content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def height_to_imperial(height):
"""Converts height in cm to feet/inches."""
height_inches = height / 2.54
feet = int(height_inches) // 12
inches = height_inches % 12
return feet, inches | bdec165de4b1576e53f2c81e6d3fc9d60b82d8ee | 19,707 |
def f(B, x):
"""A linear function for the ODR."""
return B*(x) | ac23fd53c27d784ad826a2ac4330a51f71e13d96 | 19,711 |
import struct
def write_varint(data: int) -> bytes:
"""Given an integer, encode the integer into a varint.
Args:
data (int): The integer to encode into a varint.
Returns:
bytes: The encoded varint.
"""
packed_packets = list()
while data != 0:
current_byte = data & 0x7F
data >>= 7
compiled_bytes = struct.pack("B", current_byte | (0x80 if data > 0 else 0))
packed_packets.append(compiled_bytes)
return b"".join(packed_packets) | 377235dcfb8737be3047d02912e44c806e1d61c4 | 19,721 |
def load_ldap_settings(config):
""" Load all the ldap configuration settings into a dict
LDAP configuration settings contain an ldap_ prefix.
Args:
config (dict): the global config
Returns:
(dict) All the ldap_ settings
"""
ldap_config = {}
for key, value in config.items():
if key.lower().startswith("ldap_"):
ldap_config[key] = value
return ldap_config | 658c54bd26240c85829e1ff96fa9a7d2b6ee045c | 19,725 |
def schema_url(base_url):
"""URL of the schema of the running application."""
return f"{base_url}/swagger.yaml" | 96926681bcbfdebc8da3a142571452c41fdfb785 | 19,726 |
import re
def filter_vowel_cons_ratio(word, ratio=0.5):
"""Return True if the ratio of vowels to consonants is > `ratio`.
This can be used as an ad-hoc pronunciation filter.
:param word (str): The word
:param ratio (float, optional): The ratio
:rtype: int
"""
vowels = re.compile(r'[aeiouy]')
consonants = re.compile(r'[^aeyiuo]')
vmatch = re.findall(vowels, word.lower())
cmatch = re.findall(consonants, word.lower())
_ratio = float(len(vmatch)) / float(len(cmatch))
return _ratio > ratio | 0bb87d6b6d40f83c9826eb0988888a9c1105db3b | 19,728 |
def get_central_values(flat_input, input_size, center_size, palette_size):
"""
Takes a flat array which is assumed to represent input_size by input_size by
palette_size data, and returns a flat array that represents the center_size
by center_size central values of the original array.
"""
lc = input_size//2 - center_size//2
rs = flat_input.reshape((input_size, input_size, palette_size))
sel = rs[lc:lc+center_size, lc:lc+center_size, :]
return sel.reshape([-1]) | 2b62988e4fd9dcee35fba949e29a3e8045b5f909 | 19,731 |
def normalizeCUAddr(addr):
"""
Normalize a cuaddr string by lower()ing it if it's a mailto:, or
removing trailing slash if it's a URL.
@param addr: a cuaddr string to normalize
@return: normalized string
"""
lower = addr.lower()
if lower.startswith("mailto:"):
addr = lower
if (
addr.startswith("/") or
addr.startswith("http:") or
addr.startswith("https:")
):
return addr.rstrip("/")
else:
return addr | 4a3c3a994fc07c17e3e0cbea1eb6be4dab67632f | 19,733 |
def stringify_var_names(var_list, delimiter=""):
"""
Parameters
----------
var_list : list[str]
Each list element is the name of a variable.
Returns
-------
result : str
Concatenated variable names.
"""
result = var_list[0]
for var_name in var_list[1:]:
result += delimiter + var_name
return result.lower() | 159c5e2b6081afa33d835a8e784e6be029c0496b | 19,735 |
def summarize_results(df, level='sample_name'):
""" Summarize quality control results
Args:
df (pd.DataFrame): loaded using :func:`madic.io.read_transition_report`
level (str): Choices: 'sample_name' or 'rep'
Whether to return summary on a sample or replicate basis
Returns:
pd.DataFrame: DataFrame containing final pass / fail quality control
results by peptide and sample
"""
eval_cols = [x for x in df.columns if x.startswith('pass_')]
summarized = df.groupby([
level, 'pep'])[eval_cols].agg('all').reset_index()
if 'interference' in df.columns:
ic = df.groupby(['sample_name',
'pep']).interference.agg('any').reset_index()
ic.rename(columns={'interference': 'interference_corrected'},
inplace=True)
summarized = summarized.merge(ic)
return summarized | caba6b77098d91cf0285559cf3e0965763112428 | 19,745 |
import re
def _looks_like_url(txt):
"""
Return True if text looks like an URL (probably relative).
>>> _looks_like_url("foo.bar")
False
>>> _looks_like_url("http://example.com")
True
>>> _looks_like_url("/page2")
True
>>> _looks_like_url("index.html")
True
>>> _looks_like_url("foo?page=1")
True
>>> _looks_like_url("x='what?'")
False
>>> _looks_like_url("visit this page?")
False
>>> _looks_like_url("?")
False
"""
if " " in txt or "\n" in txt:
return False
if "/" in txt:
return True
if re.search(r'\?\w+=.+', txt):
return True
if re.match(r"\w+\.html", txt):
return True
return False | 50fb8a40260b7d69bd535024f9ed2e348f88f5bf | 19,752 |
def script_from_saved_model(saved_model_dir, output_file, input_arrays,
output_arrays):
"""Generates a script for saved model to convert from TF to TF Lite."""
return u"""# --- Python code ---
import tensorflow as tf
lite = tf.compat.v1.lite
saved_model_dir = '{saved_model_dir}'
output_file = '{output_file}'
converter = lite.TFLiteConverter.from_saved_model(
saved_model_dir,
input_arrays={input_arrays},
output_arrays={output_arrays})
tflite_model = converter.convert()
with tf.io.gfile.GFile(output_file, 'wb') as f:
f.write(tflite_model)
print('Write file: %s' % output_file)
""".format(
saved_model_dir=saved_model_dir,
output_file=output_file,
input_arrays=input_arrays,
output_arrays=output_arrays) | b00592217f316cd8bad99127e4e92f14a0f5910c | 19,755 |
from typing import Iterable
from typing import Any
def argsort_iterable(x: Iterable[Any]) -> Iterable[int]:
"""Iterable of indexes that sort an array.
This is equivalent to numpy argsort but works on any sortable python iterable
and returns a python iterable.
Evaluation is lazy, evaluating x only as needed for sorting.
Args:
x (Iterable[Any]): The array to be sorted; must be sortable
Returns:
Iterable[int]: The indexes that sort x
"""
return (i for _,i in sorted((xi,i) for i,xi in enumerate(x))) | 60ebfeecbd71e613d13f6c4e26e1cbf72bf85c75 | 19,758 |
import re
def check_email_valid(submission):
"""
Check if submission is a valid email address
"""
if re.match(r"[^@]+@[^@]+\.[^@]+", submission):
return True
else:
return False | 1528df90d59c4e0cedc8c030acec1cfcd6984e64 | 19,760 |
def _resolve_collections(collections):
"""
Split a list of raw collections into a list of database/collection tuples
:param list[str] collections:
:rtype: list[(str, str|None)]
"""
ret = []
for raw_collection in collections:
attr_chain = raw_collection.split('.', 1)
database = attr_chain[0]
if len(attr_chain) == 2:
ret.append((database, attr_chain[1]))
else:
ret.append((database, None))
return ret | dca56d8ea52317bf48ddcf0383b691eacbb34f95 | 19,761 |
def removeVowels(word):
"""
Recursive Function to remove alll vowels in a words/sentence.
Parameters:
word (string); the word in which the vowels are to be removed.
Returns:
A string with no vowels after the all recursions are complete.
Raises:
TypeError: If user enters an invalid number such as floats.
Exception: If any unexpected error occurs. Eg, RuntimeError when there are
too many recursive calls.
"""
try:
if not(isinstance(word,str)): #Checking if input is a valid string.
raise TypeError
if len(word) == 0: #Base Case
return word
elif word[0] in "AEIOUaeiou":
return removeVowels(word[1:]) #Skip that letter and proceed with the rest of letters in word
else: # keep the first letter and proceed until length of word becomes 0.
return word[0] + removeVowels(word[1:])
except TypeError: #If the provided input is not a string.
print("Error: Please provide a valid word/sentence of type string and try again.")
except: #If any other unexpected error occurs
print("Error in removing vowels. Please try again.") | 3e4d679160b911937df0fb3e9f94d913178330bc | 19,763 |
import math
def rotate(x,y, angle):
"""Transform coordinate (x,y) by angle
angle is in radians not in degrees.
"""
new_x = x*math.cos(angle) - y * math.sin(angle)
new_y = x*math.sin(angle) + y * math.cos(angle)
return new_x, new_y | 7a9a9d25ac1197d272ad969be57c932a6adbe35d | 19,766 |
def XYZ_to_xy(XYZ):
"""Convert XYZ to xy
Args:
XYZ ([float, float, float]: X, Y, Z input values
Returns:
.[float, float]
"""
X, Y, Z = XYZ
divider = (X + Y + Z)
x = X / divider
y = Y / divider
return [x, y] | cc41bd7dda4339c813619171d2a885c420a276a5 | 19,770 |
def get_ints(min, max):
"""Return range based iterator with given min and max"""
return range(min, max) | 0791a4378b89cf96187b80255835c41ef32a41c5 | 19,776 |
def strip_prefix(name, strip_text):
"""
Strip the first section of an underscore-separated ``name``.
If the first section matches the ``strip_text``, we'll remove it.
Otherwise, the object will remain unchanged.
Parameters
----------
name: ``str``
underscore_separated_name to strip from
strip_text: ``str``
Text to strip from the name, if it matches the first segment
Returns
-------
stripped: ``str``
The ``name``, modified or unmodified.
"""
if name.startswith(strip_text):
return name[len(strip_text)+1:]
else:
return name | 0efe643933a0006617bc0ed9416a6ef931de34e1 | 19,781 |
def scriptExit(*args, **kwargs):
"""
Exit Nuke.
"""
return None | 956efc2b3c2c6585974043d0ad8d36f80612a24c | 19,785 |
def strip_unnamed(string: str) -> str:
"""When fusing headers coming from excel, the lines with NA values are
named as `Unnamed:...`. This function filters them out.
"""
if string.strip().startswith("Unnamed:"):
return ""
else:
return string.strip() | cf4167b23a96c5248491a13d149a0e10b6a7714a | 19,790 |
import logging
import pathlib
def _entry_file_is_valid(key, entry):
"""Check the validity of a `file` field of an entry.
Ensures that
1. the entry has a `file` field,
2. the `file` field is nonempty,
3. the file pointed to exists, and
4. the file pointed to is a file, not a directory.
Returns
-------
bool:
True if the file is valid by the above definitions. False otherwise.
"""
if 'file' not in entry.keys():
logging.warn(f'No file in entry with key `{key}`. Skipping.')
return False
if entry['file'] == '':
logging.warn(f'File field in entry with key `{key}` is '
'empty. Skipping.')
return False
if not pathlib.Path(entry['file']).exists():
logging.warn(f"File `{entry['file']}` in entry with key "
f"`{key}` does not exist. Skipping.")
return False
if not pathlib.Path(entry['file']).is_file():
logging.warn(f"File `{entry['file']}` in entry with key "
f"`{key}` is not a file. Skipping.")
return False
return True | 815ef3d2ce55028634a2bad0d3b1c9444ce2b752 | 19,799 |
def squareMean3( array, centerPixel ):
"""
Kernel neighborhood function for focal map algebra. Reutrns mean of a 3x3 square array.
@param array - array from which to retrieve the neighborhood kernel
@param centerPixel - (i,j) corrdinates of center pixel of kernel in the array
@return - mean of 3x3 square neighborhood around centerPixel
"""
rows = centerPixel[0] - 1
cols = centerPixel[1] - 1
neighArray = array[rows:rows + 3, cols:cols + 3]
return neighArray.mean() | e017f38483fdc72163adcd65ef9ef4900fa8b350 | 19,802 |
import random
def generate_int_list(list=[], length=10, min_value=0, max_value=10):
"""Generate and return a list of random integers.
The random values will be between min_value and
max_value - 1. If list's length were less than length,
it'll be completed with random values until list's
length were equal to length.
"""
# Using a variable to check list length, avoid calling
# +the same function (len()) more than once.
length_list = len(list)
while length_list < length:
list.append(random.randrange(min_value, max_value))
length_list += 1
return list | f80ce3edd5cd1ca4189d1cda9c3d151ff4943d50 | 19,803 |
def __fix_context(context):
"""Return a new context dict based on original context.
The new context will be a copy of the original, and some mutable
members (such as script and css files) will also be copied to
prevent polluting shared context.
"""
COPY_LISTS = ('script_files', 'css_files',)
for attr in COPY_LISTS:
if attr in context:
context[attr] = context[attr][:]
return context | ebaaa2b7afccf47a2d4e9eb40b481be46565b95e | 19,804 |
import torch
def residuals(target, predictions:list, total = True):
"""
Calculates the mean of the prediction error
Parameters
----------
target : torch.Tensor
The true values of the target variable
predictions : list (torch.Tensor)
The predicted expected values of the target variable
total : bool, default = True
- When total is set to True, return the overall mean of the error
- When total is set to False, return the mean of the error along the horizon
Returns
-------
torch.Tensor
The mean of the error, which depending on the value of 'total'
is either a scalar (overall mean) or 1d-array over the horizon, in which case it is
expected to increase as we move along the horizon. Generally, lower is better.
Raises
------
ValueError
When the dimensions of the predictions and targets are not compatible
"""
if predictions[0].shape != target.shape:
raise ValueError('dimensions of predictions and targets need to be compatible')
error = target - predictions[0]
if total:
return torch.mean(error)
else:
return torch.mean(error, dim=0) | 98898cced03d3c0d6c1ea53af25b8987ade01ea7 | 19,808 |
import codecs
def _reg_file_to_str(file_path):
"""Open file at given path and return as a string."""
with codecs.open(file_path, 'r', 'utf-16-le') as f:
file_str = f.read()
return file_str | 657c50e5f6b410eb13c6e651054c98ac9db6da45 | 19,811 |
from pathlib import Path
def guard_name_project_plus_name(filename: str, project_name: str):
"""
Create a header guard name composed of a project name the filename.
Parameters
----------
filename : str
The name of the file containing the header guard
project_name : str
The name of the C++ project to add to the header guard
Returns
-------
str
The header guard
"""
path = Path(filename)
if project_name:
return f"{project_name}_{path.stem}_H".upper()
return f"{path.stem}_H".upper() | 53d310c8858934bd2453a62cf83aa1d4439be9c1 | 19,820 |
def options(occ=None, debyewaller=None, scattering_factor=None,
moment=None, incident_polarisation_vector=(1, 0, 0), magnetic_formfactor=None,
energy_kev=8, polarisation='sp', azi_ref_q=(1, 0, 0), psi=0, f0=0, f1=1, f2=0):
"""
Create an input dict that will work with all structure factor (sf_) functions
:param occ: [m,1] array of atomic occupancies
:param debyewaller: [n,m] array of thermal factors for each atom and reflection
:param scattering_factor: array [n,m] or [n]: radiation dependent scattering factor/ form factor,/ scattering length
:param moment: [m,3] array of magnetic moment direction in orthogonal basis
:param incident_polarisation_vector: [1,3] direction of incident polarisation
:param magnetic_formfactor: [n,m] array of magnetic form factors for each atom and relection
:param energy_kev: float value of incident x-ray energy in keV
:param azi_ref_q: [1,3] azimuthal refence, in cartesian basis (Q)
:param psi: float value of the azimthal angle - the rotation out of the scattering plane.
:param polarisation: str definition of the polarisation can be: ['ss','sp','ps','pp'] with 's'=sigma, 'p'=pi
:param f0: float Flm value 0 (charge)
:param f1: float Flm value 1
:param f2: float Flm value 2
:return: dict
"""
return locals() | 0890c8a7680130d93e8de3093b51ac9bea5d7b52 | 19,824 |
def find_chromosome(l):
""" Get name line and return chromosome """
return l.strip().split(" ")[1] | 2a7dd92808699edb30a4fc1400bd887161cd14e5 | 19,827 |
def camel_case(string, delimiters=[" "]):
"""Converts a string into camel case
Parameters
----------
string: str, the string to convert
delimiter: str, the character that denotes separate words
"""
for delimiter in delimiters:
str_list = [s[0].upper() + s[1:] for s in string.split(delimiter)]
string = "".join([s for s in str_list])
return string | 45d6ae68f19c634093934209d6599d6e6b0d6347 | 19,835 |
def get_metric(line, name, split):
"""
Get metric value from output line
:param line: console output line
:param name: name of metric
:param split: split character
:return: metric value
"""
start = line.find(name) + len(name) + 1
end = line.find(split, start)
return line[start:end] | 0a17f69983ed125b67ac513e3b7f658d5d1c35f5 | 19,838 |
def IsSwitch(op):
"""Return true if `op` is a Switch."""
return op.type == "Switch" or op.type == "RefSwitch" | 03d8c4f458ee1316f3f1fe25f956cf1bf8b71af3 | 19,845 |
def path_cost(path):
"""The total cost of a path (which is stored in a tuple
with the final action."""
# path = (state, (action, total_cost), state, ... )
if len(path) < 3:
return 0
else:
action, total_cost = path[-2]
return total_cost | 7f0fa8a3a35809977bc2aa75164b78e354126812 | 19,861 |
import re
def count_items_matches(text, item, regexp):
""" Counts the number of occurences of the item in the text
"""
expression = r'(^|%s)%s($|%s)' % (regexp, re.escape(item), regexp)
pattern = re.compile(expression, flags=re.U)
matches = re.findall(pattern, text)
return len(matches) | 37428503a3f10f6a6e2f5b6d89b0ba4183b33bb0 | 19,869 |
def get_all_refs(schema):
"""Get all ref links in a schema.
Traverses a schema and extracts all relative ref links from the schema,
returning a set containing the results.
Parameters:
schema: An OAS schema in the form of nested dicts to be traversed.
Returns:
set: All of the ref links found during traversal.
"""
all_refs = set()
if type(schema) is dict:
for key, val in schema.items():
if key == "$ref" and type(val) is str:
all_refs.add(val)
all_refs.update(get_all_refs(val))
elif type(schema) is list:
for item in schema:
all_refs.update(get_all_refs(item))
return all_refs | 6b0c57d080f44f823cfaf8614da5b51abb9c86a4 | 19,875 |
def is_sorted(l):
""" test whether a list is sorted
"""
return l == sorted(l) | 1cd90853067708c7e133e5d619917d172b21e041 | 19,881 |
def get_index(substring, kmer_list):
"""Return set of indices of positions of substrings in a list of strings."""
return {k: k.find(substring) for k in kmer_list} | a1f31e3e01dde95c7e6b826fb9ca4893aab64ccf | 19,884 |
def cli(ctx, role_id):
"""Display information on a single role
Output:
Details of the given role.
For example::
{"description": "Private Role for Foo",
"id": "f2db41e1fa331b3e",
"model_class": "Role",
"name": "Foo",
"type": "private",
"url": "/api/roles/f2db41e1fa331b3e"}
"""
return ctx.gi.roles.show_role(role_id) | 72e0b8dc4d06d736e67bf1c4b8f70bd030c160b3 | 19,886 |
def parse_time_hms(s):
"""Convert HH:MM:SS to seconds."""
parts = [float(x) for x in s.split(":")]
sec = 0
for i, part in enumerate(reversed(parts)):
sec += part * 60**i
return sec | 3424545387e4a4c20726e001dab4fd9e39686e6d | 19,889 |
from collections.abc import Mapping
def combine_celltypes(df, cols_to_combine=None):
"""
Function to sum related cell types into a single column
Inputs:
- df: pandas dataframe. Output of td.tumor_deconvolve()
- cols_to_combine: dictionary. Keys are the desired names of any new cell type columns,
values are an arary of current column names to combine under the key name
- Default = dictionary for combining common cell types from LM22
Outputs:
- Pandas dataframe with columns combined as specified by the dictionary.
All unmentioned column names are left as they are
"""
if cols_to_combine is not None:
if isinstance(cols_to_combine, Mapping):
pass
else:
raise TypeError("cols_to_combine must be a dictionary")
else:
# Use LM22 as default
print("WARNING: No dictionary defined for combining columns... Attempting to use default dict for LM22 signatures")
cols_to_combine = {'B cells':['B cells naive', 'B cells memory'],
'CD4 T cells':['T cells CD4 naive', 'T cells CD4 memory resting', 'T cells CD4 memory activated','T cells follicular helper', 'T cells regulatory (Tregs)'],
'CD8 T cells':['T cells CD8'],
'NK cells':['NK cells resting', 'NK cells activated'],
'Macrophages':['Macrophages M0', 'Macrophages M1', 'Macrophages M2'],
'Mast cells':['Mast cells resting','Mast cells activated'],
'Dendritic cells':['Dendritic cells resting', 'Dendritic cells activated']
}
df2 = df.copy()
for cell_type in cols_to_combine.keys():
try:
df2[cell_type] = df2[cols_to_combine[cell_type]].sum(axis=1)
df2.drop(cols_to_combine[cell_type],axis=1,inplace=True)
except KeyError as e:
print("WARNING: Failed to combine some columns: ")
print("KeyError: "+str(e))
pass
return df2 | 1215e49ad263fbae33a9eb2d9971b50c92cb4438 | 19,890 |
from typing import Tuple
from typing import Optional
def split_domain_port(netloc: str) -> Tuple[str, Optional[str]]:
"""
Splits the netloc into domain and port.
>>> split_domain_port("example.com")
('example.com', None)
>>> split_domain_port("example.com:80")
('example.com', '80')
"""
segments = netloc.split(":")
if len(segments) > 1:
return ":".join(segments[:-1]), segments[-1]
return netloc, None | ce6724b0b05d1b409976b67527ccd5c50fbcbe01 | 19,891 |
def to_unicode(string, encoding='utf-8'):
"""Convert byte string to unicode."""
return str(string, encoding) if isinstance(string, bytes) else string | 1372ddc1882ddfee28f4efb52695577404d827b2 | 19,897 |
def img_denormalize(img, img_mean, img_std, img_mode='rgb'):
"""
De-normalize the image array by multiply `img_std` and add the `img_mean`
in the right image mode, the mean and std should correspond to `img_mode`
Args:
img (ndarray): Image array to be normalized.
img_mean (tuple[float]): mean value for each channel of image.
img_std (tuple[float]): std value for each channel of image.
img_mode (str): `rgb` or `bgr`, to specify the img mode.
Returns:
normed_img (ndarray): de-normalized image array.
"""
assert img_mode in ['rgb', 'bgr'], "image mode must be 'rgb' or 'bgr'."
return img * img_std + img_mean | 1aa59c7956051e41b0c8621012b7e135e48165a2 | 19,901 |
def valid_string_int(text, minimum=None, maximum=None):
"""Validate string representative of integer.
Returns True if it is a valid integer and between the minimum and maximum value."""
if not text.isdigit():
return False
text = int(text)
if minimum is not None and maximum is not None:
if text not in range(minimum, maximum + 1):
return False
elif minimum is None and maximum is None:
return True
elif minimum is not None:
if text >= minimum:
return True
elif maximum is not None:
if text <= maximum:
return True
return True | 72906fb85a55786504baecd059499fb46bb1b261 | 19,902 |
def bigend_2_int(p_bytes):
""" Convert bigending bytestring to int
"""
l_ix = 0
l_int = 0
while l_ix < len(p_bytes):
l_b = int(p_bytes[l_ix])
l_int = l_int * 256 + l_b
l_ix += 1
return l_int | 5c51a3752eec30804ab45185fb51c70be240a5b6 | 19,906 |
import torch
def loss_KL(p,q):
"""
Kulback-Leibler divergence between two torch Tensors
:param p: 1st tensor
:param q: 2nd tensor
:return: Kullback-Leibler divergence of p and q
"""
return torch.sum(p*torch.log(p/q)-p+q) | 0e3d8ff6fa84f569c9c3f4532e33a179645e2252 | 19,907 |
def check_any_str(list_to_check, input_string):
"""Check if any items in a list have a string in them.
Parameters
----------
list_to_check : list[str]
A list of strings.
input_string : str
A string to check items in the list.
Returns
-------
Boolean
True or False, depending on whether input_string is found in >= list item.
"""
return any(input_string in string for string in list_to_check) | d4c470281de2e2060ecdc575ed6935ef92d8886b | 19,912 |
def parseMoClassName(className):
""" Given a class name (aaaUserEp) returns tuple aaa,UserEp"""
idx = -1
upperFound = False
for c in className:
idx += 1
if c.isupper():
upperFound = True
break
if upperFound:
pkg = className[:idx]
klass = className[idx:]
else:
pkg = className
klass = ""
return pkg, klass | c611f9e19b64674fcbd62944ca7e1d9a8cfd62c3 | 19,913 |
import json
def dump_json(filename, data, **kwargs):
"""Serialize data as JSON-file
Parameters
----------
filename : str
data : list, dict, etc.
Data to save. Chech json.dump for more details and description.
"""
with open(filename, 'w') as f:
json.dump(data, f, **kwargs)
return None | 5a2f94021e640378e7924d3476238c3db67ed13b | 19,915 |
def get_entry(root_node: dict, entry_name: str, default_value):
"""Gets the entry from the root node or creates one with
the default value if none is existing in the root node
Arguments:
root_node {dict} -- Root node
entry_name {str} -- Entry name
default_value {[type]} -- Default value
Returns:
[type] -- Entry
"""
node = default_value
try:
node = root_node[entry_name]
except:
pass
return node | 57c7ddb0dc546677ccf58f731dbc19e42e925dbb | 19,920 |
import re
def replace_aea_add_statements(
content: str, old_string: str, new_string: str, type_: str
) -> str:
"""Replace statements of the type: 'aea add <type> <old_string>'."""
if type_ != "agents":
content = re.sub(
fr"aea +add +{type_} +{old_string}",
f"aea add {type_} {new_string}",
content,
)
return content | b0670f2ffc759266c2609be21efda86ca83a3ea1 | 19,921 |
import csv
def gete2wlandw2el(datafile):
"""Get dict inputs for the EM algorithm.
Parameters
----------
datafile: str
path to datafile. The data file itself must be a csv file with
3 columns: question, worker, answer
and the first row is the column names.
Returns
-------
dict
Indexed by question
Each value is a list of workers and labels assigned by them.
For example, e2wl['1'][3] -> ['4', '3']
means that questoin '1', was answered as '3' by worker '4'
dict
Indexed by worker name
Each value is a list of questions and labels assigned by the worker.
For example, w2el['4'][0] -> ['1', '3']
means that worker '4', when asked question '1', assigned the label '3'.
list
list of unique labels in the dataset
"""
e2wl = {}
w2el = {}
label_set = []
f = open(datafile, 'r')
reader = csv.reader(f)
next(reader)
for line in reader:
example, worker, label = line
if example not in e2wl:
e2wl[example] = []
e2wl[example].append([worker, label])
if worker not in w2el:
w2el[worker] = []
w2el[worker].append([example, label])
if label not in label_set:
label_set.append(label)
return e2wl, w2el, label_set | 11af97514625b6750a14540bf9790c904d6cc141 | 19,922 |
def extract_info_attributes(turn):
"""Extract information attributes for current round using NLU annotations.
Args:
turn: Current round information
Returns:
get_attribute_matches: Information attributes
"""
user_annotation = eval(turn["transcript_annotated"])
assistant_annotation = eval(turn["transcript_annotated"])
annotation = user_annotation + assistant_annotation
# annotation = user_annotation
all_intents = [ii["intent"] for ii in annotation]
get_attribute_matches = []
for index, intent in enumerate(all_intents):
if any(
ii in intent
for ii in ("DA:ASK:GET", "DA:ASK:CHECK", "DA:INFORM:GET")
):
# If there is no attribute added, default to info.
if "." not in intent:
get_attribute_matches.append("info")
continue
attribute = intent.split(".")[-1]
if attribute == "info":
new_matches = [
ii["id"].split(".")[-1]
for ii in annotation[index]["slots"]
if "INFO" in ii["id"]
]
if len(new_matches):
get_attribute_matches.extend(new_matches)
else:
get_attribute_matches.append("info")
elif attribute != "":
get_attribute_matches.append(attribute)
return sorted(set(get_attribute_matches)) | b995fbf439a7a3a7886e288319c680e45bba11cb | 19,923 |
def unIndex(i, n, trunc):
"""
Converts a 1-dimensional index ``i`` with truncation ``trunc`` and
number of modes ``n`` to a n-ary index.
"""
return [i // trunc**(n - 1 - m) % trunc for m in range(n)] | ef4d72e264de6225ea20eafc6d15f2f9721e2a9c | 19,925 |
def to_list(results):
"""
Purpose:
Simplify the ComputeSkipGrams result set
:param results:
a ComputeSkipsGrams result set
looks like this
[(u'Problems', u'installing'), (u'Problems', u'adobe'), (u'Problems', u'acrobat'), ... ,]
:return:
a list of results
looks like this
["Problems installing", "Problems adobe", "Problems acrobat", ... ,]
"""
the_list = []
for result in list(results):
the_list.append(" ".join(list(result)))
return the_list | 8c6e245a61303fbbc035f1d2f4b36d6e17a66970 | 19,928 |
from typing import List
def binary_search(arr: List[int], key: int) -> int:
"""Returns the index of a given key in a sorted array, or -1 if key not found.
1. Get left and right indices.
2. Calculate the mid.
3. Depending on whether the key is bigger or smaller than mid,
update left of right.
Space: O(1)
Time: log(n)
:param arr: The sorted array to search
:param key: The key to search for
:return: The index of the key if found, -1 otherwise
"""
left = 0
right = len(arr)-1
while left <= right:
mid = left + (right-left)//2
if key > arr[mid]:
left = mid+1
elif key < arr[mid]:
right = mid-1
else:
return mid
# Key not found
return -1 | ba3e268890eb0dbab8033df56bcf6941df08819c | 19,936 |
def convert_image_name(cur,imgNum):
"""
Converts imgNum to image file name without extension, as used in adjacency2 table
Parameters:
-----------
cur : MySQLdb cursors
imgNum : str
IMG_Number field entry for table image
"""
sql = ("select IMG_File "
"from image "
"where IMG_Number = '%s' " %(imgNum))
cur.execute(sql)
return cur.fetchone()[0].split('.')[0] | ca1087422415115bd703859ad330673f9b893b42 | 19,938 |
from typing import Tuple
from typing import Type
from typing import Any
def get_types_filter(desired_types: Tuple[Type[Any], ...]):
"""Returns a value filter that only keeps values with the given types."""
return lambda arg_value: arg_value.type in desired_types | a245199b6d7bfa7203828b45d32cd62e1900e811 | 19,947 |
def _tf(word_occured_in_doc: int, total_words_in_doc: int) -> float:
"""Term frequency of a word in certain document.
See: https://bit.ly/3zEDkMn
"""
assert word_occured_in_doc <= total_words_in_doc
return word_occured_in_doc / total_words_in_doc | 32bd03d0b068ad229b7d9871bf3665643d35021e | 19,948 |
def pcmatrixrow(matrix, form, trans):
"""
Returns the row for the specified form and transposition level.
Parameters
----------
matrix : tuple
A pitch class matrix created by pcmatrix().
form : 'p' | 'r' | 'i' | 'ri'
The row form to return: 'p' is prime, 'r' is retrogade, 'i' is inversion, and 'ri' is retrograde-inversion.
trans : pc
The pitch class transposition level of the row to return.
Returns
-------
A tuple containing the pitch classes for the given form and transposition.
"""
size = len(matrix)
assert 0 <= trans < size, "Not a valid transposition level: {}.".format(trans)
row = col = 0
if form in ['p', 'r']:
while row < size:
if matrix[row][col] == trans:
break
row += 1
assert row < size, "Not a valid row transposition: {}.".format(row)
return matrix[row] if form == 'p' else matrix[row][::-1]
elif form in ['i', 'ri']:
while col < size:
if matrix[row][col] == trans:
break
col += 1
assert col < size, "Not a valid row transposition: {}.".format(col)
rng = range(0, size) if form == 'i' else reversed(range(0, size))
return tuple(matrix[r][col] for r in rng)
else:
raise Exception("Not a valid row form: {}".format(form)) | 76a149cefcb9c3420cfb0c569c17687b4c49cba1 | 19,952 |
def _return_kwargs(dummy_req, **kwargs):
"""A dummy api call that simply returns its keyword arguments."""
return kwargs | fa43ffcd84ee2016f24441306a2b92c37e6484c8 | 19,953 |
def get_clk_name(clk):
"""Return the appropriate clk name
"""
if clk == 'main':
return 'clk_i'
else:
return "clk_{}_i".format(clk) | 1204f7db18b74ede3afa72ed2aa434f9b2dac984 | 19,960 |
def remove_xenon(te_img, xe_img, te_iso, xe_iso, clamp_neg=True):
"""
Based on the abundances of the Xe and Te isotopes in question, and the Xe
images, calculates the expected component the Te image that actually comes
from Xe and subtracts it.
By default the function assumes any pixels that become negative after
subtraction contain no tellurium and so clamps them to 0.
"""
# Percentage abundance of different Xe isotopes
xe_abundances = {'124': 0.095,
'126': 0.089,
'128': 1.910,
'129': 26.401,
'130': 4.071,
'131': 21.232,
'132': 26.909,
'134': 10.436,
'136': 8.857}
"""
Checks that the isotope requested is xenon contaminated.
Returns the input array if not, and prints a warning.
"""
if str(te_iso)not in xe_abundances:
print('{0} is not contaminated with Xe. Input image returned.'.format(str(te_iso)))
return te_img
ratio = xe_abundances[str(te_iso)] / xe_abundances[str(xe_iso)]
scaled_xe = xe_img * ratio
subtracted = te_img - scaled_xe
# Clamp negative pixels to zero if clamp_neg
if clamp_neg:
subtracted[subtracted < 0] = 0
return subtracted | 25c1f3d8d8f600290c1d41b520458dc6a00fc54a | 19,965 |
def remove_utc(time_string):
""" Removes UTC from end of time string.
The purpose is to clean up time strings so they can be converted to
Numpy datetime64 objects, since datetime64 cannot be initialized if
if the input string includes the UTC marker.
Args:
- time_string (string): timestamp string from Purple Air
dataset.
Returns:
- (string): the cleaned-up timestamp string (without "UTC")
"""
if time_string.endswith("UTC"):
return time_string[:-3].strip()
else:
return time_string | f1f4a1cb6f8a1068a48610b4a821ef1eac3c7fb8 | 19,967 |
def get_max_length(graphs):
""" Get the max length among sequences. """
max_length = 0
for cascade_id in graphs:
# traverse the graphs for max length sequence
for sequence in graphs[cascade_id]:
max_length = max(max_length, len(sequence[0]))
return max_length | 2dfa82526a291c08bfef0c8e5edb06b693caa224 | 19,970 |
def quantum_state_preparation_qiskit(circuit, parameters, n = 2):
"""
Parameters
----------
circuit: qiskit circuit
parameters: n*2 array
each row contains rx and ry parameters
Returns
-------
qiskit circuit
"""
q = circuit.qregs
for i in range(len(q)):
circuit.rx(parameters[i][0], q[i])
circuit.ry(parameters[i][1], q[i])
circuit.cx(q[1], q[0])
return circuit | 5443d7a4c29c6ab003f71e345d5a07925f538c21 | 19,973 |
def string_to_dict(string):
"""Return dictionary from string "key1=value1, key2=value2"."""
if string:
pairs = [s.strip() for s in string.split(",")]
return dict(pair.split("=") for pair in pairs) | bf9de94d8bd54a2f65fc44ebbf8388f8fda58999 | 19,979 |
def firstUniqChar_v3(s: str) -> int:
"""Slowest approach. Worst case complexity is O(n^2). Not much better than v2."""
for k, c in enumerate(s):
if s.find(c) == s.rfind(c):
return k
return -1 | 432012c1aa9681c320f26fc565925b379a13ffdc | 19,981 |
def get_expr_for_end_pos(field_prefix="v.", pos_field="start", ref_field="ref"):
"""Compute the end position based on start position and ref allele length"""
return "%(field_prefix)s%(pos_field)s + %(field_prefix)s%(ref_field)s.length - 1" % locals() | ecdb1a03d37105c92cca28d4d4ee5e3a9bdd542a | 19,986 |
def cell_value(cell):
"""Returns cell value or an empty string."""
value = getattr(cell, 'value', '')
if value is None or str(value).startswith('='): # we don't calculate expressions
return ''
else:
return str(value) | 8bce8818b0928042eab6b313ed4cd36e97ca90f5 | 19,987 |
def partition_app_list(app_list, n):
"""
:param app_list: A list of apps with models.
:param n: Number of buckets to divide into.
:return: Partition apps into n partitions, where the number of models in each list is roughly equal. We also factor
in the app heading.
"""
num_rows = sum([1 + len(x['models']) for x in app_list]) # + 1 for app title
num_rows_per_partition = num_rows / n
result = [[] for i in range(n)] # start with n empty lists of lists
partition = 0
count = 0
for a in app_list:
# will the app fit in this column or overflow?
c = len(a['models']) + 1 # the +1 is for the app title
# if we're not on the last partition, and the models list fits
# more on the next partition than this one, start the next partition.
if (partition < n - 1) and (count + c/2.0 > num_rows_per_partition):
partition += 1
count = 0
result[partition].append(a)
count += c
return result | 8d29daab146c4888b831bb09b2932e056a743d66 | 19,990 |
def reward_function(params):
"""
Example of rewarding the agent to stay inside two borders
and penalizing getting too close to the objects in front
"""
all_wheels_on_track = params["all_wheels_on_track"]
distance_from_center = params["distance_from_center"]
track_width = params["track_width"]
objects_distance = params["objects_distance"]
_, next_object_index = params["closest_objects"]
objects_left_of_center = params["objects_left_of_center"]
is_left_of_center = params["is_left_of_center"]
# Initialize reward with a small number but not zero
# because zero means off-track or crashed
reward = 1e-3
# Reward if the agent stays inside the two borders of the track
if all_wheels_on_track and (0.5 * track_width - distance_from_center) >= 0.05:
reward_lane = 1.0
else:
reward_lane = 1e-3
# Penalize if the agent is too close to the next object
reward_avoid = 1.0
# Distance to the next object
distance_closest_object = objects_distance[next_object_index]
# Decide if the agent and the next object is on the same lane
is_same_lane = objects_left_of_center[next_object_index] == is_left_of_center
if is_same_lane:
if 0.5 <= distance_closest_object < 0.8:
reward_avoid *= 0.5
elif 0.3 <= distance_closest_object < 0.5:
reward_avoid *= 0.2
elif distance_closest_object < 0.3:
reward_avoid = 1e-3 # Likely crashed
# Calculate reward by putting different weights on
# the two aspects above
reward += 1.0 * reward_lane + 4.0 * reward_avoid
return reward | a9f1490f999abfe819df300e522e74820edb821e | 19,991 |
def _parse_overscan_shape(rows, columns):
"""
Parse the number of overscan rows and columns into indices that can be used
to reshape arrays.
:param rows:
The number of overscan rows.
:type rows:
int
:param columns:
The number of overscan columns.
:type columns:
int
"""
if rows == 0 and columns == 0:
return (0, 0)
if rows == 0 and columns > 0:
return (-1, columns)
if rows > 0 and columns == 0:
return (rows, -1)
if rows > 0 and columns > 0:
return (rows, columns) | e3b6bb9c5d5837e9628fcd226f2484d44d4ce454 | 19,992 |
def get_window_context(idx, tree, size):
"""Return a list of words within a 2*size window around the idx position."""
return [node.token for node in
tree[max(0, idx-size) : idx] + tree[idx+1 : idx+size+1]] | 7e61105f278757505dbcff0f98a3f144844476be | 19,997 |
def value_in(value, choices):
"""Raise an exception if a value doesn't match one of the given choices."""
if value not in choices:
raise ValueError("Expected one of %s, received %r." % (", ".join([repr(choice) for choice in choices]), value)) # pragma: no cover
return value | 98abbbcc09c3b042a4ccd359986ae9325d96c442 | 19,999 |
import collections
def cal_frac_aneu(ploidy, ploidy_list):
"""
Calculate percentage of aneiploidy for each ploidy list
Examples
--------
>>> ploidy = [0, 1, 2, 4, 4]
>>> ploidy_list = [0, 1, 2, 3, 4]
>>> cal_frac_aneu(ploidy, ploidy_list)
[0.2, 0.2, 0.2, 0, 0.4]
Parameters
----------
ploidy :
a list of ploidy
ploidy_list :
a list of ploidy
Returns
-------
a list of ploidy fractions
"""
total = len(ploidy)
counts = collections.Counter(ploidy)
frac = []
for dos in ploidy_list:
if counts[dos]:
frac.append(round(counts[dos]/total, 2))
else:
frac.append(0)
return frac | 3940e750d2cd309ba6e341c0f13c42e9b911e0ea | 20,000 |
def build_texts_from_movies(path_to_movie_dat):
"""
Extracts genre text from movies.dat to create semantic embeddings
:param path_to_movie_dat:
:return: dict of text list keyed by movie_id
"""
texts = {}
with open(path_to_movie_dat, "r", encoding="ISO-8859-1") as f:
for line in f:
movie_id, title_and_year, genres = line.strip("\n").split("::")
title = title_and_year[:-7]
# year = title_and_year[-5:-1]
sorted_genres = sorted(genres.split("|"))
texts[movie_id] = [title] + sorted_genres
return texts | e98a8e5eedee7a983431246f0e4968d6f4daaa40 | 20,002 |
import copy
def override_repo_refs(repos, override_ref=None, overrides=None):
"""
Returns a new `repos` dictionary with the CLI overrides applied.
"""
overrides = overrides or {}
if not override_ref and not overrides:
return repos
repos_copy = copy.deepcopy(repos)
for repo, repo_data in repos.items():
if not repo_data:
continue
release_data = repo_data.get("openedx-release")
if not release_data:
continue
local_override = overrides.get(str(repo), override_ref)
if local_override:
repos_copy[repo]["openedx-release"]["ref"] = local_override
return repos_copy | 83df5d47b6ceba385d05e2c94341fec9c559ea0d | 20,003 |
import csv
def get_entities(entities_file):
"""Returns an array of Medical Entities
:param entities_file: Entities file csv
:return: Array<[term:str, score:int]>
"""
entities = []
with open(entities_file, encoding='utf8') as ds1_file:
csv_reader = csv.reader(ds1_file, delimiter=',')
for row in csv_reader:
entities.append([str(row[0]), row[1]])
return entities | 038b3b04aa43906149e7d6799ac66ba9f7d719c0 | 20,005 |
def secondsToMMSS(secs):
"""Convert number of seconds to the string ``mm:ss``.
Note: If the number of minutes is greater than 100, it will
be displayed as such.
Args:
secs (int): Number of seconds.
Returns
str: String in the format of ``mm:ss``.
"""
secs = int(secs)
minutes, seconds = divmod(secs, 60)
return '{:02d}:{:02d}'.format(minutes, seconds) | 6cf218ac1b45e2a338bd97bc28472f08077cbcf2 | 20,009 |
def pad_to_max_seq_length(ls, max_seq_length, pad_idx=0, pad_right=True, check=True):
"""Apply padding to an input sequence.
Args:
ls: sequence to pad.
max_seq_length: max length up to which to apply padding.
pad_idx: element to use for padding.
pad_right: True if padding is applied to right side of sequence, False to pad on left side.
check: True if result length should be checked as under the max sequence length.
Returns:
Sequence with specified padding applied.
"""
padding = [pad_idx] * (max_seq_length - len(ls))
if pad_right:
result = ls + padding
else:
result = padding + ls
if check:
assert len(result) == max_seq_length
return result | 687954fcda10e14e93b994df2c43e320b29731fd | 20,011 |
def get_languages(project_data):
"""
Get the available languages for the crowdin project.
Parameters
----------
project_data : dict
Crowdin project data.
Returns
-------
dict
Available languages on crowdin.
"""
result = {}
for language in project_data["targetLanguages"]:
result[language["locale"]] = {"id": language["id"], "name": language["name"]}
return result | 87d4c845e2d64e90d93add2600eae99c25960864 | 20,014 |
def name(who):
"""Return the name of a player."""
return "Player {0}".format(who) | ab75e42a9dc70217a148475d32779da0b1e81d75 | 20,018 |
def tv(five_year_fcf, wacc, g= 0.03):
"""Returns terminal value using Gordon Growth formula."""
last_fcf = five_year_fcf[-1]
return last_fcf*(1+g) / (wacc - g) | 965175a6d83687cf22d477d6e2aa4755fc48228e | 20,020 |
import re
def match_scene_name(scene_name):
"""
Args:
scene_name (str): FloorPlanXX-<random_seed(int) | default>
Returns a tuple of scene name and seed (or 'default') if we
can match the format."""
m = re.match("^FloorPlan[0-9]+-([0-9]+|default)$", scene_name)
if m is not None:
return m.group().split("-")
return None | d8d2de675e102984007e735992fb9c0696d4845c | 20,023 |
def design_thick_spherical_transform_lens(n, w, f):
"""Choose radius of curvature and thickness for a Fourier transform with given focal length and working distance.
Args:
n: refractive index
w: working distance
f: transform focal length
Returns:
roc: radius of curvature
d: center thickness
"""
# Derivation p68 Dane's Fathom logbook #2
roc = f*(n - 1) + w*(n - 1)
d = (f - w)*n*roc/(f*(n - 1))
return roc, d | a3ebcdd19cb95a4d369252984e7342a6ee338c48 | 20,024 |
def arb_callable(n):
"""Arb callable for testing."""
return n * 2 | 1cac3ad2ab9ca74197e91d8404cf21f65b2aa74d | 20,025 |
def _get_header_info(line):
"""
Get number of sequences and length of sequence
"""
header_parts = line.split()
num_seqs, length = list(map(int, header_parts[:2]))
is_interleaved = len(header_parts) > 2
return num_seqs, length, is_interleaved | be7fc522fb8d195af6e45c93e42867aecbd23fb6 | 20,026 |
import json
def loadJsonArgs(fn):
"""
Load the .json file containing input values
Args:
fn: file name
Returns:
args: argument dictionary
"""
with open(fn) as data_file:
data = json.load(data_file)
args = {}
args['patient_id'] = data['Patient ID']
args['start_phase'] = data['Start Phase']
args['total_phase'] = data['Total Phase']
args['im_name'] = data["Image Name"]
args['model_output']=data["Output Surface Model Name"]
args['seg_name'] = data["Segmentation Name"]
args['im_top_dir'] = data["Image Top Dir"]
args['seg_folder_name'] = data["Segmentation Folder Name"]
args['im_folder_name'] = data["Image Folder Name"]
args['out_dir'] = data["Output Dir Name"]
args['num_interpolation']=data["Number of Interpolations"]
args['num_cycle'] = data["Number of Cardiac Cycles"]
args['duration'] = data["Cycle Duration (s)"]
args['edge_size'] = data["Mesh Size"]
args['mask_folder_name'] = data["Mask Folder Name"]
return args | 51e8a0fdaf53836cf831701ff6921479a8d8e03f | 20,030 |
from pathlib import Path
def get_cwd() -> Path:
"""Determine the current working directory.
:return: The appropriate current working directory path
:rtype: ~pathlib.Path
"""
return Path.cwd() | 3db9c2b613f02f0678cd0f994ad12701b9229a5a | 20,032 |
def bswap(data):
"""
Byteswap data
"""
return data.byteswap() | 1d0bf90f948e441514aa7bc0aff0cbe2ecd8283b | 20,034 |
import json
def _GetKeysAsDict(keys_input):
"""Converts |keys_input| into a dictionary.
Args:
keys_input: A dictionary or a string pointing to a JSON file. The contents
of either should be Skia Gold config data.
Returns:
A dictionary containing the Skia Gold config data.
"""
if isinstance(keys_input, dict):
return keys_input
assert isinstance(keys_input, str)
with open(keys_input) as f:
return json.load(f) | db5d8e1bc08d326754163bd183f51dea9e7ad499 | 20,038 |
def query(conn, string: str):
"""Perform a query on titanic database and return result."""
curs = conn.cursor()
curs.execute(f'{string}')
result = curs.fetchall()
return result | 11c51879cad2cd99d64a3c64dbafe5c95edf6fdd | 20,041 |
import torch
def safe_log(x, eps=1e-7):
"""Avoid taking the log of a non-positive number."""
safe_x = torch.where(x <= eps, eps, x.double())
return torch.log(safe_x) | 5d9029d51ee667bc69b0370e49e91fdf5f096c31 | 20,042 |
def puncify(s):
"""Replaces unicode characters with the appropriate ASCII punctuation"""
return s.replace(u'\xa0', u' ').replace(u'\u201c', '"').replace(u'\u201d', '"').replace(u'\u2019', "'").replace(u"&", '&').replace(u'\u2026', '...') | 670db5ce03943365bd9683e4c75589418246a497 | 20,044 |
import re
def extract_episode(text, seg_search, eg_search):
"""
Extract episode number from metadata.
:param str text: Metadata containing episode number.
:param str seg_search: Regex for a `Super Easy German` episode.
:param str eg_search: Regex for an `Easy German` episode.
:return: Episode number and type.
:rtype: dict
"""
seg_match = re.search(seg_search, text, re.IGNORECASE)
if seg_match:
return {
'type': 'super_easy_german',
'number': seg_match.group().strip().replace('(', '').replace(
')', '')
}
eg_match = re.search(eg_search, text, re.IGNORECASE)
if eg_match:
return {
'type': 'easy_german',
'number': eg_match.group().strip()
} | 2215ba4b1aacbf8f3cff8e02bd4814a279e147ca | 20,045 |
def bslice(high, low=None):
"""
Represents: the bits range [high : low] of some value. If low is not given,
represents just [high] (only 1 bit), which is the same as [high : high].
"""
if low is None:
low = high
return slice(low, high + 1) | d3a3085f8da638ef63c7d0f65605543f6f3605b7 | 20,046 |
def serialize_file_list(files: list, active_item_index: int = -1):
"""Returns a serialized file list, which JRiver requires in some API calls.
These are a not documented further, but form a string of comma seperated values.
These are, in order:
[0] The value '2', stating a serialization version. Only 2 is supported these days.
[1] The number of included keys
[2] The active element (?), -1 for none
[3]..[len(files + 3)]: The keys of the files.
"""
result = "2;" + str(len(files)) + ";" + str(active_item_index)
for file in files:
result += ";" + str(file["Key"])
return result | 651df9d8cd228f10c9e0324a2d4b9cfc2e7adf10 | 20,049 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.