content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def binary_search(sorted_list, item): """ Implements a Binary Search, O(log n). If item is is list, returns amount of steps. If item not in list, returns None. """ steps = 0 start = 0 end = len(sorted_list) while start < end: steps += 1 mid = (start + end) // 2 # print("#", mid) if sorted_list[mid] == item: return steps # If the item is lesser than the list # item == 3 and sorted_list == [1, 2, 3, 4, 5, 6, 8] # the END of my list becomes the middle (4), excluding all items from the middle to the end # end == 4 # next time, when mid = (start + end) // 2 executes, mid == 2 if sorted_list[mid] > item: end = mid # If the item is bigger than the list # item == 8 and sorted_list == [1, 2, 3, 4, 5, 6, 8] # the START of my list will be the middle (4) plus 1, excluding all items from the middle to the begginning # start == 5 # next time, when mid = (start + end) // 2 executes, mid == 8 if sorted_list[mid] < item: start = mid + 1 return None
30b1bba330752455d932b4c6cf1ad4dab5969db3
707,987
def unpack_batch(batch, use_cuda=False): """ Unpack a batch from the data loader. """ input_ids = batch[0] input_mask = batch[1] segment_ids = batch[2] boundary_ids = batch[3] pos_ids = batch[4] rel_ids = batch[5] knowledge_feature = batch[6] bio_ids = batch[1] # knowledge_adjoin_matrix = batch[7] # know_segment_ids = batch[6] # know_input_ids = batch[7] # know_input_mask = batch[8] # knowledge_feature = (batch[6], batch[7], batch[8]) return input_ids, input_mask, segment_ids, boundary_ids, pos_ids, rel_ids, knowledge_feature,bio_ids
6bc8bc9b3c8a9e2b40ac08e67c9fbcf84914e2eb
707,989
def truncate(text: str, length: int = 255, end: str = "...") -> str: """Truncate text. Parameters --------- text : str length : int, default 255 Max text length. end : str, default "..." The characters that come at the end of the text. Returns ------- truncated text : str Examples -------- .. code-block:: html <meta property="og:title" content="^^ truncate(title, 30) ^^">""" return f"{text[:length]}{end}"
f14605542418ca95e4752be7ec2fea189b9454ce
707,990
def get_parameter_by_name(device, name): """ Find the given device's parameter that belongs to the given name """ for i in device.parameters: if i.original_name == name: return i return
9669262a9bcac8b4c054e07b2c04b780b5f84f87
707,994
import mpmath def pdf(x, nu, sigma): """ PDF for the Rice distribution. """ if x <= 0: return mpmath.mp.zero with mpmath.extradps(5): x = mpmath.mpf(x) nu = mpmath.mpf(nu) sigma = mpmath.mpf(sigma) sigma2 = sigma**2 p = ((x / sigma2) * mpmath.exp(-(x**2 + nu**2)/(2*sigma2)) * mpmath.besseli(0, x*nu/sigma2)) return p
b2d96bc19fb61e5aaf542b916d06c11a0e3dea46
708,002
def make_adder(n): """Return a function that takes one argument k and returns k + n. >>> add_three = make_adder(3) >>> add_three(4) 7 """ def adder(k): return k + n return adder
64808cb857f7bd17c8c81bfd749ed96efcc88a9f
708,004
import torch from typing import Union from typing import Tuple def groupby_apply( keys: torch.Tensor, values: torch.Tensor, bins: int = 95, reduction: str = "mean", return_histogram: bool = False ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Groupby apply for torch tensors Args: keys: tensor of groups (``0`` to ``bins``) values: values to aggregate - same size as keys bins: total number of groups reduction: either "mean" or "sum" return_histogram: if to return histogram on top Returns: tensor of size ``bins`` with aggregated values and optionally with counts of values """ if reduction == "mean": reduce = torch.mean elif reduction == "sum": reduce = torch.sum else: raise ValueError(f"Unknown reduction '{reduction}'") uniques, counts = keys.unique(return_counts=True) groups = torch.stack([reduce(item) for item in torch.split_with_sizes(values, tuple(counts))]) reduced = torch.zeros(bins, dtype=values.dtype, device=values.device).scatter(dim=0, index=uniques, src=groups) if return_histogram: hist = torch.zeros(bins, dtype=torch.long, device=values.device).scatter(dim=0, index=uniques, src=counts) return reduced, hist else: return reduced
711acc0cf2eb30e978f7f30686dbf67644d51fb0
708,005
from typing import Tuple def load_forcings_gauge_metadata(path: str) -> Tuple[float, float, float]: """ Loads gauge metadata from the header of a CAMELS-USE forcings file. Parameters ---------- path: str Path to the forcings file. Returns ------- tuple (gauge latitude, gauge elevation, basin area [m²]) """ with open(path, 'r') as file: latitude = float(file.readline()) elevation = float(file.readline()) area = float(file.readline()) return latitude, elevation, area
c91c3bafb83709967d6dd480afd8e53ac9f94445
708,008
def append_artist(songs, artist): """ When the songs gathered from the description just contains the titles of the songs usually means it's an artist's album. If an artist was provided appends the song title to the artist using a hyphen (artist - song) :param list songs: List of song titles (only song title) :param str artist: Artist to search for with the song names :return list: song titles along with the artist """ songs_complete = [] for song in songs: song_complete = f'{artist} - {song}' songs_complete.append(song_complete) return songs_complete
b3fbda311849f68ab01c2069f44ea0f694365270
708,010
def get_missing_columns(missing_data): """ Returns columns names as list that containes missing data :param missing_data : return of missing_data(df) :return list: list containing columns with missing data """ missing_data = missing_data[missing_data['percent'] > 0] missing_columns = missing_data.index.tolist() return missing_columns
80feccec6148a417b89fb84f4c412d9ea4d0dd37
708,011
def get_function_name(fcn): """Returns the fully-qualified function name for the given function. Args: fcn: a function Returns: the fully-qualified function name string, such as "eta.core.utils.function_name" """ return fcn.__module__ + "." + fcn.__name__
ae186415225bd5420de7f7b3aef98480d30d59f8
708,012
def clean_cases(text): """ Makes text all lowercase. :param text: the text to be converted to all lowercase. :type: str :return: lowercase text :type: str """ return text.lower()
9b0c931336dbf762e5e3a18d103706ddf1e7c14f
708,013
def gradient_of_rmse(y_hat, y, Xn): """ Returns the gradient of the Root Mean Square error with respect to the parameters of the linear model that generated the prediction `y_hat'. Hence, y_hat should have been generated by a linear process of the form Xn.T.dot(theta) Args: y_hat (np.array of shape N,): The predictions of the linear model y (np.array of shape N,): The "ground-truth" values. Returns: The RMSE between y_hat and y """ N = y.shape[0] assert N > 0, ('At least one sample is required in order to compute the ' 'RMSE loss') losses = y - y_hat gradient = - 2 * Xn.T.dot(losses) / N return gradient
73a46197f90cf1b9c0a90a8ce2d2eae006c6d002
708,016
def align_down(x: int, align: int) -> int: """ Align integer down. :return: ``y`` such that ``y % align == 0`` and ``y <= x`` and ``(x - y) < align`` """ return x - (x % align)
8144309badf601999f4c291ee3af5cfbd18397ea
708,017
import glob import csv def write_colocated_data_time_avg(coloc_data, fname): """ Writes the time averaged data of gates colocated with two radars Parameters ---------- coloc_data : dict dictionary containing the colocated data parameters fname : str file name where to store the data Returns ------- fname : str the name of the file where data has written """ filelist = glob.glob(fname) if not filelist: with open(fname, 'w', newline='') as csvfile: csvfile.write('# Colocated radar gates data file\n') csvfile.write('# Comment lines are preceded by "#"\n') csvfile.write('#\n') fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) writer.writeheader() for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() else: with open(fname, 'a', newline='') as csvfile: fieldnames = [ 'rad1_time', 'rad1_ray_ind', 'rad1_rng_ind', 'rad1_ele', 'rad1_azi', 'rad1_rng', 'rad1_dBZavg', 'rad1_PhiDPavg', 'rad1_Flagavg', 'rad2_time', 'rad2_ray_ind', 'rad2_rng_ind', 'rad2_ele', 'rad2_azi', 'rad2_rng', 'rad2_dBZavg', 'rad2_PhiDPavg', 'rad2_Flagavg'] writer = csv.DictWriter(csvfile, fieldnames) for i, rad1_time in enumerate(coloc_data['rad1_time']): writer.writerow({ 'rad1_time': rad1_time.strftime('%Y%m%d%H%M%S'), 'rad1_ray_ind': coloc_data['rad1_ray_ind'][i], 'rad1_rng_ind': coloc_data['rad1_rng_ind'][i], 'rad1_ele': coloc_data['rad1_ele'][i], 'rad1_azi': coloc_data['rad1_azi'][i], 'rad1_rng': coloc_data['rad1_rng'][i], 'rad1_dBZavg': coloc_data['rad1_dBZavg'][i], 'rad1_PhiDPavg': coloc_data['rad1_PhiDPavg'][i], 'rad1_Flagavg': coloc_data['rad1_Flagavg'][i], 'rad2_time': ( coloc_data['rad2_time'][i].strftime('%Y%m%d%H%M%S')), 'rad2_ray_ind': coloc_data['rad2_ray_ind'][i], 'rad2_rng_ind': coloc_data['rad2_rng_ind'][i], 'rad2_ele': coloc_data['rad2_ele'][i], 'rad2_azi': coloc_data['rad2_azi'][i], 'rad2_rng': coloc_data['rad2_rng'][i], 'rad2_dBZavg': coloc_data['rad2_dBZavg'][i], 'rad2_PhiDPavg': coloc_data['rad2_PhiDPavg'][i], 'rad2_Flagavg': coloc_data['rad2_Flagavg'][i]}) csvfile.close() return fname
2e786c6df8a617f187a7b50467111785342310c5
708,019
def get_trail_max(self, rz_array=None): """ Return the position of the blob maximum. Either in pixel or in (R,Z) coordinates if rz_array is passed. """ if (rz_array is None): return self.xymax # Remember xycom[:,1] is the radial (X) index which corresponds to R return rz_array[self.xymax[:,0].astype('int'), self.xymax[:,1].astype('int'), :]
5456c95ba4cb02352aa69398f9fa5307f3dc8e06
708,027
from typing import Tuple from typing import List def create_annotation(annotation_id: int, image_id: int, category_id: int, is_crowd: int, area: int, bounding_box: Tuple[int, int, int, int], segmentation: List[Tuple[int, int]]) -> dict: """ Converts input data to COCO annotation information storing format. :param int annotation_id: unique identificator of the annotation :param int image_id: identificator of related image :param int category_id: identificator of related category (annotation class) :param int is_crowd: "iscrowd": 0 if your segmentation based on polygon (object instance) "iscrowd": 1 if your segmentation based uncompressed RLE (crowd) :param float area: area occupied by segmentation in pixels :param Tuple[float, float, float, float] bounding_box: coordinates of bbox in format (x,y,w,h) :param list segmentation: polygon coordinates :return: dict of the annotation information in COCO format """ return { "id": annotation_id, "image_id": image_id, "category_id": category_id, "iscrowd": is_crowd, "area": area, # float "bbox": bounding_box, # [x,y,width,height] "segmentation": segmentation # [polygon] }
715a6204ed5dd9b081ac6e87541df3cd46d329a1
708,029
import zipfile def zip_to_gdal_path(filepath): """ Takes in a zip filepath and if the zip contains files ascii files, prepend '/viszip' to the path so that they can be opened using GDAL without extraction. """ zip_file_list = [] if zipfile.is_zipfile(filepath): try: zip_file = zipfile.ZipFile(filepath) zip_file_contents = ['/vsizip/{0}/{1}'.format(filepath, zip_info_object.filename) for zip_info_object in zip_file.filelist if zip_info_object.filename.endswith('.asc')] zip_file_list.extend(zip_file_contents) zip_file.close() except zipfile.BadZipfile: pass return zip_file_list
9e9e44d6eb3022ebe982cc44284da76f56a4ddeb
708,034
def is_eval_epoch(cfg, cur_epoch): """ Determine if the model should be evaluated at the current epoch. Args: cfg (CfgNode): configs. Details can be found in sgs/config/defaults.py cur_epoch (int): current epoch. """ return ( cur_epoch + 1 ) % cfg.TRAIN.EVAL_PERIOD == 0 or cur_epoch + 1 == cfg.SOLVER.MAX_EPOCH
d8abb04409879b88bdfd32cf323bcbea037ae630
708,035
def bin2hexstring(bin_str): """ 二进制串转十六进制串,按照 4:1 比例转换 :param bin_str: 二进制串 :return: 十六进制串 """ bin_len = len(bin_str) left = 0 right = 4 re_str = hex(int(bin_str[left:right], 2))[2:] for i in range(right, bin_len, 4): left = right right += 4 re_str += hex(int(bin_str[left:right], 2))[2:] return re_str
823ba4ef86ebcf7e30a29c3718768c6a654acad5
708,040
def prepare_hex_string(number, base=10): """ Gets an int number, and returns the hex representation with even length padded to the left with zeroes """ int_number = int(number, base) hex_number = format(int_number, 'X') # Takes the string and pads to the left to make sure the number of characters is even justify_hex_number = hex_number.rjust((len(hex_number) % 2) + len(hex_number), '0') return justify_hex_number
e6efeca87d5f0a603c8fdb65fd7e2d07cc491766
708,046
def plotly_figure(figure, id: str): """ :param figure: plotly graph object or px figure :param id: unique id string of format 'id_xxx' with x representin a number :return: html style string containing a plotly figure """ json_figure = figure.to_json() html = """ <div id="""+id+"""></div> <script> var plotly_data = {} Plotly.react("""+id+""", plotly_data.data, plotly_data.layout); </script> """ local_text = html.format(json_figure) return local_text
949415c70d467c48ee3aa1f028c9e3539099febf
708,047
def _add_resources_to_vault_obj(obj, data, columns): """Add associated resources to column and data tuples """ i = 0 for s in obj.resources: if obj.resources[i].id: name = 'resource_id_' + str(i + 1) data += (obj.resources[i].id,) columns = columns + (name,) name = 'resource_type_' + str(i + 1) data += (obj.resources[i].type,) columns = columns + (name,) i += 1 return data, columns
3a6dd7541ac853a7c62b638abf4d0eeb21bb6cb2
708,048
def classify_helmet_belt_worn(x): """ This function returns a strinig representation of the int value of the field which specifies whether the person was wearing a setabelt or a helmet. This specification is from the Road Crash Statistics Victoria , 2013 Edition document. :param x: int value representing the classify helmet belt worn field :return: string representation of the integer value """ if x == 1: return 'Seatbelt Worn' elif x == 2: return 'Seatbelt Not Worn' elif x == 3: return 'Child Restraint Worn' elif x == 4: return 'Child Restraint Not Worn' elif x == 5: return 'Seatbelt/restraint Not fitted' elif x == 6: return 'Crash Helmet Worn' elif x == 7: return 'Crash Helmet Not Worn' elif x == 8: return 'Not Appropriate' else: return 'Not Known'
cba05be8d03c933e767a75400032d07e296e0ec3
708,049
import collections def sort_dataset_by_len(dataset): """ returns a dict mapping length -> list of items of that length an OrderedDict is used to that the mapping is sorted from smallest to largest """ sorted_dataset = collections.OrderedDict() lengths = sorted(list(set(len(x[1]) for x in dataset))) for l in lengths: sorted_dataset[l] = [] for item in dataset: sorted_dataset[len(item[1])].append(item) return sorted_dataset
1e67da963c6d968fba39730cc33e100242fcafca
708,050
import click def optional_tools_or_packages_arg(multiple=False): """ Decorate click method as optionally taking in the path to a tool or directory of tools or a Conda package. If no such argument is given the current working directory will be treated as a directory of tools. """ name = "paths" if multiple else "path" nargs = -1 if multiple else 1 return click.argument( name, metavar="TARGET", nargs=nargs, )
4a34da51b4a644df70c5ce3ea8afb8b86ae2281d
708,052
def compare_files(file_name1, file_name2): """ Compare two files, line by line, for equality. Arguments: file_name1 (str or unicode): file name. file_name2 (str or unicode): file name. Returns: bool: True if files are equal, False otherwise. """ with open(file_name1) as file1, open(file_name2) as file2: for line1, line2 in zip(file1, file2): if line1 != line2: file1.close() file2.close() return False file1.close() file2.close() return True
3f77cf177ba60ddd121b95648379fff845d9877b
708,055
import collections def sort_dict(d, key=None, reverse=False): """ Sorts a dict by value. Args: d: Input dictionary key: Function which takes an tuple (key, object) and returns a value to compare and sort by. By default, the function compares the values of the dict i.e. key = lambda t : t[1] reverse: Allows to reverse sort order. Returns: OrderedDict object whose keys are ordered according to their value. """ kv_items = list(d.items()) # Sort kv_items according to key. if key is None: kv_items.sort(key=lambda t: t[1], reverse=reverse) else: kv_items.sort(key=key, reverse=reverse) # Build ordered dict. return collections.OrderedDict(kv_items)
9ca904a5e0df3e3c50b29967adfe9061e778dfc9
708,058
def getReviewRedirect(entity, params): """Returns the redirect to review the specified entity. """ return '/%s/review/%s' % ( params['url_name'], entity.key().id_or_name())
959ff6d0297ec54248ee725e93a79702512d00d7
708,059
def read_number(dtype, prompt='', floor=None, ceil=None, repeat=False): """ Reads a number within specified bounds. """ while True: try: result = dtype(input(prompt)) if floor is not None and result < floor: raise ValueError(f'Number must be no less than {floor}.') if ceil is not None and result > ceil: raise ValueError(f'Number must be no greater than {ceil}.') except ValueError as e: print(e) result = None if result is not None or not repeat: return result
a528b1f5912ba4bab0b87c87004311778eaa8187
708,066
def isID(value): """Checks if value looks like a Ulysses ID; i.e. is 22 char long. Not an exact science; but good enougth to prevent most mistakes. """ return len(value) == 22
527db9446adc2b88c2117bd35c74474c3e7bad24
708,070
def decrement(x): """Given a number x, returns x - 1 unless that would be less than zero, in which case returns 0.""" x -= 1 if x < 0: return 0 else: return x
56b95324c147a163d3bdd0e9f65782095b0a4def
708,073
def dump_tuple(tup): """ Dump a tuple to a string of fg,bg,attr (optional) """ return ','.join(str(i) for i in tup)
ffa4838e2794da9d525b60f4606633f8940480bb
708,078
import json def json_formatter(result, verbose=False, indent=4, offset=0): """Format result as json.""" string = json.dumps(result, indent=indent) string = string.replace("\n", "\n" + " "*offset) return string
512847722fa36eff408ac28d6e3dc8fde5c52af1
708,080
from typing import Any from typing import Counter def calc_proportion_identical(lst: Any) -> float: """ Returns a value between 0 and 1 for the uniformity of the values in LST, i.e. higher if they're all the same. """ def count_most_common(lst): """ Find the most common item in LST, and count how many times it occurs. """ # Counter(['a', 'b', 'a']).most_common(2) -> [ # ('a', 2), # ('b', 1), # ] # so this gives the count of the most common (in this case 2 occurrences of 'a') return Counter(lst).most_common(1)[0][1] most_common = count_most_common(lst) if most_common == 1: return 0 else: return most_common / len(lst)
adf467eba11694c5ea4583d7b53029110e59e25a
708,081
def _singleton(name): """Returns a singleton object which represents itself as `name` when printed, but is only comparable (via identity) to itself.""" return type(name, (), {'__repr__': lambda self: name})()
b07003e1716115864bf1914d4b523b36d0f0471f
708,084
import pickle def fetch_pickle(filename): """ Fetches any variable saved into a picklefile with the given filename. Parameters: filename (str): filename of the pickle file Returns: variable (any pickle compatible type): variable that was saved into the picklefile. """ with open(filename, 'rb') as picklefile: variable = pickle.load(picklefile) return variable
172c18520619d102b520658949d2464d5ecfb05c
708,085
def format_stats(stats): """Format statistics for printing to a table""" result = '' for key, value in stats.items(): result += f'{key} - {value}\n' return result[:-1]
2d01b6c48b83f8e8810f4609183b39fad871f942
708,087
def timestamp2str(ts): """ Converts Timestamp object to str containing date and time """ date = ts.date().strftime("%Y-%m-%d") time = ts.time().strftime("%H:%M:%S") return ' '.join([date, time])
0e847a8af0cbbacf18df911e3070ac7c70e504b7
708,088
def parse_test_config(doc): """ Get the configuration element. """ test_config = doc.documentElement if test_config.tagName != 'configuration': raise RuntimeError('expected configuration tag at root') return test_config
c61c2f4e43c5501c461bb92b63609162b2918860
708,093
import textwrap def _get_control_vars(control_vars): """ Create the section of control variables Parameters ---------- control_vars: str Functions to define control variables. Returns ------- text: str Control variables section and header of model variables section. """ text = textwrap.dedent(""" ########################################################################## # CONTROL VARIABLES # ########################################################################## def _init_outer_references(data): for key in data: __data[key] = data[key] def time(): return __data['time']() """) text += control_vars text += textwrap.dedent(""" ########################################################################## # MODEL VARIABLES # ########################################################################## """) return text
614a6ca5bc8ac7354f63bfceabaff4eb4b93208a
708,094
def rgb2hex(rgb): """Converts an RGB 3-tuple to a hexadeximal color string. EXAMPLE ------- >>> rgb2hex((0,0,255)) '#0000FF' """ return ('#%02x%02x%02x' % tuple(rgb)).upper()
4c3323e34fcd2c1b4402ebe5f433c5fd9320cce9
708,098
def create_table(p, table_name, schema): """Create a new Prism table. Parameters ---------- p : Prism Instantiated Prism class from prism.Prism() table_name : str The name of the table to obtain details about. If the default value of None is specified, details regarding first 100 tables is returned. schema : list A list of dictionaries containing the schema Returns ------- If the request is successful, a dictionary containing information about the table is returned. """ p.create_bearer_token() table = p.create_table(table_name, schema=schema) return table
43c8c789d4e212d2d98d68f4f22e3f0fb0a97552
708,100
def bdev_nvme_add_error_injection(client, name, opc, cmd_type, do_not_submit, timeout_in_us, err_count, sct, sc): """Add error injection Args: name: Name of the operating NVMe controller opc: Opcode of the NVMe command cmd_type: Type of NVMe command. Valid values are: admin, io do_not_submit: Do not submit commands to the controller timeout_in_us: Wait specified microseconds when do_not_submit is true err_count: Number of matching NVMe commands to inject errors sct: NVMe status code type sc: NVMe status code Returns: True on success, RPC error otherwise """ params = {'name': name, 'opc': opc, 'cmd_type': cmd_type} if do_not_submit: params['do_not_submit'] = do_not_submit if timeout_in_us: params['timeout_in_us'] = timeout_in_us if err_count: params['err_count'] = err_count if sct: params['sct'] = sct if sc: params['sc'] = sc return client.call('bdev_nvme_add_error_injection', params)
3833256e71f47a49eef2643bf8c244308795a0b1
708,108
def prune_deg_one_nodes(sampled_graph): """ prune out degree one nodes from graph """ deg_one_nodes = [] for v in sampled_graph.nodes(): if sampled_graph.degree(v) == 1: deg_one_nodes.append(v) for v in deg_one_nodes: sampled_graph.remove_node(v) return sampled_graph
c4df72a66c6fb57d5d42a1b877a846338f32f42a
708,110
def run_sgd(model, epochs): """ Runs SGD for a predefined number of epochs and saves the resulting model. """ print("Training full network") weights_rand_init = model.optimize(epochs=epochs) # weights_rand_init = model.optimize(epochs=epochs, batch_size=55000, learning_rate=0.1) print("Model optimized!!!") return [model.get_model_weights(), weights_rand_init]
14c6fd1ffa8aab3a783b5738093d69771d036411
708,111
def processed_transcript(df): """ Cleans the Transcript table by splitting value fileds and replacing nan values, drop extra columns PARAMETERS: transcript dataframe RETURNS: Cleaned transcript dataframe """ #expand the dictionary to coulmns (reward, amount, offre id) from value field df['offer_id'] = df['value'].apply(lambda x: x.get('offer_id')) df['offer id'] = df['value'].apply(lambda x: x.get('offer id')) df['reward'] = df['value'].apply(lambda x: x.get('reward')) df['amount'] = df['value'].apply(lambda x: x.get('amount')) #move 'offer id' values into 'offer_id' df['offer_id'] = df.apply(lambda x : x['offer id'] if x['offer_id'] == None else x['offer_id'], axis=1) #drop 'offer id' column df.drop(['offer id' , 'value'] , axis=1, inplace=True) #replace nan df.fillna(0 , inplace=True) return df
452668d6d9616ca382f7968e0ac4dd52658be9f6
708,113
def matrixmult (A, B): """Matrix multiplication function This function returns the product of a matrix multiplication given two matrices. Let the dimension of the matrix A be: m by n, let the dimension of the matrix B be: p by q, multiplication will only possible if n = p, thus creating a matrix of m by q size. Parameters ---------- A : list First matrix, in a 2D array format. B : list Second matrix, in a 2D array format. Returns ------- C : list The product of the matrix multiplication. Examples -------- >>> from .pycgmStatic import matrixmult >>> A = [[11,12,13],[14,15,16]] >>> B = [[1,2],[3,4],[5,6]] >>> matrixmult(A, B) [[112, 148], [139, 184]] """ C = [[0 for row in range(len(A))] for col in range(len(B[0]))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): C[i][j] += A[i][k]*B[k][j] return C
98065981c8047d927bacb07877dbf173ba379159
708,116
def next_code(value: int, mul: int = 252533, div: int = 33554393) -> int: """ Returns the value of the next code given the value of the current code The first code is `20151125`. After that, each code is generated by taking the previous one, multiplying it by `252533`, and then keeping the remainder from dividing that value by `33554393` """ return (value * mul) % div
a9e5183e405574cc56a138a244f14de08ea68d00
708,117
def read_csv_to_lol(full_path, sep=";"): """ Read csv file into lists of list. Make sure to have a empty line at the bottom """ with open(full_path, 'r') as ff: # read from CSV data = ff.readlines() # New line at the end of each line is removed data = [i.replace("\n", "") for i in data] # Creating lists of list data = [i.split(sep) for i in data] return data
e53c46c6a8eabaece788111530fbf859dd23133f
708,118
import random import string def generate_random_string(N): """ Generate a random string Parameters ------------- N length of the string Returns ------------- random_string Random string """ return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(N))
3e2e672140e18546260a0882fa6cf06073bdf8e7
708,121
import re def extract_charm_name_from_url(charm_url): """Extract the charm name from the charm url. E.g. Extract 'heat' from local:bionic/heat-12 :param charm_url: Name of model to query. :type charm_url: str :returns: Charm name :rtype: str """ charm_name = re.sub(r'-[0-9]+$', '', charm_url.split('/')[-1]) return charm_name.split(':')[-1]
9905d6b5c7a2f5047bc939d1b6e23d128ee8984d
708,122
def class_name(service_name: str) -> str: """Map service name to .pyi class name.""" return f"Service_{service_name}"
b4bed8a677f9eedfcd66d6d37078075b0967ea20
708,123
def is_number(s): """ Check if it is a number. Args: s: The variable that needs to be checked. Returns: bool: True if float, False otherwise. """ try: float(s) return True except ValueError: return False
071aeac26a5a907caf1764dc20d7de1c6408714b
708,125
def _GetTombstoneData(device, tombstone_file): """Retrieve the tombstone data from the device Args: device: An instance of DeviceUtils. tombstone_file: the tombstone to retrieve Returns: A list of lines """ return device.old_interface.GetProtectedFileContents( '/data/tombstones/' + tombstone_file)
99322ea3d67e150f4433c713159eb7bc8069271f
708,127
import random def giveHint(indexValue, myBoard): """Return a random matching card given the index of a card and a game board""" validMatches = [] card = myBoard[indexValue] for c in myBoard: if (card[0] == c[0]) and (myBoard.index(c) != indexValue): validMatches.append(myBoard.index(c)) return random.choice(validMatches)
e578f40e7d7e2e17ddac53f9cfdc219e47c861cd
708,129
def _parse_none(arg, fn=None): """Parse arguments with support for conversion to None. Args: arg (str): Argument to potentially convert. fn (func): Function to apply to the argument if not converted to None. Returns: Any: Arguments that are "none" or "0" are converted to None; otherwise, returns the original value. """ if arg.lower() in ("none", "0"): return None return arg if fn is None else fn(arg)
4ebd283eb9e2218e523ba185c4500c9879d5719d
708,135
def get_unique_tokens(texts): """ Returns a set of unique tokens. >>> get_unique_tokens(['oeffentl', 'ist', 'oeffentl']) {'oeffentl', 'ist'} """ unique_tokens = set() for text in texts: for token in text: unique_tokens.add(token) return unique_tokens
f9c174b264082b65a328fd9edf9421e7ff7808a2
708,140
def moved_in(nn_orig, nn_proj, i, k): """Determine points that are neighbours in the projection space, but were not neighbours in the original space. nn_orig neighbourhood matrix for original data nn_proj neighbourhood matrix for projection data i index of the point considered k size of the neighbourhood considered Return a list of indices for points which are 'moved in' to point i """ pp = list(nn_proj[i, 1:k + 1]) oo = list(nn_orig[i, 1:k + 1]) for j in oo: if (j in oo) and (j in pp): pp.remove(j) return pp
b63a9b0f53554032fc920aeaf6d3d76b93dd8ab3
708,141
def scale(val, src, dst): """ Scale the given value from the scale of src to the scale of dst. val: float or int src: tuple dst: tuple example: print(scale(99, (0.0, 99.0), (-1.0, +1.0))) """ return (float(val - src[0]) / (src[1] - src[0])) * (dst[1] - dst[0]) + dst[0]
26cfaccaeea861ccecb36697838710c0ab706520
708,145
def generate_paths(data, path=''): """Iterate the json schema file and generate a list of all of the XPath-like expression for each primitive value. An asterisk * represents an array of items.""" paths = [] if isinstance(data, dict): if len(data) == 0: paths.append(f'{path}') else: for key, val in data.items(): if key == 'type': if isinstance(val, list): types = set(val) else: types = {val} if types.isdisjoint({'object', 'array'}): paths.append(f'{path}') elif key == 'properties': paths.extend(generate_paths(val, path)) else: if key == 'items': key = '*' paths.extend(generate_paths(val, f'{path}/{key}')) return paths
367f244b44c254b077907ff8b219186bd820fccd
708,155
def make1d(u, v, num_cols=224): """Make a 2D image index linear. """ return (u * num_cols + v).astype("int")
1f37c7ae06071ce641561eadc1d0a42a0b74508d
708,158
import copy def permutationwithparity(n): """Returns a list of all permutation of n integers, with its first element being the parity""" if (n == 1): result = [[1,1]] return result else: result = permutationwithparity(n-1) newresult = [] for shorterpermutation in result: for position in range(1,n+1): parity = shorterpermutation[0] for swaps in range(n-position): parity = - parity newpermutation = copy.deepcopy(shorterpermutation) newpermutation.insert(position,n) newpermutation[0] = parity newresult.append(newpermutation) return newresult
218b728c2118a8cca98c019dff036e0ae2593974
708,161
def to_list(obj): """List Converter Takes any object and converts it to a `list`. If the object is already a `list` it is just returned, If the object is None an empty `list` is returned, Else a `list` is created with the object as it's first element. Args: obj (any object): the object to be converted Returns: A list containing the given object """ if isinstance(obj, list): return obj elif isinstance(obj, tuple): return list(obj) elif obj is None: return [] else: return [obj, ]
3ca373867ea3c30edcf7267bba69ef2ee3c7722e
708,163
def train_test_split(df, frac): """ Create a Train/Test split function for a dataframe and return both the Training and Testing sets. Frac refers to the percent of data you would like to set aside for training. """ frac = round(len(df)*frac) train = df[:frac] test = df[frac:] return train, test
8e233e017a261141f57f7b2bff9a527e275d2ed9
708,169
from typing import Dict from typing import Any from typing import Optional def _add_extra_kwargs( kwargs: Dict[str, Any], extra_kwargs: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """ Safely add additional keyword arguments to an existing dictionary Parameters ---------- kwargs : dict Keyword argument dictionary extra_kwargs : dict, default None Keyword argument dictionary to add Returns ------- dict Keyword dictionary with added keyword arguments Notes ----- There is no checking for duplicate keys """ if extra_kwargs is None: return kwargs else: kwargs_copy = kwargs.copy() kwargs_copy.update(extra_kwargs) return kwargs_copy
cfc4c17f608c0b7fe1ae3046dc220d385c890caa
708,171
import torch def exp2(input, *args, **kwargs): """ Computes the base two exponential function of ``input``. Examples:: >>> import torch >>> import treetensor.torch as ttorch >>> ttorch.exp2(ttorch.tensor([-4.0, -1.0, 0, 2.0, 4.8, 8.0])) tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) >>> ttorch.exp2(ttorch.tensor({ ... 'a': [-4.0, -1.0, 0, 2.0, 4.8, 8.0], ... 'b': {'x': [[-2.0, 1.2, 0.25], ... [16.0, 3.75, -2.34]]}, ... })) <Tensor 0x7ff90a4c3af0> ├── a --> tensor([6.2500e-02, 5.0000e-01, 1.0000e+00, 4.0000e+00, 2.7858e+01, 2.5600e+02]) └── b --> <Tensor 0x7ff90a4c3be0> └── x --> tensor([[2.5000e-01, 2.2974e+00, 1.1892e+00], [6.5536e+04, 1.3454e+01, 1.9751e-01]]) """ return torch.exp2(input, *args, **kwargs)
17cbc0917acf19932ec4d3a89de8d78545d02e31
708,179
import pprint import json def tryJsonOrPlain(text): """Return json formatted, if possible. Otherwise just return.""" try: return pprint.pformat( json.loads( text ), indent=1 ) except: return text
2431479abf6ab3c17ea63356ec740840d2d18a74
708,180
def Returns1(target_bitrate, result): """Score function that returns a constant value.""" # pylint: disable=W0613 return 1.0
727e58e0d6d596cf4833ca3ca1cbcec6b9eedced
708,193
import re def error_038_italic_tag(text): """Fix the error and return (new_text, replacements_count) tuple.""" backup = text (text, count) = re.subn(r"<(i|em)>([^\n<>]+)</\1>", "''\\2''", text, flags=re.I) if re.search(r"</?(?:i|em)>", text, flags=re.I): return (backup, 0) else: return (text, count)
b0c2b571ade01cd483a3ffdc6f5c2bbb873cd13c
708,199
def get_A2_const(alpha1, alpha2, lam_c, A1): """Function to compute the constant A2. Args: alpha1 (float): The alpha1 parameter of the WHSCM. alpha2 (float): The alpha2 parameter of the WHSCM. lam_c (float): The switching point between the two exponents of the double power-laws in the WHSCM. A1 (float): The A1 constant of the WHSCM. Returns: A2 (float): The A2 constant of the WHSCM. """ A2 = A1 * (lam_c**(alpha2 - alpha1)) return A2
16fe12e9ef9d72cfe7250cf840e222512409d377
708,205
def unique_list(a_list, unique_func=None, replace=False): """Unique a list like object. - collection: list like object - unique_func: the filter functions to return a hashable sign for unique - replace: the following replace the above with the same sign Return the unique subcollection of collection. Example: data = [(1, 2), (2, 1), (2, 3), (1, 2)] unique_func = lambda x: tuple(sorted(x)) unique(data) -> [(1, 2), (2, 1), (2, 3)] unique(data, unique_func) -> [(1, 2), (2, 3)] unique(data, unique_func, replace=True) -> [(2, 1), (2, 3)] """ unique_func = unique_func or (lambda x: x) result = {} for item in a_list: hashable_sign = unique_func(item) if hashable_sign not in result or replace: result[hashable_sign] = item return list(result.values())
8d7957a8dffc18b82e8a45129ba3634c28dd0d52
708,206
from typing import Sequence from typing import Any def find(sequence: Sequence, target_element: Any) -> int: """Find the index of the first occurrence of target_element in sequence. Args: sequence: A sequence which to search through target_element: An element to search in the sequence Returns: The index of target_element's first occurrence, -1 if it was not found or the sequence is empty """ if not sequence: return -1 try: return sequence.index(target_element) except ValueError: return -1
20edfae45baafa218d8d7f37e0409e6f4868b75d
708,209
def format_non_date(value): """Return non-date value as string.""" return_value = None if value: return_value = value return return_value
9a7a13d7d28a14f5e92920cfef7146f9259315ec
708,214
import functools import math def gcd_multiple(*args) -> int: """Return greatest common divisor of integers in args""" return functools.reduce(math.gcd, args)
c686b9495cd45ff047f091e31a79bedcd61f8842
708,215
from typing import Dict def merge(source: Dict, destination: Dict) -> Dict: """ Deep merge two dictionaries Parameters ---------- source: Dict[Any, Any] Dictionary to merge from destination: Dict[Any, Any] Dictionary to merge to Returns ------- Dict[Any, Any] New dictionary with fields in destination overwritten with values from source """ new_dict = {**destination} for key, value in source.items(): if isinstance(value, dict): # get node or create one node = new_dict.get(key, {}) new_dict[key] = merge(value, node) else: new_dict[key] = value return new_dict
4ffba933fe1ea939ecaa9f16452b74a4b3859f40
708,218
import ast def is_string_expr(expr: ast.AST) -> bool: """Check that the expression is a string literal.""" return ( isinstance(expr, ast.Expr) and isinstance(expr.value, ast.Constant) and isinstance(expr.value.value, str) )
f61418b5671c5e11c1e90fce8d90c583659d40e3
708,220
import re def get_raw_code(file_path): """ Removes empty lines, leading and trailing whitespaces, single and multi line comments :param file_path: path to .java file :return: list with raw code """ raw_code = [] multi_line_comment = False with open(file_path, "r") as f: for row in f: # remove leading and trailing whitespaces line = row.strip() # remove '/* comments */' line = re.sub(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) # remove '//comments' line = re.sub(r''' ^ # start of string // # "//" string .* # any character (except line break) zero or more times $ # end of string ''', '', line, 0, re.VERBOSE) # ignore empty lines if line != '': # skip multi-line comments (/*) if re.search(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times ''', line, re.VERBOSE): multi_line_comment = True continue # check if multi-line comment was closed (*/) elif re.search(r''' .* # any character (except line break) zero or more times \*/ # "*/" string $ # end of string ''', line, re.VERBOSE): multi_line_comment = False line = re.sub(r''' .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) if line == '': continue # add line if it's not multi-line comment if not multi_line_comment: raw_code.append(line) return raw_code
6654a0423f024eaea3067c557984c3aa5e9494da
708,222
import re def format_ipc_dimension(number: float, decimal_places: int = 2) -> str: """ Format a dimension (e.g. lead span or height) according to IPC rules. """ formatted = '{:.2f}'.format(number) stripped = re.sub(r'^0\.', '', formatted) return stripped.replace('.', '')
60001f99b5f107faba19c664f90ee2e9fb61fe68
708,224
def num_in_row(board, row, num): """True if num is already in the row, False otherwise""" return num in board[row]
ca9ab9de4514740e25e0c55f3613d03b2844cdb8
708,225
def mod(a1, a2): """ Function to give the remainder """ return a1 % a2
f5c03a952aed373e43933bafe37dbc75e796b74d
708,227
def encode_string(s): """ Simple utility function to make sure a string is proper to be used in a SQL query EXAMPLE: That's my boy! -> N'That''s my boy!' """ res = "N'"+s.replace("'","''")+"'" res = res.replace("\\''","''") res = res.replace("\''","''") return res
814822b9aa15def24f98b2b280ab899a3f7ea617
708,228
def get_motif_proteins(meme_db_file): """ Hash motif_id's to protein names using the MEME DB file """ motif_protein = {} for line in open(meme_db_file): a = line.split() if len(a) > 0 and a[0] == 'MOTIF': if a[2][0] == '(': motif_protein[a[1]] = a[2][1:a[2].find(')')] else: motif_protein[a[1]] = a[2] return motif_protein
88e42b84314593a965e7dd681ded612914e35629
708,231
def get_book_url(tool_name, category): """Get the link to the help documentation of the tool. Args: tool_name (str): The name of the tool. category (str): The category of the tool. Returns: str: The URL to help documentation. """ prefix = "https://jblindsay.github.io/wbt_book/available_tools" url = "{}/{}.html#{}".format(prefix, category, tool_name) return url
daf6c8e0832295914a03b002b548a82e2949612a
708,237
import hashlib def game_hash(s): """Generate hash-based identifier for a game account based on the text of the game. """ def int_to_base(n): alphabet = "BCDFGHJKLMNPQRSTVWXYZ" base = len(alphabet) if n < base: return alphabet[n] return int_to_base(n // base) + alphabet[n % base] return int_to_base( int(hashlib.sha1(s.encode('utf-8')).hexdigest(), 16) )[-7:]
c218a2607390916117921fe0f68fc23fedd51fc3
708,238
def determine_issues(project): """ Get the list of issues of a project. :rtype: list """ issues = project["Issue"] if not isinstance(issues, list): return [issues] return issues
7b8b670e4ad5a7ae49f3541c87026dd603406c9f
708,245
def genus_species_name(genus, species): """Return name, genus with species if present. Copes with species being None (or empty string). """ # This is a simple function, centralising it for consistency assert genus and genus == genus.strip(), repr(genus) if species: assert species == species.strip(), repr(species) return f"{genus} {species}" else: return genus
1fed57c5c87dfd9362262a69429830c7103b7fca
708,247
def N(u,i,p,knots): """ u: point for which a spline should be evaluated i: spline knot p: spline order knots: all knots Evaluates the spline basis of order p defined by knots at knot i and point u. """ if p == 0: if knots[int(i)] < u and u <=knots[int(i+1)]: return 1.0 else: return 0.0 else: try: k = ((float((u-knots[int(i)])) / float((knots[int(i+p)] - knots[int(i)]) )) * N(u,i,p-1,knots)) except ZeroDivisionError: k = 0.0 try: q = ((float((knots[int(i+p+1)] - u)) / float((knots[int(i+p+1)] - knots[int(i+1)]))) * N(u,i+1,p-1,knots)) except ZeroDivisionError: q = 0.0 return float(k + q)
0cd0756d558ee99b0ed32350860bc27f023fa88b
708,248
def is_sim_f(ts_kname): """ Returns True if the TSDist is actually a similarity and not a distance """ return ts_kname in ('linear_allpairs', 'linear_crosscor', 'cross_correlation', 'hsdotprod_autocor_truncated', 'hsdotprod_autocor_cyclic')
11c18983d8d411714ba3147d4734ad77c40ceedf
708,253
def modify_color(hsbk, **kwargs): """ Helper function to make new colors from an existing color by modifying it. :param hsbk: The base color :param hue: The new Hue value (optional) :param saturation: The new Saturation value (optional) :param brightness: The new Brightness value (optional) :param kelvin: The new Kelvin value (optional) """ return hsbk._replace(**kwargs)
ecc5118873aaf0e4f63bad512ea61d2eae0f7ead
708,258
def get_diff_list(small_list, big_list): """ Get the difference set of the two list. :param small_list: The small data list. :param big_list: The bigger data list. :return: diff_list: The difference set list of the two list. """ # big_list有而small_list没有的元素 diff_list = list(set(big_list).difference(set(small_list))) return diff_list
f92d20e6edd1f11ca6436a3ada4a6ba71da37457
708,267
def get_common_count(list1, list2): """ Get count of common between two lists :param list1: list :param list2: list :return: number """ return len(list(set(list1).intersection(list2)))
c149b49e36e81237b775b0de0f19153b5bcf2f99
708,275
def parse_mimetype(mimetype): """Parses a MIME type into its components. :param str mimetype: MIME type :returns: 4 element tuple for MIME type, subtype, suffix and parameters :rtype: tuple Example: >>> parse_mimetype('text/html; charset=utf-8') ('text', 'html', '', {'charset': 'utf-8'}) """ if not mimetype: return '', '', '', {} parts = mimetype.split(';') params = [] for item in parts[1:]: if not item: continue key, value = item.split('=', 1) if '=' in item else (item, '') params.append((key.lower().strip(), value.strip(' "'))) params = dict(params) fulltype = parts[0].strip().lower() if fulltype == '*': fulltype = '*/*' mtype, stype = fulltype.split('/', 1) \ if '/' in fulltype else (fulltype, '') stype, suffix = stype.split('+', 1) if '+' in stype else (stype, '') return mtype, stype, suffix, params
a9abfde73528e6f76cca633efe3d4c881dccef82
708,282
import operator def calculate_seat_district(district_deputy_number, parties, votes): """ Calculate seats for each party in list of parties for a district Params: - district_deputy_number: the number of seats for this district - parties: list of parties - votes: list of votes for each party in this district Assume that parties and votes parameters have the same size Return: - A tuple represents number of seats for each party. This tuple has same size with parameter 'parties' """ party_count = len(parties) # Each party has been initially allocated 0 seat # Initialize a list with initial value is 0 # For example, if party_count = 5 # seats will be seats = [0, 0, 0, 0, 0] seats = [0] * party_count # N value for each party # N= V/(s + 1) # Init N as a copy of votes list N = votes[:] while sum(seats) < district_deputy_number: # Get the maximum value in list of N value and the index of that maximum value # Note: this below line uses the Python's builtin operator max_index, max_value = max(enumerate(N), key=operator.itemgetter(1)) # Update the seats list # increase the seat of the party that has maximum by 1 seats[max_index] += 1 # Update the lagest N with new value # using the formal: N= V/(s + 1) N[max_index] = votes[max_index] / (seats[max_index] + 1) # return as tuple # Note: It can be returned as list, however, the tuple is better because it's immutable return tuple(seats)
035a167c623d14857dcefe01e4304523959857a6
708,287
def get_clean_url(url): """ Get a url without the language part, if i18n urls are defined :param url: a string with the url to clean :return: a string with the cleaned url """ url = url.strip('/') url = '/' if not url else url return '/'.join(url.split('/')[1:])
9e5d396086d6cc5169c26f6d1645dafd23a3b8d7
708,288
from datetime import datetime def cid_to_date(cid): """Converts a cid to date string YYYY-MM-DD Parameters ---------- cid : int A cid as it is generated by the function ``utils.create_cid()`` Returns ------- str A string formated date (e.g. YYYY-MM-DD, 2018-10-01) """ return datetime.utcfromtimestamp( cid/10000000.0 ).strftime("%Y-%m-%d")
ab919f9cfd5c56f6fb6b65cbae8731687fc42faf
708,289
def get_num_channels(inputs): """ Get number of channels in one tensor. """ return inputs.shape[1]
6fb42e60714dc81f03b29ad87b73b41027056472
708,295
import math def round_vzeros(v,d=10) : """Returns input vector with rounded to zero components which precision less than requested number of digits. """ prec = pow(10,-d) vx = v[0] if math.fabs(v[0]) > prec else 0.0 vy = v[1] if math.fabs(v[1]) > prec else 0.0 vz = v[2] if math.fabs(v[2]) > prec else 0.0 return vx,vy,vz
aa16175bf1176383ef255460767502104be2566e
708,296
def get_specific_label_dfs(raw_df, label_loc): """ Purpose: Split the instances of data in raw_df based on specific labels/classes and load them to a dictionary structured -> label : Pandas Dataframe Params: 1. raw_df (Pandas Dataframe): - The df containing data 2. label_loc (String): - The location where the output labels are stored in 1. raw_df Returns: A dictionary structured -> label : Pandas Dataframe """ labels = list(raw_df[label_loc].unique()) # a list of dataframes storing only instances of data belonging to one specific class/label label_dataframes = {} for label in labels: label_dataframes[label] = raw_df.loc[raw_df[label_loc] == label] return label_dataframes
756f03f845da64f6fd5534fb786966edb8610a13
708,298
def user_dss_clients(dss_clients, dss_target): """ Fixture that narrows down the dss clients to only the ones that are relevant considering the curent DSS target. Args: dss_clients (fixture): All the instanciated dss client for each user and dss targets dss_target (fixture): The considered DSS target for the test to be executed Returns: A dict of dss client instances for the current DSS target and each of its specified users. """ return dss_clients[dss_target]
7d418b49b68d7349a089046837f3c8351c0dcc67
708,306