content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def getExactFreePlaceIndexForCoordinate(freePlaceMap, x, y): """ Returns the Exact Value for a given Coordinate on the FreePlaceMap :param freePlaceMap: The generated FreePlaceMap :param x: The X Coordinate on the FreePlaceMap :param y: The Y Coordinate on the FreePlaceMap :return: The Indexvalue on the FreePlaceMap """ if freePlaceMap is None or len(freePlaceMap) <= y or len(freePlaceMap[0]) <= x or x < 0 or y < 0: return None if freePlaceMap[y][x] != -1: return freePlaceMap[y][x] - 1 return None
4af9dec9163bd505f944f02db55a2dcfa80cb434
6,943
def align_frontiers_on_bars(frontiers, bars): """ Aligns the frontiers of segments to the closest bars (in time). The idea is that frontiers generally occurs on downbeats, and that realigning the estimation could improve perfomance for low tolerances scores. Generally used for comparison with techniques which don't align their segmentation on bars. Parameters ---------- frontiers : list of float Time of the estimated frontiers. bars : list of tuple of float The bars of the signal. Returns ------- frontiers_on_bars : list of floats Frontiers, realigned on bars. """ frontiers_on_bars = [] i = 1 for frontier in frontiers: while i < len(bars) - 1 and bars[i][1] < frontier: i+=1 if i == len(bars) - 1: frontiers_on_bars.append(frontier) else: if bars[i][1] - frontier < frontier - bars[i][0]: frontiers_on_bars.append(bars[i][1]) else: frontiers_on_bars.append(bars[i][0]) return frontiers_on_bars
ef1f3d62a36065f64d31c4e4d7f6ce07045e2e5e
6,946
def _high_bit(value): """returns index of highest bit, or -1 if value is zero or negative""" return value.bit_length() - 1
1bd783593ae7d5b15cc56c8a8db5c86798fd8c9f
6,947
def qual(obj): """ Return fully qualified name of a class. """ return u'{}.{}'.format(obj.__class__.__module__, obj.__class__.__name__)
5b9779935b84a8bb3653cc9fc2c627dda5dd0e7f
6,949
def default_reply(event, message): """Default function called to reply to bot commands.""" return event.unotice(message)
3c83d8abaea0f4c968db25fff51185bb6c32d26e
6,950
def making_change(amt: int, coins: list) -> int: """Iterative implementation of the making change algorithm. :param amt (int) : Amount, in cents, to be made into change. :param coins (list) : List of coin denominations :return (int) : Number of different combinations of change. """ # calc[i] represents the number of ways to get to amount i calc = [0] * (amt + 1) # 1 way to get zero calc[0] = 1 # Pick all coins one by one and update calc[] values after the # index greater than or equal to the value of the picked coin for coin_val in coins: for j in range(coin_val, amt + 1): calc[j] += calc[j - coin_val] return calc[amt]
188496f5db4252fa27f153d0a0379031847c669d
6,951
def table_dispatch(kind, table, body): """Call body with table[kind] if it exists. Raise an error otherwise.""" if kind in table: return body(table[kind]) else: raise BaseException, "don't know how to handle a histogram of kind %s" % kind
18d827baeabbca8d27848ea87a067328fe82d16a
6,952
import base64 def _get_base64(data: str) -> str: """Base 64 encodes data.""" ebytes = base64.b64encode(data.encode("utf-8")) estring = str(ebytes, "utf-8") return estring
a7bd3080dba077077d96602eb35142db32b003de
6,954
def setSortGroups(sortGroups=None): """ Return the sorting groups, either user defined or from the default list """ if sortGroups is None: # Default groups return [('-inf', '+inf'), ('-inf', 100), (101, '+inf')] else: sortGroups.insert(0, ('-inf', '+inf')) return sortGroups
f2e8cff00fe70627e81dcc0ce576f56e4d289228
6,955
def NOT_TENSOR_FILTER(arg_value): """Only keeps a value if it is not a Tensor or SparseTensor.""" return not arg_value.is_tensor and not arg_value.is_sparse_tensor
14eb28c1824f58bd7ef6ad1da96922891114fe5a
6,959
def tapisize(fieldKeyName): """Transforms a string into a Tapis query parameter """ return fieldKeyName.lower()
cc8032a6cc9e822193430134bb33da8aef74cf06
6,963
def calculate_average_resolution(sizes): """Returns the average dimensions for a list of resolution tuples.""" count = len(sizes) horizontal = sum([x[0] for x in sizes]) / count vertical = sum([x[1] for x in sizes]) / count return (horizontal, vertical)
06dac1834989df96ce7bff88c435dd4067bfccbd
6,964
def get_distance(m, M, Av=0): """ calculate distance [in pc] from extinction-corrected magnitude using the equation: d=10**((m-M+5-Av)/5) Note: m-M=5*log10(d)-5+Av see http://astronomy.swin.edu.au/cosmos/I/Interstellar+Reddening Parameters --------- m : apparent magnitude M : absolute magnitude Av : extinction (in V band) """ assert (m is not None) & (str(m) != "nan") assert (M is not None) & (str(M) != "nan") distance = 10 ** (0.2 * (m - M + 5 - Av)) return distance
b4773065d7cf1bc793400ac344c4ca7a580f8567
6,967
import json def load_base_models_json(filename="base_models.json"): """Load base models json to allow selecting pre-trained model. Args: filename (str) - filename for the json file with pre-trained models Returns: base_models - python dict version of JSON key-value pairs """ with open(filename) as json_file: base_models = json.load(json_file) return base_models
c17f123e192b94e6f87938bca10822ea785e2d91
6,969
import json def load_data_from_json(jsonfile): """Load the data contained in a .json file and return the corresponding Python object. :param jsonfile: The path to the .json file :type jsonfile: str :rtype: list or dict """ jsondata = open(jsonfile).read() data = json.loads(jsondata) return data
f0f7a0620be8ffcd15a57fd561dda8525866faa3
6,971
def get_living_neighbors(i, j, generation): """ returns living neighbors around the cell """ living_neighbors = 0 # count for living neighbors neighbors = [(i-1, j), (i+1, j), (i, j-1), (i, j+1), (i-1, j+1), (i-1, j-1), (i+1, j+1), (i+1, j-1)] for k, l in neighbors: if 0 <= k < len(generation) and 0 <= l < len(generation[0]): if generation[k][l] == 1: living_neighbors += 1 return living_neighbors
437229b8152c3b2ce5b90ef6ddef83daa5c24a85
6,979
def StrToList(val): """ Takes a string and makes it into a list of ints (<= 8 bits each)""" return [ord(c) for c in val]
79ee38dc4952b677896a77379c3cccca8f74eb2c
6,980
def set(data,c): """ Set Data to a Constant Parameters: * data Array of spectral data. * c Constant to set data to (may be complex) """ data[...,:]=c return data
cff2592b3973bbd3f9a1a4dbaa6d6ba4b99260bc
6,983
import pickle def load(directory): """Loads pkl file from directory""" with open(directory, 'rb') as f: data = pickle.load(f) return data
d500c6f717535ee95f452abd435be4d8688a59a4
6,988
def get_seconds(time_string): """ Convert e.g. 1m5.928s to seconds """ minutes = float(time_string.split("m")[0]) seconds = float(time_string.split("m")[1].split("s")[0]) return minutes * 60.0 + seconds
5a729d24ab6c437fca536cae8ac3d34a45bb9054
6,990
def _make_filetags(attributes, default_filetag = None): """Helper function for rendering RPM spec file tags, like ``` %attr(0755, root, root) %dir ``` """ template = "%attr({mode}, {user}, {group}) {supplied_filetag}" mode = attributes.get("mode", "-") user = attributes.get("user", "-") group = attributes.get("group", "-") supplied_filetag = attributes.get("rpm_filetag", default_filetag) return template.format( mode = mode, user = user, group = group, supplied_filetag = supplied_filetag or "", )
56898ec1fc974721150b7e1055be3ab3782754a2
6,996
def split_game_path(path): """Split a game path into individual components.""" # filter out empty parts that are caused by double slashes return [p for p in path.split('/') if p]
9b939058aa7f8b3371d3e37b0252a5a01dba4e7b
6,998
def is_numeric(value: str): """Return True if given value is a number""" return value.isdigit()
fe61469ab388534a17d079590591378f87078cd3
7,001
def generate_file_path(package_path, file_name): """ Dynamically generate full path to file, including filename and extension. :param package_path: (array) ordered list of packages in path to test file :param file_name: (string) name of the file w/ test, including the extension :return: (string) full path to file, including filename and extension """ file_path = "" for package in package_path: file_path += package + "/" return file_path + file_name
a6d2ac12cdc726c4727e23301971e921cab9455b
7,012
import hashlib def sha1(string): """Compute the sha1 hexdigest of the string.""" return hashlib.sha1(string.encode('utf-8')).hexdigest()
b663fc501e24a2331f69847024756b97dabc0cd4
7,016
import pytz from datetime import datetime def now(timezone): """Get the current time in the given timezone Args: timezone: The desired timezone as a string. eg 'US/Eastern' """ utc = pytz.timezone('UTC').localize(datetime.utcnow()) return utc.astimezone(pytz.timezone(timezone))
ebd89601ebcb945f01c3e68fbe0f5350e4fc2d0a
7,017
def ReadBlackList(path): """Read a blacklist of forbidden directories and files. Ignore lines starting with a # so we can comment the datafile. Args: path: file to load the blacklist from. Returns: dictionary of path:True mappings """ blacklist_file = open(path, 'r') catalog = [] for entry in blacklist_file: if not entry or entry[:1] == '#': pass # ignore comment and empty lines in blacklist file else: catalog.append(entry.strip()) return catalog
694b9bd8c09385677d49e8563ac8f08b923cadb0
7,018
def _scalePoints(points, scale=1, convertToInteger=True): """ Scale points and optionally convert them to integers. """ if convertToInteger: points = [ (int(round(x * scale)), int(round(y * scale))) for (x, y) in points ] else: points = [(x * scale, y * scale) for (x, y) in points] return points
3ce3fedfbf7c428386af1571cc1a770bd9f66018
7,022
def album_sticker_get(client, album, sticker): """Gets a sticker associated with an album.""" # I am pretty sure that MPD only implements stickers for songs, so # the sticker gets attached to the first song in the album. tracks = client.find("album", album) if len(tracks) == 0: return return client.sticker_get("song", tracks[0]["file"], "album_" + sticker)
4fd02292c1d7be672de9ccc926f5880c7b831503
7,023
def _get_port(config): """Get the server's port from configuration.""" if not config.has_option("server", "port"): return None port = config.getint("server", "port") return port
bee579fcfc82ea80c593dc7bd93ff3d39e63ef7b
7,033
def robust_scale(df): """Return copy of `df` scaled by (df - df.median()) / MAD(df) where MAD is a function returning the median absolute deviation.""" median_subtracted = df - df.median() mad = median_subtracted.abs().median() return median_subtracted/mad
ba9ce747612c99997d890930e7ac7c582ba1af70
7,043
def _jsarr(x): """Return a string that would work for a javascript array""" return "[" + ", ".join(['"{}"'.format(i) for i in x]) + "]"
9c9b6df65bf4c01fa1c321445bbb7c86c6d28c5a
7,044
def join_kwargs(**kwargs) -> str: """ Joins keyword arguments and their values in parenthesis. Example: key1{value1}_key2{value2} """ return "_".join(key + "{" + value + "}" for key, value in kwargs.items())
3054573ec51676bb8d93e2fcabd4cb5097e4b897
7,046
def extract_column_names(row_list): """ Extract names of columns from row list obtained from table csv. The first row contains all row names :param row_list: List of all rows in csv used for table creation :return: List of names present in table csv """ return row_list[0]
2adef82a7f583c262922ad28aa0de47b8b9b5e51
7,049
def index_to_point(index, origin, spacing): """Transform voxel indices to image data point coordinates.""" x = origin[0] + index[0] * spacing[0] y = origin[1] + index[1] * spacing[1] z = origin[2] + index[2] * spacing[2] return (x, y, z)
072f1ad5d1adc1e81d4771725475f6a07f32f3ce
7,050
def MakeEmptyTable(in_table=[[]], row_count=0, column_count=0): """ 1 Read in *in_table* 2 Create an empty table of '' values, which has with the same number of rows and columns as the table, (where columns based on the first row). 3 If the user has specified *row_count* and/or *column_count*, then these will be used place of the dimensions of *in_table*. Therefore *in_table* can be omitted from input if BOTH row_count and column_count are set. e.g. MakeEmptyTable(row_count=1000, column_count=200) And if *in_table* is used, then the other 2 inputs are optional. e.g. MakeEmptyTable(CSVdata, row_count=1000) will use column_count of CSVdata but row_count as 1000 Args in_table: <type 'list'> 2D table as list of lists, which may contain table data in rows and columns. e.g. [['abc','def','hij'], ['232','965','TES'] ['235','768','QWE']] row_count: <type 'int'> number of empty rows to create. If this is not set, then in_table row count will be used. column_count: <type 'int'> number of empty columns to create in each row. If this is not set, then column count of *in_table* first row will be used. """ if not row_count: row_count = len(in_table) # length of table if not column_count: column_count = len(in_table[0]) # length of first row of table row_contents = [""] * column_count # repeat '' for X columns blank_table = [row_contents] * row_count # repeat blank row for Y rows return blank_table
55b32c2914cb8e2194999e1b8ba2211373ef1bcb
7,051
import math, random def split_list(data, splits={'train': 8, 'test': 2}, shuffle=True, seed=0): """ Split the list according to a given ratio Args: data (list): a list of data to split splits (dict): a dictionary specifying the ratio of splits shuffle (bool): shuffle the list before seed (int): random seed used for shuffling Returns: a dictionary of the splitted list """ data = data.copy() # work on a copy of the oridinal list n_tot = len(data) split_tot = float(sum([v for v in splits.values()])) n_split = {k:math.ceil(n_tot*v/split_tot) for k,v in splits.items()} if shuffle: random.seed(seed) random.shuffle(data) splitted = {} cnt = 0 for k, v in n_split.items(): splitted[k] = data[cnt:cnt+v] cnt += v return splitted
d9b25512e666a03ec2b589850c47a45231b279a0
7,053
def constraint_wrapper(fun, constraint): """ Wrap a function such that it's first argument is constrained """ def inner(x, *args, **kwargs): """the wrapped function""" return fun(constraint(x), *args, **kwargs) return inner
f9055fe2cd269e4586c545bfa951bdf2ba0677c1
7,056
def can_cast(value, class_type): """ Check if the value can be cast to the class_type, used in the parse tcl string function for tcl expressions like [Ada inputs 0] or [Ada alias robotblur] Args: value (object): The object we're attempting to cast. class_type (class): The class we're attempting to cast to. Returns: bool: If the value can be successfully cast """ try: class_type(value) return True except ValueError: return False
85c415d2eaadb16a532e209110c1fd0f778cb681
7,058
def build(argmap, data): """Builds an array of arguments from the provided map and data. The argmap must consist of a mapping of keys to argbuilder functions. keys in the argmap are indexed into data, and if they are present, the corresponding values are passed to the corresponding argmap function. The argmap function returns with one or more array elements to be added to the returned array. """ args = [] for name, fn in argmap.iteritems(): if name in data: args += fn(data[name]) return args
d9c6c9eede6d6a9ae36fea77dceb3c70cbfbdbbd
7,059
from typing import List def getTestFragments() -> List[str]: """ Returns a small list of testing fragments. >>> len(getTestFragments()) 5 """ return ['tttttt', 'ttttgg', 'tggaga', 'agacgc', 'cgcggg']
4bd66b0a0c90df0d20f3d66d9b789a31419e63f6
7,060
def get_forecast_metadata_variables(ds): """ Returns a list of variables that represent forecast reference time metadata. :param netCDF4.Dataset ds: An open netCDF4 Dataset. :rtype: list """ forecast_metadata_standard_names = { "forecast_period", "forecast_reference_time", } forecast_metadata_variables = [] for varname in ds.variables: standard_name = getattr(ds.variables[varname], "standard_name", None) if standard_name in forecast_metadata_standard_names: forecast_metadata_variables.append(varname) return forecast_metadata_variables
83b8fe0eb785c1a3129ec19df680ce135cd3fa82
7,062
def feet(i): """ feet(i) Return i (in inches) converted to feet. """ return i / 12
bff46c1399aabee1f589dea98c9c43ced30d0756
7,063
def thcf_partial1(x): """ Partial derivative of the Three-Hump Camel Function with respect to x1. """ partial = x[1] + 4 * x[0] - 4.2 * (x[0] ** 3) + (x[0] ** 5) return partial # Gradient 1
cccc2505978cc49fffa0a445157ba5fdaf0abc30
7,067
def leftmostNonzeroEntries(M): """Returns the leftmost nonzero entries of M.""" return [ abs(M[l][M.nonzero_positions_in_row(l)[0]]) for l in range(0,M.dimensions()[0]) if M.nonzero_positions_in_row(l) != [] ]
9e42297dc3000a41dcdceebff10c4fc53e1709ac
7,068
def is_sequence(arg): """Returns True is passed arg is a list or a tuple""" return isinstance(arg, list) or isinstance(arg, tuple)
12a0a0186695f8b79a48905a22c0c1c69cde219f
7,069
def super_reduced_string(s): """Hackerrank Problem: https://www.hackerrank.com/challenges/reduced-string/problem Steve has a string of lowercase characters in range ascii[‘a’..’z’]. He wants to reduce the string to its shortest length by doing a series of operations. In each operation he selects a pair of adjacent lowercase letters that match, and he deletes them. For instance, the string aab could be shortened to b in one operation. Steve’s task is to delete as many characters as possible using this method and print the resulting string. If the final string is empty, print Empty String Args: s (str): String to reduce Returns: str: the reduced string, or "Empty String" if it's empty """ cur_string = s while True: found = False for i in range(1, len(cur_string)): if cur_string[i-1] == cur_string[i]: found = True cur_string = cur_string.replace(cur_string[i]*2, "", 1) break if not found: break if not cur_string: cur_string = "Empty String" return cur_string
09c48f38a877ff9ae92b985bd793224bd81247c8
7,071
def rotate_tour(tour, start=0): """ Rotate a tour so that it starts at the given ``start`` index. This is equivalent to rotate the input list to the left. Parameters ---------- tour: list The input tour start: int, optional (default=0) New start index for the tour Returns ------- rotated: list The rotated tour """ idx = tour.index(start) if idx != 0: rotated = tour[idx:] + tour[:idx] else: rotated = tour return rotated
b2356aaecb00dc993e88b5f7105c0b4aed495521
7,075
def filter_polygons(state, header): """ Removes any non-polygon sources from the state file. We are only interested in parsing parcel data, which is marked as Polygon in the state file. """ filtered_state = [] for source in state: if 'Polygon' in source[header.index('geometry type')]: filtered_state.append(source) return filtered_state
d100e6a4e87dccdc42c7217dc1e793e4353237e2
7,081
import unicodedata def unicode_normalize(text): """Return the given text normalized to Unicode NFKC.""" normalized_text = unicodedata.normalize('NFKC', text) return normalized_text
1b6defacd09665412a1b31dd48f5291c4984d044
7,083
import importlib def import_obj(clsname, default_module=None): """ Import the object given by clsname. If default_module is specified, import from this module. """ if default_module is not None: if not clsname.startswith(default_module + '.'): clsname = '{0}.{1}'.format(default_module, clsname) mod, clsname = clsname.rsplit('.', 1) mod = importlib.import_module(mod) try: obj = getattr(mod, clsname) except AttributeError: raise ImportError('Cannot import {0} from {1}'.format(clsname, mod)) return obj
8cb064348b7b38e1e3f659240f4bc9677237d3fd
7,084
import json def loads_json(fid, **kwargs): """ Loads a JSON file and returns it as a dict. :param path: String or another object that is accepted by json.loads :param kwargs: See ``json.dump()``. :return: Content of the JSON file. """ assert isinstance(fid, str), fid return json.loads(fid, **kwargs)
ccdb62568982f6a0862dd5c8167b2e1d177137ea
7,090
def average_precision_at_k(targets, ranked_predictions, k=None): """Computes AP@k given targets and ranked predictions.""" if k: ranked_predictions = ranked_predictions[:k] score = 0.0 hits = 0.0 for i, pred in enumerate(ranked_predictions): if pred in targets and pred not in ranked_predictions[:i]: hits += 1.0 score += hits / (i + 1.0) divisor = min(len(targets), k) if k else len(targets) return score / divisor
57e21a1ca8b8f7fccc0b5c59dbfc799d8618fc93
7,095
def _PureShape(shape): """Make sure shape does not contain int tensors by calling int().""" return [int(x) for x in shape]
1cebacd516cbf223833342ecffb6f8d9fe22ff2d
7,096
def char_to_number(value: str, required_type: str) -> str: """Converts the string representation of a number (int or float) to a number Args: value (str): String representation of a number required_type (str): Output type desired (bigint or double) Raises: Exception: The conversion to a python integer (using int built in method) failed Exception: The conversion to a python float (using float built in method) failed NotImplementedError: required_type was neither bigint nor double Returns: str: Numerical representation of the input string """ value = value.strip("'").strip('"') # Remove potential character markers if required_type == "bigint": try: assert f"{int(value)}" == value # Make sure the str representation does not change return value except (TypeError, AssertionError, ValueError): msg = ( f"A 'bigint' type is expected by Presto for this function, but {value} " "was provided which either cannot be casted or does not seem to represent an integer." ) raise Exception(msg) elif required_type == "double": try: assert f"{float(value)}" == value return value except (TypeError, AssertionError, ValueError): msg = ( f"A 'double' type is expected by Presto for this function, but {value} " "was provided which either cannot be casted or does not seem to represent a float." ) raise Exception(msg) else: raise NotImplementedError
cb58f24100f961d4f260473cee4fa82621eb5887
7,097
def _validate_index_string(index_string: str) -> bool: """ Handle validation of index string from the argument. a string should be in format 't{%d}' or 'r{%d}' or 'd{%d}' Parameters: index_string: the string we want to validate Returns: a boolean indicating whether the index string is valid """ if len(index_string) < 2: print("Invalid index string length!") return False elif index_string[0] != 't' and index_string[0] != 'r' and index_string[0] != 'd': print("Invalid index string prefix!") return False elif not index_string[1:].isnumeric(): print("Index need to have a number suffix!") return False else: return True
aa6d7d0aba2a0378d2e1c836b78b0ec943cc1bdb
7,098
def onset_by_rain(date, df, window=5, rain_threshold=5): """ Finds true storm onset by finding the first date around the landfall that rain exceeds a threshold Args: date: the date to look around df: df with a date and rain column window: number of days around date to find max (total window size is window*2) rain_threshold: mm of rain to consider a storm to have started Returns: a datetime object and the corresponding index """ mask = df['Date'] == date storm_row = df[mask] storm_ind = int(storm_row.index[0]) sub_df = df.iloc[(storm_ind - window):(storm_ind + window)] if sub_df.Rain.dropna().empty: # if there's no rain data return date, storm_ind ind = sub_df.Rain.idxmax() val = df.Rain.iloc[ind] while val > rain_threshold: ind -= 1 val = df.Rain.iloc[ind] # ind += 1 return df['Date'].iloc[ind], ind
87e4d1f35114974a004c5b923aea05ed835cf9a7
7,100
def get_odds_labels(nfunc, adfam=False): """Labels used for odds in results_df.""" if adfam: col_names = [r'$P(T={},N={})$'.format(1, i + 1) for i in range(nfunc)] col_names += [r'$P(T={},N={})$'.format(2, i + 1) for i in range(nfunc)] col_names += [r'$P(T=1)$'] else: col_names = [r'$P(N={})$'.format(i + 1) for i in range(nfunc)] return col_names
ca874d9da52dfe49625305cde62ef7489439eb00
7,104
def get_validation_context(self): """ Retrieves the validation context. :rtype: String :return: The validation context. """ return self.validation_context
b025b742a6fd5a537752f897eb8ed88ed56e5a21
7,105
def subfolders_in(whole_path): """ Returns all subfolders in a path, in order >>> subfolders_in('/') ['/'] >>> subfolders_in('/this/is/a/path') ['/this', '/this/is', '/this/is/a', '/this/is/a/path'] >>> subfolders_in('this/is/a/path') ['this', 'this/is', 'this/is/a', 'this/is/a/path'] """ path_fragments = whole_path.lstrip('/').split('/') if whole_path.startswith('/'): path_fragments[0] = '/' + path_fragments[0] path = path_fragments[0] subfolders = [path] for fragment in path_fragments[1:]: path += '/' + fragment subfolders.append(path) return subfolders
a7389811a8acacea87abd55ba47892203e0b95e5
7,112
def getfrom(v): """ pass through function for using the filter_for decorator directly """ return v
7a01fecbac63bca67fef10bfb39f8641e0cacda7
7,131
def parse_employee_info(record_list): """ Parses the employee record information Example input: [('3c7ca263-9383-4d61-b507-2c8bd367567f', 123456, 'Austin', 'Grover', <memory at 0x11059def0>, True, 1, '00000000-0000-0000-0000-000000000000', datetime.datetime(2020, 2, 23, 16, 53, 25, 531305))] Args: Employee Record list Returns: list of dictionary records containing employee information. """ data_list = [] for record in record_list: user_password = memoryview(record[4]).tobytes().decode("utf-8") data_record = { "id": record[0], "employeeid": record[1], "firstname": record[2], "lastname": record[3], "password": user_password, "active": record[5], "classification": record[6], "managerid": record[7], "createdon": record[8], } data_list.append(data_record) return data_list
a0c4e9fb57bc452119f362525e9c16f516911922
7,139
import math def gas_release_rate(P1, P2, rho, k, CD, area): """ Gas massflow (kg/s) trough a hole at critical (sonic) or subcritical flow conditions. The formula is based on Yellow Book equation 2.22. Methods for the calculation of physical effects, CPR 14E, van den Bosch and Weterings (Eds.), 1996 Parameters ---------- P1 : float Upstream pressure P2 : float Downstream pressure rho : float Fluid density k : float Ideal gas k (Cp/Cv) CD : float Coefficient of discharge are : float Orifice area Returns ---------- : float Gas release rate / mass flow of discharge """ if P1 > P2: if P1 / P2 > ((k + 1) / 2) ** ((k) / (k - 1)): flow_coef = 1 else: flow_coef = ( 2 / (k - 1) * (((k + 1) / 2) ** ((k + 1) / (k - 1))) * ((P2 / P1) ** (2 / k)) * (1 - (P2 / P1) ** ((k - 1) / k)) ) return ( math.sqrt(flow_coef) * CD * area * math.sqrt(rho * P1 * k * (2 / (k + 1)) ** ((k + 1) / (k - 1))) ) else: return 0
8749b85457e3f9e24e08f2a9f5f059066e3518b8
7,140
def email2words(email): """Return a slightly obfuscated version of the email address. Replaces @ with ' at ', and . with ' dot '. """ return email.replace('@', ' at ').replace('.', ' dot ')
cd8dff104ace7eaad00164ba1161d1c49ce4a0e3
7,141
from typing import Union from typing import Callable def _get_callable_str(*, callable_: Union[Callable, str]) -> str: """ Get a callable string (label). Parameters ---------- callable_ : Callable or str Target function or method or property or dunder method name. Returns ------- callable_str : str A callable string (label). """ if isinstance(callable_, str): callable_str: str = callable_ else: callable_str = callable_.__name__ return callable_str
2b968e3f5ff79701e6f63bb75548ecb228ec5ed7
7,143
import re def to_mb(s): """Simple function to convert `disk_quota` or `memory` attribute string values into MB integer values. """ if s is None: return s if s.endswith('M'): return int(re.sub('M$', '', s)) elif s.endswith('G'): return int(re.sub('G$', '', s)) * 1000 return 512
870f276552ef90bbd5034551ea8ade0f5160491b
7,145
def length_left(lumber): """ Convenience function for calculating the length left in a piece of lumber :param lumber: a piece of Lumber :return: length remaining """ return lumber.length_left()
57dfd5e160abdc086759dd41df013181f1217f9d
7,146
def find_matching_paren_pair(s): """ Find the first matching pair of parentheses and return their positions """ paren_level = -1 open_pos = 0 for i in range(0, len(s)): if s[i] == "(": paren_level += 1 if paren_level == 0: open_pos = i elif s[i] == ")": if paren_level == 0: return (open_pos, i) paren_level -= 1 raise SyntaxError("Unterminated list '{val}'".format(val=s))
c50ce61ca96f1babb951d2c1051461be8633d783
7,147
def IsMerge(op): """Return true if `op` is a Merge.""" return op.type == "Merge" or op.type == "RefMerge"
8b5c7373cd698d23bd1b0df78a5986dded8960ec
7,148
import re def fraction_to_word(aText, fractions): """Spell out fractions written with a '/'. """ aText = re.sub(r"1/2", fractions[0], aText) aText = re.sub(r"1/3", fractions[1], aText) aText = re.sub(r"2/3", fractions[2], aText) aText = re.sub(r"1/4", fractions[3], aText) aText = re.sub(r"3/4", fractions[4], aText) aText = re.sub(r"1/5", fractions[5], aText) return aText
15a99870f2161a354aa69fadc484435b9d37d477
7,154
def create_message_context_properties(message_type, message_id, source, identifier, is_cloud_event_format) -> dict: """Create message context properties dict from input param values.""" return { 'type': message_type, 'message_id': message_id, 'source': source, 'identifier': identifier, 'is_cloud_event_format': is_cloud_event_format }
c5edd78abb5e584089456f4d50a656ce46a7666c
7,155
import pathlib def exists(path: str) -> bool: """Checks if path exists e.g j.sals.fs.exists("/home/rafy/testing_make_dir/test1") -> True j.sals.fs.exists("/home/rafy/testing_make_dir/fasdljd") -> False Args: path (str): path to check for existence Returns: bool: True if exists """ return pathlib.Path(path).exists()
a3b3717c947656042d3ddcf9e1107d3f6ec9c06d
7,161
def extract_file_number(file_name): """ Extract the file number from a file name """ file_name = str(file_name) dot_contents = file_name.split('.') hyp_contents = dot_contents[0].split('-') base_name = hyp_contents[len(hyp_contents) - 1] return int(base_name[:-1])
0b29ba7e75ddfcdc31832641d51f5f0a507021b0
7,164
def add_address(x, y): """Returns a string representation of the sum of the two parameters. x is a hex string address that can be converted to an int. y is an int. """ return "{0:08X}".format(int(x, 16) + y)
3e6fef3d5de0216c68c980b24d9f1ab05bc0a043
7,165
def extract_fcp_data(raw_data, status): """ extract data from smcli System_WWPN_Query output. Input: raw data returned from smcli Output: data extracted would be like: 'status:Free \n fcp_dev_no:1D2F\n physical_wwpn:C05076E9928051D1\n channel_path_id:8B\n npiv_wwpn': 'NONE'\n status:Free\n fcp_dev_no:1D29\n physical_wwpn:C05076E9928051D1\n channel_path_id:8B\n npiv_wwpn:NONE """ raw_data = raw_data.split('\n') # clear blank lines data = [] for i in raw_data: i = i.strip(' \n') if i == '': continue else: data.append(i) # process data into one list of dicts results = [] for i in range(0, len(data), 5): temp = data[i + 1].split(':')[-1].strip() # only return results match the status if temp.lower() == status.lower(): results.extend(data[i:i + 5]) return '\n'.join(results)
bbe9de1f075fa68a4130c44afea9d388b1a678d5
7,167
import json def load_data(data): """ Wrapper to load json data, to be compatible with Python3. Returns: JSON data Keyword arguments: data: might be bytes or str """ if type(data) == bytes: return json.loads(data.decode("utf-8")) else: return json.loads(data)
c33c661c2a42d162d06c3e17487e072908fd0bf4
7,170
def indices_for(df, nprocs): """ group rows in dataframe and assign each group to each process Args: df: Pandas dataframe object nprocs: number of processes used Returns: indeces grouped to each process """ N = df.shape[0] L = int(N / nprocs) indices = [] for i in range(nprocs): for j in range(L): indices.append(i) for i in range(N - (nprocs * L)): indices.append(nprocs - 1) return indices
c68408e6fcf70b885ca86fb80f8c31b0bd07e334
7,172
from typing import Tuple from typing import List from typing import Dict from typing import Any def info() -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: """ Get input and output schemas :return: OpenAPI specifications. Each specification is assigned as (input / output) """ input_sample = [ { 'name': "a", 'type': "string", 'required': True, 'example': "1" }, { 'name': "b", 'type': "string", 'example': "2" } ] output_sample = [ { 'name': "integer", 'type': "string", 'required': True, 'example': '42' } ] return input_sample, output_sample
282f60cacac69865736c58712c4bfbdb2f5e2c24
7,180
def build_table_separator(outer_left='╠', inner='╬', outer_right='╣'): """ Builds formatted unicode header for the stopwatch table. :return: formatted unicode header """ return f"{outer_left}{'═' * 14}{inner}{'═' * 18}{inner}{'═' * 20}{outer_right}"
22d9aef799e2245a072e9032b9d8dcc2f138386e
7,186
def _descend_namespace(caller_globals, name): """ Given a globals dictionary, and a name of the form "a.b.c.d", recursively walk the globals expanding caller_globals['a']['b']['c']['d'] returning the result. Raises an exception (IndexError) on failure. """ names = name.split('.') cur = caller_globals for i in names: if type(cur) is dict: cur = cur[i] else: cur = getattr(cur, i) return cur
111a5277907b60d3f27f037868ac8c84e390e159
7,191
def _get_extension_point_url_from_name(domain, category, pluggable_name): """Get the extension point URL based on a pluggable method name""" return '{}/{}/{}'.format(domain, category, pluggable_name).replace('//', '/')
a4a34409dac26e42d123c4fda66ddc0947134e00
7,192
def get_feature(feature_name, example): """Gets Tensorflow feature by name. Args: feature_name: The name of the feature. example: A Tensorflow example. Returns: The Tensorflow feature with the given feature name in the example. Raises: ValueError: If the given feature name is not in the Tensorflow example. """ if feature_name in example.features.feature: return example.features.feature[feature_name] else: raise ValueError('Feature name {} is not in the example {}'.format( feature_name, example))
80e35d7e1fe15e7a455123cbd139139dd977f216
7,193
def esc(code: int) -> str: """ Converts the integer code to an ANSI escape sequence :param code: code :return: escape sequence """ return f"\033[{code}m"
6bdc0679ba9b480220bc088bd09d6356dd539f1f
7,196
def get_paper_data(paper_name): """Gets paper code and paper type based on paper name""" split = paper_name.split("_") code = split[-1] paper_type = split[-2] if len(split) == 5: code = split[-2] + split[-3] paper_type = split[-1] elif len(split) == 3: code = "00" paper_type = split[-1] return code, paper_type
7f5804241a3f97b2c0ea534a4f030841e7c86e3b
7,199
from typing import List def str_class(s: str) -> str: """Expand a string of character ranges. Example: str_class("a-cx0-9") = "abcx0123456789" """ i = 0 n = len(s) ret: List[str] = [] while i < n: if i + 2 < n and s[i+1] == '-': start = ord(s[i]) end = ord(s[i+2]) if start <= end: ret.extend(chr(c) for c in range(start, end + 1)) else: ret.extend(chr(c) for c in range(start, end - 1, -1)) i += 3 else: ret.append(s[i]) i += 1 return ''.join(ret)
21bbd7b46a964f20377b4f98b203b6bf0ad210c2
7,202
import math def is_primes(n) : """return 'True' if 'n' is a prime number. False otherwise""" b =[] if n==1: return False # 1 is not a prime if n==2: return True if n > 2 and n % 2 ==0: return False max_divisor = math.floor(math.sqrt(n)) for i in range (3, 1+max_divisor,2): if n % i == 0 : return False return True
8054efd19b2e6a3b0e1de896865ae7e36e1d9125
7,206
def GetStatus(issue): """Get the status of an issue, whether it is explicit or derived.""" return issue.status or issue.derived_status or ''
4f51142dc4e55adaa27eaf3f3e7e748a49d45df2
7,207
def set_safe_attr(instance, attr, val): """Sets the attribute in a thread safe manner. Returns if new val was set on attribute. If attr already had the value then False. """ if not instance or not attr: return False old_val = getattr(instance, attr, None) if val is None and old_val is None: return False elif val == old_val: return False else: setattr(instance, attr, val) return True
92f657a8e8919b47db6f38a31d4c1cad5bea4c93
7,208
import collections def ParseIoStatsLine(line): """Parses a line of io stats into a IoStats named tuple.""" # Field definitions: http://www.kernel.org/doc/Documentation/iostats.txt IoStats = collections.namedtuple('IoStats', ['device', 'num_reads_issued', 'num_reads_merged', 'num_sectors_read', 'ms_spent_reading', 'num_writes_completed', 'num_writes_merged', 'num_sectors_written', 'ms_spent_writing', 'num_ios_in_progress', 'ms_spent_doing_io', 'ms_spent_doing_io_weighted', ]) fields = line.split() return IoStats._make([fields[2]] + [int(f) for f in fields[3:]])
2764dc96f0720359f906f1b27763738331f63e19
7,213
def get_pixel_neighbors(height, width): """ Estimate the 4 neighbors of every pixel in an image :param height: image height :param width: image width :return: pixel index - neighbor index lists """ pix_id = [] neighbor_id = [] for i in range(height): for j in range(width): n = [] if i == 0: n = n + [(i + 1) * width + j] elif i == height - 1: n = n + [(i - 1) * width + j] else: n = n + [(i + 1) * width + j, (i - 1) * width + j] if j == 0: n = n + [i * width + j + 1] elif j == width - 1: n = n + [i * width + j - 1] else: n = n + [i * width + j + 1, i * width + j - 1] for k in n: pix_id.append(i*width+j) neighbor_id.append(k) return pix_id, neighbor_id
3e49081fdc59ff2b0df54b84e0cf8c5983ec7b2c
7,214
from typing import Counter def check_valid_solution(solution, graph): """Check that the solution is valid: every path is visited exactly once.""" expected = Counter( i for (i, _) in graph.iter_starts_with_index() if i < graph.get_disjoint(i) ) actual = Counter( min(i, graph.get_disjoint(i)) for i in solution ) difference = Counter(expected) difference.subtract(actual) difference = {k: v for k, v in difference.items() if v != 0} if difference: print('Solution is not valid!' 'Difference in node counts (expected - actual): {}'.format(difference)) return False return True
ec22134973153605b3a9b7a2ac7f180ffe55f97e
7,216
def _memoized_fibonacci_aux(n: int, memo: dict) -> int: """Auxiliary function of memoized_fibonacci.""" if n == 0 or n == 1: return n if n not in memo: memo[n] = _memoized_fibonacci_aux(n - 1, memo) + \ _memoized_fibonacci_aux(n - 2, memo) return memo[n]
9a6d8646139d6ae9f6f63d2e990545fd088407eb
7,218
def pad_sequences(sequences, pad_func, maxlen = None): """ Similar to keras.preprocessing.sequence.pad_sequence but using Sample as higher level abstraction. pad_func is a pad class generator. """ ret = [] # Determine the maxlen max_value = max(map(len, sequences)) if maxlen is None: maxlen = max_value # Pad / truncate (done this way to deal with np.array) for sequence in sequences: cur_seq = list(sequence[:maxlen]) cur_seq.extend([pad_func()] * (maxlen - len(sequence))) ret.append(cur_seq) return ret
5879ab8f8df7477b9d73c87b6c8065fcc43a66df
7,222
import re def clean_text(text: str, remove_punctuation=False) -> str: """Cleans the inputted text based on the rules given in the comments. Code taken from: https://github.com/kk7nc/Text_Classification/ Args: text (str): the text to be cleaned remove_punctuation (bool): whether to remove punctuation or not Returns: the cleaned text """ rules = [ {r">\s+": u">"}, # remove spaces after a tag opens or closes {r"\s+": u" "}, # replace consecutive spaces {r"\s*<br\s*/?>\s*": u"\n"}, # newline after a <br> {r"</(div)\s*>\s*": u"\n"}, # newline after </p> and </div> and <h1/>... {r"</(p|h\d)\s*>\s*": u"\n\n"}, # newline after </p> and </div> and <h1/>... {r"<head>.*<\s*(/head|body)[^>]*>": u""}, # remove <head> to </head> {r'<a\s+href="([^"]+)"[^>]*>.*</a>': r"\1"}, # show links instead of texts {r"[ \t]*<[^<]*?/?>": u""}, # remove remaining tags {r"^\s+": u""}, # remove spaces at the beginning ] if remove_punctuation: rules.append({r"[.,\/#!$%\^&\*;:{}=\-_`~()]": u""}) for rule in rules: for (k, v) in rule.items(): regex = re.compile(k) text = regex.sub(v, text) text = text.rstrip() return text.lower()
0f666041724315696924808c335c0110b7ffc158
7,224
import webbrowser def openURL(url): """Opens a URL.""" webbrowser.open_new(url) return True
b2e843a49ddfb4b90e556f4edbaa4e20823f3097
7,225
def largest_nonadjacent_sum(arr): """ Find the largest sum of non-adjacent numbers """ before_last = 0 last = 0 for elt in arr: cur = before_last + elt before_last = max(before_last, last) last = max(cur, last) return last
39d4ab307e978f4ab9d1bd5a2983292dde3f6933
7,227
import six def get_train_random_forest_pai_cmd(model_name, data_table, model_attrs, feature_column_names, label_name): """Get a command to submit a KMeans training task to PAI Args: model_name: model name on PAI data_table: input data table name model_attrs: model attributes for KMeans feature_column_names: names of feature columns label_name: name of the label column Returns: A string which is a PAI cmd """ # default use numTrees = 1 tree_num = model_attrs.get("tree_num", 1) assert isinstance(tree_num, six.integer_types), \ "tree_num must be an integer" feature_cols = ",".join(feature_column_names) return '''pai -name randomforests -DinputTableName="%s" -DmodelName="%s" -DlabelColName="%s" -DfeatureColNames="%s" -DtreeNum="%d"''' % ( data_table, model_name, label_name, feature_cols, tree_num)
f826e0b24613b2ea8794524c3a5f982131f9a048
7,231
import math def xy(n, image_size): """Returns position of pixel n in 2D array""" x = int(n % image_size) y = int(math.floor(n / image_size)) return (x,y)
def36d60055e5084b42d73833c4baeeab9723085
7,233
from typing import Type from typing import TypeVar from typing import get_args def _contains_unbound_typevar(t: Type) -> bool: """Recursively check if `t` or any types contained by `t` is a `TypeVar`. Examples where we return `True`: `T`, `Optional[T]`, `Tuple[Optional[T], ...]`, ... Examples where we return `False`: `int`, `Optional[str]`, ... :param t: Type to evaluate. :return: `True` if the input type contains an unbound `TypeVar`, `False` otherwise. """ # Check self if isinstance(t, TypeVar): return True # Check children for arg in get_args(t): if _contains_unbound_typevar(arg): return True return False
97e85b3aafea1d9dc86f69078ff39c93b6bd7c19
7,240
def create_sample_db(ntables): """ Create a python description of a sample database """ rv = {} for i in range(1, ntables + 1): rv["table%s" % i] = { "columns": [ { "name": "id", "type": "integer", "use_sequence": "table%s_id_seq" % i, }, {"name": "data", "type": "text"}, ], } return rv
c49f583b4e7f58f1bbb7ad05902c1fc9010bd35c
7,242