content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def uvm_object_value_str(v): """ Function- uvm_object_value_str Args: v (object): Object to convert to string. Returns: str: Inst ID for `UVMObject`, otherwise uses str() """ if v is None: return "<null>" res = "" if hasattr(v, 'get_inst_id'): res = "{}".format(v.get_inst_id()) res = "@" + res else: res = str(v) return res
e56bd12094923bf052b10dcb47c65a93a03142a2
13,558
def get_object_name(object): """ Retrieves the name of object. Parameters: object (obj): Object to get name. Returns: str: Object name. """ if object.name[-5:-3] == '}.': return object.name[:-4] return object.name
fc695c8bf19817c3217bf6000358695c88de07aa
13,565
def create_nine_digit_product(num): """ Create a nine digit string resulting from the concatenation of the product from num and multipliers (1, 2, 3,).... Return 0 if string cannot be length 9. """ result = '' counter = 1 while len(result) < 9: result += str(num * counter) counter += 1 if len(result) > 9: result = 0 return result
9c6765349edfa7e03dc8d2ffe7bf6a45155f3ad0
13,566
def peak_indices_to_times(time, picked_peaks): """ Converts peak indices to times. Parameters ---------- time: ndarray array of time, should match the indices. picked_peaks: dict dictionary containing list of indices of peak start, center, and end. Returns ----------- peak_features: list list of lists containing times of peak start, center, and end. """ peak_features = [] for x in range(0, len(picked_peaks["Peak_indices"])): rt_ind = picked_peaks["Peak_indices"][x] start_ind = picked_peaks["Peak_start_indices"][x] end_ind = picked_peaks["Peak_end_indices"][x] retention_time = time[rt_ind] start = time[start_ind] end = time[end_ind] peak_params = [start, retention_time, end] peak_features.append(peak_params) return peak_features
99aa76fbc399b2b99d4dc9c8d3e4b67e4ee2d3af
13,567
def evenFibSum(limit): """Sum even Fib numbers below 'limit'""" sum = 0 a,b = 1,2 while b < limit: if b % 2 == 0: sum += b a,b = b,a+b return sum
cdf9cdb1cfb419713e794afff4d806945994692e
13,570
def get_n_first(file_names, checksums, N_first): """ Given a list of file_names and a list of checksums, returns the 'N_first' items from both lists as a zip object. :param file_names: list of file names :param checksums: list of sha256 checksums :param N_first: int or None. If None, all items are returned :return: zipped N_first first items of file_names and checksums """ zipped = list(zip(file_names, checksums)) N_first = int(N_first) if N_first is not None else len(file_names) zipped = zipped[:N_first] return zipped
13a8157dcd55fa43b0cd71eb877abddc832ff143
13,571
def _is_new_prototype(caller): """Check if prototype is marked as new or was loaded from a saved one.""" return hasattr(caller.ndb._menutree, "olc_new")
1282db1ce6ae2e5f0bb570b036d7166a53287229
13,581
def count_symbols(atoms, exclude=()): """Count symbols in atoms object, excluding a set of indices Parameters: atoms: Atoms object to be grouped exclude: List of indices to be excluded from the counting Returns: Tuple of (symbols, symbolcount) symbols: The unique symbols in the included list symbolscount: Count of symbols in the included list Example: >>> from ase.build import bulk >>> atoms = bulk('NaCl', crystalstructure='rocksalt', a=4.1, cubic=True) >>> count_symbols(atoms) (['Na', 'Cl'], {'Na': 4, 'Cl': 4}) >>> count_symbols(atoms, exclude=(1, 2, 3)) (['Na', 'Cl'], {'Na': 3, 'Cl': 2}) """ symbols = [] symbolcount = {} for m, symbol in enumerate(atoms.symbols): if m in exclude: continue if symbol not in symbols: symbols.append(symbol) symbolcount[symbol] = 1 else: symbolcount[symbol] += 1 return symbols, symbolcount
31f7c116f07788171828f0e116ef28a43eb0e313
13,587
import ntpath def lookup_folder(event, filesystem): """Lookup the parent folder in the filesystem content.""" for dirent in filesystem[event.parent_inode]: if dirent.type == 'd' and dirent.allocated: return ntpath.join(dirent.path, event.name)
e18df4610bba9cf71e85fe0038a5daf798822bd3
13,588
import datetime import calendar def getWeekday(year, month, day): """ input: integers year, month, day output: name of the weekday on that date as a string """ date = datetime.date(year, month, day) return calendar.day_name[date.weekday()]
ca5164b6d7243033f57c3a803301ff3c3ec13d29
13,603
from typing import List import inspect def get_function_parameters_list(func) -> List[str]: """ Get parameter list of function `func`. Parameters ---------- func : Callable A function to get parameter list. Returns ------- List[str] Parameter list Examples -------- >>> def test_func(a, b) -> int: ... return a+1 >>> get_function_parameters_list(test_func) ['a', 'b'] """ return inspect.getfullargspec(func).args
bff2ec37a5564b87e48abf964d0d42a55f809a16
13,608
def dp_make_weight(egg_weights, target_weight, memo={}): """ Find number of eggs to bring back, using the smallest number of eggs. Assumes there is an infinite supply of eggs of each weight, and there is always a egg of value 1. Parameters: egg_weights - tuple of integers, available egg weights sorted from smallest to largest value (1 = d1 < d2 < ... < dk) target_weight - int, amount of weight we want to find eggs to fit memo - dictionary, OPTIONAL parameter for memoization (you may not need to use this parameter depending on your implementation) Returns: int, smallest number of eggs needed to make target weight """ # This will be the key used to find answers in the memo subproblem = (egg_weights, target_weight) # If we've already stored this answer in the memo, return it if subproblem in memo: return memo[subproblem] # If no eggs are left or no space is left on ship, there's nothing left to do if egg_weights == () or target_weight == 0: return 0 # If the next heaviest egg is too heavy to fit, consider subset of lighter eggs elif egg_weights[-1] > target_weight: result = dp_make_weight(egg_weights[:-1], target_weight, memo) else: # Find the minimum number of eggs by testing both taking heaviest egg and not # taking heaviest egg. this_egg = egg_weights[-1] num_eggs_with_this_egg = 1 + dp_make_weight( egg_weights, target_weight - this_egg, memo) num_eggs_without_this_egg = dp_make_weight(egg_weights[:-1], target_weight, memo) if num_eggs_without_this_egg != 0: result = min(num_eggs_with_this_egg, num_eggs_without_this_egg) else: result = num_eggs_with_this_egg # Store this answer in the memo for future use. memo[subproblem] = result return result
8546ab2dd0394d2864c23a47ea14614df83ec2f7
13,612
def get_impact_dates(previous_model, updated_model, impact_date=None, start=None, end=None, periods=None): """ Compute start/end periods and an index, often for impacts of data updates Parameters ---------- previous_model : MLEModel Model used to compute default start/end periods if None are given. In the case of computing impacts of data updates, this would be the model estimated with the previous dataset. Otherwise, can be the same as `updated_model`. updated_model : MLEModel Model used to compute the index. In the case of computing impacts of data updates, this would be the model estimated with the updated dataset. Otherwise, can be the same as `previous_model`. impact_date : {int, str, datetime}, optional Specific individual impact date. Cannot be used in combination with `start`, `end`, or `periods`. start : {int, str, datetime}, optional Starting point of the impact dates. If given, one of `end` or `periods` must also be given. If a negative integer, will be computed relative to the dates in the `updated_model` index. Cannot be used in combination with `impact_date`. end : {int, str, datetime}, optional Ending point of the impact dates. If given, one of `start` or `periods` must also be given. If a negative integer, will be computed relative to the dates in the `updated_model` index. Cannot be used in combination with `impact_date`. periods : int, optional Number of impact date periods. If given, one of `start` or `end` must also be given. Cannot be used in combination with `impact_date`. Returns ------- start : int Integer location of the first included impact dates. end : int Integer location of the last included impact dates (i.e. this integer location is included in the returned `index`). index : pd.Index Index associated with `start` and `end`, as computed from the `updated_model`'s index. Notes ----- This function is typically used as a helper for standardizing start and end periods for a date range where the most sensible default values are based on some initial dataset (here contained in the `previous_model`), while index-related operations (especially relative start/end dates given via negative integers) are most sensibly computed from an updated dataset (here contained in the `updated_model`). """ # There doesn't seem to be any universal default that both (a) make # sense for all data update combinations, and (b) work with both # time-invariant and time-varying models. So we require that the user # specify exactly two of start, end, periods. if impact_date is not None: if not (start is None and end is None and periods is None): raise ValueError('Cannot use the `impact_date` argument in' ' combination with `start`, `end`, or' ' `periods`.') start = impact_date periods = 1 if start is None and end is None and periods is None: start = previous_model.nobs - 1 end = previous_model.nobs - 1 if int(start is None) + int(end is None) + int(periods is None) != 1: raise ValueError('Of the three parameters: start, end, and' ' periods, exactly two must be specified') # If we have the `periods` object, we need to convert `start`/`end` to # integers so that we can compute the other one. That's because # _get_prediction_index doesn't support a `periods` argument elif start is not None and periods is not None: start, _, _, _ = updated_model._get_prediction_index(start, start) end = start + (periods - 1) elif end is not None and periods is not None: _, end, _, _ = updated_model._get_prediction_index(end, end) start = end - (periods - 1) elif start is not None and end is not None: pass # Get the integer-based start, end and the prediction index start, end, out_of_sample, prediction_index = ( updated_model._get_prediction_index(start, end)) end = end + out_of_sample return start, end, prediction_index
b2e6966e0fe2213e504e913d8cd64dbe84fa815b
13,613
def unwrap_value(metadata, attr, default=None): """Gets a value like dict.get() with unwrapping it.""" data = metadata.get(attr) if data is None: return default return data[0]
fee5f12f0fba86e221fe722b5829a50706ccd5dc
13,614
def getTimestamp(self): """Get timestamp (sec)""" return self.seconds + self.picoseconds*1e-12
0c913fdcd9a3ce07e31a416208a8488bd41cea81
13,616
def test_id(id): """Convert a test id in JSON into an immutable object that can be used as a dictionary key""" if isinstance(id, list): return tuple(id) else: return id
11e18a57648cb09f680751d1596193020523e5e1
13,623
import re def MakeHeaderToken(filename): """Generates a header guard token. Args: filename: the name of the header file Returns: the generated header guard token. """ return re.sub('[^A-Z0-9_]', '_', filename.upper()) + '__'
d29f756e30c3214aac174302175c52ca28cad6cb
13,624
def check_byte(b): """ Clamp the supplied value to an integer between 0 and 255 inclusive :param b: A number :return: Integer representation of the number, limited to be between 0 and 255 """ i = int(b) if i < 0: i = 0 elif i > 255: i = 255 return i
374e0ffbe1d0baa80c56cafd3650fba8441c5ea0
13,625
def insert(rcd, insert_at_junctions, genotype): """ Given the genotype (ie the junction that was chosen), returns the corresponding insert """ junctions = ["x", "y", "z"] if genotype[1] != "-": j = junctions.index(genotype[1]) return insert_at_junctions[j] else: return "-"
1bf3d7e8bb84659c3992e55fc51490c19701cff0
13,628
def _convert_labels_for_svm(y): """ Convert labels from {0, 1} to {-1, 1} """ return 2.*y - 1.0
eca685bea6fd991245a299999fcbe31cd3b1a9ad
13,632
import math def chunks(l, n): """Divide l into n approximately-even chunks.""" chunksize = int(math.ceil(len(l) / n)) return [l[i:i + chunksize] for i in range(0, len(l), chunksize)]
c7b395dec7939b863097b3da9cdd49fbe2a47740
13,634
import re def isXML(file): """Return true if the file has the .xml extension.""" return re.search("\.xml$", file) != None
7fcfbb105a59f7ed6b14aa8aa183aae3fdbe082d
13,637
def aggPosition(x): """Aggregate position data inside a segment Args: x: Position values in a segment Returns: Aggregated position (single value) """ return x.mean()
e9305d26f05710cc467a7fa9fd7b87737b8aa915
13,641
from typing import Tuple def empty_handler() -> Tuple[()]: """ A stub function that represents a handler that does nothing """ return ()
1450ea04fefc4ad432e5d66a765bda0f5239b002
13,643
import torch from typing import Tuple from typing import Union import warnings def data_parallel(raw_model: torch.nn.Module, *args, **kwargs) -> Tuple[Union[torch.nn.Module, torch.nn.parallel.DataParallel], bool]: """ Make a `torch.nn.Module` data parallel - Parameters: - raw_model: A target `torch.nn.Module` - Returns: A `tuple` of either data paralleled `torch.nn.parallel.DataParallel` model if CUDA is available or a raw model if not, and a `bool` flag of if the model data paralleled successfuly. """ if torch.cuda.is_available(): model = torch.nn.parallel.DataParallel(raw_model, *args, **kwargs) return model, True else: warnings.warn(f"[Device Warning]: CUDA is not available, unable to use multi-GPUs.", ResourceWarning) return raw_model, False
5b98f0e7c67ac067aba9a9c5202cceded91827ac
13,644
import colorsys def scale_lightness(rgb, scale_l): """ Scales the lightness of a color. Takes in a color defined in RGB, converts to HLS, lightens by a factor, and then converts back to RGB. """ # converts rgb to hls h, l, s = colorsys.rgb_to_hls(*rgb) # manipulates h, l, s values and returns as rgb return colorsys.hls_to_rgb(h, min(1, l * scale_l), s = s)
2fee635f26419cfe8abc21edb0092a8c916df6ef
13,661
def early_stopping(cost, opt_cost, threshold, patience, count): """ Determines if you should stop gradient descent. Early stopping should occur when the validation cost of the network has not decreased relative to the optimal validation cost by more than the threshold over a specific patience count cost is the current validation cost of the neural network opt_cost is the lowest recorded validation cost of the neural network threshold is the threshold used for early stopping patience is the patience count used for early stopping count is the count of how long the threshold has not been met Returns: a boolean of whether the network should be stopped early, followed by the updated count """ if opt_cost - cost > threshold: count = 0 else: count += 1 if count == patience: return True, count else: return False, count
5baea9f867e8ca8326270f250327494a5c47af46
13,664
def _convertCtypeArrayToList(listCtype): """Returns a normal list from a ctypes list.""" return listCtype[:]
89a408b796f2aba2f34bc20942574986abd66cd2
13,672
from typing import List def get_cost_vector(counts: dict) -> List[float]: """ This function simply gives values that represent how far away from our desired goal we are. Said desired goal is that we get as close to 0 counts for the states |00> and |11>, and as close to 50% of the total counts for |01> and |10> each. :param counts: Dictionary containing the count of each state :return: List of ints that determine how far the count of each state is from the desired count for that state: -First element corresponds to |00> -Second element corresponds to |01> -Third element corresponds to |10> -Fourth element corresponds to |11> """ # First we get the counts of each state. Try-except blocks are to avoid errors when the count is 0. try: a = counts['00'] except KeyError: a = 0 try: b = counts['01'] except KeyError: b = 0 try: c = counts['10'] except KeyError: c = 0 try: d = counts['11'] except KeyError: d = 0 # We then want the total number of shots to know what proportions we should expect totalShots = a + b + c + d # We return the absolute value of the difference of each state's observed and desired counts # Other systems to determine how far each state count is from the goal exist, but this one is simple and works well return [abs(a - 0), abs(b - totalShots / 2), abs(c - totalShots / 2), abs(d - 0)]
b7565de2e47ba99e93b387ba954fdc29f44805e8
13,673
def build_normalized_request_string(ts, nonce, http_method, host, port, request_path, ext): """Implements the notion of a normalized request string as described in http://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-02#section-3.2.1""" normalized_request_string = \ ts + '\n' + \ nonce + '\n' + \ http_method + '\n' + \ request_path + '\n' + \ host + '\n' + \ str(port) + '\n' + \ ext + '\n' return normalized_request_string
6a7f397738b852116cbaf249c846f58b482fdca1
13,675
def rivers_with_station(stations): """Given list of stations (MonitoringStation object), return the names of the rivers that are being monitored""" # Collect all the names of the rivers in a set to avoid duplicate entries rivers = {station.river for station in stations} # Return a list for convenience return list(rivers)
c099af2eb0f869c6f1e3270ee089f54246779e2d
13,677
import math def get_deltas(radians): """ gets delta x and y for any angle in radians """ dx = math.sin(radians) dy = -math.cos(radians) return dx, dy
032acb537373d0ee18b721f04c95e75bb1572b1b
13,679
from typing import Dict def mrr(benchmark: Dict, results: Dict, repo: str) -> float: """ Calculate the MRR of the prediction for a repo. :param benchmark: dictionary with the real libraries from benchmark. :param results: dictionary with the predicted libraries. :param repo: full name of the repo. :return: float of the MRR. """ true_libraries = benchmark[repo] suggestions = results[repo] for index, req in enumerate(suggestions): if req in true_libraries: return 1 / (index + 1) return 0
b057c93cc807244e4d5e8e94772877273ac1041c
13,680
def elf_segment_names(elf): """Return a hash of elf segment names, indexed by segment number.""" table = {} seg_names_sect = elf.find_section_named(".segment_names") if seg_names_sect is not None: names = seg_names_sect.get_strings()[1:] for i in range(len(names)): table[i] = names[i] return table
4af46fb35c9808f8f90509417d52e7ce4eb2770e
13,682
def segment_spectrum_batch(spectra_mat, w=50, dw=25): """ Segment multiple raman spectra into overlapping windows Args: spectra_mat (2D numpy array): array of input raman spectrum w (int, optional): length of window. Defaults to 50. dw (int, optional): step size. Defaults to 25. Returns: list of numpy array: list containing arrays of segmented raman spectrum """ return [spectra_mat[:,i:i+w] for i in range(0,spectra_mat.shape[1]-w,dw) ]
956791e2957f4810726d1d94549f79f3d83c8d21
13,684
def transform_url(private_urls): """ Transforms URL returned by removing the public/ (name of the local folder with all hugo html files) into "real" documentation links for Algolia :param private_urls: Array of file links in public/ to transform into doc links. :return new_private_urls: A list of documentation URL links that correspond to private doc files. """ new_private_urls = [] for url in private_urls: ## We add /$ to all links in order to make them all "final", in fact ## Algolia stop_url parameter uses regex and not "perfect matching" link logic new_private_urls.append(url.replace('public/','docs.datadoghq.com/') + '/$') return new_private_urls
17a5c720103294b7535c76d0e8994c433cfe7de3
13,688
from typing import List from typing import Any def get_last_key_from_integration_context_dict(feed_type: str, integration_context: List[Any] = []) -> \ str: """ To get last fetched key of feed from integration context. :param feed_type: Type of feed to get last fetched key. :param integration_context: Integration context. :return: list of S3 object keys. """ feed_context = integration_context for cached_feed in feed_context: cached_key = cached_feed.get(feed_type, '') if cached_key: return cached_key return ''
64eeb53cf00636dfc73866c64c77e2964149209e
13,692
import math def _parseSeconds(data): """ Formats a number of seconds into format HH:MM:SS.XXXX """ total_seconds = data.total_seconds() hours = math.floor(total_seconds / 3600) minutes = math.floor((total_seconds - hours * 3600) / 60) seconds = math.floor(total_seconds - hours * 3600 - minutes * 60) remainder = total_seconds - 3600 * hours - 60 * minutes - seconds return "%02d:%02d:%02d%s" % ( hours, minutes, seconds, (".%s" % str(round(remainder, 8))[2:]) if remainder > 0 else "", )
b01a66f66dc3cdc930aff29069c865cab5278d08
13,695
from typing import Optional def code_block(text: str, language: Optional[str]) -> str: """Formats text for discord message as code block""" return f"```{language or ''}\n" f"{text}" f"```"
c54d5b3e6f456745817efd03b89bd56d7fe4794e
13,700
import math def hypotenuse_length(leg_a, leg_b): """Find the length of a right triangle's hypotenuse :param leg_a: length of one leg of triangle :param leg_b: length of other leg of triangle :return: length of hypotenuse >>> hypotenuse_length(3, 4) 5 """ return math.sqrt(leg_a**2 + leg_b**2)
7a59ede73301f86a8b6ea1ad28490b151ffaa08b
13,710
def commonPoints(lines): """ Given a list of lines, return dictionary - vertice -> count. Where count specifies how many lines share the vertex. """ count = {} for l in lines: for c in l.coords: count[c] = count.get(c, 0) + 1 return count
1b838ddd4d6a2539b0270cd319a2197e90372c3a
13,716
def isostring(dt): """Convert the datetime to ISO 8601 format with no microseconds. """ if dt: return dt.replace(microsecond=0).isoformat()
db7326e53402c0982514c4516971b4460840aa20
13,720
def git_origin_url(git_repo): # pylint: disable=redefined-outer-name """ A fixture to fetch the URL of the online hosting for this repository. Yields None if there is no origin defined for it, or if the target directory isn't even a git repository. """ if git_repo is None: return None try: origin = git_repo.remotes.origin except ValueError: # This local repository isn't linked to an online origin return None return origin.url
d1f301a31aca6fae2f687d2b58c742ee747c4114
13,724
def special_len(tup): """ comparison function that will sort a document: (a) according to the number of segments (b) according to its longer segment """ doc = tup[0] if type(tup) is tuple else tup return (len(doc), len(max(doc, key=len)))
81154c8e1b31dc37cffc43dfad608a5cd5281e4c
13,730
from typing import Optional def optional_arg_return(some_str: Optional[str]) -> Optional[int]: """Optional type in argument and return value.""" if not some_str: return None # OK # Mypy will infer the type of some_str to be str due to the check against None return len(some_str)
8125965fb1fe1f11f4f5045afc8107bcdfc95fc0
13,736
import cProfile import time import pstats def profile(fn): """ Profile the decorated function, storing the profile output in /tmp Inspired by https://speakerdeck.com/rwarren/a-brief-intro-to-profiling-in-python """ def profiled_fn(*args, **kwargs): filepath = "/tmp/%s.profile" % fn.__name__ prof = cProfile.Profile() start = time.time() result = prof.runcall(fn, *args, **kwargs) duration = time.time() - start print("Function ran in %.6f seconds - output written to %s" % ( duration, filepath)) prof.dump_stats(filepath) print("Printing stats") stats = pstats.Stats(filepath) stats.sort_stats('cumulative') stats.print_stats() return result return profiled_fn
aaf1711fefee698ff5456e120dcc06cbb8c22a8f
13,739
def pwd(session, *_): """Prints the current directory""" print(session.env.pwd) return 0
0f63b0483453f30b9fbaf5f561cb8eb90f38e107
13,743
def feature_list_and_dict(features): """ Assign numerical indices to a global list of features :param features: iterable of feature names :return: sorted list of features, dict mapping features to their indices """ feature_list = sorted(features) feature_dict = {feat:i for i, feat in enumerate(feature_list)} return feature_list, feature_dict
11006cdc4871c339cf3936a1734f012f21d92459
13,746
def compute_St(data): """ Given a dataset, computes the variance matrix of its features. """ n_datapoints, n_features = data.shape # Computing the 'mean image'. A pixel at position (x,y) in this image is the # mean of all the pixels at position (x,y) of the images in the dataset. # This corresponds to the 'mu' we have seen in the lectures. mu = data.mean(axis=0) # apply along the rows for each columns. centered_data = data - mu # Computing the covariance matrix St = (1. / n_datapoints) * (centered_data.T * centered_data) return St
99f55de9c19f7304136e5737d9acba0e6de4d2fd
13,748
def metamodel_to_swagger_type_converter(input_type): """ Converts API Metamodel type to their equivalent Swagger type. A tuple is returned. first value of tuple is main type. second value of tuple has 'format' information, if available. """ input_type = input_type.lower() if input_type == 'date_time': return 'string', 'date-time' if input_type == 'secret': return 'string', 'password' if input_type == 'any_error': return 'string', None if input_type == 'opaque': return 'object', None if input_type == 'dynamic_structure': return 'object', None if input_type == 'uri': return 'string', 'uri' if input_type == 'id': return 'string', None if input_type == 'long': return 'integer', 'int64' if input_type == 'double': return 'number', 'double' if input_type == 'binary': return 'string', 'binary' return input_type, None
a1f01124546acc3035d3db3329b0194ac65c2f17
13,750
def is_instance(arg, types, allow_none=False): """ >>> is_instance(1, int) True >>> is_instance(3.5, float) True >>> is_instance('hello', str) True >>> is_instance([1, 2, 3], list) True >>> is_instance(1, (int, float)) True >>> is_instance(3.5, (int, float)) True >>> is_instance('hello', (str, list)) True >>> is_instance([1, 2, 3], (str, list)) True >>> is_instance(1, float) False >>> is_instance(3.5, int) False >>> is_instance('hello', list) False >>> is_instance([1, 2, 3], str) False >>> is_instance(1, (list, str)) False >>> is_instance(3.5, (list, str)) False >>> is_instance('hello', (int, float)) False >>> is_instance([1, 2, 3], (int, float)) False >>> is_instance(None, int) False >>> is_instance(None, float) False >>> is_instance(None, str) False >>> is_instance(None, list) False >>> is_instance(None, (int, float)) False >>> is_instance(None, (int, float)) False >>> is_instance(None, (str, list)) False >>> is_instance(None, (str, list)) False >>> is_instance(1, int, allow_none=True) True >>> is_instance(3.5, float, allow_none=True) True >>> is_instance('hello', str, allow_none=True) True >>> is_instance([1, 2, 3], list, allow_none=True) True >>> is_instance(1, (int, float), allow_none=True) True >>> is_instance(3.5, (int, float), allow_none=True) True >>> is_instance('hello', (str, list), allow_none=True) True >>> is_instance([1, 2, 3], (str, list), allow_none=True) True >>> is_instance(1, float, allow_none=True) False >>> is_instance(3.5, int, allow_none=True) False >>> is_instance('hello', list, allow_none=True) False >>> is_instance([1, 2, 3], str, allow_none=True) False >>> is_instance(1, (list, str), allow_none=True) False >>> is_instance(3.5, (list, str), allow_none=True) False >>> is_instance('hello', (int, float), allow_none=True) False >>> is_instance([1, 2, 3], (int, float), allow_none=True) False >>> is_instance(None, int, allow_none=True) True >>> is_instance(None, float, allow_none=True) True >>> is_instance(None, str, allow_none=True) True >>> is_instance(None, list, allow_none=True) True >>> is_instance(None, (int, float), allow_none=True) True >>> is_instance(None, (int, float), allow_none=True) True >>> is_instance(None, (str, list), allow_none=True) True >>> is_instance(None, (str, list), allow_none=True) True """ return (allow_none and arg is None) or isinstance(arg, types)
52149919b010909614c7dc83e189fa3b8a950393
13,752
def get_fire_mode(weapon): """Returns current fire mode for a weapon.""" return weapon['firemodes'][weapon['firemode']]
691fc5e9b3ce40e51ab96930086f8d57e5fa6284
13,754
def depth_first_ordering(adjacency, root): """Compute depth-first ordering of connected vertices. Parameters ---------- adjacency : dict An adjacency dictionary. Each key represents a vertex and maps to a list of neighboring vertex keys. root : str The vertex from which to start the depth-first search. Returns ------- list A depth-first ordering of all vertices in the network. Notes ----- Return all nodes of a connected component containing 'root' of a network represented by an adjacency dictionary. This implementation uses a *to visit* stack. The principle of a stack is LIFO. In Python, a list is a stack. Initially only the root element is on the stack. While there are still elements on the stack, the node on top of the stack is 'popped off' and if this node was not already visited, its neighbors are added to the stack if they hadn't already been visited themselves. Since the last element on top of the stack is always popped off, the algorithm goes deeper and deeper in the datastructure, until it reaches a node without (unvisited) neighbors and then backtracks. Once a new node with unvisited neighbors is found, there too it will go as deep as possible before backtracking again, and so on. Once there are no more nodes on the stack, the entire structure has been traversed. Note that this returns a depth-first spanning tree of a connected component of the network. Examples -------- >>> import compas >>> from compas.datastructures import Network >>> from compas.topology import depth_first_search as dfs >>> network = Network.from_obj(compas.get('lines.obj')) >>> print(dfs(network, network.get_any_vertex())) See Also -------- * """ adjacency = {key: set(nbrs) for key, nbrs in iter(adjacency.items())} tovisit = [root] visited = set() ordering = [] while tovisit: # pop the last added element from the stack node = tovisit.pop() if node not in visited: # mark the node as visited visited.add(node) ordering.append(node) # add the unvisited nbrs to the stack tovisit.extend(adjacency[node] - visited) return ordering
fcff465cfaa2e3a500e8d177e6b9e78cc66bc21d
13,757
from typing import List from typing import Tuple from textwrap import dedent def get_rt_object_to_complete_texts() -> List[Tuple[str, str]]: """Returns a list of tuples of riptable code object text with associated completion text.""" return [ ( dedent( '''Dataset({_k: list(range(_i * 10, (_i + 1) * 10)) for _i, _k in enumerate( ["alpha", "beta", "gamma", "delta", "epsilon", "zeta", "eta", "theta", "iota", "kappa", "lambada", "mu", "nu", "xi", "omnicron", "pi"])})''' ), "dataset.", ), ( dedent( '''Struct({"alpha": 1, "beta": [2, 3], "gamma": ['2', '3'], "delta": arange(10), "epsilon": Struct({ "theta": Struct({ "kappa": 3, "zeta": 4, }), "iota": 2, }) })''' ), "struct.", ), ( dedent( '''Multiset( {"ds_alpha": Dataset({k: list(range(i * 10, (i + 1) * 10)) for i, k in enumerate( ["alpha", "beta", "gamma", "delta", "epsilon", "zeta"])}), "ds_beta": Dataset({k: list(range(i * 10, (i + 1) * 10)) for i, k in enumerate( ["eta", "theta", "iota", "kappa", "lambada", "mu"])}), })''' ), "multiset.", ), ]
007d2291fd922aab5627783897a56cd5fd715f98
13,760
import token import requests def create_mirror(gitlab_repo, github_token, github_user): """Creates a push mirror of GitLab repository. For more details see: https://docs.gitlab.com/ee/user/project/repository/repository_mirroring.html#pushing-to-a-remote-repository-core Args: - gitlab_repo: GitLab repository to mirror. - github_token: GitHub authentication token. - github_user: GitHub username under whose namespace the mirror will be created (defaults to GitLab username if not provided). Returns: - JSON representation of created mirror. """ url = f'https://gitlab.com/api/v4/projects/{gitlab_repo["id"]}/remote_mirrors' headers = {'Authorization': f'Bearer {token}'} # If github-user is not provided use the gitlab username if not github_user: github_user = gitlab_repo['owner']['username'] data = { 'url': f'https://{github_user}:{github_token}@github.com/{github_user}/{gitlab_repo["path"]}.git', 'enabled': True } try: r = requests.post(url, json=data, headers=headers) r.raise_for_status() except requests.exceptions.RequestException as e: raise SystemExit(e) return r.json()
2a5d7e01ca04a6dcb09d42b5fc85092c3476af0d
13,761
def genelist_mask(candidates, genelist, whitelist=True, split_on_dot=True): """Get a mask for genes on or off a list Parameters ---------- candidates : pd.Series Candidate genes (from matrix) genelist : pd.Series List of genes to filter against whitelist : bool, default True Is the gene list a whitelist (True), where only genes on it should be kept or a blacklist (False) where all genes on it should be excluded split_on_dot : bool, default True If True, remove part of gene identifier after '.'. We do this by default because ENSEMBL IDs contain version numbers after periods. Returns ------- passing_mask : ndarray boolean array of passing genes """ if split_on_dot: candidates = candidates.str.split('.').str[0] genelist = genelist.str.split('.').str[0] if whitelist: mask = candidates.isin(genelist) else: mask = ~candidates.isin(genelist) return mask.values
53e1f80de097311faddd4bfbff636729b076c984
13,762
def parse_releases(list): """ Parse releases from a MangaUpdate's search results page. Parameters ---------- list : BeautifulSoup BeautifulSoup object of the releases section of the search page. Returns ------- releases : list of dicts List of recent releases found by the search. :: [ { 'id': 'Series Id', 'name': 'Series name', 'chp': 'chapter number', 'vol': 'number' or None, 'date': '02/21/21', # Date in month/day/year 'group': { 'name': 'Scanlation Group', 'id': 'Scanlation Group Id' } } ] """ releases = list.find_all("div", class_="text")[:-1] results = [] for i in range(0, len(releases), 5): release = {} release["date"] = str(releases[i].string) series_link = releases[i + 1] if series_link.a is None: release["name"] = str(series_link.string) else: release["name"] = str(series_link.a.string) release["id"] = series_link.a["href"].replace( "https://www.mangaupdates.com/series.html?id=", "" ) vol = releases[i + 2].get_text() release["vol"] = vol if vol else None release["chp"] = str(releases[i + 3].string) release["group"] = { "name": releases[i + 4].get_text(), "id": releases[i + 4] .a["href"] .replace("https://www.mangaupdates.com/groups.html?id=", ""), } results.append(release) return results
e7e93130732998b919bbd2ac69b7fc36c20dd62d
13,764
def Sqrt(x): """Square root function.""" return x ** 0.5
e726dfad946077826bcc19f44cd6a682c3b6410c
13,774
def hello(friend_name): """Says 'Hello!' to a friend.""" return "Hello, {}!".format(friend_name.title())
706c5a2d3f7ebdf9c7b56e49bb0541655c191505
13,775
def count_digit(value): """Count the number of digits in the number passed into this function""" digit_counter = 0 while value > 0: digit_counter = digit_counter + 1 value = value // 10 return digit_counter
f9b1738804b0a40aa72283df96d2707bcfd7e74c
13,790
import json def parse_fio_output_file(fpath: str) -> dict: """ Read and parse json from fio json outputs """ lines = [] with open(fpath, 'r') as fiof: do_append = False for l in fiof: if l.startswith('{'): do_append = True if do_append: lines.append(l) if l.startswith('}'): break try: return json.loads(''.join(lines)) except json.decoder.JSONDecodeError: return {}
ce4efcd3f0508179971788a2c19a7f278d887a79
13,800
def get_full_name(participant): """Returns the full name of a given participant""" return participant['fields']['First Name'].strip() + \ ' ' + participant['fields']['Last Name'].strip()
4292ea595d13e8093f6d221c40634e8fe74b8e91
13,802
def find_new_values(data, values, key): """Identify any new label/description values which could be added to an item. @param data: the contents of the painting item @type data: dict @param values: the output of either make_labels or make_descriptions @type values: dict @param key: the type of values being processed (labels or descriptions) @type key: string @return lang-value pairs for new information @rtype dict """ new_values = {} for lang, value in values.iteritems(): if lang not in data.get(key).keys(): new_values[lang] = value['value'] return new_values
db56c07aedb38458be8aa0fc6bc4b5f4b49b4f4d
13,804
def getattritem(o,a): """ Get either attribute or item `a` from a given object `o`. Supports multiple evaluations, for example `getattritem(o,'one.two')` would get `o.one.two`, `o['one']['two']`, etc. :param o: Object :param a: Attribute or Item index. Can contain `.`, in which case the final value is obtained. :return: Value """ flds = a.split('.') for x in flds: if x in dir(o): o = getattr(o,x) else: o = o[x] return o
7b928b2405691dcb5fac26b7a3d7ebfcfa642f6d
13,807
def wgan_generator_loss(gen_noise, gen_net, disc_net): """ Generator loss for Wasserstein GAN (same for WGAN-GP) Inputs: gen_noise (PyTorch Tensor): Noise to feed through generator gen_net (PyTorch Module): Network to generate images from noise disc_net (PyTorch Module): Network to determine whether images are real or fake Outputs: loss (PyTorch scalar): Generator Loss """ # draw noise gen_noise.data.normal_() # get generated data gen_data = gen_net(gen_noise) # feed data through discriminator disc_out = disc_net(gen_data) # get loss loss = -disc_out.mean() return loss
090de59ebc8e009b19e79047f132014f747972e7
13,809
def find_val_percent(minval, maxval, x): """Find the percentage of a value, x, between a min and max number. minval -- The low number of the range. maxval -- The high number of the range. x -- A value between the min and max value.""" if not minval < x < maxval: print("\n" + " ERROR: X must be between minval and maxval.") print(" Defaulting to 50 percent because why not Zoidberg. (\/)ಠ,,,ಠ(\/)" + "\n") return (x - minval) / (maxval - minval) * 100
13661bb2b6b230fa212ddd3ceb96c5b362d52f19
13,814
def name(who): """Return the name of player WHO, for player numbered 0 or 1.""" if who == 0: return 'Player 0' elif who == 1: return 'Player 1' else: return 'An unknown player'
a553b64c7a03760e974b5ddeac170105dd5b8edd
13,815
def mean(nums): """ Gets mean value of a list of numbers :param nums: contains numbers to be averaged :type nums: list :return: average of nums :rtype: float or int """ counter = 0 for i in nums: counter += i return counter / len(nums)
d3ea7af8792f4fdd503d5762b5c0e54765ce2d99
13,816
import torch def compute_rank(predictions, targets): """Compute the rank (between 1 and n) of of the true target in ordered predictions Example: >>> import torch >>> compute_rank(torch.tensor([[.1, .7, 0., 0., .2, 0., 0.], ... [.1, .7, 0., 0., .2, 0., 0.], ... [.7, .2, .1, 0., 0., 0., 0.]]), ... torch.tensor([4, 1, 3])) tensor([2, 1, 5]) Args: predictions (torch.Tensor): [n_pred, n_node] targets (torch.Tensor): [n_pred] """ n_pred = predictions.shape[0] range_ = torch.arange(n_pred, device=predictions.device, dtype=torch.long) proba_targets = predictions[range_, targets] target_rank_upper = (proba_targets.unsqueeze(1) < predictions).long().sum(dim=1) + 1 target_rank_lower = (proba_targets.unsqueeze(1) <= predictions).long().sum(dim=1) # break tighs evenly by taking the mean rank target_rank = (target_rank_upper + target_rank_lower) / 2 return target_rank
0aed5b14ef9b0f318239e98aa02d0ee5ed9aa758
13,819
import json def load_scalabel_frames( scalabel_frames_path ): """ Loads Scalabel frames from a file. Handles both raw sequences of Scalabel frames as well as labels exported from Scalabel.ai's application. Raises ValueError if the data read isn't of a known type. Takes 1 argument: scalabel_frames_path - Path to serialized Scalabel frames. Returns 1 value: scalabel_frames - A list of Scalabel frames. """ with open( scalabel_frames_path, "r" ) as scalabel_frames_fp: scalabel_frames = json.load( scalabel_frames_fp ) # handle the case where we have exported labels from Scalabel.ai itself vs # a list of frames. if type( scalabel_frames ) == dict: if "frames" in scalabel_frames: return scalabel_frames["frames"] elif type( scalabel_frames ) == list: return scalabel_frames raise ValueError( "Unknown structure read from '{:s}'.".format( scalabel_frames_path ) )
7e5467d0f184dba1e3efc724391931ed4053a683
13,821
def ovs_version_str(host): """ Retrieve OVS version and return it as a string """ mask_cmd = None ovs_ver_cmd = "ovs-vsctl get Open_vSwitch . ovs_version" with host.sudo(): if not host.exists("ovs-vsctl"): raise Exception("Unable to find ovs-vsctl in PATH") mask_cmd = host.run(ovs_ver_cmd) if not mask_cmd or mask_cmd.failed or not mask_cmd.stdout: raise Exception("Failed to get OVS version with command '{cmd}'" .format(cmd=ovs_ver_cmd)) return mask_cmd.stdout.strip('"\n')
607ffbb2ab1099e86254a90d7ce36d4a9ae260ed
13,822
from typing import List def csv_rows(s: str) -> List[List[str]]: """Returns a list of list of strings from comma-separated rows""" return [row.split(',') for row in s.split('\n')]
7a6ea8c0f69801cfb1c0369c238e050502813b63
13,824
import calendar def create_disjunctive_constraints(solver, flat_vars): """ Create constrains that forbids multiple events from taking place at the same time. Returns a list of `SequenceVar`s, one for each day. These are then used in the first phase of the solver. """ events_for_day = [[] for _ in range(5)] for v in flat_vars: events_for_day[v.day].append(v) sequences_for_day = [] for day_num, day in enumerate(events_for_day): if not day: # For empty arrays, OR-tools complains: # "operations_research::Solver::MakeMax() was called with an empty list of variables." continue disj = solver.DisjunctiveConstraint(day, calendar.day_abbr[day_num]) solver.Add(disj) sequences_for_day.append(disj.SequenceVar()) return sequences_for_day
f7f8592ac00c8cac9808bb80d425ff1c1cf10b9e
13,827
import random def filter_shuffle(seq): """ Basic shuffle filter :param seq: list to be shuffled :return: shuffled list """ try: result = list(seq) random.shuffle(result) return result except: return seq
3f2dce2133ba32d8c24d038afaecfa14d37cbd4e
13,831
def get_package_list_from_file(path): """ Create a list of packages to install from a provided .txt file Parameters __________ path: Filepath to the text file (.txt) containing the list of packages to install. Returns ______ List of filepaths to packages to install. Notes _____ .txt file should provide the full filepath to packages to install and be newline (\n) delimited. """ # Verify we have a text file if not path.endswith('.txt'): raise RuntimeError("Package List must be a newline(\n) delimited text file.") # read lines of the file and strip whitespace with open(path, 'r') as f: pkg_list = [line.rstrip().rstrip("/") for line in f] # Verify that we are not given an empty list if not pkg_list: raise RuntimeError("No packages found to be installed. " "Please provide a file with a minimum of 1 package location.") return pkg_list
91ef3e634e98afd116d2be9c803620f672acd950
13,832
def parse_jcamp_line(line,f): """ Parse a single JCAMP-DX line Extract the Bruker parameter name and value from a line from a JCAMP-DX file. This may entail reading additional lines from the fileobj f if the parameter value extends over multiple lines. """ # extract key= text from line key = line[3:line.index("=")] text = line[line.index("=")+1:].lstrip() if "<" in text: # string while ">" not in text: # grab additional text until ">" in string text = text+"\n"+f.readline().rstrip() value = text.replace("<","").replace(">","") elif "(" in text: # array num = int(line[line.index("..")+2:line.index(")")])+1 value = [] rline = line[line.index(")")+1:] # extract value from remainer of line for t in rline.split(): if "." in t or "e" in t: value.append(float(t)) else: value.append(int(t)) # parse additional lines as necessary while len(value) < num: nline = f.readline().rstrip() for t in nline.split(): if "." in t or "e" in t: value.append(float(t)) else: value.append(int(t)) elif text == "yes": value = True elif text == "no": value = False else: # simple value if "." in text or "e" in text: value = float(text) else: value = int(text) return key,value
84061c3f4bc42a62e308d5f93877e5c55d85efc1
13,833
def getSubNode(prgNode, NodeName): """ Find Sub-Node in Programm Node Arguments: prgNode {ua PrgNode} -- Programm node to scan NodeName {[type]} -- Name of Sub-Node to find Returns: ua Node -- Sub-Node """ for child in prgNode.get_children(): if child.get_display_name().Text == NodeName: return child
2da431eff566d7e2c76d4ca4646e15f762c00d4d
13,837
def stations_by_river(stations): """This function returns a Python dict (dictionary) that maps river names (the key) to a list of station objects on a given river.""" y = {} for n in stations: if n.river not in y: y[n.river] = [n.name] else: y[n.river].append(n.name) return y
1e1023cdad87a3fdd5921d08448a4a2e9ceb311c
13,840
def doTest(n): """Runs a test. returns score.""" score = 0 l = list(range(1,16)) for i in l: if input("what is {} to the power of 3? ".format(i)) == str(i**3): score += 1 print("Correct.") else: print("Wrong, the correct answer is {}".format(i**3)) return score
83f32bec718e7459218b8863e229d5ecbd479d2c
13,841
def preorder(root): """Preorder depth-first traverse a binary tree.""" ans = [] stack = [root] while stack: node = stack.pop() if node: ans.append(node.val) stack.extend([node.right, node.left]) return ans
e322df77a973f30b0745b36540a0f66b2ce29e6d
13,844
from typing import Counter def percentile(data: list, p=0.5): """ :param data: origin list :param p: frequency percentile :return: the element at frequency percentile p """ assert 0 < p < 1 boundary = len(data) * p counter = sorted(Counter(data).items(), key=lambda x: x[0]) keys, counts = zip(*counter) accumulation = 0 for i, c in enumerate(counts): accumulation += c if accumulation > boundary: return keys[i] return None
ac0a3a4705579c1b6a5165b91e6dcad65afcd1f4
13,851
def _get_path_from_parent(self, parent): """ Return a list of PathInfos containing the path from the parent model to the current model, or an empty list if parent is not a parent of the current model. """ if hasattr(self, 'get_path_from_parent'): return self.get_path_from_parent(parent) if self.model is parent: return [] model = self.concrete_model # Get a reversed base chain including both the current and parent # models. chain = model._meta.get_base_chain(parent) or [] chain.reverse() chain.append(model) # Construct a list of the PathInfos between models in chain. path = [] for i, ancestor in enumerate(chain[:-1]): child = chain[i + 1] link = child._meta.get_ancestor_link(ancestor) path.extend(link.get_reverse_path_info()) return path
8f213fcbe3612790d4922d53e0e2a4465b098fe6
13,852
def strdigit_normalize(digit): """Normalizes input to format '0x'. Example: '9' -> '09'""" assert type(digit) is str, 'Invalid input. Must be a string.' s = int(digit) assert s >= 0, 'Invalid input. Must be string representing a positive number.' if s < 10: return '0' + str(s) return digit
41b119b4b8b19f978bf4445fc81273f7e62af59a
13,853
import hashlib def hash_file(pathname): """Returns a byte string that is the SHA-256 hash of the file at the given pathname.""" h = hashlib.sha256() with open(pathname, 'rb') as ifile: h.update(ifile.read()) return h.digest()
bdd82aa57abacee91a4631d401af35f0274eb804
13,859
import random def is_prime(number, test_count): """ Uses the Miller-Rabin test for primality to determine, through TEST_COUNT tests, whether or not NUMBER is prime. """ if number == 2 or number == 3: return True if number <= 1 or number % 2 == 0: return False d = 0 r = number - 1 while r % 2 == 1: d += 1 r //= 2 for _1 in range(test_count): a = random.randrange(2, number - 1) x = pow(a, r, number) if x != 1 and x != number - 1: for _2 in range(d): x = (x ** 2) % number if x == 1: return False if x == number - 1: break if x != number - 1: return False return True
49b0149dad5f053bbf813845a10267766784c775
13,864
import math def data_to_sorted_xy(data, logx): """ Return a list of (x, y) pairs with distinct x values and sorted by x value. Enter: data: a list of (x, y) or [x, y] values. logx: True to return (log10(x), y) for each entry. Exit: data: the sorted list with unique x values. """ if not logx: if (len(data) <= 1 or ( data[0][0] < data[1][0] and (len(data) <= 2 or ( data[1][0] < data[2][0] and (len(data) <= 3 or ( data[2][0] < data[3][0] and len(data) == 4)))))): return data return sorted(dict(data).items()) return sorted({math.log10(x): y for x, y in data}.items())
7e84a3f684dc9a82bf5fd48256e5f5c18a5eedb6
13,870
def is_catalog_record_owner(catalog_record, user_id): """ Does user_id own catalog_record. :param catalog_record: :param user_id: :return: """ if user_id and catalog_record.get('metadata_provider_user') == user_id: return True return False
bb5e649b4cfd38ee17f3ab83199b4736b374d312
13,871
import random def init(size): """Creates a randomly ordered dataset.""" # use system time as seed random.seed(None) # set random order as accessor order = [a for a in range(0, size)] random.shuffle(order) # init array with random data data = [random.random() for a in order] return (order, data)
975ab66f4e759973d55a0c519609b6df7086d747
13,874
def bounding_rect(mask, pad=0): """Returns (r, b, l, r) boundaries so that all nonzero pixels in mask have locations (i, j) with t <= i < b, and l <= j < r.""" nz = mask.nonzero() if len(nz[0]) == 0: # print('no pixels') return (0, mask.shape[0], 0, mask.shape[1]) (t, b), (l, r) = [(max(0, p.min() - pad), min(s, p.max() + 1 + pad)) for p, s in zip(nz, mask.shape)] return (t, b, l, r)
850db378abb0a8e1675e0937b66dfb4061ced50b
13,885
import csv def get_return_fields(filepath): """Extract the returnable fields for results from the file with description of filters in ENA as a dictionary with the key being the field id and the value a list of returnable fields filepath: path with csv with filter description """ returnable_fields = {} with open(filepath, "r") as f: reader = csv.DictReader(f, delimiter=';') for row in reader: returnable_fields.setdefault( row["Result"], row["Returnable fields"].split(", ")) return returnable_fields
d70efe68de8cbd100b66cee58baf6ca542cb81a8
13,887
import random def roll_damage(dice_stacks, modifiers, critical=False): """ :param dice_stacks: Stacks of Dice to apply :param modifiers: Total of modifiers affecting the roll :param critical: If is a critical damage roll :return: Total damage to apply. """ if critical: for dice_stack in dice_stacks: dice_stack.amount *= 2 total_dice_result = 0 for dice_stack in dice_stacks: for i in range(0, dice_stack.amount): total_dice_result += random.randint(1, dice_stack.dice.sides) return total_dice_result + modifiers
2627f1de0fe0754a4bfc802378ea1950b2b078a2
13,892
def get_audio_bitrate(bitrate): """ Get audio bitrate from bits to human easy readable format in kbits. Arguments: :param bitrate: integer -- audio bitrate in bits per seconds :return: string """ return "%s kbps" %(bitrate/1000)
847d74e08e8f75b24be1fc144fb3896f5e141daf
13,893
import collections def load_manifest(manifest_path): """Extract sample information from a manifest file. """ # pylint: disable=I0011,C0103 Sample = collections.namedtuple("Sample", "id status path") samples = [] with open(manifest_path, "r") as manifest_file: for line in manifest_file: sample_id, status, path = line.split() if status not in ["case", "control"]: message = ( 'Sample status must be either "case" or "control";' ' instead got "{}"' ) raise Exception(message.format(status)) sample = Sample(id=sample_id, status=status, path=path) samples.append(sample) return samples
21e15fa8de75d963f8d35c4b5f939d3fcee45c99
13,898
def _get_all_osc(centers, osc_low, osc_high): """Returns all the oscillations in a specified frequency band. Parameters ---------- centers : 1d array Vector of oscillation centers. osc_low : int Lower bound for frequency range. osc_high : int Upper bound for frequency range. Returns ------- osc_cens : 1d array Osc centers in specified frequency band. """ # Get inds of desired oscs and pull out from input data osc_inds = (centers >= osc_low) & (centers <= osc_high) osc_cens = centers[osc_inds] return osc_cens
9199283080bd0111d8ca3cb74f4c0865de162027
13,903
from typing import OrderedDict def load_section(cp, section, ordered=True): """ Returns a dict of the key/value pairs in a specified section of a configparser instance. :param cp: the configparser instance. :param section: the name of the INI section. :param ordered: if True, will return a <collections.OrderedDictionary>; else a <dict>. :param kwargs: passed through to the load_config_file() function. :return: a dict containing the specified section's keys and values. """ items = cp.items(section=section) if bool(ordered): return OrderedDict(items) else: return dict(items)
9b819efb75082138eb9e13405ac256908112c744
13,908
import json def open_json(path): """Open the db from JSON file previously saved at given path.""" fd = open(path, 'r') return json.load(fd)
c0c0c4857b4582091a145a71767bc0168808593a
13,911
def convert_resolv_conf(nameservers, searchdomains): """Returns a string formatted for resolv.conf.""" result = [] if nameservers: nslist = "DNS=" for ns in nameservers: nslist = nslist + '%s ' % ns nslist = nslist + '\n' result.append(str(nslist)) if searchdomains: sdlist = "Domains=" for sd in searchdomains: sdlist = sdlist + '%s ' % sd sdlist = sdlist + '\n' result.append(str(sdlist)) return result
47175fb2dddac151a94b99b1c51942a3e5ca66a1
13,915
def password_okay_by_char_count(pwd_row): """ Process list of rows from a file, where each row contains pwd policy and pwd. Pwd is only valid if the indicated character is found between x and y times (inclusive) in the pwd. E.g. 5-7 z: qhcgzzz This pwd is invalid, since z is only found 3 times, but minimum is 5. """ # Each input row looks like "5-7 z: qhcgzzz" # Convert each row to a list that looks like ['5-7 z', 'qhcgzzz'] pwd_policy_and_pwd = [item.strip() for item in pwd_row.split(":")] #print(pwd_policy_and_pwd) pwd = pwd_policy_and_pwd[1] char_counts, _, char_match = pwd_policy_and_pwd[0].partition(" ") min_chars, _, max_chars = char_counts.partition("-") actual_char_count = pwd.count(char_match) if (actual_char_count < int(min_chars)) or (actual_char_count > int(max_chars)): return False return True
4571d1d6e47aef1c31257365cd0db4240db93d6c
13,917
def _getSubjectivityFromScore( polarity_score ): """ Accepts the subjectivity score and returns the label 0.00 to 0.10 - Very Objective 0.10 to 0.45 - Objective 0.45 to 0.55 - Neutral 0.55 to 0.90 - Subjective 0.90 to 1.00 - Very Subjective """ status = "unknown" if ( 0.00 <= polarity_score <= 0.10 ): return "Very Objective" elif( 0.10 < polarity_score < 0.45 ): return "Objective" elif( 0.45 <= polarity_score <= 0.55 ): return "Neutral" elif( 0.55 < polarity_score < 0.90 ): return "Subjective" elif( 0.90 <= polarity_score <= 1.00 ): return "Very Subjective" return status
16e126032fea92d0eac2d4e6b35c9b6666196ad1
13,919
import base64 def extract_basic_auth(auth_header): """ extract username and password from a basic auth header :param auth_header: content of the Authorization HTTP header :return: username and password extracted from the header """ parts = auth_header.split(" ") if parts[0] != "Basic" or len(parts) < 2: return None, None auth_parts = base64.b64decode(parts[1]).split(b":") if len(auth_parts) < 2: return None, None return auth_parts[0].decode(), auth_parts[1].decode()
8f3830bc78b0e9fb6182f130e38acea4bd189c86
13,920