content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def xor(b1, b2): """Expects two bytes objects of equal length, returns their XOR""" assert len(b1) == len(b2) return bytes([x ^ y for x, y in zip(b1, b2)])
3376df85b52cea276417e29ae81c80208dc28b86
13,921
import random import string def random_string(length=1, unicode=False): """ Returns random ascii or unicode string. """ if unicode: def random_fun(): return chr(random.choice((0x300, 0x2000)) + random.randint(0, 0xff)) else: def random_fun(): return random.choice(string.ascii_lowercase + string.ascii_uppercase + string.digits) return ''.join(random_fun() for _ in range(length))
45760b3e3c42e484d51abf76f9eb2ae0c8132fd1
13,928
import math def probability(ec, en, t): """ Probability function :param ec: current energy :param en: next energy :param t: temperature ratio :return: probability value """ return math.exp((ec - en) / t)
c055081cd93473ecf4abeab1c8b5cc36fb38f0a4
13,930
def add_ext(name, ext, seq=-1): """add_ext constructs file names with a name, sequence number, and extension. Args: name (string) - the filename ext (string) - the file extension seq (int) - the number in a sequence with other files (Default -1) means that it is a standalone file """ #add period if not if '.' not in ext[0]: ext = '.' + ext if seq != -1: ext = str(seq) + ext return name + ext
650eee088ae58d182c49f35f37e5b8deac57fa1d
13,933
def get_coding_annotation_fasta(seq_record): """ When passed a sequence record object returns an array of FASTA strings for each annotation. :param seq_record: A Biopython sequence record object. :return: A FASTA file string containing all sequences record object CDS sequence features. """ fasta = [] features = seq_record.features # Each sequence has a list (called features) that stores seqFeature objects. for feature in features: # For each feature on the sequence if feature.type == "CDS": # CDS means coding sequence (These are the only feature we're interested in) feat_qualifiers = feature.qualifiers # Each feature contains a dictionary called qualifiers which contains # data about the sequence feature (for example the translation) start = int(feature.location.start) # Type-casting to int strips fuzzy < > characters. end = int(feature.location.end) strand = feature.location.strand if strand is None: strand = "?" elif int(strand) < 0: strand = "-" elif int(strand) > 0: strand = "+" else: strand = "?" location = "[" + str(start) + ":" + str(end) + "](" + strand + ")" # Gets the required qualifiers. Uses featQualifiers.get to return the qualifiers or a default value if the qualifiers # is not found. Calls strip to remove unwanted brackets and ' from qualifiers before storing it as a string. protein_id = str(feat_qualifiers.get('protein_id', 'no_protein_id')).strip('\'[]') if protein_id == 'no_protein_id': continue # Skips the iteration if protein has no id. protein_locus = str(feat_qualifiers.get('locus_tag', 'no_locus_tag')).strip('\'[]') gene = str(feat_qualifiers.get('gene', 'no_gene_name')).strip('\'[]') product = str(feat_qualifiers.get('product', 'no_product_name')).strip('\'[]') translated_protein = str(feat_qualifiers.get('translation', 'no_translation')).strip('\'[]') fasta_part_one = ">" + protein_id + " " + gene + "-" + product + " (Locus: " + protein_locus + ")" fasta_part_two = " (Location: " + location + ")" + "\n" + translated_protein + "\n" fasta.append(fasta_part_one + fasta_part_two) fasta_string = "".join(fasta) return fasta_string
4fa24279ebb89ea7c61eeae6614c1fa309ffad87
13,936
from typing import Union def bars_to_atmospheres(bar: float, unit: str) -> Union[float, str]: """ This function converts bar to atm Wikipedia reference: https://en.wikipedia.org/wiki/Standard_atmosphere_(unit) Wikipedia reference: https://en.wikipedia.org/wiki/Bar_(unit) >>> bars_to_atmospheres(36, "bar") 35.529237601776465 >>> bars_to_atmospheres("57.6", "bar") 56.84678016284234 >>> bars_to_atmospheres(0, "bar") 0.0 >>> bars_to_atmospheres(35, "Pa") 'Invalid unit' >>> bars_to_atmospheres("barrs", "bar") Traceback (most recent call last): ... ValueError: could not convert string to float: 'barrs' """ if unit == "bar": atm = float(bar) / 1.01325 return atm else: return "Invalid unit"
d460021395af77acda01296710f145e9b52d8594
13,937
def series(expr, x, point=0, n=6, dir="+"): """Series expansion of expr around point `x=point`. See the doctring of Basic.series() for complete details of this wrapper. """ return expr.series(x, point, n, dir)
fee3fff7a29136813c7d6bf5d1cf7c576651368d
13,940
def process_transform_funcs(trans_funcs, func_args=None, func_kwargs=None): """Process input of the apply_transform_funcs function. :param iterable trans_funcs: functions to apply, specified the function or a (function, args, kwargs) tuple :param dict func_args: function positional arguments, specified as (function, arguments tuple) pairs :param dict func_kwargs: function keyword arguments, specified as (function, kwargs dict) pairs :returns: transformation functions for apply_transform_funcs function :rtype: list """ # copy function arguments and make sure they are in dictionaries func_args = dict(func_args) if func_args else {} func_kwargs = dict(func_kwargs) if func_kwargs else {} # loop over specified functions proc_funcs = [] for func_spec in trans_funcs: # expand (func, args, kwargs) combinations try: func, args, kwargs = (func_spec, None, None) if isinstance(func_spec, str) else func_spec except TypeError: func, args, kwargs = func_spec, None, None except ValueError: raise ValueError('expected (func, args, kwargs) combination (got {!s})'.format(func_spec)) # get positional arguments args_ = func_args.pop(func, None) if args is not None and args_ is not None: raise RuntimeError('arguments for "{!s}" in both "trans_funcs" and "func_args"'.format(func)) args = tuple(args) if args is not None else tuple(args_) if args_ is not None else () # get keyword arguments kwargs_ = func_kwargs.pop(func, None) if kwargs is not None and kwargs_ is not None: raise RuntimeError('keyword arguments for "{!s}" in both "trans_funcs" and "func_kwargs"'.format(func)) kwargs = dict(kwargs) if kwargs is not None else dict(kwargs_) if kwargs_ is not None else {} # check if function is callable if not (isinstance(func, str) or callable(func)): raise TypeError('function "{!s}" is not callable'.format(func)) # append function specification proc_funcs.append((func, args, kwargs)) # check if all specified arguments were used if func_args: raise ValueError('unused function arguments specified: {!s}'.format(func_args)) if func_kwargs: raise ValueError('unused function keyword arguments specified: {!s}'.format(func_kwargs)) return proc_funcs
2e9fe4bec55f0a13a0644cfe27ba887f00e85c55
13,942
import math def _get_fov(pillow_image) -> float: """Get the horizontal FOV of an image in radians.""" exif_data = pillow_image.getexif() # 41989 is for 'FocalLengthIn35mmFilm'. focal_length = exif_data[41989] # FOV calculation, note 36 is the horizontal frame size for 35mm # film. return 2 * math.atan2(36, 2 * focal_length)
9b8101010a980079d950b6151a3d5280d5eedb73
13,944
def pieChartInfoPlus(trips): """ Calculates the total distance per activity mode Parameters ---------- trips : dict - Semantic information (nested) Returns ------- list(data): list - labels of the activity modes list(data.values()): list - distance per activity mode """ labels = ["IN_PASSENGER_VEHICLE","STILL","WALKING","IN_BUS","CYCLING","FLYING","RUNNING","IN_FERRY","IN_TRAIN","SKIING","SAILING","IN_SUBWAY","IN_TRAM","IN_VEHICLE"] data = {} for year in trips: for month in trips[year]: for event in trips[year][month]: if list(event)[0] == 'activitySegment': try: dist = event['activitySegment']['distance'] for label in labels: if label == event['activitySegment']['activityType']: data[label] = data.get(label,0) + dist except: print('There is no distance!') return list(data), list(data.values())
ad0306b2561b01a33c509b2c454f464e9c6ff8a3
13,946
def findCharacter(stringList, patternCharacter): """ Find the specific character from the list and return their indices """ return([ind for ind, x in enumerate(list(stringList)) if x == patternCharacter])
32cc8fb5970c6cd3cefd161b9e13e340f1645d13
13,949
def cell_trap_getter_generator(priv_attr): """ Generates a getter function for the cell_trap property. """ def getter(self): if getattr(self, priv_attr) is None: data =\ ( self.gfpffc_bulb_1 - self.gfpffc_bulb_bg )/self.gfpffc_bulb_bg setattr(self, priv_attr, data) return getattr(self, priv_attr) return getter
15217adbd96ce44b361444867e5d9c6d202440f4
13,951
def bg_trim(im): """ Function to programmatically crop card to edge. `im` is a PIL Image Object. """ # This initial crop is hacky and stupid (should just be able to set device # options) but scanner isn't 'hearing' those settings. # w,h = im.size im = im.crop((443, 0, 1242, 1200)) # bg = Image.new(im.mode, im.size, im.getpixel((2, 2))) # diff = ImageChops.difference(im, bg) # diff = ImageChops.add(diff, diff, 2.0, -100) # bbox = diff.getbbox() return im # if bbox: # return im # else: # print("There's been a problem.")
b5b59059aa9823cd2be385ead5cc21b135a4e24b
13,954
def get_filtered_query(must_list=None, must_not_list=None): """Get the correct query string for a boolean filter. Accept must and must_not lists. Use MatchList for generating the appropriate lists. """ bool_filter = {} if must_list: bool_filter['must'] = must_list if must_not_list: bool_filter['must_not'] = must_not_list result = { 'query': { 'filtered': { 'filter': { 'bool': bool_filter } } } } return result
2190456ad7e91239bb623f7ec3d2c460e521e36f
13,955
def convert_to_letter(grade): """Convert a decimal number to letter grade""" grade = round(grade, 1) if grade >= 82.5: return 'A' elif grade >= 65: return 'B' elif grade >= 55: return 'C' elif grade >= 50: return 'D' else: return 'F'
13ce25275750e7a27e0699078a15ba551674a941
13,956
def time_coord(cube): """ Return the variable attached to time axis. Examples -------- >>> import iris >>> url = ('http://omgsrv1.meas.ncsu.edu:8080/thredds/dodsC/' ... 'fmrc/us_east/US_East_Forecast_Model_Run_Collection_best.ncd') >>> cube = iris.load_cube(url, 'sea_water_potential_temperature') >>> timevar = time_coord(cube) >>> timevar.name() # What is the time coordinate named? 'time' >>> cube.coord_dims(timevar) # Is it the zeroth coordinate? (0,) """ timevars = cube.coords(axis="T", dim_coords=True) if not timevars: timevars = [ coord for coord in cube.dim_coords if "time" in coord.name() ] # noqa if not timevars: ValueError(f'Could not find "time" in {repr(cube.dim_coords)}') if len(timevars) != 1: raise ValueError("Found more than one time coordinates!") timevar = timevars[0] return timevar
12a706f956846e8471d0d7f044367c77210c4486
13,957
import re def oneliner(s) -> str: """Collapse any whitespace in stringified `s` into a single space. """ return re.sub(r"[\n ]+", " ", str(s).strip())
ed1d419b4fab8cb2deccdbc2944996ef7be28cc5
13,958
from typing import Counter def diff_counts(values : list[int]) -> dict[int, int]: """Count the gaps between ordered elements in a list, by size.""" ordered = [0] + sorted(values) + [max(values) + 3] return Counter(j - i for i, j in zip(ordered, ordered[1:]))
897cb7fdfed85b37bd8bd7031290e34199c57574
13,960
def convert_netdict_to_pydict(dict_in): """Convert a net dictionary to a Python dictionary. Parameters ---------- dict_in : dict Net dictionary to convert. Returns ------- dict Dictionary converted to Python. """ pydict = {} for key in dict_in.Keys: pydict[key] = dict_in[key] return pydict
6aa9bb5ac00ff92d23ff5a449d096caad0d01c9c
13,963
from typing import List def binary_search(input_array: List[int], target: int): """ Given a sorted input array of integers, the function looks for a target or returns None Returns: Target index or None """ if not input_array or not target: return None left_pointer = 0 right_pointer = len(input_array) - 1 while left_pointer <= right_pointer: mid_pointer = (left_pointer + right_pointer) // 2 mid_value = input_array[mid_pointer] if target > mid_value: left_pointer = mid_pointer + 1 elif target < mid_value: right_pointer = mid_pointer - 1 else: return mid_pointer return None
b9f389d1b31e5b95bb885bd638549f7775db207e
13,964
def is_superuser(view): """Allow access to the view if the requesting user is a superuser.""" return view.request.user.is_superuser
5a15433200634ca326c36bdc17acbc1ada4e6426
13,966
from typing import Any import torch import numbers def python_scalar_to_tensor(data: Any, device: torch.device = torch.device("cpu")) -> Any: """ Converts a Python scalar number to a torch tensor and places it on the given device. """ if isinstance(data, numbers.Number): data = torch.tensor([data], device=device) return data
83e4ac093a40225f9c5fe121d9b67424f258e039
13,969
def LIGHTNING(conf): """Get Lightning Color code from config""" return conf.get_color("colors", "color_lghtn")
08781e469c7262228904e883594e475be634816b
13,971
from typing import Tuple def InterpolateValue(x: float, xy0: Tuple[float, float], xy1: Tuple[float, float]) -> float: """Get the position of x on the line between xy0 and xy1. :type x: float :type xy0: Tuple[float, float] :type xy1: Tuple[float, float] :return: y :rtype: float """ if xy0[0] < xy1[0]: min_xy = xy0 max_xy = xy1 else: min_xy = xy1 max_xy = xy0 a = (max_xy[1] - max_xy[1]) / (max_xy[0] - min_xy[0]) b = min_xy[1] - a * min_xy[0] return a * x + b
9de4372b593fae65f772c19a8ac369315a8489d0
13,975
def boolean(prompt=None, yes='y', no='n', default=None, sensitive=False, partial=True): """Prompt for a yes/no response. Parameters ---------- prompt : str, optional Use an alternative prompt. yes : str, optional Response corresponding to 'yes'. no : str, optional Response correspnding to 'no'. default : bool, optional The return value if user inputs empty response. sensitive : bool, optional If True, input is case sensitive. partial : bool, optional Can user type 'y' or 'ye' for 'yes' and 'n' for 'no'? Returns ------- bool Either True (if user selects 'yes') or False (if user selects 'no') """ def norm(x): return x if sensitive else str(x).lower() def to_bool(c): """Business logic for converting input to boolean.""" if partial and len(c): if norm(yes).startswith(norm(c)): return True elif norm(no).startswith(norm(c)): return False else: if norm(yes) == norm(c): return True elif norm(no) == norm(c): return False raise ValueError if prompt is None: y = '[{}]'.format(yes) if default is True else yes n = '[{}]'.format(no) if default is False else no prompt = '{y}/{n}? '.format(y=y, n=n) s = input(prompt) if (default is not None) and not s: return default try: return to_bool(s) except ValueError: return boolean(prompt=prompt, yes=yes, no=no, default=default, sensitive=sensitive, partial=partial)
159c8be6004e4e9f2c5a271e36facd3610561b61
13,978
import torch def compute_local_cost(pi, a, dx, b, dy, eps, rho, rho2, complete_cost=True): """Compute the local cost by averaging the distortion with the current transport plan. Parameters ---------- pi: torch.Tensor of size [Batch, size_X, size_Y] transport plan used to compute local cost a: torch.Tensor of size [Batch, size_X] Input measure of the first mm-space. dx: torch.Tensor of size [Batch, size_X, size_X] Input metric of the first mm-space. b: torch.Tensor of size [Batch, size_Y] Input measure of the second mm-space. dy: torch.Tensor of size [Batch, size_Y, size_Y] Input metric of the second mm-space. eps: float Strength of entropic regularization. rho: float Strength of penalty on the first marginal of pi. rho2: float Strength of penalty on the first marginal of pi. If set to None it is equal to rho. complete_cost: bool If set to True, computes the full local cost, otherwise it computes the cross-part on (X,Y) to reduce computational complexity. Returns ---------- lcost: torch.Tensor of size [Batch, size_X, size_Y] local cost depending on the current transport plan. """ distxy = torch.einsum( "ij,kj->ik", dx, torch.einsum("kl,jl->kj", dy, pi) ) kl_pi = torch.sum( pi * (pi / (a[:, None] * b[None, :]) + 1e-10).log() ) if not complete_cost: return - 2 * distxy + eps * kl_pi mu, nu = torch.sum(pi, dim=1), torch.sum(pi, dim=0) distxx = torch.einsum("ij,j->i", dx ** 2, mu) distyy = torch.einsum("kl,l->k", dy ** 2, nu) lcost = (distxx[:, None] + distyy[None, :] - 2 * distxy) + eps * kl_pi if rho < float("Inf"): lcost = ( lcost + rho * torch.sum(mu * (mu / a + 1e-10).log()) ) if rho2 < float("Inf"): lcost = ( lcost + rho2 * torch.sum(nu * (nu / b + 1e-10).log()) ) return lcost
3d29e8ae5ef14ab30cd676eebeb6507e9cbfafca
13,981
def electron_binding_energy(charge_number): """Return the electron binding energy for a given number of protons (unit is MeV). Expression is taken from [Lunney D., Pearson J. M., Thibault C., 2003, Rev. Mod. Phys.,75, 1021].""" return 1.44381e-5 * charge_number ** 2.39\ + 1.55468e-12 * charge_number ** 5.35
6d5a845b1b11720b44b62500f979f0a621faca0a
13,985
def parse_generic(data, key): """ Returns a list of (potentially disabled) choices from a dictionary. """ choices = [] for k, v in sorted(data[key].iteritems(), key=lambda item: item[1]): choices.append([v, k]) return choices
90d2f2188d5cca7adb53eebca80a80f2c46b04a7
13,986
def attrs_to_dict(attrs): """ Convert a list of tuples of (name, value) attributes to a single dict of attributes [name] -> value :param attrs: List of attribute tuples :return: Dict of attributes """ out = {} for attr in attrs: if out.get(attr[0]) is None: out[attr[0]] = attr[1] else: if not isinstance(out[attr[0]], list): out[attr[0]] = [out[attr[0]]] out[attr[0]].append(attr[1]) return out
ccf9440d29de2f8556e694f4ab87e95f0bfd9e8a
13,987
def count(i): """List or text. Returns the length as an integer.""" return len(i)
d8daf7cd325ce1acfb382723759ff190becd785f
13,989
def find_body(view): """ Find first package body declaration. """ return view.find(r'(?im)create\s+(or\s+replace\s+)?package\s+body\s+', 0)
b592199e4ef09d079645fc82ade8efbe3c92a895
13,994
def get_num_objects(tree): """ Get number of objects in an image. Args: tree: Tree element of xml file. Returns: Number of objects. """ num_obj = 0 for e in tree.iter(): if e.tag == 'object': num_obj = num_obj + 1 return num_obj
92f937cbbf2eabdc909ef6bc1f06ccb87e0148b7
13,999
from typing import Union def _get_tol_from_less_precise(check_less_precise: Union[bool, int]) -> float: """ Return the tolerance equivalent to the deprecated `check_less_precise` parameter. Parameters ---------- check_less_precise : bool or int Returns ------- float Tolerance to be used as relative/absolute tolerance. Examples -------- >>> # Using check_less_precise as a bool: >>> _get_tol_from_less_precise(False) 0.5e-5 >>> _get_tol_from_less_precise(True) 0.5e-3 >>> # Using check_less_precise as an int representing the decimal >>> # tolerance intended: >>> _get_tol_from_less_precise(2) 0.5e-2 >>> _get_tol_from_less_precise(8) 0.5e-8 """ if isinstance(check_less_precise, bool): if check_less_precise: # 3-digit tolerance return 0.5e-3 else: # 5-digit tolerance return 0.5e-5 else: # Equivalent to setting checking_less_precise=<decimals> return 0.5 * 10 ** -check_less_precise
375f7918a04fafb4a79f77abd3f0282cdc74e992
14,001
def get_arg(cmds): """Accepts a split string command and validates its size. Args: cmds: A split command line as a list of strings. Returns: The string argument to the command. Raises: ValueError: If there is no argument. """ if len(cmds) != 2: raise ValueError('%s needs an argument.' % cmds[0]) return cmds[1]
a12b9402cb824748127c9a925850a10f6a9fe022
14,003
def _magnitude_to_marker_size(v_mag): """Calculate the size of a matplotlib plot marker representing an object with a given visual megnitude. A third-degree polynomial was fit to a few hand-curated examples of marker sizes for magnitudes, as follows: >>> x = np.array([-1.44, -0.5, 0., 1., 2., 3., 4., 5.]) >>> y = np.array([120., 90., 60., 30., 15., 11., 6., 1.]) >>> coeffs = np.polyfit(x, y, 3) This function is valid over the range -2.0 < v <= 6.0; v < -2.0 returns size = 160. and v > 6.0 returns size = 1. Args: v_mag: A float representing the visual magnitude of a sky object. Returns: A float to be used as the size of a marker depicting the sky object in a matplotlib.plt scatterplot. """ if v_mag < -2.0: size = 160.0 elif v_mag > 6.0: size = 1.0 else: coeffs = [-0.39439046, 6.21313285, -33.09853387, 62.07732768] size = coeffs[0] * v_mag**3. + coeffs[1] * v_mag**2. + coeffs[2] * v_mag + coeffs[3] return size
cb030993c5799da9f84e9bbadb9fe30680d74944
14,009
def upto(limit: str, text: str) -> str: """ return all the text up to the limit string """ return text[0 : text.find(limit)]
0fbe1732954c225fe8d8714badb9126c8ab72a4d
14,010
def check_occuring_variables(formula,variables_to_consider,allowed_variables) : """ Checks if the intersection of the variables in <formula> with the variables in <variables_to_consider> is contained in <allowed_variables> Parameters ---------- formula : list of list of integers The formula to consider. variables_to_consider : list of integers Those variables in <formula> that shall be considered. allowed_variables : list of integers Must be contained in <variables_to_consider>. Gives the subset of <variables_to_consider> that may occur in <formula> Returns ------- True if the intersection of the variables in <formula> with <variables_to_consider> is contained in <allowed_variables> """ variable_set=set(allowed_variables) for clause in formula : variables_in_clause = {abs(l) for l in clause if abs(l) in variables_to_consider} if not variables_in_clause <= variable_set: return False, [v for v in variables_in_clause if not v in variable_set] return True, []
16faf544cc6f4993afb1cad356037820d54225ba
14,012
def _merge_config_dicts(dct1, dct2): """ Return new dict created by merging two dicts, giving dct1 priority over dct2, but giving truthy values in dct2 priority over falsey values in dct1. """ return {str(key): dct1.get(key) or dct2.get(key) for key in set(dct1) | set(dct2)}
9d66c10438027254fbac7d8cc91185a07dd9da65
14,015
def from_list(*args): """ Input: args - variable number of integers represented as lists, e.g. from_list([1,0,2], [5]) Output: new_lst - a Python array of integers represented as strings, e.g. ['102','5'] """ new_lst = [] for lst in args: new_string = '' for digit in lst: new_string += str(digit) new_lst.append(new_string) return new_lst
c3c0a2224433104a00ffabdadf612127d1b0ed3c
14,017
def perpetuity_present_value( continuous_cash_payment: float, interest_rate: float, ): """Returns the Present Value of Perpetuity Formula. Parameters ---------- continuous_cash_payment : float Amount of continuous cash payment. interest_rate : float Interest rate, yield or discount rate. Returns ------- float: Present value of perpetuity Example ------- >>> pv = perpetuity_present_value(5, 0.15) >>> round(pv, 2) 33.33 """ return continuous_cash_payment / interest_rate
26eb398776ce4f74348b23920b99b0390c462ff9
14,018
def __avg__(list_): """Return average of all elements in the list.""" return sum(list_) / len(list_)
3204d823e83bd43efccf9886acd3ae8b01e1d7a0
14,022
import requests def check_hash(h): """ Do the heavy lifting. Take the hash, poll the haveibeenpwned API, and check results. :param h: The sha1 hash to check :return: The number of times the password has been found (0 is good!) """ if len(h) != 40: raise ValueError("A sha1 hash should be 30 characters.") h = h.upper() chk = h[:5] r = requests.get("https://api.pwnedpasswords.com/range/%s" % chk) if r.status_code != 200: raise EnvironmentError("Unable to retrieve password hashes from server.") matches = {m: int(v) for (m, v) in [ln.split(':') for ln in r.content.decode('utf-8').split("\r\n")]} #print("Prefix search returned %d potential matches." % len(matches)) for m in matches.keys(): if m == h[5:]: return matches[m] return 0
965dd75b5da095bc24ce6a6d733b271d9ec7aa80
14,028
def get_field_hint(config, field): """Get the hint given by __field_hint__ or the field name if not defined.""" return getattr(config, '__{field}_hint__'.format(field=field), field)
0d374daf93646caf55fe436c8eb2913d22151bbc
14,030
def btc(value): """Format value as BTC.""" return f"{value:,.8f}"
1d883384a6052788e8fa2bedcddd723b8765f44f
14,032
import time def nagios_from_file(results_file): """Returns a nagios-appropriate string and return code obtained by parsing the desired file on disk. The file on disk should be of format %s|%s % (timestamp, nagios_string) This file is created by various nagios checking cron jobs such as check-rabbitmq-queues and check-rabbitmq-consumers""" data = open(results_file).read().strip() pieces = data.split('|') if not len(pieces) == 4: state = 'UNKNOWN' ret = 3 data = "Results file malformed" else: timestamp = int(pieces[0]) time_diff = time.time() - timestamp if time_diff > 60 * 2: ret = 3 state = 'UNKNOWN' data = "Results file is stale" else: ret = int(pieces[1]) state = pieces[2] data = pieces[3] return (ret, "%s: %s" % (state, data))
02697105ad5e9d01dd0eb504e232314f4d15a6a9
14,035
import math def _width2wing(width, x, min_wing=3): """Convert a fractional or absolute width to integer half-width ("wing"). """ if 0 < width < 1: wing = int(math.ceil(len(x) * width * 0.5)) elif width >= 2 and int(width) == width: # Ensure window width <= len(x) to avoid TypeError width = min(width, len(x) - 1) wing = int(width // 2) else: raise ValueError("width must be either a fraction between 0 and 1 " "or an integer greater than 1 (got %s)" % width) wing = max(wing, min_wing) wing = min(wing, len(x) - 1) assert wing >= 1, "Wing must be at least 1 (got %s)" % wing return wing
38bdb809167b19b0ef5c7fad6858d2f7016ec310
14,036
def mb_bl_ind(tr1, tr2): """Returns the baseline index for given track indices. By convention, tr1 < tr2. Otherwise, a warning is printed, and same baseline returned. """ if tr1 == tr2: print("ERROR: no baseline between same tracks") return None if tr1 > tr2: print("WARNING: tr1 exepcted < than tr2") mx = max(tr1, tr2) bl = mx*(mx-1)/2 + min(tr1, tr2) return bl.astype(int)
7d1bc958ca9928f54e51935510d62c45f7fc927f
14,037
def datetime_format_to_js_datetime_format(format): """ Convert a Python datetime format to a time format suitable for use with the datetime picker we use, http://www.malot.fr/bootstrap-datetimepicker/. """ converted = format replacements = { '%Y': 'yyyy', '%y': 'yy', '%m': 'mm', '%d': 'dd', '%H': 'hh', '%I': 'HH', '%M': 'ii', '%S': 'ss', } for search, replace in replacements.items(): converted = converted.replace(search, replace) return converted.strip()
a037146b17aae21831bc4c76d4500b12bc34feba
14,040
def make_data(current_data): """ Formats the given data into the required form """ x = [] n = len(current_data) for i in range(n - 1): x.append(current_data[i]) x.append(1) return x, current_data[n - 1]
04ff4ba93445895451c4c710e7aae59b9787a07d
14,042
def average_over_dictionary(mydict): """ Average over dictionary values. """ ave = sum([x for x in mydict.values()])/len(mydict) return ave
584e8cb073c298b3790a96e2649dbacfd5716987
14,043
def treat_category(category: str) -> str: """ Treats a list of string Args: category (str): the category of an url Returns: str: the category treated """ return category.lower().strip()
a4c08383bdfb40e5e64bbf576df53a7f46fc07da
14,047
def _get_fully_qualified_class_name(obj): """ Obtains the fully qualified class name of the given object. """ return obj.__class__.__module__ + "." + obj.__class__.__name__
e427991067254c2ac1963c5ae59468ec2c0835e2
14,049
import decimal def new_decimal(value): """Builds a Decimal using the cleaner float `repr`""" if isinstance(value, float): value = repr(value) return decimal.Decimal(value)
023809d3db3e863f66559913f125e61236520a6a
14,051
import unicodedata def unidecode(s: str) -> str: """ Return ``s`` with unicode diacritics removed. """ combining = unicodedata.combining return "".join( c for c in unicodedata.normalize("NFD", s) if not combining(c) )
589dc0403c95e29f340070e3a9e81a6f14950c8e
14,061
def AutoUpdateUpgradeRepairMessage(value, flag_name): """Messaging for when auto-upgrades or node auto-repairs. Args: value: bool, value that the flag takes. flag_name: str, the name of the flag. Must be either autoupgrade or autorepair Returns: the formatted message string. """ action = 'enable' if value else 'disable' plural = flag_name + 's' link = 'node-auto-upgrades' if flag_name == 'autoupgrade' else 'node-auto-repair' return ('This will {0} the {1} feature for nodes. Please see ' 'https://cloud.google.com/kubernetes-engine/docs/' '{2} for more ' 'information on node {3}.').format(action, flag_name, link, plural)
7153b7aa44d6d798aa58d9328ac49097016c0879
14,062
import ast import collections import logging def _get_ground_truth_detections(instances_file, allowlist_file=None, num_images=None): """Processes the annotations JSON file and returns ground truth data corresponding to allowlisted image IDs. Args: instances_file: COCO instances JSON file, usually named as instances_val20xx.json. allowlist_file: File containing COCO minival image IDs to allowlist for evaluation, one per line. num_images: Number of allowlisted images to pre-process. First num_images are chosen based on sorted list of filenames. If None, all allowlisted files are preprocessed. Returns: A dict mapping image id (int) to a per-image dict that contains: 'filename', 'image' & 'height' mapped to filename & image dimensions respectively AND 'detections' to a list of detection dicts, with each mapping: 'category_id' to COCO category id (starting with 1) & 'bbox' to a list of dimension-normalized [top, left, bottom, right] bounding-box values. """ # Read JSON data into a dict. with open(instances_file, 'r') as annotation_dump: data_dict = ast.literal_eval(annotation_dump.readline()) image_data = collections.OrderedDict() # Read allowlist. if allowlist_file is not None: with open(allowlist_file, 'r') as allowlist: image_id_allowlist = set([int(x) for x in allowlist.readlines()]) else: image_id_allowlist = [image['id'] for image in data_dict['images']] # Get image names and dimensions. for image_dict in data_dict['images']: image_id = image_dict['id'] if image_id not in image_id_allowlist: continue image_data_dict = {} image_data_dict['id'] = image_dict['id'] image_data_dict['file_name'] = image_dict['file_name'] image_data_dict['height'] = image_dict['height'] image_data_dict['width'] = image_dict['width'] image_data_dict['detections'] = [] image_data[image_id] = image_data_dict shared_image_ids = set() for annotation_dict in data_dict['annotations']: image_id = annotation_dict['image_id'] if image_id in image_data: shared_image_ids.add(image_id) output_image_ids = sorted(shared_image_ids) if num_images: if num_images <= 0: logging.warning( '--num_images is %d, hence outputing all annotated images.', num_images) elif num_images > len(shared_image_ids): logging.warning( '--num_images (%d) is larger than the number of annotated images.', num_images) else: output_image_ids = output_image_ids[:num_images] for image_id in list(image_data): if image_id not in output_image_ids: del image_data[image_id] # Get detected object annotations per image. for annotation_dict in data_dict['annotations']: image_id = annotation_dict['image_id'] if image_id not in output_image_ids: continue image_data_dict = image_data[image_id] bbox = annotation_dict['bbox'] # bbox format is [x, y, width, height] # Refer: http://cocodataset.org/#format-data top = bbox[1] left = bbox[0] bottom = top + bbox[3] right = left + bbox[2] if (top > image_data_dict['height'] or left > image_data_dict['width'] or bottom > image_data_dict['height'] or right > image_data_dict['width']): continue object_d = {} object_d['bbox'] = [ top / image_data_dict['height'], left / image_data_dict['width'], bottom / image_data_dict['height'], right / image_data_dict['width'] ] object_d['category_id'] = annotation_dict['category_id'] image_data_dict['detections'].append(object_d) return image_data
2650ff4ffeb13d0a7874164474fa47a82880d45d
14,063
def decomp(n): """ Retorna a decomposição em fatores primos de um inteiro em forma de dicionário onde as chaves são as bases e o valores os expoentes. Ex: >>> decomp(12) {2: 2, 3: 1} >>> decomp(72) {2: 3, 3: 2} :param n: number :return: dictionary """ expoente = 0 base = 2 decomposicao = {} while n > 1: while n % base == 0: expoente += 1 n = n/base if expoente > 0: decomposicao[base] = expoente expoente = 0 base += 1 return decomposicao
999d8be04ffd197ebdd14c88b525eb8ca4379bb9
14,075
import requests def sendRequest(url, type="POST", params=None, headers=None): """ Send a request to a URL ### Input: - `url` (str) | the url to send the request to - `type` (str) | the type of request (GET or POST) - `params` (dict) | parameters to be sent with the request - `headers` (dict) | headers to be sent with the request ### Output: - `response` (dict) | the JSON response of the request """ ## Perform a GET request if type == "GET": rawResponse = requests.get(url, params=params, headers=headers) ## Perform a POST request else: rawResponse = requests.post(url, params=params, headers=headers) ## Convert the response to a json object, if possible if hasattr(rawResponse, "json"): response = rawResponse.json() ## Otherwise, get the text response else: response = rawResponse.text return response
7f450b8eedf6405b237730b9f7d6da5277c41e7b
14,080
def get_span_row_count(span): """ Gets the number of rows included in a span Parameters ---------- span : list of lists of int The [row, column] pairs that make up the span Returns ------- rows : int The number of rows included in the span Example ------- Consider this table:: +--------+-----+ | foo | bar | +--------+ | | spam | | +--------+ | | goblet | | +--------+-----+ :: >>> span = [[0, 1], [1, 1], [2, 1]] >>> print(get_span_row_count(span)) 3 """ rows = 1 first_row = span[0][0] for i in range(len(span)): if span[i][0] > first_row: rows += 1 first_row = span[i][0] return rows
e226e0f78bd6711a7ddbe9c749ed43d1d2bc476c
14,083
def get_logbook_by_name(logbook_name, conn): """ Get a logbook by name from a persistence backend connection :param str logbook_name: The name of the logbook to get :param obj conn: A persistence backend connection :return obj logbook: The logbook with the specified name """ return next( iter([i for i in conn.get_logbooks() if i.name == logbook_name]) )
7ed83cfca3d7f0313046b39032c2b906c4bff410
14,085
from typing import List def get_label_list(labels: List[List[int]]) -> List[int]: """Gets a sorted list of all the unique labels from `labels`. Args: labels: A list of lists, each corresponding to the label-sequence of a text. Returns: All the unique labels the ever appear in `labels`, given in a sorted list. Example: Given `labels=[[0, 0, 3, 2, 5], [4, 0], [5, 2, 3]]`, returns `[0, 2, 3, 4, 5]`. """ unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list
be795ff63c1eaccd221289708551a8ddd02b2cc5
14,088
def format_message(date_str, node, msg): """Format log message""" message = f"{date_str}: {node.site_name}: {node.location or node.model} ({node.serial}) {msg}" return message
53dc7e2716f935a083c36e40ad4887cfe23c0aad
14,089
def _world2fig(ff, x, y): """ Helper function to convert world to figure coordinates. Parameters ---------- ff : `~aplpy.FITSFigure` `~aplpy.FITSFigure` instance. x : ndarray Array of x coordinates. y : ndarray Array of y coordinates. Returns ------- coordsf : tuple Figure coordinates as tuple (xfig, yfig) of arrays. """ # Convert world to pixel coordinates xp, yp = ff.world2pixel(x, y) # Pixel to Axes coordinates coordsa = ff._ax1.transData.transform(zip(xp, yp)) # Axes to figure coordinates coordsf = ff._figure.transFigure.inverted().transform(coordsa) return coordsf[:, 0], coordsf[:, 1]
99df767d948bc1c0807b676e2178de1478a1ac71
14,098
def is_palindrome(number): """ Returns True if `number` is a palindrome, False otherwise. """ num_str = str(number) num_comparisons = len(num_str) // 2 for idx in range(num_comparisons): if num_str[idx] != num_str[-1-idx]: return False return True
391aec57bba8366d7e7ef2c8187fda377f5a786d
14,099
from typing import Iterable def flatten_list(li: Iterable): """Flattens a list of lists.""" if isinstance(li, Iterable): return [a for i in li for a in flatten_list(i)] else: return [li]
306536fdadf231b0a0f752bb63d7e01317819674
14,100
import re def remove_unwanted_chars(x: str, *chars: str, to_replace: str = "") -> str: """Remove unwanted characters from a string.""" return re.sub(f"[{''.join(chars)}]", to_replace, x)
4a1e25b1ad12f47f835d4f6cdbac4a6e08413077
14,106
def write_the_species_tree(annotated_species_tree, output_file): """ this function writes the species tree to file args: annotated_species_tree : a string of annotated species tree in .newick format output_file : a file name to write to output: a file containing the annotated species tree """ with open(output_file, "w") as out: out.write(annotated_species_tree) print("wrote the annotated species besttree to "+output_file) return output_file
7db9d5fc10cd27b1e7a5e51427e7de6991a1157a
14,107
import functools def compose(*functions): """ A functional helper for dealing with function compositions. It ignores any None functions, and if all are None, it returns None. Parameters ---------- *functions function arguments to compose Returns ------- function or None The composition f(g(...)) functions. """ # help from here: https://mathieularose.com/function-composition-in-python/ def f_of_g(f, g): if f is not None and g is not None: return lambda x: f(g(x)) elif f is not None: return f elif g is not None: return g else: return lambda x: x if any(functions): return functools.reduce(f_of_g, functions, lambda x: x) else: return None
8a18b1e0beef43c0cfac4439fa158675a486b560
14,108
def pretty_print_list(lst, name = 'features', repr_format=True): """ Pretty print a list to be readable. """ if not lst or len(lst) < 8: if repr_format: return lst.__repr__() else: return ', '.join(map(str, lst)) else: topk = ', '.join(map(str, lst[:3])) if repr_format: lst_separator = "[" lst_end_separator = "]" else: lst_separator = "" lst_end_separator = "" return "{start}{topk}, ... {last}{end} (total {size} {name})".format(\ topk = topk, last = lst[-1], name = name, size = len(lst), start = lst_separator, end = lst_end_separator)
d199261e6b9fd226256a151601d0bd86e7458fe1
14,109
def _partition(entity, sep): """Python2.4 doesn't have a partition method so we provide our own that mimics str.partition from later releases. Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings. """ parts = entity.split(sep, 1) if len(parts) == 2: return parts[0], sep, parts[1] else: return entity, '', ''
0172ce09bd0451eb538122bd9566a3e70d0dcc15
14,117
import json def load_dict_from_json(filename: str) -> dict: """ Load the given file as a python `dict` Parameters ---------- filename: `str` an absolute path to the json file to be loaded. Returns ------- `dict` The loaded json file as a python dictionary. """ with open(filename, 'r') as file: return json.loads(file.read())
1d55e5dbcf33e7f1d21063be7b722a5ed5bc6bb3
14,125
def get_n_neighborhood_start_stop_indices_3D(volume_shape, point, n): """ Compute the start and stop indices along the 3 dimensions for the n-neighborhood of the point within the 3D volume. Note that this returns an index range where the end is *non-inclusive*! So for a point at x,y,z with 0-neighborhood (only the point itself), you will get x,x+1,y,y+1,z,z+1 as return values. Parameters ---------- volume_shape: 3-tuple of int The shape of the volume (e.g., whole 3D image) point: 1D array of length 3 The x, y, and z coordinates of the query point. Must lie within the volume. This is the point around which the neighborhood will be computed. n: int >= 0 The neighborhood size (in every direction, the neighborhood is always square). For 0, only the index of the point itself will be returned. For 1, the 26 neighbors in distance 1 plus the index of the point itself (so 27 indices) will be returned. If the point is close to the border of the volume, only the valid subset will be returned of course. For n=2 you get (up to) 125 indices. Returns ------- xstart: int The x start index, inclusive. xend: int The x end index, exclusive. ystart: int The y start index, inclusive. yend: int The y end index, exclusive. zstart: int The z start index, inclusive. zend: int The z end index, exclusive. Examples -------- >>> volume = np.zeros((3, 3, 3)) >>> point = [2, 2, 2] >>> xstart, xend, ystart, yend, zstart, zend = st.get_n_neighborhood_start_stop_indices_3D(volume.shape, point, 1) # 1-neighborhood """ vx = volume_shape[0] vy = volume_shape[1] vz = volume_shape[2] # now set valid ones to 1 xstart = max(0, point[0]-n) xend = min(point[0]+1+n, vx) ystart = max(0, point[1]-n) yend = min(point[1]+1+n, vy) zstart= max(0, point[2]-n) zend = min(point[2]+1+n, vz) return xstart, xend, ystart, yend, zstart, zend
6eb1c6f0b4ff537b3d0eb1b647b019a2d61480b7
14,128
from typing import Dict from typing import Any def add_to_dict_with_swapped_keys(old_dict: Dict[Any, Dict], new_dict: Dict[Any, Dict]) -> Dict[Any, Dict]: """ Swap the keys of two nested dictionaries in a new dictionary. {'Key1': {'Key2': 42}} -> {'Key2': {'Key1': 42}} Args: old_dict: a nested dictionary whose keys are to be swapped new_dict: an initiated dictionary, does not have to be empty Returns: the new_dict with the addition of swapped keys of the old_dict """ for key1, nested_dict in old_dict.items(): for key2, value in nested_dict.items(): new_dict.setdefault(key2, {})[key1] = value return new_dict
2b4d0a0d8bd2734d8c0bc7abde1fa659454f1464
14,129
import typing import functools def build_simple_validator(func: typing.Callable, *args, **kwargs) -> typing.Callable[[typing.Any], typing.Any]: """Build a ready-to-use simple validator out of a function. Args: - func: callable, the function to be called to validate an input - args: list, args to partially apply to func - kwargs: dict, kwargs to partially apply to func Returns: validator: functools.partial, a partial function based on ``func``, with ``args`` and ``kwargs`` partially applied and run through functools.update_wrapper """ validator = functools.partial(func, *args, **kwargs) return functools.update_wrapper(validator, func)
cc8227cce228579e51aa05ceb25d9020d51eb199
14,131
import torch def quat_conjugate(a: torch.Tensor) -> torch.Tensor: """Computes the conjugate of a quaternion. Args: a: quaternion to compute conjugate of, shape (N, 4) Returns: Conjugated `a`, shape (N, 4) """ shape = a.shape a = a.reshape(-1, 4) return torch.cat((-a[:, :3], a[:, -1:]), dim=-1).view(shape)
530eb2a8d8b9b87de2bfcaeb48729704908131cc
14,132
def blank_lines(logical_line, blank_lines, indent_level, line_number, previous_logical): """ Separate top-level function and class definitions with two blank lines. Method definitions inside a class are separated by a single blank line. Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be omitted between a bunch of related one-liners (e.g. a set of dummy implementations). Use blank lines in functions, sparingly, to indicate logical sections. """ if line_number == 1: return # Don't expect blank lines before the first line if previous_logical.startswith('@'): return # Don't expect blank lines after function decorator if (logical_line.startswith('def ') or logical_line.startswith('class ') or logical_line.startswith('@')): if indent_level > 0 and blank_lines != 1: return 0, "E301 expected 1 blank line, found %d" % blank_lines if indent_level == 0 and blank_lines != 2: return 0, "E302 expected 2 blank lines, found %d" % blank_lines if blank_lines > 2: return 0, "E303 too many blank lines (%d)" % blank_lines
0f2d89ae662ffd39170e83f8788cf2946f7cd045
14,136
def shiny_gold_in(bag: str, rules: dict) -> bool: """Recursively check for shiny gold bags.""" if "shiny gold" in rules[bag].keys(): return True elif not rules[bag]: # bag holds no others return False else: for inner in rules[bag]: if shiny_gold_in(inner, rules): return True return False
1859f499b72a938a58a78af5ca1a78e9f7221731
14,148
def get_position_type(salary_plan): """ Given a salary plan code, map to one of the VIVO position types """ position_dict = { 'CPFI': 'postdoc', 'CTSY': 'courtesy-faculty', 'FA09': 'faculty', 'FA9M': 'clinical-faculty', 'FA10': 'faculty', 'FA12': 'faculty', 'FACM': 'clinical-faculty', 'FAPD': 'postdoc', 'FASU': 'faculty', 'FELL': None, # Fellowship, lump sum payment only 'FWSP': None, # student-assistant 'GA09': None, # graduate-assistant 'GA12': None, # graduate-assistant 'GASU': None, # graduate-assistant 'HOUS': 'housestaff', 'ISCR': None, # Scholarship, lump sum payment only 'OF09': 'temp-faculty', 'OF12': 'temp-faculty', 'OFSU': 'temp-faculty', 'OPSE': None, # OPS 'OPSN': None, # OPS 'STAS': None, # student-assistant 'STBW': None, # student-assistant 'TA09': 'non-academic', 'TA10': 'non-academic', 'TA12': 'non-academic', 'TASU': 'non-academic', 'TU1E': 'non-academic', 'TU2E': 'non-academic', 'TU9E': 'non-academic', 'TUSE': 'non-academic', 'TU1N': None, # TEAMS Hourly 'TU2N': None, # TEAMS Hourly 'TU9N': None, # TEAMS Hourly 'TUSN': None, # TEAMS Hourly 'US1N': None, # USPS 'US2N': None, # USPS 'US9N': None, # USPS 'USSN': None, # USPS 'US2E': 'non-academic', # USPS Exempt } position_type = position_dict.get(salary_plan, None) return position_type
eaaa64bfe35d27476eb9218d6401e0565126392d
14,149
def str2ms(s): """ Convert the time strings from an SRT file to milliseconds. Arguments: s: A time value in the format HH:MM:SS,mmm where H, M, S and m are digits. Returns: The time string converted to an integer value in milliseconds. """ s = s.strip() time, ms = s.split(",") h, m, s = time.split(":") return int(ms) + 1000 * (int(s) + 60 * (int(m) + 60 * int(h)))
552f9ffbd557cc0729c035901dc1a1a1bfae66d8
14,153
import torch def get_device(inputs): """ Get used device of a tensor or list of tensors. """ if isinstance(inputs, torch.Tensor): device = inputs.device elif isinstance(inputs, (tuple, list)): device = inputs[0].device else: raise TypeError(f'Inputs can be a tensor or list of tensors, got {type(inputs)} instead!') return device
eb67cb3a5ae226c4136bc172d37225ba6a64b45f
14,157
def quick_sort(sequence: list) -> list: """Simple implementation of the quick sort algorithm in Python :param sequence: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending """ if len(sequence) < 2: return sequence _sequence = sequence[:] pivot = _sequence.pop() lesser = [] greater = [] for element in _sequence: (greater if element > pivot else lesser).append(element) return quick_sort(lesser) + [pivot] + quick_sort(greater)
73470224b8f149568b84c7b723097fc0c2ef353f
14,161
def score_tup(t): """ Score an ngram tuple returned from a database ngram table. A higher scoring term is more deserving of inclusion in the resulting acrostic :param t: (Term string, initials string, Corpus count, Used count) :return: Fitness score for this term """ term = t[0] inits = t[1] pop = t[2] used = t[3] raw = (len(term)*pop/(10*used*used*used))**(len(inits)) if "#" in term: score = 2*raw else: score = raw return max(score, 1)
eea34dbf2d6a7dec37dc95cde289560a77c72f7e
14,163
import torch def get_optimizer(parameters, lr, weight_decay): """ Initiate Adam optimizer with fixed parameters Args: parameters: filter, parameters to optimize lr: float, initial learning rate weight_decay: float, between 0.0 and 1.0 Return: a torch.optim.Adam optimizer """ return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
54b4c6a4cd02672ebfc8ff9c850f0d601fc6510f
14,165
import requests def get_gist(url): """ Get gist contents from gist url. Note the gist url display the raw gist instead of usual gist page. Args: url (str) : url containing the raw gist instead of usual gist page. Returns: (str): output gist str. """ r = requests.get(url) assert r.status_code==200, "Failed Page query code {}".format(r.status_code) return r.text
853623c31af246dc07e22ac8a7dd0b515a74a080
14,171
import re def is_email(addr): """ 判断是否是合法邮箱 :param addr: 邮箱地址 :return: True or False """ re_is_email = re.compile("^[a-z0-9]+([._-]*[a-z0-9])*@([a-z0-9]+[-a-z0-9]*[a-z0-9]+.){1,63}[a-z]+$") if re_is_email.search(addr): return True else: return False
c48d931af7f57420d4b5829da02aa72203275f0f
14,173
def merge_unique(a: list, b: list) -> set: """ merges all of the unique values of each list into a new set >>> merge_unique([1, 2, 3], [3, 4, 5]) {1, 2, 3, 4, 5} """ ret = set() a.extend(b) for element in a: ret.add(element) return ret
6a969c6beaee46e5618d25c5714cec223ebf1686
14,174
def get_wanted_parameter(season_data, names, index_para): """ Take in a list of players' names, a wanted parameter and return :param season_data: a dictionary of players' statistics :param names: a list of players' names :param index_para: index of the wanted parameter depending on the file :return: a_list_of_wanted_para: a list of wanted parameter for each player """ a_list_of_wanted_para = [] for name in names: stat_for_player = season_data[name] para = stat_for_player[index_para] a_list_of_wanted_para.append(para) return a_list_of_wanted_para
0d278abd79f28c922dfcacf4984af7efe14a9070
14,175
def DL_ignore(answers): """Return False if any dictionary-learning method was selected. Arguments --------- answers: dict Previous questions answers. Returns ------- bool True if DL verbosity question should be ignored. """ expected = ['ITKrMM', 'wKSVD', 'BPFA'] flag = [meth in answers['method'] for meth in expected] return True not in flag
fda853fc0f959dd5302a90bc9d56f012a1d7da8f
14,183
def wait(status, timeout=None, *, poll_rate="DEPRECATED"): """(Blocking) wait for the status object to complete Parameters ---------- status: StatusBase A Status object timeout: Union[Number, None], optional Amount of time in seconds to wait. None disables, such that wait() will only return when either the status completes or if interrupted by the user. poll_rate: "DEPRECATED" DEPRECATED. Has no effect because this does not poll. Raises ------ WaitTimeoutError If the status has not completed within ``timeout`` (starting from when this method was called, not from the beginning of the action). Exception This is ``status.exception()``, raised if the status has finished with an error. This may include ``TimeoutError``, which indicates that the action itself raised ``TimeoutError``, distinct from ``WaitTimeoutError`` above. """ return status.wait(timeout)
3311714c7aee5cbbecf658bfa563826c363752e2
14,186
import re def find_md_links(md): """Returns dict of links in markdown: 'regular': [foo](some.url) 'footnotes': [foo][3] [3]: some.url """ # https://stackoverflow.com/a/30738268/2755116 INLINE_LINK_RE = re.compile(r'\[([^\]]+)\]\(([^)]+)\)') FOOTNOTE_LINK_TEXT_RE = re.compile(r'\[([^\]]+)\]\[(\d+)\]') FOOTNOTE_LINK_URL_RE = re.compile(r'\[(\d+)\]:\s+(\S+)') links = list(INLINE_LINK_RE.findall(md)) footnote_links = dict(FOOTNOTE_LINK_TEXT_RE.findall(md)) footnote_urls = dict(FOOTNOTE_LINK_URL_RE.findall(md)) footnotes_linking = [] for key in footnote_links.keys(): footnotes_linking.append((footnote_links[key], footnote_urls[footnote_links[key]])) return links
d630d22d571e774312516fc4005444087d23392f
14,187
def epoch_time(start_time, end_time): """ Computes the time for each epoch in minutes and seconds. :param start_time: start of the epoch :param end_time: end of the epoch :return: time in minutes and seconds """ elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs
8265cb78c26a96a83a1035c09a7dccb0edf8c4d0
14,189
def base_prob(phred_score): """ Returns the probabilty that a base is incorrect, given its Phred score. """ prob = 10.0**(-float(phred_score)/10) return prob
8231019213204e65d577ea86d1e2e0e7352a3f70
14,193
import re def need_format(line: str) -> bool: """ Return true if line as a title declaration followed by content """ return ( ( re.search("\t+e_\w*[-'\w]*\W*=", line) is not None and re.search("\t+e_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None and re.search("\t+e_\w*[-'\w]*\W*=\W*{\W*#", line) is None ) or ( re.search("\t+k_\w*[-'\w]*\W*=", line) is not None and re.search("\t+k_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None and re.search("\t+k_\w*[-'\w]*\W*=\W*{\W*#", line) is None ) or ( re.search("\t+d_\w*[-'\w]*\W*=", line) is not None and re.search("\t+d_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None and re.search("\t+d_\w*[-'\w]*\W*=\W*{\W*#", line) is None ) or ( re.search("\t+c_\w*[-'\w]*\W*=", line) is not None and re.search("\t+c_\w*[-'\w]*\W*=\W*{[\w\t]*\n", line) is None and re.search("\t+c_\w*[-'\w]*\W*=\W*{\W*#", line) is None ) )
61576aa02a745db8b0ce0c9c4c9a4d4589e8d842
14,195
def builderFor(action, hypervisor=None, template=None, service=None): """ This decorator is used to supply metadata for functions which is then used to find suitable methods during building just by these properties. :param action: Name of the generic step/action (see planner) that this function implements :type action: str :param hypervisor: Name of the hypervisor that this function can be used for :type action: str :param template: A list of template properties this function is suitable for (e.g. OS, certain software) :type action: [str] :param service: Production or type of the service that this function can be used for :type action: str :returns: The deocorated input function with the given attribute values :rtype: function """ def decorate(f): f.action = action f.hypervisor = hypervisor f.template = template f.service = service return f return decorate
1dddfd8dc5dbc87e5a018fc4fb144bef8a8f98e3
14,197
def undeployed_value_only_calculator(repository, undeployed_value_tuple, deployed_value_tuple): """ Just return the undeployed value as the value. This calculator can be used when there will be no deployed value. """ return undeployed_value_tuple[2]
58294274d37b4c7bb9cad21bb01260986cb0d6ae
14,198
import re def _remove_inner_punctuation(string): """ If two strings are separated by & or -, remove the symbol and join the strings. Example ------- >>> _remove_inner_punctuation("This is AT&T here") 'This is ATT here' >>> _remove_inner_punctuation("A T & T") 'A T T' """ string = re.sub('[\&\-]', '', string) return string
4ca3e7f91e35dba2e0a34f1dfd935e004623875e
14,199
import random def random_string(length, charset): """ Return a random string of the given length from the given character set. :param int length: The length of string to return :param str charset: A string of characters to choose from :returns: A random string :rtype: str """ n = len(charset) return ''.join(charset[random.randrange(n)] for _ in range(length))
1370f86a2e696ba6030b719ec8e32631f1865e01
14,206
def reverse_spline(tck): """Reverse the direction of a spline (parametric or nonparametric), without changing the range of the t (parametric) or x (nonparametric) values.""" t, c, k = tck rt = t[-1] - t[::-1] rc = c[::-1] return rt, rc, k
77c239fa8360657ed4ad4c1eb8d18493c97a84a1
14,209
import importlib import pkgutil def list_submodules(package, recursive=True): """ Recursively (optional) find the submodules from a module or directory Args: package (str or module): Root module or directory to load submodules from recursive (bool, optional): Recursively find. Defaults to True. Returns: array: array containing module paths that can be imported """ if isinstance(package, str): package = importlib.import_module(package) results = [] for _loader, name, is_pkg in pkgutil.walk_packages(package.__path__): full_name = package.__name__ + '.' + name results.append(full_name) if recursive and is_pkg: results.extend(list_submodules(full_name)) return results
a5d69affc4cd19bd3e7c67c2d006c224bbafe80d
14,210
def trainee_already_marked_training_date(trainee, training_date): """Check whether trainee already marked the given training date. If trainee already has training day info it means he/she answered marked the given date. Args: trainee(models.Trainee): trainee instance to check whether already marked the given date. training_date(datetime.date): training date to check. Returns: bool. True if trainee already marked the given date, otherwise False. """ return bool(trainee.get_training_info(training_date=training_date))
138006be069201923017e0277ffec6a7c06080b4
14,211