content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def get_list_index(imageList, index):
"""
This function returns the imageList value at an index
:param imageList:
:param index:
:return:
"""
return imageList[index] | d27319ee73a250421d7f4a68158dcd796c438ba4 | 14,823 |
def count_unique_peaks(peaks):
"""Returns the number of unique peaks."""
n_unique = 0
for chrom in peaks.chroms:
for peak in peaks.fetch(chrom):
if not peak.iscommon:
n_unique += 1
return n_unique | 53da151e1e3c95ecd0bf73234878d5d1e63cce33 | 14,835 |
def hex_str_to_int(hex_str: str):
"""'#ffffff' -> 0xffffff"""
if "#" in hex_str:
return int(hex_str[1:], 16)
else:
return int(hex_str, 16) | 65fc72fcec909a5062a4881f032d9f1bbe4aeecb | 14,840 |
def xlsw_write_row(ws, row_idx, row, fmt=None):
"""
ws:
row_idx: row number
row: a list, data to write
fmt: format for cell
"""
for col_idx in range(len(row)):
ws.write(row_idx, col_idx, row[col_idx], fmt)
row_idx += 1
return row_idx | 4d6da85ff95c97a30c05511cb6995e946b7ccb80 | 14,842 |
def get_repository_metadata_by_id(app, id):
"""Get repository metadata from the database"""
sa_session = app.model.session
return sa_session.query(app.model.RepositoryMetadata).get(app.security.decode_id(id)) | ec7d532e3463b29f2e9dfb72cec71212f0c49f85 | 14,845 |
import base64
def numpy_to_json(np_arr):
"""Encodes a numpy array to a json-serializable dict"""
# TFJS only has types float32, int32, bool, string and complex64
dtype_map = {
'b': 'bool',
'i': 'int32',
'u': 'int32',
'S': 'string',
'O': 'string',
'U': 'string',
'c': 'complex64',
'f': 'float32',
}
dtype = dtype_map[np_arr.dtype.kind]
result = {
'shape': list(np_arr.shape),
'dtype': dtype,
}
if dtype == 'string':
result['data'] = np_arr.flatten().tolist()
else:
# This is faster for JSON to parse and can represent inf/nan values
result['dataEnc'] = base64.encodebytes(np_arr.astype(dtype).tobytes()).decode()
return result | 426b6c38388008ed2ca02e119ea07169dd39d38e | 14,846 |
import torch
def gram_matrix(input_data):
""" Gram Matrix for Style Loss Module
a = batch size (1)
b = number of feature maps
c*d = number of features in a feature map
Note: This specification is specific to 2d convolution
"""
a, b, c, d = input_data.size()
features = input_data.view(b, a * c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d) | 6bf808534a52576a2559789c8d9080363e564a0c | 14,850 |
def humanize(memory, suffix="B", kilo=1024):
"""
Scale memory to its proper format
e.g:
1253656 => '1.20 MiB'
1253656678 => '1.17 GiB'
"""
if kilo == 1000:
units = ["", "k", "M", "G", "T", "P"]
elif kilo == 1024:
units = ["", "Ki", "Mi", "Gi", "Ti", "Pi"]
else:
raise ValueError("kilo must be 1000 or 1024!")
for unit in units:
if memory < kilo:
return f"{memory:.2f} {unit}{suffix}"
memory /= kilo | 7afd033e2ead94ca8853a347ad9c8d1fa47a5e64 | 14,851 |
def split_decimal(flt):
"""
split decimal
params:
flt : <float> float to convert
returns: <tuple> ( whole number, decimal part)
"""
whole, dec = str(flt).split('.')
# dec = int(dec)
# if dec >= 5:
# return int(whole) + 1, dec
return [int(whole), int(dec)] | 4175b3370591028bb96b5bf3eaceee3391c0b1f3 | 14,852 |
def team_rm_from_repository_payload(team_default_payload):
"""Provide a team payload for removing a team from a repository."""
removed_from_repository_payload = team_default_payload
removed_from_repository_payload["action"] = "removed_from_repository"
return removed_from_repository_payload | 9ffd60f86fa0e4daee0b5c4d73890653e64a47c7 | 14,856 |
from pathlib import Path
from typing import List
def get_packages_from_requirements(basedirpath: Path,) -> List:
"""Extract packages from requirements.txt as Python list"""
with open(basedirpath, "r") as f:
lines = f.readlines()
return lines | ca0c85e6175f7026781607bce06ed42d6344db1a | 14,859 |
def get_attributes_and_labels(data):
"""
:param data: The dataset to be divided
:return: Two panda frames which are in order of classes and attributes
"""
# Here we divide our attributes and classes features for a given dataset
return [data.iloc[:, -1], data.iloc[:, :-1]] | c383dad4720093b4002415b48d793bab5834c3fd | 14,860 |
def _code_snippet(snippet: str) -> str:
"""Generates a markdown code snippet based on python code.
Args:
snippet (str): Python code.
Returns:
str: Markdown code snippet.
"""
result = "```python\n"
result += snippet + "\n"
result += "```\n\n"
return result | 5c44bccba225dbd6d60f19c712393b291fe065b5 | 14,861 |
def remove_conflicts(applicant, potential_editors):
"""
Remove editors from potential editors who might be sources of conflict of
interest. These are typically by name or university.
"""
return [editor for editor in potential_editors if
not (editor["name"] in applicant["conflicts-faculty"] or
editor["universities"] in applicant["conflicts-university"])] | 49fe7dc482e7f53114f78cf9ed353eded87ecba4 | 14,863 |
def mat_diff(mat_a, mat_b):
"""
Function that subtracts two matrices: mat_a and mat_b. The
subtraction can be carried out if the two matrices have same
dimension, i.e. same number of rows and columns. The elements of
the resulting matrix, mat_c, are c_ij = a_ij - b_ij
:param mat_a: list of lists with user defined a_ij elements
:param mat_b: list of lists with user defined b_ij elements
:return: mat_c = mat_a - mat_b, list of lists with elements c_ij = a_ij - b_ij
"""
# check if operation can be done
if len(mat_a) == len(mat_b) and len(mat_a[0]) == len(mat_b[0]):
print("The subtraction of the two matrices is:")
pass
else:
return "You cannot subtract these matrices! They need to have same dimensions!\n"
# contain number of rows and columns
nr_rows = len(mat_a)
nr_cols = len(mat_a[0])
# initialize the resulting mat_c
mat_c = [[0.0 for idx in range(nr_cols)] for jdx in range(nr_rows)]
# update elements of mat_c: c_ij = a_ij + b_ij
for row in range(nr_rows):
mat_c[row] = [(elements[0]-elements[1]) for elements in zip(mat_a[row], mat_b[row])]
return mat_c | 0441ea751a3a6c9fb64e9b3a33420fd4b0f8aa3a | 14,868 |
def compile_column(name: str, data_type: str, nullable: bool) -> str:
"""Create column definition statement."""
null_str = 'NULL' if nullable else 'NOT NULL'
return '{name} {data_type} {null},'.format(name=name,
data_type=data_type,
null=null_str) | e1db7bfc78509d394de645b90394f8d796f97a5b | 14,878 |
def dbdisconnect(connection) -> bool:
"""Close connection to SQLite-Database
:param connection:
:return: Result of success (true/false)
"""
if connection:
connection.close()
return True
return False | 6c5d17d14e898696885730ef86fad9eab03af02f | 14,889 |
import base64
def diff_kubernetes_secret(secret, desired_fields):
"""Computes a set of changed fields (either added, removed, or modified)
between the given existing secret and the set of desired fields.
:param secret: an existing secret as a KubernetesAPIResponse containing
encoded secret data
:type secret: KubernetesAPIResponse
:param desired_fields: a dict of desired fields
:type desired_fields: dict[str, str]
:return: set[str]
"""
current_keys = set(secret.data.keys())
desired_keys = set(desired_fields.keys())
differences = current_keys.symmetric_difference(desired_keys)
for field in current_keys.intersection(desired_keys):
decoded_bytes = base64.b64decode(secret.data[field])
decoded_str = decoded_bytes.decode('utf-8')
if decoded_str != desired_fields[field]:
differences.add(field)
return differences | eb3d219a40bc68ba00d3d876aade936f8b062e75 | 14,896 |
def find_indexes_where_lists_differ(list1: list, list2: list) -> list:
"""This function returns the indexes where the two input lists differ. THe input lists are expected to have same length
Args:
list1 (list): first input list
list2 (list): second input list
Returns:
out_list (list): output list containing the indexes where the two input list differ
Raises:
AssertionError: if the two input lists do not have the same length
"""
assert len(list1) == len(list2), "The two input lists must have same length"
out_list = [idx for idx, (first, second) in enumerate(zip(list1, list2)) if first != second]
return out_list | 888d850b692a1920058f53a4617dcd08d5ed31cc | 14,897 |
def values_of(choices):
"""
Returns a tuple of values from choices options represented as a tuple of
tuples (value, label). For example:
.. sourcecode:: python
>>> values_of((
... ('1', 'One'),
... ('2', 'Two'),))
('1', '2')
:rtype: tuple
"""
return tuple([value for value, label in choices]) | 1b152cfab229d2eddd5bf0ff3cbf53954b1934e5 | 14,901 |
def objc_provider_framework_name(path):
"""Returns the name of the framework from an `objc` provider path.
Args:
path: A path that came from an `objc` provider.
Returns:
A string containing the name of the framework (e.g., `Foo` for `Foo.framework`).
"""
return path.rpartition("/")[2].partition(".")[0] | cafb53a64cc8654a992d325faa34721a19d5a38a | 14,905 |
import json
def extract_session_parameters(response_json: str):
"""Extracts session parameters from the json response of a Dialogflow webhook."""
response = json.loads(response_json)
return response["session_info"]["parameters"] | 45cde22d7271512e4f90fc3078c327c9ccbd86b0 | 14,913 |
def scalar_multiply(c, u):
""" return the vector u scaled by the scalar c """
return tuple((c * a for a in u)); | 9ace577e852179893e90544754b8010d3476f3ae | 14,914 |
def grouper_orig(cc):
"""grouper based on gaps in timestamps"""
diffs = cc.timestamps().diff()
grpr_orig = (diffs>cc.timedelta).cumsum()
grpr_orig.name = 'g_orig'
return grpr_orig | ecc755be0d107a3ac86c35069546ac920c4d42ce | 14,917 |
def make_save_string(file_name):
"""
Returns a complete save string for saving a model.
======================================
Input:
file_name (string) - Filename used in save string.
Output:
save_string (string) - Save string for specified model.
"""
# Filepath for saved file
filepath = r'C:\Developer\electric_motor_thermal_modelling\Models'
filepath_full = filepath + '\\' + file_name
return filepath_full | fb00690f4c5a4d7063220918709a8a45daa0a538 | 14,919 |
def _get_job_dir(jenkins_directory, job_name):
"""
Returns the directory for a job configuration file relative
to the jenkins home directory.
"""
return jenkins_directory + '/jobs/' + job_name | b77a56efa394b4d43209b7f47da96a4f5f0ca96b | 14,924 |
def check_n_levels(parsed, n):
"""Make sure there are n levels in parsed"""
if len(parsed) == n:
return True
else:
return False | f4040e4cf53730e61e5c06fed5dbe8f271020c6a | 14,926 |
import re
import glob
def find_files(input_path, framerange=None):
"""
Discovers files on the filesystem.
:param input_path: Path to the file sequence
:param framerange: optional framerange
:return: array of single file paths
"""
files = []
if '%' not in input_path:
return [input_path]
if framerange:
for part_range in framerange.split(','):
if '-' in part_range:
first, last = part_range.split('-')
for i in range(int(first), int(last) + 1):
files.append(input_path % i)
else:
files.append(input_path % int(part_range))
else:
input_path = re.sub(r'(\%0[4-8]d)(\.[exr|EXR])', r'*\2', input_path)
files = glob.glob(input_path)
files = sorted(files)
return files | 8f2818b6c8b72f344c70adee0e79ac52c2313902 | 14,927 |
import pathlib
def _parse_requirements(path: pathlib.Path):
"""Read and strip comments from a requirements.txt-like file. """
lines = [line.strip() for line in path.read_text().splitlines() if line]
return [line for line in lines if not line.startswith('#')] | af010076d79cca83bfbc6590b833e1bf5f68ddcd | 14,928 |
from typing import Iterable
def detokenize(tokens: Iterable[str], with_treebank: bool = True) -> str:
"""
Given a list of tokens, join them together into a string.
with_treebank = True is typically used when rendering utterances, so we don't need to deal with things like
"andrew's"
with_treebank = False is typically for rendering express.
"""
if with_treebank:
return " ".join(tokens).replace(" ", " ")
return "".join(tokens) | d6a90c5181a18fe45118b83bdf605c534ceeeac8 | 14,932 |
def pair(k1, k2):
"""
Cantor pairing function
"""
z = int(0.5 * (k1 + k2) * (k1 + k2 + 1) + k2)
return z | 83de1d237049ac8f76ec09f7b23037ab581792d5 | 14,933 |
import json
def rpc_error(message = 'Invalid Request'):
"""
Generates an rpc error message
"""
return json.dumps({"result":None, 'error':{'message':message}, 'id':1}) | 4aa061e25be938b882cac71cb935f2153ad958cf | 14,935 |
def extract_bits(n, n_bits, offset_from_lsb):
"""Extract a number of bits from an integer.
Example:
>>> bin(extract_bits(0b1101011001111010, n_bits=5, offset_from_lsb=7))
'0b1100'
0b1101011001111010 -> 0b01100
^^^^^<- 7 ->
The bits marked with ^ will be extracted. The offset is counted from the
LSB, with the LSB itself having the offset 0.
"""
try:
bitmask = (2**n_bits - 1) << offset_from_lsb
except TypeError as err:
raise ValueError(err)
return (n & bitmask) >> offset_from_lsb | 08a92d319975915b3b0f453144cc73cba620c5b1 | 14,943 |
def get_species_units(input):
"""
Retrieve units for GEOS-CF species and derived values
"""
if 'NOy/' in input:
units = 'unitless'
elif 'pm25' in input:
units = '$\mu$g m$^{-3}$'
elif 'Dust' in input:
units = '$\mu$g m$^{-3}$'
elif 'NOy' in input:
units = 'ppbv'
else:
units = 'v/v'
return units | 5daa3a065afd99cc713e3084c4e694d9fa789ccc | 14,950 |
def get_git_sha_from_dockerurl(docker_url: str, long: bool = False) -> str:
""" We encode the sha of the code that built a docker image *in* the docker
url. This function takes that url as input and outputs the sha.
"""
parts = docker_url.split("/")
parts = parts[-1].split("-")
sha = parts[-1]
return sha if long else sha[:8] | 4bb598da76ada2fdf34fdc3ff24bf046dbeaf9bf | 14,951 |
def get_token(context):
"""
Retrieves the token the lambda was assigned when it was invoked.
:param context: AWS Lambda context
:type context: object
:return: Lambda token, usually a UUID
:rtype: str
"""
# If that fails, fall back to the requestID
# http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
return context.aws_request_id | 83fced7364d6fad8d632edfb0d82efb7bb7cf5de | 14,954 |
def nonlinearitywarning(band, bin_ix, events, verbose=0):
"""
Flag count rates above the 10% local nonlinearty dropoff, per the
calibration paper.
:param band: The band that is being used, either 'FUV' or 'NUV'.
:type band: str
:param bin_ix: Array indices designating which events are in the time bin
of interest.
:type bin_ix: numpy.ndarray
:param events: Set of photon events to check if they are in the
non-linearity regime.
:type events: dict
:param verbose: Verbosity level, a value of 0 is minimum verbosity.
:type verbose: int
:returns: bool -- Returns True/False whether a given set of events are at
the non-linearity regime.
"""
cps_10p_rolloff = {'NUV':311, 'FUV':109}
cps = events['flat_counts'][bin_ix]/events['exptime'][bin_ix]
return True if cps >= cps_10p_rolloff[band] else False | 2a85bf6c6100e39caef169f57b26c72b6d22e257 | 14,955 |
def cx2x(cx, e):
"""Transform from *x* index value to *x* index value, using the
*e.css('cw')* (column width) as column measure."""
if cx is None:
x = 0
else:
x = e.parent.pl + cx * (e.css('cw', 0) + e.gw)
return x | 5d04d7f017c0fa54e19c649133139b2e4439562f | 14,957 |
def q(s):
""" Quote the given string """
return "'" + str(s) + "'" | 0c0a1477e740b430d5e6997c0115ef317457526c | 14,958 |
def _diff_count(string1, string2):
"""
Count the number of characters by which two strings differ.
"""
assert isinstance(string1, str)
assert isinstance(string2, str)
if string1 == string2:
return 0
minlen = min(len(string1), len(string2))
diffcount = abs(len(string1) - len(string2))
for ii in range(0,minlen):
if string1[ii] != string2[ii]:
diffcount += 1
return diffcount | 82c9ef604db3afee79266e4eb7851164ff43bfd1 | 14,962 |
def getInversePermutation(permutation):
"""Invert a given permutation vector.
:param list | tuple | np.ndarray permutation: Permutation vector to invert.
:return: Inverted permutation vector.
:rtype: list
"""
inverse = [0] * len(permutation)
for i, p in enumerate(permutation):
inverse[p] = i
return inverse | f8fe339f2b0a7fc8180252b99f3fce742f215a13 | 14,964 |
def is_image(content_type):
"""is the given content_type string for an image?
Args:
content_type: string containing Content-Type HTTP header value
Returns:
Boolean
"""
return (str(content_type).count("image") > 0) | c69f163e09d8b68e179dd8765ef8401d988ac433 | 14,967 |
import base64
def read_encoded(filename: str) -> str:
"""Read a file and return the base64 encoding of its contents."""
with open(filename, 'rb') as infile:
return base64.b64encode(infile.read()).decode('utf-8') | 4d2c5c8f36b2ebe67a67714f6313a32d4d6bf005 | 14,969 |
import re
def strip_irc_colors(data):
"""Strip mirc colors from string. Expects data to be decoded."""
return re.sub('[\x02\x0F\x16\x1D\x1F]|\x03(\d{1,2}(,\d{1,2})?)?', '', data) | 2c4e480cc00e3704a0086522c8bb7409fca0af6e | 14,970 |
def normalised_ellipse_mask(ellipse):
"""Return a normalized copy of the supplied ellipse.
Here 'normalised' means that the rotation is as close to zero as possible.
Examples:
>>> normalised_ellipse_mask(
... ((1, 2), (100, 200), 90)
... )
((1, 2), (200, 100), 0)
"""
# Don't overwrite the original, we'll return a new ellipse.
centre, extents, rotation = ellipse
centre = list(centre[:])
extents = list(extents[:])
# Get the rotation as close to zero as possible.
while rotation > 45:
extents[0], extents[1] = extents[1], extents[0]
rotation -= 90
while rotation < -45:
extents[0], extents[1] = extents[1], extents[0]
rotation += 90
return tuple(centre), tuple(extents), rotation | af5316ace76642667340a986f3d1c2d69934a333 | 14,971 |
def probability_of_sum(total:int, dice1, dice2):
"""
Brief:
Basic probability - Dice cast
Suppose a pair of fair 6-sided dice are thrown.
What is the probability that the sum of the rolls is 6? (Answer as a simple fraction of integers)
reference: https://statweb.stanford.edu/~susan/courses/s60/split/node65.html
"""
n = dice1.shape[0]
m = dice2.shape[0]
comb = n * m
count = 0
for i in dice1:
for j in dice2:
sum = int(i + j)
if sum == total:
count += 1
prob = count / comb
return print("{:.2%}".format(prob)) | b48e9db4dd40048d24a3dfb481406346076b7132 | 14,974 |
def get_source_with_id(result):
"""Return a document's `_source` field with its `_id` added.
Parameters
----------
result : dict
A document from a set of Elasticsearch search results.
Returns
-------
dict
The document's `_source` field updated with the doc's `_id`.
"""
result['_source'].update({'_id': result['_id']})
return result['_source'] | be9b25ad65a8474aa41d3f927664abdb89a674d5 | 14,975 |
def apply_x_frame(response):
"""Include X-frame header in http response to protect against clickhiJacking."""
response.headers["X-Frame-Options"] = "SAMEORIGIN"
return response | 3cc3b572eb64e856512fd8b41191f601bcbcc96c | 14,976 |
def multiply_probs(ln_pa, ln_pb):
"""
Returns the log probability of multiplied probabilities.
Pc = Pa * Pb => ln(Pc) = ln(Pa)+ln(Pb)
"""
return ln_pa+ln_pb | 5e541072c9aaf327536196ab4ffc9e3bf488ccf0 | 14,977 |
def get_height(image):
"""get_height(image) -> integer height of the image (number of rows).
Input image must be rectangular list of lists. The height is
taken to be the number of rows.
"""
return len(image) | 3aa94c4b2458d2a233f32ee10889e52566c04ecb | 14,979 |
def get_query_range(count: int, page: int):
"""Generate query for range of the search results
:type count: ``int``
:param count: Max amount of the search results
:type page: ``int``
:param page: Current page, depends on count
:return: A query range
:rtype: ``str``
"""
if page < 1:
raise ValueError('page value can\'t be less than 1')
if count < 1:
raise ValueError('max results value can\'t be less than 1')
return f'from={(page-1)*count + 1}&to={page*count}' | c29285c56eed77275d2ec28a45de148ce3b7f591 | 14,987 |
def single_file_output(in_file):
"""
Extract sample name from file ie. /path/to/test.fa --> test
:param in_file: path/to/file (str)
:return: extracted sample name (str)
"""
return in_file.split('/')[-1].split('.')[-2] | 4dd5c5f0de584f479fdf91e88cdede33c8072f10 | 14,993 |
def VerifyFileID(fi_disk, fi_ours):
"""Verifies that two file IDs are matching.
Differences in the inode/device are not accepted, but and older
timestamp for fi_disk is accepted.
@param fi_disk: tuple (dev, inode, mtime) representing the actual
file data
@param fi_ours: tuple (dev, inode, mtime) representing the last
written file data
@rtype: boolean
"""
(d1, i1, m1) = fi_disk
(d2, i2, m2) = fi_ours
return (d1, i1) == (d2, i2) and m1 <= m2 | c32acadd21b249904374eb44bcab3db42fe3972c | 14,995 |
import six
def list_as_string(option):
"""Returns the argument as a string.
Useful for insuring that ConfigObj options are always returned
as a string, despite the presence of a comma in the middle.
Example:
>>> print(list_as_string('a string'))
a string
>>> print(list_as_string(['a', 'string']))
a, string
>>> print(list_as_string('Reno, NV'))
Reno, NV
"""
# Check if it's already a string.
if option is not None and not isinstance(option, six.string_types):
return ', '.join(option)
return option | 0bd269fb455ce8eb20c4c0838fd4611832686baf | 14,999 |
def rewriter(field, rules):
"""Create a template field function that rewrites the given field
with the given rewriting rules. ``rules`` must be a list of
(pattern, replacement) pairs.
"""
def fieldfunc(item):
value = item._values_fixed[field]
for pattern, replacement in rules:
if pattern.match(value.lower()):
# Rewrite activated.
return replacement
# Not activated; return original value.
return value
return fieldfunc | c9cfba499f1dc8683df3918a9f497ec69ad07700 | 15,002 |
def similarity(event, places):
"""
Return a list of dissimilar events to the given event. This is the
successor function used in the search tree: a node's successors are the
list of dissimilar options for the next choice.
event (dict): A potential place/event.
places (list): All potential places.
return: List of dissimilar places.
"""
dissimilar = []
for place in places:
similarity = 0
if place["price"] == event["price"]:
similarity += 1.
for type1 in event["types"]:
for type2 in place["types"]:
if type1 == type2:
similarity += 1.0 / float(len(place["types"]))
# 1.67 is the empirically generated threshold for similarity
# The empirical process behind this is described in the paper
if similarity <= 1.7:
dissimilar.append(place)
return dissimilar | ca9a171abe37e7e9d48a604ca92c56092d4fa8c8 | 15,004 |
def get_varinfo_from_table(discipline,parmcat,parmnum):
"""
Return the GRIB2 variable information given values of `discipline`,
`parmcat`, and `parmnum`. NOTE: This functions allows for all arguments
to be converted to a string type if arguments are integer.
Parameters
----------
**`discipline`**: `int` or `str` of Discipline code value of a GRIB2 message.
**`parmcat`**: `int` or `str` of Parameter Category value of a GRIB2 message.
**`parmnum`**: `int` or `str` of Parameter Number value of a GRIB2 message.
Returns
-------
**`list`**: containing variable information. "Unknown" is given for item of
information if variable is not found.
- list[0] = full name
- list[1] = units
- list[2] = short name (abbreviated name)
"""
if isinstance(discipline,int): discipline = str(discipline)
if isinstance(parmcat,int): parmcat = str(parmcat)
if isinstance(parmnum,int): parmnum = str(parmnum)
try:
tblname = 'table_4_2_'+discipline+'_'+parmcat
modname = '.section4_discipline'+discipline
exec('from '+modname+' import *')
return locals()[tblname][parmnum]
except(ImportError,KeyError):
return ['Unknown','Unknown','Unknown'] | d6e3b08dfcbfb023a2725ef1ffbb44448881fa64 | 15,006 |
import random
def evolve(pop, mut_rate, mu, lambda_):
"""
Evolve the population *pop* using the mu + lambda evolutionary strategy
:param pop: a list of individuals, whose size is mu + lambda. The first mu ones are previous parents.
:param mut_rate: mutation rate
:return: a new generation of individuals of the same size
"""
pop = sorted(pop, key=lambda ind: ind.fitness) # stable sorting
parents = pop[-mu:]
# generate lambda new children via mutation
offspring = []
for _ in range(lambda_):
parent = random.choice(parents)
offspring.append(parent.mutate(mut_rate))
return parents + offspring | e2510d0ce92d0c5703b9166778f48581db4aca2f | 15,007 |
import re
def strip_comments(source_code):
"""
Strips comments from source code to increase analysis accuracy.
The function is similar to strip_quotations. It removes all comments
from the source_code. It is also used to prevent false positives.
It uses a regex to match and remove line comments and then block comments.
:param source_code: the string that contains source code
:return: same source code as source but without any comments
"""
line_comment_regex = "\\/\\/.*\\n"
block_comment_regex = "\\/\\*(.|[\\r\\n])*?\\*\\/"
line_comments_removed = re.sub(line_comment_regex, "\n", source_code)
all_comments_removed = re.sub(block_comment_regex, "\n", line_comments_removed)
return all_comments_removed | 7e3842940367caaae875ec6c24a1a40fdf7efbc0 | 15,008 |
def make_ratings_hash(ratings):
"""
Make a hashtable of ratings indexed by itemId and pointing to
the vector (genres, decade) that fully characterize an item.
"""
rhash = {}
# For every rating, check if the relevant item is already in the map.
# If not, add it to the map. Key is item_id, mapped value is the vector
# consisting of the possible genres and the decade of the movie.
for row_indx, itemid in ratings['itemid'].iteritems():
if itemid not in rhash:
itemData = ratings.ix[row_indx, 'Action' : 'decade']
rhash[itemid] = itemData
return rhash | e105f08dbdbec544dccdcd299aaf189ef64691b7 | 15,012 |
def get_rules(rules_module):
"""
Get rule functions from module
:param rules_module: module with rules implementations
:return: rule functions
"""
rules = []
for item in dir(rules_module):
if item.startswith("rule"):
rules.append(getattr(rules_module, item))
return rules | 41b9428f0893a153700a19f4237453af8910a759 | 15,014 |
import requests
def _download_chunk(args):
"""Download a single chunk.
:param args: Tuple consisting of (url, start, finish) with start and finish being byte offsets.
:return: Tuple of chunk id and chunk data
"""
idx, args = args
url, start, finish = args
range_string = '{}-'.format(start)
if finish is not None:
range_string += str(finish)
response = requests.get(url, headers={'Range': 'bytes=' + range_string}) # Actual HTTP get download request
return idx, response.content | eb88e1200fff8d336908d2247e12c46576bb4422 | 15,017 |
import torch
def discounted_cumsum(rewards, discount):
"""Calculates the cummulative sum of discounted rewards
Arguments:
rewards {torch.Tensor} -- rewards
discount {float} -- discount factor
Returns:
[type] -- cummulative sum of discounted rewards
"""
discount **= torch.arange(0, rewards.shape[0])
disc_cumsum = torch.cumsum(discount * rewards, 0).flip()
return disc_cumsum | b0e2cd45c4cb6882a84784c64a20ae64995f26a6 | 15,019 |
def _StripPC(addr, cpu_arch):
"""Strips the Thumb bit a program counter address when appropriate.
Args:
addr: the program counter address
cpu_arch: Target CPU architecture.
Returns:
The stripped program counter address.
"""
if cpu_arch == "arm":
return addr & ~1
return addr | 9127f10cbbeb71814f6c9f30e7446d5f8233bb67 | 15,021 |
def domains_to_xyt(xyt, domains):
"""
This function takes in xyt data and a list of domains and converts the list of domains into a list of
xyt points within those domains. This list can then be used to graph the domains onto the entire worm
path, for visualization.
:param xyt: A list of xyt points.
:param domains: A list of domains, which are themselves a list of two values, representing time indices
that frame a period of zero movement in the worm path.
:return: Three lists, each one representing values of x, y, and t within the given input domains. These can
be zipped together to get a list of xyt points within the domains.
"""
x, y, t = zip(*xyt)
domains_x = []
domains_y = []
domains_t = []
for domain in domains:
left = domain[0]
right = domain[1]
domains_x.extend(x[left:right])
domains_y.extend(y[left:right])
domains_t.extend(t[left:right])
return domains_x, domains_y, domains_t | 56bb2614d3f612913b19c550ed042e6a635ae4fa | 15,028 |
def replicaset_status(client, module):
"""
Return the replicaset status document from MongoDB
# https://docs.mongodb.com/manual/reference/command/replSetGetStatus/
"""
rs = client.admin.command('replSetGetStatus')
return rs | eb46cd1e28ecb1f2c6c5a222d176438677bd8e8c | 15,029 |
from textwrap import dedent
def minimal_html_page(
body: str, css: str = "", title: str = "Standalone HTML", lang: str = "en"
):
"""Return a template for a minimal HTML page."""
return dedent(
"""\
<!DOCTYPE html>
<html lang="{lang}">
<head>
<meta charset="utf-8">
<title>{title}</title>
<style>
{css}
</style>
</head>
<body>
{body}
</body>
</html>
"""
).format(title=title, lang=lang, css=css, body=body) | 71397e60fefab240dbd0b173e437ef90be4b8493 | 15,033 |
def _common_strategies(choices):
"""Generate some common strategies to deal with multiple references."""
return {'min': min(choices),
'max': max(choices),
'avg': sum(choices) * 1. / len(choices)
} | ffe0070667aabe2ab8072bb39a6e452341780c41 | 15,034 |
import re
def tokenize(text, regex=r'[a-zA-z]+'):
"""Split text into tokens using a regular expression
:param text: text to be tokenized
:param regex: regular expression used to match tokens using re.findall
:return: a list of resulting tokens
>>> tokenize('the rain in spain')
['the', 'rain', 'in', 'spain']
"""
return re.findall(regex, text, flags=re.IGNORECASE) | c7daee14ec14ff4a22d42883f3b3e3827924389e | 15,036 |
from typing import Iterable
def concatenate_lists(*list_of_lists: Iterable) -> list:
"""Combines the Iterables provided as arguments into one list.
Examples
--------
Normal usage::
concatenate_lists([1, 2], [3, 4], [5])
# returns [1, 2, 3, 4, 5]
"""
return [item for lst in list_of_lists for item in lst] | e630fd31888753814e3f486c02b0fc1e67f269ef | 15,041 |
def is_attr_pattern(text):
"""Attribute patters are like '[title=Version \d.*]'
"""
return text.startswith('[') | 05978edb1d6589f47a96ab6cb2da4b7f0e3f2569 | 15,044 |
def strip_nondigits(string):
"""
Return a string containing only the digits of the input string.
"""
return ''.join([c for c in string if c.isdigit()]) | 564a05de12c61a09a6d07e13b13279908128389a | 15,049 |
def parse_begins(msg):
"""Parse the guard ID out of the "begins his shift" message."""
words = msg.split()
return int(words[1][1:]) | b07e3d741038365dddbacfdb70d219ef1bf007d8 | 15,052 |
import pickle
def load_pickle(file_name):
"""
load a pickle object from the given pickle file
:param file_name: path to the pickle file
:return: obj => read pickle object
"""
with open(file_name, "rb") as pick:
obj = pickle.load(pick)
return obj | e50ae7ccd4b72700e5079774c45ec91b240bc88a | 15,055 |
def ref_str_to_tuple(ref):
"""String like ' a : b ' to tuple like ('a', 'b')."""
return tuple(x.strip() for x in ref.split(':')) | fc2e467f054d2b53a580f1d0917d01eda9ba1727 | 15,067 |
def bin_append(a, b, length=None):
"""
Appends number a to the left of b
bin_append(0b1, 0b10) = 0b110
"""
length = length or b.bit_length()
return (a << length) | b | c2d3132532b1d9311d5b6eef94289c0763422665 | 15,069 |
def levenshtein_distance(word_1, word_2):
"""
Calculates the levenshtein distance (= the number of letters to add/
substitute/interchange in order to pass from word_1 to word_2)
"""
array = [[0 for i in range(len(word_2)+1)] for y in range(len(word_1)+1)]
for i in range(len(word_1)+1):
array[i][0] = i
for j in range(len(word_2)+1):
array[0][j] = j
for i in range(1, len(word_1)+1):
for j in range(1, len(word_2)+1):
cost = 0 if word_1[i-1] == word_2[j-1] else 1
array[i][j] = min(
array[i-1][j] + 1,
array[i][j-1] + 1,
array[i-1][j-1] + cost
)
return array[len(word_1)][len(word_2)] | ce43e60454b59c3c1323656636f457bc192a2c67 | 15,070 |
import inspect
def get_source_link(obj, page_info):
"""
Returns the link to the source code of an object on GitHub.
"""
package_name = page_info["package_name"]
version = page_info.get("version", "master")
base_link = f"https://github.com/huggingface/{package_name}/blob/{version}/src/"
module = obj.__module__.replace(".", "/")
line_number = inspect.getsourcelines(obj)[1]
return f"{base_link}{module}.py#L{line_number}" | 86748f179e44cec37efd88e1b8dc5de0c6268631 | 15,071 |
def concat_environment(env1, env2):
""" Concatenate two environments.
1 - Check duplicated keys and concatenate their values.
2 - Update the concatenated environment.
Parameters
----------
env1: dict (mandatory)
First environment.
env2: dict (mandatory)
Second environment.
Returns
-------
concat_env: dict
Updated environment where the duplicated keys values are concatenated
with ':'.
"""
concat_env = env1
for key, value in env2.items():
if key in concat_env.keys():
if value != concat_env[key]:
concat_env[key] += ":" + env2[key]
else:
concat_env[key] = env2[key]
return concat_env | 25f7aee5a9316ab0604f2e38538a1f67a5333b08 | 15,072 |
import itertools
def get_emin_emax(self):
"""
Finds how much the Ek_grid has to be expanded
above the bandwidth D of the leads.
Parameters
----------
self : Approach2vN
Approach2vN object.
self.funcp.emin : float
(Modifies) Minimal energy in the updated Ek_grid.
self.funcp.emax : float
(Modifies) Maximal energy in the updated Ek_grid.
"""
# (E, si, dband) = (self.qd.Ea, self.si, self.leads.dlst[0,1])
(E, si, dmin, dmax) = (self.qd.Ea, self.si, self.funcp.dmin, self.funcp.dmax)
lst = [dmin, dmax]
for charge in range(si.ncharge):
for b, bp in itertools.product(si.statesdm[charge], si.statesdm[charge]):
lst.append(dmax-E[b]+E[bp])
lst.append(dmin-E[b]+E[bp])
for charge in range(si.ncharge-2):
for d, b in itertools.product(si.statesdm[charge+2], si.statesdm[charge]):
lst.append(dmin+E[d]-E[b])
lst.append(dmax+E[d]-E[b])
self.funcp.emax = max(lst)
self.funcp.emin = min(lst)
return 0 | 102198b413f190264e231c80f896045fc2eb3f58 | 15,076 |
import re
def substitute_pattern_with_char(s, pattern, repl_char='x'):
"""
This is a little different than re.sub(). It replaces all the characters
that match the pattern with an equal number of `repl_char` characters.
The resulting string should be the same length as the starting string.
>>> substitute_pattern_with_char(s='Hi there', pattern=r'[a-z]+', repl_char='x')
'Hx xxxxx'
>>> substitute_pattern_with_char(s='With 42 cats', pattern=r'[\d]+', repl_char='x')
'With xx cats'
>>> substitute_pattern_with_char(s='With 42 cats and 12 dogs', pattern=r'[\d]+', repl_char='x')
'With xx cats and xx dogs'
>>> substitute_pattern_with_char(s='With 42 cats and 12 dogs', pattern=r'[\d]+\s+(cat[s]?|bird[s]?)', repl_char='x')
'With xxxxxxx and 12 dogs'
"""
for mo in re.finditer(pattern=pattern, string=s):
m = mo.group(0)
s = s.replace(m, ''.join([repl_char for i in range(0, len(m))]))
return s | 98d7f3d642430a5211aa7396a3454d979057ebef | 15,077 |
def extract_table_name(file_name: str) -> str:
"""Extract the table name name from the filename
Assumes the name of the bigquery table the data is being inserted to is the first
word of the filename
Examples:
extract_file_extension(properties/properties_09.csv)
>>> "properties"
"""
return file_name.split("/")[0] | 1cac0a58325651abff1399974df52aaefa93585f | 15,079 |
def avg(arr):
"""Count average."""
return sum(arr) / float(len(arr)) | 0da964cdb1d14154b4569d010b4caa710a30fd84 | 15,084 |
from typing import Any
def get_full_name(obj: Any) -> str:
"""Returns identifier name for the given callable.
Should be equal to the import path:
obj == import_object(get_full_name(obj))
Parameters
----------
obj : object
The object to find the classpath for.
Returns
-------
The object's classpath.
"""
if callable(obj):
return obj.__module__ + '.' + obj.__qualname__
else:
return obj.__class__.__module__ + '.' + obj.__class__.__qualname__ | 6f83f808f8c4d226b1d26365adc75f5cb6c4e28f | 15,087 |
def estimate_microturbulence(effective_temperature, surface_gravity):
"""
Estimate microtubulence from relations between effective temperature and
surface gravity. For giants (logg < 3.5) the relationship employed is from
Kirby et al. (2008, ) and for dwarfs (logg >= 3.5) the Reddy et al. (2003)
relation is used.
:param effective_temperature:
The effective temperature of the star in Kelvin.
:type effective_temperature:
float
:param surface_gravity:
The surface gravity of the star.
:type surface_gravity:
float
:returns:
The estimated microturbulence (km/s) from the given stellar parameters.
:rtype:
float
"""
if surface_gravity >= 3.5:
return 1.28 + 3.3e-4 * (effective_temperature - 6000) \
- 0.64 * (surface_gravity - 4.5)
else:
return 2.70 - 0.509 * surface_gravity | bf54342e00fc61f042f183c8bbebc01005eb6b4c | 15,089 |
import re
def messagestat_formatting(messageBody):
"""
Formats the message body for messagestat functions.
This mostly involves replacing spaces with underscores
and doubling up on quotations so that SQL server
ignores them
"""
messageBody = re.sub(' ', '_', messageBody)
messageBody = re.sub("'", "''", messageBody)
if messageBody.startswith('"') and messageBody.endswith('"'):
messageBody = messageBody[1:]
messageBody = messageBody[:-1]
return(messageBody) | f91a8fe73b336f97be8322c6b5034013090e0807 | 15,099 |
def _ngrams_from_tokens(tokens, n, join=True, join_str=' '):
"""
Helper function to produce ngrams of length `n` from a list of string tokens `tokens`.
:param tokens: list of string tokens
:param n: size of ngrams
:param join: if True, join each ngram by `join_str`, i.e. return list of ngram strings; otherwise return list of
ngram lists
:param join_str: if `join` is True, use this string to join the parts of the ngrams
:return: return list of ngram strings if `join` is True, otherwise list of ngram lists
"""
if n < 2:
raise ValueError('`n` must be at least 2')
if len(tokens) == 0:
return []
if len(tokens) < n:
# raise ValueError('`len(tokens)` should not be smaller than `n`')
ngrams = [tokens]
else:
ngrams = [[tokens[i+j] for j in range(n)]
for i in range(len(tokens)-n+1)]
if join:
return list(map(lambda x: join_str.join(x), ngrams))
else:
return ngrams | 39afd35a4e715ea3e358a81d3a557eb1f0f0310a | 15,103 |
def parse_prior_params(bt_config, code_config, key, default, prior='pre'):
"""
Parse parameters with priority.
Args:
bt_config(dict): bt config
code_config(dict): code config
key(string): parameter name
default(default): default value
prior(string): use bt_config in prior if 'pre' otherwise code_config
Returns:
value
"""
if prior == 'pre':
return bt_config.get(key, code_config.get(key, default))
else:
return code_config.get(key, bt_config.get(key, default)) | beee29f04562173d18cc95b2b49683dee02fbca8 | 15,104 |
def entity_tostring(entity):
"""Converts one GNL (Google Natural Language) entity to a readable string."""
metadata = ", ".join(['"%s": "%s"' % (key, value) for
key, value in entity.metadata.items()])
mentions = ", ".join(['"%s"' % mention for mention in entity.mentions])
return ('{name: "%s",'
' type: "%s",'
' metadata: {%s},'
' salience: %s,'
' mentions: [%s]}') % (
entity.name,
entity.type,
metadata,
entity.salience,
mentions) | dd3e30247e36186e6eccfe1e32f8f31bf3577660 | 15,108 |
import networkx
def graph_from_dict(d):
""" Creates a NetworkX Graph from a dictionary
Parameters
----------
d : dict
Returns
-------
Graph: NetworkX Graph
Examples
--------
>>> g = graph_from_dict({'a':['b'], 'b':['c', 'd'], 'c':[], 'd':[], 'e':['d']})
"""
g = networkx.DiGraph()
for key, children in d.items():
for child in children:
g.add_edge(key, child)
return g | e0029b6018ff840bd2f314038c25f41e025600a7 | 15,110 |
def dectobin(dec_string):
"""Convert a decimal string to binary string"""
bin_string = bin(int(dec_string))
return bin_string[2:] | 5f02507ae5e7ab855eceb7a5908347060b46a400 | 15,111 |
def underscorize(camelcased):
"""
Takes a CamelCase string and returns a separated_with_underscores
version of that name in all lower case. If the name is already all in
lower case and/or separated with underscores, then the returned string
is identical to the original. This function is used to take CStruct
class names and determine the names of their handler methods.
Here are some example conversions:
underscorize("SomeStruct") == "some_struct"
underscorize("SSNLookup") == "ssn_lookup"
underscorize("RS485Adaptor") == "rs485_adaptor"
underscorize("Rot13Encoded") == "rot13_encoded"
underscorize("RequestQ") == "request_q"
underscorize("John316") == "john316"
"""
underscored, prev = "", ""
for i,c in enumerate(camelcased):
if (prev and not c.islower() and c != "_"
and (prev.islower() and not c.isdigit()
or c.isupper() and camelcased[i+1:i+2].islower())):
underscored += "_"
underscored += c.lower()
prev = c
return underscored | b0f2622c105c09502aa984e15cf1b61ac12a608b | 15,112 |
def best_validation_rows(log_df, valid_col='valid_accuracy', second_criterion='iterations_done'):
"""
Takes a dataframe created by scripts/logs_to_dataframe.py and returns
a dataframe containing the best-validation row for each log.
"""
return log_df.sort_values([valid_col,second_criterion],ascending=False).drop_duplicates(['log']) | 9541adb6653a93bfe0385bd24beedf80b065dde7 | 15,114 |
def getMsgTime(line):
"""Parse the timestamp off the 978 message and return as a float.
Args:
line (str): Line containing a 978 message with a timestamp at the end.
Returns:
float: Timestamp of the message.
Raises:
Exception: If the timestamp can't be found.
"""
payloadTimeIndex = line.find(';t=')
if payloadTimeIndex == -1:
raise Exception('Illegal time format')
timeInSecs = float(line[payloadTimeIndex + 3:-1])
return timeInSecs | 860a02a28d154357d6fcc61de182fee1f4875aaa | 15,121 |
def ordinalize(given_number: int) -> str:
"""Ordinalize the number from the given number
Args:
given_number (int): integer number
Example:
>>> ordinalize(34)
'34th'
Returns:
str: string in ordinal form
"""
suffix = ["th", "st", "nd", "rd"]
thenum = int(given_number)
if thenum % 10 in [1, 2, 3] and thenum not in [11, 12, 13]:
return f'{thenum}{suffix[thenum % 10]}'
else:
return f'{thenum}{suffix[0]}' | e0b43b3b8353e9e79d2f13a36198782a2a5dcd73 | 15,126 |
def get_filenames(hda_dict):
"""
Generates a list of filenames taken from the results dictionary,
retrieved with the function request_results_list.
Parameters:
hda_dict: dictionary initied with the function init, that
stores all required information to be able to
interact with the HDA API
Returns:
Returns a list of filenames for each entry stored in the
dictionary returned by the function request_results_list.
"""
fileName = []
for file in hda_dict['results']['content']:
fileName.append(file['filename'])
return fileName | c14911b14fa2b31f061b4420875c603d8acce5c1 | 15,127 |
def is_copula_relation(token1, token2):
"""Return True if `token1` is a copula dependent of `token2`.
We don't want to capture cases where `token2` is an adjective, because
we capture those in `is_predicated_adjective_relation()`.
"""
return (
(token1.deprel == "cop")
and (token2.upos != "ADJ")
and (token1.head == token2.id)
) | 35e7b19c3cf1662c09a8fd80c8099073de11bc51 | 15,133 |
def _safe_decr(line_num):
"""
Return @line_num decremented by 1, if @line_num is non None, else
None.
"""
if line_num is not None:
return line_num - 1 | ad6092b68240f39ccba13fda44bbf8af22d126f4 | 15,137 |
def _build_verbose_results(ret, show_success):
"""
Helper function that builds the results to be returned when the verbose parameter is set
"""
verbose_results = {'Failure': []}
for tag_data in ret.get('Failure', []):
tag = tag_data['tag']
verbose_results['Failure'].append({tag: tag_data})
verbose_results['Success'] = []
for tag_data in ret.get('Success', []):
tag = tag_data['tag']
verbose_results['Success'].append({tag: tag_data})
if not show_success and 'Success' in verbose_results:
verbose_results.pop('Success')
verbose_results['Controlled'] = []
for tag_data in ret.get('Controlled', []):
tag = tag_data['tag']
verbose_results['Controlled'].append({tag: tag_data})
if not verbose_results['Controlled']:
verbose_results.pop('Controlled')
return verbose_results | 53f5ad2525893e7277014664555894f51c601d4d | 15,143 |
def get_vpsa(session, vpsa_id, return_type=None, **kwargs):
"""
Retrieves details for a single VPSA.
:type session: zadarapy.session.Session
:param session: A valid zadarapy.session.Session object. Required.
:type vpsa_id: int
:param vpsa_id: The VPSA 'id' value as returned by get_all_vpsas. For
example: '2653'. Required.
:type return_type: str
:param return_type: If this is set to the string 'json', this function
will return a JSON string. Otherwise, it will return a Python
dictionary. Optional (will return a Python dictionary by default).
:rtype: dict, str
:returns: A dictionary or JSON data set as a string depending on
return_type parameter.
"""
if type(vpsa_id) is int:
vpsa_id = str(vpsa_id)
if not vpsa_id.isdigit():
raise ValueError('The VPSA ID should be a positive integer.')
path = '/api/vpsas/{0}.json'.format(vpsa_id)
return session.get_api(path=path, return_type=return_type, **kwargs) | 9b2c33c7ae772cf602528e10618117ccc12dfc6e | 15,157 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.