content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def closestMedioidI(active_site, medioids, distD): """ returns the index of the closest medioid in medioids to active_site input: active_site, an ActiveSite instance medioids, a list of ActiveSite instances distD, a dictionary of distances output: the index of the ActiveSite closest to active_site in medioids """ closest = (float('Inf'), None) for i, medioid in enumerate(medioids): thisDist = distD[frozenset([active_site, medioid])] if thisDist < closest[0]: closest = (thisDist, i) return closest[1]
379f98a84751c0a392f8f9b1703b89b299979676
708,308
def _to_native_string(string, encoding='ascii'): """Given a string object, regardless of type, returns a representation of that string in the native string type, encoding and decoding where necessary. This assumes ASCII unless told otherwise. """ if isinstance(string, str): out = string else: out = string.decode(encoding) return out
b50fd0fc62b2cfc024c847b98e1f85b4b67d07e3
708,311
def login(client, password="pass", ): """Helper function to log into our app. Parameters ---------- client : test client object Passed here is the flask test client used to send the request. password : str Dummy password for logging into the app. Return ------- post request object The test client is instructed to send a post request to the /login route. The request contains the fields values to be posted by the form. """ return client.post('/login', data=dict(pass_field=password, remember_me=True), follow_redirects=True)
5adca2e7d54dabe47ae92f0bcebb93e0984617b1
708,316
def mock_datasource_http_oauth2(mock_datasource): """Mock DataSource object with http oauth2 credentials""" mock_datasource.credentials = b"client_id: FOO\nclient_secret: oldisfjowe84uwosdijf" mock_datasource.location = "http://foo.com" return mock_datasource
8496f6b9ac60af193571f762eb2ea925915a1223
708,319
def generateFromSitePaymentObject(signature: str, account_data: dict, data: dict)->dict: """[summary] Creates object for from site chargment request Args: signature (str): signature hash string account_data (dict): merchant_account: str merchant_domain: str data (dict): order + personal data to create charge orderReference (str): timestamp amount (float): order total amount currency (str): 'USD', 'UAH', 'RUB' card (str): user card number expMonth (str): card expires month expYear (str): card expires year cardCvv (str): card cvv cardHolder (str): full name of card holder "Test test" productName (list[str]): product names list productPrice (list[float]): product price list productCount (list[int]): product count list clientFirstName (str): client first name clientLastName (str): client last name clientCountry (str): client country clientEmail (str): client email clientPhone (str): client phone Returns: dict: [description] """ return { "transactionType":"CHARGE", 'merchantAccount': account_data['merchant_account'], "merchantAuthType":"SimpleSignature", 'merchantDomainName': account_data['merchant_domain'], "merchantTransactionType":"AUTH", "merchantTransactionSecureType": "NON3DS", 'merchantSignature': signature, "apiVersion":1, 'orderReference': str(data['orderReference']), 'orderDate': str(data['orderReference']), "amount":data["amount"], 'currency': data['currency'], "card":data['card'], "expMonth":data['expMonth'], "expYear":data['expYear'], "cardCvv":data['cardCvv'], "cardHolder":data['cardHolder'], 'productName': list(map(str, data['productName'])), 'productPrice': list(map(float, data['productPrice'])), 'productCount': list(map(int, data['productCount'])), "clientFirstName":data['clientFirstName'], "clientLastName":data['clientLastName'], "clientCountry":data['clientCountry'], "clientEmail":data['clientEmail'], "clientPhone":data['clientPhone'], }
149434694e985956dede9bf8b6b0da1215ac9963
708,322
def convert_millis(track_dur_lst): """ Convert milliseconds to 00:00:00 format """ converted_track_times = [] for track_dur in track_dur_lst: seconds = (int(track_dur)/1000)%60 minutes = int(int(track_dur)/60000) hours = int(int(track_dur)/(60000*60)) converted_time = '%02d:%02d:%02d' % (hours, minutes, seconds) converted_track_times.append(converted_time) return converted_track_times
3d5199da01529f72b7eb6095a26e337277f3c2c9
708,327
def sync_xlims(*axes): """Synchronize the x-axis data limits for multiple axes. Uses the maximum upper limit and minimum lower limit across all given axes. Parameters ---------- *axes : axis objects List of matplotlib axis objects to format Returns ------- out : yxin, xmax The computed bounds """ xmins, xmaxs = zip(*[ax.get_xlim() for ax in axes]) xmin = min(xmins) xmax = max(xmaxs) for ax in axes: ax.set_xlim(xmin, xmax) return xmin, xmax
a377877a9647dfc241db482f8a2c630fe3eed146
708,328
def total_length(neurite): """Neurite length. For a morphology it will be a sum of all neurite lengths.""" return sum(s.length for s in neurite.iter_sections())
854429e073eaea49c168fb0f9e381c71d7a7038a
708,330
def init_columns_entries(variables): """ Making sure we have `columns` & `entries` to return, without effecting the original objects. """ columns = variables.get('columns') if columns is None: columns = [] # Relevant columns in proper order if isinstance(columns, str): columns = [columns] else: columns = list(columns) entries = variables.get('entries') if entries is None: entries = [] # Entries of dict with relevant columns elif isinstance(entries, dict): entries = [entries] else: entries = list(entries) return columns, entries
49a12b0561d0581785c52d9474bc492f2c64626c
708,333
import base64 def data_uri(content_type, data): """Return data as a data: URI scheme""" return "data:%s;base64,%s" % (content_type, base64.urlsafe_b64encode(data))
f890dc1310e708747c74337f5cfa2d6a31a23fc0
708,340
def next_line(ionex_file): """ next_line Function returns the next line in the file that is not a blank line, unless the line is '', which is a typical EOF marker. """ done = False while not done: line = ionex_file.readline() if line == '': return line elif line.strip(): return line
053e5582e5146ef096d743973ea7069f19ae6d4d
708,341
def response_GET(client, url): """Fixture that return the result of a GET request.""" return client.get(url)
b4762c9f652e714cc5c3694b75f935077039cb02
708,343
def _get_realm(response): """Return authentication realm requested by server for 'Basic' type or None :param response: requests.response :type response: requests.Response :returns: realm :rtype: str | None """ if 'www-authenticate' in response.headers: auths = response.headers['www-authenticate'].split(',') basic_realm = next((auth_type for auth_type in auths if auth_type.rstrip().lower().startswith("basic")), None) if basic_realm: realm = basic_realm.split('=')[-1].strip(' \'\"').lower() return realm else: return None else: return None
346b3278eb52b565f747c952493c15820eece729
708,344
def get_in(obj, lookup, default=None): """ Walk obj via __getitem__ for each lookup, returning the final value of the lookup or default. """ tmp = obj for l in lookup: try: # pragma: no cover tmp = tmp[l] except (KeyError, IndexError, TypeError): # pragma: no cover return default return tmp
73dfcaadb6936304baa3471f1d1e980f815a7057
708,346
def system(_printer, ast): """Prints the instance system initialization.""" process_names_str = ' < '.join(map(lambda proc_block: ', '.join(proc_block), ast["processNames"])) return f'system {process_names_str};'
f16c6d5ebe1a029c07efd1f34d3079dd02eb4ac0
708,356
def blend_multiply(cb: float, cs: float) -> float: """Blend mode 'multiply'.""" return cb * cs
d53c3a49585cf0c12bf05c233fc6a9dd30ad25b9
708,357
def my_func_1(x, y): """ Возвращает возведение числа x в степень y. Именованные параметры: x -- число y -- степень (number, number) -> number >>> my_func_1(2, 2) 4 """ return x ** y
9572566f1660a087056118bf974bf1913348dfa4
708,358
def matrix_mult(a, b): """ Function that multiplies two matrices a and b Parameters ---------- a,b : matrices Returns ------- new_array : matrix The matrix product of the inputs """ new_array = [] for i in range(len(a)): new_array.append([0 for i in range(len(b[0]))]) for j in range(len(b[0])): for k in range(len(a[0])): new_array[i][j] += a[i][k] * b[k][j] return new_array
5e0f27f29b6977ea38987fa243f08bb1748d4567
708,359
def clear_bit(val, offs): """Clear bit at offset 'offs' in value.""" return val & ~(1 << offs)
e50e5f8ccc3fe08d9b19248e290c2117b78379ee
708,363
def _ExtractCLPath(output_of_where): """Gets the path to cl.exe based on the output of calling the environment setup batch file, followed by the equivalent of `where`.""" # Take the first line, as that's the first found in the PATH. for line in output_of_where.strip().splitlines(): if line.startswith('LOC:'): return line[len('LOC:'):].strip()
6a0c0d4aa74b4e84de69de023e2721edd95c36bd
708,364
def get_edges_out_for_vertex(edges: list, vertex: int) -> list: """Get a sublist of edges that have the specified vertex as first element :param edges: edges of the graph :param vertex: vertex of which we want to find the corresponding edges :return: selected edges """ return [e for e in edges if e[0] == vertex]
21485073df1c754e7c8e2b7dd9cafef284e601e7
708,367
def build_job_spec_name(file_name, version="develop"): """ :param file_name: :param version: :return: str, ex. job-hello_world:develop """ name = file_name.split('.')[-1] job_name = 'job-%s:%s' % (name, version) return job_name
55a45052852e6b24cb4370f7efe5c213da83e423
708,369
def single_from(iterable): """Check that an iterable contains one unique value, and return it.""" unique_vals = set(iterable) if len(unique_vals) != 1: raise ValueError('multiple unique values found') return unique_vals.pop()
c8fb8864083195ad913ff1ddf0114b5a50068902
708,373
def api_2_gamma_oil(value): """ converts density in API(American Petroleum Institute gravity) to gamma_oil (oil relative density by water) :param value: density in API(American Petroleum Institute gravity) :return: oil relative density by water """ return (value + 131.5) / 141.5
20e625f22092461fcf4bc2e2361525abf8051f97
708,378
def remove_empty(s): """\ Remove empty strings from a list. >>> a = ['a', 2, '', 'b', ''] >>> remove_empty(a) [{u}'a', 2, {u}'b'] """ while True: try: s.remove('') except ValueError: break return s
98778e4cc90f11b9b74ac6d26b203cbfc958fd7b
708,388
import hashlib def md5_hash_file(fh): """Return the md5 hash of the given file-object""" md5 = hashlib.md5() while True: data = fh.read(8192) if not data: break md5.update(data) return md5.hexdigest()
f572ec27add8024e5fa8b9a82b5d694905e4d0f8
708,390
def find_first_img_dim(import_gen): """ Loads in the first image in a provided data set and returns its dimensions Intentionally returns on first iteration of the loop :param import_gen: PyTorch DataLoader utilizing ImageFolderWithPaths for its dataset :return: dimensions of image """ for x, _, _ in import_gen: return x[0].shape[-2], x[0].shape[-1]
3ccaccdfb20d7b2ca4d339adacd3c706a460fdef
708,393
from typing import List def metadata_partitioner(rx_txt: str) -> List[str]: """Extract Relax program and metadata section. Parameters ---------- rx_txt : str The input relax text. Returns ------- output : List[str] The result list of partitioned text, the first element is the relax program, and the second is metadata section. """ partitions = [] left_curly = 0 meta_start = 0 meta_end = 0 for i, char in enumerate(rx_txt): if i < 0: raise ValueError("The program is invalid.") if char == "{": if meta_start == 0: meta_start = i left_curly += 1 elif char == "}": left_curly -= 1 if left_curly == 0: meta_end = i + 1 break if meta_end == 0: raise ValueError("The metadata section was not found.") metadata = rx_txt[meta_start:meta_end] rx_program = rx_txt[meta_end:-1] partitions.append(rx_program) partitions.append(metadata) return partitions
dd09aff9ea517813d43ff307fb9fc425b7338943
708,395
def fin(activity): """Return the end time of the activity. """ return activity.finish
ed5b1d1e0f29f403cfee357a264d05d5cc88093e
708,398
def solve(in_array): """ Similar to 46442a0e, but where new quadrants are flips of the original array rather than rotations :param in_array: input array :return: expected output array """ array_edgelength = len(in_array[0]) # input array edge length opp_end = array_edgelength*2-1 # used for getting opposite end of array prediction = [[-1]*array_edgelength*2 for i in range(array_edgelength*2)] # init 2d array # iterate through all values for y in range(len(in_array)): for x in range(len(in_array[0])): val = in_array[y][x] prediction[y][x] = val # other 3 quadrants are flips prediction[y][opp_end-x] = val prediction[opp_end-y][opp_end-x] = val prediction[opp_end-y][x] = val return prediction
0af23e82caf65bea64eeeae6da8400ef6ec03426
708,399
def extract(d, keys): """ Extract a key from a dict. :param d: The dict. :param keys: A list of keys, in order of priority. :return: The most important key with an value found. """ if not d: return for key in keys: tmp = d.get(key) if tmp: return tmp
9985e2f1079088251429fa26611fa6e15b920622
708,403
from pathlib import Path def get_output_filename(output_folder: str, repository_type: str, repository_name: str, filename: str) -> Path: """Returns the output filename for the file fetched from a repository.""" return ( Path(output_folder) / Path(repository_type.lower()) / Path(Path(repository_name).name) / Path(Path(filename).name) )
23b806f98265b45b799dbcc177760d5ceb8248fb
708,404
def b_2_d(x): """ Convert byte list to decimal :param x: byte list :return: decimal """ s = 0 for i in range(0, len(x)): s += x[i]*2**i return s
e865700ea30be535ad014908d6b6024186cc5ac6
708,407
import pathlib import stat def check_file(file_name): """ test if file: exists and is writable or can be created Args: file_name (str): the file name Returns: (pathlib.Path): the path or None if problems """ if not file_name: return None path = pathlib.Path(file_name) # if file exists test if writable if path.exists() and path.is_file(): handle = None try: handle = open(path, 'w') except PermissionError: return None finally: if handle: handle.close() # crate file with write permissions try: path.touch(stat.S_IWUSR) except PermissionError: return None return path
5b8ff64795aa66d3be71444e158357c9b7a1b2c0
708,412
def echo(word:str, n:int, toupper:bool=False) -> str: """ Repeat a given word some number of times. :param word: word to repeat :type word: str :param n: number of repeats :type n: int :param toupper: return in all caps? :type toupper: bool :return: result :return type: str """ res=word*n if (toupper): res=res.upper() return res
62a68c1ff577781a84a58f124beec8d31b0b456c
708,413
import math def mul_pdf(mean1, var1, mean2, var2): """ Multiply Gaussian (mean1, var1) with (mean2, var2) and return the results as a tuple (mean, var, scale_factor). Strictly speaking the product of two Gaussian PDFs is a Gaussian function, not Gaussian PDF. It is, however, proportional to a Gaussian PDF. `scale_factor` provides this proportionality constant Parameters ---------- mean1 : scalar mean of first Gaussian var1 : scalar variance of first Gaussian mean2 : scalar mean of second Gaussian var2 : scalar variance of second Gaussian Returns ------- mean : scalar mean of product var : scalar variance of product scale_factor : scalar proportionality constant Examples -------- >>> mul(1, 2, 3, 4) (1.6666666666666667, 1.3333333333333333) References ---------- Bromily. "Products and Convolutions of Gaussian Probability Functions", Tina Memo No. 2003-003. http://www.tina-vision.net/docs/memos/2003-003.pdf """ mean = (var1*mean2 + var2*mean1) / (var1 + var2) var = 1. / (1./var1 + 1./var2) S = math.exp(-(mean1 - mean2)**2 / (2*(var1 + var2))) / \ math.sqrt(2 * math.pi * (var1 + var2)) return mean, var, S
8ecb925273cd0e4276b867687e81b0a26419f35f
708,416
def obfuscate_email(email): """Takes an email address and returns an obfuscated version of it. For example: [email protected] would turn into t**t@e*********m """ if email is None: return None splitmail = email.split("@") # If the prefix is 1 character, then we can't obfuscate it if len(splitmail[0]) <= 1: prefix = splitmail[0] else: prefix = f'{splitmail[0][0]}{"*"*(len(splitmail[0])-2)}{splitmail[0][-1]}' # If the domain is missing or 1 character, then we can't obfuscate it if len(splitmail) <= 1 or len(splitmail[1]) <= 1: return f"{prefix}" else: domain = f'{splitmail[1][0]}{"*"*(len(splitmail[1])-2)}{splitmail[1][-1]}' return f"{prefix}@{domain}"
36c230ed75fc75fc7ecd6dd2ea71a6b3310c4108
708,417
def parse_boolean(arg: str): """Returns boolean representation of argument.""" arg = str(arg).lower() if 'true'.startswith(arg): return True return False
2f0a214212aa43a8b27d9a3be04f14af67c586bc
708,418
def ascending_coin(coin): """Returns the next ascending coin in order. >>> ascending_coin(1) 5 >>> ascending_coin(5) 10 >>> ascending_coin(10) 25 >>> ascending_coin(2) # Other values return None """ if coin == 1: return 5 elif coin == 5: return 10 elif coin == 10: return 25
e927d8ac3f38d4b37de71711ac90d6ca2151a366
708,419
def get_key(rule_tracker, value): """ Given an event index, its corresponding key from the dictionary is returned. Parameters: rule_tracker (dict): Key-value pairs specific to a rule where key is an activity, pair is an event index value (int): Index of event in event log Returns: key (int): Position of value in rule_tracker """ for key in rule_tracker: if rule_tracker[key] == value: return key
1921e9a68d0df0867248ca83e2ba641101735fc7
708,421
def check_values_on_diagonal(matrix): """ Checks if a matrix made out of dictionary of dictionaries has values on diagonal :param matrix: dictionary of dictionaries :return: boolean """ for line in matrix.keys(): if line not in matrix[line].keys(): return False return True
bc7979adcfb5dc7c19b3cdb3830cf2397c247846
708,423
import csv def build_gun_dictionary(filename): """Build a dictionary of gun parameters from an external CSV file: - Key: the gun designation (e.g. '13.5 in V' or '12 in XI') - Value: a list of parameters, in the order: * caliber (in inches) * maxrange (maximum range in yards) * longtohit (chance to hit per gun and minute at long range) * longmin (minimum range considered to be long) * effectivetohit (chance to hit per gun and minute at effective range) * effectivemin (minimum range considered to be effective) * shorttohit (chance to hit per gun and minute at short range) """ gundict = {} with open(filename) as sourcefile: reader = csv.reader(sourcefile, delimiter=",") next(reader) for row in reader: gundata = list(row) gundict[gundata[0]] = list(map(float, gundata[1:])) return gundict
b9e38d766430d44b94ae9fa64c080416fdeb8482
708,425
def _can_be_quoted(loan_amount, lent_amounts): """ Checks if the borrower can obtain a quote. To this aim, the loan amount should be less than or equal to the total amounts given by lenders. :param loan_amount: the requested loan amount :param lent_amounts: the sum of the amounts given by lenders :return: True if the borrower can get a quote, False otherwise """ return sum(lent_amounts) - loan_amount >= 0;
6fd717f3d0e844752e07e9dd435ff72eaa4b34c9
708,429
def to_dict(eds, properties=True, lnk=True): """ Encode the EDS as a dictionary suitable for JSON serialization. """ nodes = {} for node in eds.nodes: nd = { 'label': node.predicate, 'edges': node.edges } if lnk and node.lnk is not None: nd['lnk'] = {'from': node.cfrom, 'to': node.cto} if node.type is not None: nd['type'] = node.type if properties: props = node.properties if props: nd['properties'] = props if node.carg is not None: nd['carg'] = node.carg nodes[node.id] = nd return {'top': eds.top, 'nodes': nodes}
c1a777a0a81ad2e3b9197b3df5e0d35a5174d61f
708,441
def SieveOfEratosthenes(limit=10**6): """Returns all primes not greater than limit.""" isPrime = [True]*(limit+1) isPrime[0] = isPrime[1] = False primes = [] for i in range(2, limit+1): if not isPrime[i]:continue primes += [i] for j in range(i*i, limit+1, i): isPrime[j] = False return primes
6d1e12d289c9bfcdfadf64f764deba077a09ffd1
708,443
import torch def iou_overlaps(b1, b2): """ Arguments: b1: dts, [n, >=4] (x1, y1, x2, y2, ...) b1: gts, [n, >=4] (x1, y1, x2, y2, ...) Returns: intersection-over-union pair-wise, generalized iou. """ area1 = (b1[:, 2] - b1[:, 0] + 1) * (b1[:, 3] - b1[:, 1] + 1) area2 = (b2[:, 2] - b2[:, 0] + 1) * (b2[:, 3] - b2[:, 1] + 1) # only for giou loss lt1 = torch.max(b1[:, :2], b2[:, :2]) rb1 = torch.max(b1[:, 2:4], b2[:, 2:4]) lt2 = torch.min(b1[:, :2], b2[:, :2]) rb2 = torch.min(b1[:, 2:4], b2[:, 2:4]) wh1 = (rb2 - lt1 + 1).clamp(min=0) wh2 = (rb1 - lt2 + 1).clamp(min=0) inter_area = wh1[:, 0] * wh1[:, 1] union_area = area1 + area2 - inter_area iou = inter_area / torch.clamp(union_area, min=1) ac_union = wh2[:, 0] * wh2[:, 1] + 1e-7 giou = iou - (ac_union - union_area) / ac_union return iou, giou
ba9b445223fea5ea8332a189b297c8c40205a4e5
708,444
def updating_node_validation_error(address=False, port=False, id=False, weight=False): """ Verified 2015-06-16: - when trying to update a CLB node's address/port/id, which are immutable. - when trying to update a CLB node's weight to be < 1 or > 100 At least one of address, port, id, and weight should be `True` for this error to apply. :param bool address: Whether the address was passed to update :param bool port: Whether the port was passed to update :param bool id: Whether the ID was passed to update :param bool weight: Whether the weight was passed to update and wrong :return: a `tuple` of (dict body message, 400 http status code) """ messages = [] if address: messages.append("Node ip field cannot be modified.") if port: messages.append("Port field cannot be modified.") if weight: messages.append("Node weight is invalid. Range is 1-100. " "Please specify a valid weight.") if id: messages.append("Node id field cannot be modified.") return( { "validationErrors": { "messages": messages }, "message": "Validation Failure", "code": 400, "details": "The object is not valid" }, 400 )
68c5fdda121950c679afe446bfd7fb19331deb40
708,448
def parse_numbers(numbers): """Return list of numbers.""" return [int(number) for number in numbers]
ee79d4e15cbfb269f7307710d9ad4735687f7128
708,449
def _non_blank_line_count(string): """ Parameters ---------- string : str or unicode String (potentially multi-line) to search in. Returns ------- int Number of non-blank lines in string. """ non_blank_counter = 0 for line in string.splitlines(): if line.strip(): non_blank_counter += 1 return non_blank_counter
dfa6f43af95c898b1f4763573e8bf32ddf659520
708,450
def encode_direct(list_a: list): """Problem 13: Run-length encoding of a list (direct solution). Parameters ---------- list_a : list The input list Returns ------- list of list An length-encoded list Raises ------ TypeError If the given argument is not of `list` type """ if not isinstance(list_a, list): raise TypeError('The argument given is not of `list` type.') if len(list_a) <= 1: # In case of empty or one-element list return. return list_a encoded, current, count = [], list_a[0], 1 for element in list_a[1:]: if current != element: # If current element does not match the recorded current # append the count to the list encoded.append(current if count == 1 else [count, current]) current, count = element, 1 else: # If another same element is found, increase counter count += 1 encoded.append(current if count == 1 else [count, current]) return encoded
9a20ffd2051003d5350f7e059d98c35310bc9bbe
708,451
import math def truncate(f, n): """ Floors float to n-digits after comma. """ return math.floor(f * 10 ** n) / 10 ** n
ae7e935a7424a15c02f7cebfb7de6ca9b4c715c0
708,454
def get_core_blockdata(core_index, spltcore_index, core_bases): """ Get Core Offset and Length :param core_index: Index of the Core :param splitcore_index: Index of last core before split :param core_bases: Array with base offset and offset after split :return: Array with core offset and core length """ core_base = int(core_bases[0]) core_len = int(core_bases[1]) core_split = 0 if len(core_bases) > 4: core_split = int(core_bases[4]) core_offset = core_base + core_index * core_len if core_split and core_index + 2 > spltcore_index: core_offset = core_split + (core_index - spltcore_index + 1) * core_len return [core_offset, core_len]
85efb96fa45ecfa3f526374c677e57c70e3dc617
708,455
from datetime import datetime def timestamp(date): """Get the timestamp of the `date`, python2/3 compatible :param datetime.datetime date: the utc date. :return: the timestamp of the date. :rtype: float """ return (date - datetime(1970, 1, 1)).total_seconds()
a708448fb8cb504c2d25afa5bff6208abe1159a4
708,457
def getdate(targetconnection, ymdstr, default=None): """Convert a string of the form 'yyyy-MM-dd' to a Date object. The returned Date is in the given targetconnection's format. Arguments: - targetconnection: a ConnectionWrapper whose underlying module's Date format is used - ymdstr: the string to convert - default: The value to return if the conversion fails """ try: (year, month, day) = ymdstr.split('-') modref = targetconnection.getunderlyingmodule() return modref.Date(int(year), int(month), int(day)) except Exception: return default
21d27c3ef4e99b28b16681072494ce573e592255
708,459
from datetime import datetime def datetime_to_epoch(date_time: datetime) -> int: """Convert a datetime object to an epoch integer (seconds).""" return int(date_time.timestamp())
73767c663d66464420594e90a438687c9363b884
708,465
from functools import reduce def inet_aton(s): """Convert a dotted-quad to an int.""" try: addr = list(map(int, s.split('.'))) addr = reduce(lambda a,b: a+b, [addr[i] << (3-i)*8 for i in range(4)]) except (ValueError, IndexError): raise ValueError('illegal IP: {0}'.format(s)) return addr
abc16c14e416f55c9ae469b4b9c1958df265433c
708,466
from typing import Optional from typing import Any def get_or_create_mpc_section( mp_controls: "MpConfigControls", section: str, subkey: Optional[str] = None # type: ignore ) -> Any: """ Return (and create if it doesn't exist) a settings section. Parameters ---------- mp_controls : MpConfigControls The MP Config database. section : str The section name (top level settings item) subkey : Optional[str], optional Optional subkey to create, by default None Returns ------- Any The settings at that section[subkey] location. """ curr_section = mp_controls.get_value(section) if curr_section is None: mp_controls.set_value(section, {}) curr_section = mp_controls.get_value(section) if subkey and subkey not in curr_section: mp_controls.set_value(f"{section}.{subkey}", {}) return mp_controls.get_value(f"{section}.{subkey}") return mp_controls.get_value(section)
60b741f35e0a1c9fe924b472217e0e3b62a1d31e
708,471
def _url_as_filename(url: str) -> str: """Return a version of the url optimized for local development. If the url is a `file://` url, it will return the remaining part of the url so it can be used as a local file path. For example, 'file:///logs/example.txt' will be converted to '/logs/example.txt'. Parameters ---------- url: str The url to check and optaimize. Returns ------- str: The url converted to a filename. """ return url.replace('file://', '')
d1aef7a08221c7788f8a7f77351ccb6e6af9416b
708,474
def CheckStructuralModelsValid(rootGroup, xyzGridSize=None, verbose=False): """ **CheckStricturalModelsValid** - Checks for valid structural model group data given a netCDF root node Parameters ---------- rootGroup: netCDF4.Group The root group node of a Loop Project File xyzGridSize: [int,int,int] or None The 3D grid shape to test data in this node to adhere to verbose: bool A flag to indicate a higher level of console logging (more if True) Returns ------- bool True if valid structural model data in project file, False otherwise. """ valid = True if "StructuralModels" in rootGroup.groups: if verbose: print(" Structural Models Group Present") smGroup = rootGroup.groups.get("StructuralModels") # if verbose: print(smGroup) if "easting" in smGroup.ncattrs() and "northing" in smGroup.ncattrs() and "depth" in smGroup.ncattrs(): if xyzGridSize != None: # Check gridSize from extents matches models sizes smGridSize = [smGroup.dimensions["easting"].size,smGroup.dimensions["northing"].size,smGroup.dimensions["depth"].size] if smGridSize != xyzGridSize: print("(INVALID) Extents grid size and Structural Models Grid Size do NOT match") print("(INVALID) Extents Grid Size : ", xyzGridSize) print("(INVALID) Structural Models Grid Size : ", smGridSize) valid = False else: if verbose: print(" Structural Models grid size adheres to extents") else: if verbose: print("No structural models extents in project file") else: if verbose: print("No Structural Models Group Present") return valid
d11ce42b041b8be7516f827883a37b40f6f98477
708,475
def link_name_to_index(model): """ Generate a dictionary for link names and their indicies in the model. """ return { link.name : index for index, link in enumerate(model.links) }
ba0e768b1160218908b6ecf3b186a73c75a69894
708,476
import requests def get_session(token, custom_session=None): """Get requests session with authorization headers Args: token (str): Top secret GitHub access token custom_session: e.g. betamax's session Returns: :class:`requests.sessions.Session`: Session """ session = custom_session or requests.Session() session.headers = { "Authorization": "token " + token, "User-Agent": "testapp" } return session
88bf566144a55cf36daa46d3f9a9886d3257d767
708,482
import json def json_formatter(result, _verbose): """Format result as json.""" if isinstance(result, list) and "data" in result[0]: res = [json.dumps(record) for record in result[0]["data"]] output = "\n".join(res) else: output = json.dumps(result, indent=4, sort_keys=True) return output
68aae87577370d3acf584014651af21c7cbfa309
708,484
def pipe_hoop_stress(P, D, t): """Calculate the hoop (circumferential) stress in a pipe using Barlow's formula. Refs: https://en.wikipedia.org/wiki/Barlow%27s_formula https://en.wikipedia.org/wiki/Cylinder_stress :param P: the internal pressure in the pipe. :type P: float :param D: the outer diameter of the pipe. :type D: float :param t: the pipe wall thickness. :type t: float :returns: the hoop stress in the pipe. :rtype: float """ return P * D / 2 / t
9985d35c2c55e697ce21a880bb2234c160178f33
708,485
def PositionToPercentile(position, field_size): """Converts from position in the field to percentile. position: int field_size: int """ beat = field_size - position + 1 percentile = 100.0 * beat / field_size return percentile
c75869f3d7f8437f28d3463fcf12b2b446fe930a
708,496
def chessboard_distance(x_a, y_a, x_b, y_b): """ Compute the rectilinear distance between point (x_a,y_a) and (x_b, y_b) """ return max(abs(x_b-x_a),abs(y_b-y_a))
9b11bf328faf3b231df23585914f20c2efd02bf9
708,502
def str_with_tab(indent: int, text: str, uppercase: bool = True) -> str: """Create a string with ``indent`` spaces followed by ``text``.""" if uppercase: text = text.upper() return " " * indent + text
3306ba86781d272a19b0e02ff8d06da0976d7282
708,503
def mvg_logpdf_fixedcov(x, mean, inv_cov): """ Log-pdf of the multivariate Gaussian distribution where the determinant and inverse of the covariance matrix are precomputed and fixed. Note that this neglects the additive constant: -0.5 * (len(x) * log(2 * pi) + log_det_cov), because it is irrelevant when comparing pdf values with a fixed covariance, but it means that this is not the normalised pdf. Args: x (1D numpy array): Vector value at which to evaluate the pdf. mean (1D numpy array): Mean vector of the multivariate Gaussian distribution. inv_cov (2D numpy array): Inverted covariance matrix. Returns: float: Log-pdf value. """ dev = x - mean return -0.5 * (dev @ inv_cov @ dev)
648d1925ed4b4793e8e1ce1cec8c7ccd0efb9f6b
708,506
def extrode_multiple_urls(urls): """ Return the last (right) url value """ if urls: return urls.split(',')[-1] return urls
34ec560183e73100a62bf40b34108bb39f2b04b4
708,508
def take_last_while(predicate, list): """Returns a new list containing the last n elements of a given list, passing each value to the supplied predicate function, and terminating when the predicate function returns false. Excludes the element that caused the predicate function to fail. The predicate function is passed one argument: (value)""" for i, e in enumerate(reversed(list)): if not predicate(e): return list[-i:] return list
19468c9130e9ab563eebd97c30c0e2c74211e44b
708,509
def abs_p_diff(predict_table, categA='sandwich', categB='sushi'): """Calculates the absolute distance between two category predictions :param predict_table: as returned by `predict_table` :param categA: the first of two categories to compare :param categB: the second of two categoreis to compare :returns: series with the absolute difference between the predictions :rtype: pandas Series """ return abs(predict_table['p_%s' % categA] - predict_table['p_%s' % categB])
235bfc7df29ac4a2b67baff9dfa3ee62204a9aed
708,512
def validate_engine_mode(engine_mode): """ Validate database EngineMode for DBCluster Property: DBCluster.EngineMode """ VALID_DB_ENGINE_MODES = ( "provisioned", "serverless", "parallelquery", "global", "multimaster", ) if engine_mode not in VALID_DB_ENGINE_MODES: raise ValueError( "DBCluster EngineMode must be one of: %s" % ", ".join(VALID_DB_ENGINE_MODES) ) return engine_mode
69f7952a998b6ca593106c92710909104e21f55f
708,514
def num_false_positives(df): """Total number of false positives (false-alarms).""" return df.noraw.Type.isin(['FP']).sum()
6aa339b86d15072c6a6910a43e70281575da5d36
708,515
def gcd_recursive_by_divrem(m, n): """ Computes the greatest common divisor of two numbers by recursively getting remainder from division. :param int m: First number. :param int n: Second number. :returns: GCD as a number. """ if n == 0: return m return gcd_recursive_by_divrem(n, m % n)
bd25d9cea4813e523ea6bb9bd85c24bf43dd2744
708,516
def make_list_table(headers, data, title='', columns=None): """Build a list-table directive. :param headers: List of header values. :param data: Iterable of row data, yielding lists or tuples with rows. :param title: Optional text to show as the table title. :param columns: Optional widths for the columns. """ results = [] add = results.append add('.. list-table:: %s' % title) add(' :header-rows: 1') if columns: add(' :widths: %s' % (','.join(str(c) for c in columns))) add('') add(' - * %s' % headers[0]) for h in headers[1:]: add(' * %s' % h) for row in data: add(' - * %s' % row[0]) for r in row[1:]: add(' * %s' % r) add('') return '\n'.join(results)
569370b8359ad25bf255f940b5a89d93d896804d
708,530
def pre_process(dd, df, dataset_len, batch_size): """Partition one dataframe to multiple small dataframes based on a given batch size.""" df = dd.str2ascii(df, dataset_len) prev_chunk_offset = 0 partitioned_dfs = [] while prev_chunk_offset < dataset_len: curr_chunk_offset = prev_chunk_offset + batch_size chunk = df.iloc[prev_chunk_offset:curr_chunk_offset:1] partitioned_dfs.append(chunk) prev_chunk_offset = curr_chunk_offset return partitioned_dfs
a0a19916d60476430bdaf27f85f31620f2b5ae2a
708,532
def _make_unique(key, val): """ Make a tuple of key, value that is guaranteed hashable and should be unique per value :param key: Key of tuple :param val: Value of tuple :return: Unique key tuple """ if type(val).__hash__ is None: val = str(val) return key, val
65d746276f635c129aa0a5aeb9b9f467453c0b2a
708,533
def headline( in_string, surround = False, width = 72, nr_spaces = 2, spacesym = ' ', char = '=', border = None, uppercase = True, ): """return in_string capitalized, spaced and sandwiched: ============================== T E S T =============================== Parameters are the following: * char (one-letter string, default='='): changes the character the title is put between. * surround (boolean, default=False): adds additional lines above and under in_string: ==================================================== ==================== T E S T ===================== ==================================================== * width (int, default=72): defines the width of each line. * nr_spaces (int, default=2): defines number of nr_spaces between in_string and the char as indicated in ..====__T I T L E__====.. . * spacesym (one-letter string, default=' '): instead of using a whitespace to seperate the 'title' letters, one can use every other character, e.g. '_'. * border (either string or list/tuple of two strings; defaults to char): If this is a single character string, it will be used at the left and right end of the headline. If this is multiple character string, it will be used at the left and mirrored at the right. This way you can easily introduce additional space if you prefer and use, for example c style like inline comments with border="/*". If this is not enough for you, the left and right borders can be given seperately, like in border=("<!--", "-->") * uppercase (boolean, default=True): if True, headline will capitalize the letters given by in_string. if False, in_string will be used as it is given. """ if isinstance(border, tuple) or isinstance(border, list): left_border = border[0] right_border = border[1] else: if border is None: border = char left_border = border right_border = border[::-1] nr_sym_spaces = len(left_border + right_border) headline_text = spacesym.join( l.upper() if uppercase else l for l in in_string ) headline_text_sandwiched = '{:{}^{}}'.format( headline_text, spacesym, 2 * (len(in_string) + nr_spaces) - 1 ) headline_without_sym = '{:{}^{}}'.format( headline_text_sandwiched, char, width - nr_sym_spaces ) headline_full = '{1}{0}{2}'.format( headline_without_sym, left_border, right_border ) if surround: line = '{1}{0}{2}'.format( (width - nr_sym_spaces) * char, left_border, right_border ) output = line + '\n' + headline_full + '\n' + line else: output = headline_full return output
1848d91bbf6c9d2216338f35433a26bcd3854664
708,534
def get_label_names(l_json): """ Get names of all the labels in given json :param l_json: list of labels jsons :type l_json: list :returns: list of labels names :rtype: list """ llist = [] for j in l_json: llist.append(j['name']) return llist
bab12bedc8b5001b94d6c5f02264b1ebf4ab0e99
708,536
def interpolate_peak(spectrum: list, peak: int) -> float: """ Uses quadratic interpolation of spectral peaks to get a better estimate of the peak. Args: - spectrum: the frequency bin to analyze. - peak: the location of the estimated peak in the spectrum list. Based off: https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html """ prev_neighbour = spectrum[peak-1] next_neighbour = spectrum[peak+1] peak_value = spectrum[peak] estimated_peak = (next_neighbour - prev_neighbour) / (2 * peak_value - prev_neighbour - next_neighbour) + peak return abs(estimated_peak)
0e74057908e7839438325da9adafdf385012ce17
708,539
import hashlib def calc_fingerprint(text): """Return a hex string that fingerprints `text`.""" return hashlib.sha1(text).hexdigest()
8be154e4e32ae9412a73e73397f0e0198ae9c862
708,541
def has_balanced_parens(exp: str) -> bool: """ Checks if the parentheses in the given expression `exp` are balanced, that is, if each opening parenthesis is matched by a corresponding closing parenthesis. **Example:** :: >>> has_balanced_parens("(((a * b) + c)") False :param exp: The expression to check. :return: `True` if the parentheses are balanced, `False` otherwise. """ # Use a stack to determine if the expression is balanced. # Ref: https://youtu.be/HJOnJU77EUs?t=75 [1:15 - 2:47] paren_stack = [] for e in exp: if e == '(': paren_stack.append(e) elif e == ')': try: paren_stack.pop() except IndexError: return False return len(paren_stack) == 0
f76c7cafcf6aadd0c2cb947f0c49d23835a9f6e4
708,543
def _is_binary(c): """Ensures character is a binary digit.""" return c in '01'
b763a5a8ba591b100fea64a589dcb0aea9fbcf53
708,544
def strip_trailing_characters(unstripped_string, tail): """ Strip the tail from a string. :param unstripped_string: The string to strip. Ex: "leading" :param tail: The trail to remove. Ex: "ing" :return: The stripped string. Ex: "lead" """ if unstripped_string.endswith(str(tail)): return unstripped_string[:len(tail)] else: return unstripped_string
dbd09fe9a58b0fb3072a680a9c7ac701257ebfcd
708,549
from typing import Optional def q_to_res(Q: float) -> Optional[float]: """ :param Q: Q factor :return: res, or None if Q < 0.25 """ res = 1 - 1.25 / (Q + 1) if res < 0.0: return None return res
98380be0c8fbd3bfd694d7851f35488d74cdd862
708,554
def id_str_to_bytes(id_str: str) -> bytes: """Convert a 40 characters hash into a byte array. The conversion results in 160 bits of information (20-bytes array). Notice that this operation is reversible (using `id_bytes_to_str`). Args: id_str: Hash string containing 40 characters. Returns: bytes: The ID converted to bytes. """ return int(id_str, 16).to_bytes(20, byteorder='big')
cd6a702343f1267e17710305f9aed70613feacb3
708,555
import math def sieve(n): """ Returns a list with all prime numbers up to n. >>> sieve(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] >>> sieve(25) [2, 3, 5, 7, 11, 13, 17, 19, 23] >>> sieve(10) [2, 3, 5, 7] >>> sieve(9) [2, 3, 5, 7] >>> sieve(2) [2] >>> sieve(1) [] """ l = [True] * (n + 1) # noqa: E741 prime = [] start = 2 end = int(math.sqrt(n)) while start <= end: # If start is a prime if l[start] is True: prime.append(start) # Set multiples of start be False for i in range(start * start, n + 1, start): if l[i] is True: l[i] = False start += 1 for j in range(end + 1, n + 1): if l[j] is True: prime.append(j) return prime
f6c930c604839ba1872bd3168c76b353606ee8ee
708,558
def is_trueish(expression: str) -> bool: """True if string and "True", "Yes", "On" (ignorecase), False otherwise""" expression = str(expression).strip().lower() return expression in {'true', 'yes', 'on'}
7d958c068281deb68de7665dc1eeb07acf5e941f
708,559
import re def contains_order_by(query): """Returns true of the query contains an 'order by' clause""" return re.search( r'order\s+by\b', query, re.M|re.I) is not None
4f4eebadfd5dc4cb1121378db4ef5f68d27bf787
708,560
def mean(l): """ Returns the mean value of the given list """ sum = 0 for x in l: sum = sum + x return sum / float(len(l))
74926c9aaafd2362ce8821d7040afcba1f569400
708,564
from typing import OrderedDict def merge_nodes(nodes): """ Merge nodes to deduplicate same-name nodes and add a "parents" attribute to each node, which is a list of Node objects. """ def add_parent(unique_node, parent): if getattr(unique_node, 'parents', None): if parent.name not in unique_node.parents: unique_node.parents[parent.name] = parent else: unique_node.parents = {parent.name: parent} names = OrderedDict() for node in nodes: if node.name not in names: names[node.name] = node add_parent(names[node.name], node.parent) else: add_parent(names[node.name], node.parent) return names.values()
1f5a2a7188071d9d6f8b6ab1f25ceff1a0ba8484
708,566
def find_records(dataset, search_string): """Retrieve records filtered on search string. Parameters: dataset (list): dataset to be searched search_string (str): query string Returns: list: filtered list of records """ records = [] # empty list (accumulator pattern) for record in dataset: if search_string.lower() in record.lower(): # case insensitive records.append(record) # add to new list return records
c6cbd5c239f410a8658e62c1bbacc877eded5105
708,567
def filter_spans(spans): """Filter a sequence of spans and remove duplicates or overlaps. Useful for creating named entities (where one token can only be part of one entity) or when merging spans with `Retokenizer.merge`. When spans overlap, the (first) longest span is preferred over shorter spans. spans (iterable): The spans to filter. RETURNS (list): The filtered spans. """ get_sort_key = lambda span: (span.end - span.start, -span.start) sorted_spans = sorted(spans, key=get_sort_key, reverse=True) result = [] seen_tokens = set() for span in sorted_spans: # Check for end - 1 here because boundaries are inclusive if span.start not in seen_tokens and span.end - 1 not in seen_tokens: result.append(span) seen_tokens.update(range(span.start, span.end)) result = sorted(result, key=lambda span: span.start) return result
3b15a79b14f02ffa870b94eb9b61261c4befc0eb
708,571
from typing import Optional from typing import List def to_lines(text: str, k: int) -> Optional[List[str]]: """ Given a block of text and a maximum line length k, split the text into lines of length at most k. If this cannot be done, i.e. a word is longer than k, return None. :param text: the block of text to process :param k: the maximum length of each line :return: the list of lines >>> text = 'the quick brown fox jumps over the lazy dog' >>> to_lines(text, 4) is None True >>> to_lines(text, 5) ['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] >>> to_lines(text, 9) ['the quick', 'brown fox', 'jumps', 'over the', 'lazy dog'] >>> to_lines(text, 10) ['the quick', 'brown fox', 'jumps over', 'the lazy', 'dog'] >>> to_lines(text, 12) ['the quick', 'brown fox', 'jumps over', 'the lazy dog'] >>> to_lines('AAAAA', 5) ['AAAAA'] """ def line_to_str(l: List[str]) -> str: return ' '.join(l) # If there is no text or the line length is 0, we can't do anything. if not text or not k: return None # If any word is longer then k, we can't do anything. words = text.split() if max(len(word) for word in words) > k: return None # Now split the word into lines. lines = [] line = [] len_so_far = 0 for word in words: len_word = len(word) if len_word + len_so_far <= k: # We add the word to the line plus a blank space afterwards. # If this is the last word in the line, the blank space will not occur; hence why we check the # condition <= k rather than < k. line.append(word) len_so_far += len_word + 1 else: # Make the line into a string, add it to lines, and reset everything. lines.append(line_to_str(line)) line = [word] len_so_far = len_word + 1 # Last case: if we have a partial line, add it. if line: lines.append(line_to_str(line)) # Assert that none of the lines went over the length. for line in lines: assert(len(line) <= k) return lines
1797f45ce4999a29a9cc74def3f868e473c2775a
708,575
def product_except_self(nums: list[int]) -> list[int]: """Computes the product of all the elements of given array at each index excluding the value at that index. Note: could also take math.prod(nums) and divide out the num at each index, but corner cases of num_zeros > 1 and num_zeros == 1 make code inelegant. Args: nums: Returns: Examples: >>> product_except_self([]) [] >>> product_except_self([1,2,3,4]) [24, 12, 8, 6] >>> product_except_self([-1,1,0,-3,3]) [0, 0, 9, 0, 0] """ """ALGORITHM""" ## INITIALIZE VARS ## nums_sz = len(nums) # DS's/res nums_products_except_i = [1] * nums_sz ## Multiply against product of all elements PRECEDING i total_product = 1 for i in range(nums_sz): nums_products_except_i[i] *= total_product total_product *= nums[i] ## Multiply against product of all elements FOLLOWING i total_product = 1 for i in reversed(range(nums_sz)): nums_products_except_i[i] *= total_product total_product *= nums[i] return nums_products_except_i
15090d4873b0dec9ea6119e7c097ccda781e51fa
708,576
def get_option(args, config, key, default=None): """Gets key option from args if it is provided, otherwise tries to get it from config""" if hasattr(args, key) and getattr(args, key) is not None: return getattr(args, key) return config.get(key, default)
54d77c6ae3e40b2739156b07747facc4a952c237
708,580
import re def parse_extension(uri): """ Parse the extension of URI. """ patt = re.compile(r'(\.\w+)') return re.findall(patt, uri)[-1]
5ed4eee77b92f04e62390128939113168d715342
708,581
import math def rotz(ang): """ Calculate the transform for rotation around the Z-axis. Arguments: angle: Rotation angle in degrees. Returns: A 4x4 numpy array of float32 representing a homogeneous coordinates matrix for rotation around the Z axis. """ rad = math.radians(ang) c = math.cos(rad) s = math.sin(rad) return [ [c, -s, 0.0, 0.0], [s, c, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ]
4332242c5818ccc00d64cbebf7a861727e080964
708,582
def getBits(data, offset, bits=1): """ Get specified bits from integer >>> bin(getBits(0b0011100,2)) '0b1' >>> bin(getBits(0b0011100,0,4)) '0b1100' """ mask = ((1 << bits) - 1) << offset return (data & mask) >> offset
0bdae35f5afa076d0e5a73b91d2743d9cf156f7d
708,583
def replace_ext(filename, oldext, newext): """Safely replaces a file extension new a new one""" if filename.endswith(oldext): return filename[:-len(oldext)] + newext else: raise Exception("file '%s' does not have extension '%s'" % (filename, oldext))
33ab99860cfe90b72388635d5d958abe431fa45e
708,587
import torch def normalized_grid_coords(height, width, aspect=True, device="cuda"): """Return the normalized [-1, 1] grid coordinates given height and width. Args: height (int) : height of the grid. width (int) : width of the grid. aspect (bool) : if True, use the aspect ratio to scale the coordinates, in which case the coords will not be normalzied to [-1, 1]. (Default: True) device : the device the tensors will be created on. """ aspect_ratio = width/height if aspect else 1.0 window_x = torch.linspace(-1, 1, steps=width, device=device) * aspect_ratio window_y = torch.linspace(1, -1, steps=height, device=device) coord = torch.stack(torch.meshgrid(window_x, window_y, indexing='ij')).permute(2,1,0) return coord
7ddd1c5eda2e28116e40fa99f6cd794d9dfd48cc
708,594