date object if some date was picked else None """ if callback == "prev" and user.curr_date.replace(day=1) >= user.min_date.replace( day=1 ): user.curr_date = user.curr_date.replace(month=user.curr_date.month - 1) return None if callback == "next" and user.curr_date.replace(day=1) <= user.max_date.replace( day=1 ): user.curr_date = user.curr_date.replace(month=user.curr_date.month + 1) return None if callback != "none": entered_date = datetime.strptime(callback, "%Y,%m,%d") if user.min_date <= entered_date <= user.max_date: return entered_date return -1
27eb78f77d77543fe02a984751078cee96d38b06
705,301
def echo_handler(completed_proc): """Immediately return ``completed_proc``.""" return completed_proc
53f3ef51bf349ac5146014ef25b88326d5bc010e
705,302
import random def random_choice(choices): """returns a random choice from a list of (choice, probability)""" # sort by probability choices = sorted(choices, key=lambda x:x[1]) roll = random.random() acc_prob = 0 for choice, prob in choices: acc_prob += prob if roll <= acc_prob: return choice
f477abe220fa9d87ee3692bed8c41973af4c637c
705,303
import torch def convert_label_to_color(label, color_map): """Convert integer label to RGB image. """ n, h, w = label.shape rgb = torch.index_select(color_map, 0, label.view(-1)).view(n, h, w, 3) rgb = rgb.permute(0, 3, 1, 2) return rgb
a37ec3ad382f88bdc9de8fbc2b4e2524213607c3
705,304
def is_collection(name): """compare with https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/user""" return name in [ 'assignedLicenses', 'assignedPlans', 'businessPhones', 'imAddresses', 'interests', 'provisionedPlans', 'proxyAddresses', 'responsibilities', 'schools', 'skills' ]
c2557f142f3ca066506256b273c9f65657079478
705,305
def in_nested_list(my_list, item): """ Determines if an item is in my_list, even if nested in a lower-level list. """ if item in my_list: return True else: return any(in_nested_list(sublist, item) for sublist in my_list if isinstance(sublist, list))
3daeaf89099bf19ba82eabfedd943adfb32fc146
705,306
import sys def get_exc_info(exception): """Get an exc_info tuple based on an exception instance.""" try: raise exception except: return sys.exc_info()
58378b68b7d6c65d0b62d6fd304c29798f65f1c2
705,307
def is_prebuffer() -> bool: """ Return whether audio is in pre-buffer (threadsafe). Returns ------- is_prebuffer : bool Whether audio is in pre-buffer. """ is_prebuffer = bool(RPR.Audio_IsPreBuffer()) # type:ignore return is_prebuffer
8afa4979578be310fd71b22907c99bb747780454
705,308
def _get_interface_name_index(dbapi, host): """ Builds a dictionary of interfaces indexed by interface name. """ interfaces = {} for iface in dbapi.iinterface_get_by_ihost(host.id): interfaces[iface.ifname] = iface return interfaces
0217f6ef8d4e5e32d76a4fc0d66bf74aa45f8c36
705,309
import torch def to_data(x): """Converts variable to numpy""" if torch.cuda.is_available(): x = x.cpu() return x.data.numpy()
b91f755d43fde06db1bd38158881eb2f84e43d10
705,310
import argparse def get_arguments(): """ Wrapper function to get the command line arguments. Inserting this piece of code into its own function for conda compatibility. """ parser = argparse.ArgumentParser( prog='KrakMeOpen', usage='krakmeopen [--input FILE | --input_pickle FILE | --input_file_list FILE] [--output FILE | --output_pickle FILE] --names FILE --nodes FILE [--tax_id INT | --tax_id_file FILE] --kmer_tally_table FILE', description=''' A Kraken2 downstream analysis toolkit. More specifically, calculate a series of quality metrics for Kraken2 classifications.''', epilog=''' The metrics are calculated on the clade-level. All kmers from all reads that are classified to any of the nodes in the clades rooted at the supplied tax IDs are aggregated, and metrics are calculated on those aggregations. Input is Kraken2 read-by-read classification files (can be gzipped). Output is a tab separated file containing the metrics.''') # Input arguments input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument( '--input', metavar='FILE', type=str, help='Kraken2 read-by-read classifications file.') input_group.add_argument( '--input_pickle', metavar='FILE', type=str, help='A pickle file containing kmer tallies, produced with --output_pickle') input_group.add_argument( '--input_file_list', metavar='FILE', type=str, help='''A file containing file paths to multiple pickles, one per line. Will calculate metrics on the sum of kmer counts from all pickles.''') # Output arguments output_group = parser.add_mutually_exclusive_group(required=True) output_group.add_argument( '--output', metavar='FILE', type=str, help='The file to write the quality metrics output to.') output_group.add_argument( '--output_pickle', metavar='FILE', type=str, help='''The pickle file to write kmer tallies to. Use this argument to supress calculation of quality metrics and only output kmer counts to a pickled file. Input the pickled file using --input_pickle.''') parser.add_argument( '--kmer_tally_table', metavar='FILE', required=False, help='File to output the complete kmer tally table for each tax ID to. Optional.') # The taxonomy parser.add_argument( '--names', metavar='FILE', required=True, help='NCBI style taxonomy names dump file (names.dmp). Required.') parser.add_argument( '--nodes', metavar='FILE', required=True, help='NCBI style taxonomy nodes dump file (nodes.dmp). Required.') # Supply relevant taxonomic ID on command line, or one or multiple taxonomic IDs # through a text file. tax_id_group = parser.add_mutually_exclusive_group(required=True) tax_id_group.add_argument( '--tax_id', metavar='INT', type=int, help='A taxonomic ID for a clade that you wish to calculate quality metrics for.') tax_id_group.add_argument( '--tax_id_file', metavar='FILE', type=str, help='''Supply multiple taxonomic IDs at once. A textfile with one taxonomic ID per line. Calculate quality metrics for the clades rooted at the taxonomic IDs in the file.''') return parser.parse_args()
ad326fdab79874f33e8df005d5d5e470d23f8e42
705,311
def getManifestFsLayers(manifest): """ returns hashes pointing to layers for manifest""" return manifest["manifest"]["fsLayers"]
a3449c2828222c2b806df8621dd6a24375778ed2
705,312
def delchars(str, chars): """Returns a string for which all occurrences of characters in chars have been removed.""" # Translate demands a mapping string of 256 characters; # whip up a string that will leave all characters unmolested. identity = "".join([chr(x) for x in range(256)]) return str.translate(identity, chars)
a220202a05e0ead7afa6226ef309c56940a1d153
705,313
def bytes2hex(bytes_array): """ Converts byte array (output of ``pickle.dumps()``) to spaced hexadecimal string representation. Parameters ---------- bytes_array: bytes Array of bytes to be converted. Returns ------- str Hexadecimal representation of the byte array. """ s_hex = bytes_array.hex() # Insert spaces between each hex number. It makes YAML file formatting better. return " ".join([s_hex[n : n + 2] for n in range(0, len(s_hex), 2)])
19019ee1e3cd45d671f53e0ae4fd92b283c3b38d
705,314
import os def family_directory(fonts): """Get the path of font project directory.""" if fonts: dirname = os.path.dirname(fonts[0]) if dirname == '': dirname = '.' return dirname
91d1f880a01ba2de11e6570272d5748d1dea6d47
705,315
from pathlib import Path def to_posix(d): """Convert the Path objects to string.""" if isinstance(d, dict): for k, v in d.items(): d[k] = to_posix(v) elif isinstance(d, list): return [to_posix(x) for x in d] elif isinstance(d, Path): return d.as_posix() return d
91dbda7738308dd931b58d59dad8e04a277034ea
705,316
def firstLetterCipher(ciphertext): """ Returns the first letters of each word in the ciphertext Example: Cipher Text: Horses evertime look positive Decoded text: Help """ return "".join([i[0] for i in ciphertext.split(" ")])
87f37d1a428bde43c07231ab2e5156c680c96f91
705,318
from pathlib import Path from typing import Tuple import re def parse_samtools_flagstat(p: Path) -> Tuple[int, int]: """Parse total and mapped number of reads from Samtools flagstat file""" total = 0 mapped = 0 with open(p) as fh: for line in fh: m = re.match(r'(\d+)', line) if m: if 'in total' in line: total = int(m.group(1)) if ' mapped (' in line: mapped = int(m.group(1)) return total, mapped
60c6f9b227cefdea9877b05bb2fe66e4c82b4dd1
705,319
def app_files(proj_name): """Create a list with the project files Args: proj_name (str): the name of the project, where the code will be hosted Returns: files_list (list): list containing the file structure of the app """ files_list = [ "README.md", "setup.py", "setup.cfg", f"{proj_name}/__init__.py", f"{proj_name}/{proj_name}.py", "tests/tests.py", ] return files_list
2c6cbf112c7939bea12672668c8a5db1656b6edd
705,320
import torch def log_safe(x): """The same as torch.log(x), but clamps the input to prevent NaNs.""" x = torch.as_tensor(x) return torch.log(torch.min(x, torch.tensor(33e37).to(x)))
98c73b316d22ebe9ef4b322b1ba984a734422e7a
705,321
import requests def resolve_s1_slc(identifier, download_url, project): """Resolve S1 SLC using ASF datapool (ASF or NGAP). Fallback to ESA.""" # determine best url and corresponding queue vertex_url = "https://datapool.asf.alaska.edu/SLC/SA/{}.zip".format( identifier) r = requests.head(vertex_url, allow_redirects=True) if r.status_code == 403: url = r.url queue = "{}-job_worker-small".format(project) elif r.status_code == 404: url = download_url queue = "factotum-job_worker-scihub_throttled" else: raise RuntimeError("Got status code {} from {}: {}".format( r.status_code, vertex_url, r.url)) return url, queue
cf489b0d65a83dee3f87887a080d67acd180b0b3
705,322
def make_anagram_dict(filename): """Takes a text file containing one word per line. Returns a dictionary: Key is an alphabetised duple of letters in each word, Value is a list of all words that can be formed by those letters""" result = {} fin = open(filename) for line in fin: word = line.strip().lower() letters_in_word = tuple(sorted(word)) if letters_in_word not in result: result[letters_in_word] = [word] else: result[letters_in_word].append(word) return result
c6c0ad29fdf63c91c2103cefc506ae36b64a40ec
705,323
def group_property_types(row : str) -> str: """ This functions changes each row in the dataframe to have the one of five options for building type: - Residential - Storage - Retail - Office - Other this was done to reduce the dimensionality down to the top building types. :param: row (str) : The row of the pandas series :rvalue: str :return: One of 5 building types. """ if row == 'Multifamily Housing' or\ row == 'Residence Hall/Dormitory' or\ row == 'Hotel' or\ row == 'Other - Lodging/Residential' or\ row == 'Residential Care Facility': return 'Residential' elif row == 'Non-Refrigerated Warehouse' or\ row == 'Self-Storage Facility' or\ row == 'Refrigerated Warehouse': return 'Storage' elif row == 'Financial Office' or\ row == 'Office': return 'Office' elif row == 'Restaurant' or\ row == 'Retail Store' or\ row == 'Enclosed Mall' or\ row == 'Other - Mall' or\ row == 'Strip Mall' or\ row == 'Personal Services (Health/Beauty, Dry Cleaning, etc.)' or\ row == 'Lifestyle Center' or\ row == 'Wholesale Club/Supercenter': return 'Retail' else: return 'Other'
44aa5d70baaa24b0c64b7464b093b59ff39d6d1c
705,324
def write_simple_templates(n_rules, body_predicates=1, order=1): """Generate rule template of form C < A ^ B of varying size and order""" text_list = [] const_term = "(" for i in range(order): const_term += chr(ord('X') + i) + "," const_term = const_term[:-1] + ")" write_string = "{0} #1{1} :- #2{1}".format(n_rules, const_term) if body_predicates > 1: for i in range(body_predicates - 1): write_string += ", #" + str(i + 3) + const_term text_list.append(write_string) return text_list
3a911702be9751b0e674171ec961029f5b10a9e7
705,325
def iou(box1, box2, x1y1x2y2=True): """ iou = intersection / union """ if x1y1x2y2: # min and max of 2 boxes mx = min(box1[0], box2[0]) Mx = max(box1[2], box2[2]) my = min(box1[1], box2[1]) My = max(box1[3], box2[3]) w1 = box1[2] - box1[0] h1 = box1[3] - box1[1] w2 = box2[2] - box2[0] h2 = box2[3] - box2[1] else: # (x, y, w, h) mx = min(box1[0] - box1[2] / 2, box2[0] - box2[2] / 2) Mx = max(box1[0] + box1[2] / 2, box2[0] + box2[2] / 2) my = min(box1[1] - box1[3] / 2, box2[1] - box2[3] / 2) My = max(box1[1] + box1[3] / 2, box2[1] + box2[3] / 2) w1 = box1[2] h1 = box1[3] w2 = box2[2] h2 = box2[3] uw = Mx - mx uh = My - my cw = w1 + w2 - uw ch = h1 + h2 - uh carea = 0 if cw <= 0 or ch <= 0: return 0.0 area1 = w1 * h1 area2 = w2 * h2 corea = cw * ch uarea = area1 + area2 - carea return carea / uarea
6ad0d3d7dd3a3031d28f8a0b9d0075ecf9362792
705,326
def gen_string(**kwargs) -> str: """ Generates the string to put in the secrets file. """ return f"""\ apiVersion: v1 kind: Secret metadata: name: keys namespace: {kwargs['namespace']} type: Opaque data: github_client_secret: {kwargs.get('github_client_secret')} """
ed2702c171f20b9f036f07ec61e0a4d74424ba03
705,327
def get_props_from_row(row): """Return a dict of key/value pairs that are props, not links.""" return {k: v for k, v in row.iteritems() if "." not in k and v != ""}
a93dfbd1ef4dc87414492b7253b1ede4e4cc1888
705,328
def generate_url(resource, bucket_name, object_name, expire=3600): """Generate URL for bucket or object.""" client = resource.meta.client url = client.generate_presigned_url( "get_object", Params={"Bucket": bucket_name, "Key": object_name}, ExpiresIn=expire, ) return url
8a74618d5cfcd39c8394577035b497ecb5835765
705,329
import math def F7(x): """Easom function""" s = -math.cos(x[0])*math.cos(x[1])*math.exp(-(x[0] - math.pi)**2 - (x[1]-math.pi)**2) return s
a17060f046df9c02690e859e789b7ef2591d1a3c
705,330
import torch def zaxis_to_world(kpt: torch.Tensor): """Transform kpt from 2D+Z to 3D Real World Coordinates (RWC) for ITOP Dataset Args: kpt (np.ndarray): Array containing keypoints to transform Returns: np.ndarray: Converted keypoints """ tmp = kpt.clone() tmp[..., 0] = (tmp[..., 0].clone() - 160) * 0.0035 * tmp[..., 2].clone() tmp[..., 1] = -(tmp[..., 0].clone() - 120) * 0.0035 * tmp[..., 2].clone() return tmp
d925382c62d370a991fa2dfd4c51cb43d051423e
705,331
import numpy def quaternion_multiply(quaternion1, quaternion0): """Return multiplication of two quaternions. >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8]) >>> numpy.allclose(q, [-44, -14, 48, 28]) True """ x0, y0, z0, w0 = quaternion0 x1, y1, z1, w1 = quaternion1 return numpy.array(( x1*w0 + y1*z0 - z1*y0 + w1*x0, -x1*z0 + y1*w0 + z1*x0 + w1*y0, x1*y0 - y1*x0 + z1*w0 + w1*z0, -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
bcc6973f169840400c86b5eaf673deb75444a63f
705,332
from datetime import datetime def _get_stop_as_datetime(event_json)->datetime: """Reads the stop timestamp of the event and returns it as a datetime object. Args: event_json (json): The event encapsulated as json. Returns datetime: Timestamp of the stop of the event. """ name = event_json['info']['name'] payload_stop = 'meta.raw_payload.' + name + '-stop' stop_timestamp_string = event_json['info'][payload_stop]['timestamp'] stop_date_string, stop_time_string = stop_timestamp_string.split('T') stop_time_string, _ = stop_time_string.split('.') date_and_time_string = stop_date_string + ' ' + stop_time_string return datetime.strptime(date_and_time_string, '%Y-%m-%d %H:%M:%S')
958915a568c66a04da3f44abecf0acca90181f43
705,334
from typing import Dict def contents_append_notable_sequence_event_types(sequence, asset_sequence_id) -> Dict: """Appends a dictionary of filtered data to the base list for the context Args: sequence: sequence object asset_sequence_id: asset sequence ID Returns: A contents list with the relevant notable sequence event types """ content = { 'eventType': sequence.get('eventType'), 'displayName': sequence.get('displayName'), 'count': sequence.get('count'), 'sequenceId': asset_sequence_id } return content
fca27e5242968fa0db3c9d450588d77e4b307d1e
705,335
import string import random def gen_pass(length=8, no_numerical=False, punctuation=False): """Generate a random password Parameters ---------- length : int The length of the password no_numerical : bool, optional If true the password will be generated without 0-9 punctuation : bool, optional If true the password will be generated with punctuation Returns ------- string The generated password """ characters = [string.ascii_letters] # Add user options to the character set if not no_numerical: characters.append(string.digits) if punctuation: characters.append(string.punctuation) # Shuffle the character set random.SystemRandom().shuffle(characters) chars_left = length - (len(characters) - 1) char_amounts = [] # Decide on number of characters per character set for char_set in characters: i = random.SystemRandom().randint(1, chars_left) char_amounts.append(i) chars_left -= i - 1 char_amounts[-1] += chars_left - 1 # Generate the password's characters password = '' for i, length in enumerate(char_amounts): password +=''.join(random.SystemRandom().choice(characters[i]) for _ in range(length)) # Shuffle the password password = list(password) random.SystemRandom().shuffle(password) password = ''.join(password) return password
dc0ca0c228be11a5264870112e28f27817d4bbc8
705,336
def document_version_title(context): """Document version title""" return context.title
1589a76e8bb4b4a42018783b7dbead9efc91e21a
705,337
def vertical(hfile): """Reads psipred output .ss2 file. @param hfile psipred .ss2 file @return secondary structure string. """ result = '' for l in hfile: if l.startswith('#'): continue if not l.strip(): continue l_arr = l.strip().split() result += l_arr[2] return result
c118b61be6edf29b42a37108c5fe21a0e62b801a
705,338
def decide_play(lst): """ This function will return the boolean to control whether user should continue the game. ---------------------------------------------------------------------------- :param lst: (list) a list stores the input alphabet. :return: (bool) if the input character is alphabet and if only one character is in the string. """ if len(lst) == 4: for char in lst: if char.isalpha() and len(char) == 1: pass else: return False return True else: return False
3062e1335eda572049b93a60a0981e905ff6ca0d
705,339
def vocabfile_to_hashdict(vocabfile): """ A basic vocabulary hashing strategy just uses the line indices of each vocabulary word to generate sequential hashes. Thus, unique hashes are provided for each word in the vocabulary, and the hash is trivially reversable for easy re-translation. """ hash_dict = {} hash_index = 0 with open(vocabfile, "rb") as file: for line in file: line = line.decode('utf-8') line = line.strip().replace('\n', '') # to prevent bad encoding hash_dict[line] = hash_index hash_index += 1 return hash_dict
f26515fbb406897f4f348436a8776fd2b86ce5e4
705,340
import struct def pack(code, *args): """Original struct.pack with the decorator applied. Will change the code according to the system's architecture. """ return struct.pack(code, *args)
851e8db4d0e710edf2ea15503d92e76d352a2f05
705,341
import os def getpath(): """ Generate filepath to the present file. :return: filepath to the present file. :rtype: str """ return os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
7feb3e0662a512231d6aa02afdb724555cb78ebb
705,342
def _md_fix(text): """ sanitize text data that is to be displayed in a markdown code block """ return text.replace("```", "``[`][markdown parse fix]")
2afcad61f4b29ae14c66e04c39413a9a94ae30f8
705,343
def inverse_hybrid_transform(value): """ Transform back from the IRAF-style hybrid log values. This takes the hybrid log value and transforms it back to the actual value. That value is returned. Unlike the hybrid_transform function, this works on single values not a numpy array. That is because one is not going to have a data array in the hybrid transformation form. Parameters ---------- value : A real number to be transformed back from the hybrid log scaling Returns ------- newvalue : The associated value that maps to the given hybrid log value. """ if value < 0.: workvalue = -1.0*value sign = -1.0 else: workvalue = value sign = +1.0 if workvalue < 1.0: newvalue = 10.*workvalue else: newvalue = 10.**workvalue newvalue = sign * newvalue return newvalue
2b8db45901c6f762c970937058670c5c4c5457ea
705,344
def answers(provider): """Default answers data for copier""" answers = {} answers["class_name"] = "TemplateTestCharm" # Note "TestCharm" can't be used, that's the name of the deafult unit test class answers["charm_type"] = provider return answers
9ae26b4eceab5a40d9b342dcb510d3e6843ee640
705,345
def get_side_effects_from_sider(meddra_all_se_file): """ Get the most frequent side effects from SIDER """ pubchem_to_umls = {} umls_to_name = {} with open(meddra_all_se_file, 'r') as med_fd: for line in med_fd: fields = line.strip().split('\t') pubchem = str(int(fields[1].split('CID')[1])) concept_type = fields[3].upper() umls_id = fields[4].upper() umls_term = fields[5].lower() if concept_type == 'PT': pubchem_to_umls.setdefault(pubchem, set()).add(umls_id) umls_to_name[umls_id] = umls_term print('NUMBER OF PUBCHEM IDS ASSOCIATED WITH UMLS: {}'.format(len(pubchem_to_umls))) return pubchem_to_umls, umls_to_name
4fa012cd2a16e09f01d43ae66f99640f1e090e22
705,347
import os def get_env_var(name, default_value = None): """Get the value of an environment variable, if defined""" if name in os.environ: return os.environ[name] elif default_value is not None: return default_value else: raise RuntimeError('Required environment variable %s not found' % name)
0f0455ede0e025c9da9fd65769a1d4e52ae520fc
705,348
def hexStringToRGB(hex): """ Converts hex color string to RGB values :param hex: color string in format: #rrggbb or rrggbb with 8-bit values in hexadecimal system :return: tuple containing RGB color values (from 0.0 to 1.0 each) """ temp = hex length = len(hex) if temp[0] == "#": temp = hex[1:length] if not len(temp) == 6: return None colorArr = bytearray.fromhex(temp) return colorArr[0], colorArr[1], colorArr[2]
7adcb7b247e6fe1aefa1713d754c828d1ac4a5b0
705,349