content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def _filter_out_disabled(d): """ Helper to remove Nones (actually any false-like type) from the scrubbers. This is needed so we can disable global scrubbers in a per-model basis. """ return {k: v for k, v in d.items() if v}
64a4577d6e5998e647ef82f126c50360388aba9a
704,219
def points(start, end): """ Bresenham's Line Drawing Algorithm in 2D """ l = [] x0, y0 = start x1, y1 = end dx = abs(x1 - x0) dy = abs(y1 - y0) if x0 < x1: sx = 1 else: sx = -1 if y0 < y1: sy = 1 else: sy = -1 err = dx - dy while True: l.append((x0, y0)) if x0 == x1 and y0 == y1: break e2 = 2 * err if e2 > -dy: # overshot in the y direction err = err - dy x0 = x0 + sx if e2 < dx: # overshot in the x direction err = err + dx y0 = y0 + sy return l
ffa8be5eb09e2b454242e4095883bfee239e5319
704,222
def ab_from_mv(m, v): """ estimate beta parameters (a,b) from given mean and variance; return (a,b). Note, for uniform distribution on [0,1], (m,v)=(0.5,1/12) """ phi = m*(1-m)/v - 1 # z = 2 for uniform distribution return (phi*m, phi*(1-m))
0326c165e44c1ab9df091e0344f12b9fab8c0e19
704,223
def fds_remove_crc_gaps(rom): """Remove each block's CRC padding so it can be played by FDS https://wiki.nesdev.org/w/index.php/FDS_disk_format """ offset = 0x0 def get_block(size, crc_gap=2): nonlocal offset block = rom[offset : offset + size] offset += size + crc_gap return block disk_info_block = get_block(0x38) file_amount_block = get_block(0x2) assert file_amount_block[0] == 0x02 n_files = file_amount_block[1] blocks = [disk_info_block, file_amount_block] for i in range(n_files): file_header_block = get_block(0x10) assert file_header_block[0] == 3 blocks.append(file_header_block) file_size = int.from_bytes(file_header_block[13 : 13 + 2], "little") file_data_block = get_block(file_size + 1) blocks.append(file_data_block) out = b"".join(blocks) # Zero pad to be 65500 bytes long padding = b"\x00" * (65500 - len(out)) out += padding return out
935ecb4ac01c1256ec074f6888704fdd1db63ea4
704,224
def truncatewords(base, length, ellipsis="..."): """Truncate a string by words""" # do we need to preserve the whitespaces? baselist = base.split() lenbase = len(baselist) if length >= lenbase: return base # instead of collapsing them into just a single space? return " ".join(baselist[:length]) + ellipsis
f6472c7511e7e9abf03d4da3ed10c94ef070f78a
704,225
import random def random_permutation(iterable, r=None): """Random selection from itertools.permutations(iterable, r)""" pool = tuple(iterable) if r is None: r = len(pool) return list(random.sample(pool, r))
09e9f22def2c1125bf0ffc50db73659eaac65105
704,226
def get_hms(t_sec): """Converts time in seconds to hours, minutes, and seconds. :param t_sec: time in seconds :return: time in hours, minutes, and seconds :rtype: list """ h = t_sec//3600 m = (t_sec - h*3600)//60 s = t_sec%60 return h,m,s
f873ea04905ebcc5b41a394a4dd880a566623c83
704,227
def current_velocity(x_new, x_prev, h): """ returns current velocity of a particle from next position at timestep. """ """ parameters ---------- x_new : array new x-position of particle x_prev : array previous x-position of particle h : float simulation timestep """ vel = (x_new - x_prev) / 2*h return vel
33d47f901be44fed20613957459aca1eecd5ea2c
704,229
import csv def csvReadCallback(inputFile, **kw): """Read callback for CSV data""" inputFile.readline() # skip header reader = csv.reader(inputFile, lineterminator='\n', **kw) return [row for row in reader]
e36c92e5792e905da22438a58c8ce810c2a22e2a
704,230
def load_word(): """ return the sql and values of the insert queuery.""" sql = """ INSERT INTO Spanglish_Test.Word ( `word`, `language_id`, `category_id` ) VALUES (%s, %s, %s) """ values = [ ( 'Ir', 2, 1 ), ( 'Lunes', 2, 2 ), ( 'Hola', 2, 3 ), ( 'Ver', 2, 1 ), ( 'Comer', 2, 1 ), ( 'Saber', 2, 1 ), ] return { 'sql': sql, 'values': values }
f0d836f5ca912865f9d75a5e6c10c13cf554674b
704,231
import torch def reconstruct_from_patches_2d(patches, img_shape, step=[1.0,1.0], batch_first=False): """Given patches generated from extract_patches_2d function, creates the original unpatched image. We keep track of the overlapped regions and average them in the end. Parameters: patches - Patches from a larger image img_shape - Shape of the original image (2d) step - step size along the x and y directions batch_first - a flag to indicate if the current img is the first batch Returns: A Tensor (Torch.Tensor) which contains a reconstructed image from the patches. """ if(batch_first): patches = patches.permute(1,0,2,3,4) patch_H, patch_W = patches.size(3), patches.size(4) img_size = (patches.size(1), patches.size(2),max(img_shape[0], patch_H), max(img_shape[1], patch_W)) step_int = [0,0] step_int[0] = int(patch_H*step[0]) if(isinstance(step[0], float)) else step[0] step_int[1] = int(patch_W*step[1]) if(isinstance(step[1], float)) else step[1] nrow, ncol = 1 + (img_size[-2] - patch_H)//step_int[0], 1 + (img_size[-1] - patch_W)//step_int[1] r_nrow = nrow + 1 if((img_size[2] - patch_H) % step_int[0] != 0) else nrow r_ncol = ncol + 1 if((img_size[3] - patch_W) % step_int[1] != 0) else ncol patches = patches.reshape(r_nrow,r_ncol,img_size[0],img_size[1],patch_H,patch_W) img = torch.zeros(img_size, device = patches.device) overlap_counter = torch.zeros(img_size, device = patches.device) for i in range(nrow): for j in range(ncol): img[:,:,i*step_int[0]:i*step_int[0]+patch_H,j*step_int[1]:j*step_int[1]+patch_W] += patches[i,j,] overlap_counter[:,:,i*step_int[0]:i*step_int[0]+patch_H,j*step_int[1]:j*step_int[1]+patch_W] += 1 if((img_size[2] - patch_H) % step_int[0] != 0): for j in range(ncol): img[:,:,-patch_H:,j*step_int[1]:j*step_int[1]+patch_W] += patches[-1,j,] overlap_counter[:,:,-patch_H:,j*step_int[1]:j*step_int[1]+patch_W] += 1 if((img_size[3] - patch_W) % step_int[1] != 0): for i in range(nrow): img[:,:,i*step_int[0]:i*step_int[0]+patch_H,-patch_W:] += patches[i,-1,] overlap_counter[:,:,i*step_int[0]:i*step_int[0]+patch_H,-patch_W:] += 1 if((img_size[2] - patch_H) % step_int[0] != 0 and (img_size[3] - patch_W) % step_int[1] != 0): img[:,:,-patch_H:,-patch_W:] += patches[-1,-1,] overlap_counter[:,:,-patch_H:,-patch_W:] += 1 img /= overlap_counter if(img_shape[0]<patch_H): num_padded_H_Top = (patch_H - img_shape[0])//2 num_padded_H_Bottom = patch_H - img_shape[0] - num_padded_H_Top img = img[:,:,num_padded_H_Top:-num_padded_H_Bottom,] if(img_shape[1]<patch_W): num_padded_W_Left = (patch_W - img_shape[1])//2 num_padded_W_Right = patch_W - img_shape[1] - num_padded_W_Left img = img[:,:,:,num_padded_W_Left:-num_padded_W_Right] return img
35b03ee61dd5a2749601e839d7ade75d1b686383
704,232
def _LJ_rminepsilon_to_ab(coeffs): """ Convert rmin/epsilon representation to AB representation of the LJ potential """ A = coeffs['epsilon'] * coeffs['Rmin']**12.0 B = 2 * coeffs['epsilon'] * coeffs['Rmin']**6.0 return {"A": A, "B": B}
0963c0e8b949d35842660a499ce80a388485773f
704,233
def calculate_SI(aggregated_df): """ calculates suspicion of infection as per Sepsis-3 on aggregated hourly dataframe and saves it under the column `suspicion_of_infection`. Note: aggregated_df must contain `antibiotics` and `microbio-sample` columns. """ df = aggregated_df[['hadm_id', 'hour', 'antibiotics', 'microbio-sample']] # reduce data, speeds up computation df['antibiotics'].fillna(0, inplace=True) def _fix_columns(antibiotics_window_df): """Fixes resulting columns/index from GroupBy.rolling so that there are just hadm_id, hour, and antibiotics cols""" if 'hadm_id' in antibiotics_window_df.index.names and 'hadm_id' in df.columns: antibiotics_window_df.drop(columns='hadm_id', inplace=True) if 'hour' in antibiotics_window_df.index.names and 'hour' in df.columns: antibiotics_window_df.drop(columns='hour', inplace=True) antibiotics_window_df = antibiotics_window_df.reset_index()[['hadm_id', 'hour', 'antibiotics']] return antibiotics_window_df antibiotics_last_24h = df.groupby('hadm_id').rolling(on='hour', window=24, min_periods=1).antibiotics.sum() antibiotics_last_24h = _fix_columns(antibiotics_last_24h) antibiotics_last_24h = antibiotics_last_24h.rename(columns={'antibiotics': 'antibiotics_last_24h'}) antibiotics_next_72h = df[::-1].groupby('hadm_id').rolling(on='hour', window=72, min_periods=1).antibiotics.sum()[::-1] antibiotics_next_72h = _fix_columns(antibiotics_next_72h) antibiotics_next_72h = antibiotics_next_72h.rename(columns={'antibiotics': 'antibiotics_next_72h'}) df = df.merge(antibiotics_last_24h, on=['hadm_id', 'hour']) df = df.merge(antibiotics_next_72h, on=['hadm_id', 'hour']) microbio_sample = df['microbio-sample'] == 1 suspicion_of_infection = microbio_sample & (df['antibiotics_last_24h'] > 0) suspicion_of_infection |= microbio_sample & (df['antibiotics_next_72h'] > 0) aggregated_df['suspicion_of_infection'] = suspicion_of_infection return aggregated_df
88f0fb6285c3fc2826168f01416e1e825b2ed4cc
704,235
def _get_reduce_batch_axis(axis, x_dim, x_ndim): """get batch_axis for reduce* operation.""" if not isinstance(axis, tuple): axis = (axis,) batch_axis = () if axis: for index in axis: if index < x_dim: batch_axis = batch_axis + (index,) else: batch_axis = batch_axis + (index + 1,) else: batch_axis_list = [index for index in range(x_ndim)] del batch_axis_list[x_dim] batch_axis = tuple(batch_axis_list) return batch_axis
b2a41f5e03c0388c70d2690793329d922f2d3248
704,236
def evalrawexp(context, mapping, arg): """Evaluate given argument as a bare template object which may require further processing (such as folding generator of strings)""" func, data = arg return func(context, mapping, data)
dc443da540bef0fe1198b12c0205921f0de66b2e
704,237
import os def get_file_list(path): """ 获取文件夹下的所有文件,返回list :param path: :return: """ file_paths = [] get_dir = os.listdir(path) for dir in get_dir: tmp_path = os.path.join(path,dir) if os.path.isdir(tmp_path): file_paths.append({str(dir):get_file_list(tmp_path)}) else: file_paths.append(dir) return file_paths
47f183479fb9304d33677fc811509f1801fa0130
704,238
def find_stab(state, xs, zs): """ Find a stabilizer in the stabilizer group. Args: state: logical_circuit: delogical_circuit: Returns: """ stabs = state.stabs destabs = state.destabs # Find the destabilizer generators that anticommute with the stabilizer indicated by xs and zs. # First the destabilizer generators that could *possibly* anticommute: possible_antidestabs = set([]) for q in xs: possible_antidestabs.update(destabs.col_z[q]) for q in zs: possible_antidestabs.update(destabs.col_x[q]) # Now we will confirm if they anticommute or not. antidestabs = set([]) for d in possible_antidestabs: if (len(xs & destabs.row_z[d]) + len(zs & destabs.row_x[d])) % 2 == 1: # They anticommute an odd number of times. antidestabs.add(d) # Now we will confirm that the supplied stabilizer is actually in the stabilizer group. confirm_xs = set([]) confirm_zs = set([]) for d in antidestabs: confirm_xs ^= stabs.row_x[d] confirm_zs ^= stabs.row_z[d] found = confirm_xs == xs and confirm_zs == zs return found, antidestabs
07987377192cb4a4fa8cc35bd13d7566a838778c
704,239
def CycleTarget_to_c(self): """Syntax for a target of a cycle.""" return f"cycle_{self.targetID}: continue;"
12cc7a57e5a24a62aba43ac99879d5a5d364ee29
704,240
def disable_layer_logging(): """ Disable the shape logging for all layers from this moment on. Can be useful when creating multiple towers. """ class ContainEverything: def __contains__(self, x): return True # can use nonlocal in python3, but how globals()['_LAYER_LOGGED'] = ContainEverything()
e05785f1ade46903c2e66efc35d4fc5f0e9d4fbd
704,241
def _remap_keypoints(keypoints, padded_w, padded_h, expand, data_shape, ratio): """ Remap bboxes in (x0, y0, x1, y1) format into the input image space Parameters ---------- bboxes padded_w padded_h expand Returns ------- """ keypoints[:, 0::2] *= padded_w / (data_shape * ratio) keypoints[:, 1::2] *= padded_h / data_shape keypoints[:, 0::2] -= expand[0] keypoints[:, 1::2] -= expand[1] return keypoints
1b8d2520f0df1847967e8db9c565598d6b5ee2b6
704,242
def get_pipeline_lines(input_pipeline): """Returns a list with the lines in the .cppipe file""" with open(input_pipeline) as f: lines = f.readlines() return lines
403e7531b1cadfe25f519d2b176b97ac344cde6b
704,243
def maxmin(*args): """ Returns timed ((t,max),(t,min)) values from a (t,v) dataset When used to filter an array the winndow will have to be doubled to allocate both values (or just keep the one with max absdiff from previous). """ data = args[0] t = sorted((v,t) for t,v in data) mn,mx = (t[0][1],t[0][0]),(t[-1][1],t[-1][0]) return sorted((mx,mn))
8f76ee029d04a4a35688054512d0a0212adbfede
704,244
def from_none(exc): """raise from_none(ValueError('a')) == raise ValueError('a') from None""" exc.__cause__ = None exc.__suppress_context__ = True return exc
86e45ba2df0020c85f13b85d8a98ee693422e922
704,245
def get_interface_type(interface): """Gets the type of interface """ if interface.upper().startswith("ET"): return "ethernet" elif interface.upper().startswith("VL"): return "svi" elif interface.upper().startswith("LO"): return "loopback" elif interface.upper().startswith("MG"): return "management" elif interface.upper().startswith("MA"): return "management" elif interface.upper().startswith("PO"): return "portchannel" elif interface.upper().startswith("NV"): return "nve" else: return "unknown"
f770a3ef1c43574d22630a5c4fff2f25d4975279
704,246
def rgb2gray(image): """Convert 3-channel RGB image into grayscale""" if image.ndim == 3: return (0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]) elif image.ndim == 4: return (0.299 * image[:, :, :, 0] + 0.587 * image[:, :, :, 1] + 0.114 * image[:, :, :, 2])
f87ed301dfd9c13ebfbabf99ad4b56c959a91e46
704,247
def create_variable(workflow_stat): """ Generates the javascript variables used to generate the chart. @param workflow_stat the WorkflowInfo object reference """ number_of_jobs = workflow_stat.total_job_instances # Adding variables var_str = "<script type='text/javascript'>\nvar initMaxX = " + str(workflow_stat.workflow_run_time) + ";\n" var_str +="var bar_spacing = 20;\n\ var inner_bar_margin = 4;\n\ var line_width =2;\n\ var inner_bar_width = bar_spacing-2*inner_bar_margin;\n\ var nameMargin = 400;\n\ var scaleMargin = 15;\n" var_str += "var initMaxY = "+str(number_of_jobs) + "*bar_spacing;\n" color_name_str = "var color =['darkblue','yellow','orange' ,'steelblue', 'purple'" desc_name_str = "var desc=['pre script','condor job','resource delay', 'job runtime as seen by dagman','post script '" for k,v in workflow_stat.transformation_color_map.items(): if k in workflow_stat.transformation_statistics_dict: color_name_str += ",'"+v +"'" desc_name_str +=",'"+k +"'" color_name_str += "];\n" desc_name_str +="];\n" var_str += color_name_str var_str += desc_name_str if number_of_jobs < 5: var_str +="var h = " +str(number_of_jobs) +"*bar_spacing*2 + scaleMargin + bar_spacing;\n" else: var_str +="var h = 840;\n" var_str +="var w = 1460;\n\ var toolbar_width = 550;\n\ var containerPanelPadding = 20;\n\ var chartPanelWidth = w+ containerPanelPadding*2;\n\ var chartPanelHeight = h + containerPanelPadding*2;\n\ var curX = 0;\n\ var curY = 0;\n\ var curEndX = initMaxX;\n\ var curEndY = initMaxY;\n\ var xScale = pv.Scale.linear(curX, curEndX).range(0, w-nameMargin);\n\ var yScale = pv.Scale.linear(curY, curEndY).range(0, h -scaleMargin);\n\ var xLabelPos = containerPanelPadding + nameMargin;\n\ var yLabelPos = 40;\n\ var labelWidth = 200;\n\ var panXFactor = 10;\n\ var panYFactor = 10;\n\ var isNewWindow = false;\n\ var condorTime = false;\n\ var kickstart = false;\n\ var condorRuntime = false;\n\ var resourceDelay = false;\n\ var preScript = false;\n\ var postScript = false;\n\ var showName = false;\n\ var headerPanelWidth = w+ containerPanelPadding*2;\n\ var headerPanelHeight = 100;\n\ var footerPanelWidth = w+ containerPanelPadding*2;\n\ var footerPanelHeight = "+ str(45 + len(workflow_stat.transformation_statistics_dict)/3*15) + ";\n\ </script>\n" return var_str
d0b55b00952f28242775a297fedab6cf1a69169e
704,248
def aten_le(mapper, graph, node): """ 构造对比大小的PaddleLayer。 TorchScript示例: %80 : bool = aten::le(%78, %79) 参数含义: %80 (bool): 输出,第一个元素是否小于等于第二个元素。 %78 (-): 需对比的输入1。 %79 (-): 需对比的输入2。 """ scope_name = mapper.normalize_scope_name(node) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [output_name] layer_inputs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%78 mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name) layer_inputs["x"] = inputs_name[0] # 处理输入1,即%79 mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name) layer_inputs["y"] = inputs_name[1] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name) return current_inputs, current_outputs
45797abf1ec5a97619578dd734c1d9d7fb448aec
704,249
from pathlib import Path def filter_files(names: list[Path]) -> list[Path]: """只要文件,不要文件夹""" return [x for x in names if x.is_file()]
25c1258891e2df7c35f700a26cadf01013329337
704,250
def move_ship_waypoint(instructions: list) -> list: """Move the ship using the waypoint movement rules :param instructions: List of movement instructions :return: Final position of the ship """ waypoint = [10, 1] ship = [0, 0] for instruction in instructions: cmd, val = instruction if cmd == 'F': ship[0] += val * waypoint[0] ship[1] += val * waypoint[1] if cmd == 'N': waypoint[1] += val elif cmd == 'S': waypoint[1] -= val elif cmd == 'E': waypoint[0] += val elif cmd == 'W': waypoint[0] -= val elif cmd == 'L' or cmd == 'R': rotation = (2 * (cmd == 'L') - 1) * val % 360 if rotation == 90: waypoint[0], waypoint[1] = -waypoint[1], waypoint[0] elif rotation == 180: waypoint[0] *= -1 waypoint[1] *= -1 elif rotation == 270: waypoint[0], waypoint[1] = waypoint[1], -waypoint[0] return ship
7202392e4826d522287455d94f7b06c0e2f931ee
704,251
import itertools def get_hyperparams_combinations(hyperparams): """Get list of hyperparmeter (dict) combinations.""" # transforms tuning hyperparams to a list of dict params for each option return [ {k:v for k,v in zip(hyperparams.keys(), hypms)} for hypms in itertools.product(*[vals for vals in hyperparams.values()]) ]
e5f52a8eddb8a2a476e0daa47f63161d440263f2
704,252
from datetime import datetime import json import logging def convert_from_poolfile_to_sequence_set_and_back(inp_fp_path, op_path, conversion_type, description="", run_id=None): """ In this function we take either pool file or Sequence Set and convert from one to the other. Sequence Set is output and input as a JSON file, pool file is output and input as a TSV file. Conversion_type is an int: 0 -> going from pool file to Sequence Set 1 -> going from Sequence Set to pool file Args: inp_fp_path: Path to either pool file (TSV) or Sequence Set (JSON) op_path: Output path to the conversion output conversion_type: (int) from [0,1]. 0 -> Pool file to Sequence Set 1 -> Sequence Set to Pool File. description: (string) Optional string describing the set Poolfile: barcode(str):rcbarcode(str):nTot(int):n(int):scaffold(str):strand(str +/-):pos(int): n2(int):scaffold2(int):strand2(str +/-):pos2(int):nPastEnd(int) """ if conversion_type not in [0,1]: raise Exception("Cannot recognize conversion type: Must be int." + \ "Val: {}".format(conversion_type)) if conversion_type == 0: # Going from poolfile to Sequence Set if run_id is None: run_id = "MapTnSeq_Barcodes_run_on_" + \ str(datetime.now()).replace(' ', '_'), # output dict sequence_set = { "sequence_set_id": run_id, "description": "MapTnSeq (RBTNSEQ) mapping of barcodes to a " + \ "genome. Explanations of values: 'nTot' is total " + \ "number of times this barcode was counted." + \ " 'n' is number of times this barcode was counted" + \ " at this location. 'scf' is scaffold name." + \ " 'strand' is strand (+ or -). 'pos' is nucleotide" + \ " position. 'n2' is number of times found at second" + \ " highest counted location. 'scf2' is second highest" + \ " location scaffold, 'strand2' similarly, etc." + \ " 'nPastEnd' means number of times this barcode was" + \ " found next to the next part of the plasmid (barcode" + \ " wasn't inserted into the genome without the rest " + \ " of the plasmid).\n" + \ " User Description (optional): {}".format(description) } sequence_list = [] pool_FH = open(inp_fp_path, "r") header = pool_FH.readline().rstrip() c_line = pool_FH.readline() i = 1 while c_line != "": c_lst = c_line.split('\t') nPastEnd = c_lst[-1].rstrip() barcode, rcbarcode, nTot, n, scf, strnd, pos = c_lst[:7] n2, scf2, strnd2, pos2 = c_lst[7:-1] # desc_str holds all the information needed to reconstruct pool file desc_str = "nTot:{};n:{};scf:{};strand:{};pos:{};".format( nTot, n, scf, strnd, pos) desc_str += "n2:{};scf2:{};strnd2:{};pos2:{};".format( n2, scf2, strnd2, pos2) desc_str += "nPastEnd:" + nPastEnd sequence_list.append( { "sequence_id": "MapTnSeq_barcode_" + str(i), "description": desc_str, "sequence": barcode }) c_line = pool_FH.readline() i += 1 pool_FH.close() sequence_set["sequences"] = sequence_list with open(op_path, "w") as g: g.write(json.dumps(sequence_set, indent=2)) logging.info("Wrote Sequence Set JSON file to " + op_path) elif conversion_type == 1: # Going from Sequence Set to Pool File if inp_fp_path.split(".")[-1] != "json": raise Exception("Sequence Set indicated but not JSON file") sequence_set_d = json.loads(open(inp_fp_path).read()) out_pool_FH = open(op_path, "w") out_pool_FH.write("barcode\trcbarcode\tnTot\tn\tscaffold\tstrand\tpos\t" + \ "n2\tscaffold2\tstrand2\tpos2\tnPastEnd\n") seq_list = sequence_set_d["sequences"] for seq in seq_list: desc_str = seq["description"] barcode = seq["sequence"] tsl_d = {"A":"T", "T":"A", "G":"C", "C":"G"} rcbc1 = [tsl_d[x] for x in list(barcode)] rcbc1.reverse() rcbarcode = "".join(rcbc1) out_pool_FH.write(barcode + "\t" + rcbarcode + "\t") items = [x.split(":")[1] for x in desc_str.split(";")] out_pool_FH.write("\t".join(items) + "\n") out_pool_FH.close() logging.info("Wrote Pool File from Sequence Set at " + op_path) return None
ad46eb491840aa75764b013495a113ae746144ba
704,253
from typing import List def read_basis_format(basis_format: str) -> List[int]: """Read the basis set using the specified format.""" s = basis_format.replace('[', '').split(']')[0] fss = list(map(int, s.split(','))) fss = fss[4:] # cp2k coefficient formats start in column 5 return fss
9701309ab43eb7a0227aa141653688dbdce40811
704,254
def p_to_stars(p, thres=(0.1, 0.05, 0.01)): """Return stars for significance values.""" stars = [] for t in thres: if p < t: stars.append("*") return "".join(stars)
d88c2fd6c1b4e2d75a9cb664dfc10fab308bc6ee
704,255
def correct_dcm(dcm): """ Correct DCM image which were actually signed data, but were treated as unsigned """ x = dcm.pixel_array + 1000 px_mode = 4096 x[x>=px_mode] = x[x>=px_mode] - px_mode dcm.PixelData = x.tobytes() dcm.RescaleIntercept = -1000 return dcm.pixel_array, dcm.RescaleIntercept
0186ab3fc4b606902da3a50a5835eb227a1b7733
704,256
def factorial_r(number): """ Calculates the factorial of a number, using a recursive process. :param number: The number. :return: n! """ # Check to make sure the argument is valid. if number < 0: raise ValueError # This is the recursive part of the function. if number == 0: # If the argument is 0, then we simply return the value of 0!, which is 1. return 1 else: # Otherwise, return n multiplied by the (n - 1)! return number * factorial_r(number - 1)
e5c28edac93b965f438bd61c5bb1c0a935c96700
704,257
def make_perturbed_cmtsolution(py, src_frechet_directory, cmtsolution_directory, output_directory): """ make the pertured cmtsolution based on src_frechet. """ script = f"ibrun -n 1 {py} -m seisflow.scripts.source_inversion.make_perturbed_cmtsolution --src_frechet_directory {src_frechet_directory} --cmtsolution_directory {cmtsolution_directory} --output_directory {output_directory}; \n" return script
07bb69751ddaee9d7aa6389c6cab9bc6021758ed
704,258
def weight_correct_incorrect(rslt): """Return a pair of floating-point numbers denoting the weight of (correct, incorrect) instances in EvaluationResult rslt. >>> listInstCorrect = [Instance([],True,0.25)] >>> listInstIncorrect = [Instance([],False,0.50)] >>> rslt = EvaluationResult(listInstCorrect, listInstIncorrect, None) >>> weight_correct_incorrect(rslt) (0.25, 0.5)""" correctInst = sum([inst.dblWeight for inst in rslt.listInstCorrect]) incorrectInst = sum([inst.dblWeight for inst in rslt.listInstIncorrect]) return (correctInst , incorrectInst)
5a7ef1d338821f10b58ba06224059e532180c50d
704,259
import pathlib import csv def get_data_info(path): """ Get metadata of the iamges. """ samples = [] # the data is in subfolders parent = pathlib.Path(path) for csv_file in parent.glob('**/*.csv'): with open(str(csv_file), 'r') as f: reader = csv.reader(f) for line in reader: try: samples.append({'img_center': str(csv_file.resolve().parent.joinpath('IMG',pathlib.Path(line[0]).name)), 'img_left': str(csv_file.resolve().parent.joinpath('IMG',pathlib.Path(line[1]).name)), 'img_right': str(csv_file.resolve().parent.joinpath('IMG',pathlib.Path(line[2]).name)), 'steering_angle': float(line[3]), 'throttle': float(line[4]), 'brake': float(line[5]), 'speed': float(line[6])}) except Exception as e: print(e) return samples
53f3dd1b6ff18d43a656f4a3f6da26ab1e60a6c2
704,260
import random def shuffle(x, y): """ Shuffle the datasets. """ for n in range(len(x) - 1): rnd = random.randint(0, (len(x) - 1)) x1 = x[rnd] x2 = x[rnd - 1] y1 = y[rnd] y2 = y[rnd - 1] x[rnd - 1] = x1 x[rnd] = x2 y[rnd - 1] = y1 y[rnd] = y2 return x, y
c9f198d3796c5d64eba818753701957ea1a0e924
704,261
def get_data_names(data, data_names): """ Get default names for data fields if none are given based on the data. Examples -------- >>> import numpy as np >>> east, north, up = [np.arange(10)]*3 >>> get_data_names((east,), data_names=None) ('scalars',) >>> get_data_names((east, north), data_names=None) ('east_component', 'north_component') >>> get_data_names((east, north, up), data_names=None) ('east_component', 'north_component', 'vertical_component') >>> get_data_names((up, north), data_names=('ringo', 'george')) ('ringo', 'george') """ if data_names is not None: if len(data) != len(data_names): raise ValueError( "Data has {} components but only {} names provided: {}".format( len(data), len(data_names), str(data_names) ) ) return data_names data_types = [ ("scalars",), ("east_component", "north_component"), ("east_component", "north_component", "vertical_component"), ] if len(data) > len(data_types): raise ValueError( " ".join( [ "Default data names only available for up to 3 components.", "Must provide custom names through the 'data_names' argument.", ] ) ) return data_types[len(data) - 1]
e2097d6dbf2c8cc52fd4a60124727cad5fe9fbc4
704,262
import pandas def get_labels_from_file(filename): """Get labels on the last column from file. Args: filename: file name Returns: List[str]: label list """ data_frame = pandas.read_csv(filename) labels = data_frame['summary'].tolist() return labels
605e9a464eb9fc007d2421fadcab362b7c22ebf5
704,263
from typing import Any def create_result_scalar(name: str, item_type: str, value: Any) -> dict: """ Create a scalar result for posting to EMPAIA App API. :param name: Name of the result :param item_type: Type of result :param value: Value of the result """ result = {"name": name, "type": item_type, "value": value} return result
3fb16c540cc8c76cfc42e4a906e4be280346b802
704,264
import sympy def replace_heaviside(formula): """Set Heaviside(0) = 0 Differentiating sympy Min and Max is giving Heaviside: Heaviside(x) = 0 if x < 0 and 1 if x > 0, but Heaviside(0) needs to be defined by user. We set Heaviside(0) to 0 because in general there is no sensitivity. This done by setting the second argument to zero. """ if not isinstance(formula, sympy.Expr): return formula w = sympy.Wild("w") return formula.replace(sympy.Heaviside(w), sympy.Heaviside(w, 0))
d1aff5e4a2dd68ba53ced487b665e485dab4b54d
704,265
import os def is_dicom(filename): """Returns True if the file in question is a DICOM file, else False. """ # Per the DICOM specs, a DICOM file starts with 128 reserved bytes # followed by "DICM". # ref: DICOM spec, Part 10: Media Storage and File Format for Media # Interchange, 7.1 DICOM FILE META INFORMATION if os.path.isfile(filename): f = open(filename, "rb") s = f.read(132) f.close() pattern = "DICM" binary_pattern = pattern.encode() return s.endswith(binary_pattern) else: return False
014c15481224413d6757c950a0888fb60e0f94d5
704,266
def exact_change_recursive(amount,coins): """ Return the number of different ways a change of 'amount' can be given using denominations given in the list of 'coins' >>> exact_change_recursive(10,[50,20,10,5,2,1]) 11 >>> exact_change_recursive(100,[100,50,20,10,5,2,1]) 4563 """ assert amount >= 0 if amount==0: # no amount left -> 1 solution exists with no coins return 1 elif not coins: # amount>0, no coins left -> no solution possibe return 0 else: current_denomination = coins[0] remaining_coins = coins[1:] running_total = 0 solutions_count = 0 # Create solutions with increasing numbers of coins of the current_denomination while running_total<= amount: # reaming_amount needs to be achieved with remaining_coins remaining_amount = amount - running_total solutions_count += exact_change_recursive(remaining_amount,remaining_coins) running_total += current_denomination return solutions_count
f18cd10802ba8e384315d43814fcb1dcd6472d78
704,267
def knapsack(val,wt,W,n): """ Consider W=5,n=4 wt = [5, 3, 4, 2] val = [60, 50, 70, 30] So, for any value we'll consider between maximum of taking wt[i] and not taking it at all. taking 0 to W in column 'line 1' taking wt in rows 'line 2' two cases -> * cur_wt<=total wt in that column otherwise matrix[cur_wt][max_wt]= matrix[cur_wt-1][max_wt] # not taking wt[cur_wt] at all * take matrix[cur_wt][max_wt] = max(matrix[cur_wt-1][max_wt-wt[cur_wt]] , matrix[cur_wt-1][max_wt]) # max b/w not taking wt[cur_wt] & considering it * ^> means taken just above value | | 0 | 1 | 2 | 3 | 4 | 5 | | 5 | 0 | 0 | 0 | 0 | 0 | 60 | | 3 | ^>0 | ^>0 | ^>0 | max(0,0+50) | 50 | max(0+50,60)=60 | | 4 | ^>0 | ^>0 | ^>0 | ^50 | max(50,0+70) | max(60,0+70) | | 2 | ^>0 | ^>0 | max(0,0+30) | max(50,0+30) | max(70,0+30) | max(70,50+30) | ans = max(70,50+30)=80 """ matrix = [[0 for i in range(W+1)] for i in range(n)] for i in range(W+1): if wt[0]<=i: matrix[0][i]=val[0] else: matrix[0][i]=0 for i in range(1,n): #line 2 for j in range(W+1): # line 1 if j==0: matrix[i][j]=0 continue if j>=wt[i]: matrix[i][j] = max(matrix[i-1][j],matrix[i-1][j-wt[i]]+val[i]) else: matrix[i][j]=matrix[i-1][j] return matrix[n-1][W]
d030a57e8c7040cbd1f7a3556f21d599ac049428
704,268
def filter_graph(graph, n_epochs): """ Filters graph, so that no entry is too low to yield at least one sample during optimization. :param graph: sparse matrix holding the high-dimensional similarities :param n_epochs: int Number of optimization epochs :return: """ graph = graph.copy() graph.data[graph.data < graph.data.max() / float(n_epochs)] = 0 graph.eliminate_zeros() return graph
04af2804e208b8ce582440b2d0306fe651a583b0
704,269
def rev_find(revs, attr, val): """Search from a list of TestedRev""" for i, rev in enumerate(revs): if getattr(rev, attr) == val: return i raise ValueError("Unable to find '{}' value '{}'".format(attr, val))
6b9488023d38df208013f51ed3311a28dd77d9b8
704,270
def untempering(p): """ see https://occasionallycogent.com/inverting_the_mersenne_temper/index.html >>> mt = MersenneTwister(0) >>> mt.tempering(42) 168040107 >>> untempering(168040107) 42 """ e = p ^ (p >> 18) e ^= (e << 15) & 0xEFC6_0000 e ^= (e << 7) & 0x0000_1680 e ^= (e << 7) & 0x000C_4000 e ^= (e << 7) & 0x0D20_0000 e ^= (e << 7) & 0x9000_0000 e ^= (e >> 11) & 0xFFC0_0000 e ^= (e >> 11) & 0x003F_F800 e ^= (e >> 11) & 0x0000_07FF return e
4118b55fd24008f9e96a74db937f6b41375484c3
704,271
def multiplicar(a, b): """ MULTIPLICAR realiza la multiplicacion de dos numeros Parameters ---------- a : float Valor numerico `a`. b : float Segundo valor numerico `b`. Returns ------- float Retorna la suma de `a` + `b` """ return a*b
2d1a56924e02f05dcf20d3e070b17e4e602aecf6
704,272
def pascal_row(n): """returns the pascal triangle row of the given integer n""" def triangle(n, lst): if lst ==[]: lst = [[1]] if n == 1: return lst else: oldRow = lst[-1] def helpRows(lst1, lst2): if lst1 == [] or lst2 == []: return [] return [(lst1[0], lst2[0])] + helpRows(lst1[1:], lst2[1:]) def summation(lst): if lst == []: return [] return [sum(lst[0])] + summation(lst[1:]) newRow = [1] + summation(helpRows(oldRow, oldRow[1:])) + [1] return triangle(n - 1, lst + [newRow]) return triangle(n + 1, [])[n]
030fe3e574f4261c862a882e7fdeee836a1dffb7
704,273
def can_comment(request, entry): """Check if current user is allowed to comment on that entry.""" return entry.allow_comments and \ (entry.allow_anonymous_comments or request.user.is_authenticated())
04bcd019af083cff0367e236e720f4f7b00f7a65
704,274
def single(mjd, hist=[], **kwargs): """cadence requirements for single-epoch Request: single epoch mjd: float or int should be ok hist: list, list of previous MJDs """ # return len(hist) == 0 sn = kwargs.get("sn", 0) return sn <= 1600
8734916221f0976d73386ac662f6551c25accfc3
704,276
def accuracies(diffs, FN, FP, TN, TP): """INPUT: - np.array (diffs), label - fault probability - int (FN, FP, TN, TP) foor keeping track of false positives, false negatives, true positives and true negatives""" for value in diffs: if value < 0: if value < -0.5: FP+=1 else: TN +=1 else: if value < 0.5: TP+=1 else: FN+=1 return FN, FP, TN, TP
001cebd169589f9f1494d9833c1fc49d8ba9964b
704,277
def data_scaling(Y): """Scaling of the data to have pourcent of baseline change columnwise Parameters ---------- Y: array of shape(n_time_points, n_voxels) the input data Returns ------- Y: array of shape(n_time_points, n_voxels), the data after mean-scaling, de-meaning and multiplication by 100 mean: array of shape(n_voxels), the data mean """ mean = Y.mean(0) Y = 100 * (Y / mean - 1) return Y, mean
94b550386b8411a96b9ccd3f5e93098560c327e1
704,278
import json def load_json(path: str): """Load json file from given path and return data""" with open(path) as f: data = json.load(f) return data
d165d087c78a0ba88d318a6dbe8b2ac8f9a8c4b5
704,279
def _get_int_val(val, parser): """Get a possibly `None` single element list as an `int` by using the given parser on the element of the list. """ if val is None: return 0 return parser.parse(val[0])
d2e029657b3424027e83ee8e1e2be76e3abf8fda
704,280
def gcd(a, b): """Compute greatest common divisor of a and b. This function is used in some of the functions in PyComb module. """ r = a % b while r != 0: a = b b = r r = a % b return b
10f09e979b525dffe480ca870726459ad0420c0d
704,281
def get_n_p(A_A, n_p_in='指定しない'): """付録 C 仮想居住人数 Args: A_A(float): 床面積 n_p_in(str): 居住人数の入力(「1人」「2人」「3人」「4人以上」「指定しない」) Returns: float: 仮想居住人数 """ if n_p_in is not None and n_p_in != '指定しない': return { '1人': 1.0, '2人': 2.0, '3人': 3.0, '4人以上': 4.0 }[n_p_in] if A_A < 30: return 1.0 elif A_A < 120: return A_A / 30 else: return 4.0
db257abdb76ee35f16b07e5baccec82211737971
704,282
def make_mmvt_boundary_definitions(cv, milestone): """ Take a Collective_variable object and a particular milestone and return an OpenMM Force() object that the plugin can use to monitor crossings. Parameters ---------- cv : Collective_variable() A Collective_variable object which contains all the information for the collective variable describine this variable. In fact, the boundaries are contours of the function described by cv. This variable contains information like the groups of atoms involved with the CV, and the expression which describes the function. milestone : Milestone() A Milestone object which describes the boundary between two Voronoi cells. This variable contains information like the values of the variables which will be entered into the Force() object. Returns ------- myforce : openmm.Force() An OpenMM force object which does not affect atomic motion, but allows us to conveniently monitor a function of atomic position. """ myforce = cv.make_force_object() myforce.setForceGroup(1) variable_names_list = cv.add_parameters(myforce) cv.add_groups_and_variables(myforce, cv.get_variable_values_list( milestone)) return myforce
45baaaa70ea24cb564c529cd885597415561a25d
704,283
def is_leaf_module(module): """Utility function to determine if the given module is a leaf module - that is, does not have children modules :return: True if the module is a leaf, False otherwise """ module_list = list(module.modules()) return bool(len(module_list) == 1)
f34cbd4e961a467117a980ab0b7829f4a8245d2f
704,284
def _is_fix_comment(line, isstrict): """ Check if line is a comment line in fixed format Fortran source. References ---------- :f2008:`3.3.3` """ if line: if line[0] in '*cC!': return True if not isstrict: i = line.find('!') if i!=-1: start = line[:i].lstrip() if not start: if i==5: # line continuation return False return True else: # inline comment or ! is used in character context # inline comments are handled elsewhere pass elif line=='': return True return False
8ac7f74f2b4e57b9fb65183a46ed3dbfc0f7ef79
704,285
def parseConfigFile(configFilePath): """ :param configFilePath: :return: a hash map of the parameters defined in the given file. Each entry is organized as <parameter name, parameter value> """ # parse valid lines lines = [] with open(configFilePath) as f: for line in f: line = line.strip() if line == '': # ignore empty line continue if line.startswith('#'): # ignore the comment in config file continue lines.append(line) params = {} for line in lines: if not line.__contains__("="): raise Exception("Invalid parameter definition as \"" + line + "\" in file " + configFilePath) paramName = line.split("=")[0].strip() value = line.split("=")[1].strip() params[paramName] = value return params
aee6a1da052f4c2ef907bf41b2cfaa4b93612a5e
704,286
def has_annotations(doc): """ Check if document has any mutation mention saved. """ for part in doc.values(): if len(part['annotations']) > 0: return True return False
6b57893bc35af45950ec2eeb5008b663028d48bf
704,287
def DEFAULT_APPLICANT_SCRUBBER(raw): """Remove all personal data.""" return {k: v for k, v in raw.items() if k in ("id", "href", "created_at")}
16fa853551cd03bcf1124639e23b0c72ec9db75d
704,288
def partition(my_list: list, part: int) -> list: """ Function which performs Partition """ begin = 0 end = len(my_list) - 1 while begin < end: check_lower = my_list[begin] < part check_higher = my_list[end] >= part if not check_lower and not check_higher: # Swap my_list[begin], my_list[end] = my_list[end], my_list[begin] else: if check_lower: begin += 1 if check_higher: end -= 1 return my_list
754a039eede5e143400b0fd58b622d57e083a671
704,289
def _sparse_elm_mul(spmat_csr, col): """ spmat (n, m) col (n,) """ for i in range(spmat_csr.shape[0]): i0, i1 = spmat_csr.indptr[i], spmat_csr.indptr[i+1] if i1 == i0: continue spmat_csr.data[i0:i1] *= col[i] return spmat_csr
55c7ca7f848989eaa95a5917cfa40edf2d7e1372
704,290
import os def make_file_path(file, args): """Create any directories and subdirectories needed to store data in the specified file, based on inputs_dir and inputs_subdir arguments. Return a pathname to the file.""" # extract extra path information from args (if available) # and build a path to the specified file. path = os.path.join(args.get('inputs_dir', ''), args.get('inputs_subdir', '')) if path != '' and not os.path.exists(path): os.makedirs(path) path = os.path.join(path, file) return path
58ac390734f60daf67adcd6e05b3bf721f4b2383
704,292
import hashlib def calc_checksum(filename): """ Calculates a checksum of the contents of the given file. :param filename: :return: """ try: f = open(filename, "rb") contents = f.read() m = hashlib.md5() m.update(contents) checksum = m.hexdigest() return checksum except IOError: return None
080e3686279ae126951cd1b66efdb9a0d2448011
704,295
def __filter_card_id(cards: list[str]): """Filters an list with card ids to remove repeating ones and non-ids""" ids = list() for c in cards: try: int(c) except ValueError: continue else: if c not in ids: ids.append(c) return ids
53f7cfa979ac8c7bc5357216eb903f5fe5abc02b
704,296
import time def get_elapsed_time(start_time) -> str: """ Gets nicely formatted timespan from start_time to now """ end = time.time() hours, rem = divmod(end-start_time, 3600) minutes, seconds = divmod(rem, 60) return "{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)
d75a1873254e1b1cc9ffc714e65d3a9ed95e5803
704,297
import time def gmt_time(): """ Return the time in the GMT timezone @rtype: string @return: Time in GMT timezone """ return time.strftime('%Y-%m-%d %H:%M:%S GMT', time.gmtime())
6009f0c3bc185bca9209827f2c89e39917c1e418
704,298
import os def is_subdirectory(path_a, path_b): """Returns True if `path_a` is a subdirectory of `path_b`.""" path_a = os.path.realpath(path_a) path_b = os.path.realpath(path_b) try: relative = os.path.relpath(path_a, path_b) except ValueError: # Different mounts on Windows: # ValueError: path is on mount 'c:', start on mount 'd:' # return False return not relative.startswith(os.pardir + os.sep)
935a5897ff447cc3c6e757d6528f795732bed56f
704,300
def clean_string_columns(df): """Clean string columns in a dataframe.""" try: df.email = df.email.str.lower() df.website = df.website.str.lower() except AttributeError: pass str_columns = ["name", "trade_name", "city", "county"] for column in str_columns: try: df[column] = df[column].astype(str).str.title() df[column] = df[column].astype(str).str.replace("Llc", "LLC") df[column] = df[column].astype(str).str.replace("L.L.C.", "LLC") df[column] = df[column].astype(str).str.strip() except (AttributeError, KeyError): pass return df
eb9aaa474fe517b346eaa8cd93e669b3fcc3459d
704,302
def ordinal(n: int) -> str: """ from: https://codegolf.stackexchange.com/questions/4707/outputting-ordinal-numbers-1st-2nd-3rd#answer-4712 """ result = "%d%s" % (n, "tsnrhtdd"[((n / 10 % 10 != 1) * (n % 10 < 4) * n % 10)::4]) return result.replace('11st', '11th').replace('12nd', '12th').replace('13rd', '13th')
97eecb539ae37c89ea3e4e76c5c913877fbf2365
704,304
def part_2(): """Function which calculates the solution to part 2 Arguments --------- Returns ------- """ return None
7b454841494c9f717868eda727b6273fabbf8222
704,305
import glob def expand_files(files): """Expands a wildcard to a list of paths for Windows compatibility""" # Split at whitespace files = files.split() # Handle wildcard expansion if len(files) == 1 and '*' in files[0]: files = glob.glob(files[0]) # Convert to Path objects return files
46e2d6e7ee1609c144d04a2d429dc07ff1786cf1
704,306
def split_exon(exon, cds): """Takes an exon and a CDS, and returns a map of regions for each feature (UTR5/3, CDS) that may be inferred from the arguments. Note that the CDS is simply returned as is, to simplify downstream handling of these features.""" results = [cds] if exon["start"] < cds["start"]: utr = dict(exon) utr.update( end=cds["start"] - 1, feature=(exon["strand"] == "+" and "UTR5" or "UTR3") ) results.append(utr) if exon["end"] > cds["end"]: utr = dict(exon) utr.update( start=cds["end"] + 1, feature=(exon["strand"] == "+" and "UTR3" or "UTR5") ) results.append(utr) return results
e2bb12a688bbe3e5c79039c2a9cce4e5aa9e9a1b
704,307
def state_dict_to_cpu(state_dict): """Make a copy of the state dict onto the cpu.""" # .state_dict() references tensors, so we detach and copy to cpu return {key: par.detach().cpu() for key, par in state_dict.items()}
2d1fcc07ab8eac192a846cbcdb8d7363ffd8e9e8
704,308
import unicodedata def normalize_str(text): """ Normalizes unicode input text (for example remove national characters) :param text: text to normalize :type text: unicode """ # unicodedata NFKD doesn't convert properly polish ł trans_dict = { u'ł': u'l', u'Ł': u'L' } trans = dict((ord(k), ord(v)) for k, v in trans_dict.items()) text = text.translate(trans) return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore')
40c8f77cdbf08b12a3867cd4a9d9bb91b323b50b
704,309
def get_context_data(data) -> dict: """Look for 'context' item in 'queries' item.""" if "queries" in data: if "context" in data["queries"]: if isinstance(data["queries"], list): return data["queries"][0]["context"] else: return data["queries"]["context"] return dict()
4e05d3d9041a8199f32b4201dcfc69d3adef1034
704,310
import copy def merge(src: list, dst: list) -> list: """Merge `src` into `dst` and return a copy of `dst`.""" # Avoid side effects. dst = copy.deepcopy(dst) def find_dict(data: list, key: str) -> dict: """Find and return the dictionary in `data` that has the `key`.""" tmp = [_ for _ in data if isinstance(_, dict) and set(_.keys()) == {key}] assert len(tmp) == 1 return tmp[0] def _update(src, dst): # Add all string keys from `src` to `dst` if they are not yet in `dst`. str_keys = [_ for _ in src if isinstance(_, str) and _ not in dst] dst.extend(str_keys) # Find the all dicts and their one and only key. dict_src = {tuple(_.keys())[0] for _ in src if isinstance(_, dict)} dict_dst = {tuple(_.keys())[0] for _ in dst if isinstance(_, dict)} # Recursively merge the dictionaries. for key in dict_src: if key not in dict_dst: # `dst` does not have the dict at all - just copy it. dst.append(find_dict(src, key)) else: # `dst` already has a dict for `key` -> recursively update it. src_val = find_dict(src, key)[key] dst_val = find_dict(dst, key)[key] _update(src_val, dst_val) # Sort the list alphabetically (if the entry is a dict then use its one # and only key as the comparative element). dst.sort(key=lambda _: _ if isinstance(_, str) else tuple(_.keys())[0]) _update(src, dst) return dst
84976322fda7306d6bc15507750314b6b4fcad44
704,311
def grab_receivers(apk) : """ @param apk : an APK instance @rtype : the android:name attribute of all receivers """ return apk.get_elements("receiver", "android:name")
632d6903b63ca9d815a9f9d81ff19b8d6dc12a84
704,312
def itos(x): """Converts intergers to strings""" if type(x) != int: raise ValueError("Input value not an integer!") return '{}'.format(x)
96efe311cade41b37c4f671ed0b7e5e2a74f3d0b
704,313
import json import re def translate_reference_entities(ref_entities, mappings=None): """Transform MaaS reference data for comparison with test deployment. Positional arguments: ref_entities -- the reference entity data Keyword arguments: mappings -- describe the relationship between the reference and the test To compare the entities being tested with the reference data, the reference data must be manipulated so that the hostnames used match those of the entities being tested. """ if mappings is None: return ref_entities checks_by_host_type = {} for mapping in mappings: test_label, reference_labels = mapping.split(':') reference_labels = reference_labels.split(',') for label in reference_labels: json_blob = json.dumps(ref_entities[label]) json_blob = re.sub(label, test_label, json_blob) entity = json.loads(json_blob) if test_label in checks_by_host_type: checks = checks_by_host_type[test_label]['checks'] checks.update(entity['checks']) else: checks_by_host_type[test_label] = entity return checks_by_host_type
8e7a6144b5d51fb25908a70100e0d1e03b10b3d5
704,314
import os def file_size_feed(filename): """file_size_feed(filename) -> function that returns given file's size""" def sizefn(filename=filename,os=os): try: return os.stat(filename)[6] except: return 0 return sizefn
da6c5d15df0f3d99022f3d42c95bb33a82065e32
704,315
import logging def getLogger(name='root') -> logging.Logger: """Method to get logger for tests. Should be used to get correctly initialized logger. """ return logging.getLogger(name)
dde177b07f9d8528d216fbc4c719e5bff9c67939
704,316
def public_dict(obj): """Same as obj.__dict__, but without private fields.""" return {k: v for k, v in obj.__dict__.items() if not k.startswith('_')}
2edee1a17d0dad6ab4268f80eb565406656a77b4
704,317
def wilight_to_opp_position(value): """Convert wilight position 1..255 to opp.format 0..100.""" return min(100, round((value * 100) / 255))
4f6e4298a77c29ff0375d0ce5e5fd23e77e30622
704,319
def get_task_link(task_id, task_df): """Get the link from the PYBOSSA task.""" try: task = task_df.loc[int(task_id)] except KeyError: return None return task['info']['link']
d90e994d2f0a4718bbedf8fd5fd534f6d5d32549
704,320
from typing import List from typing import Tuple def partwise_function(function: str, parts: List[Tuple[str, str]], add_zero_otherwise: bool = True) -> str: """ Returns a string representing the definition a part-wise mathematical function. **Parameters** - `function`: str The name of the function. - `parts`: list Each element is a tuple yields whose 1st element is the value of the function and whose second is a condition stating where the 1st applies. - `add_zero_otherwise`: bool If True, one last part stating "0, otherwise" is added. **Returns** `out`: str TeX compatible string. """ res = f'{function}=' res += '\\begin{cases}\n' for p in parts: res += f'{p[0]},& {p[1]} \\\\' if add_zero_otherwise: res += r'0,& \text{otherwise}' res += r'\end{cases}' return res
b2954a9c947add4cf4b4740ac62f4ca16d3e1d70
704,321
def read_restrictions_file(file): """ <Purpose> Reads in the contents of a restrictions file. <Arguments> file: name/path of the file to open <Returns> A list, where each element is a line in the file """ # Get the file object, read mode with universal newlines fileo = open(file,"rU") # Read in all the contents contents = fileo.readlines() # Close the file object fileo.close() return contents
df7207ea3bab49af47fcfbdaa9cc51f54692bb85
704,322
import re def uniescape(text: str) -> str: """ Escapes all non-ASCII printable characters with JavaScript Unicode escapes. """ def escape(match): character = match.group(0) assert len(character) == 1 code_point = ord(character) assert code_point <= 0xFFFF return f"\\u{code_point:04X}" return re.sub("[^\u0020-\u007F]", escape, text)
0ce57acb1dc8dc88ad366844f323e6527eb655af
704,323
from typing import Dict from typing import List from typing import Union def aggregate_collate_fn(insts) -> Dict[str, List[List[Union[int, str, List[int]]]]]: """aggregate the instance to the max seq length in batch Args: insts: list of sample Returns: """ subtree_spans, children_spans, snts = [], [], [] for inst in insts: subtree_spans.append(inst['subtree_span']) snts.append(inst['snt']) children_spans.append(inst['children_span']) assert len(subtree_spans) == len(snts) == len(children_spans) return {'subtree_spans': subtree_spans, 'snts': snts, 'children_spans': children_spans}
5b3cbb71876b9814a9664f0d99396308a218c3aa
704,324
import re def clean(s): """ remove symbols and lowercase """ regex = re.compile('\W+') s = regex.sub(' ', s).strip() return s.lower()
f0f71dacac0d792c10480f9eec605bc85bf58be0
704,325
def trueifset(xeval, typematch=False): """return True if @xeval is set, otherwise False""" if typematch: if not (xeval is False or xeval is None): return True else: return False else: if xeval: return True else: return False
ff9ab55f869edc0fc784d9a34f55fe46652f22b5
704,326
def get_file_content(file: str) -> str: """ Get file content. """ try: with open(file, 'r') as f: content = f.read() return content except IOError as e: print(e) print('Exiting...') exit(1)
c10407d73ba2cd2d84eb99c0f131d3895ede460d
704,327
def Any(x): """The Any type; can also be used to cast a value to type Any.""" return x
88abecb27317e5bf16c5bd27c306ce800c7ac760
704,328
def resource_name_for_resource_type(resource_type, row): """Return the resource name for the resource type. Each returned row contains all possible changed fields. This function returns the resource name of the changed field based on the resource type. The changed field's parent is also populated but is not used. Args: resource_type: the string equivalent of the resource type row: a single row returned from the service Returns: The resource name of the field that changed. """ resource_name = '' # default for UNSPECIFIED or UNKNOWN if resource_type == 'AD_GROUP': resource_name = row.change_status.ad_group.value elif resource_type == 'AD_GROUP_AD': resource_name = row.change_status.ad_group_ad.value elif resource_type == 'AD_GROUP_CRITERION': resource_name = row.change_status.ad_group_criterion.value elif resource_type == 'CAMPAIGN': resource_name = row.change_status.campaign.value elif resource_type == 'CAMPAIGN_CRITERION': resource_name = row.change_status.campaign_criterion.value return resource_name
500bc32be1765f1e516f4f7cd386b24c3c4f373f
704,329
import re def to_yw7(text): """Convert html tags to yWriter 6/7 raw markup. Return a yw6/7 markup string. """ # Clean up polluted HTML code. text = re.sub('</*font.*?>', '', text) text = re.sub('</*span.*?>', '', text) text = re.sub('</*FONT.*?>', '', text) text = re.sub('</*SPAN.*?>', '', text) # Put everything in one line. text = text.replace('\n', ' ') text = text.replace('\r', ' ') text = text.replace('\t', ' ') while ' ' in text: text = text.replace(' ', ' ').rstrip().lstrip() # Replace HTML tags by yWriter markup. text = text.replace('<i>', '[i]') text = text.replace('<I>', '[i]') text = text.replace('</i>', '[/i]') text = text.replace('</I>', '[/i]') text = text.replace('</em>', '[/i]') text = text.replace('</EM>', '[/i]') text = text.replace('<b>', '[b]') text = text.replace('<B>', '[b]') text = text.replace('</b>', '[/b]') text = text.replace('</B>', '[/b]') text = text.replace('</strong>', '[/b]') text = text.replace('</STRONG>', '[/b]') text = re.sub('<em.*?>', '[i]', text) text = re.sub('<EM.*?>', '[i]', text) text = re.sub('<strong.*?>', '[b]', text) text = re.sub('<STRONG.*?>', '[b]', text) # Remove orphaned tags. text = text.replace('[/b][b]', '') text = text.replace('[/i][i]', '') text = text.replace('[/b][b]', '') return text
59b9b961f7a94d23e2829b9d940f63c32207600b
704,330