content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
import re def get_test_args(args_line): """Returns the list of arguments from provided text line.""" try: args_line, _ = args_line.split('#', 1) # Strip optional ending comment except ValueError: pass return re.split(r'(?<!\\) ', args_line.strip())
9129bf3d773165dc5bf0bc723b2a12b82a2c5517
19,002
import pickle def load_pickle(pickle_file_name): """Loads a pickle from given pickle_file_name.""" with open(pickle_file_name, "rb") as f: data = pickle.load(f) print("Pickle file loaded: {}".format(pickle_file_name)) return data
8bbf04e2c1a1859b89c2cede128381a6c7ebadc6
19,006
def get_image_sizes(metadata): """ image_sizes.txt has the structure <path>,<w>,<h> path/to/image1.jpg,500,300 path/to/image2.jpg,1000,600 path/to/image3.jpg,500,300 ... """ image_sizes = {} with open(metadata.image_sizes) as f: for line in f.readlines(): image_id, ws, hs = line.strip('\n').split(',') w, h = int(ws), int(hs) image_sizes[image_id] = (w, h) return image_sizes
a3910f22938aa0a635f5c3e424891dd7c76ce41a
19,009
from typing import Counter def word_form_hapaxes(tokens): """ Takes a list of tokens and returns a list of the wordform hapaxes (those wordforms that only appear once) For wordforms this is simple enough to do in plain Python without an NLP package, especially using the Counter type from the collections module (part of the Python standard library). """ counts = Counter(tokens) hapaxes = [word for word in counts if counts[word] == 1] return hapaxes
9ea3f56ebd2967baf427abe1c1604fb8d4063046
19,012
import math def vectorDistance(vector1, vector2): """Return the distance between vectors.""" return math.sqrt( math.pow((vector2.x - vector1.x), 2) + math.pow((vector2.y - vector1.y), 2))
61db7f6258b6704d44cf8d630b4dd33f13be8911
19,021
def tmp(tmpdir_factory): """Create a common temp directory.""" return str(tmpdir_factory.mktemp('tmp_test'))
3901ede63f669752622f7273f876347218b0011c
19,022
def count_linestokens(line): """ 计算句子token个数(包括符号) :param line: 句子 :return: line_num """ line_num = len(line.split(' ')) return line_num
d80868a3ab56fab5fe3d1cb04c8cee05cf7e7e5d
19,029
def tokenize(text): """Tokenize a passage of text, i.e. return a list of words""" text = text.replace('.', '') return text.split(' ')
497be6a4b8a7fd6ef0cc715b6343d9eec42e70f9
19,030
def _get_cell(row, name, decimal=False): """Retrieves a cell from a row by name.""" for cell in row.cells: if cell.name == name: if decimal: return cell.decimal_value[0] return cell.string_value[0]
16e0c5475121a3d01fdef1ca2f16e3a6e30cccba
19,033
def is_label_definition(line): """Returns if the line is a LABEL node.""" return line.startswith("LABEL ")
e508f0987204e01bc97ef52dda189171e0c7befb
19,038
def nfa_word_acceptance(nfa: dict, word: list) -> bool: """ Checks if a given word is accepted by a NFA. The word w is accepted by a NFA if exists at least an accepting run on w. :param dict nfa: input NFA; :param list word: list of symbols ∈ nfa['alphabet']; :return: *(bool)*, True if the word is accepted, False otherwise. """ current_level = set() current_level = current_level.union(nfa['initial_states']) next_level = set() for action in word: for state in current_level: if (state, action) in nfa['transitions']: next_level.update(nfa['transitions'][state, action]) if len(next_level) < 1: return False current_level = next_level next_level = set() if current_level.intersection(nfa['accepting_states']): return True else: return False
ca552fe4061f7c87fc0a9991a9626baca4b63fc6
19,041
def dt2str(dt): """Convert datetime.timedelta to human readable format""" if dt.days: return '{}D'.format(dt.days) if dt.seconds > 3600: return '{}H'.format(dt.seconds // 3600) return '{}M'.format(dt.seconds // 60)
b87b17707cc647876f14da11c4bfabe95736afae
19,048
def _rho1(basis_states): """State ρ₁ from the "3states" functional""" d = len(basis_states) # dimension of logical subspace return sum( [ (2 * (d - i) / (d * (d + 1))) * psi * psi.dag() for (i, psi) in enumerate(basis_states) # note that i is 0-based, unlike in the paper ] )
939f9835f011fcf3457f7a3cb0f63b446d2cd093
19,054
def str_to_bool(bool_as_string: str) -> bool: """ A converter that converts a string representation of ``True`` into a boolean. The following (case insensitive) strings will be return a ``True`` result: 'true', 't', '1', 'yes', 'y', everything else will return a ``False``. :param bool_as_string: The string to be converted to a bool. :type bool_as_string: str :rtype: bool :raises TypeError: Raised when any type other than a string is passed. """ if not isinstance(bool_as_string, str): raise TypeError("Only string types supported") return bool_as_string.lower() in ["true", "t", "1", "yes", "y"]
62fef04039d66d3530e4cac42bf3c152d8f891e6
19,056
def split_conn_PFI(connection): """Return PFI input number of a connection string such as 'PFI0' as an integer, or raise ValueError if format is invalid""" try: return int(connection.split('PFI', 1)[1]) except (ValueError, IndexError): msg = "PFI connection string %s does not match format 'PFI<N>' for integer N" raise ValueError(msg % str(connection))
b0d22bf7c4bcaafe087d9d3a982d4b17f10cd017
19,059
def format_block(block: list) -> str: """ Transforms [1, 2, 3, 4, 5, 6, 7, 8] -> 1 2 3 4 5 6 7 8 9 """ return "\n".join(" ".join(str(v) for v in block[i*3:i*3+3]) for i in range(3))
10c69f39ab26451a5fa29aa3232c0f3ca932deb6
19,060
def num_diffs(state): """ Takes a state and returns the number of differences between adjacent entries. num_diffs(str) -> int """ differences = 0 for i in range(0, len(state) - 1): if state[i] != state[i+1]: differences += 1 return differences
8ad010412a66badfa1ebf142429b5fd9752c78ee
19,062
def with_metaclass(meta, *bases): """Create a base class with a metaclass for py2 & py3 This code snippet is copied from six.""" # This requires a bit of explanation: the basic idea is to make a # dummy metaclass for one level of class instantiation that replaces # itself with the actual metaclass. Because of internal type checks # we also need to make sure that we downgrade the custom metaclass # for one level to something closer to type (that's why __call__ and # __init__ comes back from type etc.). class metaclass(meta): __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, d): if this_bases is None: return type.__new__(cls, name, (), d) return meta(name, bases, d) return metaclass("temporary_class", None, {})
513f9e212bd8f689b09c74867876d51ab1ac544b
19,072
def format_time(seconds): """ format seconds to time string :param seconds: seconds, in float format :return: formatted time string """ h = int(seconds // 3600) m = int(seconds % 3600 // 60) s = seconds % 60 if h: time_str = '{:d}h {:d}min {:.02f}s'.format(h, m, s) elif m: time_str = '{:d}min {:.02f}s'.format(m, s) else: time_str = '{:.02f}s'.format(s) return time_str
8c8ebeb8074f4a2f2f8c0e69497ba9a02744fab0
19,073
def quat_negate(q): """ return -q. """ return q*-1.0
57ae0dc235d6b80f41abe6506c33b9a024a4bcee
19,076
def _SplitAndPad(s): """Splits a string on newlines, and pads the lines to be the same width.""" split_string = s.split('\n') width = max(len(stringpiece) for stringpiece in split_string) + 1 padded_strings = [ stringpiece.ljust(width, ' ') for stringpiece in split_string ] return padded_strings
f51976a558c6c76b26d9cf6e9302ce9d31436aed
19,083
def check_language_presence(match) -> bool: """Checks if some group is present inside the match object""" try: match.group('lang') return True except IndexError: return False
7a0fe185af00bbd222e7d3706ff822eb94ebba2b
19,085
import six def to_unicode(value): """ Converts string to unicode: * Decodes value from utf-8 if it is a byte string * Otherwise just returns the same value """ if isinstance(value, six.binary_type): return value.decode('utf-8') return value
1bca40318e9e311f5ad26cf7035cef656f14cb0e
19,086
def strip_balanced_edge_parens(s): """ Return a string where a pair of balanced leading and trailing parenthesis is stripped. For instance: >>> strip_balanced_edge_parens('(This is a super string)') 'This is a super string' >>> strip_balanced_edge_parens('(This is a super string') '(This is a super string' >>> strip_balanced_edge_parens('This is a super string)') 'This is a super string)' >>> strip_balanced_edge_parens('(This is a super (string') '(This is a super (string' >>> strip_balanced_edge_parens('(This is a super (string)') '(This is a super (string)' """ if s.startswith('(') and s.endswith(')'): c = s[1:-1] if '(' not in c and ')' not in c: return c return s
3e603fbd48ec9a107ab23a2c7a0282efb9f1ee36
19,087
def hex_to_rgb(hexcode): """ Convert Hex code to RGB tuple """ return (int(hexcode[-6:-4], 16), int(hexcode[-4:-2], 16), int(hexcode[-2:], 16))
0bf09edac600dcf1e6e0bd527d3e48d702a98add
19,090
from typing import Union from typing import List def add_n(obj: Union[int, List], n: int) -> Union[int, List]: """Return a new nested list where <n> is added to every item in <obj>. >>> add_n(10, 3) 13 >>> add_n([1, 2, [1, 2], 4], 10) [11, 12, [11, 12], 14] """ if isinstance(obj, int): return obj + n else: new_list = [] for sublist in obj: new_list.append(add_n(sublist, n)) return new_list
803d730e005aa81afcdeae48819aeb312b27e3f7
19,094
def splitdefines(txt): """split the code into two lists of defines and code""" pre = [] c = [] for line in txt.split("\n"): if line.startswith("#"): pre.append(line) else: c.append(line) return pre, c
bcd82feb293116f39cd1d514484847ad0d20bbe5
19,101
def linear_search(item, my_list): """ Searching position by position :param item: the number to look for :param my_list: a list of integers :return: either True or False if the item is in the list or not. """ found = False for i in range(len(my_list)): if item == my_list[i]: found = True return found
463c23c85626be396c06f56d913fca9b5972fc0e
19,110
from typing import Optional def build_cfn( ret: str, name: str, *, params: Optional[list[str]] = None, body: Optional[list[str]] = None, vret: Optional[str] = None, ) -> str: """Builds a Cpp function""" if body: body = [" " + line for line in body] if ret == "string": ret = "std::string" return "\n".join( [ # returntype functionName(type varname, for all params) f'{ret} {name}({", ".join(params or [])})', "{", # { (";\n".join(body) + ";" if body else ""), # function body (f" return {vret};" if ret != "void" else ""), "};\n", # return varname; # }; ] )
5ab97857c14aac2f7e3d2fc3093339dde4f89917
19,111
import random import string def random_schema_name() -> str: """Generate a random PostgreSQL schema name for testing.""" return 'temp_{name}'.format( name=''.join( (random.choice(string.ascii_lowercase) for _ in range(10)), # noqa:S311 ), )
350ea729e34d1f8262f39f4a1985ab75b421cf26
19,112
from typing import Iterable def row2string(row: Iterable[float], sep: str = ', ') -> str: """ Converts a one-dimensional iterable of floats to string. Parameters ---------- row: list or tuple or 1-D ndarray sep: str string separator between elements (default: ', ') Returns ------- string representation of a row """ return sep.join("{0}".format(item) for item in row)
afdd62d390e336e774e5ef80244adac1751202f9
19,113
import asyncio def send_message(connection, *messages, **kwargs): """ Sends a message to a connected player. :param connection: The connection to send the message to. :param messages: The message(s) to send. :return: A Future for the message(s) being sent. """ return asyncio.ensure_future(connection.send_message(*messages, **kwargs))
779ad884112dbf98e9eb78705edc0bb9dd0f93c7
19,116
def calculate_city_state_qty_delta(df): """ This function creates the specific market growth (city + state observation) rate using quantity by doing the following: 1. Creates the city_state_qty_delta_pop feature out of the quantity_of_mortgages_pop 2. Creates the city_state_qty_delta_nc feature out of the quantity_of_mortgages_nc 3. Returns the df with the new features """ # create city_state_qty_delta_pop df["city_state_qty_delta_pop"] = df.sort_values(["year"]).groupby(["city", "state"])[["quantity_of_mortgages_pop"]].pct_change() # create city_state_qty_delta_nc df["city_state_qty_delta_nc"] = df.sort_values(["year"]).groupby(["city", "state"])[["quantity_of_mortgages_nc"]].pct_change() return df
1603e51ff64ad6f232dc483af9b947378a70b886
19,120
def falsy_to_none_callback(ctx, param, value): # noqa: U100 """Convert falsy object to ``None``. Some click arguments accept multiple inputs and instead of ``None`` as a default if no information is passed, they return empty lists or tuples. Since pytask uses ``None`` as a placeholder value for skippable inputs, convert the values. Examples -------- >>> falsy_to_none_callback(None, None, ()) is None True >>> falsy_to_none_callback(None, None, []) is None True >>> falsy_to_none_callback(None, None, 1) 1 """ return value if value else None
9168083987696f7749ca8444356d32f08bde7e91
19,122
def create_voting_dict(strlist): """ :param strlist: strlist: list of strings representing voting records. Each line space delimited {last_name} {party} {state} {votes...} :return: Dictionary mapping last name to list of integer votes: -1, 0, 1 (no, abstain, yes) >>> strlist = ['Lesko D MD 1 0 -1 0 1', 'Klein R MA 0 1 1 -1 0'] >>> voting_dict = create_voting_dict(strlist) >>> voting_dict['Lesko'][2] == -1 True >>> voting_dict['Klein'][4] == 0 True """ voting_dict = dict() for line in strlist: elements = line.split(' ') voting_dict[elements[0]] = [int(e) for e in elements[3:]] return voting_dict
7b7add11aec2aea7e6929491cee8e5e44baeb6e2
19,127
def create_constant_tensor(shape, value): """Creates tensor with `shape`, filled with `value`.""" if len(shape) == 1: return [value] * shape[0] return [create_constant_tensor(shape[1:], value) for _ in range(shape[0])]
eacb2f8c5937d0fcfe4eaea4c5ed9bd0e5e4875d
19,129
def gen_cat(df): """ Generate a data frame only including catgorical variables. Parameters ---------- df : pandas data frame whole data frame. Returns ------- df_new: pandas data frame new data frame only including categorical variables. """ feat_cat = ['derived_msa_md', 'county_code', 'conforming_loan_limit', 'derived_race', 'derived_sex', 'hoepa_status', 'interest_only_payment', 'balloon_payment', 'occupancy_type', 'total_units', 'applicant_race_1', 'applicant_sex', 'applicant_age_above_62', 'co_applicant_age_above_62', 'derived_loan_product_type', 'lien_status', 'open_end_line_of_credit', 'business_or_commercial_purpose' ] df_new = df[feat_cat] return df_new
479fde5dd0f25edaed67483eed1bada5b0e17d7e
19,131
def the_box(box, width=3, height=3): """Return all coordinates of the fields of the given box number. Args: box (int): The number of the box. width (int): The width of the sudoku. height (int): The height of the sudoku. Returns: list: The coordinates of the box with the given number. Raises: ValueError: If the box number is invalid. Example:: >>> the_box(0, width=3, height=3) [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)] """ if not 0 <= box < width * height: raise ValueError( "box must be less equal 0 and less than %d" % width * height) x = (box % height) * width y = (box // height) * height return [(y + i, x + j) for i in range(height) for j in range(width)]
e099b13a55310488809149d00df9719998a99191
19,134
def mass2_from_m1_q(mass1, q): """Return the secondary mass given samples for mass1 and mass ratio """ return mass1 * q
1c902c8564fbeca7b96c6e73384b4b690b2a348d
19,135
from typing import Type from typing import get_origin import enum def is_enum_type(type_: Type) -> bool: """Return True if the input is and :class:`enum.Enum`.""" return get_origin(type_) is None and issubclass(type_, enum.Enum)
857e7a0ec5e1c4051551a6322293a71ef659010f
19,136
def clean_line(line): """ Cleans a single line """ ret = line.replace('-', ' ').replace('.', '. ').strip() return ret
833580237ffcbf607bd2ac619b721f9d260d3aae
19,139
def parse_line(line): """parse composition line by deleting whitespace and separating the isotope and atomic density Parameters ---------- line: str line of isotope and composition Returns ------- tuple : (str, float) (isotope, atomic density) """ # remove whitespace in front line = line.lstrip() isotope, atom_density = line.split(" ") return (isotope, float(atom_density))
bf695c505e5bb56edfd64f44b6958227737b8c1b
19,141
from typing import Optional from typing import Dict from typing import Any def init_manifest( package_name: str, version: str, manifest_version: Optional[str] = "ethpm/3" ) -> Dict[str, Any]: """ Returns an initial dict with the minimal requried fields for a valid manifest. Should only be used as the first fn to be piped into a `build()` pipeline. """ return { "name": package_name, "version": version, "manifest": manifest_version, }
dfdf014e1b6a9f0e9c8ba7ea6fed064809580f4e
19,145
def format_line(data, linestyle): """Formats a list of elements using the given line style""" return linestyle.begin + linestyle.sep.join(data) + linestyle.end
6a49a80f876ffe8a8f38e6e987051a0247858c6c
19,148
def extract(string, start='(', stop=')'): """ Extract the string that is contained between start and stop strings :param string: str, string to process :param start: str, start string :param stop: str, stop string :return: str, extracted string """ try: return string[string.index(start) + 1:string.index(stop)] except Exception: return string
75ac7aa9291b63a18c2bea2632099983137e5b7a
19,149
def get_energy_flows(fl): """ Subsets the flow list for all energy flows :param fl: df in standard flowlist format :return: df in standard flowlist format """ list_of_flows = ['Uranium','Biomass','Hardwood','Softwood','Wood'] flows = fl[(fl["Unit"]=="MJ") | (fl['Flowable'].isin(list_of_flows))] #Peat is captured in USGS_mineral_resource_flows so exclude here flows = flows[flows['Flowable']!='Peat'] flows = flows[flows["Context"].str.startswith("resource")] return flows
ee0f7ed5d5b843386630901f6cd418844e9d2438
19,150
def seconds_to_milliseconds(seconds: float) -> int: """ Converts from seconds to milliseconds. :param seconds: time in seconds :return: converted time rounded to nearest millisecond """ return int(seconds * 1000)
b47c0e7d57fea9103d826cd7d2cab51d3ded124a
19,159
def fit_range(x, inmin, inmax, outmin, outmax): """Maps a value from an interval to another Args: x (int or float): the input value inmin (int or float): The minimum of the input range inmax (int or float): The maximum of the input range outmin (int or float): The minimum of the desired range outmax (int or float): The maximum of the desired range Returns: int or float: the computed value """ return (x-inmin) * (outmax-outmin) / (inmax-inmin) + outmin
b37a88b1dc0e9e6b4c83d74232a63bbbdcf13243
19,176
def device_id_generate_doc_template_values(url_root): """ Show documentation about deviceIdGenerate """ required_query_parameter_list = [ { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, ] optional_query_parameter_list = [ ] try_now_link_variables_dict = { } api_response = '{\n' \ ' "voter_device_id": string (88 characters long),\n' \ '}' template_values = { 'api_name': 'deviceIdGenerate', 'api_slug': 'deviceIdGenerate', 'api_introduction': "Generate a transient unique identifier (voter_device_id - stored on client) " "which ties the device to a persistent voter_id (mapped together and stored on the server)." "Note: This call does not create a voter account -- that must be done in voterCreate.", 'try_now_link': 'apis_v1:deviceIdGenerateView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, } return template_values
ed0648038f26207682ff25dac76cf1bd1c0b30b9
19,177
def downsize_image(image, n): """ Downsizes an image by selecting every n pixel, it might be possible to resize to an arbitary resolution, but I didn't want to deal with interpolation and strange behaviour with semi-transparent pixels. """ return image[::n, ::n]
102fb43400a739ea6b353187eb3ecd6a1607d345
19,180
def data_loss(df_clean, df_raw): """ This function returns the data loss in percent. """ return f"{round((df_clean.shape[0]/df_raw.shape[0])*100,3)}% data loss"
0da1e75643c18b57f1952ec0b94aa996a0d1707f
19,182
def GetRoleName(effective_ids, project): """Determines the name of the role a member has for a given project. Args: effective_ids: set of user IDs to get the role name for. project: Project PB containing the different the different member lists. Returns: The name of the role. """ if not effective_ids.isdisjoint(project.owner_ids): return 'Owner' if not effective_ids.isdisjoint(project.committer_ids): return 'Committer' if not effective_ids.isdisjoint(project.contributor_ids): return 'Contributor' return None
bc0440b12779ea1caaccb868493ed05516fb2738
19,184
def create_obj(conn, new_object): """ Create a new object into the allObjects table. Parametesr new_object (tuple): a tuple containing (name, ) Returns obj_id (int): idea of the new created object in the database """ sql = ''' INSERT INTO allObjects(name) VALUES(?) ''' cur = conn.cursor() cur.execute(sql, new_object) conn.commit() return cur.lastrowid
d4995345ba6d37b5d45a9ab424e9fd212bd712b8
19,185
def five_by_five_shape(n): """ Determines shape of five by five view, allowing for fewer than 25 observations. Parameters: n: length of subject list to display Returns: Dimensions of grid/subplots as (nrows, ncols) """ if n // 5 == 0: return (1, n % 5) elif n % 5 > 0: return ((n // 5) + 1, 5) else: return (n // 5, 5)
d42bfff12064ecfb733c3068fffb87e75fcfee3c
19,191
def update_aliases(df, new_aliases=None, inplace=False): """ For each object: 1. Add new aliases if any 2. Make sure unique pipe-separated list with OBJECT first in list Args: df (pd.DataFrame): dataframe with an ALIASES column new_aliases (Series, array, list): aliases to append for each object. If Series, make sure indexes match the dataframe inplace (bool): If true, edit df directly, otherwise return a copy """ if not inplace: df = df.copy() # Make sure all strings df.ALIASES = df.ALIASES.fillna('') # Add new aliases if new_aliases is not None: new_aliases = new_aliases.fillna('') df.ALIASES = df.ALIASES.str.cat(new_aliases, sep='|') # Make sure 2MASS and Gaia included aliases = df.ALIASES.copy() mask_gaia = df.GAIADR2ID.notnull() aliases[mask_gaia] = aliases[mask_gaia].str.cat( 'Gaia DR2 ' + df.GAIADR2ID[mask_gaia] ) mask_2mass = df['TWOMASSID'].notnull() aliases[mask_2mass] = aliases[mask_2mass].str.cat( '2MASS J' + df['TWOMASSID'][mask_2mass] ) # Make sure object is not current list, and that list is unique objs = df.OBJECT.tolist() aliases = df.ALIASES.apply( # Remove object name and empty strings lambda row: [val for val in row.split('|') if val not in objs + [''] ] ) aliases = aliases.apply(set).str.join('|') # Unique and join with pipe # Add object name as first alias al_mask = aliases.str.len() > 0 df.loc[al_mask, 'ALIASES'] = df.OBJECT.str.cat(aliases, sep='|') df.loc[~al_mask, 'ALIASES'] = df.OBJECT.copy() return None if inplace else df
70d6629027b66fb4eedd31bf054b0e3eaea68a89
19,193
def _get_BD_range(x): """Getting the BD range from a fraction ID (eg., "1.710-1.716"). Parameters ---------- x : str fraction ID Returns ------- tuple -- BD start, middle end """ if x.startswith('-'): [start,_,end] = x.rpartition('-') else: [start,_,end] = x.partition('-') if start.startswith('-inf'): end = round(float(end),3) - 0.001 end = round(end,3) mid = end elif end.endswith('inf'): start = round(float(start),3) + 0.001 start = round(start, 3) mid = start else: start = round(float(start),3) end = round(float(end),3) mid = round((end - start)/2 + start,3) return start, mid, end
5a54452446696e5ae2230981683b4e52de7c7ae0
19,197
def _chi2_ls(f): """Sum of the squares of the residuals. Assumes that f returns residuals. Minimizing this will maximize the likelihood for a data model with gaussian deviates. """ return 0.5 * (f ** 2).sum(0)
af223f48bc0beffa9a99fba872c769a94fbe3235
19,200
def num_words(tokens): """Given list of words, return no. of words (int)""" return len(tokens)
89388c467380803e834d2ef287d33d17b882d666
19,208
def is_in_group(user, group_name): """Take a user and a group name, and returns `True` if the user is in that group.""" return user.groups.filter(name=group_name).exists()
797853cd5000cb1404545e3f20d38703c7a058dd
19,209
def _propagate_pair(pair, go_dict): """Propagates a pair of annotations. For a given pair of annotation terms, the GO annotations will be replaced by a set of their (recursive) child terms (including itself). Other types of annotations are left untouched, but converted to a 1-member set. Parameters ---------- pair : tuple A sorted tuples of annotation terms, one for the host and one for the pathogen, e.g. ('h@GO:0030133', 'p@IPR009304') go_dict : dict A dictionary containing the GO hierarchy. Constructed via the obo_tools.importOBO() function in the goscripts package. Returns ------- tuple A sorted tuple of annotation term sets, one for the host and one for the pathogen. Each element in the tuple consists of a set of terms, e.g. the GO term itself and all of its descendants. """ # create empty list to store the propagated (child) annotations for the # two parent annotations in the pair (in same order as original pair) propagated_pair = [] # for both annotations in the pair, propagate through GO hierarchy for term in pair: # only for GO terms, not IPR if 'GO' in term: prefix = term[:2] go_object = go_dict.get(term[2:]) # append original annotation if it can't be found in GO dict if not go_object: propagated_pair.append([term]) else: # store all child terms of parent term in a list child_terms = [ prefix + i for i in go_object.recursive_children ] # add parent term itself and remove duplicates propagation_set = set(child_terms) | set([term]) # add propagated annotations to storage list propagated_pair.append(propagation_set) else: # store original term if it's not a GO term propagated_pair.append({term}) # convert the length-2 list of annotation lists (1 for each parent # annotation) to a tuple # # e.g. ('h@GO:0060384', 'p@GO:0016787') -> # ({'h@GO:0098546', 'h@GO:0030553', 'h@GO:0035438', 'h@GO:0030552', # 'h@GO:0061507'}, # {'h@GO:0098546', 'h@GO:0030553', 'h@GO:0035438',# 'h@GO:0030552', # 'h@GO:0061507'}) return tuple(propagated_pair)
b4745e2a01075c92c862ad23defe17a674b0317e
19,211
def accuracy(predictions, targets): """Computes raw accuracy (True Predictions) / (All Predictions) Args: predictions (list): a list of predicted labels targets (list): a list of gold labels Returns: float: the raw accuracy between the predictions and the gold labels """ assert len(predictions) == len(targets) count_pos = 0 for predic, gold in zip(predictions, targets): if predic == gold: count_pos += 1 return float(count_pos) / len(targets)
0547e2f5fba2c858dbcd85720f18541b9e2a7f98
19,214
from operator import mul from fractions import Fraction from functools import reduce def numCombs(n, k): """ n choose k algorithm """ return int( reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1) )
bee91e3afc5b20e6f93d6e299f33bc23654318ec
19,215
def hasrepression(graph, cycle): """Return whether the cycle (list of node IDs) in the graph (NetworkX DiGraph) includes any repressions.""" return any(graph.edges[cycle[i], cycle[(i + 1) % len(cycle)]]['repress'] for i in range(len(cycle)))
1eaa9638512ed5b283290fedf9bc9ba499c13748
19,216
def expiration_date_filter(all_options, expirationDate): """Takes a list of ALL_OPTIONS, and returns a list of only those with the argument EXPIRATIONDATE""" return [option for option in all_options if option['expiration_date'] == expirationDate]
4a05dbdeae84639db624c673046bdd1783adf88d
19,217
def onko_pituus_oikein(hetu): """Tarkistaa henkilötunnuksen pituuden po. 11 merkkiä Args: hetu (string): Henkilötunnus Returns: boolean: True: pituus oikein, False: pituus väärin """ # Lasketaan henkilötunnuksen pituus pituus = len(hetu) # tapa 1 if pituus == 11: pituus_ok = True else: pituus_ok = False # tapa 2 pituus_ok = (pituus == 11) return pituus_ok
ddea3dcba79f40c1711623fcc7b6ef0e9066e831
19,226
def ReadAllPoints(fcsvFilePath): """Read a list of tuples from a Slicer FCSV file. Tuple order is (name, description, x, y, z). """ lst = [] with open(fcsvFilePath, 'r') as f: for line in f: line = line.strip() if (line[0] == '#'): continue tokens = line.split(',') if (tokens[0].startswith('vtkMRMLMarkupsFiducialNode')): lst.append((tokens[11], tokens[12], tokens[1], tokens[2], tokens[3])) return lst
28abd8526b06c1459299bcb2cfaeeb2217dd1336
19,227
import colorsys def hsv_to_rgb(h, s, v): """Converts a (hue, saturation, value) tuple to a (red, green blue) tuple. Args: h, s, v: the HSV values Returns: an R, G, B tuple """ r, g, b = colorsys.hsv_to_rgb(h, s, v) return (int(255 * r), int(255 * g), int(255 * b))
0d348dfad8972b84688e11e68c9ac24dcf86dcce
19,228
def validUTF8(data): """ 0. UTF-8 Validation Return: True if data is a valid UTF-8 encoding, else return False - A character in UTF-8 can be 1 to 4 bytes long - The data set can contain multiple characters - The data will be represented by a list of integers - Each integer represents 1 byte of data, therefore you only need to handle the 8 least significant bits of each integer """ successive_10 = 0 for b in data: # b = bin(b).replace('0b', '').rjust(8, '0')[-8:] b = format(b, '#010b')[-8:] if successive_10 != 0: successive_10 -= 1 if not b.startswith('10'): return False elif b[0] == '1': successive_10 = len(b.split('0')[0]) if successive_10 == 1 or successive_10 > 4: return False successive_10 -= 1 return True if successive_10 == 0 else False
c229465c4c5b2b8096c0fe8e94db1025e129ded4
19,230
def absolute_difference_distance(x: float, y: float) -> float: """Calculate distance for `get_anomalies_density` function by taking absolute value of difference. Parameters ---------- x: first value y: second value Returns ------- result: float absolute difference between values """ return abs(x - y)
45f6e55dad7dac292d450122d33b82d16cc32e23
19,235
def create_parameter_string(command_string): """Create the parameter string. The parameter string is everything after the first space character. All other space characters are removed.""" parameter_string = "".join(command_string.split(" ")[1:]) return parameter_string
80631d706cbe199d055eaac747912308be350581
19,239
def edges_flux_to_node_flux(G, attribute_name='flux'): """Sum all flux from incoming edges for each node in networkx object""" node_fluxes = {} for node in G.nodes: node_flux = sum([edge[2] for edge in list(G.in_edges(node, data=attribute_name)) if edge[2]]) node_fluxes[node] = node_flux return node_fluxes
8e70e44b38e2f8e2b48b070bb03234d2df75e810
19,244
def compose_redis_key(vim_name, vdu_uuid): """Compose the key for redis given vim name and vdu uuid Args: vim_name (str): The VIM name vdu_uuid (str): The VDU uuid (NFVI based) Returns: str: the key for redis """ return "{}:{}".format(vim_name.lower(), vdu_uuid)
41d62d8d73979ae176349d9339edbf99c991cb07
19,245
def get_file_extension(gdalformat): """ A function to get the extension for a given file format (NOTE, currently only KEA, GTIFF, HFA, PCI and ENVI are supported). :return: string """ ext = ".NA" if gdalformat.lower() == "kea": ext = ".kea" elif gdalformat.lower() == "gtiff": ext = ".tif" elif gdalformat.lower() == "hfa": ext = ".img" elif gdalformat.lower() == "envi": ext = ".env" elif gdalformat.lower() == "pcidsk": ext = ".pix" else: raise Exception("The extension for the gdalformat specified is unknown.") return ext
222da48a8994307c675d519d0e81e02febbc63f6
19,249
def create_survey_filename(url: str, ext: str = "csv") -> str: """Return a filename for a survey.""" return f"export_survey_{url.split('/')[-1]}.{ext}"
25551a7a73cddee37214a36030a58e18519cef1c
19,252
import yaml def _yaml_to_dict(yaml_filename): """Reads and stores a yaml file as a dictionary Args: yaml_filename (str): The filename of the yaml file to read. Returns: input_dict (dict): The result of reading the yaml file and translating its structure into a dictionary. """ try: # Open the yaml file and import the contents into a # dictionary with the same structure with open(yaml_filename) as fp: input_dict = yaml.load(fp, Loader=yaml.FullLoader) except: raise ValueError("Could not open file %s" % (yaml_filename)) return input_dict
f5bfb960fcf817522a9cb49cb2877c44e9fb4d9f
19,253
def gapBetweenRanges(rangeA,rangeB): """\ Returns the gap between two ranges of values, or zero if there is no gap. The sign of the returned value indicates which range is below the other. For example: * The gap between (0,10) and (15,25) is -5 * The gap between (0,10) and (9,20) is 0 * The gap between (20,30) and (10,18) is 2 :param rangeA: a tuple (lo,hi) representing a range of values. :param rangeB: a tuple (lo,hi) representing a range of values. :returns: zero if two ranges overlap; otherwise the gap separating them. If rangeA is below range B then the value will be negative. If rangeA is above range B then the value will be positive. """ aLo,aHi = rangeA bLo,bHi = rangeB if aLo > bHi: return aLo-bHi elif aHi < bLo: return aHi-bLo else: return 0
81db7f95a3cc5fcac5944f7b579ecf06c96b86c8
19,256
import functools def RequireAuth(handler): """Decorator for webapp2 request handler methods. Only use on webapp2.RequestHandler methods (e.g. get, post, put), and only after using a 'Check____Auth' decorator. Expects the handler's self.request.authenticated to be not False-ish. If it doesn't exist or evaluates to False, 403s. Otherwise, passes control to the wrapped handler. """ @functools.wraps(handler) def wrapper(self, *args, **kwargs): """Does the real legwork and calls the wrapped handler.""" if not getattr(self.request, 'authenticated', None): self.abort(403) else: handler(self, *args, **kwargs) return wrapper
edb8f223318d0b22511d6307ed6c35bc83a4ae4a
19,259
def ManifestXml(*args): """Joins arbitrary XML and wraps it in a <manifest> element.""" xml = '\n'.join(args) return '<?xml version="1.0" encoding="UTF-8"?><manifest>%s</manifest>' % xml
db1e86b02b58236ed45607114253e40df47b0069
19,261
def output_json(ips): """Returns a dict to output the IP Addresses as JSON""" headers = ips[0] ips = ips[1:] return [dict(zip(headers, map(str, items))) for items in ips]
4e80151573f969ce31da5ef266630cdd079a8289
19,265
def middle(seq): """Return middle item of a sequence, or the first of two middle items.""" return seq[(len(seq) - 1) // 2]
736b6aed9a8e03f0581f2d7892c5f370f0886285
19,268
def make_duration(val): """ Converts a string in `hh:mm:ss` representation to the equivalent number of seconds Args: val(str): input string in format `hh:mm:ss` """ if val == "00:00:00": return 0 elif val is None: return 0 parts = val.split(':') if len(parts) != 3: return 0 return int(parts[0]) * 3600 + int(parts[1]) * 60 + int(parts[2])
78087038716f85a9e3a292148f87f118e3a13eee
19,269
import hashlib def get_md5(input_file, chunk_size=1024 * 16): """Get the md5 of a file without reading entire file in to memory.""" m = hashlib.md5() while 1: chunk = input_file.read(chunk_size) if not chunk: break m.update(chunk) return m.hexdigest()
e878fe004006ce25ea16d37f11bb3205696d90c5
19,270
def merge_ar_ssfr(ar_df, ssfr_mosdef_merge_no_dups): """Merges the ar_df with the ssfr_mosdef_merge_no_dups dataframe Parameters: Returns: ar_ssfr_merge (pd.DataFrame): Pandas dataframe of the ssfr info, mosdef_df info, and duplicates removed """ ar_ssfr_merge = ar_df.merge(ssfr_mosdef_merge_no_dups, how='left', left_on=[ 'field', 'v4id'], right_on=['FIELD_STR', 'V4ID']) return ar_ssfr_merge
052efd614062a19bc39b61e014b1e1112bf36e37
19,271
def get_hero_image_url(hero_name, image_size="lg"): """ Get a hero image based on name and image size """ if hero_name.startswith("npc_dota_hero_"): hero_name = hero_name[len("npc_dota_hero_"):] valid_sizes = ['eg', 'sb', 'lg', 'full', 'vert'] if image_size not in valid_sizes: raise ValueError("Not a valid hero image size") return "http://media.steampowered.com/apps/dota2/images/heroes/{}_{}.png".format( hero_name, image_size)
5ecedd354fe8d7fadf7a5fe59f71861bc82d6a30
19,276
def to_lower_case(given: str) -> str: """Returns 'given' in lower case >>> to_lower_case("0D") '0d' """ return given.lower()
23e8298f7f4e33b827a76a7c17d1e5468f6d5fd1
19,278
from openpyxl.styles import Alignment def prepare_excel(workbook, filters=True): """ Formats the excel a bit in order to be displayed nicely workbook: openpyxl workbook filters: If True enable excel filtering headers returns: formated workbook """ # openpyxl is an extra requirement for worksheet in workbook: # estimate column width for col in worksheet.columns: max_length = 0 column = col[0].column_letter for cell in col: if len(str(cell.value)) > max_length: max_length = len(str(cell.value)) adjusted_width = (max_length + 3) * 1.2 worksheet.column_dimensions[column].width = min([adjusted_width, 50]) # enable excel filters if filters is True: worksheet.auto_filter.ref = f"A1:{column}1" # enable word wrap for row in worksheet.iter_rows(): for cell in row: cell.alignment = Alignment(wrap_text=True) if isinstance(cell.value, str): cell.value = cell.value.strip() if cell.value.isdigit(): cell.value = int(cell.value) return workbook
e9f4b20747a5d8d3fca804117c1e4e3950dc1d45
19,279
from datetime import datetime def _n64_to_datetime(n64): """ Converts Numpy 64 bit timestamps to datetime objects. Units in seconds """ return datetime.utcfromtimestamp(n64.tolist() / 1e9)
1d46e67edb29da3c0c340bfcc346e80c0fd36541
19,280
def _get(redis, key): """ Get the current hits per rolling time window. :param redis: Redis client :param key: Redis key name we use to keep counter :return: int, how many hits we have within the current rolling time window """ return redis.zcard(key)
288d17e0ef4c0d667d984c7f462a2c07d6c66147
19,286
def github_uri(plug_name): """ Just make the standard public https uri. """ return 'https://github.com/' + plug_name
8d9941eeb6820bc32e4faa188ad5b7ca2156b0e9
19,288
def points(a, b, answer_given): """Check answer. Correct: 1 point, else 0""" true_answer = a*b if answer_given == true_answer: print('Correct!') return 1 else: print('Sorry! Correct answer was: {:d}'.format(true_answer)) return 0
2e0ac980b6cc140dd4cd812bd59f7e25cd12d865
19,289
def readInventory(filename): """Function to read Serpent bumat files Parameter --------- filename : str path to the bumatfile to be read Returns ------- inventory : dict dictionary to store the inventory. keys are ZAID identifiers (str), values are atom densities (str) in b^{-1}cm^{-1} """ mat=open(filename) matfile=mat.readlines() mat.close() inventory={} for line in matfile[6:]: x=line.strip().split() inventory[x[0][:-4]]=x[1] return inventory
a0756d334566fa16341bf67d021fb014899d9a83
19,290
def get_pokemon_type(pokemon_types): """Asks the user for a type of pokemon and displays the names of all pokemon with that type. Implicitly converts the type entered by the user to lower case. If the user enters an invalid type, warns the user and repeats until they enter a valid one. Args: pokemon_types: a list of pokemon types sorted in alphabetic order Returns: the pokemon type chosen by the user """ # This is the prompt you'll display to the user to ask for their choice. # Don't modify it! prompt = ('enter a type from one of the following: \n{0}\n'.format( ', '.join(pokemon_types))) # This is the prompt you'll display to the user if they enter something # invalid. Don't modify it! warning = 'Unrecognized type' choice = input(prompt) choice = choice.lower() condition = True while condition: if choice in pokemon_types: condition = False else: print(warning) choice = input(prompt) choice = choice.lower() return choice
571dbe5d04c749d83bf2bbcd7e6ee3b3f6bf1a62
19,293
def clip(x): """Limit the number in range [0, 1]. if x < 0, x = 0 x > 1, x = 1 otherwise x = x """ return max(0, min(1, x))
f6f4fbde059ee4b71587f1b095012f9083a057b0
19,294
def exists(env): """Returns true if tool exists.""" # NOTE: SCons requires the use of this name, which fails gpylint. return env.Detect('distcc')
339fd7c09dcaee8bc53beaa87fb83481a5db836e
19,312
import pathlib def get_source_id_from_file_path(file_path: pathlib.Path) -> str: """Extrapolates the source id from the file path. To retrieve the source id from the file name, the function uses the fact that the ICE uses a consistent naming convention consisting of the file type accompanied by the source id and the date the data in the file was generated. (e.g. COREREF_207_20201023.txt.bz2). Parameters ---------- file_path: str The path to the file for which the source id has to be extrapolated. Returns ------- str The source id. """ file_name = file_path.name.split(".")[0] name_components = file_name.split('_') return name_components[1]
03588ef925e3de688451bedd922b3ab29a8042e5
19,313
def _prep_vars(variables: list): """ Convert from a list to a comma separated string :param variables: list of vars :return: comma separated string """ # if vars is not a string, assume it's a list of multiple strings out = "" for i in range(len(variables) - 1): out += variables[i] out += "," out += variables[-1] return out
e5a8585f3c7ae8edd67e3893ab0bd17b035d17e3
19,316
import logging def get_logger(log_file=None):# {{{ """Set logger and return it. If the log_file is not None, log will be written into log_file. Else, log will be shown in the screen. Args: log_file (str): If log_file is not None, log will be written into the log_file. Return: ~Logger * **logger**: An Logger object with customed config. """ # Basic config logging.basicConfig( format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger = logging.getLogger(__name__) # Add filehandler if log_file is not None: file_handler = logging.FileHandler(log_file, mode='w') file_handler.setLevel(logging.INFO) file_handler.setFormatter( logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') ) logger.addHandler(file_handler) return logger
25cbf7d9cd9150ee5b86929c9ab56d748ae0fdc3
19,318
def is_unique_msg(msg, previous_msg_ids, previous_run_time): """ Determines if message is unique given previous message ids, and that it's greater than previous run time :param msg: raw Message object :param previous_msg_ids: set of previously fetched message ids :param previous_run_time: previous run time string :return: True if message is unique """ message_dict = msg.get("message", {}) if message_dict: msg_id = message_dict.get("messageId") msg_pub_time = message_dict.get("publishTime", "") return msg_id not in previous_msg_ids and msg_pub_time > previous_run_time return False
844e814e5473dc9da63238d12a8e70d7d469b355
19,320
import re def extract_code_from_function(function): """Return code handled by function.""" if not function.__name__.startswith('fix_'): return None code = re.sub('^fix_', '', function.__name__) if not code: return None try: int(code[1:]) except ValueError: return None return code
522f1e19f8304d60106625af2c426e9f9b78643a
19,321
def eqn14_rule(model,storage_r,g,strg_tech,t,tm,s): """ General retrieval rate constraint.""" return model.retrieval_rate[storage_r,g,strg_tech,t,tm,s] <= model.MAX_RETRIEVAL_RATE[strg_tech]
e471c34b4a038df6547a52dc351ebe54c70c516f
19,326