content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def GetMappingKeyName(run, user):
"""Returns a str used to uniquely identify a mapping."""
return 'RunTesterMap_%s_%s' % (run.key().name(), str(user.user_id())) | b4eb80ca5f084ea956f6a458f92de1b85e722cda | 2,811 |
def year_from_operating_datetime(df):
"""Add a 'year' column based on the year in the operating_datetime.
Args:
df (pandas.DataFrame): A DataFrame containing EPA CEMS data.
Returns:
pandas.DataFrame: A DataFrame containing EPA CEMS data with a 'year'
column.
"""
df['year'] = df.operating_datetime_utc.dt.year
return df | 1c7bbc6465d174465151e5e777671f319ee656b7 | 2,812 |
def get_seats_percent(election_data):
"""
This function takes a lists of lists as and argument, with each list representing a party's election results,
and returns a tuple with the percentage of Bundestag seats won by various political affiliations.
Parameters:
election_data (list): A list of lists, each representing a party's election results
Returns:
A tuple with percentage of Bundestag seats won by various political affiliations
"""
left_seats = 0
right_seats = 0
extreme_seats = 0
center_seats = 0
total_bundestag_seats = 0
for party in election_data[1:]:
total_bundestag_seats += int(party[1])
if 'far' in party[2]:
extreme_seats += party[1]
else:
center_seats += party[1]
if 'left' in party[2]:
left_seats += party[1]
else:
right_seats += party[1]
left_percent = round((left_seats / total_bundestag_seats * 100), 2)
right_percent = round((right_seats / total_bundestag_seats * 100), 2)
extreme_percent = round((extreme_seats / total_bundestag_seats * 100), 2)
center_percent = round((center_seats / total_bundestag_seats * 100), 2)
return left_percent, right_percent, extreme_percent, center_percent | a131d64747c5c0dde8511e9ec4da07252f96a6ec | 2,815 |
import random
def random_choice(gene):
"""
Randomly select a object, such as strings, from a list. Gene must have defined `choices` list.
Args:
gene (Gene): A gene with a set `choices` list.
Returns:
object: Selected choice.
"""
if not 'choices' in gene.__dict__:
raise KeyError("'choices' not defined in this gene, please include a list values!")
return random.choice(gene.choices) | 8a01a2039a04262aa4fc076bdd87dbf760f45253 | 2,817 |
from random import shuffle
def shuffle_list(*ls):
""" shuffle multiple list at the same time
:param ls:
:return:
"""
l = list(zip(*ls))
shuffle(l)
return zip(*l) | ec46e4a8da2c04cf62da2866d2d685fc796887e5 | 2,820 |
def nodes(G):
"""Returns an iterator over the graph nodes."""
return G.nodes() | 3a1a543f1af4d43c79fd0083eb77fedd696547ec | 2,821 |
def process_input(input_string, max_depth):
"""
Clean up the input, convert it to an array and compute the longest
array, per feature type.
"""
# remove the quotes and extra spaces from the input string
input_string = input_string.replace('"', '').replace(', ', ',').strip()
# convert the string to an array and also track the longest array, so
# we know how many levels for the feature type.
tmp = []
if input_string:
tmp = input_string.split(',')
if max_depth < len(tmp):
max_depth = len(tmp)
# return the array and the depth
return tmp, max_depth | ca0fddd0b3bf145c7fc0654212ae43f02799b466 | 2,822 |
def construct_tablepath(fmdict, prefix=''):
"""
Construct a suitable pathname for a CASA table made from fmdict,
starting with prefix. prefix can contain a /.
If prefix is not given, it will be set to
"ephem_JPL-Horizons_%s" % fmdict['NAME']
"""
if not prefix:
prefix = "ephem_JPL-Horizons_%s" % fmdict['NAME']
return prefix + "_%.0f-%.0f%s%s.tab" % (fmdict['earliest']['m0']['value'],
fmdict['latest']['m0']['value'],
fmdict['latest']['m0']['unit'],
fmdict['latest']['refer']) | 95041aab91ac9994ef2068d5e05f6cd63969d94e | 2,823 |
def recursiveUpdate(target, source):
"""
Recursively update the target dictionary with the source dictionary, leaving unfound keys in place.
This is different than dict.update, which removes target keys not in the source
:param dict target: The dictionary to be updated
:param dict source: The dictionary to be integrated
:return: target dict is returned as a convenience. This function updates the target dict in place.
:rtype: dict
"""
for k, v in source.items():
if isinstance(v, dict):
target[k] = recursiveUpdate(target.get(k, {}), v)
else:
target[k] = v
return target | e1c11d0801be9526e8e73145b1dfc7be204fc7d0 | 2,825 |
def get_module_id_from_event(event):
"""
Helper function to get the module_id from an EventHub message
"""
if "iothub-connection-module_id" in event.message.annotations:
return event.message.annotations["iothub-connection-module-id".encode()].decode()
else:
return None | e183824fff183e3f95ef35c623b13245eb68a8b7 | 2,828 |
from typing import Collection
def A006577(start: int = 0, limit: int = 20) -> Collection[int]:
"""Number of halving and tripling steps to reach 1 in '3x+1' problem,
or -1 if 1 is never reached.
"""
def steps(n: int) -> int:
if n == 1:
return 0
x = 0
while True:
if n % 2 == 0:
n //= 2
else:
n = 3 * n + 1
x += 1
if n < 2:
break
return x
return [steps(n) for n in range(start, start + limit)] | 47829838af8e2fdb191fdefa755e728db9c09559 | 2,831 |
def parabolic(f, x):
"""
Quadratic interpolation in order to estimate the location of a maximum
https://gist.github.com/endolith/255291
Args:
f (ndarray): a vector a samples
x (int): an index on the vector
Returns:
(vx, vy): the vertex coordinates of a parabola passing through x
and its neighbors
"""
xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x)
return (xv, yv) | 4373ee6390f3523d0fd69487c27e05522bd8c230 | 2,839 |
import re
def get_better_loci(filename, cutoff):
"""
Returns a subset of loci such that each locus includes at least "cutoff"
different species.
:param filename:
:param cutoff:
:return:
"""
f = open(filename)
content = f.read()
f.close()
loci = re.split(r'//.*|', content)
better_loci = []
for locus in loci:
found_species = set()
for line in locus.strip().split("\n"):
if line == "":
continue
(individual, sequence) = line[1:].split()
found_species.add(individual.split("_")[-1])
if len(found_species) >= cutoff:
better_loci.append(locus)
return better_loci | e2d563c9d0568cef59ea0280aae61a78bf4a6e7b | 2,840 |
import six
def canonicalize_monotonicity(monotonicity, allow_decreasing=True):
"""Converts string constants representing monotonicity into integers.
Args:
monotonicity: The monotonicities hyperparameter of a `tfl.layers` Layer
(e.g. `tfl.layers.PWLCalibration`).
allow_decreasing: If decreasing monotonicity is considered a valid
monotonicity.
Returns:
monotonicity represented as -1, 0, 1, or None.
Raises:
ValueError: If monotonicity is not in the set
{-1, 0, 1, 'decreasing', 'none', 'increasing'} and allow_decreasing is
True.
ValueError: If monotonicity is not in the set {0, 1, 'none', 'increasing'}
and allow_decreasing is False.
"""
if monotonicity is None:
return None
if monotonicity in [-1, 0, 1]:
if not allow_decreasing and monotonicity == -1:
raise ValueError(
"'monotonicities' must be from: [0, 1, 'none', 'increasing']. "
"Given: {}".format(monotonicity))
return monotonicity
elif isinstance(monotonicity, six.string_types):
if monotonicity.lower() == "decreasing":
if not allow_decreasing:
raise ValueError(
"'monotonicities' must be from: [0, 1, 'none', 'increasing']. "
"Given: {}".format(monotonicity))
return -1
if monotonicity.lower() == "none":
return 0
if monotonicity.lower() == "increasing":
return 1
raise ValueError("'monotonicities' must be from: [-1, 0, 1, 'decreasing', "
"'none', 'increasing']. Given: {}".format(monotonicity)) | a9d0870d03f11d7bdff4c8f673cd78d072fa8478 | 2,843 |
def add_gdp(df, gdp, input_type="raw", drop=True):
"""Adds the `GDP` to the dataset. Assuming that both passed dataframes have a column named `country`.
Parameters
----------
df : pd.DataFrame
Training of test dataframe including the `country` column.
gdp : pd.DataFrame
Mapping between `country` and `GDP`
input_type : {"raw", "aggregated"}
Whether the operation should run on the raw, or the aggregated dataset.
drop : bool
Whether the old country columns should be droped.
Returns
-------
pd.DataFrame
The passed `df` with a new column corresponding to the mapped GDP.
"""
def stringify(maybe_string):
# Handles Unicode country names like "Côte d’Ivoire" , "Réunion" etc, as well as countries only existing
# in one of the two dataframes.
try:
return str(maybe_string)
except UnicodeEncodeError:
return "Unknown"
if input_type == "aggregated":
country_cols = [col for col in df.columns if col.startswith("country") and col != "country"]
def inverse_ohe(row):
for c in country_cols:
if row[c] == 1:
return c.split("_")[1]
df["country"] = df.apply(inverse_ohe, axis=1)
if drop:
df = df.drop(country_cols, axis=1)
elif input_type != "raw":
msg = "Only {} and {} are supported. \n" + \
"\tThe former assumes the original form where only the JSON has been flattened.\n" + \
"\tThe latter assumes that OHE has already occured on top."
raise ValueError(msg)
df["country"] = df["country"].fillna("Unknown").apply(stringify)
result = df.merge(gdp, on="country", how='left')
if drop:
result.drop("country", axis=1, inplace=True)
return result | 72e2b5fe839f3dbc71ca2def4be442535a0adb84 | 2,844 |
def ravel_group_params(parameters_group):
"""Take a dict(group -> {k->p}) and return a dict('group:k'-> p)
"""
return {f'{group_name}:{k}': p
for group_name, group_params in parameters_group.items()
for k, p in group_params.items()} | 4a768e89cd70b39bea4f658600690dcb3992a710 | 2,847 |
def _parse_path(**kw):
"""
Parse leaflet `Path` options.
http://leafletjs.com/reference-1.2.0.html#path
"""
color = kw.pop('color', '#3388ff')
return {
'stroke': kw.pop('stroke', True),
'color': color,
'weight': kw.pop('weight', 3),
'opacity': kw.pop('opacity', 1.0),
'lineCap': kw.pop('line_cap', 'round'),
'lineJoin': kw.pop('line_join', 'round'),
'dashArray': kw.pop('dash_array', None),
'dashOffset': kw.pop('dash_offset', None),
'fill': kw.pop('fill', False),
'fillColor': kw.pop('fill_color', color),
'fillOpacity': kw.pop('fill_opacity', 0.2),
'fillRule': kw.pop('fill_rule', 'evenodd'),
'bubblingMouseEvents': kw.pop('bubbling_mouse_events', True),
} | 02d3810ad69a1a0b8f16d61e661e246aea5c09cc | 2,851 |
from typing import Optional
import time
from datetime import datetime
def time_struct_2_datetime(
time_struct: Optional[time.struct_time],
) -> Optional[datetime]:
"""Convert struct_time to datetime.
Args:
time_struct (Optional[time.struct_time]): A time struct to convert.
Returns:
Optional[datetime]: A converted value.
"""
return (
datetime.fromtimestamp(time.mktime(time_struct))
if time_struct is not None
else None
) | 705b09428d218e8a47961e247b62b9dfd631a41f | 2,853 |
import time
def wait_for_compute_jobs(nevermined, account, jobs):
"""Monitor and wait for compute jobs to finish.
Args:
nevermined (:py:class:`nevermined_sdk_py.Nevermined`): A nevermined instance.
account (:py:class:`contracts_lib_py.account.Account`): Account that published
the compute jobs.
jobs (:obj:`list` of :obj:`tuple`): A list of tuples with each tuple
containing (service_agreement_id, compute_job_id).
Returns:
:obj:`list` of :obj:`str`: Returns a list of dids produced by the jobs
Raises:
ValueError: If any of the jobs fail
"""
failed = False
dids = set()
while True:
finished = 0
for i, (sa_id, job_id) in enumerate(jobs):
status = nevermined.assets.compute_status(sa_id, job_id, account)
print(f"{job_id}: {status['status']}")
if status["status"] == "Failed":
failed = True
if status["status"] == "Succeeded":
finished += 1
dids.add(status["did"])
if failed:
for i, (sa_id, job_id) in enumerate(jobs):
logs = nevermined.assets.compute_logs(sa_id, job_id, account)
for line in logs:
print(f"[{line['podName']}]: {line['content']}")
raise ValueError("Some jobs failed")
if finished == len(jobs):
break
# move up 4 lines
print("\u001B[4A")
time.sleep(5)
return list(dids) | 98370b8d596f304630199578a360a639507ae3c3 | 2,855 |
def find_balanced(text, start=0, start_sep='(', end_sep=')'):
""" Finds balanced ``start_sep`` with ``end_sep`` assuming
that ``start`` is pointing to ``start_sep`` in ``text``.
"""
if start >= len(text) or start_sep != text[start]:
return start
balanced = 1
pos = start + 1
while pos < len(text):
token = text[pos]
pos += 1
if token == end_sep:
if balanced == 1:
return pos
balanced -= 1
elif token == start_sep:
balanced += 1
return start | 15c17a216405028b480efa9d12846905a1eb56d4 | 2,858 |
def gather_along_dim_with_dim_single(x, target_dim, source_dim, indices):
"""
This function indexes out a target dimension of a tensor in a structured way,
by allowing a different value to be selected for each member of a flat index
tensor (@indices) corresponding to a source dimension. This can be interpreted
as moving along the source dimension, using the corresponding index value
in @indices to select values for all other dimensions outside of the
source and target dimensions. A common use case is to gather values
in target dimension 1 for each batch member (target dimension 0).
Args:
x (torch.Tensor): tensor to gather values for
target_dim (int): dimension to gather values along
source_dim (int): dimension to hold constant and use for gathering values
from the other dimensions
indices (torch.Tensor): flat index tensor with same shape as tensor @x along
@source_dim
Returns:
y (torch.Tensor): gathered tensor, with dimension @target_dim indexed out
"""
assert len(indices.shape) == 1
assert x.shape[source_dim] == indices.shape[0]
# unsqueeze in all dimensions except the source dimension
new_shape = [1] * x.ndimension()
new_shape[source_dim] = -1
indices = indices.reshape(*new_shape)
# repeat in all dimensions - but preserve shape of source dimension,
# and make sure target_dimension has singleton dimension
expand_shape = list(x.shape)
expand_shape[source_dim] = -1
expand_shape[target_dim] = 1
indices = indices.expand(*expand_shape)
out = x.gather(dim=target_dim, index=indices)
return out.squeeze(target_dim) | 06fbba5478ddb21cda9a555c41c94c809244537c | 2,861 |
def extract_p(path, dict_obj, default):
"""
try to extract dict value in key path, if key error provide default
:param path: the nested dict key path, separated by '.'
(therefore no dots in key names allowed)
:param dict_obj: the dictinary object from which to extract
:param default: a default return value if key error
:return: extracted value
"""
if dict_obj is None:
return default
keys = path.split('.')
tmp_iter = dict_obj
for key in keys:
try:
# dict.get() might make KeyError exception unnecessary
tmp_iter = tmp_iter.get(key, default)
except KeyError:
return default
return tmp_iter | 1a563212e229e67751584885c5db5ac19157c37f | 2,863 |
def group_bars(note_list):
"""
Returns a list of bars, where each bar is a list of notes. The
start and end times of each note are rescaled to units of bars, and
expressed relative to the beginning of the current bar.
Parameters
----------
note_list : list of tuples
List of notes to group into bars.
"""
bar_list = []
current_bar = []
current_bar_start_time = 0
for raw_note in note_list:
if raw_note[0] != -1:
current_bar.append(raw_note)
elif raw_note[0] == -1:
quarter_notes_per_bar = raw_note[2] - current_bar_start_time
current_bar_scaled = []
for note in current_bar:
current_bar_scaled.append((note[0],
note[1],
min([(note[2]
- current_bar_start_time)
/ quarter_notes_per_bar, 1]),
min([(note[3]
- current_bar_start_time)
/ quarter_notes_per_bar, 1])))
bar_list.append(current_bar_scaled)
current_bar = []
current_bar_start_time = raw_note[2]
return bar_list | 3b12a7c7e2395caa3648abf152915ece4b325599 | 2,865 |
import re
def sample(s, n):
"""Show a sample of string s centered at position n"""
start = max(n - 8, 0)
finish = min(n + 24, len(s))
return re.escape(s[start:finish]) | 565f69224269ed7f5faa538d40ce277714144577 | 2,868 |
import math
def encode_integer_compact(value: int) -> bytes:
"""Encode an integer with signed VLQ encoding.
:param int value: The value to encode.
:return: The encoded integer.
:rtype: bytes
"""
if value == 0:
return b"\0"
if value < 0:
sign_bit = 0x40
value = -value
else:
sign_bit = 0
n_bits = value.bit_length()
n_bytes = 1 + int(math.ceil((n_bits - 6) / 7))
buf = bytearray(n_bytes)
for i in range(n_bytes - 1, 0, -1):
buf[i] = 0x80 | (value & 0x7F)
value >>= 7
buf[0] = 0x80 | sign_bit | (value & 0x3F)
buf[-1] &= 0x7F
return bytes(buf) | daf9ed4a794754a3cd402e8cc4c3e614857941fe | 2,869 |
def get_html_subsection(name):
"""
Return a subsection as HTML, with the given name
:param name: subsection name
:type name: str
:rtype: str
"""
return "<h2>{}</h2>".format(name) | 2e0f37a7bb9815eda24eba210d8518e64595b9b7 | 2,872 |
import random
def shuffle(answers):
"""
Returns mixed answers and the index of the correct one,
assuming the first answer is the correct one.
"""
indices = list(range(len(answers)))
random.shuffle(indices)
correct = indices.index(0)
answers = [answers[i] for i in indices]
return answers, correct | e597b4aeb65fecf47f4564f2fddb4d76d484707a | 2,875 |
from typing import List
from pathlib import Path
def get_requirements(req_file: str) -> List[str]:
"""
Extract requirements from provided file.
"""
req_path = Path(req_file)
requirements = req_path.read_text().split("\n") if req_path.exists() else []
return requirements | 3433cd117bbb0ced7ee8238e36f20c69e15c5260 | 2,876 |
def align_dataframes(framea, frameb, fill_value = 0.0):
"""Use pandas DataFrame structure to align two-dimensional data
:param framea: First pandas dataframe to align
:param frameb: Other pandas dataframe to align
:param fill_value: default fill value (0.0 float)
return: tuple of aligned frames
"""
zeroframe = frameb.copy()
zeroframe[:] = fill_value
aligneda = framea.add(zeroframe, fill_value = fill_value)
zeroframe = framea.copy()
zeroframe[:] = fill_value
alignedb = frameb.add(zeroframe, fill_value = fill_value)
return aligneda, alignedb | 86a5e8c399ab47a10715af6c90d0901c2207597c | 2,878 |
def dm2skin_normalizeWeightsConstraint(x):
"""Constraint used in optimization that ensures
the weights in the solution sum to 1"""
return sum(x) - 1.0 | 79024cb70fd6cbc3c31b0821baa1bcfb29317043 | 2,884 |
import glob
def find_pkg(pkg):
""" Find the package file in the repository """
candidates = glob.glob('/repo/' + pkg + '*.rpm')
if len(candidates) == 0:
print("No candidates for: '{0}'".format(pkg))
assert len(candidates) == 1
return candidates[0] | ac91f34ed7accd2c81e1c68e143319998de9cdf3 | 2,888 |
def _check_eq(value):
"""Returns a function that checks whether the value equals a
particular integer.
"""
return lambda x: int(x) == int(value) | 4d2a02727afd90dbc012d252b01ed72f745dc564 | 2,891 |
def calcPhase(star,time):
"""
Calculate the phase of an orbit, very simple calculation but used quite a lot
"""
period = star.period
phase = time/period
return phase | 4b282d9e4fdb76a4358d895ba30b902328ce030c | 2,893 |
def inv(n: int, n_bits: int) -> int:
"""Compute the bitwise inverse.
Args:
n: An integer.
n_bits: The bit-width of the integers used.
Returns:
The binary inverse of the input.
"""
# We should only invert the bits that are within the bit-width of the
# integers we use. We set this mask to set the other bits to zero.
bit_mask = (1 << n_bits) - 1 # e.g. 0b111 for n_bits = 3
return ~n & bit_mask | 5be1eaf13490091096b8cd13fdbcdbbbe43760da | 2,895 |
def check_for_features(cmph5_file, feature_list):
"""Check that all required features present in the cmph5_file. Return
a list of features that are missing.
"""
aln_group_path = cmph5_file['AlnGroup/Path'][0]
missing_features = []
for feature in feature_list:
if feature not in cmph5_file[aln_group_path].keys():
missing_features.append(feature)
return missing_features | 2d51e1389e6519607001ad2b0006581e6a876ddd | 2,899 |
import re
def compress_sparql(text: str, prefix: str, uri: str) -> str:
"""
Compress given SPARQL query by replacing all instances of the given uri with the given prefix.
:param text: SPARQL query to be compressed.
:param prefix: prefix to use as replace.
:param uri: uri instance to be replaced.
:return: compressed SPARQL query.
"""
bordersremv = lambda matchobj: prefix + ":" + re.sub(f"[<>]|({uri})", "", matchobj.group(0))
return re.sub(f"<?({uri}).*>?", bordersremv, text) | b86ceebadb262730fb4dec90b43e04a09d9c9541 | 2,901 |
def use(*authenticator_classes):
""" A decorator to attach one or more :class:`Authenticator`'s to the decorated class.
Usage:
from thorium import auth
@auth.use(BasicAuth, CustomAuth)
class MyEngine(Endpoint):
...
OR
@auth.use(BasicAuth)
@auth.use(CustomAuth)
class MyEngine(Endpoint):
...
:param authenticator_classes: One or more :class:`Authenticator` class definitions.
"""
def wrapped(cls):
if not cls._authenticator_classes:
cls._authenticator_classes = []
cls._authenticator_classes.extend(authenticator_classes)
return cls
return wrapped | 27aeb7711c842540a1ed77a76cebeb61e0342f1e | 2,905 |
import math
def mutual_information(co_oc, oi, oj, n):
"""
:param co_oc: Number of co occurrences of the terms oi and oj in the corpus
:param oi: Number of occurrences of the term oi in the corpus
:param oj: Number of occurrences of the term oi in the corpus
:param n: Total number of words in the corpus
:return:
"""
e = (oi * oj)/n
return math.log2(co_oc/e) | 76c27295c7e757282573eab71f2bb7cfd3df74cb | 2,906 |
def merge_options(custom_options, **default_options):
"""
Utility function to merge some default options with a dictionary of custom_options.
Example: custom_options = dict(a=5, b=3)
merge_options(custom_options, a=1, c=4)
--> results in {a: 5, b: 3, c: 4}
"""
merged_options = default_options
merged_options.update(custom_options)
return merged_options | a1676c9304f3c231aefaeb107c8fb6f5a8251b26 | 2,909 |
def _filter_nones(centers_list):
"""
Filters out `None` from input list
Parameters
----------
centers_list : list
List potentially containing `None` elements
Returns
-------
new_list : list
List without any `None` elements
"""
return [c for c in centers_list if c is not None] | 031e878ebc8028deea238f5ac902ca55dba72a6d | 2,910 |
def isolate_integers(string):
"""Isolate positive integers from a string, returns as a list of integers."""
return [int(s) for s in string.split() if s.isdigit()] | cc95f7a37e3ae258ffaa54ec59f4630c600e84e1 | 2,911 |
import json
def store_barbican_secret_for_coriolis(
barbican, secret_info, name='Coriolis Secret'):
""" Stores secret connection info in Barbican for Coriolis.
:param barbican: barbican_client.Client instance
:param secret_info: secret info to store
:return: the HREF (URL) of the newly-created Barbican secret
"""
payload = json.dumps(secret_info)
secret = barbican.secrets.create(
name=name, payload=payload,
payload_content_type='application/json')
secret_ref = secret.store()
return secret_ref | 218bf941203dd12bc78fc7a87d6a2f9f21761d57 | 2,912 |
def normalize(features):
"""
Scale data in provided series into [0,1] range.
:param features:
:return:
"""
return (features - features.min()) / (features.max() - features.min()) | a85d77e37e71c732471d7dcd42ae1aef2181f6dc | 2,915 |
from datetime import datetime
import time
def dateToUsecs(datestring):
"""Convert Date String to Unix Epoc Microseconds"""
dt = datetime.strptime(datestring, "%Y-%m-%d %H:%M:%S")
return int(time.mktime(dt.timetuple())) * 1000000 | cba081ae63523c86572463249b4324f2183fcaaa | 2,917 |
def find_vertical_bounds(hp, T):
"""
Finds the upper and lower bounds of the characters' zone on the plate based on threshold value T
:param hp: horizontal projection (axis=1) of the plate image pixel intensities
:param T: Threshold value for bound detection
:return: upper and lower bounds
"""
N = len(hp)
# Find lower bound
i = 0
while ~((hp[i] <= T) & (hp[i+1] > T)) & (i < int(N/2)):
i += 1
lower_bound = 0 if i == int(N/2) else i
# Find superior bound
i = N-1
while ~((hp[i-1] > T) & (hp[i] <= T)) & (i > int(N/2)):
i -= 1
upper_bound = i
return [lower_bound, upper_bound] | 8520c3b638cafe1cfb2d86cc7ce8c3f28d132512 | 2,921 |
def cost_n_moves(prev_cost: int, weight: int = 1) -> int:
""" 'g(n)' cost function that adds a 'weight' to each move."""
return prev_cost + weight | 77a737d68f2c74eaba484b36191b95064b05e1a9 | 2,924 |
def meh(captcha):
"""Returns the sum of the digits which match the next one in the captcha
input string.
>>> meh('1122')
3
>>> meh('1111')
4
>>> meh('1234')
0
>>> meh('91212129')
9
"""
result = 0
for n in range(len(captcha)):
if captcha[n] == captcha[(n + 1) % len(captcha)]:
result += int(captcha[n])
return result | 2ff68455b7bb826a81392dba3bc8899374cbcc3e | 2,927 |
def goodput_for_range(endpoint, first_packet, last_packet):
"""Computes the goodput (in bps) achieved between observing two specific packets"""
if first_packet == last_packet or \
first_packet.timestamp_us == last_packet.timestamp_us:
return 0
byte_count = 0
seen_first = False
for packet in endpoint.packets:
if packet == last_packet:
break
if packet == first_packet:
seen_first = True
if not seen_first:
continue
# Packet contributes to goodput if it was not retransmitted
if not packet.is_lost():
byte_count += packet.data_len
time_us = last_packet.timestamp_us - first_packet.timestamp_us
return byte_count * 8 * 1E6 / time_us | aea56993771c1a250dacdfccf8328c7a0d3ce50b | 2,929 |
def get_string_from_bytes(byte_data, encoding="ascii"):
"""Decodes a string from DAT file byte data.
Note that in byte form these strings are 0 terminated and this 0 is removed
Args:
byte_data (bytes) : the binary data to convert to a string
encoding (string) : optional, the encoding type to use when converting
"""
string_bytes = byte_data[0:(len(byte_data) - 1)] # strip off the 0 at the end of the string
string = string_bytes.decode(encoding)
return string | c07523139e2509fcc19b2ce1d9a933fcb648abfd | 2,931 |
def is_free(board: list, pos: int) -> bool:
"""checks if pos is free or filled"""
return board[pos] == " " | 64b75aa5d5b22887495e631e235632e080646422 | 2,933 |
def serialize_measurement(measurement):
"""Serializes a `openff.evaluator.unit.Measurement` into a dictionary of the form
`{'value', 'error'}`.
Parameters
----------
measurement : openff.evaluator.unit.Measurement
The measurement to serialize
Returns
-------
dict of str and str
A dictionary representation of a openff.evaluator.unit.Measurement
with keys of {"value", "error"}
"""
return {"value": measurement.value, "error": measurement.error} | 69eedd9006c63f5734c762d6113495a913d5a8c4 | 2,935 |
def rename_record_columns(records, columns_to_rename):
"""
Renames columns for better desc and to match Socrata column names
:param records: list - List of record dicts
:param columns_to_rename: dict - Dict of Hasura columns and matching Socrata columns
"""
for record in records:
for column, rename_value in columns_to_rename.items():
if column in record.keys():
record[rename_value] = record.pop(column)
return records | 41d5cc90a368f61e8ce138c54e9f5026bacd62b9 | 2,936 |
def remove_list_by_name(listslist, name):
"""
Finds a list in a lists of lists by it's name, removes and returns it.
:param listslist: A list of Twitter lists.
:param name: The name of the list to be found.
:return: The list with the name, if it was found. None otherwise.
"""
for i in range(len(listslist)):
if listslist[i].name == name:
return listslist.pop(i) | 356a7d12f3b2af9951327984ac6d55ccb844bf72 | 2,939 |
def is_int(var):
"""
is this an integer (ie, not a float)?
"""
return isinstance(var, int) | 09924c6ea036fc7ee1add6ccbefc3fb0c9696345 | 2,944 |
def returnstringpacket(pkt):
"""Returns a packet as hex string"""
myString = ""
for c in pkt:
myString += "%02x" % c
return myString | 866ef7c69f522d4a2332798bdf97a966740ea0e4 | 2,945 |
def get_conversion_option(shape_records):
"""Prompts user for conversion options"""
print("1 - Convert to a single zone")
print("2 - Convert to one zone per shape (%d zones) (this can take a while)" % (len(shape_records)))
import_option = int(input("Enter your conversion selection: "))
return import_option | 7608c588960eb3678970e0d4467c67ff9f17a331 | 2,952 |
from functools import reduce
import operator
def product_consec_digits(number, consecutive):
"""
Returns the largest product of "consecutive"
consecutive digits from number
"""
digits = [int(dig) for dig in str(number)]
max_start = len(digits) - consecutive
return [reduce(operator.mul, digits[i:i + consecutive])
for i in range(max_start + 1)] | 2df16f7445e6d579b632e86904b77ec93e52a1f3 | 2,953 |
def generate_legacy_dir(ctx, config, manifest, layers):
"""Generate a intermediate legacy directory from the image represented by the given layers and config to /image_runfiles.
Args:
ctx: the execution context
config: the image config file
manifest: the image manifest file
layers: the list of layer tarballs
Returns:
The filepaths generated and runfiles to be made available.
config: the generated config file.
layers: the generated layer tarball files.
temp_files: all the files generated to be made available at runtime.
"""
# Construct image runfiles for input to pusher.
image_files = [] + layers
if config:
image_files += [config]
if manifest:
image_files += [manifest]
path = "image_runfiles/"
layer_files = []
# Symlink layers to ./image_runfiles/<i>.tar.gz
for i in range(len(layers)):
layer_symlink = ctx.actions.declare_file(path + str(i) + ".tar.gz")
layer_files.append(layer_symlink)
ctx.actions.run_shell(
outputs = [layer_symlink],
inputs = [layers[i]],
command = "ln {src} {dst}".format(
src = layers[i].path,
dst = layer_symlink.path,
),
)
# Symlink config to ./image_runfiles/config.json
config_symlink = ctx.actions.declare_file(path + "config.json")
ctx.actions.run_shell(
outputs = [config_symlink],
inputs = [config],
command = "ln {src} {dst}".format(
src = config.path,
dst = config_symlink.path,
),
)
return {
"config": config_symlink,
"layers": layer_files,
"temp_files": [config_symlink] + layer_files,
} | 6001820e63ac3586625f7ca29311d717cc1e4c07 | 2,954 |
def workflow_key(workflow):
"""Return text search key for workflow"""
# I wish tags were in the manifest :(
elements = [workflow['name']]
elements.extend(workflow['tags'])
elements.extend(workflow['categories'])
elements.append(workflow['author'])
return ' '.join(elements) | 57347705b605e68a286dd953de5bb157ac50628e | 2,955 |
import locale
import re
def parse_price(price):
"""
Convert string price to numbers
"""
if not price:
return 0
price = price.replace(',', '')
return locale.atoi(re.sub('[^0-9,]', "", price)) | bb90aa90b38e66adc73220665bb5e6458bfe5374 | 2,958 |
def zscore(dat, mean, sigma):
"""Calculates zscore of a data point in (or outside of) a dataset
zscore: how many sigmas away is a value from the mean of a dataset?
Parameters
----------
dat: float
Data point
mean: float
Mean of dataset
sigma: flaot
Sigma of dataset
"""
zsc = (dat-mean)/sigma
return zsc | b11216e50632e2024af0a389184d5e1dba7ed4fd | 2,963 |
def unused(attr):
"""
This function check if an attribute is not set (has no value in it).
"""
if attr is None:
return True
else:
return False | febc225f3924fdb9de6cfbf7eba871cce5b6e374 | 2,965 |
def get_evaluate_SLA(SLA_terms, topology, evaluate_individual):
"""Generate a function to evaluate if the flow reliability and latency requirements are met
Args:
SLA_terms {SLA} -- an SLA object containing latency and bandwidth requirements
topology {Topology} -- the reference topology object for the flow
evaluate_individual {function}: a cost function, which returns the metric for a given individual
individual {DEAP individual (list)} -- the individual
Returns:
evaluate_SLA {Function}: a function returning True if the requirements are met, False otherwise
"""
def evaluate_SLA(individual):
evaluation = evaluate_individual(individual)
if evaluation[3] > SLA_terms.latency or evaluation[1] > 1:
return False
return True
return evaluate_SLA | 81fdaa07e3fc21066ab734bef0cc71457d40fb5b | 2,966 |
def latest_consent(user, research_study_id):
"""Lookup latest valid consent for user
:param user: subject of query
:param research_study_id: limit query to respective value
If latest consent for user is 'suspended' or 'deleted', this function
will return None. See ``consent_withdrawal_dates()`` for that need.
:returns: the most recent consent based on given criteria, or None
if no match is located
"""
# consents are ordered desc(acceptance_date)
for consent in user.valid_consents:
if consent.research_study_id != research_study_id:
continue
if consent.status == 'consented':
return consent
return None | 2295b592a0c1fdaf3b1ed21e065f39e73a4bb622 | 2,967 |
from typing import Tuple
def find_next_tag(template: str, pointer: int, left_delimiter: str) -> Tuple[str, int]:
"""Find the next tag, and the literal between current pointer and that tag"""
split_index = template.find(left_delimiter, pointer)
if split_index == -1:
return (template[pointer:], len(template))
return (template[pointer:split_index], split_index) | 82d091ef6738ffbe93e8ea8a0096161fc359e9cb | 2,968 |
def hamiltonian_c(n_max, in_w, e, d):
"""apply tridiagonal real Hamiltonian matrix to a complex vector
Parameters
----------
n_max : int
maximum n for cutoff
in_w : np.array(complex)
state in
d : np.array(complex)
diagonal elements of Hamiltonian
e : np.array(complex)
off diagonal elements of Hamiltonian
Returns
-------
out_w : np.array(complex)
application of Hamiltonian to vector
"""
n_max = int(n_max)
out_w = in_w[:n_max]*d[:n_max]
out_w[:(n_max-1)] += e[:(n_max-1)]*in_w[1:n_max]
out_w[1:n_max] += e[:n_max-1] * in_w[:n_max-1]
return out_w | 9b78d86592622100322d7a4ec031c1bd531ca51a | 2,970 |
def grow_population(initial, days_to_grow):
"""
Track the fish population growth from an initial population, growing over days_to_grow number of days.
To make this efficient two optimizations have been made:
1. Instead of tracking individual fish (which doubles every approx. 8 days which will result O(10^9)
fish over 256 days), we instead compute the sum of fish with the same due date and use the due date
as the offset into the current popluation list. For example, if 5 fish have a timer of 1 and 2 fish
have a timer of 4 the population would be tracked as: [0, 5, 0, 0, 2, 0, 0, 0, 0]
2. Modulo arithmetic is used instead of fully iterating through the entire list to decrement the due
date of each fish every day. Using modula arithmetic provides a projection into the fish data that
looks like its changing each day without needing O(n) operations and instead we can update the list
in constant time regardless of the number of different ages for fish.
"""
current = list(initial)
if days_to_grow == 0:
return current
for day in range(0, days_to_grow):
due_index = day % 9
due_count = current[due_index]
current[(day+7)%9] += due_count
current[(day+9)%9] += due_count
current[due_index] = max(0, current[due_index] - due_count)
return current | 88b8283e5c1e6de19acb76278ef16d9d6b94de00 | 2,974 |
import six
def _ensure_list(alist): # {{{
"""
Ensure that variables used as a list are actually lists.
"""
# Authors
# -------
# Phillip J. Wolfram, Xylar Asay-Davis
if isinstance(alist, six.string_types):
# print 'Warning, converting %s to a list'%(alist)
alist = [alist]
return alist | bd8115dad627f4553ded17757bfb838cfdb0200b | 2,975 |
def showgraphwidth(context, mapping):
"""Integer. The width of the graph drawn by 'log --graph' or zero."""
# just hosts documentation; should be overridden by template mapping
return 0 | 6e2fad8c80264a1030e5a113d66233c3adc28af8 | 2,980 |
def merge_two_sorted_array(l1, l2):
"""
Time Complexity: O(n+m)
Space Complexity: O(n+m)
:param l1: List[int]
:param l2: List[int]
:return: List[int]
"""
if not l1:
return l2
if not l2:
return l1
merge_list = []
i1 = 0
i2 = 0
l1_len = len(l1) - 1
l2_len = len(l2) - 1
while i1 <= l1_len and i2 <= l2_len:
if l1[i1] < l2[i2]:
merge_list.append(l1[i1])
i1 += 1
else:
merge_list.append(l2[i2])
i2 += 1
while i1 <= l1_len:
merge_list.append(l1[i1])
i1 += 1
while i2 <= l2_len:
merge_list.append(l2[i2])
i2 += 1
return merge_list | 2671d21707056741bbdc4e3590135e7e1be4c7e9 | 2,987 |
def check_similarity(var1, var2, error):
"""
Check the simulatiry between two numbers, considering a error margin.
Parameters:
-----------
var1: float
var2: float
error: float
Returns:
-----------
similarity: boolean
"""
if((var1 <= (var2 + error)) and (var1 >= (var2 - error))):
return True
else:
return False | 305fd08cf4d8b1718d8560315ebf7bd03a4c7e2a | 2,989 |
def getCasing(word):
""" Returns the casing of a word"""
if len(word) == 0:
return 'other'
elif word.isdigit(): #Is a digit
return 'numeric'
elif word.islower(): #All lower case
return 'allLower'
elif word.isupper(): #All upper case
return 'allUpper'
elif word[0].isupper(): #is a title, initial char upper, then all lower
return 'initialUpper'
return 'other' | 2af70926c0cbbde6310abb573ccc3ee8260b86bd | 2,990 |
def normalize_angle(deg):
"""
Take an angle in degrees and return it as a value between 0 and 360
:param deg: float or int
:return: float or int, value between 0 and 360
"""
angle = deg
while angle > 360:
angle -= 360
while angle < 360:
angle += 360
return angle | cd4788819bbc8fce17ca7c7b1b320499a3893dee | 2,991 |
def makeFields(prefix, n):
"""Generate a list of field names with this prefix up to n"""
return [prefix+str(n) for n in range(1,n+1)] | 435571557ef556b99c4729500f372cc5c9180052 | 2,992 |
def process_input_dir(input_dir):
"""
Find all image file paths in subdirs, convert to str and extract labels from subdir names
:param input_dir Path object for parent directory e.g. train
:returns: list of file paths as str, list of image labels as str
"""
file_paths = list(input_dir.rglob('*.png'))
file_path_strings = [str(path) for path in file_paths]
label_strings = [path.parent.name for path in file_paths]
return file_path_strings, label_strings | 569d4539368888c91a12538156c611d311da03b6 | 2,993 |
def fak(n):
""" Berechnet die Fakultaet der ganzen Zahl n. """
erg = 1
for i in range(2, n+1):
erg *= i
return erg | 9df6f4fa912a25535369f4deb0a06baef8e6bdcc | 2,994 |
import re
def create_sequences_sonnets(sonnets):
"""
This creates sequences as done in Homework 6, by mapping each word
to an integer in order to create a series of sequences. This function
specifically makes entire sonnets into individual sequences
and returns the list of processed sonnets back to be used in the basic
HMM notebook for generation.
"""
sequences = []
obs_counter = 0
obs_map = {}
for sonnet in sonnets:
sequence = []
for i, line in enumerate(sonnet):
split = line.split()
for word in split:
word = re.sub(r'[^\w]', '', word).lower()
if word not in obs_map:
# Add unique words to the observations map.
obs_map[word] = obs_counter
obs_counter += 1
# Add the encoded word.
sequence.append(obs_map[word])
# Add the encoded sequence.
sequences.append(sequence)
return obs_map, sequences | 56087140fe5ed8934b64a18567b4e9023ddc6f59 | 2,995 |
def load_subspace_vectors(embd, subspace_words):
"""Loads all word vectors for the particular subspace in the list of words as a matrix
Arguments
embd : Dictonary of word-to-embedding for all words
subspace_words : List of words representing a particular subspace
Returns
subspace_embd_mat : Matrix of word vectors stored row-wise
"""
subspace_embd_mat = []
ind = 0
for word in subspace_words:
if word in embd:
subspace_embd_mat.append(embd[word])
ind = ind+1
return subspace_embd_mat | 5eb1db8be8801cf6b1fe294a6f2c93570e9a9fe1 | 3,000 |
import codecs
import binascii
def decode_hex(data):
"""Decodes a hex encoded string into raw bytes."""
try:
return codecs.decode(data, 'hex_codec')
except binascii.Error:
raise TypeError() | 115e89d6f80a6fc535f44d92f610a6312edf6daf | 3,001 |
def generate_headermap(line,startswith="Chr", sep="\t"):
"""
>>> line = "Chr\\tStart\\tEnd\\tRef\\tAlt\\tFunc.refGene\\tGene.refGene\\tGeneDetail.refGene\\tExonicFunc.refGene\\tAAChange.refGene\\tsnp138\\tsnp138NonFlagged\\tesp6500siv2_ea\\tcosmic70\\tclinvar_20150629\\tOtherinfo"
>>> generate_headermap(line)
{'Chr': 0, 'Start': 1, 'End': 2, 'Ref': 3, 'Alt': 4, 'Func.refGene': 5, 'Gene.refGene': 6, 'GeneDetail.refGene': 7, 'ExonicFunc.refGene': 8, 'AAChange.refGene': 9, 'snp138': 10, 'snp138NonFlagged': 11, 'esp6500siv2_ea': 12, 'cosmic70': 13, 'clinvar_20150629': 14, 'Otherinfo': 15}
"""
if not line.startswith(startswith):
raise Exception("Header line should start with \"{0}\"".format(startswith))
else:
if line.startswith("#"):
line = line[1:]
return dict([(v, i) for i,v in enumerate(line.rstrip().split(sep))]) | 16bbbc07fa13ff9bc8ec7af1aafc4ed65b20ec4c | 3,016 |
import math
def log_density_igaussian(z, z_var):
"""Calculate log density of zero-mean isotropic gaussian distribution given z and z_var."""
assert z.ndimension() == 2
assert z_var > 0
z_dim = z.size(1)
return -(z_dim/2)*math.log(2*math.pi*z_var) + z.pow(2).sum(1).div(-2*z_var) | a412b9e25aecfc2baed2d783a2d7cd281fadc9fb | 3,017 |
def _get_crop_frame(image, max_wiggle, tx, ty):
"""
Based on on the max_wiggle, determines a cropping frame.
"""
pic_width, pic_height = image.size
wiggle_room_x = max_wiggle * .5 * pic_width
wiggle_room_y = max_wiggle * .5 * pic_height
cropped_width = pic_width - wiggle_room_x
cropped_height = pic_height - wiggle_room_y
left = int(tx * wiggle_room_x)
top = int(ty * wiggle_room_y)
right = left + cropped_width
bottom = top + cropped_height
return left, top, right, bottom | 18442a97544d6c4bc4116dc43811c9fcd0d203c6 | 3,019 |
def l2sq(x):
"""Sum the matrix elements squared
"""
return (x**2).sum() | c02ea548128dde02e4c3e70f9280f1ded539cee9 | 3,020 |
def comp_number_phase_eq(self):
"""Compute the equivalent number of phase
Parameters
----------
self : LamSquirrelCage
A LamSquirrelCage object
Returns
-------
qb: float
Zs/p
"""
return self.slot.Zs / float(self.winding.p) | f4679cf92dffff138a5a96787244a984a11896f9 | 3,021 |
from typing import Optional
from typing import Iterable
def binidx(num: int, width: Optional[int] = None) -> Iterable[int]:
""" Returns the indices of bits with the value `1`.
Parameters
----------
num : int
The number representing the binary state.
width : int, optional
Minimum number of digits used. The default is the global value `BITS`.
Returns
-------
binidx : list
"""
fill = width or 0
return list(sorted(i for i, char in enumerate(f"{num:0{fill}b}"[::-1]) if char == "1")) | 70d1895cf0141950d8e2f5efe6bfbf7bd8dbc30b | 3,024 |
def _get_object_description(target):
"""Return a string describing the *target*"""
if isinstance(target, list):
data = "<list, length {}>".format(len(target))
elif isinstance(target, dict):
data = "<dict, length {}>".format(len(target))
else:
data = target
return data | 57ad3803a702a1199639b8fe950ef14b8278bec1 | 3,027 |
def computeStatistic( benchmarks, field, func ):
"""
Return the result of func applied to the values of field in benchmarks.
Arguments:
benchmarks: The list of benchmarks to gather data from.
field: The field to gather from the benchmarks.
func: The function to apply to the data, must accept a list and return a single value.
"""
results = []
for benchmark in benchmarks:
results.append( benchmark[ field ] )
return func( results ) | 7eced912d319a3261170f8274c4562db5e28c34c | 3,028 |
def flat_list_of_lists(l):
"""flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]"""
return [item for sublist in l for item in sublist] | c121dff7d7d9a4da55dfb8aa1337ceeea191fc30 | 3,031 |
def multiVecMat( vector, matrix ):
"""
Pronásobí matici vektorem zprava.
Parametry:
----------
vector: list
Vektor
matrix: list
Pronásobená matice. Její dimenze se musí shodovat s dimenzí
vektoru.
Vrací:
list
Pole velikosti vektoru.
"""
# Vytvoří pole o velikosti vektoru
result = [0] * len( matrix[0] )
# Projde matici po řádcích
for r, row in enumerate( matrix ):
# Pokud nesedí rozměry, končíme
if len(row) != len(vector):
return None
# Projde každý prvek v řádku
for i, elem in enumerate( row ):
# K poli s výsledkem přičte na index aktuálního řádku výsledek
# násobení aktuálního prvku v řádku a jemu odpovídajícího
# prvku z vektoru.
result[r] += elem * vector[i]
return result | 8a10241173ab981d6007d8ff939199f9e86806e5 | 3,033 |
def etaCalc(T, Tr = 296.15, S = 110.4, nr = 1.83245*10**-5):
"""
Calculates dynamic gas viscosity in kg*m-1*s-1
Parameters
----------
T : float
Temperature (K)
Tr : float
Reference Temperature (K)
S : float
Sutherland constant (K)
nr : float
Reference dynamic viscosity
Returns
-------
eta : float
Dynamic gas viscosity in kg*m-1*s-1
"""
eta = nr * ( (Tr + S) / (T+S) )*(T/Tr)**(3/2)
return eta | 3f8182ea29fd558e86280477f2e435247d09798e | 3,037 |
def sharpe_ratio(R_p, sigma_p, R_f=0.04):
"""
:param R_p: 策略年化收益率
:param R_f: 无风险利率(默认0.04)
:param sigma_p: 策略收益波动率
:return: sharpe_ratio
"""
sharpe_ratio = 1.0 * (R_p - R_f) / sigma_p
return sharpe_ratio | d197df7aa3b92f3a32cc8f11eb675012ffe8af57 | 3,039 |
def _inline_svg(svg: str) -> str:
"""Encode SVG to be used inline as part of a data URI.
Replacements are not complete, but sufficient for this case.
See https://codepen.io/tigt/post/optimizing-svgs-in-data-uris
for details.
"""
replaced = (
svg
.replace('\n', '%0A')
.replace('#', '%23')
.replace('<', '%3C')
.replace('>', '%3E')
.replace('"', '\'')
)
return 'data:image/svg+xml,' + replaced | 4e3c25f5d91dd7691f42f9b9ace4d64a297eb32f | 3,040 |
import click
def implemented_verified_documented(function):
""" Common story options """
options = [
click.option(
'--implemented', is_flag=True,
help='Implemented stories only.'),
click.option(
'--unimplemented', is_flag=True,
help='Unimplemented stories only.'),
click.option(
'--verified', is_flag=True,
help='Stories verified by tests.'),
click.option(
'--unverified', is_flag=True,
help='Stories not verified by tests.'),
click.option(
'--documented', is_flag=True,
help='Documented stories only.'),
click.option(
'--undocumented', is_flag=True,
help='Undocumented stories only.'),
click.option(
'--covered', is_flag=True,
help='Covered stories only.'),
click.option(
'--uncovered', is_flag=True,
help='Uncovered stories only.'),
]
for option in reversed(options):
function = option(function)
return function | 8c1dd5aaa0b962d96e9e90336183a29e2cf360db | 3,041 |
import json
def get_config(config_path):
""" Open a Tiler config and return it as a dictonary """
with open(config_path) as config_json:
config_dict = json.load(config_json)
return config_dict | 72a2133b44ffc553ad72d6c9515f1f218de6a08c | 3,049 |
import binascii
def fmt_hex(bytes):
"""Format the bytes as a hex string, return upper-case version.
"""
# This is a separate function so as to not make the mistake of
# using the '%X' format string with an ints, which will not
# guarantee an even-length string.
#
# binascii works on all versions of Python, the hex encoding does not.
hex = binascii.hexlify(bytes)
hex = hex.decode() # Returns bytes, which makes no sense to me
return hex.upper() | d25379ec333a653549c329932e304e61c57f173d | 3,050 |
import json
import six
def _HandleJsonList(response, service, method, errors):
"""Extracts data from one *List response page as JSON and stores in dicts.
Args:
response: str, The *List response in JSON
service: The service which responded to *List request
method: str, Method used to list resources. One of 'List' or
'AggregatedList'.
errors: list, Errors from response will be appended to this list.
Returns:
Pair of:
- List of items returned in response as dicts
- Next page token (if present, otherwise None).
"""
items = []
response = json.loads(response)
# If the request is a list call, then yield the items directly.
if method == 'List':
items = response.get('items', [])
# If the request is an aggregatedList call, then do all the
# magic necessary to get the actual resources because the
# aggregatedList responses are very complicated data
# structures...
elif method == 'AggregatedList':
items_field_name = service.GetMethodConfig(
'AggregatedList').relative_path.split('/')[-1]
for scope_result in six.itervalues(response['items']):
# If the given scope is unreachable, record the warning
# message in the errors list.
warning = scope_result.get('warning', None)
if warning and warning['code'] == 'UNREACHABLE':
errors.append((None, warning['message']))
items.extend(scope_result.get(items_field_name, []))
return items, response.get('nextPageToken', None) | db87c9ed87df1268e1187f74c193b5f96f9e10f7 | 3,054 |
def clip(x, min_, max_):
"""Clip value `x` by [min_, max_]."""
return min_ if x < min_ else (max_ if x > max_ else x) | 3ad7625fa3dc5a0c06bb86dc16698f6129ee9034 | 3,055 |
def coordinateToIndex(coordinate):
"""Return a raw index (e.g [4, 4]) from board coordinate (e.g. e4)"""
return [abs(int(coordinate[1]) - 8), ("a", "b", "c", "d", "e", "f", "g", "h").index(coordinate[0])] | d3dcf6d01c4bec2058cffef88867d45ba51ea560 | 3,069 |
def get_parent(inst, rel_type='cloudify.relationships.contained_in'):
"""
Gets the parent of an instance
:param `cloudify.context.NodeInstanceContext` inst: Cloudify instance
:param string rel_type: Relationship type
:returns: Parent context
:rtype: :class:`cloudify.context.RelationshipSubjectContext` or None
"""
for rel in inst.relationships:
if rel_type in rel.type_hierarchy:
return rel.target
return None | 06bc76ec55735a47a3cf26df2daa4346290671ee | 3,071 |
def get_shared_keys(param_list):
"""
For the given list of parameter dictionaries, return a list of the dictionary
keys that appear in every parameter dictionary
>>> get_shared_keys([{'a':0, 'b':1, 'c':2, 'd':3}, {'a':0, 'b':1, 'c':3}, {'a':0, 'b':'beta'}])
['a', 'b']
>>> get_shared_keys([{'a':0, 'd':3}, {'a':0, 'b':1, 'c':2, 'd':3}, {'a':0, 'b':1, 'c':2}])
['a']
"""
if not param_list:
return
keys = set(param_list[0].keys())
for i in range(1, len(param_list)):
keys = keys.intersection(param_list[i].keys())
keys = list(keys)
keys.sort()
return keys | 0f6aa0df4d61ba166ac7d660be80a98fdbc29080 | 3,074 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.