content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
from typing import Dict def merge_hooks(hooks1: Dict[str, list], hooks2: Dict[str, list]) -> Dict[str, list]: """ Overview: merge two hooks, which has the same keys, each value is sorted by hook priority with stable method Arguments: - hooks1 (:obj:`dict`): hooks1 to be merged - hooks2 (:obj:`dict`): hooks2 to be merged Returns: - new_hooks (:obj:`dict`): merged new hooks .. note:: This merge function uses stable sort method without disturbing the same priority hook """ assert set(hooks1.keys()) == set(hooks2.keys()) new_hooks = {} for k in hooks1.keys(): new_hooks[k] = sorted(hooks1[k] + hooks2[k], key=lambda x: x.priority) return new_hooks
add5ae72917ca9aff109e8ac86a4d6902c14b298
5,614
def get_max_assocs_in_sample_csr(assoc_mat): """ Returns the maximum number of co-associations a sample has and the index of that sample. """ first_col = assoc_mat.indptr n_cols = first_col[1:] - first_col[:-1] max_row_size = n_cols.max() max_row_idx = n_cols.argmax() return max_row_size, max_row_idx
a341153afa0398cb2a43b97614cd39129e6b2ac5
5,615
def _decicelsius_to_kelvins(temperatures_decicelsius): """Converts from temperatures from decidegrees Celsius to Kelvins. :param temperatures_decicelsius: numpy array of temperatures in decidegrees Celsius. :return: temperatures_kelvins: numpy array of temperatures in Kelvins, with same shape as input. """ return temperatures_decicelsius * 0.1 + 273.15
880d42637970c680cd241b5418890468443c6a5b
5,616
def undupe_column_names(df, template="{} ({})"): """ rename df column names so there are no duplicates (in place) e.g. if there are two columns named "dog", the second column will be reformatted to "dog (2)" Parameters ---------- df : pandas.DataFrame dataframe whose column names should be de-duplicated template : template taking two arguments (old_name, int) to use to rename columns Returns ------- df : pandas.DataFrame dataframe that was renamed in place, for convenience in chaining """ new_names = [] seen = set() for name in df.columns: n = 1 new_name = name while new_name in seen: n += 1 new_name = template.format(name, n) new_names.append(new_name) seen.add(new_name) df.columns = new_names return df
51d13bad25571bc60edd78026bb145ff99281e2d
5,624
def _has_endpoint_name_flag(flags): """ Detect if the given flags contain any that use ``{endpoint_name}``. """ return '{endpoint_name}' in ''.join(flags)
e8827da778c97d3be05ec82ef3367686616d3a88
5,626
def format_date(date: str): """ This function formats dates that are in MM-DD-YYYY format, and will convert to YYYY-MM-DD, which is required sqlite. :param date: The date to modify. :return: The modified string. """ tmp = date.split("/") return "{}-{}-{}".format(tmp[2], tmp[0], tmp[1])
f1a0149bfd96db557c49becdedb84789daa1168c
5,630
def xcrun_field_value_from_output(field: str, output: str) -> str: """ Get value of a given field from xcrun output. If field is not found empty string is returned. """ field_prefix = field + ': ' for line in output.splitlines(): line = line.strip() if line.startswith(field_prefix): return line[len(field_prefix):] return ''
a99efe76e21239f6ba15b8e7fb12d04d57bfb4de
5,633
def trip(u, v): """ Returns the scalar triple product of vectors u and v and z axis. The convention is z dot (u cross v). Dotting with the z axis simplifies it to the z component of the u cross v The product is: positive if v is to the left of u, that is, the shortest right hand rotation from u to v is ccw negative if v is to the right of u, that is, the shortest right hand rotation from u to v is cw zero if v is colinear with u Essentially trip is the z component of the cross product of u x v """ return (u[0] * v[1] - u[1] * v[0])
5f687ee4b16dc6c1b350ed574cb632a7c9ca996b
5,636
def get_instance(module, name, config): """ Get module indicated in config[name]['type']; If there are args to specify the module, specify in config[name]['args'] """ func_args = config[name]['args'] if 'args' in config[name] else None # if any argument specified in config[name]['args'] if func_args: return getattr(module, config[name]['type'])(**func_args) # if not then just return the module return getattr(module, config[name]['type'])()
ea57e7097665343199956509bb302e3806fb383a
5,639
def dp_palindrome_length(dp, S, i, j): """ Recursive function for finding the length of the longest palindromic sequence in a string This is the algorithm covered in the lecture It uses memoization to improve performance, dp "dynamic programming" is a Python dict containing previously computed values """ if i == j: return 1 if (i, j) in dp: return dp[(i, j)] if S[i] == S[j]: if i + 1 == j: dp[(i, j)] = 2 else: dp[(i, j)] = 2 + \ dp_palindrome_length(dp, S, i + 1, j - 1) else: dp[(i, j)] = \ max( dp_palindrome_length(dp, S, i + 1, j), dp_palindrome_length(dp, S, i, j - 1)) return dp[(i, j)]
10a8ac671674ba1ef57cd473413211a339f94e62
5,641
def create_own_child_column(X): """ Replaces the column 'relationship' with a binary one called own-child """ new_column = X['relationship'] == 'own-child' X_transformed = X.assign(own_child=new_column) X_transformed = X_transformed.drop('relationship', axis=1) return X_transformed
303ec8f073920f0bba6704740b200c7f3306b7bd
5,642
def load_spans(file): """ Loads the predicted spans """ article_id, span_interval = ([], []) with open(file, 'r', encoding='utf-8') as f: for line in f.readlines(): art_id, span_begin, span_end = [int(x) for x in line.rstrip().split('\t')] span_interval.append((span_begin, span_end)) article_id.append(art_id) return article_id, span_interval
8f8de31e1d1df7f0d2a44d8f8db7f846750bd89f
5,643
def geometric_expval(p): """ Expected value of geometric distribution. """ return 1. / p
3afb3adb7e9dafa03026f22074dfcc1f81c58ac8
5,647
def getKey(event): """Returns the Key Identifier of the given event. Available Codes: https://www.w3.org/TR/2006/WD-DOM-Level-3-Events-20060413/keyset.html#KeySet-Set """ if hasattr(event, "key"): return event.key elif hasattr(event, "keyIdentifier"): if event.keyIdentifier in ["Esc", "U+001B"]: return "Escape" else: return event.keyIdentifier return None
0935ad4cb1ba7040565647b2e26f265df5674e1d
5,657
def generate_discord_markdown_string(lines): """ Wraps a list of message into a discord markdown block :param [str] lines: :return: The wrapped string :rtype: str """ output = ["```markdown"] + lines + ["```"] return "\n".join(output)
1c0db2f36f4d08e75e28a1c024e6d4c35638d8f5
5,665
def wizard_active(step, current): """ Return the proper classname for the step div in the badge wizard. The current step needs a 'selected' class while the following step needs a 'next-selected' class to color the tip of the arrow properly. """ if current == step: return 'selected' elif (current + 1) == step: return 'next-selected'
2daad3f7651df7609f3473af698e116ce419c9df
5,666
def _maybe_encode_unicode_string(record): """Encodes unicode strings if needed.""" if isinstance(record, str): record = bytes(record, "utf-8").strip() return record
2621056ba77fd314b966e3e0db08887da53e3803
5,671
def merge_extras(extras1, extras2): """Merge two iterables of extra into a single sorted tuple. Case-sensitive""" if not extras1: return extras2 if not extras2: return extras1 return tuple(sorted(set(extras1) | set(extras2)))
0383e0e99c53844f952d919eaf3cb478b4dcd6d1
5,673
import torch def _relu_3_ramp(x): """ Relu(x) ** 3 ramp function returns f(x) = relu(x) ** 3 df/dx(x) = relu(x) ** 2 """ rx = torch.relu(x) ramp = rx.pow(3) grad = rx.pow(2) * 3.0 return ramp, grad
56dfc37ef81209590e020f0c67f8204a6d8d338a
5,674
def get_shared_prefix(w1, w2): """Get a string which w1 and w2 both have at the beginning.""" shared = "" for i in range(1, min(len(w1), len(w2))): if w1[:i] != w2[:i]: return shared else: shared = w1[:i] return shared
d52850f038bc6bfe65878e3a58d7009e563af0a0
5,675
from typing import Dict def update_args(args: Dict, inv_file: str, conf_file: str) -> Dict: """ Add inventory file and config file in the correct spots inside the arguments Args: args (Dict): controller args inv_file (str): inventory file conf_file (str): config file Returns: Dict: updated args """ args['inventory'] = inv_file args['config'] = conf_file return args
c1cd377785f0af26740d5cecd73186caaa6c79b6
5,688
def _add_vessel_class(df): """Creates 'Class' column based on vessel LOA ft.""" df.loc[:, "Class"] = "Panamax" post_row = (df.loc[:, "LOA ft"] > 965) post_loc = df.loc[post_row, :].index post_pan = df.index.isin(post_loc) df.loc[post_pan, "Class"] = "Post-Panamax" return df
5abec9f0bee8d7d6c734100c64a7624fdb5fb672
5,689
def mean(list): """Function that returns the mean of a list""" sum = 0 for num in list: sum += num return sum/len(list)
972544f64f87860a078405a4938226f7fab307c2
5,695
def is_auto(item): """ Checks if a parameter should be automatically determined """ if isinstance(item, float): if item == 9999.9: return True elif isinstance(item, str): if 'auto' in item.lower(): return True return False
fe6320adef43c51cdffd5b5d4a0bf34ac43d9c5a
5,703
def read_accelerometer(serial, calibration): """ Reads the raw values from the Arduino, parses them into separate variables and uses the calibration data to normalize the data Args: serial: a reference to the serial connection with the Arduino calibration: a reference to the calibration object that holds the values from the accelerometer calibration process Returns: (x_cal, y_cal, z_cal): a tuple of the normalized data """ components = serial.read_str() # parses the string from the Arduino into three separate variables x_raw, y_raw, z_raw = tuple(map(float, components.split(','))) # normalizes the data using the calibration information x_cal = (x_raw - calibration.offset[0]) / (calibration.gain[0]) y_cal = (y_raw - calibration.offset[1]) / (calibration.gain[1]) z_cal = (z_raw - calibration.offset[2]) / (calibration.gain[2]) return (x_cal, y_cal, z_cal)
3c5537e2a017f57dca8dccd24c2ba083a9c47345
5,708
def get_access(name): """Get access based on name In Python __var__ refers to a private access _var refers to protected access and var would refer to public access """ assert isinstance(name, str), "Expecting name to be a string" if len(name) > 4 and "__" == name[:2] and "__" == name[-2:]: return "PRIVATE" elif len(name) > 1 and name[0] == "_": return "PROTECTED" else: return "PUBLIC"
ffe072ed1820ce0536533a5882af1e1270780744
5,709
def run_query_series(queries, conn): """ Iterates through a list of queries and runs them through the connection Args: ----- queries: list of strings or tuples containing (query_string, kwargs) conn: the triplestore connection to use """ results = [] for item in queries: qry = item kwargs = {} if isinstance(item, tuple): qry = item[0] kwargs = item[1] result = conn.update_query(qry, **kwargs) # pdb.set_trace() results.append(result) return results
7a3e920663222b57233e9a01d1b3cacb039a02eb
5,710
def get_domain_id_field(domain_table): """ A helper function to create the id field :param domain_table: the cdm domain table :return: the id field """ return domain_table + '_id'
5805da82b4e57d14d4105d92a62cf4b5cc4bc3f2
5,711
def insertion_sort(arr): """ Returns the list 'arr' sorted in nondecreasing order in O(n^2) time. """ for i in range(1,len(arr)): key = arr[i] j = i-1 while j >= 0 and arr[j] > key: arr[j+1] = arr[j] j = j-1 arr[j+1] = key return arr
cafd83cd31cbadcbc0a5c3aaff7d21f3ae907083
5,713
def vertical_move(t, v_speed=2/320): """Probe moves vertically at v_speed [cm/s]""" return 0.*t, 0*t, v_speed*t
eb6a066bf6b6659728647c78dd7673a3d45b250d
5,718
def _total_probe_count_without_interp(params, probe_counts): """Calculate a total probe count without interpolation. This assumes that params are keys in the datasets of probe_counts. The result of ic._make_total_probe_count_across_datasets_fn should give the same count as this function (if params are keys in the datasets of probe_counts). But this uses probe_counts directly and can be used as a sanity check -- i.e., it does not do any interpolation. Args: params: parameter values to use when determining probe counts; params[i] is the (i % N)'th parameter of the (i/N)'th dataset, where N is the number of datasets probe_counts: dict giving number of probes for each dataset and choice of parameters Returns: total number of probes across all datasets, according to the given values of params """ num_datasets = len(probe_counts) # The total number of parameters must be a multiple of the number # of datasets assert len(params) % num_datasets == 0 num_params = int(len(params) / num_datasets) s = 0 for i, dataset in enumerate(sorted(probe_counts.keys())): p = tuple(params[num_params * i + j] for j in range(num_params)) s += probe_counts[dataset][p] return s
0973e667dbf1fc3bdf476791cbf709549230f94b
5,729
from typing import Any import math def make_divisible(x: Any, divisor: int): """Returns x evenly divisible by divisor.""" return math.ceil(x / divisor) * divisor
bfbcfb334777a6c7214f16aa0fadd56906e2b7bc
5,731
def select_data(all_tetrode_data, index): """ Select tetrode data by trial indices. :param all_tetrode_data: (list of 4d numpy arrays) each of format [trial, 1, neuron + tetrode, time] :param index: (1d numpy array) trial indices :return: (list of 4d numpy arrays) selected subset of tetrode data """ current_data = [] for x in all_tetrode_data: current_data.append(x[index, :, :, :]) return current_data
5a883771ef499e0b82e0d3ac5b86550180760e13
5,733
from functools import reduce def rec_hasattr(obj, attr): """ Recursive hasattr. :param obj: The top-level object to check for attributes on :param attr: Dot delimited attribute name Example:: rec_hasattr(obj, 'a.b.c') """ try: reduce(getattr, attr.split('.'), obj) except AttributeError: return False else: return True
b1a9b12f54abb93202a5b41c950f761986307170
5,735
from typing import Dict from typing import Any def __create_notification(title: str, content: str) -> Dict[str, Any]: """ Creates a notification "object" from the given title and content. :params title: The title of the notification. :params content: The content of the notification. :returns A dictionary representing a notification "object". """ return {"title": title, "content": content}
484abcc2afcb8f726811e36516572bc5c302a415
5,737
import torch def reparametisation_trick(mu, log_var, device): """ :param mu: The mean of the latent variable to be formed (nbatch, n_z) :param log_var: The log variance of the latent variable to be formed (nbatch, n_z) :param device: CPU or GPU :return: latent variable (nbatch, n_z) """ noise = torch.normal(mean=0, std=1.0, size=log_var.shape).to(torch.device(device)) z = mu + torch.mul(torch.exp(log_var / 2.0), noise) return z
9cb646132f49fa79b6a8690d10fd188968931978
5,741
def mro_hasattr(cls: type, attr: str) -> bool: """Check if an attribute exists in a type's class hierarchy Args: cls (type): The type attr (str): The attribute Returns: bool: True if has the attribute. Raises: TypeError: Not called on a type """ if not isinstance(cls, type): raise TypeError(f"mro_getattr can only be used on types, got {type(cls)}") for klass in cls.mro()[1:]: if hasattr(klass, attr): return True return False
cfc41693e3d3321bcb63dae079abf2e768f97905
5,742
import inspect def get_classes(mod): """Return a list of all classes in module 'mod'""" return [ key for key, _ in inspect.getmembers(mod, inspect.isclass) if key[0].isupper() ]
be04546650a6243a3abfe4053a4dcaa9d71f85d7
5,746
def GetGerritFetchUrl(host): """Given a gerrit host name returns URL of a gerrit instance to fetch from.""" return 'https://%s/' % host
caf5c9015a4cd863e407fb889d473ddebd7bbabc
5,751
def _is_greater(list1: list, list2: list): """ return True if `list1[i] > list2[i]` for each `i` """ return all([list1[i] > list2[i] for i in range(len(list1))])
925fb214f741d6503b41b49d57a268506f05a048
5,760
def _get_pair_nodes(root_node): """ Internal method to get "pair" nodes under root_node """ method_elem = root_node in_configs_elem_list = method_elem.getElementsByTagName("inConfigs") in_configs_elem = in_configs_elem_list[0] pair_elems_list = in_configs_elem.getElementsByTagName("pair") return pair_elems_list
c2b74f7a507394d2117cd6292116e62d34f3e556
5,761
def Shard(ilist, shard_index, num_shards): """Shard a given list and return the group at index |shard_index|. Args: ilist: input list shard_index: 0-based sharding index num_shards: shard count """ chunk_size = len(ilist) / num_shards chunk_start = shard_index * chunk_size if shard_index == num_shards - 1: # Exhaust the remainder in the last shard. chunk_end = len(ilist) else: chunk_end = chunk_start + chunk_size return ilist[chunk_start:chunk_end]
7f79ade521c1264d0ddc8c5a228679d7053d9651
5,762
def ppmv2pa(x, p): """Convert ppmv to Pa Parameters ---------- x Gas pressure [ppmv] p total air pressure [Pa] Returns ------- pressure [Pa] """ return x * p / (1e6 + x)
974d79d022a7fb655040c7c2900988cd4a10f064
5,767
def make_elastic_uri(schema: str, user: str, secret: str, hostname: str, port: int) -> str: """Make an Elasticsearch URI. :param schema: the schema, e.g. http or https. :param user: Elasticsearch username. :param secret: Elasticsearch secret. :param hostname: Elasticsearch hostname. :param port: Elasticsearch port. :return: the full Elasticsearch URI. """ return f"{schema}://{user}:{secret}@{hostname}:{port}"
be959e98330913e75485006d1f4380a57e990a05
5,768
def _truncate(s: str, max_length: int) -> str: """Returns the input string s truncated to be at most max_length characters long. """ return s if len(s) <= max_length else s[0:max_length]
52c49c027057024eaa27a705a0d2c013bff7a2ce
5,769
import importlib def load_model(opt, dataloader): """ Load model based on the model name. Arguments: opt {[argparse.Namespace]} -- options dataloader {[dict]} -- dataloader class Returns: [model] -- Returned model """ model_name = opt.model model_path = f"lib.models.{model_name}" print('use model:',model_name) model_lib = importlib.import_module(model_path) model = getattr(model_lib, model_name.title()) return model(opt, dataloader)
8ad05c4a0f51c40851a9daecf81ed8bf9862979c
5,770
def get_maxlevel(divs, maxlevel): """ Returns the maximum div level. """ for info in divs: if info['level'] > maxlevel: maxlevel = info['level'] if info.get('subdivs', None): maxlevel = get_maxlevel(info['subdivs'], maxlevel) return maxlevel
b7153ef84cb260a4b48c58315aa63fc5179fc06c
5,776
def get_molecules(topology): """Group atoms into molecules.""" if 'atoms' not in topology: return None molecules = {} for atom in topology['atoms']: idx, mol_id, atom_type, charge = atom[0], atom[1], atom[2], atom[3] if mol_id not in molecules: molecules[mol_id] = {'atoms': [], 'types': [], 'charge': []} molecules[mol_id]['atoms'].append(idx) molecules[mol_id]['types'].append(atom_type) molecules[mol_id]['charge'].append(charge) return molecules
4bf63000c9d5b56bb9d35922ed521ce81cf3a6c1
5,777
def get_union(*args): """Return unioin of multiple input lists. """ return list(set().union(*args))
18025cfd37d64f15daf92aa2ae3e81176cae6e39
5,786
def is_owner(obj, user): """ Check if user is owner of the slice """ return obj and user in obj.owners
f0c49ffe8a8879d1d052f6fc37df596efa021a84
5,788
def convert_data_to_ints(data, vocab2int, word_count, unk_count, eos=True): """ Converts the words in the data into their corresponding integer values. Input: data: a list of texts in the corpus vocab2list: conversion dictionaries word_count: an integer to count the words in the dataset unk_count: an integer to count the <UNK> tokens in the dataset eos: boolean whether to append <EOS> token at the end or not (default true) Returns: converted_data: a list of corpus texts converted to integers word_count: updated word count unk_count: updated unk_count """ converted_data = [] for text in data: converted_text = [] for token in text.split(): word_count += 1 if token in vocab2int: # Convert each token in the paragraph to int and append it converted_text.append(vocab2int[token]) else: # If it's not in the dictionary, use the int for <UNK> token instead converted_text.append(vocab2int['<UNK>']) unk_count += 1 if eos: # Append <EOS> token if specified converted_text.append(vocab2int['<EOS>']) converted_data.append(converted_text) assert len(converted_data) == len(data) return converted_data, word_count, unk_count
c415aea164f99bc2a44d5098b6dbcc3d723697a6
5,801
def _endian_char(big) -> str: """ Returns the character that represents either big endian or small endian in struct unpack. Args: big: True if big endian. Returns: Character representing either big or small endian. """ return '>' if big else '<'
2e1a63ec593ca6359947385019bcef45cb3749c0
5,804
import random def get_initators(filepath, n_lines): """ Open text file with iniator words and sample random iniator for each line in the poem. """ with open(filepath, "r", encoding = "utf-8") as file: # save indices of all keywords loaded_text = file.read() # load text file lines = loaded_text.splitlines() # seperate initiator lines initiators_list = list(random.sample(lines, n_lines)) # sample random initators return initiators_list
94792679a6ea4e0bb14afd5eb38b656a2cc8af67
5,806
import traceback import time def wrapLoop(loopfunc): """Wraps a thread in a wrapper function to restart it if it exits.""" def wrapped(): while True: try: loopfunc() except BaseException: print(f"Exception in thread {loopfunc}," " restarting in 10s...") traceback.print_exc() else: print(f"Thread {loopfunc} exited, restarting in 10s...") time.sleep(10) return wrapped
86c48bc850bb1cf17121130ee9349dd529acf5e3
5,807
def protobuf_get_constant_type(proto_type) : """About protobuf write types see : https://developers.google.com/protocol-buffers/docs/encoding#structure +--------------------------------------+ + Type + Meaning + Used For + +--------------------------------------+ + + + int32, int64, uint32+ + 0 + Varint + uint64,sint32,sint64+ + + + boolean, enum + +--------------------------------------+ + + + + + 1 + 64-bit + fixed64, sfixed64, + + + + double + +--------------------------------------+ + 2 + string + string + +--------------------------------------+ + 5 + 32-bit + float + +--------------------------------------+ """ if 'uInt32' == proto_type or \ 'sInt32' == proto_type or \ 'int32' == proto_type : return 0 elif 'double' == proto_type : return 1 elif 'string' == proto_type : return 2 elif 'float' == proto_type : return 5 return 2
46ce7e44f8499e6c2bdcf70a2bc5e84cb8786956
5,811
import pprint def format_locals(sys_exc_info): """Format locals for the frame where exception was raised.""" current_tb = sys_exc_info[-1] while current_tb: next_tb = current_tb.tb_next if not next_tb: frame_locals = current_tb.tb_frame.f_locals return pprint.pformat(frame_locals) current_tb = next_tb
b5a21f42c8543d9de060ff7be2b3ad6b23065de9
5,812
def binarize_garcia(label: str) -> str: """ Streamline Garcia labels with the other datasets. :returns (str): streamlined labels. """ if label == 'hate': return 'abuse' else: return 'not-abuse'
5cc26303e0c496d46b285e266604a38a0c88e8d7
5,813
import random def spliter(data_dict, ratio=[6, 1, 1], shuffle=True): """split dict dataset into train, valid and tests set Args: data_dict (dict): dataset in dict ratio (list): list of ratio for train, valid and tests split shuffle (bool): shuffle or not """ if len(ratio) != 3: raise ValueError(f'ratio must include three int numbers') train = {'x': list(), 'y': list()} valid = {'x': list(), 'y': list()} tests = {'x': list(), 'y': list()} for _, [samples, labels] in data_dict.items(): samples_lens = len(samples) train_ratio = round(samples_lens * (ratio[0] / sum(ratio))) tests_ratio = round(samples_lens * (ratio[2] / sum(ratio))) valid_ratio = samples_lens - train_ratio - tests_ratio data = list(zip(samples, labels)) if shuffle: random.shuffle(data) x, y = zip(*data) train['x'].extend(x[:train_ratio]) train['y'].extend(y[:train_ratio]) valid['x'].extend(x[train_ratio:train_ratio + valid_ratio]) valid['y'].extend(y[train_ratio:train_ratio + valid_ratio]) tests['x'].extend(x[-tests_ratio:]) tests['y'].extend(y[-tests_ratio:]) return train, valid, tests
793af274e3962d686f2ef56b34ae5bc0a53aac5b
5,819
import torch def freeze_layers( model: torch.nn.Sequential, n_layers_to_train: int ) -> torch.nn.Sequential: """ Function to freeze given number of layers for selected model :param model: Instance of Pytorch model :param n_layers_to_train: number of layers to train, counting from the last one. The rest of the layers is going to be frozen. :return: Model with frozen layers. """ n_layers = len(list(model.children())) for idx, child in enumerate(model.children()): if idx < (n_layers - n_layers_to_train): for param in child.parameters(): param.requires_grad = False return model
bfeca127c684de0815493ef621dce790b3a090f3
5,821
def get_headers(wsgi_env): """ Extracts HTTP_* variables from a WSGI environment as title-cased header names. """ return { key[5:].replace('_', '-').title(): value for key, value in wsgi_env.iteritems() if key.startswith('HTTP_')}
01e7140a670957c691fec01dd90d53bdc29425bd
5,823
def permute_by_indices(list_of_things, *list_of_index_transpositions): """Given a list_of_things and a list of pairs of transpositions of indices [(i, j), (k, m), ...], return the list_of_things with the i-th an j-th values swapped, the k-th- and m-th values swapped, and so on. Examples -------- >>> permute_by_indices(['a', 'b', 'c'], [(0, 1)]) ['b', 'a', 'c'] >>> permute_by_indices(['a', 'b', 'c'], [(0, 2), (1, 2)]) ['c', 'a', 'b'] """ result = list_of_things for i, j in list_of_index_transpositions: result[j], result[i] = result[i], result[j] return result
31d7f73028fcb4c3a43750d1ade0c27e1b563dbb
5,830
import re def _string_to_int(string: str) -> int: """ a helper function convert from string to int, like S1 -> 1 Args: string (str): input string Returns: (int): return value if this is a int, return 0 if this is not a int """ r = re.findall('\d+', string) if (len(r) > 0): return int(r[0]) else: return 0
d4dbea658e6092edb27b85154b319e098c588a76
5,831
from pathlib import Path def create_moving_path(**kwargs): """ User interface function to create Path object for moving load. :keyword: * start_point (`Point`): Start point of path * end_point (`Point`): End point of path * increments (`int`): Increment of path steps. Default is 50 * mid_point (`Point`): Default = None :returns: :class:`~ospgrillage.load.Path` object """ return Path(**kwargs)
05de795c61e7b3fc4c3f4c2aa14505b4a6fcf986
5,832
def _no_negative_zero(val): """Make sure -0 is never output. Makes diff tests easier.""" if val == 0: return 0 return val
345802e297cc1e1c77a5b1db664715bfc42f3da6
5,833
import json def load_json_from_string(string): """Load schema from JSON string""" try: json_data = json.loads(string) except ValueError as e: raise ValueError('Given string is not valid JSON: {}'.format(e)) else: return json_data
66f96373a8e02bf69289e5e4594ac319906475f5
5,839
def _parse_detector(detector): """ Check and fix detector name strings. Parameters ---------- detector : `str` The detector name to check. """ oklist = ['n0', 'n1', 'n2', 'n3', 'n4', 'n5', 'n6', 'n7', 'n8', 'n9', 'n10', 'n11'] altlist = [str(i) for i in range(12)] if detector in oklist: return detector elif detector in altlist: return 'n' + detector else: raise ValueError('Detector string could not be interpreted')
f78d7eb5004b3cb6d3276b0c701263c71668e36e
5,840
def rel_ordered(x1,x2,x3,x4): """ given 4 collinear points, return true if the direction from x1->x2 is the same as x3=>x4 requires x1!=x2, and x3!=x4 """ if x1[0]!=x2[0]: i=0 # choose a coordinate which is varying else: i=1 assert x1[i]!=x2[i] assert x3[i]!=x4[i] return (x1[i]<x2[i]) == (x3[i]<x4[i])
2649250e2ea2619c7f6c21b8dd2cebaeec10647b
5,841
def bounds(gdf): """Calculates the bounding coordinates (left, bottom, right, top) in the given GeoDataFrame. Args: gdf: A GeoDataFrame containing the input points. Returns: An array [minx, miny, maxx, maxy] denoting the spatial extent. """ bounds = gdf.total_bounds return bounds
48242e870edd1db9b1191518c4b9ba7433420610
5,845
def is_hr_between(time: int, time_range: tuple) -> bool: """ Calculate if hour is within a range of hours Example: is_hr_between(4, (24, 5)) will match hours from 24:00:00 to 04:59:59 """ if time_range[1] < time_range[0]: return time >= time_range[0] or time <= time_range[1] return time_range[0] <= time <= time_range[1]
70d874f0a5dee344d7638559101fc6be2bcca875
5,848
def fib_lista(n): """ Função que retorna uma lista contendo os números da sequência de Fibonacci até o número n. """ lista = [] i, j = 0, 1 while i < n: lista.append(i) i, j = j, i + j return lista
ec307ce80ae70e5fba81d2e26b140f1b86c95619
5,852
def calc_correlation(data, data2): """ Calculate the correlations between 2 DataFrames(). Parameters: - data: The first dataframe. - data2: The second dataframe. Returns: A Series() object. """ return ( data.corrwith(data2). loc[lambda x: x.notnull()] )
7f47592a4525efa9db2fba317d095448d5288399
5,855
def commandLine(Argv): """ Method converting a list of arguments/parameter in a command line format (to include in the execution of a program for exemple). list --> str """ assert type(Argv) is list, "The argument of this method are the arguments to convert in the command line format. (type List)" commandLine = '' for i in Argv[1::]: commandLine += i+" " return(commandLine)
4b27e73fd43ec914f75c22f2482271aafd0848ac
5,856
def find_nth(s, x, n): """ find the nth occurence in a string takes string where to search, substring, nth-occurence """ i = -1 for _ in range(n): i = s.find(x, i + len(x)) if i == -1: break return i
b54998db817272ec534e022a9f04ec8d350b08fb
5,859
def get_maf(variant): """ Gets the MAF (minor allele frequency) tag from the info field for the variant. Args: variant (cyvcf2.Variant) Returns: maf (float): Minor allele frequency """ return variant.INFO.get("MAF")
1d25f577a3cec14b8d05095d320fad6584484718
5,863
import statistics def coverageCalc(coverageList,minCov): """Function parsing coverageList for :param coverageList: List of pacbam coverage information :param minCov: Int of minimum passing coverage :return: covCount: Int of bases with coverage minCovCount: Int of bases with minimum coverage meanDepth: Int mean coverage stat """ covCount = 0 minCovCount = 0 meanDepth = statistics.mean(coverageList) for i in coverageList: if i != 0: covCount +=1 if i >= minCov: minCovCount +=1 return(covCount,minCovCount,round(meanDepth,2))
e20dc1e1f0b6f7e328501afe9921455a705f196a
5,864
def parse_rsync_url(location): """Parse a rsync-style URL.""" if ':' in location and '@' not in location: # SSH with no user@, zero or one leading slash. (host, path) = location.split(':', 1) user = None elif ':' in location: # SSH with user@host:foo. user_host, path = location.split(':', 1) if '@' in user_host: user, host = user_host.rsplit('@', 1) else: user = None host = user_host else: raise ValueError('not a valid rsync-style URL') return (user, host, path)
fc315c1a6b376cbb83b047246fee51ae936b68ef
5,868
def setup_go_func(func, arg_types=None, res_type=None): """ Set up Go function, so it know what types it should take and return. :param func: Specify Go function from library. :param arg_types: List containing file types that function is taking. Default: None. :param res_type: File type that function is returning. Default: None. :return: Returns func arg back for cases when you want to setup function and assign it to variable in one line. """ if arg_types is not None: func.argtypes = arg_types if res_type is not None: func.restype = res_type return func
05f48f4dfecdf0133613f76f235b1e82f14bc5a9
5,869
def jaccard_similarity(x, y): """ Returns the Jaccard Similarity Coefficient (Jarccard Index) between two lists. From http://en.wikipedia.org/wiki/Jaccard_index: The Jaccard coefficient measures similarity between finite sample sets, as is defined as the size of the intersection divided by the size of the union of the sample sets. """ intersection_cardinality = len(set.intersection(*[set(x), set(y)])) union_cardinality = len(set.union(*[set(x), set(y)])) return intersection_cardinality / float(union_cardinality)
81cf0c882ff4b06e79b102abb2d8f13755b68873
5,873
import shlex def tokenizer_word(text_string, keep_phrases=False): """ Tokenizer that tokenizes a string of text on spaces and new lines (regardless of however many of each.) :param text_string: Python string object to be tokenized. :param keep_phrases: Booalean will not split "quoted" text :return: Array of strings, each is a word """ text_string = str(text_string) if keep_phrases: tokens = shlex.split(text_string.replace('\n', ' ').replace('/', ' ')) else: tokens = text_string.replace('\n', ' ').replace('/', ' ').split() return tokens
940f716072e9b2ce522c9854b2394327fbd1e934
5,875
def weighted_mean(values, weights): """Calculate the weighted mean. :param values: Array of values :type values: numpy.ndarray :param weights: Array of weights :type weights: numpy.ndarray :rtype: float """ weighted_mean = (values * weights).sum() / weights.sum() return weighted_mean
886d7cff1555c40b448cda03e08620a0e2d69ede
5,876
def strip_long_text(text, max_len, append=u'…'): """Returns text which len is less or equal max_len. If text is stripped, then `append` is added, but resulting text will have `max_len` length anyway. """ if len(text) < max_len - 1: return text return text[:max_len - len(append)] + append
02ce128f1de1dbeb2a2dcef5bc2b6eb8745322d3
5,886
def tuplify2d(x): """Convert ``x`` to a tuple of length two. It performs the following conversion: .. code-block:: python x => x if isinstance(x, tuple) and len(x) == 2 x => (x, x) if not isinstance(x, tuple) Args: x (any): the object to be converted Returns: tuple: """ if isinstance(x, tuple): assert len(x) == 2 return x return (x, x)
64170b14dbe7eb8885d21f45acff6b43979f1219
5,894
def get_request_fixture_names(request): """Get list of fixture names for the given FixtureRequest. Get the internal and mutable list of fixture names in the enclosing scope of the given request object. Compatibility with pytest 3.0. """ return request._pyfuncitem._fixtureinfo.names_closure
665fff4538f3817b6eb882f9a873683d69003bfd
5,901
def check_version(stdout): """Check version of Ensembl-VEP. Example of the first part of an output from the command `vep --help`: #----------------------------------# # ENSEMBL VARIANT EFFECT PREDICTOR # #----------------------------------# Versions: ensembl : 104.1af1dce ensembl-funcgen : 104.59ae779 ensembl-io : 104.1d3bb6e ensembl-variation : 104.6154f8b ensembl-vep : 104.3 Help: [email protected] , [email protected] Twitter: @ensembl """ vep_version = int( float( next( (line for line in stdout.split("\n") if "ensembl-vep" in line) ).split()[2] ) ) return vep_version
5c3b716db7016f1b612f764fb54e3b25d970b0f2
5,902
def _get_trip_from_id(trip_obj_list, trip_id): """ Get a trip from a list, based on a trip id """ found_trip_obj = None for trip_obj in trip_obj_list: if trip_obj.id == trip_id: found_trip_obj = trip_obj break return found_trip_obj
f2bbacfccda1e4ff778ba793ad238f744400f020
5,907
def to_camel_case(string: str) -> str: """ Converts a ``snake_case`` string to ``camelCase``. :param string: A ``snake_case`` string. :return: A ``camelCase`` version of the input. """ components = string.split("_") return components[0] + "".join(x.capitalize() for x in components[1:])
ae0d82efd9a5a65ef16cc401a0fe302b4f04d524
5,909
def parse_qsub_defaults(parsed): """Unpack QSUB_DEFAULTS.""" d = parsed.split() if type(parsed) == str else parsed options={} for arg in d: if "=" in arg: k,v = arg.split("=") options[k.strip("-")] = v.strip() else: options[arg.strip("-")] = "" return options
a5c50aef405d88bcb018af48904a384b090d22a2
5,910
def rc_seq(seq=""): """Returns the reverse compliment sequence.""" rc_nt_ls = [] rc_dict = { "a": "t", "c": "g", "t": "a", "g": "c", "n": "n", "A": "T", "C": "G", "T": "A", "G": "C", "N": "N" } rc_nt_ls = [rc_dict[seq[i]] for i in range(len(seq)-1, -1, -1)] rc_seq_ = "".join(rc_nt_ls) return rc_seq_
827877a76d4ffbe61e40e4f00641afa4277f3ff5
5,919
import six def get_rotation(rotation): """ Return the text angle as float. The returned angle is between 0 and 360 deg. *rotation* may be 'horizontal', 'vertical', or a numeric value in degrees. """ try: angle = float(rotation) except (ValueError, TypeError): isString = isinstance(rotation, six.string_types) if ((isString and rotation == 'horizontal') or rotation is None): angle = 0. elif (isString and rotation == 'vertical'): angle = 90. else: raise ValueError("rotation is {0} expected either 'horizontal'" " 'vertical', numeric value or" "None".format(rotation)) return angle % 360
7ed0fd31f9a90ddb5743faa8e45e46f0d5cc08bd
5,920
def insert_with_key_enumeration(agent, agent_data: list, results: dict): """ Checks if agent with the same name has stored data already in the given dict and enumerates in that case :param agent: agent that produced data :param agent_data: simulated data :param results: dict to store data into :return: dict with inserted data/name pair """ # add to results dict and don't double agent names if agent.get_name() not in results: results[agent.get_name()] = agent_data else: # add index to agent name if another agent of same type was simulated before new_name = agent.get_name() + "_" + str( sum([agent.get_name() in s for s in list(results.keys())])) results[new_name] = agent_data return results
d2d653dcff20836c4eaf8cf55b31b1a1209a4ddd
5,922
def do_simple_math(number1, number2, operator): """ Does simple math between two numbers and an operator :param number1: The first number :param number2: The second number :param operator: The operator (string) :return: Float """ ans = 0 if operator is "*": ans = number1 * number2 elif operator is "/": ans = number1 / number2 elif operator is "+": ans = number1 + number2 elif operator is "-": ans = number1 - number2 elif operator is "^": ans = number1 ** number2 elif operator is "%": ans = number1 % number2 return ans
eb745f9c3f3c1e18de30cbe6c564d68c29e39ff4
5,926
def is_intersection(g, n): """ Determine if a node is an intersection graph: 1 -->-- 2 -->-- 3 >>> is_intersection(g, 2) False graph: 1 -- 2 -- 3 | 4 >>> is_intersection(g, 2) True Parameters ---------- g : networkx DiGraph n : node id Returns ------- bool """ return len(set(g.predecessors(n) + g.successors(n))) > 2
415e5154095cd78112ef029b6c4d62c36da0b3b8
5,932
def secs_to_str(secs): """Given number of seconds returns, e.g., `02h 29m 39s`""" units = (('s', 60), ('m', 60), ('h', 24), ('d', 7)) out = [] rem = secs for (unit, cycle) in units: out.append((rem % cycle, unit)) rem = int(rem / cycle) if not rem: break if rem: # leftover = weeks out.append((rem, 'w')) return ' '.join(["%02d%s" % tup for tup in out[::-1]])
0918fd72fbaaa0adf8fe75bcb1ef39b4e9aba75b
5,937
def stairmaster_mets(setting): """ For use in submaximal tests on the StairMaster 4000 PT step ergometer. Howley, Edward T., Dennis L. Colacino, and Thomas C. Swensen. "Factors Affecting the Oxygen Cost of Stepping on an Electronic Stepping Ergometer." Medicine & Science in Sports & Exercise 24.9 (1992): n. pag. NCBI. Web. 10 Nov. 2016. args: setting (int): the setting of the step ergometer Returns: float: VO2:subscript:`2max` in kcal/kg*hour """ return 0.556 * 7.45 * setting
1d6cc9fc846773cfe82dfacb8a34fb6f46d69903
5,940
def check_threshold(service, config_high_threshold, config_low_threshold, curr_util): """ Checks whether Utilization crossed discrete threshold Args: service: Name of the micro/macroservice config_high_threshold: Upper limit threshold to utilization set in config file config_low_threshold: Lower limit threshold to utilization set in config file curr_util: value of the current utilization Returns: String "High" if upper limit crossed String "Low" if lower limit crossed String "Normal" if none crossed """ if float(curr_util) > float(config_high_threshold): return "High" elif float(curr_util) < float(config_low_threshold): return "Low" else: return "Normal"
80bf8ab4f5b2bbac35df7c48764114e213fba580
5,947
def double_bin_pharmacophore_graph(distance, bins, delta): """ Assign two bin values to the distance between pharmacophoric points. Parameters ---------- distance : float The distance that will be binned. bins : np.ndarray Array of bins. It has to be one dimensional and monotonic. delta : float The tolerance from which a distance value is considered to belong to the lower and upper bin. It has to be a value between 0 and 0.5 Returns ------- 2-tuple of int The two bins assigned to the distance. """ for ii in range(bins.shape[0] - 1): if distance == bins[ii]: return (bins[ii], bins[ii]) elif distance > bins[ii] and distance < bins[ii + 1]: if distance - bins[ii] > delta: return (bins[ii], bins[ii + 1]) else: return (bins[ii], bins[ii])
b7dedf4f31b5cd08c9875139df837a57a8117001
5,950
def is_absolute_url(parsed_url): """ check if it is an absolute url """ return all([parsed_url.scheme, parsed_url.netloc])
578c1443ec18f9b741cd205763604cba2242ac48
5,952
def get_levelized_cost(solution, cost_class='monetary', carrier='power', group=None, locations=None, unit_multiplier=1.0): """ Get the levelized cost per unit of energy produced for the given ``cost_class`` and ``carrier``, optionally for a subset of technologies given by ``group`` and a subset of ``locations``. Parameters ---------- solution : solution container cost_class : str, default 'monetary' carrier : str, default 'power' group : str, default None Limit the computation to members of the given group (see the groups table in the solution for valid groups). locations : str or iterable, default None Limit the computation to the given location or locations. unit_multiplier : float or int, default 1.0 Adjust unit of the returned cost value. For example, if model units are kW and kWh, ``unit_multiplier=1.0`` will return cost per kWh, and ``unit_multiplier=0.001`` will return cost per MWh. """ if group is None: group = 'supply' members = solution.groups.to_pandas().at[group, 'members'].split('|') if locations is None: locations_slice = slice(None) elif isinstance(locations, (str, float, int)): # Make sure that locations is a list if it's a single value locations_slice = [locations] else: locations_slice = locations cost = solution['costs'].loc[dict(k=cost_class, x=locations_slice, y=members)] ec_prod = solution['ec_prod'].loc[dict(c=carrier, x=locations_slice, y=members)] if locations is None: cost = cost.sum(dim='x').to_pandas() ec_prod = ec_prod.sum(dim='x').to_pandas() else: cost = cost.to_pandas() ec_prod = ec_prod.to_pandas() return (cost / ec_prod) * unit_multiplier
96b8f9a9fceaa932bcee72033e73ad8b9551759d
5,954
def get_parameter(model, name): """ Finds the named parameter within the given model. """ for n, p in model.named_parameters(): if n == name: return p raise LookupError(name)
ba35b743d9189c94da0dcce27630bba311ea8a46
5,964
def valid_tetrodes(tetrode_ids, tetrode_units): """ Only keep valid tetrodes with neuron units so that there is corresponding spike train data. :param tetrode_ids: (list) of tetrode ids in the order of LFP data :param tetrode_units: (dict) number of neuron units on each tetrode :return: (list) of tetrode ids with neuron units """ return [x for x in tetrode_ids if tetrode_units[x] > 0]
c887f5e5c29d841da63fe0cd56c41eda5ddde891
5,967