content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def deco_inside_ctx_method_self(target):
"""decorator: wrap a class method inside a `with self: ...` context"""
def tgt(self, *args, **kwargs):
with self:
return target(self, *args, **kwargs)
return tgt | 6a29ad468840229c026e6abf87556018a3e16718 | 2,475 |
def get_added_after(
fetch_full_feed, initial_interval, last_fetch_time=None, filter_args=None
):
"""
Creates the added_after param, or extracts it from the filter_args
:param fetch_full_feed: when set to true, will limit added_after
:param initial_interval: initial_interval if no
:param last_fetch_time: last_fetch time value (str)
:param filter_args: set of filter_args defined by the user to be merged with added_after
:return: added_after
"""
if fetch_full_feed:
return initial_interval
if not filter_args or "added_after" not in filter_args:
return last_fetch_time or initial_interval
return filter_args["added_after"] | 281cb7d7429071bf8dca0d04eedee9130a29b28d | 2,479 |
def _a_in_b(first, second):
"""Check if interval a is inside interval b."""
return first.start >= second.start and first.stop <= second.stop | e4ca21e1861b691510252eb3be53eed16c8bc8cf | 2,482 |
async def ping_server():
"""
Ping Server
===========
Returns the message "The Optuna-server is alive!" if the server is running.
Parameters
----------
None
Returns
-------
msg : str
A message witnessing that the server is running.
"""
msg = 'The Optuna-server is alive!'
return msg | 2098f2167a14f08105824490824d62dd34b4c49e | 2,487 |
def test_from_rsid(rsids, start_rsid):
"""Continue collecting publications for rsids in list, beginning with start_rsid
Args:
rsids (list): list of rsids to collect publications on
start_rsid (str): rsid identifier to resume collecting publications on
Returns:
runtime_rsids (list): [start_rsid, onward...]
start_rsid (str): starting rsid
start_idx (str): starting rsid index
rsids (list): [original list of ALL rsids]
"""
start_idx = rsids.index(start_rsid) # start_rsid index
print(f"STARTING POINT SET TO: | INDEX: {start_idx} / {len(rsids)} | RSID: {rsids[start_idx]}")
runtime_rsids = rsids[start_idx:] # runtime rsids
return runtime_rsids, start_rsid, start_idx, rsids | bf2be86f28645addc08737e64f08695cd6b3a6d3 | 2,489 |
def get_base_url(host_name, customer_id):
"""
:arg host_name: the host name of the IDNow gateway server
:arg customer_id: your customer id
:returns the base url of the IDNow API and the selected customer
"""
return 'https://{0}/api/v1/{1}'.format(host_name, customer_id) | 5a24a87f597cf01c61ab6a01202b2e01e3b00bf8 | 2,491 |
import re
def cigar_segment_bounds(cigar, start):
"""
Determine the start and end positions on a chromosome of a non-no-matching part of an
RNA-seq read based on a read's cigar string.
cigar string meaning: http://bioinformatics.cvr.ac.uk/blog/tag/cigar-string/
Example:
'50M25N50M' with start = 100 -> [100, 149, 175, 224]. Note that start and end integers
are inclusive, i.e. all positions at or between 100 and 149 and at or between 175 and 224
are covered by reads.
:param cigar: str a read's cigar string, e.g. "49M165N51M"
:param start: int a read's start position on a chromosome
:return: list of integers representing cigar match start, end points, in order of matching subsequences
"""
# if CIGAR string is a single full match (i.e. "<positive integer>M")
# extract length of the match, return match segment.
full_match = re.match(r'(\d+)M$', cigar)
if full_match is not None:
extension = int(cigar[:(full_match.span()[-1] - 1)]) - 1
return [start, start + extension]
# break up cigar string into list of 2-tuples (letter indicative of match/no match, run length integer).
cigar_split = [(v, int(k)) for k, v in re.findall(r'(\d+)([A-Z]?)', cigar)]
# initialize parse params.
# Allow for "hard clipping" where aligned read can start with non-matching region (https://bit.ly/2K6TJ5Y)
augment = False
any_match = False
# output storage.
match_idx_list = list()
for idx in range(len(cigar_split)):
segment = cigar_split[idx]
if segment[0] == 'M':
any_match = True
extension = segment[1] - 1 # end of a match run is inclusive.
augment = True
match_idx_list += [start, start + extension] # append a match run to output.
else:
if augment:
extension = segment[1] + 1
augment = False
else:
extension = segment[1]
start += extension
# if no matching regions found, throw error.
if not any_match:
raise ValueError('CIGAR string {0} has no matching region.'.format(cigar))
return match_idx_list | c870dfb9b11e2fd1df9fb347528252f114b8d70f | 2,496 |
import functools
import asyncio
def no_block(func):
"""Turns a blocking function into a non-blocking coroutine function."""
@functools.wraps(func)
async def no_blocking_handler(*args, **kwargs):
partial = functools.partial(func, *args, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, partial)
return no_blocking_handler | 5681fe7275a89c522384b28f9473fded8bba846b | 2,497 |
from typing import List
def load_numbers_sorted(txt: str) -> List[int]:
"""ファイルから番号を読み込みソートしてリストを返す
Args:
txt (str): ファイルのパス
Returns:
List[int]: 番号のリスト
"""
numbers = []
with open(txt) as f:
numbers = sorted(map(lambda e: int(e), f))
return numbers | 6f10badd417a2ceefefa9f28a5c40583ea077d43 | 2,501 |
def translate_pt(p, offset):
"""Translates point p=(x,y) by offset=(x,y)"""
return (p[0] + offset[0], p[1] + offset[1]) | 9fdc578d461219e9e5d1b557b9fde3d7a0946815 | 2,502 |
import torch
def hsic(k_x: torch.Tensor, k_y: torch.Tensor, centered: bool = False, unbiased: bool = True) -> torch.Tensor:
"""Compute Hilbert-Schmidt Independence Criteron (HSIC)
:param k_x: n by n values of kernel applied to all pairs of x data
:param k_y: n by n values of kernel on y data
:param centered: whether or not at least one kernel is already centered
:param unbiased: if True, use unbiased HSIC estimator of Song et al (2007), else use original estimator of Gretton et al (2005)
:return: scalar score in [0*, inf) measuring dependence of x and y
* note that if unbiased=True, it is possible to get small values below 0.
"""
if k_x.size() != k_y.size():
raise ValueError("RDMs must have the same size!")
n = k_x.size()[0]
if not centered:
h = torch.eye(n, device=k_y.device, dtype=k_y.dtype) - 1/n
k_y = h @ k_y @ h
if unbiased:
# Remove the diagonal
k_x = k_x * (1 - torch.eye(n, device=k_x.device, dtype=k_x.dtype))
k_y = k_y * (1 - torch.eye(n, device=k_y.device, dtype=k_y.dtype))
# Equation (4) from Song et al (2007)
return ((k_x *k_y).sum() - 2*(k_x.sum(dim=0)*k_y.sum(dim=0)).sum()/(n-2) + k_x.sum()*k_y.sum()/((n-1)*(n-2))) / (n*(n-3))
else:
# The original estimator from Gretton et al (2005)
return torch.sum(k_x * k_y) / (n - 1)**2 | 7c91aa5991b90f396abbf835111a456208cbc50a | 2,509 |
def ratingRange(app):
""" Get the rating range of an app. """
rating = 'Unknown'
r = app['rating']
if r >= 0 and r <= 1:
rating = '0-1'
elif r > 1 and r <= 2:
rating = '1-2'
elif r > 2 and r <= 3:
rating = '2-3'
elif r > 3 and r <= 4:
rating = '3-4'
elif r > 4 and r <= 5:
rating = '4-5'
return rating | 69056c367a87e331cd3b606423540250b20f6485 | 2,517 |
import io
def generate_table_definition(schema_and_table, column_info,
primary_key=None, foreign_keys=None,
diststyle=None, distkey=None, sortkey=None):
"""Return a CREATE TABLE statement as a string."""
if not column_info:
raise Exception('No columns specified for {}'.format(schema_and_table))
out = io.StringIO()
out.write('CREATE TABLE {} (\n'.format(schema_and_table))
columns_count = len(column_info)
for i, (column, type_) in enumerate(column_info):
out.write(' "{}" {}'.format(column, type_))
if (i < columns_count - 1) or primary_key or foreign_keys:
out.write(',')
out.write('\n')
if primary_key:
out.write(' PRIMARY KEY({})'.format(primary_key))
if foreign_keys:
out.write(',')
out.write('\n')
foreign_keys = foreign_keys or []
foreign_keys_count = len(foreign_keys)
for i, (key, reftable, refcolumn) in enumerate(foreign_keys):
out.write(' FOREIGN KEY({}) REFERENCES {}({})'.format(
key, reftable, refcolumn
))
if i < foreign_keys_count - 1:
out.write(',')
out.write('\n')
out.write(')\n')
if diststyle:
out.write('DISTSTYLE {}\n'.format(diststyle))
if distkey:
out.write('DISTKEY({})\n'.format(distkey))
if sortkey:
if isinstance(sortkey, str):
out.write('SORTKEY({})\n'.format(sortkey))
elif len(sortkey) == 1:
out.write('SORTKEY({})\n'.format(sortkey[0]))
else:
out.write('COMPOUND SORTKEY({})\n'.format(', '.join(sortkey)))
return out.getvalue() | 383cdc8ed13fbaa45adadec26f31ad0f5ac52fbc | 2,519 |
def gradient_descent_update(x, gradx, learning_rate):
"""
Performs a gradient descent update.
"""
# Return the new value for x
return x - learning_rate * gradx | db5ec512883352f473990eca124c8ad302ec3564 | 2,520 |
def next_line(grd_file):
"""
next_line
Function returns the next line in the file
that is not a blank line, unless the line is
'', which is a typical EOF marker.
"""
done = False
while not done:
line = grd_file.readline()
if line == '':
return line, False
elif line.strip():
return line, True | 337f188930a03142bae59cdb378b09f1ac5e2ecb | 2,522 |
from pathlib import Path
import hashlib
def file_md5_is_valid(fasta_file: Path, checksum: str) -> bool:
"""
Checks if the FASTA file matches the MD5 checksum argument.
Returns True if it matches and False otherwise.
:param fasta_file: Path object for the FASTA file.
:param checksum: MD5 checksum string.
:return: boolean indicating if the file validates.
"""
md5_hash = hashlib.md5()
with fasta_file.open(mode="rb") as fh:
# Read in small chunks to avoid memory overflow with large files.
while chunk := fh.read(8192):
md5_hash.update(chunk)
return md5_hash.hexdigest() == checksum | ec400afbe29d940d0638a581da7f2ee001b9e985 | 2,523 |
def combine_to_int(values):
"""Combine several byte values to an integer"""
multibyte_value = 0
for byte_id, byte in enumerate(values):
multibyte_value += 2**(4 * byte_id) * byte
return multibyte_value | 58ff7cbee356cdcbe5b26e973de16c5b1cc40afc | 2,524 |
import requests
from bs4 import BeautifulSoup
def get_soup(page_url):
""" Returns BeautifulSoup object of the url provided """
try:
req = requests.get(page_url)
except Exception:
print('Failed to establish a connection with the website')
return
if req.status_code == 404:
print('Page not found')
return
content = req.content
soup = BeautifulSoup(content, 'html.parser')
return soup | d837e3b6aa6184285857428b2c796172379f3a1f | 2,527 |
def foreign_key_constraint_sql(table):
"""Return the SQL to add foreign key constraints to a given table"""
sql = ''
fk_names = list(table.foreign_keys.keys())
for fk_name in sorted(fk_names):
foreign_key = table.foreign_keys[fk_name]
sql += "FOREIGN KEY({fn}) REFERENCES {tn}({kc}), ".format(
fn=foreign_key.from_col,
tn=foreign_key.to_table.name,
kc=foreign_key.to_col
)
return sql | 0883050d2b9d302ab9099ef27abd400e4d4fe69e | 2,528 |
from pathlib import Path
def get_world_paths() -> list:
"""
Returns a list of paths to the worlds on the server.
"""
server_dir = Path(__file__).resolve().parents[1]
world_paths = []
for p in server_dir.iterdir():
if p.is_dir and (p / "level.dat").is_file():
world_paths.append(p.absolute())
return world_paths | bf1c23c6a1c928dc66470db2e11b49ad2fc9e5d9 | 2,529 |
import hmac
import hashlib
def is_valid_webhook_request(webhook_token: str, request_body: str, webhook_signature_header: str) -> bool:
"""This method verifies that requests to your Webhook URL are genuine and from Buycoins.
Args:
webhook_token: your webhook token
request_body: the body of the request
webhook_signature_header: the X-Webhook-Signature header from BuyCoins
Returns:
a Boolean stating whether the request is valid or not
"""
hmac_request_body = hmac.new(webhook_token.encode(), request_body.encode(), hashlib.sha1)
return hmac.compare_digest(hmac_request_body.hexdigest(), webhook_signature_header) | 1ce1ef0a9e1386ebbea7773d8cd9d40df2544792 | 2,530 |
def _preprocess_stored_query(query_text, config):
"""Inject some default code into each stored query."""
ws_id_text = " LET ws_ids = @ws_ids " if 'ws_ids' in query_text else ""
return '\n'.join([
config.get('query_prefix', ''),
ws_id_text,
query_text
]) | bc63391724773cd4a60f3dc9686d243d6d733b40 | 2,532 |
def print_scale(skill, points):
"""Return TeX lines for a skill scale."""
lines = ['\\cvskill{']
lines[0] += skill
lines[0] += '}{'
lines[0] += str(points)
lines[0] += '}\n'
return lines | c88de0c6db9e7b92dbcee025f42f56817a4aa033 | 2,536 |
def _ontology_value(curie):
"""Get the id component of the curie, 0000001 from CL:0000001 for example."""
return curie.split(":")[1] | 7ef1f0874e698c498ccef16294c0469f67cd5233 | 2,538 |
def alias(*alias):
"""Select a (list of) alias(es)."""
valias = [t for t in alias]
return {"alias": valias} | b2ff51f33b601468b1ba4d371bd5abd6d013a188 | 2,549 |
import json
def read_json_info(fname):
"""
Parse info from the video information file.
Returns: Dictionary containing information on podcast episode.
"""
with open(fname) as fin:
return json.load(fin) | 1eed945ce2917cbca1fb807a807ab57229622374 | 2,550 |
def add_ending_slash(directory: str) -> str:
"""add_ending_slash function
Args:
directory (str): directory that you want to add ending slash
Returns:
str: directory name with slash at the end
Examples:
>>> add_ending_slash("./data")
"./data/"
"""
if directory[-1] != "/":
directory = directory + "/"
return directory | 2062a55b59707dd48e5ae56d8d094c806d8a2c1d | 2,563 |
import re
def extractCompositeFigureStrings(latexString):
"""
Returns a list of latex figures as strings stripping out captions.
"""
# extract figures
figureStrings = re.findall(r"\\begin{figure}.*?\\end{figure}", latexString, re.S)
# filter composite figures only and remove captions (preserving captions in subfigures)
figureStrings = [
re.findall(r"\\begin{figure}.*(?=\n.*\\caption)", figureString, re.S)[0] + "\n\\end{figure}"
for figureString in figureStrings if "\\begin{subfigure}" in figureString
]
return figureStrings | 83a80c91890d13a6a0247745835e1ffb97d579f7 | 2,565 |
import re
def BCA_formula_from_str(BCA_str):
"""
Get chemical formula string from BCA string
Args:
BCA_str: BCA ratio string (e.g. 'B3C1A1')
"""
if len(BCA_str)==6 and BCA_str[:3]=='BCA':
# format: BCAxyz. suitable for single-digit integer x,y,z
funits = BCA_str[-3:]
else:
# format: BxCyAz. suitable for multi-digit or non-integer x,y,z
funits = re.split('[BCA]',BCA_str)
funits = [u for u in funits if len(u) > 0]
funits
components = ['BaO','CaO','Al2O3']
formula = ''.join([f'({c}){n}' for c,n in zip(components, funits)])
return formula | 36375e62d70995628e253ba68ba8b777eb88d728 | 2,570 |
def first_item(iterable, default=None):
"""
Returns the first item of given iterable.
Parameters
----------
iterable : iterable
Iterable
default : object
Default value if the iterable is empty.
Returns
-------
object
First iterable item.
"""
if not iterable:
return default
for item in iterable:
return item | f5ebbaea7cf4152382fb4b2854f68a3320d21fdc | 2,577 |
def rank(value_to_be_ranked, value_providing_rank):
"""
Returns the rank of ``value_to_be_ranked`` in set of values, ``values``.
Works even if ``values`` is a non-orderable collection (e.g., a set).
A binary search would be an optimized way of doing this if we can constrain
``values`` to be an ordered collection.
"""
num_lesser = [v for v in value_providing_rank if v < value_to_be_ranked]
return len(num_lesser) | 18c2009eb59b62a2a3c63c69d55f84a6f51e5953 | 2,579 |
def get_specific_pos_value(img, pos):
"""
Parameters
----------
img : ndarray
image data.
pos : list
pos[0] is horizontal coordinate, pos[1] is verical coordinate.
"""
return img[pos[1], pos[0]] | 3929b29fa307a7e8b5282783c16639cacb2ab805 | 2,583 |
import re
def mrefresh_to_relurl(content):
"""Get a relative url from the contents of a metarefresh tag"""
urlstart = re.compile('.*URL=')
_, url = content.split(';')
url = urlstart.sub('', url)
return url | 90cc3dbace5d4b001698612f9263309fa95aac8b | 2,584 |
import logging
def get_previous_version(versions: dict, app: str) -> str:
"""Looks in the app's .version_history to retrieve the prior version"""
try:
with open(f"{app}/.version_history", "r") as fh:
lines = [line.strip() for line in fh]
except FileNotFoundError:
logging.warning(f"No .version_history for {app}")
return ""
if versions[app] != lines[-1]:
logging.warning(
f"Mismatch in data:\n\tCurrent version is {versions[app]}"
f" but most recent line in .version_history is {lines[-1]}"
)
return ""
elif len(lines) < 2:
logging.warning("No prior version recorded")
return ""
return lines[-2] | d3a4aec5c3bc842181aa3901971774761866c3e5 | 2,585 |
import requests
def getSBMLFromBiomodelsURN(urn):
""" Get SBML string from given BioModels URN.
Searches for a BioModels identifier in the given urn and retrieves the SBML from biomodels.
For example:
urn:miriam:biomodels.db:BIOMD0000000003.xml
Handles redirects of the download page.
:param urn:
:return: SBML string for given model urn
"""
if ":" not in urn:
raise ValueError("The URN", urn, "is not in the correct format: it must be divided by colons in a format such as 'urn:miriam:biomodels.db:BIOMD0000000003.xml'.")
core = urn.split(":")[-1].split(".")[0]
url = "https://www.ebi.ac.uk/biomodels/model/download/" + core + "?filename="+ core + "_url.xml"
response = requests.get(url, allow_redirects=True)
response.raise_for_status()
sbml = response.content
# bytes array in py3
try:
sbml_str = str(sbml.decode("utf-8"))
except:
sbml_str = str(sbml)
return sbml_str | 9a28f4a0619ebed6f9e272d84331482442ae9fb8 | 2,588 |
import string
def list_zero_alphabet() -> list:
"""Build a list: 0, a, b, c etc."""
score_dirs = ['0']
for char in string.ascii_lowercase:
score_dirs.append(char)
return score_dirs | 6cd9fc9e93257dcc7729235ac3cffa01dbd80c95 | 2,598 |
def dim_axis_label(dimensions, separator=', '):
"""
Returns an axis label for one or more dimensions.
"""
if not isinstance(dimensions, list): dimensions = [dimensions]
return separator.join([d.pprint_label for d in dimensions]) | f03e4eb02fc57890421bdcdaa0aea7d6541b8678 | 2,599 |
def _is_camel_case_ab(s, index):
"""Determine if the index is at 'aB', which is the start of a camel token.
For example, with 'workAt', this function detects 'kA'."""
return index >= 1 and s[index - 1].islower() and s[index].isupper() | c21ec7d8aa7e786d1ea523106af6f9426fea01d8 | 2,600 |
def rgb2hex(rgb: tuple) -> str:
"""
Converts RGB tuple format to HEX string
:param rgb:
:return: hex string
"""
return '#%02x%02x%02x' % rgb | 1ecb1ca68fa3dbe7b58f74c2e50f76175e9a0c5a | 2,601 |
def unix_to_windows_path(path_to_convert, drive_letter='C'):
"""
For a string representing a POSIX compatible path (usually
starting with either '~' or '/'), returns a string representing an
equivalent Windows compatible path together with a drive letter.
Parameters
----------
path_to_convert : string
A string representing a POSIX path
drive_letter : string (Default : 'C')
A single character string representing the desired drive letter
Returns
-------
string
A string representing a Windows compatible path.
"""
if path_to_convert.startswith('~'):
path_to_convert = path_to_convert[1:]
if path_to_convert.startswith('/'):
path_to_convert = path_to_convert[1:]
path_to_convert = '{}{}{}'.format(drive_letter,
':\\',
path_to_convert).replace('/', '\\')
return path_to_convert | d3c23e2c19be4b81be135ae84760430be852da41 | 2,603 |
def flatten(iterable):
"""
Unpacks nested iterables into the root `iterable`.
Examples:
```python
from flashback.iterating import flatten
for item in flatten(["a", ["b", ["c", "d"]], "e"]):
print(item)
#=> "a"
#=> "b"
#=> "c"
#=> "d"
#=> "e"
assert flatten([1, {2, 3}, (4,), range(5, 6)]) == (1, 2, 3, 4, 5)
```
Params:
iterable (Iterable<Any>): the iterable to flatten
Returns:
tuple<Any>: the flattened iterable
"""
items = []
for item in iterable:
if isinstance(item, (list, tuple, set, frozenset, range)):
for nested_item in flatten(item):
items.append(nested_item)
else:
items.append(item)
return tuple(items) | 8c47de3255906fb114a13ecfec4bf4a1204a0dfd | 2,604 |
from pathlib import Path
def _path_to_str(var):
"""Make sure var is a string or Path, return string representation."""
if not isinstance(var, (Path, str)):
raise ValueError("All path parameters must be either strings or "
"pathlib.Path objects. Found type %s." % type(var))
else:
return str(var) | c5ae3ed06be31de3220b5400966866ccda29b9fc | 2,607 |
def has_1080p(manifest):
"""Return True if any of the video tracks in manifest have a 1080p profile
available, else False"""
return any(video['width'] >= 1920
for video in manifest['videoTracks'][0]['downloadables']) | f187ff7fd8f304c0cfe600c4bed8e809c4c5e105 | 2,612 |
def ms(val):
""" Turn a float value into milliseconds as an integer. """
return int(val * 1000) | 97f7d736ead998014a2026a430bf3f0c54042010 | 2,619 |
import torch
def compute_rays_length(rays_d):
"""Compute ray length.
Args:
rays_d: [R, 3] float tensor. Ray directions.
Returns:
rays_length: [R, 1] float tensor. Ray lengths.
"""
rays_length = torch.norm(rays_d, dim=-1, keepdim=True) # [N_rays, 1]
return rays_length | 9b43f9ea79708a690282a04eec65dbabf4a7ae36 | 2,623 |
import itertools
def _repeat_elements(arr, n):
"""
Repeats the elements int the input array, e.g.
[1, 2, 3] -> [1, 1, 1, 2, 2, 2, 3, 3, 3]
"""
ret = list(itertools.chain(*[list(itertools.repeat(elem, n)) for elem in arr]))
return ret | 95cf8ebb75505d2704cf957cdd709b8fa735973a | 2,624 |
def atlas_slice(atlas, slice_number):
"""
A function that pulls the data for a specific atlas slice.
Parameters
----------
atlas: nrrd
Atlas segmentation file that has a stack of slices.
slice_number: int
The number in the slice that corresponds to the fixed image
for registration.
Returns
-------
sagittal: array
Sagittal view being pulled from the atlas.
coronal: array
Coronal view being pulled from the atlas.
horizontal: arrary
Horizontal view being pulled from the atlas.
"""
epi_img_data2 = atlas.get_fdata()
sagittal = epi_img_data2[140, :, :]
coronal = epi_img_data2[:, slice_number, :]
horizontal = epi_img_data2[:, :, 100]
return sagittal, coronal, horizontal | bafe5d886568203792b0f6178302f3ca5d536e5b | 2,627 |
from typing import Dict
import aiohttp
async def head(url: str) -> Dict:
"""Fetch headers returned http GET request.
:param str url:
The URL to perform the GET request for.
:rtype: dict
:returns:
dictionary of lowercase headers
"""
async with aiohttp.request("HEAD", url) as res:
response_headers = res.headers
return {k.lower(): v for k, v in response_headers.items()} | b4decbfb4e92863c07c5202e2c884c02e590943f | 2,629 |
def determine_if_pb_should_be_filtered(row, min_junc_after_stop_codon):
"""PB should be filtered if NMD, a truncation, or protein classification
is not likely protein coding (intergenic, antisense, fusion,...)
Args:
row (pandas Series): protein classification row
min_junc_after_stop_codon (int): mininum number of junctions after stop
codon a protein can have. used in NMD determination
Returns:
int: 1 if should be filtered, 0 if should not be filtered
"""
# filter out pbs that are artifacts or noncoding
pclass = str(row['protein_classification'])
num_junc_after_stop_codon = int(row['num_junc_after_stop_codon'])
pclass_base_to_keep = ['pFSM','pNIC']
pclass_base = str(row['protein_classification_base'])
if pclass_base not in pclass_base_to_keep and num_junc_after_stop_codon > min_junc_after_stop_codon:
return 1
elif 'trunc' in pclass:
return 1
elif 'intergenic' in pclass:
return 1
elif 'antisense' in pclass:
return 1
elif 'fusion' in pclass:
return 1
elif 'orphan' in pclass:
return 1
elif 'genic' in pclass:
return 1
return 0 | 29ab7ce53ac7569c4d8a29e8e8564eab33b3f545 | 2,631 |
def project_to_2D(xyz):
"""Projection to (0, X, Z) plane."""
return xyz[0], xyz[2] | c6cdb8bd6dce65f6ce39b14b9e56622832f35752 | 2,634 |
def transform_to_dict(closest_list: list) -> dict:
"""
Returns dict {(latitude, longitude): {film1, film2, ...}, ...} from
closest_list [[film1, (latitude, longitude)], ...], where film1,
film2 are titles of films, (latitude, longitude) is a coordinates of
a place where those films were shoot.
>>> transform_to_dict([["film1", (49, 24)]])
{(49, 24): {'film1'}}
"""
closest_dict = {}
for film, coord in closest_list:
if coord in closest_dict:
closest_dict[coord].add(film)
else:
closest_dict[coord] = {film}
return closest_dict | e7c6fae73792a828d85db03e794bfb69c7b1fe87 | 2,641 |
import signal
def _signal_exit_code(signum: signal.Signals) -> int:
"""
Return the exit code corresponding to a received signal.
Conventionally, when a program exits due to a signal its exit code is 128
plus the signal number.
"""
return 128 + int(signum) | 050eee98632216fddcbd71e4eb6b0c973f6d4144 | 2,645 |
def is_contained(target, keys):
"""Check is the target json object contained specified keys
:param target: target json object
:param keys: keys
:return: True if all of keys contained or False if anyone is not contained
Invalid parameters is always return False.
"""
if not target or not keys:
return False
# if keys is just a string convert it to a list
if type(keys) == str:
keys = [keys]
# traverse the list to check json object
# if key does not exist or value is None then return False
try:
for key in keys:
if target[key] is None:
return False
except KeyError:
return False
# All seems to be going well
return True | 948196d4b470788199506bd7768e03554fa67b40 | 2,646 |
def map(x, in_min, in_max, out_min, out_max):
"""
Map a value from one range to another
:param in_min: minimum of input range
:param in_max: maximum of input range
:param out_min: minimum of output range
:param out_max: maximum of output range
:return: The value scaled to the new range
:rtype: int
"""
return int((x-in_min) * (out_max-out_min) / (in_max-in_min) + out_min) | 4117af35b0061df1fd271306accf198692442dac | 2,647 |
import itertools
def node_extractor(dataframe, *columns):
"""
Extracts the set of nodes from a given dataframe.
:param dataframe: dataframe from which to extract the node list
:param columns: list of column names that contain nodes
:return: list of all unique nodes that appear in the provided dataset
"""
data_list = [dataframe[column].unique().tolist() for column in columns]
return list(set(itertools.chain.from_iterable(data_list))) | 7a4ab889257a0f2c5ddfe18e65d0a7f5f35d8d98 | 2,651 |
def _prepare_memoization_key(args, kwargs):
"""
Make a tuple of arguments which can be used as a key
for a memoized function's lookup_table. If some object can't be hashed
then used its __repr__ instead.
"""
key_list = []
for arg in args:
try:
hash(arg)
key_list.append(arg)
except:
key_list.append(repr(arg))
for (k, v) in kwargs.items():
try:
hash(k)
hash(v)
key_list.append((k, v))
except:
key_list.append((repr(k), repr(v)))
return tuple(key_list) | c83e08c42886ba0e7f6e4defe5bc8f53f5682657 | 2,655 |
def by_tag(articles_by_tag, tag):
""" Filter a list of (tag, articles) to list of articles by tag"""
for a in articles_by_tag:
if a[0].slug == tag:
return a[1] | 642472a89cb624ed02a6e8ec488b72856ac231a9 | 2,658 |
def dp_port_id(switch: str, port: str) -> str:
"""
Return a unique id of a DP switch port based on switch name and port name
:param switch:
:param port:
:return:
"""
return 'port+' + switch + ':' + port | 479891e41b51114744dcbb2b177180c19cd1bfd5 | 2,659 |
def tuple_list_to_lua(tuple_list):
"""Given a list of tuples, return a lua table of tables"""
def table(it):
return "{" + ",".join(map(str, it)) + "}"
return table(table(t) for t in tuple_list) | 71ec1a29f5e23b8bf82867617fe157fbba4a2332 | 2,664 |
def fancy_vector(v):
"""
Returns a given 3-vector or array in a cute way on the shell, if you
use 'print' on the return value.
"""
return "\n / %5.2F \\\n" % (v[0]) + \
" | %5.2F |\n" % (v[1]) + \
" \\ %5.2F /\n" % (v[2]) | 2340f22aa87da00abad30b9946c374f34b38496d | 2,665 |
def any_of(elements):
"""
Check to see if the argument is contained in a list of possible elements.
:param elements: The elements to check the argument against in the predicate.
:return: A predicate to check if the argument is a constituent element.
"""
def predicate(argument):
return argument in elements
return predicate | adacf8fd632d25452d22dab0a8a439021083ec83 | 2,666 |
def find_year(films_lst: list, year: int):
""" Filter list of films by given year """
filtered_films_lst = [line for line in films_lst if line[1] == str(year)]
return filtered_films_lst | f4c11e09e76831afcf49154234dd57044536bce1 | 2,667 |
def cal_occurence(correspoding_text_number_list):
"""
calcualte each occurence of a number in a list
"""
di = dict()
for i in correspoding_text_number_list:
i = str(i)
s = di.get(i, 0)
if s == 0:
di[i] = 1
else:
di[i] = di[i] + 1
return di | aafabc6abdf4bf1df1b8d9e23a4af375df3ac75b | 2,669 |
def ConvertVolumeSizeString(volume_size_gb):
"""Converts the volume size defined in the schema to an int."""
volume_sizes = {
"500 GB (128 GB PD SSD x 4)": 500,
"1000 GB (256 GB PD SSD x 4)": 1000,
}
return volume_sizes[volume_size_gb] | b1f90e5ded4d543d88c4f129ea6ac03aeda0c04d | 2,671 |
def get_snps(x: str) -> tuple:
"""Parse a SNP line and return name, chromsome, position."""
snp, loc = x.split(' ')
chrom, position = loc.strip('()').split(':')
return snp, chrom, int(position) | 52672c550c914d70033ab45fd582fb9e0f97f023 | 2,672 |
def get_upper_parentwidget(widget, parent_position: int):
"""This function replaces this:
self.parentWidget().parentWidget().parentWidget()
with this:
get_upper_parentwidget(self, 3)
:param widget: QWidget
:param parent_position: Which parent
:return: Wanted parent widget
"""
while parent_position > 0:
widget = widget.parentWidget()
parent_position -= 1
else:
return widget | ff010f3d9e000cfa3c58160e150c858490f2412d | 2,676 |
def add(n):
"""Add 1."""
return n + 1 | c62cee4660540ae62b5b73369bdeb56ccb0088d6 | 2,679 |
def sortkey(d):
"""Split d on "_", reverse and return as a tuple."""
parts=d.split("_")
parts.reverse()
return tuple(parts) | 1d8f8864a3d0bfd7dae8711bca183317e0f3fc0e | 2,683 |
def first_n(m: dict, n: int):
"""Return first n items of dict"""
return {k: m[k] for k in list(m.keys())[:n]} | 57ccc9f8913c60c592b38211900fe8d28feffb4c | 2,684 |
import pickle
def save_calib(filename, calib_params):
""" Saves calibration parameters as '.pkl' file.
Parameters
----------
filename : str
Path to save file, must be '.pkl' extension
calib_params : dict
Calibration parameters to save
Returns
-------
saved : bool
Saved successfully.
"""
if type(calib_params) != dict:
raise TypeError("calib_params must be 'dict'")
output = open(filename, 'wb')
try:
pickle.dump(calib_params, output)
except:
raise IOError("filename must be '.pkl' extension")
output.close()
saved = True
return saved | 6735c8a6e96158b9fc580b6e61609b5ae7733fe0 | 2,685 |
def create_P(P_δ, P_ζ, P_ι):
"""
Combine `P_δ`, `P_ζ` and `P_ι` into a single matrix.
Parameters
----------
P_δ : ndarray(float, ndim=1)
Probability distribution over the values of δ.
P_ζ : ndarray(float, ndim=2)
Markov transition matrix for ζ.
P_ι : ndarray(float, ndim=1)
Probability distribution over the values of ι.
Returns
----------
P : ndarray(float, ndim=3)
Joint probability distribution over the values of δ, ζ and ι.
Probabilities vary by δ on the first axis, by ζ on the second axis,
and by ι on the third axis.
"""
P = \
P_δ[:, None, None, None] * P_ζ[None, :, :, None] * \
P_ι[None, None, None, :]
return P | 0afdef50c50563421bb7c6f3f928fa6b3e5f4733 | 2,687 |
import typing
def median(vals: typing.List[float]) -> float:
"""Calculate median value of `vals`
Arguments:
vals {typing.List[float]} -- list of values
Returns:
float -- median value
"""
index = int(len(vals) / 2) - 1
return sorted(vals)[index] | 9f840d11409a570a718fdfe56d7a282af43bc798 | 2,688 |
import networkx
def nx_find_connected_limited(graph, start_set, end_set, max_depth=3):
"""Return the neurons in end_set reachable from start_set with limited depth."""
reverse_graph = graph.reverse()
reachable = []
for e in end_set:
preorder_nodes = list(
(
networkx.algorithms.traversal.depth_first_search.dfs_preorder_nodes(
reverse_graph, source=e, depth_limit=max_depth
)
)
)
for s in start_set:
if s in preorder_nodes:
reachable.append(e)
break
return reachable | 4322f4231be73b575d05442f09608c71c3b9f605 | 2,701 |
def hexbyte_2integer_normalizer(first_int_byte, second_int_btye):
"""Function to normalize integer bytes to a single byte
Transform two integer bytes to their hex byte values and normalize
their values to a single integer
Parameters
__________
first_int_byte, second_int_byte : int
integer values to normalize (0 to 255)
Returns
_______
integer: int
Single normalized integer
"""
first_hex = f'{hex(first_int_byte)}'.lstrip('0x')
second_hex = f'{hex(second_int_btye)}'.lstrip('0x')
first_hex = first_hex if len(f'{first_hex}') == 2 else f'0{first_hex}'
second_hex = second_hex if len(f'{second_hex}') == 2 else f'0{second_hex}'
hex_string = f'{first_hex}{second_hex}'
integer = int(hex_string, 16)
return integer | a3bbe75014b6e08607314b615440039bab245f04 | 2,702 |
def get_correct_line(df_decisions):
"""
The passed df has repeated lines for the same file (same chemin_source).
We take the most recent one.
:param df_decisions: Dataframe of decisions
:return: Dataframe without repeated lines (according to the chemin_source column)
"""
return df_decisions.sort_values('timestamp_modification').drop_duplicates('chemin_source', keep='last') | 989f1aba1c5e0c61f8b7ca1c883baf4dd181ebbc | 2,704 |
def get_service(vm, port):
"""Return the service for a given port."""
for service in vm.get('suppliedServices', []):
if service['portRange'] == port:
return service | d617771c25c69ee874b0bc64adcc735aa876f929 | 2,707 |
def _project(doc, projection):
"""Return new doc with items filtered according to projection."""
def _include_key(key, projection):
for k, v in projection.items():
if key == k:
if v == 0:
return False
elif v == 1:
return True
else:
raise ValueError('Projection value must be 0 or 1.')
if projection and key != '_id':
return False
return True
return {k: v for k, v in doc.items() if _include_key(k, projection)} | 0f2cd190e73b39ceeec0f850054baab1dd357587 | 2,708 |
import requests
import json
def folder0_content(folder0_id, host, token):
"""
Modules
-------
request, json
----------
Parameters
----------
folder0_id : Onedata folder level 0 id containing the data to publish.
host : OneData provider (e.g., ceta-ciemat-02.datahub.egi.eu).
token : OneData personal access token.
-------
Returns
-------
all_level0: "name" and "id" of the folders contained in the folder defined by "folder0_id"
"""
OneData_urlchildren = "https://" + host + '/api/v3/oneprovider/data/' + folder0_id + "/children"
request_param = {'X-Auth-Token': token}
r_level0 = requests.get(OneData_urlchildren, headers=request_param)
all_level0 = json.loads(r_level0.text)
return (all_level0) | 8ce6ae617666f936643b9599ae115e140b30bd2b | 2,713 |
import requests
import logging
def odata_getone(url, headers):
"""
Get a single object from Odata
"""
r = requests.get(url, headers=headers)
if not r.ok:
logging.warning(f"Fetch url {url} hit {r.status_code}")
return None
rjson = r.json()
if 'error' in rjson:
logging.warning(f"Fetching of {url} returned error {r.text}")
return None
return rjson | 5d6c668845132d821f175a2e8c1a924492a9eb2f | 2,727 |
from datetime import datetime
import pytz
def isotime(timestamp):
"""ISO 8601 formatted date in UTC from unix timestamp"""
return datetime.fromtimestamp(timestamp, pytz.utc).isoformat() | f6a922d75a186e26f158edc585691e31bf430b01 | 2,738 |
def _get_index_sort_str(env, name):
"""
Returns a string by which an object with the given name shall be sorted in
indices.
"""
ignored_prefixes = env.config.cmake_index_common_prefix
for prefix in ignored_prefixes:
if name.startswith(prefix) and name != prefix:
return name[len(prefix):]
return name | cdf7a509ef8f49ff15cac779e37f0bc5ab98c613 | 2,740 |
import requests
def tmdb_find_movie(movie: str, tmdb_api_token: str):
"""
Search the tmdb api for movies by title
Args:
movie (str): the title of a movie
tmdb_api_token (str): your tmdb v3 api token
Returns:
dict
"""
url = 'https://api.themoviedb.org/3/search/movie?'
params = {'query': movie, 'language': 'en-US', 'api_key': tmdb_api_token, }
return requests.get(url, params).json() | ea676fbb91f451b20ce4cd2f7258240ace3925b3 | 2,742 |
def errorString(node, error):
"""
Format error messages for node errors returned by checkLinkoStructure.
inputs:
node - the node for the error.
error - a (backset, foreset) tuple, where backset is the set of
missing backlinks and foreset is the set of missing forelinks.
returns: string
string - the error string message.
"""
back, fore = error[0], error[1]
if len(back) == 0:
back = 'None'
if len(fore) == 0:
fore = 'None'
return ('Node {0}: missing backlinks {1},'
' missing forelinks {2}').format(node, back, fore) | df87b7838ed84fe4e6b95002357f616c96d04ad0 | 2,745 |
def _Backward3a_T_Ps(P, s):
"""Backward equation for region 3a, T=f(P,s)
Parameters
----------
P : float
Pressure [MPa]
s : float
Specific entropy [kJ/kgK]
Returns
-------
T : float
Temperature [K]
References
----------
IAPWS, Revised Supplementary Release on Backward Equations for the
Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS
Industrial Formulation 1997 for the Thermodynamic Properties of Water and
Steam, http://www.iapws.org/relguide/Supp-Tv%28ph,ps%293-2014.pdf, Eq 6
Examples
--------
>>> _Backward3a_T_Ps(20,3.8)
628.2959869
>>> _Backward3a_T_Ps(100,4)
705.6880237
"""
I = [-12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -6, -6, -5, -5, -5,
-4, -4, -4, -2, -2, -1, -1, 0, 0, 0, 1, 2, 2, 3, 8, 8, 10]
J = [28, 32, 4, 10, 12, 14, 5, 7, 8, 28, 2, 6, 32, 0, 14, 32, 6, 10, 36, 1,
4, 1, 6, 0, 1, 4, 0, 0, 3, 2, 0, 1, 2]
n = [0.150042008263875e10, -0.159397258480424e12, 0.502181140217975e-3,
-0.672057767855466e2, 0.145058545404456e4, -0.823889534888890e4,
-0.154852214233853, 0.112305046746695e2, -0.297000213482822e2,
0.438565132635495e11, 0.137837838635464e-2, -0.297478527157462e1,
0.971777947349413e13, -0.571527767052398e-4, 0.288307949778420e5,
-0.744428289262703e14, 0.128017324848921e2, -0.368275545889071e3,
0.664768904779177e16, 0.449359251958880e-1, -0.422897836099655e1,
-0.240614376434179, -0.474341365254924e1, 0.724093999126110,
0.923874349695897, 0.399043655281015e1, 0.384066651868009e-1,
-0.359344365571848e-2, -0.735196448821653, 0.188367048396131,
0.141064266818704e-3, -0.257418501496337e-2, 0.123220024851555e-2]
Pr = P/100
sigma = s/4.4
suma = 0
for i, j, ni in zip(I, J, n):
suma += ni * (Pr+0.240)**i * (sigma-0.703)**j
return 760*suma | cb0b9b55106cf771e95505c00043e5772faaef40 | 2,748 |
def format_dB(num):
"""
Returns a human readable string of dB. The value is divided
by 10 to get first decimal digit
"""
num /= 10
return f'{num:3.1f} {"dB"}' | 13d6313834333ee2ea432cf08470b6ce1efe1ad6 | 2,749 |
def get_fourier_col_name(k, col_name, function_name="sin", seas_name=None):
"""Returns column name corresponding to a particular fourier term, as returned by fourier_series_fcn
:param k: int
fourier term
:param col_name: str
column in the dataframe used to generate fourier series
:param function_name: str
sin or cos
:param seas_name: strcols_interact
appended to new column names added for fourier terms
:return: str
column name in DataFrame returned by fourier_series_fcn
"""
# patsy doesn't allow "." in formula term. Replace "." with "_" rather than quoting "Q()" all fourier terms
name = f"{function_name}{k:.0f}_{col_name}"
if seas_name is not None:
name = f"{name}_{seas_name}"
return name | 5c15b52728d0333c9c7df59030d6ead66473c823 | 2,758 |
def build_binary_value(char_str, bits, alphabet) -> str:
"""
This method converts a string char_str into binary, using n bits per
character and decoding from the supplied alphabet or from ASCII when bits=7
This is almost the inverse method to build_string in the decompress module.
:param char_str: string.
:param bits: number of bits per character.
:param alphabet: Alphabet.
:return: binary value.
"""
if bits == 7:
indices = [ord(char_) for char_ in char_str]
else:
indices = [alphabet.index(char_) for char_ in char_str]
binary_char_list = ["{0:b}".format(index).zfill(bits) for index in indices]
return ''.join(binary_char_list) | 50830dd5cfa3f5428b0946e7382220f9b5ff1915 | 2,761 |
def irange(start, end):
"""Inclusive range from start to end (vs. Python insanity.)
irange(1,5) -> 1, 2, 3, 4, 5"""
return range( start, end + 1 ) | 91d4c270b1d9304b4ee82c0cb16aee5d518db3d5 | 2,763 |
import unicodedata
def sanitize_str(value: str) -> str:
"""Removes Unicode control (Cc) characters EXCEPT for tabs (\t), newlines (\n only), line separators (U+2028) and paragraph separators (U+2029)."""
return "".join(ch for ch in value if unicodedata.category(ch) != 'Cc' and ch not in {'\t', '\n', '\u2028', '\u2029'}) | 5b5eae2b377a834e377a8bf7bcd7cefc2278c2f7 | 2,771 |
from typing import Optional
def clean_pin_cite(pin_cite: Optional[str]) -> Optional[str]:
"""Strip spaces and commas from pin_cite, if it is not None."""
if pin_cite is None:
return pin_cite
return pin_cite.strip(", ") | 9c495fcc4f1cf192c1358f50fef569c4d6b36290 | 2,773 |
import json
def get_json_dump(json_object, indent=4, sort_keys=False):
""" Short handle to get a pretty printed str from a JSON object. """
return json.dumps(json_object, indent=indent, sort_keys=sort_keys) | 505548cdf972ef891b7bcc3bcd7be3347769faec | 2,774 |
def heap_sort(arr: list):
"""
Heap sorting a list. Big-O: O(n log n).
@see https://www.geeksforgeeks.org/heap-sort/
"""
def heapify(sub: list, rdx: int, siz: int):
"""
Heapifying range between rdx and size ([rdx:siz]).
@param sub: a slice of list.
@param rdx: root/parent index to start.
@param siz: size of heap.
"""
largest = ndx = rdx # assuming the root is the largest
while ndx < siz:
l_index = 2 * ndx + 1 # child index at left = 2*i + 1
r_index = 2 * ndx + 2 # child index at right = 2*i + 2
# reset largest index if left child exists and is greater than root.
if l_index < siz and sub[ndx] < sub[l_index]:
largest = l_index
# check if right child is greater than the value at the largest index.
if r_index < siz and sub[largest] < sub[r_index]:
largest = r_index
# change root, if needed
if largest != ndx:
sub[ndx], sub[largest] = sub[largest], sub[ndx] # swap
ndx = largest # heapify the root.
continue
return
pass
n = len(arr)
# build a max heap.
parent = n // 2 - 1 # the last parent (that can have children)
for i in range(parent, -1, -1):
heapify(arr, i, n)
# extract elements one by one.
for i in range(n-1, 0, -1):
arr[i], arr[0] = arr[0], arr[i] # swap
heapify(arr, 0, i)
return arr | 9b53f3027804cab16c9850d4858377f49afe7bbf | 2,775 |
def prompt_for_password(prompt=None):
"""Fake prompt function that just returns a constant string"""
return 'promptpass' | 49499970c7698b08f38078c557637907edef3223 | 2,777 |
def get_frame_list(video, jump_size = 6, **kwargs):
"""
Returns list of frame numbers including first and last frame.
"""
frame_numbers =\
[frame_number for frame_number in range(0, video.frame_count, jump_size)]
last_frame_number = video.frame_count - 1;
if frame_numbers[-1] != last_frame_number:
frame_numbers.append(last_frame_number)
return frame_numbers | 786de04b4edf224045216de226ac61fdd42b0d7b | 2,778 |
def obter_forca (unidade):
"""Esta funcao devolve a forca de ataque da unidade dada como argumento"""
return unidade[2] | 34fe4acac8e0e3f1964faf8e4b26fa31148cf2a6 | 2,783 |
import itertools
def strip_translations_header(translations: str) -> str:
"""
Strip header from translations generated by ``xgettext``.
Header consists of multiple lines separated from the body by an empty line.
"""
return "\n".join(itertools.dropwhile(len, translations.splitlines())) | b96c964502724008306d627d785224be08bddb86 | 2,789 |
def find_attachments(pattern, cursor):
"""Return a list of attachments that match the specified pattern.
Args:
pattern: The path to the attachment, as a SQLite pattern (to be
passed to a LIKE clause).
cursor: The Cursor object through which the SQLite queries are
sent to the Zotero database.
Returns:
A list of (parentItemID, path) pairs that match the specified
pattern. The returned list is empty if no matches are found.
"""
query = 'SELECT parentItemID, path FROM itemAttachments WHERE path LIKE ?'
cursor.execute(query, (pattern,))
return list(cursor) | 614649f6fd5972b026b191bb1a272e270dedffe5 | 2,795 |
def should_parse(config, file):
"""Check if file extension is in list of supported file types (can be configured from cli)"""
return file.suffix and file.suffix.lower() in config.filetypes | 1c2258d405ef715574b557d99cdf87e461627ffd | 2,799 |
def flatten(x):
"""Flattens nested list"""
if isinstance(x, list):
return [a for i in x for a in flatten(i)]
else:
return [x] | 7d348f8287dfccfbb77a52a84a5642c265381eb1 | 2,804 |
def identity(obj):
"""Returns the ``obj`` parameter itself
:param obj: The parameter to be returned
:return: ``obj`` itself
>>> identity(5)
5
>>> foo = 2
>>> identity(foo) is foo
True
"""
return obj | a3271a831d2e91fe6eebed7e80c18e7c81996da6 | 2,806 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.