content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def square(root):
"""This function calculates the square of the argument value"""
# result = num * num
return root * root | 54049a92a0383c756911a4604161e092d496ce62 | 7,248 |
import string
from typing import Counter
def letter_frequency(seq):
"""Returns a dictionary with the frequencies of letters in the sequence"""
freq = filter(lambda x: x in string.ascii_letters, seq.lower())
freq = dict(Counter(freq).most_common())
freq.update(dict((x, 0) for x in filter(lambda x: x not in freq, string.ascii_lowercase)))
return freq | bcbf61526c395bc8df36bf7b3a7a37b25dbe1aba | 7,249 |
def process_map_input(input_lines):
"""
Find the dimensions of a map using the lines of input
:param input_lines: List of string representing the map
:return: (x: width, y: height) Tuple
"""
height = len(input_lines) - 1
width = len(input_lines[0])
return width, height | 30662e1466d6d553ddee797c6252453c6f6f7f47 | 7,252 |
from datetime import datetime
def get_es_index_name(project, meta):
"""
Get the name for the output ES index
:param project: seqr project identifier
:param meta: index metadata
:return: index name
"""
return '{project}__structural_variants__{sample_type}__grch{genome_version}__{datestamp}'.format(
project=project,
sample_type=meta['sampleType'],
genome_version=meta['genomeVersion'],
datestamp=datetime.today().strftime('%Y%m%d'),
).lower() | fc1245287aed07ddd8d90f33cadc095c22f944a3 | 7,256 |
def RegexCheck(re, line_number, line, regex, msg):
"""Searches for |regex| in |line| to check for a particular style
violation, returning a message like the one below if the regex matches.
The |regex| must have exactly one capturing group so that the relevant
part of |line| can be highlighted. If more groups are needed, use
"(?:...)" to make a non-capturing group. Sample message:
line 6: Use var instead of const.
const foo = bar();
^^^^^
"""
def _highlight(match):
"""Takes a start position and a length, and produces a row of '^'s to
highlight the corresponding part of a string.
"""
return match.start(1) * ' ' + (match.end(1) - match.start(1)) * '^'
match = re.search(regex, line)
if match:
assert len(match.groups()) == 1
return ' line %d: %s\n%s\n%s' % (line_number, msg, line, _highlight(match))
return '' | 31e979570eb4e0b251f445555f24fadef8e6879d | 7,258 |
from typing import Union
from typing import List
def count(obj: Union[int, List]) -> int:
"""Return the number of integers in obj.
>>> count(27)
1
>>> count([4, 1, 8])
3
>>> count([4])
1
>>> count([])
0
>>> count([4, [1, 2, 3], 8])
5
>>> count([1, [2, 3], [4, 5, [6, 7], 8]])
8
"""
if isinstance(obj, int):
return 1
else:
return sum(count(i) for i in obj)
# if isinstance(obj, int):
# return 1
# else:
# s = 0
# for lst_i in obj:
# s += count(lst_i)
# return s | d982b3096dc9c7776b32bab765e2a17769d128e9 | 7,263 |
def _single_quote_string(name: str) -> str: # pragma: no cover
"""Single quote a string to inject it into f-strings, since backslashes cannot be in double f-strings."""
return f"'{name}'" | 39868168862f3bd60d8da6168503cbc51fcbda84 | 7,264 |
def convert_str_version_number(version_str):
"""
Convert the version number as a integer for easy comparisons
:param version_str: str of the version number, e.g. '0.33'
:returns: tuple of ints representing the version str
"""
version_numbers = version_str.split('.')
if len(version_numbers) != 2:
raise ValueError(f"Version number is malformed: '{version_str}'")
return tuple(int(part) for part in version_numbers) | b550b7d07d9b226800de261f792bf0995ac21738 | 7,265 |
def create_virtual_cdrom_spec(client_factory,
datastore,
controller_key,
file_path,
cdrom_unit_number):
"""Builds spec for the creation of a new Virtual CDROM to the VM."""
config_spec = client_factory.create(
'ns0:VirtualDeviceConfigSpec')
config_spec.operation = "add"
cdrom = client_factory.create('ns0:VirtualCdrom')
cdrom_device_backing = client_factory.create(
'ns0:VirtualCdromIsoBackingInfo')
cdrom_device_backing.datastore = datastore
cdrom_device_backing.fileName = file_path
cdrom.backing = cdrom_device_backing
cdrom.controllerKey = controller_key
cdrom.unitNumber = cdrom_unit_number
cdrom.key = -1
connectable_spec = client_factory.create('ns0:VirtualDeviceConnectInfo')
connectable_spec.startConnected = True
connectable_spec.allowGuestControl = False
connectable_spec.connected = True
cdrom.connectable = connectable_spec
config_spec.device = cdrom
return config_spec | 8f62c70c432c368f0f94b3c1dc48f38d75093b07 | 7,270 |
def plot_mean_and_CI(axes, mean, lb, ub, label, freqs, linestyle='-'):
""" Plot mean and confidence boundaries.
Args:
axes: plt.axes
mean: np.ndarray
lb: np.ndarray
ub: np.ndarray
label: string
freqs: list
linestyle: string
Returns: plt.axes
"""
axes.fill_between(freqs, ub, lb, alpha=.25)
axes.plot(freqs, mean, label=label, marker = 'o', linestyle=linestyle)
return axes | 77b7ecaa6dddae474495c0a65efafbf08717584c | 7,273 |
def overlap_slices(large_array_shape, small_array_shape, position):
"""
Modified version of `~astropy.nddata.utils.overlap_slices`.
Get slices for the overlapping part of a small and a large array.
Given a certain position of the center of the small array, with
respect to the large array, tuples of slices are returned which can be
used to extract, add or subtract the small array at the given
position. This function takes care of the correct behavior at the
boundaries, where the small array is cut of appropriately.
Parameters
----------
large_array_shape : tuple
Shape of the large array.
small_array_shape : tuple
Shape of the small array.
position : tuple
Position of the small array's center, with respect to the large array.
Coordinates should be in the same order as the array shape.
Returns
-------
slices_large : tuple of slices
Slices in all directions for the large array, such that
``large_array[slices_large]`` extracts the region of the large array
that overlaps with the small array.
slices_small : slice
Slices in all directions for the small array, such that
``small_array[slices_small]`` extracts the region that is inside the
large array.
"""
# Get edge coordinates
edges_min = [int(pos - small_shape // 2) for (pos, small_shape) in
zip(position, small_array_shape)]
edges_max = [int(pos + (small_shape - small_shape // 2)) for
(pos, small_shape) in
zip(position, small_array_shape)]
# Set up slices
slices_large = tuple(slice(max(0, edge_min), min(large_shape, edge_max))
for (edge_min, edge_max, large_shape) in
zip(edges_min, edges_max, large_array_shape))
slices_small = tuple(slice(max(0, -edge_min),
min(large_shape - edge_min,
edge_max - edge_min))
for (edge_min, edge_max, large_shape) in
zip(edges_min, edges_max, large_array_shape))
return slices_large, slices_small | ef86928b3ef619f209247bb72e2e391d14d541c4 | 7,277 |
import torch
def create_batch(sentences, params, dico):
""" Convert a list of tokenized sentences into a Pytorch batch
args:
sentences: list of sentences
params: attribute params of the loaded model
dico: dictionary
returns:
word_ids: indices of the tokens
lengths: lengths of each sentence in the batch
"""
bs = len(sentences)
slen = max([len(sent) for sent in sentences])
word_ids = torch.LongTensor(slen, bs).fill_(params.pad_index)
for i in range(len(sentences)):
sent = torch.LongTensor([dico.index(w) for w in sentences[i]])
word_ids[:len(sent), i] = sent
lengths = torch.LongTensor([len(sent) for sent in sentences])
return word_ids, lengths | c08430651ea20f633169187f62f7b22e09bbd17e | 7,283 |
from typing import List
def make_pos_array_and_diff(trials: List[dict]) -> List[dict]:
"""
Parameters
----------
trials : Non-filtered refinement trials
Returns
-------
A list of dictionaries with updated position and difference of neighbours
"""
_trials = trials[:]
for i, c in enumerate(trials):
x_array = sorted([d['pos'] for d in trials[i]['comb']])
_trials[i]['pos_array'] = x_array
_trials[i]['diff_array'] = [x_array[i] - x_array[i + 1] for i in range(len(x_array) - 1)]
# print(x_array)
# print(len(trials))
# trials[i]['comb']
return _trials | ebdb0a63d9399985d11b06ec28d4032a54b22f89 | 7,284 |
def get_ast_field_name(ast):
"""Return the normalized field name for the given AST node."""
replacements = {
# We always rewrite the following field names into their proper underlying counterparts.
'__typename': '@class'
}
base_field_name = ast.name.value
normalized_name = replacements.get(base_field_name, base_field_name)
return normalized_name | c5cf0acbca963e7dc0d853064a2599b732d6b0d1 | 7,287 |
def olivine(piezometer=None):
""" Data base for calcite piezometers. It returns the material parameter,
the exponent parameter and a warn with the "average" grain size measure to be use.
Parameter
---------
piezometer : string or None
the piezometric relation
References
----------
| Jung and Karato (2001) https://doi.org/10.1016/S0191-8141(01)00005-0
| Van der Wal et al. (1993) https://doi.org/10.1029/93GL01382
Assumptions
-----------
- The piezometer of Van der Wal (1993) requires entering the linear mean apparent
grain size in microns calculated from equivalent circular diameters (ECD) with no
stereological correction. The function will convert automatically this value to
linear intercept (LI) grain size using the De Hoff and Rhines (1968) correction.
It is assumed that LI was multiplied by 1.5 (correction factor), the final relation
is: LI = (1.5 / sqrt(4/pi)) * ECD
- The piezometer of Jung and Karato (2001) requires entering the linear mean
apparent grain size in microns calculated from equivalent circular diameters
(ECD) with no stereological correction. The function will convert automatically
this value to linear intercept (LI) grain size using the De Hoff and Rhines
(1968) empirical equation. Since LI was originally multiplied by 1.5 (correction
factor), the final relation is: LI = (1.5 / sqrt(4/pi)) * ECD
"""
if piezometer is None:
print('Available piezometers:')
print("'Jung_Karato'")
print("'VanderWal_wet'")
print("'Tasaka_wet'")
return None
elif piezometer == 'Jung_Karato':
B, m = 5461.03, 0.85
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = True
correction_factor = 1.5
elif piezometer == 'VanderWal_wet':
B, m = 1355.4, 0.75
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = True
correction_factor = 1.5
elif piezometer == 'Tasaka_wet':
B, m = 719.7, 0.75
warn = 'Ensure that you entered the apparent grain size as the arithmetic mean in linear scale'
linear_interceps = False
correction_factor = 1.2
else:
olivine()
raise ValueError('Piezometer name misspelled. Please choose between valid piezometers')
return B, m, warn, linear_interceps, correction_factor | 387ea9413acdf551abe108ba5ba7dda51e162c51 | 7,288 |
from typing import Tuple
import re
import typing
def hex_to_rgb(hex: str, hsl: bool = False) -> Tuple[int, int, int]:
"""Converts a HEX code into RGB or HSL.
Taken from https://stackoverflow.com/a/62083599/7853533
Args:
hex (str): Takes both short as well as long HEX codes.
hsl (bool): Converts the given HEX code into HSL value if True.
Returns:
Tuple[int, int, int]: Tuple of RGB values.
Raises:
ValueError: If given value is not a valid HEX code.
"""
if re.compile(r"#[a-fA-F0-9]{3}(?:[a-fA-F0-9]{3})?$").match(hex):
div = 255 if hsl else 0
if len(hex) <= 4:
rgb = tuple(
int(int(hex[i] * 2, 16) / div) if div else int(hex[i] * 2, 16)
for i in (1, 2, 3)
)
else:
rgb = tuple(
int(int(hex[i : i + 2], 16) / div) if div else int(hex[i : i + 2], 16)
for i in (1, 3, 5)
)
rgb = typing.cast(Tuple[int, int, int], rgb)
return rgb
raise ValueError(f"{hex} is not a valid HEX code.") | 2c912dacfcf6c52c21c94c5d7bb9b9763279245d | 7,290 |
def filter_rows_via_column_matching(data, column, index=0):
"""
Filter data, by keeping rows whose particular field index matches the
column criteria
It takes parameters:
data (data in the form of a list of lists)
column (used as the match criteria for a particular field of the data)
and optionally:
index (by default 0, it is the data field used to match against column)
Note that column can be many iterables, but probably ought to be a set
It returns a filtered list of lists
"""
return [ row for row in data if row[index] in column ] | fcd5548677290a34d94c2eb8d5fefcb2bb50f0b4 | 7,295 |
import re
def _normalize_name(name: str) -> str:
"""
Normalizes the given name.
"""
return re.sub(r"[^a-zA-Z0-9.\-_]", "_", name) | b38a90c05b0a6ec5a26db6d0da85bed2ae802cea | 7,296 |
def filter_claims_by_date(claims_data, from_date, to_date):
"""Return claims falling in the specified date range."""
return [
claim for claim in claims_data
if (from_date <= claim.clm_from_dt <= to_date)
] | d1568d0fd52382bdb3f1f02414f591d5f4da3596 | 7,297 |
import json
def encode_json(struct):
"""Encode a structure as JSON bytes."""
return bytes(json.dumps(struct), "utf-8") | 6724c0a687a98230a32fef81b3a4447c12d164fc | 7,302 |
def _float(value):
"""Return env var cast as float."""
return float(value) | 254b1e3a542c5a74153cd58d3f43e86dab964028 | 7,308 |
def isjsonclass(class_: type) -> bool:
"""Check if a class is jsonclass.
Args:
class_ (type): The class to check.
Returns:
bool: True if it's a jsonclass, otherwise False.
"""
return hasattr(class_, '__is_jsonclass__') | 3234cf62beb03aa968888dd8ec3b65f4c5f4cab3 | 7,312 |
def needs_min_max_values(mode, buckets):
"""
Returns True, if an encoding mode needs minimum and maximum column values, otherwise False
"""
return not buckets and mode in ['one-hot',
'one-hot-gaussian',
'one-hot-gaussian-fluent',
'unary',
'unary-gaussian',
'unary-gaussian-fluent'] | 50ae2b899e5957347061dd59905290506c460093 | 7,317 |
import re
def remove_plus_signs(_s: str) -> str:
"""Removes plus signs from string"""
return re.sub(pattern=r'\+', repl=r'', string=_s) | 53cf3117221ce82578a20d75e7eb807c2d41b8fc | 7,319 |
def Intersection(S1x, S1y, D1x, D1y, S2x, S2y, D2x, D2y):
"""
Find intersection of 2 line segments
:param S1x: x coordinate of segment 1's start point
:param S1y: y coordinate of segment 1's start point
:param D1x: x coordinate of segment 1's end point
:param D1y: y coordinate of segment 1's end point
:param S2x: x coordinate of segment 2's start point
:param S2y: y coordinate of segment 2's start point
:param D2x: x coordinate of segment 2's end point
:param D2y: y coordinate of segment 2's end point
:return: Intersection point [x,y]
"""
if ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x)) == 0:
return [None, None]
else:
x = ((S2x - D2x) * (((D1y - S1y) * (S1x) + (S1x - D1x) * (S1y))) - (S1x - D1x) * ((D2y - S2y) * (S2x) + (S2x - D2x) * (S2y))) / ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x))
y = ((D1y - S1y) * ((D2y - S2y) * (S2x) + (S2x - D2x) * (S2y)) - (D2y - S2y) * (((D1y - S1y) * (S1x) + (S1x - D1x) * (S1y)))) / ((D1y - S1y) * (S2x - D2x) - (D2y - S2y) * (S1x - D1x))
return [x,y] | 2dba8839ebf24b55fe3c1b7797e53c7e0c3ed72a | 7,321 |
def collect_nodes(points, highlighted_nodes=[], color='#79FF06', highlighted_color='blue', width=200, highlighted_width=400):
"""
Собирает необходимые нам вершины в нужный формат
Parameters
----------
points : [str, str, ...]
Вершины графа.
highlighted_nodes : [str, str, ...], optional
Выделенные вершины графа.
По умолчанию [].
color : str, optional
Цвет обычных вершин.
По умолчанию '#79FF06'.
highlighted_color : str, optional
Цвет выделенных вершин.
По умолчанию 'blue'.
width : int, optional
Ширина обычных вершин.
По умолчанию 200.
highlighted_width : int, optional
Ширина выделенных вершин.
По умолчанию 400.
Returns
-------
result : [(str, {'color': str, 'width': int}),
(str, {'color': str, 'width': int}),
...]
Список вершин с их параметрами.
"""
result = []
for p in points:
if p in highlighted_nodes:
result.append((p, {"color": highlighted_color, "width": highlighted_width}))
else:
result.append((p, {"color": color, "width": width}))
return result | a3a218b5f8c8c25a0f13a4154f12779a84726f9d | 7,324 |
import io
def read_txt(filename, encoding='utf-8'):
"""Text file reader."""
with io.open(filename, 'r', encoding=encoding) as f:
return f.read() | 2ca0d80bddc49b793e8cbc63c513410154b4d460 | 7,326 |
def get_job_type(name):
"""Returns job type based on its name."""
if 'phase1' in name:
return 'phase1'
elif 'phase2' in name:
return 'phase2'
elif 'dfg' in name:
return 'dfg'
else:
return 'other' | 50db4a7833028b0a0944a4b915d82a8cabf91595 | 7,327 |
def is_resnet(name):
"""
Simply checks if name represents a resnet, by convention, all resnet names start with 'resnet'
:param name:
:return:
"""
name = name.lower()
return name.startswith('resnet') | 6310d849b76a1006c7c2e97405aa9f0ebc53a78b | 7,328 |
def first_existing(d, keys):
"""Returns the value of the first key in keys which exists in d."""
for key in keys:
if key in d:
return d[key]
return None | eb9f34f1f5adb0a8e44127fe777e35ca8d36dc04 | 7,336 |
def VerboseCompleter(unused_self, event_object):
"""Completer function that suggests simple verbose settings."""
if '-v' in event_object.line:
return []
else:
return ['-v'] | e536e221f8f3465f72071d969b11b6623359cf58 | 7,342 |
def gauss_to_tesla(gauss):
"""Converts gauss to tesla"""
return gauss*1e-4 | 4f0239432a3436fd5c6cad4ae9747c8849289f34 | 7,347 |
def createKey(problemData):
"""
Creates the key for a given 'problemData' list of number
of item types.
"""
key = ''
for itData in problemData:
key += str(itData) + ','
# Remove the last comma
return key[:-1] | 420a4e96dc6442ba2ae18f4bca3d8a10f8a19284 | 7,348 |
def get_hashtag_spans(tokens):
"""
Finds the spans (start, end) of subtokes in a list of tokens
Args:
tokens: list[str]
Returns:
spans: list[tuple[int]]
"""
is_part = ["##" in t for t in tokens]
spans = []
pos_end = -1
for pos_start, t in enumerate(is_part):
if pos_start <= pos_end:
continue
if t:
last_pos = len(is_part[pos_start:]) - 1
for j, t_end in enumerate(is_part[pos_start:]):
if not t_end:
pos_end = pos_start + j
break
if j == last_pos:
pos_end = pos_start + j + 1
spans.append((pos_start, pos_end))
return spans | 2e70466370e1171a2d29636d13c908c2e8b8e30e | 7,353 |
def roundToNearest(number, nearest):
""" Rounds a decimal number to the closest value, nearest, given
Arguments:
number: [float] the number to be rounded
nearest: [float] the number to be rouned to
Returns:
rounded: [float] the rounded number
"""
A = 1/nearest
rounded = round(number*A)/A
return rounded | 5f3974611b529e93ae8157182ff8b7dbc100a234 | 7,354 |
def compare_dict_keys(d1, d2):
"""
Returns [things in d1 not in d2, things in d2 not in d1]
"""
return [k for k in d1 if not k in d2], [k for k in d2 if not k in d1] | 4b68c06d1598e325c5baa5ad8eefaa7af1e82d27 | 7,356 |
def project_name(settings_dict):
"""Transform the base module name into a nicer project name
>>> project_name({'DF_MODULE_NAME': 'my_project'})
'My Project'
:param settings_dict:
:return:
"""
return " ".join(
[
x.capitalize()
for x in settings_dict["DF_MODULE_NAME"].replace("_", " ").split()
]
) | 07411942978ad769d25234f8c7286aaddc365470 | 7,359 |
def parse_config_vars(config_vars):
"""Convert string descriptions of config variable assignment into
something that CrossEnvBuilder understands.
:param config_vars: An iterable of strings in the form 'FOO=BAR'
:returns: A dictionary of name:value pairs.
"""
result = {}
for val in config_vars:
try:
name, value = val.split('=', 1)
except ValueError:
raise ValueError("--config-var must be of the form FOO=BAR")
result[name] = value
return result | 1bc1b96b6a2b0bf8e42fca0bb4ee9601c883b124 | 7,360 |
def add_malicious_key(entity, verdict):
"""Return the entity with the additional 'Malicious' key if determined as such by ANYRUN
Parameters
----------
entity : dict
File or URL object.
verdict : dict
Task analysis verdict for a detonated file or url.
Returns
-------
dict
The modified entity if it was malicious, otherwise the original entity.
"""
threat_level_text = verdict.get('threatLevelText', '')
if threat_level_text.casefold() == 'malicious activity':
entity['Malicious'] = {
'Vendor': 'ANYRUN',
'Description': threat_level_text
}
return entity | a20ba12ae04d09047f228a26ef6f39e334225cb3 | 7,362 |
from typing import Counter
def count_terms(terms: list) -> dict:
"""
Count the number of terms
:param terms: term list
:return dict_term: The dictionary containing terms and their numbers
"""
entity_dict = dict(Counter(terms))
print('There are %s entities in total.\n' % entity_dict.__len__())
# print({key: value for key, value in entity_dict.items()})
return entity_dict | 77e362894fbbae3d0cec99daea845734d30e8a2d | 7,364 |
def pretty_duration(seconds):
"""Return a pretty duration string
Parameters
----------
seconds : float
Duration in seconds
Examples
--------
>>> pretty_duration(2.1e-6)
'0.00ms'
>>> pretty_duration(2.1e-5)
'0.02ms'
>>> pretty_duration(2.1e-4)
'0.21ms'
>>> pretty_duration(2.1e-3)
'2.1ms'
>>> pretty_duration(2.1e-2)
'21ms'
>>> pretty_duration(2.1e-1)
'0.21s'
>>> pretty_duration(2.1)
'2.10s'
>>> pretty_duration(12.1)
'12.1s'
>>> pretty_duration(22.1)
'22s'
>>> pretty_duration(62.1)
'1:02'
>>> pretty_duration(621.1)
'10:21'
>>> pretty_duration(6217.1)
'1:43:37'
"""
miliseconds = seconds * 1000
if miliseconds < 1:
return "{:.2f}ms".format(miliseconds)
elif miliseconds < 10:
return "{:.1f}ms".format(miliseconds)
elif miliseconds < 100:
return "{:.0f}ms".format(miliseconds)
elif seconds < 10:
return "{:.2f}s".format(seconds)
elif seconds < 20:
return "{:.1f}s".format(seconds)
elif seconds < 60:
return "{:.0f}s".format(seconds)
else:
minutes = seconds // 60
seconds = int(seconds - minutes * 60)
if minutes < 60:
return "{minutes:.0f}:{seconds:02}".format(**locals())
else:
hours = minutes // 60
minutes = int(minutes - hours * 60)
return "{hours:.0f}:{minutes:02}:{seconds:02}".format(**locals()) | ceec602cb07ab5c27831c4ed9e1cd552c5b9dde8 | 7,365 |
def getsize(datadescriptor):
"""Get the size of a data descriptor tuple."""
if datadescriptor[0] == 'reg':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'mem':
size = datadescriptor[1][1]
elif datadescriptor[0] == 'heap':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'perp':
size = datadescriptor[1][2]
elif datadescriptor[0] == 'pmem':
size = datadescriptor[1][2]
else:
return (15, "Not a supported destination type.")
return (0, size) | feaaa9d0698b58649a55c53ba399a46ba81520b6 | 7,375 |
def to_lowercase(word_list):
"""Convert all characters to lowercase from list of tokenized word_list
Keyword arguments:
word_list: list of words
"""
lowercase_word_list = [word.lower() for word in word_list]
return lowercase_word_list | 025e3edaa79723f8656d10a8d52fe16a402644ae | 7,379 |
def _generate_csv_header_line(*, header_names, header_prefix='', header=True, sep=',', newline='\n'):
"""
Helper function to generate a CSV header line depending on
the combination of arguments provided.
"""
if isinstance(header, str): # user-provided header line
header_line = header + newline
else:
if not (header is None or isinstance(header, bool)):
raise ValueError(f"Invalid value for argument `header`: {header}")
else:
if header:
header_line = header_prefix + sep.join(header_names) + newline
else:
header_line = ""
return header_line | b9a7f32404a432d2662c43f4fe6444241698bf37 | 7,383 |
def filter_labeled_genes(genes):
"""Filter genes which already have a label and return number of labels.
Args:
genes(dict): dictionary of genes {g_name: gene object}
Returns:
dict: dictionary of genes without label {g_name: gene object}
int: number of distinct labels in the set of labeled genes
"""
unlabeled_genes = {}
labels = set()
for g_name, gene in genes.items():
if not gene.plot_label:
unlabeled_genes[g_name] = gene
else:
labels.add(gene.plot_labelID)
num_labels = len(labels)
return unlabeled_genes, num_labels | 4d50580a07ad6825b4c28e7c91780f1964568056 | 7,384 |
def get_floss_params(str_floss_options, filename):
"""Helper routine to build the list of commandline parameters to pass to Floss."""
# First parameter is the name of the Floss "main" routine.
list_floss_params = ['main']
# Add the options from app.config
list_options = str_floss_options.split(",")
for option in list_options:
list_floss_params.append(option)
# Add the filename of the binary file.
list_floss_params.append(filename)
return list_floss_params | e637c25d299c8217fef31b85a2610ec46e53d1f3 | 7,385 |
def is_leap_year(year: int) -> bool:
"""Whether or not a given year is a leap year.
If year is divisible by:
+------+-----------------+------+
| 4 | 100 but not 400 | 400 |
+======+=================+======+
| True | False | True |
+------+-----------------+------+
Args:
year (int): The year in question
Returns:
bool: True if year is a leap year, false otherwise
"""
def is_div(x: int) -> bool:
return year % x == 0
return is_div(4) and ((not is_div(100)) or is_div(400)) | e4cca9a2b9f0475aadc763fed679eee8b5dddc4a | 7,387 |
def borders(district, unit):
"""Check if a unit borders a district."""
if district == []:
return True
neighbour_coords = [(unit.x+i, unit.y+j) for i in [1, 0, -1]
for j in [1, 0, -1] if bool(i) ^ bool(j)]
district_coords = [(d_unit.x, d_unit.y) for d_unit in district]
return bool([i for i in neighbour_coords if i in district_coords]) | d95bf55b54f0df63980236def80610dcdc6cbfeb | 7,389 |
def soft_crossentropy(predicted_logprobs, target_probs):
"""
Cross-entropy loss capable of handling soft target probabilities.
"""
return -(target_probs * predicted_logprobs).sum(1).mean(0) | 8f6f0168c67cd0b3f432a5c91c7f4069c54de7c8 | 7,396 |
def tflops_per_second(flops, dt):
""" Computes an effective processing rate in TFLOPS per second.
TFLOP/S = flops * / (dt * 1E12)
Args:
flops: Estimated FLOPS in the computation.
dt: Elapsed time in seconds.
Returns:
The estimate.
"""
return flops / (1E12 * dt) | f244632e1378a69ea55d4a994a9711bd3a2dca2a | 7,399 |
def is_valid(value, cast_fn, expected_data_type, allow_none=False):
"""
Checks whether a value can be converted using the cast_fn function.
Args:
value: Value to be considered
cast_fn: Function used to determine the validity, should throw an
exception if it cannot
expected_data_type: string name of the expected data
allow_none: Boolean determining if none is valid
Returns:
tuple:
**valid (boolean)**: whether it could be casted
**msg (string)**: Msg reporting what happen
"""
try:
# Check for a non-none value
if str(value).lower() != 'none':
value = cast_fn(value)
valid = True
msg = None
# Handle the error for none when not allowed
elif not allow_none and str(value).lower() == 'none':
valid = False
msg = 'Value cannot be None'
# Report all good for nones when they are allowed
else:
valid = True
msg = None
# Report an exception when the casting goes bad.
except Exception:
valid = False
msg = "Expecting {0} received {1}".format(expected_data_type,
type(value).__name__)
return valid, msg | ee1a2aca4ba7d437692f5025901f9bf94031434a | 7,404 |
def v_relative(v, met):
"""Estimates the relative air speed which combines the average air speed of
the space plus the relative air speed caused by the body movement. Vag is assumed to
be 0 for metabolic rates equal and lower than 1 met and otherwise equal to
Vag = 0.3 (M – 1) (m/s)
Parameters
----------
v : float
air speed measured by the sensor, [m/s]
met : float
metabolic rate, [met]
Returns
-------
vr : float
relative air speed, [m/s]
"""
if met > 1:
return round(v + 0.3 * (met - 1), 3)
else:
return v | 6dceae6ec076dc800d2aa3e80d7d491d94830580 | 7,407 |
def fully_qualified_name(entry):
"""
Calculates the fully qualified name for an entry by walking the path
to the root node.
Args:
entry: a BeautifulSoup Tag corresponding to an <entry ...> XML node,
or a <clone ...> XML node.
Raises:
ValueError: if entry does not correspond to one of the above XML nodes
Returns:
A string with the full name, e.g. "android.lens.info.availableApertureSizes"
"""
filter_tags = ['namespace', 'section']
parents = [i['name'] for i in entry.parents if i.name in filter_tags]
if entry.name == 'entry':
name = entry['name']
elif entry.name == 'clone':
name = entry['entry'].split(".")[-1] # "a.b.c" => "c"
else:
raise ValueError("Unsupported tag type '%s' for element '%s'" \
%(entry.name, entry))
parents.reverse()
parents.append(name)
fqn = ".".join(parents)
return fqn | 68119b640509cd972770f810b80ba1a2ad54f688 | 7,408 |
import re
def shorten_int_name(interface_name):
"""
Returns the Cisco shortened interface name from a full one.
If the full interface name is invalid, this will return None
"""
short = None
regex = "(\w{2}).*?(\d+(?:/\d+)?(?:/\d+)?)"
match = re.match(regex, interface_name)
if match is not None:
short = ""
for group in match.groups():
short += group
return short | 48a6f730c8d3d2f0abaec299385b5d558cf06a00 | 7,410 |
import json
def load_json(path: str):
"""
Load the contents of a json file into a python dictionary
"""
with open(path) as f:
content = json.load(f)
return content | b35ae26ca303347a98ea3dd3ca42370279d19a2a | 7,413 |
def V_tank_Reflux(Reflux_mass, tau, rho_Reflux_20, dzeta_reserve):
"""
Calculates the tank for waste.
Parameters
----------
Reflux_mass : float
The mass flowrate of Reflux, [kg/s]
tau : float
The time, [s]
rho_Reflux_20 : float
The destiny of waste for 20 degrees celcium, [kg/m**3]
dzeta_reserve : float
The coefificent of reserve, [dismensionless]
Returns
-------
V_tank_Reflux : float
The tank for Reflux, [m**3]
References
----------
&&&&&&&&&&&&
"""
return Reflux_mass * tau * dzeta_reserve / rho_Reflux_20 | 3e1adc446bbe2dd936663af895c59222cd000a48 | 7,419 |
import torch
def attention_aggregator(embedding_lists, weights, embed_dim=0) -> torch.Tensor:
"""
Returns a weighted sum of embeddings
:param embedding_lists: list of n tensors of shape (l, K) embedding tensors (l can vary)
:param weights: list of n tensors of shape (l,) weights (l can vary, but matches embeddings)
:param embed_dim: K, used if the embedding_lists is empty (n = 0) to return a (0, K) empty tensor
:return: weighted sum of embeddings, shape (n, K)
"""
assert len(embedding_lists) == len(weights), f"aggregation weights different length to embeddings! weights len " \
f"{len(weights)}, embeds len {len(embedding_lists)}"
if len(embedding_lists):
if len(embedding_lists) == 1:
return embedding_lists[0] # (1, K) tensor with the single embedding (ie: no aggregation necessary)
aggregated = torch.stack([torch.sum(emb * w.view(-1, 1), dim=0) for emb, w in zip(embedding_lists, weights)])
return aggregated # (n, K) tensor of aggregated embeddings
else:
return torch.tensor([]).view(-1, embed_dim) | 88fe01d8baea23321593bf88fd522eb0ef379be9 | 7,422 |
def _calculate_application_risk(module):
"""
Function to calculate Software risk due to application type. This
function uses a similar approach as RL-TR-92-52 for baseline fault
density estimates. The baseline application is Process Control
software. Every other application is ranked relative to Process
Control using the values in RL-TR-92-52, Worksheet 0 for average fault
density.
Baseline (low) application risk (A) is assigned a 1.
Medium risk is assigned a 2.
High risk is assigned a 3.
Application risks are defined as:
+-------+------------------------------+----------+
| | | Relative |
| Index | Application | Risk |
+-------+------------------------------+----------+
| 1 | Batch (General) | Low |
+-------+------------------------------+----------+
| 2 | Event Control | Low |
+-------+------------------------------+----------+
| 3 | Process Control | Low |
+-------+------------------------------+----------+
| 4 | Procedure Control | Medium |
+-------+------------------------------+----------+
| 5 | Navigation | High |
+-------+------------------------------+----------+
| 6 | Flight Dynamics | High |
+-------+------------------------------+----------+
| 7 | Orbital Dynamics | High |
+-------+------------------------------+----------+
| 8 | Message Processing | Medium |
+-------+------------------------------+----------+
| 9 | Diagnostics | Medium |
+-------+------------------------------+----------+
| 10 | Sensor and Signal Processing | Medium |
+-------+------------------------------+----------+
| 11 | Simulation | High |
+-------+------------------------------+----------+
| 12 | Database Management | Medium |
+-------+------------------------------+----------+
| 13 | Data Acquisition | Medium |
+-------+------------------------------+----------+
| 14 | Data Presentation | Medium |
+-------+------------------------------+----------+
| 15 | Decision and Planning Aids | Medium |
+-------+------------------------------+----------+
| 16 | Pattern and Image Processing | High |
+-------+------------------------------+----------+
| 17 | System Software | High |
+-------+------------------------------+----------+
| 18 | Development Tools | High |
+-------+------------------------------+----------+
:param module: the :py:class:`rtk.software.CSCI.Model` or
:py:class:`rtk.software.Unit.Model` data model to calculate.
:return: False if successful or True if an error is encountered.
:rtype: bool
"""
if module.application_id == 0:
module.a_risk = 0.0
elif module.application_id in [5, 6, 7, 11, 16, 17, 18]:
module.a_risk = 3.0
elif module.application_id in [4, 8, 9, 10, 12, 13, 14, 15]:
module.a_risk = 2.0
else:
module.a_risk = 1.0
return False | 703aaf086aecf717be5c13694a8f1dae9f70a86c | 7,423 |
def get_model_field(model, name):
"""
Gets a field from a Django model.
:param model: A Django model, this should be the class itself.
:param name: A Django model's field.
:return: The field from the model, a subclass of django.db.models.Model
"""
return model._meta.get_field(name) | e0f692aff82c20c7817d7de5d1fbeec1b69d3a3d | 7,427 |
def inert_masses(m_1, H, z_m, E_1):
"""First stage inert masses.
Arguments:
m_1 (scalar): First stage wet mass [units: kilogram].
H (scalar): Fraction of the recovery vehicle dry mass which is added recovery
hardware [units: dimensionless].
z_m (scalar): Fraction of baseline dry mass which is to be recovered [units: dimensionless].
E_1 (scalar): Structural mass ratio w/o reuse hardware [units: dimensionless].
Returns:
scalar: First stage inert mass
scalar: Recovery vehicle inert mass
"""
chi_r = H * z_m / (1 - H)
m_inert_1 = m_1 * ((1 + chi_r)
/ (1 + chi_r + (1 - E_1) / E_1))
m_inert_recov_1 = m_1 * ((z_m + chi_r)
/ (1 + chi_r + (1 - E_1) / E_1))
return m_inert_1, m_inert_recov_1 | 5698fcb36ef1f532cc8bc1dc0c86a25adc5bcab8 | 7,429 |
def buildList(pdList, matrix):
"""Takes a list of primary datasets (PDs) and the AlCaRecoMatrix (a dictinary) and returns a string with all the AlCaRecos for the selected PDs separated by the '+' character without duplicates."""
alCaRecoList = []
for pd in pdList:
alCaRecoList.extend(matrix[pd].split("+"))
# remove duplicates converting to a set
alCaRecoList = set(alCaRecoList)
stringList = ''
for alCaReco in alCaRecoList:
if stringList == '':
stringList += alCaReco
else:
stringList += '+'+alCaReco
return stringList | 7e9351f115aac1064068e16f12276ed5506217e4 | 7,431 |
import re
def _get_ip_addr_num(file_path):
"""Get the next IPADDR index num to use for adding an ip addr to an
ifcfg file.
"""
num = ''
with open(file_path, 'r') as f:
data = f.read()
data = data.splitlines()
for line in data:
found = re.search(r'IPADDR(\d?)=', line)
if found:
if found.group(1) == '':
num = 0
else:
num = str(int(found.group(1)) + 1)
return num | 09dfd6bc8a9da240d3044bd6f5b974c69cbebf76 | 7,433 |
def manifest_to_file_list(manifest_fn):
"""
Open a manifest file and read it into a list.
Entries in the list are relative, i.e. no leading
slash.
manifest_fn -- the manifest file to read
"""
image_manifest_list = []
with open(manifest_fn) as image:
image_manifest_list = [x[1:] for x in image.read().splitlines()]
return image_manifest_list | 982f02e0b00fad20af8d50d44673d65d9bba5a37 | 7,438 |
import dis
def _opcode(name):
"""Return the opcode by name from the dis module."""
return dis.opmap[name] | d2c8612138c94da68adcc1b8979395987090157c | 7,444 |
import re
def remove_citation(paragraph: str) -> str:
"""Remove all citations (numbers in side square brackets) in paragraph"""
return re.sub(r'\[\d+\]', '', paragraph) | dc88606e69187143d767215ddc098affdbd185d5 | 7,445 |
def job_metadata_filename(metadata):
"""Construct relative filename to job metadata."""
return "data/{metadata}".format(metadata=metadata) | bb5e8dc6c0ec50fed6801b9c67f8234d9115372a | 7,447 |
def get_db_cols(cur, table_name, schema='public', type_map=True):
"""
Gets the column names of a given table
if type_map is true, returns also a dictionary
mapping each column name to the corresponding
postgres column type
"""
db_cols_sql = """SELECT column_name, data_type
FROM information_schema.columns
WHERE table_schema = '{}'
AND table_name = '{}';
""".format(schema, table_name)
cur.execute(db_cols_sql)
res_rows = [row for row in cur][1:]
cols = [row[0] for row in res_rows]
if type_map:
return cols, dict(res_rows)
return cols | 936952ea0bbc0c165f089e700828ea876d30ec16 | 7,448 |
def split_indexes(indexes):
"""Split indexes list like 1 2 5 in 1 2 and 5."""
left, right = [indexes[0], ], []
left_now = True
for i in range(1, len(indexes)):
prev = indexes[i - 1]
curr = indexes[i]
if curr > prev + 1 and left_now:
left_now = False
if left_now:
left.append(curr)
else:
right.append(curr)
return left, right | 1bdb3b57226737280b83dbdfa3226dc344eb47c0 | 7,455 |
def compute_perc_id(aln):
""" Compute percent identity of aligned region on read """
length = len(aln.query_alignment_sequence)
edit = dict(aln.tags)['NM']
return 100 * (length - edit)/float(length) | 7bc172649a452fc0c26d4e40d3240d709fb76534 | 7,457 |
def get_name_from_filename(filename):
"""Gets the partition and name from a filename"""
partition = filename.split('_', 1)[0]
name = filename.split('_', 1)[1][:-4]
return partition, name | 606cfcc998c4a8405c9ea84b95b2c63f683dd114 | 7,459 |
import torch
def _set_device(disable_cuda=False):
"""Set device to CPU or GPU.
Parameters
----------
disable_cuda : bool (default=False)
Whether to use CPU instead of GPU.
Returns
-------
device : torch.device object
Device to use (CPU or GPU).
"""
# XXX we might also want to use CUDA_VISIBLE_DEVICES if it is set
if not disable_cuda and torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
return device | 1d7d448dd4e4a844201b73c8da4939009e70eb5f | 7,462 |
from pathlib import Path
import yaml
import json
def print_results_from_evaluation_dirs(work_dir_path: Path, run_numbers: list,
print_results_only: bool = False) -> None:
"""Print the aggregated results from multiple evaluation runs."""
def float_representer(dumper, value):
text = '{0:.4f}'.format(value)
return dumper.represent_scalar(u'tag:yaml.org,2002:float', text)
yaml.add_representer(float, float_representer)
for run_number in run_numbers:
eval_dir_path = work_dir_path / f'evaluation_{run_number}'
eval_file_name = f'evaluation_results_{run_number}.json'
print(f'--- Evaluation summary run {run_number} ---')
with open(eval_dir_path / eval_file_name, 'r') as infile:
results = json.load(infile)
test_set_name = results['test_set_name']
if print_results_only:
results = {key: val for key, val in results.items() if 'result' in key}
results['test_set_name'] = test_set_name
print(yaml.dump(results)) | 4be2d893da5f321390c4b49cd4283c0b6f98b4d5 | 7,463 |
def center_text(baseline, text):
"""Return a string with the centered text over a baseline"""
gap = len(baseline) - (len(text) + 2)
a1 = int(gap / 2)
a2 = gap - a1
return '{} {} {}'.format(baseline[:a1], text, baseline[-a2:]) | c5683198cf1f28a38d307555943253bd71fe76de | 7,466 |
def _compute_teleport_distribution_from_ratings(user_rating, all_movies):
"""
returns the teleporting distribution as explained in the homework
if a movie M has been rated, its probability is: RATE_M / SUM_OF_ALL_RATINGS
else, its probability is: 0
:param user_rating: a dict of (movie_id, rating)
:param all_movies: a set of movie ids, either rated or not. It is used for filter
the movies that have no rating, and then their probability will be set to 0.
:return:
"""
distribution = {}
rating_sum = sum(user_rating.values())
for movie_id, rating in user_rating.items():
distribution[movie_id]=rating/rating_sum
for not_rated_movie in filter(lambda x: x not in distribution, all_movies):
distribution[not_rated_movie] = 0
return distribution | 7a88cf8a69c9fafc70e14d9337f0af25829bfb20 | 7,471 |
import ntpath
def path_base_and_leaf(path):
"""
Splits path to a base part and a file or directory name, as in the following example:
path: '/a/b'; base: '/a'; leaf: 'b'
"""
head, tail = ntpath.split(path)
if not tail: # in case there is trailing slash at the end of path
return {'base': ntpath.split(head)[0], 'leaf': ntpath.basename(head)}
return {'base': head, 'leaf': tail} | 956daa06f87cc60c8e304fa129fb86e49c4776ce | 7,472 |
import re
import zipfile
def instance_name_from_zip(path):
"""Determines the instance filename within a SEC EDGAR zip archive."""
re_instance_name = re.compile(r'.+-\d{8}\.xml')
for name in zipfile.ZipFile(path).namelist():
if re_instance_name.fullmatch(name):
return name
raise RuntimeError('Zip archive does not contain a valid SEC instance file.') | 59b2154d433e500e9b0cdf39ee70d4c058da1d06 | 7,475 |
import re
def has_number(name):
"""判断名name内是否出现了数字(包括中文的数字)"""
if bool(re.search(r'\d',name)):
return True
num_str = ['一','二','三','四','五','六','七','八','九','十']
for s in num_str:
if s in name:
return True
return False | 56dec9664e945d852cbfee4791f386aaab15f215 | 7,478 |
def cohort_to_int(year, season, base=16):
"""cohort_to_int(year, season[, base])
Converts cohort tuple to a unique sequential ID.
Positional arguments:
year (int) - 2-digit year
season (int) - season ID
Keyword arguments:
base (int) - base year to treat as 0
Returns:
(int) - integer representing the number of seasons since the beginning
of the base year
"""
return 3*(year - base) + season | 1f1981eb6c43ab6f77abf6d04ba3b92d9053953d | 7,479 |
def dict_of_transition_matrix(mat):
""" Convert a transition matrix (list of list or numpy array) to a dictionary mapping (state, state) to probabilities (as used by :class:`pykov.Chain`)."""
if isinstance(mat, list):
return {(i, j): mat[i][j] for i in range(len(mat)) for j in range(len(mat[i]))}
else:
return {(i, j): mat[i, j] for i in range(len(mat)) for j in range(len(mat[i]))} | b823ff496a751f4ffe305a31f1c1d019f7a25d33 | 7,481 |
from typing import Tuple
import hashlib
def hashfile(path: str, blocksize: int = 65536) -> Tuple[str, str]:
"""Calculate the MD5 hash of a given file
Args:
path ()str, os.path): Path to the file to generate a hash for
blocksize (int, optional): Memory size to read in the file
Default: 65536
Returns:
hash (str): The HEX digest hash of the given file
path (str): The filepath that generated the hash
"""
# Instatiate the hashlib module with md5
hasher = hashlib.md5()
# Open the file and instatiate the buffer
f = open(path, "rb")
buf = f.read(blocksize)
# Continue to read in the file in blocks
while len(buf) > 0:
hasher.update(buf) # Update the hash
buf = f.read(blocksize) # Update the buffer
f.close()
return hasher.hexdigest(), path | e38e6622534f27bed109a2e2b71373503ca4e7b0 | 7,483 |
import pathlib
def package_data() -> pathlib.Path:
""" Returns the absolute path to the circe/data directory. """
return pathlib.Path(__file__).parents[1].joinpath("data") | 19d8fa28ba872f8633e6efddb310d30264d831e6 | 7,484 |
import re
def changeFileNoInFilePath(path: str, fileNo: int) -> str:
"""replaces the number in the path with the given number."""
separator = r"[0-9]+\."
splitted_path = re.split(separator, path, 1)
new_path = splitted_path[0] + str(fileNo) + "." + splitted_path[1]
return new_path | 070fbe30d2937b57ef601fb764cf68ec219b9c95 | 7,485 |
import json
def load_json(path):
"""Load json from file"""
json_object = json.load(open(path))
return json_object | 17db7327b6dac16aaeaff2354f828646eff695b2 | 7,491 |
def _bin_labels_to_segments(bin_labels: list) -> list[tuple]:
"""
Convert bin labels (time-axis list data) to segment data
>>> _bin_labels_to_segments(['female'] * 5 + ['male'] * 10 + ['noise'] * 5)
[('f', 0, 5), ('bbb', 5, 15), ('v', 15, 20)]
"""
if len(bin_labels) == 0:
return []
current_label = None
segment_start = -1
ret = []
i = 0
for i, e in enumerate(bin_labels):
if e != current_label:
if current_label is not None:
ret.append((current_label, segment_start, i))
current_label = e
segment_start = i
ret.append((current_label, segment_start, i + 1))
return ret | 6b0eafdaf6affee33a3b655ba8ae7aebf2b38746 | 7,493 |
def build_efficiencies(efficiencies, species_names, default_efficiency=1.0):
"""Creates line with list of third-body species efficiencies.
Parameters
----------
efficiencies : dict
Dictionary of species efficiencies
species_names : dict of str
List of all species names
default_efficiency : float, optional
Default efficiency for all species; will be 0.0 for reactions with explicit third body
Returns
-------
str
Line with list of efficiencies
"""
# Reactions with a default_efficiency of 0 and a single entry in the efficiencies dict
# have an explicit third body specified.
if len(efficiencies) == 1 and not default_efficiency:
return ''
reduced_efficiencies = {s:efficiencies[s] for s in efficiencies if s in species_names}
return ' '.join([f'{s}:{v}' for s, v in reduced_efficiencies.items()]) | a8f8912cd290b86697c67465b4aed18220a8c889 | 7,494 |
def _inverse_lookup(dictionary, value):
"""Does an inverse lookup of key from value"""
return [key for key in dictionary if dictionary[key] == value] | 4ad34b27fbc35b3bae95bcb8442d1a2f7df94e9f | 7,496 |
def checkdeplaid(incidence):
"""
Given an incidence angle, select the appropriate deplaid method.
Parameters
----------
incidence : float
incidence angle extracted from the campt results.
"""
if incidence >= 95 and incidence <= 180:
return 'night'
elif incidence >=90 and incidence < 95:
return 'night'
elif incidence >= 85 and incidence < 90:
return 'day'
elif incidence >= 0 and incidence < 85:
return 'day'
else:
return False | 806ef360e7b5b3d7138d88be2f83267e7668d71e | 7,501 |
def determine_high_cor_pair(correlation_row, sorted_correlation_pairs):
"""Select highest correlated variable given a correlation row with columns:
["pair_a", "pair_b", "correlation"]. For use in a pandas.apply().
Parameters
----------
correlation_row : pandas.core.series.series
Pandas series of the specific feature in the pairwise_df
sorted_correlation_pairs : pandas.DataFrame.index
A sorted object by total correlative sum to all other features
Returns
-------
The feature that has a lower total correlation sum with all other features
"""
pair_a = correlation_row["pair_a"]
pair_b = correlation_row["pair_b"]
if sorted_correlation_pairs.get_loc(pair_a) > sorted_correlation_pairs.get_loc(
pair_b
):
return pair_a
else:
return pair_b | 36eccfe0ffb0ac43caf49fe4db8c35c58d0fa29c | 7,503 |
def create_nonlocal_gateway_cluster_name(namespace: str) -> str:
"""Create the cluster name for the non-local namespace that uses a gateway."""
return "remote-{0}-gateway".format(namespace) | 9ca9758a7ee68ede6e57a7f50f2d772b45ee844b | 7,507 |
def get_subset(container, subset_bounds):
"""Returns a subset of the given list with respect to the list of bounds"""
subset = []
for bound in subset_bounds:
subset += container[bound[0]: bound[1]]
return subset | 4932ecba987c4936f9f467f270c6c07fd8681840 | 7,511 |
def yesnoquery(message):
"""
Displays `message` and waits for user Y/N input.
Returns Boolean where true means Y.
"""
useryn = None
while useryn is None:
if not isinstance(message, str):
raise ValueError("Must pass a valid string to query")
useryn = input(message).lower()
if useryn != "y" and useryn != "n":
print("Must enter either a 'Y' or 'N'", useryn)
useryn = None
if useryn == "y":
return True
elif useryn == "n":
return False
else:
return -1 | 87ec3cb01e4a2e52ce1cd900e5446cbab9a05373 | 7,518 |
def solution(X, A):
"""Find the earliest time that a frog can jump to position X.
In order to reach X, a leaf must be present at every position from 1 to X.
Args:
X (int): The position that the frog must reach.
A (list): A list of integers from 1 to X, where A[k] represents a leaf
falling at minute k into position A[k].
Returns:
int: The number of minutes that the frog must wait.
Complexity:
Time: O(N)
Space: O(X)
"""
counter = [False] * X
total = 0
for i, val in enumerate(A):
if (val < 1) or (val > X):
raise ValueError
if not counter[val-1]:
counter[val-1] = True
total += 1
if total == X:
return i
else:
return -1 | d1fec5a3ec4c6dc06cd0feab295c90cb4c920ced | 7,524 |
import math
def moments_get_orientation(m):
"""Returns the orientation in radians from moments.
Theta is the angle of the principal axis nearest to the X axis
and is in the range -pi/4 <= theta <= pi/4. [1]
1. Simon Xinmeng Liao. Image analysis by moments. (1993).
"""
theta = 0.5 * math.atan( (2 * m['mu11']) / (m['mu20'] - m['mu02']) )
return theta | 0b75e86e324dccd5fe2c4332dfeb15d63a417b9b | 7,525 |
def get_article_case(article, word):
"""Determines the correct article casing based on the word casing"""
return article.capitalize() if word[0].istitle() else article | 603810cb60c3719c102afe024cdc0ce474d37bfa | 7,526 |
import collections
def deep_convert_to_plain_dict(an_odict):
"""
Recursively convert `an_odict` and any of its dictionary subelements from
`collections.OrderedDict`:py:class: to plain `dict`:py:class:
.. note:: This is naive, in that it will not properly handle dictionaries
with recursive object references.
:Args:
an_odict
a (presumably) `collections.OrderedDict`:py:class: to convert
:Returns:
an "unordered" (i.e., plain) `dict`:py:class: with all ordered
dictionaries converted to `dict`:py:class:
"""
a_dict = {}
for (key, value) in an_odict.items():
if type(value) is collections.OrderedDict:
a_dict[key] = deep_convert_to_plain_dict(value)
else:
a_dict[key] = value
return a_dict | 0a463981909153d4beee64fbbf5fad489adf78ac | 7,527 |
def steps(number):
"""
Count steps needed to get to 1 from provided number.
:param number int - the number provided.
:return int - the number of steps taken to reach 1.
"""
if number < 1:
raise ValueError("Provided number is less than 1.")
steps = 0
while number != 1:
steps += 1
# Even
if number % 2 == 0:
number = number / 2
else:
number = number * 3 + 1
return steps | 8681691946b5ba2d261a1ae753d2a04c46ac1719 | 7,533 |
import re
def replace_space(string):
"""Replace all spaces in a word with `%20`."""
return re.sub(' ', '%20', string) | 9b9b400f913efb7ee1e86a87335955744c9b1a3a | 7,536 |
import re
def port_to_string(port):
"""
Returns clear number string containing port number.
:param port: port in integer (1234) or string ("1234/tcp") representation.
:return: port number as number string ("1234")
"""
port_type = type(port)
if port_type is int:
return str(port)
if port_type is str:
return re.findall(r"\d+", port)[0] | 5d526406566c7c37af223ed8e5744ba13771f55f | 7,537 |
def merge(line):
"""
Helper function that merges a single row or column in 2048
"""
result = list(line)
head = 0
i = 1
while (i < len(result)):
if (result[i] != 0):
if (result[head] == result[i]):
result[head] += result[i]
result[i] = 0
head += 1
elif (result[head] == 0):
result[head] = result[i]
result[i] = 0
else:
tmp = result[i]
result[i] = 0
result[head + 1] = tmp
head += 1
i += 1
return result | 1a843ef4dc9c1b6cf20036f24288cb6166ae207b | 7,539 |
def get_transcripts_from_tree(chrom, start, stop, cds_tree):
"""Uses cds tree to btain transcript IDs from genomic coordinates
chrom: (String) Specify chrom to use for transcript search.
start: (Int) Specify start position to use for transcript search.
stop: (Int) Specify ending position to use for transcript search
cds_tree: (Dict) dictionary of IntervalTree() objects containing
transcript IDs as function of exon coords indexed by chr/contig ID.
Return value: (set) a set of matching unique transcript IDs.
"""
transcript_ids = set()
# Interval coordinates are inclusive of start, exclusive of stop
if chrom not in cds_tree:
return []
cds = list(cds_tree[chrom].overlap(start, stop))
for cd in cds:
transcript_ids.add(cd.data)
return list(transcript_ids) | 51aa6f1aa97d2f977840376ea2c4bf422ff8e7a6 | 7,540 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.