content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def get_base_url(hostname): """ Constructs the GitHub API url with the given hostname. :param str hostname: Hostname to construct the API endpoint url. :returns: None :raises: None """ if hostname and hostname.startswith('http'): return hostname else: return "https://{hostname}/api/v3".format(hostname=hostname) return hostname
b0a13d3054fd48a9970c639ea8730d24a67a09ed
704,331
def getTabData(header, index): """Get the table data at index from above tables generator. Expects the header string and the index of the table.""" tabStart = header.index('{', index) + 1 #start of the table, first letter after {. tabEnd = header.index('}', tabStart) #last of the array. return header[tabStart:tabEnd]
738e6f1532129043e67e1e639a66d12e43d1e9a6
704,332
def dict_merged(d, _filter=None, **kw): """Update dictionary d with the items passed as kw if the value passes _filter.""" def f(s): if _filter: return _filter(s) return s is not None d = d or {} for k, v in kw.items(): if f(v): d[k] = v return d
03df2c26975f114db1b6f258a4324d0d12109126
704,333
def topological_sort(self): """ Returns: List(int): Topological sort of vertices of a graph. """ topo_order = self.depth_first_search()[1] position = [-1] * len(self.v) for i, v in enumerate(topo_order): position[v] = i for u, v in self.e: if position[u] > position[v]: return None return topo_order
ccd21c7486c3b32da1203015e77c24530d1f5e56
704,334
import time def wait_for_job(res, ping_time=0.5): """ Blocks execution and waits for an async Forest Job to complete. :param JobResult res: The JobResult object to wait for. :param ping_time: The interval (in seconds) at which to ping the server. :return: The completed JobResult """ while not res.is_done(): res.get() time.sleep(ping_time) return res
1a7202f58affa97b0001b246fb7cd187d6a59f44
704,335
def numeric_type(param): """ Checks parameter type True for float; int or null data; false otherwise :param param: input param to check """ if ((type(param) == float or type(param) == int or param == None)): return True return False
a5f67a30b3128c1214d8825abbc6ae5170680d80
704,336
def search_data_start(file, identifier, encoding): """ Returns the line of an identifier for the start of the data in a file. """ if identifier is None: return 0 search = open(file, encoding=encoding) i = 1 for line in search: if identifier in line: search.close() return i i += 1
2c3c903df2162b9f6fe5452b75c4f7ac06ddd194
704,337
def get_page_generator(s,max_items=0): """Get the generator that returns the Page objects that we're interested in, from Site s. """ page_generator = s.allpages() if(max_items>0): page_generator.set_maximum_items(max_items) return page_generator
d53a890523c999df878fecc71ef1dbd8d17c188c
704,338
import os def file_basename_no_extension(filename): """ Returns filename without extension >>> file_basename_no_extension('/home/me/file.txt') 'file' >>> file_basename_no_extension('file') 'file' """ base = os.path.basename(filename) name, extension = os.path.splitext(base) return name
d4512a06ecc861d2b9e992691fbabb11b9e6e958
704,339
def segment_text_to_sentences(text_file, sentence_splitter): """ Segment text into sentences. Text is provided by BRAT in .txt file. Args: text_file (str): the full path to the BRAT .txt file. sentence_splitter (spacy LM): SpaCy EN language model. Returns: sentences (list((int, int, str))): list of sentence spans. Spans are triples of (start_offset, end_offset, text), where offset is relative to the text. """ sentences = [] ftext = open(text_file, "r") for line in ftext: splits = sentence_splitter(line.strip()) for sent in splits.sents: sentences.append((sent.start_char, sent.end_char, sent.text)) ftext.close() return sentences
d74857a4931d162b9573b1b086a8720563b4fd41
704,340
def get_folder_offset(folder_list, folder_name): """ Check whether there is already a folder named 'folder_name' and if so, increment a counter. """ isExists = False # Check whether a folder with the same name already exists for folder in folder_list: if folder['title'] == folder_name: #print('title: %s, id: %s' % (folder['title'], folder['id'])) isExists = True print('Folder', folder_name, 'already exists. Adding an index...') break if not isExists : return 0 # Increment a counter until finding a folder name that doesn't exist (with pattern 'name_i') i=1 while 1 : isNew = True for folder in folder_list: if folder['title'] == folder_name + '_' + str(i) : #print('title: %s, id: %s' % (folder['title'], folder['id'])) isNew = False # Increment the counter i+=1 # Move on to next iteration continue if(isNew): break return i
b620e6ee6819b2b1aac6b3fd6a05775cde34838e
704,341
def param_to_string(metric) -> str: """Convert a list / tuple of parameters returned from IE to a string""" if isinstance(metric, (list, tuple)): return ', '.join([str(x) for x in metric]) else: return str(metric)
54476f88936336728ba73425bb57860e17fb7561
704,342
from sys import stdout import os def get_first_last_line(filePath, encoding=stdout.encoding): """Return the first and the last lines of file The existence of filePath should be check beforehand. Args: filePath (str): the path of the file encoding (str): the encoding of the file. Default stdout.encoding Returns two strings (unstripped) """ with open(filePath, "rb") as f: first = f.readline() # Read the first line. f.seek(-2, os.SEEK_END) # Jump to the second last byte. while f.read(1) != b"\n": # Until EOL is found... # ...jump back the read byte plus one more. f.seek(-2, os.SEEK_CUR) last = f.readline() # Read last line. # encode string return str(first, encoding), str(last, encoding)
0d2da4c861e118b3b4d29bfc95ac3d56df7804e6
704,343
def fitness_func_large(vector): """ returns a very large number for fitness""" return 9999999999999999999
08e6f43c5f891fe7138dfc7b1d0809ba048bf070
704,345
def remove_prefix(s, pre): """ Remove prefix from the beginning of the string Parameters: ---------- s : str pre : str Returns: ------- s : str string with "pre" removed from the beginning (if present) """ if pre and s.startswith(pre): return s[len(pre):] return s
6bae14cddd38fcfabfb0fadb9f4dbeaea81ff4ac
704,346
def block_distance(p1, p2): """ Returns the Block Distance of a particular point from rest of the points in dataset. """ distance = 0 for i in range(len(p1)-1): distance += abs(p1[i]-p2[i]) return distance
29d7febe0bd8fcdfc16cbc27c7f3490f265c9daf
704,347
def remove_empty(df): """ Drop all rows and columns that are completely null. Implementation is shamelessly copied from `StackOverflow`_. .. _StackOverflow: https://stackoverflow.com/questions/38884538/python-pandas-find-all-rows-where-all-values-are-nan # noqa: E501 Functional usage example: .. code-block:: python df = remove_empty(df) Method chaining example: .. code-block:: python df = pd.DataFrame(...) df = jn.DataFrame(df).remove_empty() :param df: The pandas DataFrame object. :returns: A pandas DataFrame. """ nanrows = df.index[df.isnull().all(axis=1)] df.drop(index=nanrows, inplace=True) nancols = df.columns[df.isnull().all(axis=0)] df.drop(columns=nancols, inplace=True) return df
c2ea9fc13bfa57bc357a83c607bfe9ce9348fb2e
704,348
from typing import Optional def calculate_serving_size_weight( weight: Optional[float], number_of_servings: Optional[float] ) -> Optional[float]: """ Given a weight (representing the total weight of the component included in a recipe) and a number of servings (how many servings of the component are included), returns a number representing the weight of just one serving of the component. """ if weight is not None and number_of_servings is not None: return weight/number_of_servings else: return None
b22732a60f1f6000277861a615c78e785b4757bb
704,349
def format_key(key): """ Format the key provided for consistency. """ if key: return key if key[-1] == "/" else key + "/" return "/"
8b5e41bb76c524ec8c45a22ad0dae84c84ed530b
704,350
from typing import Dict def _define_problem_with_groups(problem: Dict) -> Dict: """ Checks if the user defined the 'groups' key in the problem dictionary. If not, makes the 'groups' key equal to the variables names. In other words, the number of groups will be equal to the number of variables, which is equivalent to no groups. Parameters ---------- problem : dict The problem definition Returns ------- problem : dict The problem definition with the 'groups' key, even if the user doesn't define it """ # Checks if there isn't a key 'groups' or if it exists and is set to 'None' if 'groups' not in problem or not problem['groups']: problem['groups'] = problem['names'] elif len(problem['groups']) != problem['num_vars']: raise ValueError("Number of entries in \'groups\' should be the same " "as in \'names\'") return problem
ab29954f3349509a9153219d040feb8fa3125ec7
704,351
def gaspari_cohn_mid(z,c): """ Gaspari-Cohn correlation function for middle distances (between c and 2*c) Arguments: - z: Points to be evaluated - c: Cutoff value """ return 1./12*(z/c)**5 - 0.5*(z/c)**4 + 5./8*(z/c)**3 \ + 5./3*(z/c)**2 - 5*z/c - 2./3*c/z + 4
0852e84c1ce10856d69420fcc585054488591e73
704,352
def send(channel, apdu: list) -> bytes: """ Send APDU to the channel and return the data if there are no errors. """ data, sw1, sw2 = channel.transmit(apdu) # success if [sw1, sw2] == [0x90, 0x00]: return bytes(data) # signals that there is more data to read elif sw1 == 0x61: # print("[=] More data to read:", sw2) return send(channel, [0x00, 0xC0, 0x00, 0x00, sw2]) # GET RESPONSE of sw2 bytes elif sw1 == 0x6C: # print("[=] Resending with Le:", sw2) return send(channel, apdu[0:4] + [sw2]) # resend APDU with Le = sw2 # probably error condition else: print( "Error: %02x %02x, sending APDU: %s" % (sw1, sw2, " ".join(["{:02x}".format(x) for x in apdu]).upper()) ) channel.disconnect() exit(1)
bb3a1e52b6fdb5480b23f0646e768a7f90500acd
704,353
import sys import ast import configparser def __parse_options(config_file, section, options): """ Parse the section options :type config_file: ConfigParser object :param config_file: The config file object to use :type section: str :param section: Which section to read in the configuration file :type options: list of dicts :param options: A list of options to parse. Example list:: [{ 'key': 'aws_access_key_id', 'option': 'aws-access-key-id', 'required': False, 'type': str }] :returns: dict """ configuration = {} for option in options: try: if option.get('type') == 'str': configuration[option.get('key')] = \ config_file.get(section, option.get('option')) elif option.get('type') == 'int': try: configuration[option.get('key')] = \ config_file.getint(section, option.get('option')) except ValueError: print('Error: Expected an integer value for {0}'.format( option.get('option'))) sys.exit(1) elif option.get('type') == 'float': try: configuration[option.get('key')] = \ config_file.getfloat(section, option.get('option')) except ValueError: print('Error: Expected an float value for {0}'.format( option.get('option'))) sys.exit(1) elif option.get('type') == 'bool': try: configuration[option.get('key')] = \ config_file.getboolean(section, option.get('option')) except ValueError: print('Error: Expected an boolean value for {0}'.format( option.get('option'))) sys.exit(1) elif option.get('type') == 'dict': configuration[option.get('key')] = \ ast.literal_eval( config_file.get(section, option.get('option'))) else: configuration[option.get('key')] = \ config_file.get(section, option.get('option')) except configparser.NoOptionError: if option.get('required'): print('Missing [{0}] option "{1}" in configuration'.format( section, option.get('option'))) sys.exit(1) return configuration
6a2813a336aee3e1696caeb148aaac98c7dd6621
704,354
import math def DrawTextBar(value, max_value, max_width=53): """Return a simple ASCII bar graph, making sure it fits within max_width. Args: value: integer or float representing the value of this bar. max_value: integer or float representing the largest bar. max_width: How many characters this graph can use (int) Returns: string """ hash_width = max_value / max_width return int(math.ceil(value/hash_width)) * '#'
7f4b267527317cbceddadc9f7a0307f8ec430bb4
704,355
def _FindBinmanNode(dtb): """Find the 'binman' node in the device tree Args: dtb: Fdt object to scan Returns: Node object of /binman node, or None if not found """ for node in dtb.GetRoot().subnodes: if node.name == 'binman': return node return None
bf924d173a1adf81c1705ad1ea1fae490567a317
704,356
def make_list_accos(): """Return the acco numbers as list Returns: list: List with acco numbers """ list_saharas= list(range(1,23)) list_kalaharis =list(range (637,656)) list_balis = list(range (621,627)) list_waikikis = list(range(627,637)) list_serengeti = list(range(659,668)) return list_saharas + list_kalaharis+list_balis+list_waikikis+list_serengeti
9f2ac7aa4f78588013160f94374e602832b61771
704,357
import os import re def find_files(directory='.', pattern='.*', recursive=True): """Search recursively for files matching a pattern""" if recursive: return (os.path.join(directory, filename) for directory, subdirectories, filenames in os.walk(directory) for filename in filenames if re.match(pattern, filename)) else: return (os.path.join(directory, filename) for filename in os.listdir(directory) if re.match(pattern, filename))
a725a30df0783badd90357e5ce917dd37cf99426
704,358
def _host_is_same(host1: str, host2: str) -> bool: """Check if host1 and host2 are the same.""" return host1.split(":")[0] == host2.split(":")[0]
0bd9393786801d0f69d4982fc9f8edce378e9656
704,359
def get_filter_type_choices(): """ Get a tuple of filter types :return: tuple with filter types """ return ('', 'Select one'), ('Filter Types', [('storlet', 'Storlet'), ('native', 'Native')])
21f4173b1aafa35b4c877d6f844349c2907932a8
704,360
import math def round_half_up(n: float, decimals: float = 0) -> float: """This function rounds to the nearest integer number (e.g 2.4 becomes 2.0 and 2.6 becomes 3); in case of tie, it rounds up (e.g. 1.5 becomes 2.0 and not 1.0) Args: n (float): number to round decimals (int): number of decimal figures that we want to keep; defaults to zero Returns: rounded_number (float): input number rounded with the desired decimals """ multiplier = 10 ** decimals rounded_number = math.floor(n * multiplier + 0.5) / multiplier return rounded_number
e0aab5cba456b4ffe6fab11a21b97fe4e17b045a
704,362
from typing import Set def _possible_edges(n1: Set, n2: Set, directed: bool, self_loops: bool = False): """Compute the number of possible edges between two sets.""" a = n1.intersection(n2) e = (len(n1) - len(a)) * (len(n2) - len(a)) if directed: e *= 2 if self_loops: e += len(n1) + len(n2) - len(a) return e
4cf21d9521c3d071d7d1376bd917f2ec39435108
704,363
import argparse def get_raygen_argparser(): """ Get the command line input/output arguments passed in to `raygen`. """ parser = argparse.ArgumentParser( description='A simple static site generator, for those who want to fully the generation of blog.' ) parser.add_argument( '--server', help='run the server.', action="store_true" ) parser.add_argument( '-p', '--port', type=int, default=8080, help='Port number to serve files on.' ) return parser
da3993c1d98be1a3ecf5cec2942b4cda5edb3a8d
704,364
def default_category_orders() -> dict: """Returns the default dictionary of category orders""" day_order = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] weekend_order = ["Weekday", "Weekend"] season_order = ["Spring", "Summer", "Autumn", "Winter"] month_order = [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] category_orders = { "dayofweek": day_order, "weekend": weekend_order, "season": season_order, "month": month_order, } return category_orders
4110287bc30445f27c7c3d0c38cb662d769a5217
704,365
import re def is_guid(techfin_tenant): """Validate guid arg Args: tenant (str): techfin tenant id Returns: bool: true if is valid guid value """ c = re.compile('[0-9a-f]{8}-[0-9a-f]{4}-[1-5][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}', re.I) res = c.match(techfin_tenant) return res
7242f0da279375ab5873670ffef1fd4aa8749546
704,366
def shell_short(unordered, ordered): """ Startig at the bottom of the stack: 1 - If the name is in the correct position move to the next 2 - If it is not in the position remove it, move all other names one positions down and got to 1 sort all the removed positions, these names are the result """ unordered = unordered[::-1] ordered = ordered[::-1] names = {} for i, name in enumerate(ordered): names[name] = i # Stack using id instead of names stack = [names[n] for n in unordered] # Extract numbers that need reorderin reorder = [] for i in range(len(stack)): if stack[i] != i-len(reorder): reorder.append(stack[i]) return [ordered[n] for n in sorted(reorder)]
df57eb0bee03159ac6b698bf0377efec48355e76
704,367
def __standard_cand_fun(candidates): """ Convert candidates from the forms accepted by :py:fun:`recommend` into a standard form, a function that takes a user and returns a candidate list. """ if isinstance(candidates, dict): return candidates.get elif candidates is None: return lambda u: None else: return candidates
ad206802bfbcd0ec8f4601ebc043f8d468709c75
704,368
def dBrickId(brickId): """Return box id if valid, raise an exception in other case""" if brickId >= 0 and brickId <= 15: return brickId else: raise ValueError( '{} is not a valid Brick Id, Brick Id must be between 0-15'.format( brickId))
10e0f27f179dcd54c5cc4967ea960b77a4c5a924
704,370
import hashlib def hash(text, digest_alg = 'md5'): """ Generates hash with the given text using the specified digest hashing algorithm """ if not isinstance(digest_alg,str): h = digest_alg(text) else: h = hashlib.new(digest_alg) h.update(text) return h.hexdigest()
386268086a55b8e622c00b407cabd3207bb94ffb
704,371
def merge_params(params, config): """Merge CLI params with configuration file params. Configuration params will overwrite the CLI params. """ return {**params, **config}
a1dc002a900968e6cf7c5ba401519759e6ef485e
704,372
def init_rate(): """ This rate indicates the recorded positions' intervals. """ rate = float(0.1) # (Hz) return rate
e6e9c6439fe4288c24be18bb098f1844aed9fc64
704,373
def get_gamma(y1, y2, gamma1, gamma2): """一般部位及び大部分がガラスで構成されていないドア等の開口部における日除けの効果係数 (-) Args: y1(float): 日除け下端から一般部及び大部分がガラスで構成されていないドア等の開口部の上端までの垂直方向距離 (mm) y2(float): 一般部及び大部分がガラスで構成されていないドア等の開口部の高さ寸法 (mm) gamma1(float): データ「日除けの効果係数」より算出した値 gamma2(float): データ「日除けの効果係数」より算出した値 Returns: float: 一般部位及び大部分がガラスで構成されていないドア等の開口部における日除けの効果係数 """ gamma = (gamma2 * (y1 + y2) - gamma1 * y1) / y2 return gamma
6503a957bc7d5daee1926aaa23694b4550733f6d
704,374
def tasks(tmpdir): """ Set up a project with some tasks that we can test displaying """ task_l = [ "", " ^ this is the first task (released)", " and it has a second line", " > this is the second task (committed)", " . this is the third task (changed, not yet committed)", " - this is the fourth task (not yet made)", " and this one has a second line also", " + fifth task -- completed", " < sixth task -- moved elsewhere", " x seventh task -- abandoned", "", ] # project dir prjdir = tmpdir.join("myproj") # .project file prjdir.join(".project").ensure() # DODO file with content dodo = prjdir.join("DODO") dodo.write("\n".join(task_l) + "\n") data = { 'tmpdir': tmpdir, 'prj': prjdir, 'dodo': dodo, } return data
64104bde2aab55021cf0d49fbb1d47670d0e4e0d
704,376
import os def get_input_source_directory(config): """ Given a configuration object, returns the directory of the input file(s). """ options = config.commandline if options.multilocus: # multilocus dataset: assume directory is given as input source return os.path.abspath(options.input) else: # single locus dataset: return directory nanme return os.path.dirname(os.path.abspath(options.input))
28f1b7d90ba45c812a36e8d16dde4813d5b4090d
704,377
def singer_map(pop, rate): """ Define the equation for the singer map. Arguments --------- pop: float current population value at time t rate: float growth rate parameter values Returns ------- float scalar result of singer map at time t+1 """ return rate * (7.86 * pop - 23.31 * pop ** 2 + 28.75 * pop ** 3 - 13.3 * pop ** 4)
84aba1d96304b67fba1b4a0e7a909e23121a3d6b
704,378
import json def format_rpc_response(data, exception=None): """ Formats a response from a RPC Manager. It provides the data and/or a serialized exception so it can be re-created by the caller. :param Any data: A JSON Serializable object. :param Exception exception: An Exception object :return str: JSON Response. """ exception_data = None if exception: args = exception.__getargs__() if hasattr(exception, "__getargs__") else exception.args kwargs = exception.__getkwargs__() if hasattr(exception, "__getkwargs__") else {} if kwargs is None: kwargs = {} try: module = exception.__module__ except: module = None exception_data = { 'exception': type(exception).__name__, 'message': str(exception), 'args': args, "kwargs": kwargs, 'module': module, } return json.dumps({ 'data': data, 'exception': exception_data })
c900e2512fd486c91789ab4312883061553a2fb1
704,379
import logging def select_best_haplotype_match(all_matches): """Returns the best HaplotypeMatch among all_matches. The best matching HaplotypeMatch is the one with the lowest match_metrics score. Args: all_matches: iterable[HaplotypeMatch]. An iterable of HaplotypeMatch objects we want to select the best match from. Returns: The best matching HaplotypeMatch object. """ sorted_matches = sorted(all_matches, key=lambda x: x.match_metrics) best = sorted_matches[0] equivalents = [ f for f in all_matches if f.match_metrics == best.match_metrics ] # redacted if len(equivalents) > 1: for i, f in enumerate(equivalents): extra_info = 'best' if i == 0 else i logging.warning('Equivalent match to best: %s [%s]', f, extra_info) return equivalents[0]
0e40fef830055e5cd297b0f00672d8b0caedc62e
704,380
def get_tokens_list_from_column_list(column_name_list: list, delimiter: str = '!!') -> list: """Function that returns list of tokens present in the list of column names. Args: column_name_list: The list of column name strings. delimiter: delimiter seperating tokens within single column name string. Returns: A list of tokens present in the list of column names. """ tokens = [] for column_name in column_name_list: for tok in column_name.split(delimiter): if tok not in tokens: tokens.append(tok) return tokens
66e2c3c280188d2cc3e8df35e0112095f3244918
704,381
def _dens0(S,T): """Density of seawater at zero pressure""" # --- Define constants --- a0 = 999.842594 a1 = 6.793952e-2 a2 = -9.095290e-3 a3 = 1.001685e-4 a4 = -1.120083e-6 a5 = 6.536332e-9 b0 = 8.24493e-1 b1 = -4.0899e-3 b2 = 7.6438e-5 b3 = -8.2467e-7 b4 = 5.3875e-9 c0 = -5.72466e-3 c1 = 1.0227e-4 c2 = -1.6546e-6 d0 = 4.8314e-4 # --- Computations --- # Density of pure water SMOW = a0 + (a1 + (a2 + (a3 + (a4 + a5*T)*T)*T)*T)*T # More temperature polynomials RB = b0 + (b1 + (b2 + (b3 + b4*T)*T)*T)*T RC = c0 + (c1 + c2*T)*T return SMOW + RB*S + RC*(S**1.5) + d0*S*S
a0df8ba385c18fbb7f51088cac2ec842bdef308f
704,382
def validate_state(state): """ State validation rule. Property: LifecyclePolicy.State """ VALID_STATES = ("ENABLED", "DISABLED") if state not in VALID_STATES: raise ValueError("State must be one of : %s" % ", ".join(VALID_STATES)) return state
5dcc3d2c8bf9242d8090aef0933f26d2ffa1821d
704,384
def load_variable_config(project_config): """Extract the variable configuration out of the project configuration. Args: project_config (dict-like): Project configuration. Returns: dict: Variable dictionary with name: [levels] (single level will have a list containing None.) """ # Extract the different rank variables v2ds = project_config['variables_2d'] v3ds = project_config['variables_3d'] # Create a dictionary of variables to process keyed to an empty list of levels for 2D variables = {v2d: [None] for v2d in v2ds} # Add in the 3D variables, with levels this time for v3d, levels in v3ds.items(): variables[v3d] = levels return variables
37caccfa5f9c3a724e61233610c3e4a3e9938695
704,385
import torch def cross_op_torch(r): """ Return the cross operator as a matrix i.e. for input vector r \in \R^3 output rX s.t. rX.dot(v) = np.cross(r, v) where rX \in \R^{3 X 3} """ if len(r.shape) > 1: rX = torch.zeros(r.shape[0], 3, 3).to(r) rX[..., 0, 1] = -r[..., 2] rX[..., 0, 2] = r[..., 1] rX[..., 1, 2] = -r[..., 0] rX = rX - rX.transpose(-1, -2) else: rX = torch.zeros(3, 3).to(r) rX[0, 1] = -r[2] rX[0, 2] = r[1] rX[1, 2] = -r[0] rX = rX - rX.T return rX
04f926f00f6ed58bee3feae80ef573f5a8822d20
704,386
def __all_paths_between_acceptance_states(Dfa): """Generates for each front acceptance state a copy of the complete graph which can be reached inside 'Dfa' starting from it until the next acceptance state. RETURNS: List of DFAs containing a tail for each found acceptance states. """ def _get_branch(Dfa, acceptance_si): result = Dfa.clone_subset(acceptance_si, Dfa.get_successors(acceptance_si)) # Clone acceptance state as init state, which does not accept. # Take over all transitions of the acceptance state. new_state = result.get_init_state().clone() new_state.set_acceptance(False) result.set_new_init_state(new_state) # Original acceptance only remains in place, if it is the target of a # transition. if not result.has_transition_to(acceptance_si): result.delete_state(acceptance_si) return result return [ _get_branch(Dfa, acceptance_si) for acceptance_si in Dfa.acceptance_state_index_list() ]
136ea0a999bff3b930ad4e05107042da36262d13
704,387
def hello(): """ An op definition. This example op outputs a single string. For more hints about writing Dagster ops, see our documentation overview on Ops: https://docs.dagster.io/concepts/ops-jobs-graphs/ops """ return "Hello, Dagster!"
cf701323e751122823f22bad864f7b1f0d700a97
704,388
def mentionable(): """ :return: boolean True, if there is something mentionable to notify about False, if not """ # need to be implemented return False
d1dac607efb512771677aa7e8dd42a2c21251833
704,389
import os import fnmatch def findFileTypes(wpath, type ='*.txt', verbose=False): """ to find all the files in wpath and below with file names matching fname """ alist=sorted(os.walk(wpath)) if verbose: print(' getting file list') listPath = [] listFile = [] fileName = [] for (dirpath,dirnames,filenames) in alist: if len(dirnames) == 0: for f in filenames: if fnmatch.fnmatch(f, type): file=os.path.join(dirpath,f) if os.path.isfile(file): listFile.append(file) listPath.append(dirpath) fileName.append(f) else: for f in filenames: if fnmatch.fnmatch(f, type): file=os.path.join(dirpath,f) if os.path.isfile(file): listFile.append(file) listPath.append(dirpath) fileName.append(f) if verbose: nfiles=len(listFile) print((' nfiles = %i'%(nfiles))) return {'fullName':listFile, 'fileName':fileName}
b424d8bb93bfa5540847a308de9259c5ba14a048
704,390
import argparse def _parse_args(argv=None): """Parse command-line args.""" def _positive_int(value): """Define a positive integer ArgumentParser type.""" value = int(value) if value <= 0: raise argparse.ArgumentTypeError( "Value must be positive, {} was passed.".format(value)) return value parser = argparse.ArgumentParser() parser.add_argument( "--file_pattern", required=True, help="File pattern for amazon qa files on Google cloud storage.", ) parser.add_argument( "--output_dir", required=True, help="Output directory to write the dataset on Google cloud storage.", ) parser.add_argument( "--max_words", type=_positive_int, default=59, help="Maximum number of words a Q or A can have to be included.", ) parser.add_argument( "--min_words", type=_positive_int, default=4, help="Minimum number of words a Q or A must have to be included.", ) parser.add_argument( "--train_split", default=0.9, type=float, help="The proportion of data to put in the training set.", ) parser.add_argument( "--num_shards_test", default=10, type=_positive_int, help="The number of shards for the test set.", ) parser.add_argument( "--num_shards_train", default=100, type=_positive_int, help="The number of shards for the train set.", ) return parser.parse_known_args(argv)
abb5d64089e200592f057ee1356d135328196dab
704,391
def get_worker_class(global_conf, message): """Returns class of worker needed to do message's work""" worker_type = 'worker-%s' % (message.body['worker_type']) if worker_type not in global_conf: raise RuntimeError("Invalid worker type '%s'" % (worker_type)) conf = global_conf[worker_type] import_target, class_name = conf['class'].rsplit('.', 1) module = __import__(import_target, fromlist=[import_target]) return getattr(module, class_name)
3f975caf97827fcfaf7d74141ea651c302e4781c
704,392
def convertVoltage(raw_voltage): """ Ground is 1 1.8 is 4095 """ converted_voltage = (raw_voltage/4095)*1.8 return "%.3f" % converted_voltage
4f404ff02449a231521f80a2b9a4ae443880e1b3
704,393
from typing import Callable from typing import Optional from typing import Union from typing import Tuple from typing import Iterable def solve_nr( f: Callable[[float], float], df: Callable[[float], float], estimate: float, eps: Optional[float]=1.0e-6, max_num_iter=100, throw_if_failed_converge=True, return_vector=False) -> Union[Tuple[float, int], Iterable[float]]: """ Solves f(x) = 0 using Newton-Raphson method :param f: function of x to solve :param df: derivative of f(x) :param estimate: initial estimate :param eps: max absolute error; if None, will continue calculating until max_num_iter is reached :param max_num_iter: Max number of iterations :param throw_if_failed_converge: if True, will throw if fails to converge in max_num_iter (unless eps is None) :param return_vector: if true, returns vector of all iterated values :return: x, number of iterations; or vector of all iterations if return_vector is True """ if max_num_iter < 1: raise ValueError('max_num_iter must be at least 1') x = estimate xv = [] if return_vector else None n = 0 for n in range(1, max_num_iter + 1): if xv is not None: xv.append(x) residue = f(x) / df(x) x -= residue if eps and (abs(residue) < eps): break else: if throw_if_failed_converge and eps: raise RuntimeError('Failed to converge in %i iterations' % n) if xv is not None: return xv else: return x, n
c6ab8b6bb27f8b9be9c31fe7cbd58300637d9fef
704,394
import json def get_data(source): """fungsi ambil data pegawai, jadwal, judul, liburan""" with open(source, 'r') as srce: return json.load(srce)
964efdabcbd21486985bbc9189c5d07dbc800dd6
704,395
def merge_config_dictionaries(*dicts): """ Merges n dictionaries of configuration data :param list<dicts>: :return dict: """ res_dict = {} if isinstance(dicts, list): if len(dicts) == 1 and isinstance(dicts[0], dict): return dicts[0] else: for dictionary in dicts: if isinstance(dictionary, dict): res_dict.update(dictionary) return res_dict
c9711e897d5c7caa47a21f3e901025c91862327f
704,396
import calendar import pytz def epoch(dt): """ Returns the epoch timestamp of a timezone-aware datetime object. """ return calendar.timegm(dt.astimezone(pytz.utc).timetuple())
027ea75bf75b6bb6b4da14b2bed1afc363a9121a
704,397
def set_produce_compilation_cache(enabled: bool) -> dict: """Forces compilation cache to be generated for every subresource script. Parameters ---------- enabled: bool **Experimental** """ return {"method": "Page.setProduceCompilationCache", "params": {"enabled": enabled}}
3d2dd7fa6c8d04713ace26c666d9b00407a5a586
704,398
def raw_input(prompt=None): # real signature unknown; restored from __doc__ """ raw_input([prompt]) -> string Read a string from standard input. The trailing newline is stripped. If the user hits EOF (Unix: Ctl-D, Windows: Ctl-Z+Return), raise EOFError. On Unix, GNU readline is used if enabled. The prompt string, if given, is printed without a trailing newline before reading. """ return ""
ad09db4416e3705a34e4fc88c7df569693608c80
704,400
import zlib import os def get_checksum32(oqparam): """ Build an unsigned 32 bit integer from the input files of the calculation """ # NB: using adler32 & 0xffffffff is the documented way to get a checksum # which is the same between Python 2 and Python 3 checksum = 0 for key in sorted(oqparam.inputs): fname = oqparam.inputs[key] if not fname: continue elif key == 'source': # list of fnames and/or strings for f in fname: data = open(f, 'rb').read() checksum = zlib.adler32(data, checksum) & 0xffffffff elif os.path.exists(fname): data = open(fname, 'rb').read() checksum = zlib.adler32(data, checksum) & 0xffffffff else: raise ValueError('%s does not exist or is not a file' % fname) return checksum
c7aaf8d6aeefaa4b3f97dcac535c959b4ba06579
704,401
import asyncio def create_future(*, loop): """ Helper for `create a new future`_ with backward compatibility for Python 3.4 .. _create a new future: https://goo.gl/YrzGQ6 """ try: return loop.create_future() except AttributeError: return asyncio.Future(loop=loop)
1708ac124c46fa81b7ff3ca1d7b685e4835cd53a
704,402
def clean_column(df, column): """ Function to return clean column text. Pass each cell to a cleaner and return the cleaned text for that specific column :params: -------- :df dataframe(): containing the column :column str(): in which column the text is located :returns: --------- :list(): of str containing the cleaned text """ # Remove all the NaN values and transform it into a list return list(df[column].dropna().values)
095a854c452f87b9a960eabb81ace5c18814f266
704,404
def assign_number_to_top_categories(paths): """Assign numbers to the top categories returned by split_path for consistency""" cats = {} def assign_number(path): name = path[0][1] n = cats.setdefault(name, len(cats) + 1) return [(n, name)] + path[1:] return map(assign_number, paths)
0027986bd9097819b76ef9358f3fb0b491456b48
704,405
def sort_keywords(scores): """ :param scores: A dictionary of lemmas and their corresponding scores, assigned by the pagerank algorithm :return: The same dictionary, sorted in descending order """ sorted_lemmas = [lemma for lemma in sorted(scores, key=scores.get, reverse=True)] return sorted_lemmas
ef4349976e755fb5d0d95b0ee98c5184fbf055f2
704,406
def file_readlines(fn): """Open file with name `fn`, return open(fn).readlines().""" fd = open(fn, 'r') lst = fd.readlines() fd.close() return lst
2594e6763b566f4e83844f2f4457bcc8ea3663a5
704,407
from datetime import datetime def JIRATOSQLdatetimeformat(datetime_in): """ removes certain characters from fields returned by Jira requests, in order to facilitate insertion into SQL tables would need to be written differently for a production application, to handle escape characters etc. more intelligently parameters: str_in (string): the string from Jira that needs characters removed returns: string: the string with characters removed """ datetime_out = datetime.strptime(datetime_in, "%Y-%m-%dT%H:%M:%S.%f%z").strftime("%Y-%m-%d %H:%M:%S") return datetime_out
d75df0f925e4a3ed104ca98f8ef4ea0ae1d0557b
704,408
import json def apply_lookup(dataframe, group_type): """ converts df[group_type] from ids to names dataframe : df group_type : string returns : df """ print("applying look up") print("working with {}".format(group_type)) df = dataframe.copy(deep=True) df[group_type] = ( df[group_type].astype("str", copy=False).dropna(inplace=False) ) # some columns were mixed type # load the lookup table path_to_save = "./data/lookups/{}_lookup.json".format(group_type) with open(path_to_save) as f: lookup = json.load(f) lookup["nan"] = "None" # explode by group_type df[group_type] = df[group_type].map(lambda x: x.split(",")) df_exp = df.explode(group_type) # apply lookup df_exp[group_type] = df_exp[group_type].map(lambda x: lookup[x]) # implode df_imp = ( df_exp[["bgg_id", group_type]] .groupby("bgg_id") .agg(lambda x: ",".join(x)) .reset_index() ) # join back df[group_type] = df_imp[group_type] print("finished with {}".format(group_type)) print("finished applying look up") return df
a41749555f106b4477414cc837f1c0cd56128acc
704,409
def unescape(value, escape = "\\"): """ Unescapes the provided string value using the provided escape character as the reference for the unescape operation. This is considered to be a very expensive operation and so it should be used carefully. :type value: String :param value: The string value that is going to be unescape. :rtype: String :return: The final unescaped value. """ result = [] iterator = iter(value) for char in iterator: if char == escape: try: result.append(next(iterator)) except StopIteration: result.append(escape) else: result.append(char) return "".join(result)
28aaebbfc5ea0022ce519a3ef91988504ea345f4
704,410
def __num_elems(shape): """Returns the number of elements in the given shape Args: shape: TensorShape Return: tot_elems: int """ tot_elems = 1 for s in shape: tot_elems *= int(s) return tot_elems
fd4f72394b22c98e6bedb545d7d11b8bfae11add
704,411
def adoptionSearch(cursor, search): # search = data_params['search'] """Return the result based on Mo's search input""" lower_search = search.lower() query = f"SELECT DISTINCT Adopter.email, AdoptionApplication.application_num, AdoptionApplication.date, " \ f"AdoptionApplication.co_applicant_first_name, AdoptionApplication.co_applicant_last_name, " \ f"Adopter.first_name, Adopter.last_name, Adopter.state, Adopter.city, Adopter.street, Adopter.zip_code, Adopter.cell_phone " \ f"FROM AdoptionApplication LEFT JOIN Adopter ON AdoptionApplication.adopter = Adopter.email " \ f"WHERE AdoptionApplication.STATUS = 'approved' AND (LOWER( Adopter.last_name ) LIKE '%{lower_search}%' OR LOWER( AdoptionApplication.co_applicant_last_name ) LIKE '%{lower_search}%');" cursor.execute(query) query_result = cursor.fetchall() return query_result
22388799f65bef447c80c3da5c8f656705cba27e
704,412
import sys def _read(f): """Read a file's contents, autodetecting whether the arg is a file or filename, and treating '-' as as indication to read from stdin.""" if type(f) is str: if f == "-": return sys.stdin.read() else: with open(f, "r") as ff: return ff.read() else: return f.read()
51966b1a28d4c3d9b0bd037a8ffe037e901f58e5
704,413
def getHandValue(cards): """Returns value of cards.""" value = 0 numberOfAces = 0 for card in cards: rank = card[0] if rank == 'A': numberOfAces += 1 elif rank in ('K','Q','J'): value += 10 else: value += int(rank) value += numberOfAces for i in range(numberOfAces): if value + 10 <= 21: value += 10 return value
b40d45db627add8376ff9135229688114f81be83
704,414
def get_greppable(string): """Simply produces a string that -- when grepped -- will omit listing the grep process in a grep listing. """ return string.replace(string[0], '[%s]' % string[0], 1)
65be4daa5650605ca3d95720d74a7a1137b5f4d7
704,416
def players_player_id_get(player_id): # noqa: E501 """Retrieve a single player&#x27;s record Returns a player record # noqa: E501 :param player_id: ID of player to return :type player_id: str :rtype: Player """ return 'do some magic!'
d9c2c92dbba3d139b2b5188e8722a0add7668393
704,417
from typing import Callable from typing import Sequence from typing import Hashable from typing import List def _stemmatological_costs_factory( max_del_len: int = 5, frag_start: float = 10.0, frag_end: float = 10.0 ) -> Callable: """ Define and return a function for computing candidate costs for a "stemmatological" distance matrix. :param max_del_len: The maximum length of deletion block. :param frag_start: :param frag_end: :return: """ def _stemmatological_costs( seq_x: Sequence[Hashable], seq_y: Sequence[Hashable], d: List[List[float]], i: int, j: int, ): """ Computes candidate costs for an entry of a "stemmatological" distance matrix. This internal function will compute the candidate costs for an entry (i, j) in terms of the Levenshtein distance matrix (seq_a, seq_b), each cost corresponding to one of the available edit operations. :param seq_x: The first sequence to be compared. :param seq_y: The second sequence to be compared. :param d: The "starting matrix" for the cost computation. :param i: The index of `seq_x` to be considered. :param j: The index of `seq_y` to be considered. :return: A tuple with the costs for deletion, insertion, and substitution. """ substitution_cost = 0 if seq_x[i - 1] == seq_y[j - 1] else 1 costs = [ d[i][j - 1] + 1, d[i - 1][j - 1] + substitution_cost, ] m = len(seq_x) lower = round(m * frag_start / 100.0) upper = round(m * (100 - frag_end) / 100.0) # Delete consecutive block of n for n in range(1, min(max_del_len, i)): # Discount bulk deletion near ends if i <= lower or i >= upper: costs.append(d[i - n][j] + 0.5) else: costs.append(d[i - n][j] + 1) return costs return _stemmatological_costs
2be18ea378fb70b7efc511d3d5572ef8b7638a9c
704,418
def build_info_str(username: str, name_len: int, remaining_chip: int, action: str, chip: int, is_waiting: bool, countdown: int) -> str: """Build a string to explain action of a user Args: username (str): user name name_len (int): characters to show the name remaining_chip (int): remaining chip of the user action (str): the action being taken, should be one of the following: check, bet, raise, all-in, fold The differences of `bet` and `raise` are that `bet` is the first put-chip action, while `raise` is another put-chip action against prior `bet` chip (int): the chip of an action, only meaningful when `action` is `bet`, `raise` or `all-in` is_waiting (bool): a flag that indicate if this user is in execution position countdown (int): the countdown of waiting, only meaningful when `is_waiting` is `True` Return: info_str (str): a string to explain action of a user """ info = f"{username:{name_len}} (${str(remaining_chip) + ')':<5} {action}" if action in ("bet", "raise", "all-in"): info += f" ${chip} " if is_waiting: info += f"{countdown}s" info = "-> " + info else: info = " " + info return info
1ecbb6c33d54a55500d51ce09cf9740ac28def96
704,419
import os def dataInput(fileName): """Reads a line of data from a file and returns either a string for when there is only a single line of data or a list when there is more than one line. """ data = [] if os.path.isfile(fileName): file = open(fileName, "r") data = file.readlines() else: # To make configuration easier, it creates emtpy files # If it cannot find them. file = open(fileName, "w") file.write(os.linesep) file.close() # Turn the raw data into something usable. if len(data) < 1: result = "" elif len(data) == 1: result = data[0] else: result = [] for line in data: result.append(line.strip(os.linesep)) return result
421f0a3661463d89d6f5edf001dcb798d78711a6
704,420
def get_similarity_score(dict1, dict2, dissimilarity = False): """ The keys of dict1 and dict2 are all lowercase, you will NOT need to worry about case sensitivity. Args: dict1: frequency dictionary of words or n-grams for one text dict2: frequency dictionary of words or n-grams for another text dissimilarity: Boolean, optional parameter. Default to False. If this is True, return the dissimilarity score, 100*(DIFF/ALL), instead. Returns: int, a percentage between 0 and 100, inclusive representing how similar the texts are to each other The difference in text frequencies = DIFF sums words from these three scenarios: * If a word or n-gram occurs in dict1 and dict2 then get the difference in frequencies * If a word or n-gram occurs only in dict1 then take the frequency from dict1 * If a word or n-gram occurs only in dict2 then take the frequency from dict2 The total frequencies = ALL is calculated by summing all frequencies in both dict1 and dict2. Return 100*(1-(DIFF/ALL)) rounded to the nearest whole number if dissimilarity is False, otherwise returns 100*(DIFF/ALL) """ DIFF = 0 for i in dict1: x = False #Boolean used to not add repeated frequencies as it will be seen later for j in dict2: if i == j: #use of == instead of i in j as for example word "meme" could #be in "memes" and would therefore cause a problem DIFF += abs(dict1[i] - dict2[j]) #if the word/n-gram appears in both dictionnaires then #the absolute value of the difference between the frequencies #in each dictionnary is added to DIFF x = True if x == False: #Boolean used so that frequencies of a word/n-gram are not added again #and again to DIFF DIFF += dict1[i] for j in dict2: x = False #same use of boolean for same reasons as previou for loop for i in dict1: if i == j: #use of == due to the same reason x = True #this time the absolute value of the difference between the #frequencies doesn't have to be added as it already has been if x == False: DIFF += dict2[j] ALL = 0 for i in dict1: ALL += dict1[i] #all the frequencies of the first dictionnary are added to ALL for j in dict2: ALL += dict2[j] #same occurs as in the previous loop but for the second dictionnary #Depending on the input of dissimilarity this will occur if dissimilarity == False: result = round(100*(1 - (DIFF/ALL))) #similarity between the dictionnaries of word/n-grams is the result else: result = round(100*(DIFF/ALL)) #dissimilarity between the dictionnaries of word/n-grams is the result return result
31e8602d6ef098a58a8eaf497badebf2e19288eb
704,421
def predict_fn(input_data, model): """Predict using input and model""" return model(input_data)
00f7bf0bd71f70833f8f77b16ffa62559747e915
704,422
def get_unnormalized_text(words): """ Returns the (unnormalized) text composed from the given words.""" return "".join([x.unnormalized_with_whitespaces for x in words])
162854d917ee4d49c3b2b824abc07697ac4f05ba
704,423
import json def get_ability_icons(champion, input_path): """ This function takes a champion and input path strings as input and returns a dictionary of png file paths with keys corresponding to the following abilities: Passive, Q, W, E, and R """ global ability_icon_paths ability_icon_paths = dict() # Rek'Sai appears to be the exception in naming conventions if champion == 'Reksai': champion = 'RekSai' # Read champ-specific json with open(f"{input_path}{champion}.json") as f: data = json.load(f) P_png = data['data'][champion]['passive']['image']['full'] Q_png = data['data'][champion]['spells'][0]['image']['full'] W_png = data['data'][champion]['spells'][1]['image']['full'] E_png = data['data'][champion]['spells'][2]['image']['full'] R_png = data['data'][champion]['spells'][3]['image']['full'] ability_icon_paths['Passive'] = f"data/dragontail-11.1.1/11.1.1/img/passive/{P_png}" ability_icon_paths['Q'] = f"data/dragontail-11.1.1/11.1.1/img/spell/{Q_png}" ability_icon_paths['W'] = f"data/dragontail-11.1.1/11.1.1/img/spell/{W_png}" ability_icon_paths['E'] = f"data/dragontail-11.1.1/11.1.1/img/spell/{E_png}" ability_icon_paths['R'] = f"data/dragontail-11.1.1/11.1.1/img/spell/{R_png}" return ability_icon_paths
e33c01bedcd8bf20959978df2bc2b33b934e2181
704,425
import requests import os def fetch_lightcurve_dr2(gaia_id, output_dir='../data/'): """ Fetch Gaia Lightcurve for a Gaia Source ID (of a variable star) from Gaia DR2 Data Link Returns path of csv file stored for given source Args: gaia_id (string): String. Gaia Source ID of the variable star you need to fetch the lightcurve from DR1 for [output_dir] (string): Optional. String. By default, the csv files for the lightcurves are stored in the subfolder data/. To change the default path, enter a new path for the folder to save the lightcurve Returns: String. Gives back the path/to/lightcurve/filename.csv where the lightcurve is stored. Returns empty string if no lightcurve is fetched. """ url='https://gea.esac.esa.int/data-server/data?ID=Gaia+DR2+'+gaia_id+'&RETRIEVAL_TYPE=EPOCH_PHOTOMETRY&FORMAT=CSV' save_path=output_dir+gaia_id+'_data_dr2.csv' read_data = requests.get(url, allow_redirects=True) if(len(read_data.content)==0): print('Could not fetch lightcurve from DR2 for Gaia Source ID '+gaia_id) return '' #assert len(read_data.content)!=0, 'Could not fetch lightcurve from DR2 for Gaia Source ID '+gaia_id if not os.path.exists(output_dir): os.makedirs(output_dir) open(save_path, 'wb').write(read_data.content) return save_path
18fb18ccb7cfcd2bbb8f826cbdf592ca59356ef9
704,426
def _l1_regularization(l1, model): """Computes the L1 regularization for the given model Args: l1 (float): L1 parameter model (:obj:`torch.nn.Module`): Model to use Returns: float: L1 loss (i.e. l1 * l1_norm(params)) """ l1_loss = sum(param.norm(1) for param in model.parameters()) return l1 * l1_loss
32826672a7de00f8a0412e2496e6ebfea213b502
704,427
def find_bands(bands, target_avg, target_range, min_shows): """ Searches dictionary of bands with band name as keys and competition scores as values for bands that are within the range of the target average and have performed the minimum number of shows. Returns a list of bands that meet the search criteria. Parameters: bands: Dictionary with band name as keys and scores as values. target_avg: Tuple containing the average to look for and the amount of scores to look at. target_range: Range to look away from the target average. min_shows: Minimum number of shows to be eligible. Returns: List of bands that meet the search criteria. >>> DCI = {'Blue Devils': [98.2, 97.1, 99.1, 97.3, 98.2], \ 'Blue Coats': [98, 96.5, 97.2, 93, 92.1, 92, 97.4], \ 'Carolina Crown': [75.7, 82.8, 86.1, 98.2], \ 'The Cadets': [96.1, 93.4, 81, 78, 57.9, 86, 71.2, 35.5], \ 'Mandarins': [89.3, 88.1, 85.6, 83.8, 79.1, 88.4, 75.7], \ 'Little Rocks':[42], \ 'Logan Colts':[98.2, 84.4, 69.2, 42, 84]} >>> find_bands(DCI, (0, 10), 30, 2) [] >>> find_bands(DCI, (90, 5), 5, 7) ['Mandarins'] >>> find_bands(DCI, (70, 8), 10, 5) ['The Cadets', 'Logan Colts'] >>> find_bands(DCI, (95, 3), 5, 4) ['Blue Devils', 'Blue Coats', 'The Cadets'] # My doctests >>> find_bands(DCI, (42, 10), 1, 1) ['Little Rocks'] >>> find_bands(DCI, (87, 10), 5, 5) ['Mandarins'] >>> DCI2 = {'UCSD': [100, 99, 100, 100, 100, 100], \ 'UCLA': [50, 49, 100, 100, 100], \ 'UCD': [90, 90, 87, 45, 79]} >>> find_bands(DCI2, (95, 3), 5, 4) ['UCSD'] >>> find_bands(DCI2, (75, 5), 10, 4) ['UCLA', 'UCD'] """ search_range = [target_avg[0] - target_range, target_avg[0] + target_range] lower_bound = search_range[0] upper_bound = search_range[1] noted_scores = target_avg[1] score_index = 1 in_range = lambda avg: (avg >= lower_bound and avg <= upper_bound) score_avg = lambda scores, kept_scores: sum(scores) / len(scores) \ if len(scores) <= kept_scores \ else sum(scores[0:kept_scores]) / kept_scores return list(map(lambda name: name[0], \ list(filter(lambda band: \ in_range(score_avg(band[score_index], noted_scores)), \ filter(lambda band: True if len(band[score_index]) >= min_shows \ else False, list(bands.items()))))))
1b2b93f0a1d4236ad62102205606eff8afb3802a
704,428
def get_named_targets(): """ Return a list of named target date ranges """ return ["std_train", "std_val", "std_test", "std_ens", "std_all", \ "std_future", "std_contest_fri", "std_contest", "std_contest_daily", "std_contest_eval", \ "std_contest_eval_daily", "std_paper", "std_paper_daily"]
23a15efff1facc5028e980d659ca6d2f61cdddf0
704,429
def get_data_colums(epoch): """Return the data columns of a given epoch :param epoch: given epoch in a numpy array, already readed from .csv """ ID = epoch[:,0]; RA = epoch[:,1]; RA_err = epoch[:,2]; Dec = epoch[:,3]; Dec_err = epoch[:,4]; Flux = epoch[:,5]; Flux_err = epoch[:,6]; if epoch.shape[1] > 7: Neighbr = epoch[:,7]; Nhbr1_d = epoch[:,8]; Nhbr2_d = epoch[:,9]; return ID, RA, RA_err, Dec, Dec_err, Flux, Flux_err, Neighbr, Nhbr1_d, Nhbr2_d ; else: return ID, RA, RA_err, Dec, Dec_err, Flux, Flux_err;
ba497f0aacf8356b80c8c433af05716b90519665
704,430
def bin_position(max_val): """returns position features using some symbols. Concatenate them at the end of sentences to represent sentence lengths in terms of one of the three buckets. """ symbol_map = {0: " `", 1: " _", 2: " @"} if max_val <= 3: return [symbol_map[i] for i in range(max_val)] first = max_val // 3 second = 2 * first return [" `"] * first + [" _"] * (second - first) + [" @"] * (max_val - second)
2c6caf100c07d56211ba8f8bfcef103dd623c6f5
704,431
import os def f_split_path(fpath, normpath=True): """ Splits path into a list of its component folders Args: normpath: call os.path.normpath to remove redundant '/' and up-level references like ".." """ if normpath: fpath = os.path.normpath(fpath) allparts = [] while 1: parts = os.path.split(fpath) if parts[0] == fpath: # sentinel for absolute paths allparts.insert(0, parts[0]) break elif parts[1] == fpath: # sentinel for relative paths allparts.insert(0, parts[1]) break else: fpath = parts[0] allparts.insert(0, parts[1]) return allparts
0a0fafe2263cb77727609053866f7c1b95fa12d0
704,432
def qbinomial(n, k, q = 2): """ Calculate q-binomial coefficient """ c = 1 for j in range(k): c *= q**n - q**j for j in range(k): c //= q**k - q**j return c
43c167aa506bd9ee6b87163d10da5b02e297e067
704,434
def _tiramisu_parameters(preset_model='tiramisu-67'): """Returns Tiramisu parameters based on the chosen model.""" if preset_model == 'tiramisu-56': parameters = { 'filters_first_conv': 48, 'pool': 5, 'growth_rate': 12, 'layers_per_block': 4 } elif preset_model == 'tiramisu-67': parameters = { 'filters_first_conv': 48, 'pool': 5, 'growth_rate': 16, 'layers_per_block': 5 } elif preset_model == 'tiramisu-103': parameters = { 'filters_first_conv': 48, 'pool': 5, 'growth_rate': 16, 'layers_per_block': [4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4] } else: raise ValueError(f'Tiramisu model {preset_model} not available.') return parameters
74e2dadf2a6af864b3f9dfec6241bf71833676f8
704,435
def bond_yield(price, face_value, years_to_maturity, coupon=0): """ """ return (face_value / price) ** (1 / years_to_maturity) - 1
4c4a90f0fb29564acdad05138ca17932da39eb61
704,436
from typing import Counter def classifyChord(chordPosition): """ :param chordPosition:所有音符的位置,所有音符都是在不同弦上,并且各位置的距离是限制在人类手掌范围内的。 例如:([6, 5], [5, 7], [4, 7], [3, 5], [2, 5]),表示6弦5品,5弦7品,4弦7品,3弦5品,2弦5品 :return:和弦类型,是一个列表,用来表示所有非空弦音,从低品到高品对应的个数。 例如:输入([6, 5], [5, 7], [4, 7], [3, 5], [2, 5]),返回[[5,3],[7,2]] 和弦分类决定了和弦的处理方式 """ frets = [] for item in chordPosition: if item[1] != 0: frets.append(item[1]) return Counter(frets).most_common()
1c9af3737f2e4ba2437a457e74f37fbbe1ff0406
704,438
def update_active_boxes(cur_boxes, active_boxes=None): """ Args: cur_boxes: active_boxes: Returns: """ if active_boxes is None: active_boxes = cur_boxes else: active_boxes[0] = min(active_boxes[0], cur_boxes[0]) active_boxes[1] = min(active_boxes[1], cur_boxes[1]) active_boxes[2] = max(active_boxes[2], cur_boxes[2]) active_boxes[3] = max(active_boxes[3], cur_boxes[3]) return active_boxes
dfa1c9b32b9af9c6c9a1fb321f907dad51f9cca0
704,439
import torch def ones(shape, dtype=None): """Wrapper of `torch.ones`. Parameters ---------- shape : tuple of ints Shape of output tensor. dtype : data-type, optional Data type of output tensor, by default None """ return torch.ones(shape, dtype=dtype)
a234936baa16c8efdc63e903d8455895ab7f2f0c
704,440
import random def rollDie(): """returns a random int between 1 and 6""" return random.choice([1, 2, 3, 4, 5, 6])
27a3d3586fe313d78a5aea6dab8d10c58e76df56
704,441