content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def reverse_dict_old(dikt):
"""
takes a dict and return a new dict with old values as key and old keys as values (in a list)
example
_reverse_dict({'AB04a':'b', 'AB04b': 'b', 'AB04c':'b', 'CC04x': 'c'})
will return
{'b': ['AB04a', 'AB04b', 'AB04c'], 'c': 'CC04x'}
"""
new_dikt = {}
for k, v in dikt.items():
if v in new_dikt:
new_dikt[v].append(k)
else:
new_dikt[v] = [k]
return new_dikt | 50155858fbbe52dc8daae66e6a94c8885b80ba05 | 5,971 |
def get_card_names(cards):
"""
:param cards: List of card JSONs
:return: List of card names (str)
"""
names = []
for card in cards:
name = card.get("name")
names.append(name)
return names | a30ad1ef7d8beaab0451d6f498254b0b5df3cf6d | 5,980 |
import re
def clean_value(value, suffix):
"""
Strip out copy suffix from a string value.
:param value: Current value e.g "Test Copy" or "test-copy" for slug fields.
:type value: `str`
:param suffix: The suffix value to be replaced with an empty string.
:type suffix: `str`
:return: Stripped string without the suffix.
"""
# type: (str, str) -> str
return re.sub(r"([\s-]?){}[\s-][\d]$".format(suffix), "", value, flags=re.I) | d2ec3b3affbf71411039f234c05935132205ae16 | 5,983 |
def config_split(config):
"""
Splits a config dict into smaller chunks.
This helps to avoid sending big config files.
"""
split = []
if "actuator" in config:
for name in config["actuator"]:
split.append({"actuator": {name: config["actuator"][name]}})
del(config["actuator"])
split.append(config)
return split | 2006534ece382c55f1ba3914300f5b6960323e53 | 5,985 |
import colorsys
def hex_2_hsv(hex_col):
"""
convert hex code to colorsys style hsv
>>> hex_2_hsv('#f77f00')
(0.08569500674763834, 1.0, 0.9686274509803922)
"""
hex_col = hex_col.lstrip('#')
r, g, b = tuple(int(hex_col[i:i+2], 16) for i in (0, 2 ,4))
return colorsys.rgb_to_hsv(r/255.0, g/255.0, b/255.0) | a80e9c5470dfc64c61d12bb4b823411c4a781bef | 5,987 |
def tousLesIndices(stat):
"""
Returns the indices of all the elements of the graph
"""
return stat.node2com.keys()
#s=stat.node2com.values()
global globAuthorIndex
global globTfIdfTab
#pprint(globAuthorIndex)
#pprint(stat.node2com.values())
#glob node->index
return [globAuthorIndex[x] for x in stat.node2com]
#return stat.node2com.values()
#def varianceGroupe():
#def distanceListePointsCentre(indexsCommunaute, centre): | fa847ee3913d521778ee3462c8e946f0ff001c76 | 5,989 |
def calculate_gc(x):
"""Calculates the GC content of DNA sequence x.
x: a string composed only of A's, T's, G's, and C's."""
x = x.upper()
return float(x.count('G') + x.count('C')) / (x.count('G') + x.count('C') + x.count('A') + x.count('T')) | aae64ff550ef26e75518bdad8a12b7cda9e060d2 | 5,992 |
def hasattrs(object, *names):
"""
Takes in an object and a variable length amount of named attributes,
and checks to see if the object has each property. If any of the
attributes are missing, this returns false.
:param object: an object that may or may not contain the listed attributes
:param names: a variable amount of attribute names to check for
:return: True if the object contains each named attribute, false otherwise
"""
for name in names:
if not hasattr(object, name):
return False
return True | f3a2fc308d041ed0de79e3389e30e02660a1d535 | 5,997 |
import json
def try_parse_json(json_):
"""Converts the string representation of JSON to JSON.
:param str json_: JSON in str representation.
:rtype: :class:`dict` if converted successfully, otherwise False.
"""
if not json_:
return False
try:
return json.loads(json_)
except ValueError:
return False | 077819cf82e307aacf3e56b11fbba26a79559968 | 5,999 |
def setup_config(quiz_name):
"""Updates the config.toml index and dataset field with the formatted
quiz_name. This directs metapy to use the correct files
Keyword arguments:
quiz_name -- the name of the quiz
Returns:
True on success, false if fials to open file
"""
try:
conf_file = open("config.toml", 'r')
lines = conf_file.readlines()
conf_file.close()
for i in range(len(lines)):
if lines[i].startswith("index"):
lines[i] = "index = 'idx-{0}'\n".format(quiz_name.replace(" ", "_"))
if lines[i].startswith("dataset"):
lines[i] = "dataset = '{0}'\n".format(quiz_name.replace(" ", "_"))
conf_file = open("config.toml", 'w')
with conf_file:
conf_file.writelines(lines)
except Exception as e:
print(e)
return False
return True | 28aba9399926f27da89953c8b0c6b41d95a12d96 | 6,003 |
from typing import Dict
def _average_latency(row: Dict):
"""
Calculate average latency for Performance Analyzer single test
"""
avg_sum_fields = [
"Client Send",
"Network+Server Send/Recv",
"Server Queue",
"Server Compute",
"Server Compute Input",
"Server Compute Infer",
"Server Compute Output",
"Client Recv",
]
avg_latency = sum(int(row.get(f, 0)) for f in avg_sum_fields)
return avg_latency | f321cb4d55af605298225f2f0146a9a71ee7895b | 6,006 |
def to_vsizip(zipfn, relpth):
""" Create path from zip file """
return "/vsizip/{}/{}".format(zipfn, relpth) | 6f5baf380bd7ab8a4ea92111efbc0f660b10f6f8 | 6,007 |
def requires_moderation(page):
"""Returns True if page requires moderation
"""
return bool(page.get_moderator_queryset().count()) | 8f1cfa852cbeccfae6157e94b7ddf61d9597936e | 6,011 |
def valid_parentheses(string):
"""
Takes a string of parentheses, and determines if the order of the parentheses is valid.
:param string: a string of parentheses and characters.
:return: true if the string is valid, and false if it's invalid.
"""
stack = []
for x in string:
if x == "(":
stack.append(x)
elif x == ")":
if len(stack) > 0:
stack.pop()
else:
return False
return not stack | e8438404c461b7a113bbbab6417190dcd1056871 | 6,013 |
def has_form_encoded_header(header_lines):
"""Return if list includes form encoded header"""
for line in header_lines:
if ":" in line:
(header, value) = line.split(":", 1)
if header.lower() == "content-type" \
and "x-www-form-urlencoded" in value:
return True
return False | e4fe797e4884161d0d935853444634443e6e25bb | 6,014 |
def attr(*args, **kwargs):
"""Decorator that adds attributes to classes or functions
for use with unit tests runner.
"""
def wrapped(element):
for name in args:
setattr(element, name, True)
for name, value in kwargs.items():
setattr(element, name, value)
return element
return wrapped | 77d20af87cef526441aded99bd6e24e21e5f81f9 | 6,016 |
def nn(value: int) -> int:
"""Casts value to closest non negative value"""
return 0 if value < 0 else value | 08672feaefa99881a110e3fc629d4a9256f630af | 6,017 |
def lat_long_to_idx(gt, lon, lat):
"""
Take a geotransform and calculate the array indexes for the given lat,long.
:param gt: GDAL geotransform (e.g. gdal.Open(x).GetGeoTransform()).
:type gt: GDAL Geotransform tuple.
:param lon: Longitude.
:type lon: float
:param lat: Latitude.
:type lat: float
"""
return (int((lat - gt[3]) / gt[5]),
int((lon - gt[0]) / gt[1])) | 3fafcc4750daa02beaedb330ab6273eab6abcd56 | 6,020 |
def BSMlambda(delta: float, S: float, V: float) -> float:
"""Not really a greek, but rather an expression of leverage.
Arguments
---------
delta : float
BSM delta of the option
V : float
Spot price of the option
S : float
Spot price of the underlying
Returns
-------
float
lambda
Note
----
Percentage change in the option price per percentage change in the underlying asset's price.
"""
return delta*(S / V) | ea9bf546a7cf46b3c2be01e722409663b05248e1 | 6,021 |
import pwd
def uid_to_name(uid):
"""
Find the username associated with a user ID.
:param uid: The user ID (an integer).
:returns: The username (a string) or :data:`None` if :func:`pwd.getpwuid()`
fails to locate a user for the given ID.
"""
try:
return pwd.getpwuid(uid).pw_name
except Exception:
return None | f9054e4959a385d34c18d88704d376fb4b718e47 | 6,022 |
def adjacent_powerset(iterable):
"""
Returns every combination of elements in an iterable where elements remain ordered and adjacent.
For example, adjacent_powerset('ABCD') returns ['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']
Args:
iterable: an iterable
Returns:
a list of element groupings
"""
return [iterable[a:b] for a in range(len(iterable)) for b in range(a + 1, len(iterable) + 1)] | 951418b30d541e1dcdd635937ae609d429e3cd70 | 6,032 |
def end_position(variant_obj):
"""Calculate end position for a variant."""
alt_bases = len(variant_obj['alternative'])
num_bases = max(len(variant_obj['reference']), alt_bases)
return variant_obj['position'] + (num_bases - 1) | e49110a1102ea2ca53053858597247799065f8e1 | 6,034 |
import functools
def decorator_with_keywords(func=None, **dkws):
# NOTE: ONLY ACCEPTS KW ARGS
"""
A decorator that can handle optional keyword arguments.
When the decorator is called with no optional arguments like this:
@decorator
def function ...
The function is passed as the first argument and decorate returns the decorated function, as expected.
If the decorator is called with one or more optional arguments like this:
@decorator(optional_argument1='some value')
def function ....
Then decorator is called with the function argument with value None, so a function that decorates
is returned, as expected.
"""
# print('WHOOP', func, dkws)
def _decorate(func):
@functools.wraps(func)
def wrapped_function(*args, **kws):
# print('!!')
return func(*args, **kws)
return wrapped_function
if func:
return _decorate(func)
return _decorate | 64c4ddd26cc04a43cbf559600652113db81b79ae | 6,041 |
from datetime import datetime
def parse_line(line):
"""
Extract all the data we want from each line.
:param line: A line from our log files.
:return: The data we have extracted.
"""
time = line.split()[0].strip()
response = line.split(' :')
message = response[len(response) - 1].strip('\n')
channel = response[1].split('#')
username = channel[0].split('!')
username = username[0]
channel = channel[1]
time = datetime.strptime(time, '%Y-%m-%d_%H:%M:%S')
return time, channel, username, message | 72b4362b7628d31996075941be00e4ddcbd5edbc | 6,042 |
from typing import Counter
def reindex(labels):
"""
Given a list of labels, reindex them as integers from 1 to n_labels
Also orders them in nonincreasing order of prevalence
"""
old2new = {}
j = 1
for i, _ in Counter(labels).most_common():
old2new[i] = j
j += 1
old2newf = lambda x: old2new[x]
return [old2newf(a) for a in labels] | c12afd3b6431f10ccc43cce858e71bc504088a6e | 6,044 |
import string
def is_valid_matlab_field_label(label):
""" Check that passed string is a valid MATLAB field label """
if not label.startswith(tuple(string.ascii_letters)):
return False
VALID_CHARS = set(string.ascii_letters + string.digits + "_")
return set(label).issubset(VALID_CHARS) | ea1358e94f4fc936cb12b9cad5d7285ee39dba55 | 6,053 |
def variantCombinations(items):
""" Calculates variant combinations for given list of options. Each item in the items list represents
unique value with it's variants.
:param list items: list of values to be combined
>>> c = variantCombinations([["1.1", "1.2"], ["2.1", "2.2"], ["3.1", "3.2"]])
>>> len(c)
8
>>> for combination in c:print combination
['1.1', '2.1', '3.1']
['1.1', '2.1', '3.2']
['1.1', '2.2', '3.1']
['1.1', '2.2', '3.2']
['1.2', '2.1', '3.1']
['1.2', '2.1', '3.2']
['1.2', '2.2', '3.1']
['1.2', '2.2', '3.2']
"""
assert isinstance(items, list) and list
if len(items) == 1:
result = items[0]
else:
result = []
subItems = variantCombinations(items[1:])
for masterItem in items[0]:
for subItem in subItems:
if isinstance(subItem, list):
item = [masterItem]
item.extend(subItem)
result.append(item)
else:
result.append([masterItem, subItem])
return result | 72bfdb19db3cf692e4260a5f75d10324e562f20e | 6,055 |
def fahrenheit2celsius(f: float) -> float:
"""Utility function to convert from Fahrenheit to Celsius."""
return (f - 32) * 5/9 | 5161b29998553ad6ff497e698058f330433d90b3 | 6,063 |
def pollard_brent_f(c, n, x):
"""Return f(x) = (x^2 + c)%n. Assume c < n.
"""
x1 = (x * x) % n + c
if x1 >= n:
x1 -= n
assert x1 >= 0 and x1 < n
return x1 | 5037b3feac2f131645fbe6ceb00f0d18417a7c04 | 6,064 |
def tpu_ordinal_fn(shard_index_in_host, replicas_per_worker):
"""Return the TPU ordinal associated with a shard."""
return shard_index_in_host % replicas_per_worker | 773313750ce78cf5d32776752cb75201450416ba | 6,065 |
def getObjectInfo(fluiddb, objectId):
"""
Get information about an object.
"""
return fluiddb.objects[objectId].get(showAbout=True) | baad59e6585e04a8c2a8cca1df305327b80f3768 | 6,071 |
import csv
def snp2dict(snpfile):
"""Get settings of dict from .snp file exported from save&restore app.
Parameters
----------
snpfile : str
Filename of snp file exported from save&restore app.
Returns
-------
r : dict
Dict of pairs of PV name and setpoint value.
"""
with open(snpfile, 'r') as fp:
csv_data = csv.reader(fp, delimiter=',', skipinitialspace=True)
next(csv_data)
header = next(csv_data)
ipv, ival = header.index('PV'), header.index('VALUE')
settings = {line[ipv]: line[ival] for line in csv_data if line}
return settings | cb902b3f8796685ed065bfeb8ed2d6d83c0fe80b | 6,073 |
import math
def pol2cart(r,theta):
"""
Translate from polar to cartesian coordinates.
"""
return (r*math.cos(float(theta)/180*math.pi), r*math.sin(float(theta)/180*math.pi)) | 69753e1cadd36ec70da1bf2cf94641d4c7f78179 | 6,077 |
def spread(self, value="", **kwargs):
"""Turns on a dashed tolerance curve for the subsequent curve plots.
APDL Command: SPREAD
Parameters
----------
value
Amount of tolerance. For example, 0.1 is ± 10%.
"""
return self.run("SPREAD,%s" % (str(value)), **kwargs) | a92c8e230eadd4e1fde498fa5650a403f419eaeb | 6,084 |
import re
def repair_attribute_name(attr):
"""
Remove "weird" characters from attribute names
"""
return re.sub('[^a-zA-Z-_\/0-9\*]','',attr) | f653a5cb5ed5e43609bb334f631f518f73687853 | 6,085 |
def HasPositivePatterns(test_filter):
"""Returns True if test_filter contains a positive pattern, else False
Args:
test_filter: test-filter style string
"""
return bool(len(test_filter) > 0 and test_filter[0] != '-') | 9038bf799efbe4008a83d2da0aba89c0197c16a1 | 6,087 |
def module_of_callable(c):
"""Find name of module where callable is defined
Arguments:
c {Callable} -- Callable to inspect
Returns:
str -- Module name (as for x.__module__ attribute)
"""
# Ordinal function defined with def or lambda:
if type(c).__name__ == 'function':
return c.__module__
# Some callable, probably it's a class with __call_ method, so define module of declaration rather than a module of instantiation:
return c.__class__.__module__ | 116e46a3e75fcd138e271a3413c62425a9fcec3b | 6,093 |
import json
def invocation_parameter(s) :
"""argparse parameter conversion function for invocation request
parameters, basically these parameters are JSON expressions
"""
try :
expr = json.loads(s)
return expr
except :
return str(s) | cca1a9c3514def152295b10b17ef44480ccca5a9 | 6,097 |
def dumpj(game):
"""Dump a game to json"""
return game.to_json() | bac5480ea2b3136cbd18d0690af27f94e4a2b6a3 | 6,100 |
import types
def _get_functions_names(module):
"""Get names of the functions in the current module"""
return [name for name in dir(module) if
isinstance(getattr(module, name, None), types.FunctionType)] | 581384740dc27c15ac9710d66e9b0f897c906b96 | 6,101 |
import ast
def ex_rvalue(name):
"""A variable store expression."""
return ast.Name(name, ast.Load()) | 4afff97283d96fd29740de5b7a97ef64aad66efe | 6,102 |
def stateDiff(start, end):
"""Calculate time difference between two states."""
consumed = (end.getTimestamp() - start.getTimestamp()).total_seconds()
return consumed | 1f76903e2486e2c378f338143461d1d15f7993a6 | 6,103 |
import copy
import random
def staticDepthLimit(max_depth):
"""Implement a static limit on the depth of a GP tree, as defined by Koza
in [Koza1989]. It may be used to decorate both crossover and mutation
operators. When an invalid (too high) child is generated, it is simply
replaced by one of its parents.
This operator can be used to avoid memory errors occuring when the tree
gets higher than 90-95 levels (as Python puts a limit on the call stack
depth), because it ensures that no tree higher than *max_depth* will ever
be accepted in the population (except if it was generated at initialization
time).
:param max_depth: The maximum depth allowed for an individual.
:returns: A decorator that can be applied to a GP operator using \
:func:`~deap.base.Toolbox.decorate`
.. note::
If you want to reproduce the exact behavior intended by Koza, set
the *max_depth* param to 17.
.. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of
Computers by Means of Natural Selection (MIT Press,
Cambridge, MA, 1992)
"""
def decorator(func):
def wrapper(*args, **kwargs):
keep_inds = [copy.deepcopy(ind) for ind in args]
new_inds = list(func(*args, **kwargs))
for i, ind in enumerate(new_inds):
if ind.height > max_depth:
new_inds[i] = random.choice(keep_inds)
return new_inds
return wrapper
return decorator | cdcb1e58a681b622ced58e9aa36562e1fedb6083 | 6,104 |
def replace_last(source_string, replace_what, replace_with):
""" Function that replaces the last ocurrence of a string in a word
:param source_string: the source string
:type source_string: str
:param replace_what: the substring to be replaced
:type replace_what: str
:param replace_with: the string to be inserted
:type replace_with: str
:returns: string with the replacement
:rtype: str
:Example:
>>> import chana.lemmatizer
>>> chana.lemmatizer.replace_last('piati','ti','ra')
'piara'
"""
head, _sep, tail = source_string.rpartition(replace_what)
return head + replace_with + tail | 6fbc36824b960fb125b722101f21b5de732194c5 | 6,109 |
def unescape(text):
"""Unescapes text
>>> unescape(u'abc')
u'abc'
>>> unescape(u'\\abc')
u'abc'
>>> unescape(u'\\\\abc')
u'\\abc'
"""
# Note: We can ditch this and do it in tokenizing if tokenizing
# returned typed tokens rather than a list of strings.
new_text = []
escape = False
for c in text:
if not escape and c == u'\\':
escape = True
continue
new_text.append(c)
escape = False
return u''.join(new_text) | 7db9fa5bb786ea5c1f988ee26eed07abe66a2942 | 6,110 |
def removeZeros(infile, outfile, prop=0.5, genecols=2):
"""Remove lines from `infile' in which the proportion of zeros is equal to or higher than `prop'. `genecols' is the number of columns containing gene identifiers at the beginning of each row. Writes filtered lines to `outfile'."""
nin = 0
nout = 0
with open(infile, "r") as f:
hdr = f.readline()
columns = hdr.split("\t")
ncols = len(columns)-genecols
maxzeros = ncols*prop
with open(outfile, "w") as out:
out.write(hdr)
while True:
line = f.readline()
if line == '':
break
nin += 1
pline = line.rstrip("\r\n").split("\t")
nzeros = 0
for v in pline[genecols:]:
if float(v) == 0:
nzeros += 1
if nzeros < maxzeros:
out.write(line)
nout += 1
return (nin, nout) | 43feba21513be4a8292c08918e16b3e34a73c341 | 6,112 |
def getPositionPdf(i):
"""Return the position of the square on the pdf page"""
return [int(i/5), i%5] | 859fd00c1475cfcb4cd93800299181b77fdd6e93 | 6,116 |
def dur_attributes_to_dur(d_half, d_semiqvr):
"""
Convert arrays of d_hlf and d_sqv to d.
- See eq. (2) of the paper.
"""
def d_hlf_dur_sqv_to_d(d_hlf, d_sqv):
return 8 * d_hlf + d_sqv
d = d_hlf_dur_sqv_to_d(d_half, d_semiqvr)
return d | aeea74f929ef94d94178444df66a30d0d017fd4e | 6,117 |
def filter_score_grouped_pair(post_pair):
"""
Filter posts with a positive score.
:param post_pair: pair of post_id, dict with score, text blocks, and comments
:return: boolean indicating whether post has a positive score
"""
_, post_dict = post_pair
post_score = post_dict['score']
return post_score and int(post_score) > 0 | c824eacd43b44c85fc7acf102fdde2413a7c4d0e | 6,120 |
def add_upper_log_level(logger, method_name, event_dict):
"""
Add the log level to the event dict.
"""
event_dict["level"] = method_name.upper()
return event_dict | 36ccdf335473136fe8188ff99ed539920ee39fa7 | 6,126 |
def zigzag2(i, curr=.45, upper=.48, lower=.13):
"""
Generalized version of the zig-zag function.
Returns points oscillating between two bounds
linearly.
"""
if abs(i) <= (upper-curr):
return curr + i
else:
i = i - (upper-curr)
i = i%(2*(upper-lower))
if i < (upper-lower):
return upper-i
else:
return 2*lower-upper+i | a51624af520121eb7285b2a8a5b4dc5ffa552147 | 6,131 |
def discriminateEvents(events, threshold):
"""
Discriminate triggers when different kind of events are on the same channel.
A time threshold is used to determine if two events are from the same trial.
Parameters
----------
events : instance of pandas.core.DataFrame
Dataframe containing the list of events obtained with
mne.find_events(raw).
threshold : float
Time threshold in milliseconds. Keeps an event if the time difference
with the next one is superior than threshold.
Returns:
newData : instance of pandas.series.Series
List of trial number filling the requirements.
"""
# calculate the rolling difference (between n and n+1)
events['diff'] = events[0].diff()
# replace the nan with the first value
events['diff'].iloc[0] = events.iloc[0, 0]
# select events with time distance superior to threshold
events = events[events['diff']>threshold]
events = events.reset_index(drop=True)
del events['diff']
return events | 0078548ea463c01d88b574185b3dcb5632e5cd13 | 6,133 |
def parse_movie(line, sep='::'):
"""
Parses a movie line
Returns: tuple of (movie_id, title)
"""
fields = line.strip().split(sep)
movie_id = int(fields[0]) # convert movie_id to int
title = fields[1]
return movie_id, title | 9d7a13ca3ddf823ff22582f648434d4b6df00207 | 6,136 |
def strip_newlines(s, nleading=0, ntrailing=0):
"""strip at most nleading and ntrailing newlines from s"""
for _ in range(nleading):
if s.lstrip(' \t')[0] == '\n':
s = s.lstrip(' \t')[1:]
elif s.lstrip(' \t')[0] == '\r\n':
s = s.lstrip(' \t')[2:]
for _ in range(ntrailing):
if s.rstrip(' \t')[-2:] == '\r\n':
s = s.rstrip(' \t')[:-2]
elif s.rstrip(' \t')[-1:] == '\n':
s = s.rstrip(' \t')[:-1]
return s | cd9c55d4ac7828d9506567d879277a463d896c46 | 6,141 |
def xyz_to_lab(x_val, y_val, z_val):
"""
Convert XYZ color to CIE-Lab color.
:arg float x_val: XYZ value of X.
:arg float y_val: XYZ value of Y.
:arg float z_val: XYZ value of Z.
:returns: Tuple (L, a, b) representing CIE-Lab color
:rtype: tuple
D65/2° standard illuminant
"""
xyz = []
for val, ref in (x_val, 95.047), (y_val, 100.0), (z_val, 108.883):
val /= ref
val = pow(val, 1 / 3.0) if val > 0.008856 else 7.787 * val + 16 / 116.0
xyz.append(val)
x_val, y_val, z_val = xyz # pylint: disable=unbalanced-tuple-unpacking
cie_l = 116 * y_val - 16
cie_a = 500 * (x_val - y_val)
cie_b = 200 * (y_val - z_val)
return cie_l, cie_a, cie_b | c2478772659a5d925c4db0b6ba68ce98b6537a59 | 6,142 |
def infer(model, text_sequences, input_lengths):
"""
An inference hook for pretrained synthesizers
Arguments
---------
model: Tacotron2
the tacotron model
text_sequences: torch.Tensor
encoded text sequences
input_lengths: torch.Tensor
input lengths
Returns
-------
result: tuple
(mel_outputs_postnet, mel_lengths, alignments) - the exact
model output
"""
return model.infer(text_sequences, input_lengths) | e7937395956e2dcd35dd86bc23599fbb63417c22 | 6,149 |
def _is_course_or_run_deleted(title):
"""
Returns True if '[delete]', 'delete ' (note the ending space character)
exists in a course's title or if the course title equals 'delete' for the
purpose of skipping the course
Args:
title (str): The course.title of the course
Returns:
bool: True if the course or run should be considered deleted
"""
title = title.strip().lower()
if (
"[delete]" in title
or "(delete)" in title
or "delete " in title
or title == "delete"
):
return True
return False | c32c69e15fafbc899048b89ab8199f653d59e7a8 | 6,156 |
from typing import OrderedDict
def map_constructor(loader, node):
"""
Constructs a map using OrderedDict.
:param loader: YAML loader
:param node: YAML node
:return: OrderedDictionary data
"""
loader.flatten_mapping(node)
return OrderedDict(loader.construct_pairs(node)) | 21bf92d0c3975758ae434026fae3f54736b7f21d | 6,157 |
def usage_percentage(usage, limit):
"""Usage percentage."""
if limit == 0:
return ""
return "({:.0%})".format(usage / limit) | 7caf98ddb37036c79c0e323fc854cbc550eaaa60 | 6,162 |
from typing import Dict
def strip_empty_values(values: Dict) -> Dict:
"""Remove any dict items with empty or ``None`` values."""
return {k: v for k, v in values.items() if v or v in [False, 0, 0.0]} | 982814edbd73961d9afa2e2389cbd970b2bc231e | 6,164 |
def metric_wind_dict_to_beaufort(d):
"""
Converts all the wind values in a dict from meters/sec
to the corresponding Beaufort scale level (which is not an exact number but rather
represents a range of wind speeds - see: https://en.wikipedia.org/wiki/Beaufort_scale).
Conversion table: https://www.windfinder.com/wind/windspeed.htm
:param d: the dictionary containing metric values
:type d: dict
:returns: a dict with the same keys as the input dict and values converted
to Beaufort level
"""
result = {}
for key, value in d.items():
if key != 'deg': # do not convert wind degree
if value <= 0.2:
bf = 0
elif 0.2 < value <= 1.5:
bf = 1
elif 1.5 < value <= 3.3:
bf = 2
elif 3.3 < value <= 5.4:
bf = 3
elif 5.4 < value <= 7.9:
bf = 4
elif 7.9 < value <= 10.7:
bf = 5
elif 10.7 < value <= 13.8:
bf = 6
elif 13.8 < value <= 17.1:
bf = 7
elif 17.1 < value <= 20.7:
bf = 8
elif 20.7 < value <= 24.4:
bf = 9
elif 24.4 < value <= 28.4:
bf = 10
elif 28.4 < value <= 32.6:
bf = 11
else:
bf = 12
result[key] = bf
else:
result[key] = value
return result | b26ddb5e9c0423612a9c7086030fd77bbfa371ad | 6,170 |
def str_igrep(S, strs):
"""Returns a list of the indices of the strings wherein the substring S
is found."""
return [i for (i,s) in enumerate(strs) if s.find(S) >= 0]
#return [i for (s,i) in zip(strs,xrange(len(strs))) if s.find(S) >= 0] | bae8afdb7d0da4eb8384c06e9f0c9bc3f6a31242 | 6,171 |
import base64
def is_base64(s):
"""Return True if input string is base64, false otherwise."""
s = s.strip("'\"")
try:
if isinstance(s, str):
sb_bytes = bytes(s, 'ascii')
elif isinstance(s, bytes):
sb_bytes = s
else:
raise ValueError("Argument must be string or bytes")
return base64.b64encode(base64.b64decode(sb_bytes)) == sb_bytes
except Exception:
return False | 6ce7bc4ddc79d5d50acce35f7995033ffb7d364a | 6,175 |
def get_mod_from_id(mod_id, mod_list):
"""
Returns the mod for given mod or None if it isn't found.
Parameters
----------
mod_id : str
The mod identifier to look for
mod_list : list[DatRecord]
List of mods to search in (or dat file)
Returns
-------
DatRecord or None
Returns the mod if found, None otherwise
"""
for mod in mod_list:
if mod['Id'] == mod_id:
return mod
return None | 1fac309e4dfadea6da34946eb695f77cbbd61f92 | 6,177 |
import math
def distance(point1, point2):
""" Return the distance between two points."""
dx = point1[0] - point2[0]
dy = point1[1] - point2[1]
return math.sqrt(dx * dx + dy * dy) | 7605d98e33989de91c49a5acf702609272cf5a68 | 6,178 |
def cumulative_sum(t):
"""
Return a new list where the ith element is the sum of all elements up to that
position in the list. Ex: [1, 2, 3] returns [1, 3, 6]
"""
res = [t[0]]
for i in range(1, len(t)):
res.append(res[-1] + t[i])
return res | 14b2ef722f72e239d05737a7bb7b3a6b3e15305f | 6,180 |
import random
def particle_movement_x(time):
"""
Generates a random movement in the X label
Parameter:
time (int): Time step
Return:
x (int): X position
"""
x = 0
directions = [1, -1]
for i in range(time):
x = x + random.choice(directions)
return x | 0dff68080dbfd56997cffb1e469390a1964a326f | 6,187 |
def _format_td(timedelt):
"""Format a timedelta object as hh:mm:ss"""
if timedelt is None:
return ''
s = int(round(timedelt.total_seconds()))
hours = s // 3600
minutes = (s % 3600) // 60
seconds = (s % 60)
return '{:02d}:{:02d}:{:02d}'.format(hours, minutes, seconds) | 071f25c3c8cfc75cacf2fedc7002527897362654 | 6,193 |
def extract_protein_from_record(record):
"""
Grab the protein sequence as a string from a SwissProt record
:param record: A Bio.SwissProt.SeqRecord instance
:return:
"""
return str(record.sequence) | a556bd4316f145bf23697d8582f66f7dcb589087 | 6,198 |
import torch
def calc_IOU(seg_omg1: torch.BoolTensor, seg_omg2: torch.BoolTensor, eps: float = 1.e-6) -> float:
"""
calculate intersection over union between 2 boolean segmentation masks
:param seg_omg1: first segmentation mask
:param seg_omg2: second segmentation mask
:param eps: eps for numerical stability
:return: IOU
"""
dim = [1, 2, 3] if len(seg_omg1.shape) == 4 else [1, 2]
intersection = (seg_omg1 & seg_omg2).sum(dim=dim)
union = (seg_omg1 | seg_omg2).sum(dim=dim)
return (intersection.float() / (union.float() + eps)).mean().item() | 6586b1f9995858be9ab7e40edd1c3433cd1cd6f4 | 6,199 |
def td_path_join(*argv):
"""Construct TD path from args."""
assert len(argv) >= 2, "Requires at least 2 tdpath arguments"
return "/".join([str(arg_) for arg_ in argv]) | 491f1d50767a50bfbd7d3a2e79745e0446f5204c | 6,200 |
import torch
def calculate_segmentation_statistics(outputs: torch.Tensor, targets: torch.Tensor, class_dim: int = 1, threshold=None):
"""Compute calculate segmentation statistics.
Args:
outputs: torch.Tensor.
targets: torch.Tensor.
threshold: threshold for binarization of predictions.
class_dim: indicates class dimension (K).
Returns:
True positives , false positives , false negatives for segmentation task.
"""
num_dims = len(outputs.shape)
assert num_dims > 2, "Found only two dimensions, shape should be [bs , C , ...]" # noqa: S101
assert outputs.shape == targets.shape, "shape mismatch" # noqa: S101
if threshold is not None:
outputs = (outputs > threshold).float()
dims = [dim for dim in range(num_dims) if dim != class_dim]
true_positives = torch.sum(outputs * targets, dim=dims)
false_positives = torch.sum(outputs * (1 - targets), dim=dims)
false_negatives = torch.sum(targets * (1 - outputs), dim=dims)
return true_positives, false_positives, false_negatives | ccc017dd5c7197565e54c62cd83eb5cdc02d7d17 | 6,201 |
import torch
def polar2cart(r, theta):
"""
Transform polar coordinates to Cartesian.
Parameters
----------
r, theta : floats or arrays
Polar coordinates
Returns
-------
[x, y] : floats or arrays
Cartesian coordinates
"""
return torch.stack((r * theta.cos(), r * theta.sin()), dim=-1).squeeze() | c13225a49d6435736bf326f70af5f6d4039091d8 | 6,204 |
def backoff_linear(n):
"""
backoff_linear(n) -> float
Linear backoff implementation. This returns n.
See ReconnectingWebSocket for details.
"""
return n | a3a3b3fc0c4a56943b1d603bf7634ec50404bfb3 | 6,207 |
def check_dna_sequence(sequence):
"""Check if a given sequence contains only the allowed letters A, C, T, G."""
return len(sequence) != 0 and all(base.upper() in ['A', 'C', 'T', 'G'] for base in sequence) | 2f561c83773ddaaad2fff71a6b2e5d48c5a35f87 | 6,209 |
import random
def random_tolerance(value, tolerance):
"""Generate a value within a small tolerance.
Credit: /u/LightShadow on Reddit.
Example::
>>> time.sleep(random_tolerance(1.0, 0.01))
>>> a = random_tolerance(4.0, 0.25)
>>> assert 3.0 <= a <= 5.0
True
"""
value = float(value)
if tolerance == 0.0:
return value
return value + value * random.uniform(-tolerance, tolerance) | abe631db8a520de788540f8e0973537306872bde | 6,217 |
def find_scan_info(filename, position = '__P', scan = '__S', date = '____'):
"""
Find laser position and scan number by looking at the file name
"""
try:
file = filename.split(position, 2)
file = file[1].split(scan, 2)
laser_position = file[0]
file = file[1].split(date, 2)
scan_number = file[0]
except IndexError:
laser_position = -1
scan_number = -1
return laser_position, scan_number | f98afb440407ef7eac8ceda8e15327b5f5d32b35 | 6,218 |
import requests
def cleaned_request(request_type, *args, **kwargs):
""" Perform a cleaned requests request """
s = requests.Session()
# this removes netrc checking
s.trust_env = False
return s.request(request_type, *args, **kwargs) | b6c99c85a64e5fd78cf10cc986c9a4b1542f47d3 | 6,227 |
import yaml
def load_config_file(filename):
"""Load configuration from YAML file."""
docs = yaml.load_all(open(filename, 'r'), Loader=yaml.SafeLoader)
config_dict = dict()
for doc in docs:
for k, v in doc.items():
config_dict[k] = v
return config_dict | d61bb86e605a1e744ce3f4cc03e866c61137835d | 6,228 |
def empty_filter(item, *args, **kwargs):
"""
Placeholder function to pass along instead of filters
"""
return True | d72ac5a0f787557b78644bcedd75e71f92c38a0b | 6,231 |
import re
def remove_mentions(text):
"""Remove @-mentions from the text"""
return re.sub('@\w+', '', text) | 5cbdd40a602f24f8274369e92f9159cbb2f6a230 | 6,235 |
def _flat(l):
"""Flattens a list.
"""
f = []
for x in l:
f += x
return f | 9b2e432d79f08840d417601ff950ff9fa28073ef | 6,236 |
from typing import Union
from pathlib import Path
def find_mo(search_paths=None) -> Union[Path, None]:
"""
Args:
search_paths: paths where ModelOptimizer may be found. If None only default paths is used.
Returns:
path to the ModelOptimizer or None if it wasn't found.
"""
default_mo_path = ('intel', 'openvino', 'deployment_tools', 'model_optimizer')
default_paths = [Path.home().joinpath(*default_mo_path), Path('/opt').joinpath(*default_mo_path)]
executable = 'mo.py'
for path in search_paths or default_paths:
path = Path(path)
if not path.is_dir():
continue
mo = path / executable
if not mo.is_file():
continue
return mo
return None | 4657e15649692415dd10f2daa6527cade351d8fc | 6,241 |
import math
def point_in_wave(point_x, frequency, amplitude, offset_x, offset_y):
"""Returns the specified point x in the wave of specified parameters."""
return (math.sin((math.pi * point_x)/frequency + offset_x) * amplitude) + offset_y | 5a91c9204819492bb3bd42f0d4c9231d39e404d8 | 6,245 |
def map_to_docs(solr_response):
"""
Response mapper that only returns the list of result documents.
"""
return solr_response['response']['docs'] | 2661b9075c05a91c241342151d713702973b9c12 | 6,246 |
import json
def generate_prompt(
test_case_path, prompt_path, solutions_path, tokenizer, starter_path=None
):
"""
Generate a prompt for a given test case.
Original version from https://github.com/hendrycks/apps/blob/main/eval/generate_gpt_codes.py#L51.
"""
_input = "\nQUESTION:\n"
with open(prompt_path, "r") as f:
data = f.readlines()
data = "".join(data)
_input += data
if starter_path != None:
with open(starter_path, "r") as f:
data = f.readlines()
data = "".join(data)
data = "\n" + data # + "\n"
_input += data
else:
# _input += "\n\n"
pass
with open(test_case_path, "r") as f:
data = json.load(f)
if not data.get("fn_name"):
_input += "\nUse Standard Input format" # \n"
else:
_input += "\nUse Call-Based format" # \n"
_input += "\nANSWER:\n"
return _input | ecd3218839b346741e5beea8ec7113ea2892571e | 6,252 |
def format_header(header_values):
"""
Formats a row of data with bolded values.
:param header_values: a list of values to be used as headers
:return: a string corresponding to a row in enjin table format
"""
header = '[tr][td][b]{0}[/b][/td][/tr]'
header_sep = '[/b][/td][td][b]'
return header.format(header_sep.join(header_values)) | 5b7cd734a486959660551a6d915fbbf52ae7ef1e | 6,258 |
import importlib
def load_attr(str_full_module):
"""
Args:
- str_full_module: (str) correspond to {module_name}.{attr}
Return: the loaded attribute from a module.
"""
if type(str_full_module) == str:
split_full = str_full_module.split(".")
str_module = ".".join(split_full[:-1])
str_attr = split_full[-1]
module = importlib.import_module(str_module)
return getattr(module, str_attr)
else:
return str_full_module | f96dd56c73745e76ccc9c48dda4ba8a6592ab54b | 6,259 |
def quick_sort(seq):
"""
Реализация быстрой сортировки. Рекурсивный вариант.
:param seq: любая изменяемая коллекция с гетерогенными элементами,
которые можно сравнивать.
:return: коллекция с элементами, расположенными по возрастанию.
Examples:
>>> quick_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> quick_sort([])
[]
>>> quick_sort([-2, -5, -45])
[-45, -5, -2]
"""
length = len(seq)
if length <= 1:
return seq
else:
# В качестве pivot используется последний элемент.
pivot = seq.pop()
# lesser - часть коллекции, которая меньше pivot, будет тут.
# greater - части коллекции, которая меньше pivot, будет тут.
greater, lesser = [], []
for element in seq:
if element > pivot:
greater.append(element)
else:
lesser.append(element)
# Рекурсивно вызывается функция сортировки отдельно для
# greater и lesser. В конце все части объединяются в единую
# коллекцию. Между ними вставляется pivot.
return quick_sort(lesser) + [pivot] + quick_sort(greater) | 46b56b5d29ca31a872e1805b66f4529a8bf48c6b | 6,261 |
def normalize_query_result(result, sort=True):
"""
Post-process query result to generate a simple, nested list.
:param result: A QueryResult object.
:param sort: if True (default) rows will be sorted.
:return: A list of lists of RDF values.
"""
normalized = [[row[i] for i in range(len(row))] for row in result]
return sorted(normalized) if sort else normalized | 1df57ef889be041c41593766e1ce3cdd4ada7f66 | 6,262 |
from typing import List
def count_jobpairs(buildpairs: List) -> int:
"""
:param buildpairs: A list of build pairs.
:return: The number of job pairs in `buildpairs`.
"""
counts = [len(bp['jobpairs']) for bp in buildpairs]
return sum(counts) | 30c345698400fd134456abcf7331ca2ebbfec10f | 6,263 |
def calc_water(scenario, years, days_in_year):
"""Calculate Water costs Function
Args:
scenario (object): The farm scenario
years (int): The no. of years the simulation will analyse
days_in_year (float): The number of days in a year
Returns:
cogs_water (list): Cost of Goods Sold expenditure on Water as a time series for each year
water_consumption (list): The amount of water consumed each year
"""
water_consumption = [0]
for y in range(years+1):
if y == 1:
water_consumption.append(scenario.system_quantity * 0.95 * days_in_year + (1900*12))
elif y > 1:
water_consumption.append((scenario.system_quantity * 0.95 * days_in_year + (1900*12)) * scenario.growing_area_mulitplier)
cogs_water = [i * scenario.water_price for i in water_consumption]
return cogs_water, water_consumption | ed23060e64c928a545897edef008b8b020d84d3c | 6,266 |
import json
def enqueue_crawling_job(delegate_or_broadcast_svc, job_id, urls, depth):
"""
Used to enqueue a crawling job (or delegate a sub-url on a current job)
to the worker pool.
:type delegate_or_broadcast_svc: ZeroMQDelegatorService or
ZeroMQBroadcastService.
:param delegate_or_broadcast_svc: The web API service uses a
ZeroMQBroadcastService to announce new crawling jobs. The crawler
service uses ZeroMQDelegatorService to delegate any sub-links found
while scouring a page.
:param int job_id: The job ID that these URLs fall under.
:param set urls: The URLs to crawl. We'll send out one announcement
per URL.
:param int depth: The depth that this crawl will be at. 0 being initial.
:rtype: int
:returns: The number of crawler announcements made. One per URL.
"""
message_dict = {
'job_id': job_id,
'depth': depth
}
for url in urls:
message_dict['url'] = url
message_str = json.dumps(message_dict)
delegate_or_broadcast_svc.send_message(message_str)
return len(urls) | 6a211346edd6f921bf26ed08adcee98cff066764 | 6,268 |
import re
def camel_to_snake(text: str) -> str:
"""
A helper function to convert `camelCase` to `snake_case`.
- e.g. `bestBigBrawlerTime` -> `best_big_brawler_time`
### Parameters
text: `str`
The text to restructure from `camelCase` to `snake_case`.
### Returns
`str`
The restructured `snake_case` text.
"""
return re.compile(r"(?<!^)(?=[A-Z])").sub("_", text).lower() | b9ac748bf0cc345c7cfb0bade1e4b1e9cbdf712c | 6,272 |
import ast
def extract_ast_class_def_by_name(ast_tree, class_name):
"""
Extracts class definition by name
:param ast_tree: AST tree
:param class_name: name of the class.
:return: class node found
"""
class ClassVisitor(ast.NodeVisitor):
"""
Visitor.
"""
def __init__(self):
self.found_class_node = None
def visit_ClassDef(self, node): # pylint: disable=invalid-name
"""
Visit class definition.
:param node: node.
:return:
"""
if node.name == class_name:
self.found_class_node = node
visitor = ClassVisitor()
visitor.visit(ast_tree)
return visitor.found_class_node | 011f1cb8d965db8e30e6f4281704a6140103946b | 6,276 |
from typing import Callable
def _scroll_screen(direction: int) -> Callable:
"""
Scroll to the next/prev group of the subset allocated to a specific screen.
This will rotate between e.g. 1->2->3->1 when the first screen is focussed.
"""
def _inner(qtile):
if len(qtile.screens) == 1:
current = qtile.groups.index(qtile.current_group)
destination = (current + direction) % 6
qtile.groups[destination].cmd_toscreen()
return
current = qtile.groups.index(qtile.current_group)
if current < 3:
destination = (current + direction) % 3
else:
destination = ((current - 3 + direction) % 3) + 3
qtile.groups[destination].cmd_toscreen()
return _inner | e778b6ef8a07fe8609a5f3332fa7c44d1b34c17a | 6,280 |
import torch
def decorate_batch(batch, device='cpu'):
"""Decorate the input batch with a proper device
Parameters
----------
batch : {[torch.Tensor | list | dict]}
The input batch, where the list or dict can contain non-tensor objects
device: str, optional
'cpu' or 'cuda'
Raises:
----------
Exception: Unsupported data type
Return
----------
torch.Tensor | list | dict
Maintain the same structure as the input batch, but with tensors moved to a proper device.
"""
if isinstance(batch, torch.Tensor):
batch = batch.to(device)
return batch
elif isinstance(batch, dict):
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.to(device)
elif isinstance(value, dict) or isinstance(value, list):
batch[key] = decorate_batch(value, device)
# retain other value types in the batch dict
return batch
elif isinstance(batch, list):
new_batch = []
for value in batch:
if isinstance(value, torch.Tensor):
new_batch.append(value.to(device))
elif isinstance(value, dict) or isinstance(value, list):
new_batch.append(decorate_batch(value, device))
else:
# retain other value types in the batch list
new_batch.append(value)
return new_batch
else:
raise Exception('Unsupported batch type {}'.format(type(batch))) | a0bd4a5dff0b5cf6e304aede678c5d56cb93d1dd | 6,286 |
import io
def read_bytes(n: int, reader: io.IOBase) -> bytes:
"""
Reads the specified number of bytes from the reader. It raises an
`EOFError` if the specified number of bytes is not available.
Parameters:
- `n`: The number of bytes to read;
- `reader`: The reader;
Returns the bytes read.
"""
buff = reader.read(n)
if not isinstance(buff, bytes):
raise ValueError('The reader is expected to return bytes.')
if len(buff) != n:
raise EOFError(f'Unable to read {n} bytes from the stream.')
return buff | bb3d00fc7667839864f4104a94a26e682f058fdc | 6,287 |
import json
def _format_full_payload(_json_field_name, _json_payload, _files_payload):
"""This function formats the full payload for a ``multipart/form-data`` API request including attachments.
.. versionadded:: 2.8.0
:param _json_field_name: The name of the highest-level JSON field used in the JSON payload
:type _json_field_name: str
:param _json_payload: The JSON payload data as a dictionary
:type _json_payload: dict
:param _files_payload: The payload for the attachments containing the IO stream for the file(s)
:type _files_payload: dict
:returns: The full payload as a dictionary
:raises: :py:exc:`TypeError`
"""
_full_payload = {
_json_field_name: (None, json.dumps(_json_payload, default=str), 'application/json')
}
_full_payload.update(_files_payload)
return _full_payload | feacd27be3e6fcbd33f77fa755be513a93e3cdeb | 6,288 |
def read_slug(filename):
"""
Returns the test slug found in specified filename.
"""
with open(filename, "r") as f:
slug = f.read()
return slug | e1882d856e70efa8555dab9e422a1348594ffcaf | 6,291 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.