markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Use a classification metric: accuracy[Classification metrics are different from regression metrics!](https://scikit-learn.org/stable/modules/model_evaluation.html)- Don't use _regression_ metrics to evaluate _classification_ tasks.- Don't use _classification_ metrics to evaluate _regression_ tasks.[Accuracy](https://scikit-learn.org/stable/modules/model_evaluation.htmlaccuracy-score) is a common metric for classification. Accuracy is the ["proportion of correct classifications"](https://en.wikipedia.org/wiki/Confusion_matrix): the number of correct predictions divided by the total number of predictions. What is the baseline accuracy if we guessed the majority class for every prediction?
from sklearn.metrics import accuracy_score accuracy_score(y_train, y_pred) train[target].value_counts(normalize=True) y_val = val[target] y_val y_pred = [0] * len(y_val) accuracy_score(y_val, y_pred)
_____no_output_____
MIT
module4-logistic-regression/LS_DS_214.ipynb
cedro-gasque/DS-Unit-2-Linear-Models
Challenge In your assignment, your Sprint Challenge, and your upcoming Kaggle challenge, you'll begin with the majority class baseline. How quickly can you beat this baseline? Express and explain the intuition and interpretation of Logistic Regression OverviewTo help us get an intuition for *Logistic* Regression, let's start by trying *Linear* Regression instead, and see what happens... Follow Along Linear Regression?
train.describe() # 1. Import estimator class from sklearn.linear_model import LinearRegression # 2. Instantiate this class linear_reg = LinearRegression() # 3. Arrange X feature matrices (already did y target vectors) features = ['Pclass', 'Age', 'Fare'] X_train = train[features] X_val = val[features] # Impute missing values from sklearn.impute import SimpleImputer imputer = SimpleImputer() X_train_imputed = imputer.fit_transform(X_train) X_val_imputed = imputer.transform(X_val) # 4. Fit the model linear_reg.fit(X_train_imputed, y_train) # 5. Apply the model to new data. # The predictions look like this ... linear_reg.predict(X_val_imputed) # Get coefficients pd.Series(linear_reg.coef_, features) test_case = [[1, 5, 500]] # 1st class, 5-year old, Rich linear_reg.predict(test_case)
_____no_output_____
MIT
module4-logistic-regression/LS_DS_214.ipynb
cedro-gasque/DS-Unit-2-Linear-Models
Logistic Regression!
from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression(solver='lbfgs') log_reg.fit(X_train_imputed, y_train) print('Validation Accuracy', log_reg.score(X_val_imputed, y_val)) # The predictions look like this log_reg.predict(X_val_imputed) log_reg.predict(test_case) log_reg.predict_proba(test_case) # What's the math? log_reg.coef_ log_reg.intercept_ # The logistic sigmoid "squishing" function, implemented to accept numpy arrays import numpy as np def sigmoid(x): return 1 / (1 + np.e**(-x)) sigmoid(log_reg.intercept_ + np.dot(log_reg.coef_, np.transpose(test_case))) log_reg.coef_ test_case sigmoid()
_____no_output_____
MIT
module4-logistic-regression/LS_DS_214.ipynb
cedro-gasque/DS-Unit-2-Linear-Models
So, clearly a more appropriate model in this situation! For more on the math, [see this Wikipedia example](https://en.wikipedia.org/wiki/Logistic_regressionProbability_of_passing_an_exam_versus_hours_of_study). Use sklearn.linear_model.LogisticRegression to fit and interpret Logistic Regression models OverviewNow that we have more intuition and interpretation of Logistic Regression, let's use it within a realistic, complete scikit-learn workflow, with more features and transformations. Follow AlongSelect these features: `['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']`(Why shouldn't we include the `Name` or `Ticket` features? What would happen here?) Fit this sequence of transformers & estimator:- [category_encoders.one_hot.OneHotEncoder](https://contrib.scikit-learn.org/categorical-encoding/onehot.html)- [sklearn.impute.SimpleImputer](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html)- [sklearn.preprocessing.StandardScaler](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html)- [sklearn.linear_model.LogisticRegressionCV](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html)Get validation accuracy.
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] target = 'Survived' X_train = train[features] y_train = train[target] X_val = val[features] y_val = val[target] X_train.shape, y_train.shape, X_val.shape, y_val.shape import category_encoders as ce from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegressionCV encoder = ce.OneHotEncoder(use_cat_names=True) X_train_encoded = encoder.fit_transform(X_train) X_val_encoded = encoder.transform(X_val) imputer = SimpleImputer(strategy='mean') X_train_imputed = imputer.fit_transform(X_train_encoded) X_val_imputed = imputer.transform(X_val_encoded) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train_imputed) X_val_scaled = scaler.transform(X_val_imputed) model = LogisticRegressionCV() model.fit(X_train_scaled, y_train) y_pred = model.predict(X_val_scaled) accuracy_score(y_val, y_pred) print('Validation Accuracy:', model.score(X_val_scaled, y_val))
Validation Accuracy: 0.7802690582959642
MIT
module4-logistic-regression/LS_DS_214.ipynb
cedro-gasque/DS-Unit-2-Linear-Models
Plot coefficients:
%matplotlib inline coefficients = pd.Series(model.coef_[0], X_train_encoded.columns) coefficients.sort_values().plot.barh();
_____no_output_____
MIT
module4-logistic-regression/LS_DS_214.ipynb
cedro-gasque/DS-Unit-2-Linear-Models
!pip install -qqq torchtext -qqq pytorch-transformers dgl !pip install -qqqU git+https://github.com/harvardnlp/pytorch-struct import torchtext import torch from torch_struct import SentCFG from torch_struct.networks import NeuralCFG import torch_struct.data # Download and the load default data. WORD = torchtext.data.Field(include_lengths=True) UD_TAG = torchtext.data.Field(init_token="<bos>", eos_token="<eos>", include_lengths=True) # Download and the load default data. train, val, test = torchtext.datasets.UDPOS.splits( fields=(('word', WORD), ('udtag', UD_TAG), (None, None)), filter_pred=lambda ex: 5 < len(ex.word) < 30 ) WORD.build_vocab(train.word, min_freq=3) UD_TAG.build_vocab(train.udtag) train_iter = torch_struct.data.TokenBucket(train, batch_size=200, device="cuda:0") H = 256 T = 30 NT = 30 model = NeuralCFG(len(WORD.vocab), T, NT, H) model.cuda() opt = torch.optim.Adam(model.parameters(), lr=0.001, betas=[0.75, 0.999]) def train(): #model.train() losses = [] for epoch in range(10): for i, ex in enumerate(train_iter): opt.zero_grad() words, lengths = ex.word N, batch = words.shape words = words.long() params = model(words.cuda().transpose(0, 1)) dist = SentCFG(params, lengths=lengths) loss = dist.partition.mean() (-loss).backward() losses.append(loss.detach()) torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0) opt.step() if i % 100 == 1: print(-torch.tensor(losses).mean(), words.shape) losses = [] train() for i, ex in enumerate(train_iter): opt.zero_grad() words, lengths = ex.word N, batch = words.shape words = words.long() params = terms(words.transpose(0, 1)), rules(batch), roots(batch) tree = CKY(MaxSemiring).marginals(params, lengths=lengths, _autograd=True) print(tree) break def split(spans): batch, N = spans.shape[:2] splits = [] for b in range(batch): cover = spans[b].nonzero() left = {i: [] for i in range(N)} right = {i: [] for i in range(N)} batch_split = {} for i in range(cover.shape[0]): i, j, A = cover[i].tolist() left[i].append((A, j, j - i + 1)) right[j].append((A, i, j - i + 1)) for i in range(cover.shape[0]): i, j, A = cover[i].tolist() B = None for B_p, k, a_span in left[i]: for C_p, k_2, b_span in right[j]: if k_2 == k + 1 and a_span + b_span == j - i + 1: B, C = B_p, C_p k_final = k break if j > i: batch_split[(i, j)] =k splits.append(batch_split) return splits splits = split(spans)
_____no_output_____
BSD-3-Clause
torchbenchmark/models/pytorch_struct/notebooks/Unsupervised_CFG.ipynb
ramiro050/benchmark
Sklearn sklearn.linear_model
from matplotlib.colors import ListedColormap from sklearn import cross_validation, datasets, linear_model, metrics import numpy as np %pylab inline
Populating the interactive namespace from numpy and matplotlib
MIT
LearningOnMarkedData/week2/sklearn.linear_model_part2.ipynb
ishatserka/MachineLearningAndDataAnalysisCoursera
Линейная регрессия Генерация данных
data, target, coef = datasets.make_regression(n_features = 2, n_informative = 1, n_targets = 1, noise = 5., coef = True, random_state = 2) pylab.scatter(list(map(lambda x:x[0], data)), target, color='r') pylab.scatter(list(map(lambda x:x[1], data)), target, color='b') train_data, test_data, train_labels, test_labels = cross_validation.train_test_split(data, target, test_size = 0.3)
_____no_output_____
MIT
LearningOnMarkedData/week2/sklearn.linear_model_part2.ipynb
ishatserka/MachineLearningAndDataAnalysisCoursera
LinearRegression
linear_regressor = linear_model.LinearRegression() linear_regressor.fit(train_data, train_labels) predictions = linear_regressor.predict(test_data) print(test_labels) print(predictions) metrics.mean_absolute_error(test_labels, predictions) linear_scoring = cross_validation.cross_val_score(linear_regressor, data, target, scoring = 'mean_absolute_error', cv=10) print('mean: {}, std: {}'.format(linear_scoring.mean(), linear_scoring.std())) scorer = metrics.make_scorer(metrics.mean_absolute_error, greater_is_better=True) linear_scoring = cross_validation.cross_val_score(linear_regressor, data, target, scoring=scorer, cv = 10) print('mean: {}, std: {}'.format(linear_scoring.mean(), linear_scoring.std())) coef linear_regressor.coef_ # в лекции не указано, что в уравнении обученной модели также участвует свободный член linear_regressor.intercept_ print("y = {:.2f}*x1 + {:.2f}*x2".format(coef[0], coef[1])) print("y = {:.2f}*x1 + {:.2f}*x2 + {:.2f}".format(linear_regressor.coef_[0], linear_regressor.coef_[1], linear_regressor.intercept_))
y = 38.15*x1 + -0.16*x2 + -0.88
MIT
LearningOnMarkedData/week2/sklearn.linear_model_part2.ipynb
ishatserka/MachineLearningAndDataAnalysisCoursera
Lasso
lasso_regressor = linear_model.Lasso(random_state = 3) lasso_regressor.fit(train_data, train_labels) lasso_predictions = lasso_regressor.predict(test_data) lasso_scoring = cross_validation.cross_val_score(lasso_regressor, data, target, scoring = scorer, cv = 10) print('mean: {}, std: {}'.format(lasso_scoring.mean(), lasso_scoring.std())) print(lasso_regressor.coef_) print("y = {:.2f}*x1 + {:.2f}*x2".format(coef[0], coef[1])) print("y = {:.2f}*x1 + {:.2f}*x2".format(lasso_regressor.coef_[0], lasso_regressor.coef_[1]))
y = 37.31*x1 + -0.00*x2
MIT
LearningOnMarkedData/week2/sklearn.linear_model_part2.ipynb
ishatserka/MachineLearningAndDataAnalysisCoursera
Questão 1 Resolva o sistema linear $Ax = b$ em que$A =\begin{bmatrix}9. & −4. & 1. & 0. & 0. & 0. & 0. \\−4. & 6. & −4. & 1. & 0. & 0. & 0. \\1. & −4. & 6. & −4. & 1. & 0. & 0. \\0. & 1. & −4. & 6. & −4. & 1. & 0. \\\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\0. & 0. & 1. & −4. & 6. & −4. & 1. \\0. & 0. & 0. & 1. & −4. & 5. & −2. \\0. & 0. & 0. & 0. & 1. & −2. & 1.\end{bmatrix} \in R^{\; 200 \times 200}$e $b =\begin{bmatrix}1 \\1\\1\\1\\\vdots\\1\\1\\1\\\end{bmatrix} \inR^{\; 200}$usando o método da Eliminação de Gauss (com pivoteamento parcial) e os métodos iterativos de Gauss-Jacobi e Gauss-Seidel, se possível. Compare o desempenho dos métodos para a resolução do sistema linear em termos do tempo de execução.
def timer(f): @functools.wraps(f) def wrapper_timer(*args, **kwargs): tempo_inicio = time.perf_counter() retorno = f(*args, **kwargs) tempo_fim = time.perf_counter() tempo_exec = tempo_fim - tempo_inicio print(f"Tempo de Execução: {tempo_exec:0.4f} segundos") return retorno return wrapper_timer def FatoracaoLUPivot(A): U = np.copy(A) n = A.shape[0] L = np.zeros_like(A) P = np.eye(n) m = 0 for j in range(n): #Pivoteamento Parcial k = np.argmax(np.abs(U[j:,j])) + j U[j], U[k] = np.copy(U[k]), np.copy(U[j]) P[j], P[k] = np.copy(P[k]), np.copy(P[j]) L[j], L[k] = np.copy(L[k]), np.copy(L[j]) m += 1 for i in range(j + 1, n): L[i][j] = U[i][j]/U[j][j] for k in range(j + 1, n): U[i][k] -= L[i][j] * U[j][k] U[i][j] = 0 m += 1 L += np.eye(n) return L, U, P def SubstituicaoRegressiva(U, c): # U triangular superior x = np.copy(c) n = U.shape[0] for i in range(n-1, -1, -1): for j in range(i + 1, n): x[i] -= (U[i,j] * x[j]) x[i] /= U[i,i] return x def SubstituicaoDireta(U, c): #U triangular inferior x = np.copy(c) n = U.shape[0] for i in range(n): for j in range(i): x[i] -= (U[i,j] * x[j]) x[i] /= U[i,i] return x @timer def EliminacaoGaussLUPivot(A, b): L, U, P = FatoracaoLUPivot(A) # Resolver Ly = b e Ux = y y = SubstituicaoDireta(L, b) x = SubstituicaoRegressiva(U, y) return P, x def buildA(): A = np.zeros((200, 200)) A[0,0:3] = np.array([9, -4, 1]) A[1,0:4] = np.array([-4, 6, -4, 1]) A[198,196:200] = np.array([1, -4, 5, -2]) A[199,197:200] = np.array([1, -2, 1]) for i in range(2, 198): A[i, i-2:i+3] = np.array([1, -4, 6, -4, 1]) return A A = buildA() A b = np.ones((200,1)) b
_____no_output_____
MIT
Atividade 04.ipynb
Lucas-Otavio/MS211K-2s21
Solução por Eliminação de Gauss com Pivoteamento Parcial
P, x = EliminacaoGaussLUPivot(A, b) x print(np.max(np.abs(P @ A @ x - b)))
2.384185791015625e-07
MIT
Atividade 04.ipynb
Lucas-Otavio/MS211K-2s21
Método Gauss-Jacobi
@timer def GaussJacobi(A, b): n = A.shape[0] x_history = list() x_old = np.zeros(n) x_new = np.zeros(n) k_limite = 200 k = 0 tau = 1E-4 Dr = 1 while (k < k_limite and Dr > tau): for i in range(n): soma = 0 for j in range(n): if (i == j): continue soma += A[i,j]*x_old[j] x_new[i] = (b[i] - soma) / A[i,i] k += 1 Dr = np.max(np.abs(x_new - x_old)) / np.max(np.abs(x_new)) x_history.append(x_old) x_old = np.copy(x_new) return x_history, x_new history, x = GaussJacobi(A, b) erros = [] for i in range(len(history)): erro = np.max(np.abs(A @ history[i] - b)) if (erro != np.inf): erros.append(erro) plt.semilogy(erros)
_____no_output_____
MIT
Atividade 04.ipynb
Lucas-Otavio/MS211K-2s21
Método Gauss-Seidel
@timer def GaussSeidel(A, b, k_limite=200): n = A.shape[0] x_history = list() x_old = np.zeros(n) x_new = np.zeros(n) k = 0 tau = 1E-4 Dr = 1 while (k < k_limite and Dr > tau): for i in range(n): soma = 0 for j in range(n): if (i == j): continue soma += A[i,j]*x_new[j] x_new[i] = (b[i] - soma) / A[i,i] Dr = np.max(np.abs(x_new - x_old)) / np.max(np.abs(x_new)) x_history.append(x_old) x_old = np.copy(x_new) k += 1 if (Dr > tau): print("NÃO CONVERGIU!") return x_history, x_new history, x = GaussSeidel(A, b) print(np.max(np.abs(A @ x - b))) erros = [] for i in range(len(history)): erro = np.max(np.abs(A @ history[i] - b)) if (erro != np.inf): erros.append(erro) plt.semilogy(erros)
_____no_output_____
MIT
Atividade 04.ipynb
Lucas-Otavio/MS211K-2s21
hello> API details.
#hide from nbdev.showdoc import * from nbdev_tutorial.core import * %load_ext autoreload %autoreload 2 #export class HelloSayer: "Say hello to `to` using `say_hello`" def __init__(self, to): self.to = to def say(self): "Do the saying" return say_hello(self.to) show_doc(HelloSayer) Card(suit=2, rank=11) show_doc(Card)
_____no_output_____
Apache-2.0
01_hello.ipynb
hannesloots/nbdev-tutorial
Assignment 9: Implement Dynamic ProgrammingIn this exercise, we will begin to explore the concept of dynamic programming and how it related to various object containers with respect to computational complexity. Deliverables: 1) Choose and implement a Dynamic Programming algorithm in Python, make sure you are using a Dynamic Programming solution (not another one). 2) Use the algorithm to solve a range of scenarios. 3) Explain what is being done in the implementation. That is, write up a walk through of the algorithm and explain how it is a Dynamic Programming solution. Prepare an executive summary of your results, referring to the table and figures you have generated. Explain how your results relate to big O notation. Describe your results in language that management can understand. This summary should be included as text paragraphs in the Jupyter notebook. Explain how the algorithm works and why it is a useful to data engineers. A. The Dynamic programming problem: Longest Increasing Sequence The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. For example, the length of LIS for {10, 22, 9, 33, 21, 50, 41, 60, 80} is 6 and LIS is {10, 22, 33, 50, 60, 80}. A. Setup: Library imports and Algorithm
import numpy as np import pandas as pd import seaborn as sns import time #import itertools import random import matplotlib.pyplot as plt #import networkx as nx #import pydot #from networkx.drawing.nx_pydot import graphviz_layout #from collections import deque # Dynamic Programming Approach of Finding LIS by reducing the problem to longest common Subsequence def lis(a): n=len(a) #get the length of the list b=sorted(list(set(a))) #removes duplicates, and sorts list m=len(b) #gets the length of the truncated and sorted list dp=[[-1 for i in range(m+1)] for j in range(n+1)] #instantiates a list of lists filled with -1 columns are indicies of the sorted array; rows the original array for i in range(n+1): # for every column in the table at each row: for j in range(m+1): if i==0 or j==0: #if at first element in either a row or column set the table row,index to zero dp[i][j]=0 elif a[i-1]==b[j-1]: #else if the sorted array value matches the original array: dp[i][j]=1+dp[i-1][j-1]#sets dp[i][j] to 1+prveious cell of the dyanmic table else: dp[i][j]=max(dp[i-1][j],dp[i][j-1]) #else record the max of the row or column for that cell in the cell return dp[-1][-1] # This will return the max running sequence. # Driver program to test above function arr1 = [10, 22, 9, 33, 21, 50, 41, 60] len_arr1 = len(arr1) print("Longest increaseing sequence has a length of:", lis(arr1)) # addtional comments included from the original code contributed by Dheeraj Khatri (https://www.geeksforgeeks.org/longest-increasing-subsequence-dp-3/) def Container(arr, fun): ### I'm glad I was able to reuse this from assignment 3 and 4. Useful function. objects = [] #instantiates an empty list to collect the returns times = [] #instantiates an empty list to collect times for each computation for t in arr: start= time.perf_counter() #collects the start time obj = fun(t) # applies the function to the arr object end = time.perf_counter() # collects end time duration = (end-start)* 1E3 #converts to milliseconds objects.append(obj)# adds the returns of the functions to the objects list times.append(duration) # adds the duration for computation to list return objects, times
Longest increaseing sequence has a length of: 5
MIT
Assignment9- Dynamic.ipynb
bblank70/MSDS432
B. Test Array Generation
RANDOM_SEED = 300 np.random.seed(RANDOM_SEED) arr100 = list(np.random.randint(low=1, high= 5000, size=100)) np.random.seed(RANDOM_SEED) arr200 = list(np.random.randint(low=1, high= 5000, size=200)) np.random.seed(RANDOM_SEED) arr400 = list(np.random.randint(low=1, high= 5000, size=400)) np.random.seed(RANDOM_SEED) arr600 = list(np.random.randint(low=1, high= 5000, size=600)) np.random.seed(RANDOM_SEED) arr800 = list(np.random.randint(low=1, high= 5000, size=800)) print(len(arr100), len(arr200), len(arr400), len(arr600), len(arr800)) arr_list = [arr100, arr200, arr400, arr600, arr800] metrics = Container(arr_list, lis)
_____no_output_____
MIT
Assignment9- Dynamic.ipynb
bblank70/MSDS432
Table1. Performance Summary
summary = { 'ArraySize' : [len(arr100), len(arr200), len(arr400), len(arr600), len(arr800)], 'SequenceLength' : [metrics[0][0],metrics[0][1], metrics[0][2], metrics[0][3], metrics[0][4]], 'Time(ms)' : [metrics[1][0],metrics[1][1], metrics[1][2], metrics[1][3], metrics[1][4]] } df =pd.DataFrame(summary) df
_____no_output_____
MIT
Assignment9- Dynamic.ipynb
bblank70/MSDS432
Figure 1. Performance
sns.scatterplot(data=df, x='Time(ms)', y='ArraySize')
_____no_output_____
MIT
Assignment9- Dynamic.ipynb
bblank70/MSDS432
Chapter 3 Questions 3.1 Form dollar bars for E-mini S&P 500 futures:1. Apply a symmetric CUSUM filter (Chapter 2, Section 2.5.2.1) where the threshold is the standard deviation of daily returns (Snippet 3.1).2. Use Snippet 3.4 on a pandas series t1, where numDays=1.3. On those sampled features, apply the triple-barrier method, where ptSl=[1,1] and t1 is the series you created in point 1.b.4. Apply getBins to generate the labels.
import numpy as np import pandas as pd import timeit from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve, classification_report, confusion_matrix from mlfinlab.corefns.core_functions import CoreFunctions from mlfinlab.fracdiff.fracdiff import frac_diff_ffd import matplotlib.pyplot as plt %matplotlib inline # Read in data data = pd.read_csv('official_data/dollar_bars.csv', nrows=40000) data.index = pd.to_datetime(data['date_time']) data = data.drop('date_time', axis=1) data.head()
_____no_output_____
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
**Apply a symmetric CUSUM filter (Chapter 2, Section 2.5.2.1) where the threshold is the standard deviation of daily returns (Snippet 3.1).**
# Compute daily volatility vol = CoreFunctions.get_daily_vol(close=data['close'], lookback=50) vol.plot(figsize=(14, 7), title='Volatility as caclulated by de Prado') plt.show() # Apply Symmetric CUSUM Filter and get timestamps for events # Note: Only the CUSUM filter needs a point estimate for volatility cusum_events = CoreFunctions.get_t_events(data['close'], threshold=vol.mean())
1%|▏ | 592/39998 [00:00<00:06, 5912.41it/s]
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
**Use Snippet 3.4 on a pandas series t1, where numDays=1.**
# Compute vertical barrier vertical_barriers = CoreFunctions.add_vertical_barrier(cusum_events, data['close']) vertical_barriers.head()
_____no_output_____
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
**On those sampled features, apply the triple-barrier method, where ptSl=[1,1] and t1 is the series you created in point 1.b.**
triple_barrier_events = CoreFunctions.get_events(close=data['close'], t_events=cusum_events, pt_sl=[1, 1], target=vol, min_ret=0.01, num_threads=1, vertical_barrier_times=vertical_barriers, side=None) triple_barrier_events.head() labels = CoreFunctions.get_bins(triple_barrier_events, data['close']) labels.head() labels['bin'].value_counts()
_____no_output_____
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
--- 3.2 From exercise 1, use Snippet 3.8 to drop rare labels.
clean_labels = CoreFunctions.drop_labels(labels) print(labels.shape) print(clean_labels.shape)
(660, 3) (660, 3)
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
--- 3.3 Adjust the getBins function (Snippet 3.5) to return a 0 whenever the vertical barrier is the one touched first.This change was made inside the module CoreFunctions. --- 3.4 Develop a trend-following strategy based on a popular technical analysis statistic (e.g., crossing moving averages). For each observation, themodel suggests a side, but not a size of the bet.1. Derive meta-labels for pt_sl = [1,2] and t1 where num_days=1. Use as trgt the daily standard deviation as computed by Snippet 3.1.2. Train a random forest to decide whether to trade or not. Note: The decision is whether to trade or not, {0,1}, since the underllying model (the crossing moveing average has decided the side{-1, 1})
# This question is answered in the notebook: 2019-03-06_JJ_Trend-Following-Question
_____no_output_____
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
---- 3.5 Develop a mean-reverting strategy based on Bollinger bands. For each observation, the model suggests a side, but not a size of the bet.* (a) Derive meta-labels for ptSl = [0, 2] and t1 where numDays = 1. Use as trgt the daily standard deviation as computed by Snippet 3.1.* (b) Train a random forest to decide whether to trade or not. Use as features: volatility, seial correlation, and teh crossinmg moving averages.* (c) What is teh accuracy of prediction from the primary model? (i.e. if the secondary model does not filter the bets) What are the precision, recall and FI-scores?* (d) What is teh accuracy of prediction from the primary model? What are the precision, recall and FI-scores?
# This question is answered in the notebook: 2019-03-07_BBand-Question
_____no_output_____
MIT
Chapter3/2019-03-03_AS_JJ_Chapter3-Part1.ipynb
alexanu/research
Import Libraries
from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms
_____no_output_____
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Data TransformationsWe first start with defining our data transformations. We need to think what our data is and how can we augment it to correct represent images which it might not see otherwise.
# Train Phase transformations train_transforms = transforms.Compose([ # transforms.Resize((28, 28)), # transforms.ColorJitter(brightness=0.10, contrast=0.1, saturation=0.10, hue=0.1), transforms.RandomRotation((-7.0, 7.0), fill=(1,)), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) # The mean and std have to be sequences (e.g., tuples), therefore you should add a comma after the values. # Note the difference between (0.1307) and (0.1307,) ]) # Test Phase transformations test_transforms = transforms.Compose([ # transforms.Resize((28, 28)), # transforms.ColorJitter(brightness=0.10, contrast=0.1, saturation=0.10, hue=0.1), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])
_____no_output_____
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Dataset and Creating Train/Test Split
train = datasets.MNIST('./data', train=True, download=True, transform=train_transforms) test = datasets.MNIST('./data', train=False, download=True, transform=test_transforms)
_____no_output_____
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Dataloader Arguments & Test/Train Dataloaders
SEED = 1 # CUDA? cuda = torch.cuda.is_available() print("CUDA Available?", cuda) # For reproducibility torch.manual_seed(SEED) if cuda: torch.cuda.manual_seed(SEED) # dataloader arguments - something you'll fetch these from cmdprmt dataloader_args = dict(shuffle=True, batch_size=128, num_workers=4, pin_memory=True) if cuda else dict(shuffle=True, batch_size=64) # train dataloader train_loader = torch.utils.data.DataLoader(train, **dataloader_args) # test dataloader test_loader = torch.utils.data.DataLoader(test, **dataloader_args)
CUDA Available? True
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
The modelLet's start with the model we first saw
import torch.nn.functional as F dropout_value = 0.1 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # Input Block self.convblock1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(16), nn.Dropout(dropout_value) ) # output_size = 26 # CONVOLUTION BLOCK 1 self.convblock2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3, 3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(dropout_value) ) # output_size = 24 # TRANSITION BLOCK 1 self.convblock3 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=10, kernel_size=(1, 1), padding=0, bias=False), ) # output_size = 24 self.pool1 = nn.MaxPool2d(2, 2) # output_size = 12 # CONVOLUTION BLOCK 2 self.convblock4 = nn.Sequential( nn.Conv2d(in_channels=10, out_channels=16, kernel_size=(3, 3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(16), nn.Dropout(dropout_value) ) # output_size = 10 self.convblock5 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(16), nn.Dropout(dropout_value) ) # output_size = 8 self.convblock6 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), padding=0, bias=False), nn.ReLU(), nn.BatchNorm2d(16), nn.Dropout(dropout_value) ) # output_size = 6 self.convblock7 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(16), nn.Dropout(dropout_value) ) # output_size = 6 # OUTPUT BLOCK self.gap = nn.Sequential( nn.AvgPool2d(kernel_size=6) ) # output_size = 1 self.convblock8 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=10, kernel_size=(1, 1), padding=0, bias=False), # nn.BatchNorm2d(10), # nn.ReLU(), # nn.Dropout(dropout_value) ) self.dropout = nn.Dropout(dropout_value) def forward(self, x): x = self.convblock1(x) x = self.convblock2(x) x = self.convblock3(x) x = self.pool1(x) x = self.convblock4(x) x = self.convblock5(x) x = self.convblock6(x) x = self.convblock7(x) x = self.gap(x) x = self.convblock8(x) x = x.view(-1, 10) return F.log_softmax(x, dim=-1)
_____no_output_____
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Model ParamsCan't emphasize on how important viewing Model Summary is. Unfortunately, there is no in-built model visualizer, so we have to take external help
!pip install torchsummary from torchsummary import summary use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") print(device) model = Net().to(device) summary(model, input_size=(1, 28, 28))
Requirement already satisfied: torchsummary in /usr/local/lib/python3.6/dist-packages (1.5.1) cuda ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 16, 26, 26] 144 ReLU-2 [-1, 16, 26, 26] 0 BatchNorm2d-3 [-1, 16, 26, 26] 32 Dropout-4 [-1, 16, 26, 26] 0 Conv2d-5 [-1, 32, 24, 24] 4,608 ReLU-6 [-1, 32, 24, 24] 0 BatchNorm2d-7 [-1, 32, 24, 24] 64 Dropout-8 [-1, 32, 24, 24] 0 Conv2d-9 [-1, 10, 24, 24] 320 MaxPool2d-10 [-1, 10, 12, 12] 0 Conv2d-11 [-1, 16, 10, 10] 1,440 ReLU-12 [-1, 16, 10, 10] 0 BatchNorm2d-13 [-1, 16, 10, 10] 32 Dropout-14 [-1, 16, 10, 10] 0 Conv2d-15 [-1, 16, 8, 8] 2,304 ReLU-16 [-1, 16, 8, 8] 0 BatchNorm2d-17 [-1, 16, 8, 8] 32 Dropout-18 [-1, 16, 8, 8] 0 Conv2d-19 [-1, 16, 6, 6] 2,304 ReLU-20 [-1, 16, 6, 6] 0 BatchNorm2d-21 [-1, 16, 6, 6] 32 Dropout-22 [-1, 16, 6, 6] 0 Conv2d-23 [-1, 16, 6, 6] 2,304 ReLU-24 [-1, 16, 6, 6] 0 BatchNorm2d-25 [-1, 16, 6, 6] 32 Dropout-26 [-1, 16, 6, 6] 0 AvgPool2d-27 [-1, 16, 1, 1] 0 Conv2d-28 [-1, 10, 1, 1] 160 ================================================================ Total params: 13,808 Trainable params: 13,808 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.00 Forward/backward pass size (MB): 1.06 Params size (MB): 0.05 Estimated Total Size (MB): 1.12 ----------------------------------------------------------------
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Training and TestingAll right, so we have 24M params, and that's too many, we know that. But the purpose of this notebook is to set things right for our future experiments. Looking at logs can be boring, so we'll introduce **tqdm** progressbar to get cooler logs. Let's write train and test functions
from tqdm import tqdm train_losses = [] test_losses = [] train_acc = [] test_acc = [] def train(model, device, train_loader, optimizer, epoch): model.train() pbar = tqdm(train_loader) correct = 0 processed = 0 for batch_idx, (data, target) in enumerate(pbar): # get samples data, target = data.to(device), target.to(device) # Init optimizer.zero_grad() # In PyTorch, we need to set the gradients to zero before starting to do backpropragation because PyTorch accumulates the gradients on subsequent backward passes. # Because of this, when you start your training loop, ideally you should zero out the gradients so that you do the parameter update correctly. # Predict y_pred = model(data) # Calculate loss loss = F.nll_loss(y_pred, target) train_losses.append(loss) # Backpropagation loss.backward() optimizer.step() # Update pbar-tqdm pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() processed += len(data) pbar.set_description(desc= f'Loss={loss.item()} Batch_id={batch_idx} Accuracy={100*correct/processed:0.2f}') train_acc.append(100*correct/processed) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) test_acc.append(100. * correct / len(test_loader.dataset)) from torch.optim.lr_scheduler import StepLR model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # scheduler = StepLR(optimizer, step_size=6, gamma=0.1) EPOCHS = 20 for epoch in range(EPOCHS): print("EPOCH:", epoch) train(model, device, train_loader, optimizer, epoch) # scheduler.step() test(model, device, test_loader)
0%| | 0/469 [00:00<?, ?it/s]
MIT
Prasant_Kumar/Assignments/F9.ipynb
ks1320/Traffic-Surveillance-System
Document AI Specialized Parser with HITLThis notebook shows you how to use Document AI's specialized parsers ex. Invoice, Receipt, W2, W9, etc. and also shows Human in the Loop (HITL) output for supported parsers.
# Install necessary Python libraries and restart your kernel after. !python -m pip install -r ../requirements.txt from google.cloud import documentai_v1beta3 as documentai from PIL import Image, ImageDraw import os import pandas as pd
_____no_output_____
Apache-2.0
specialized/specialized_form_parser.ipynb
jlehga1/documentai-notebooks
Set your processor variables
# TODO(developer): Fill these variables with your values before running the sample PROJECT_ID = "YOUR_PROJECT_ID_HERE" LOCATION = "us" # Format is 'us' or 'eu' PROCESSOR_ID = "PROCESSOR_ID" # Create processor in Cloud Console PDF_PATH = "../resources/procurement/invoices/invoice.pdf" # Update to path of target document
_____no_output_____
Apache-2.0
specialized/specialized_form_parser.ipynb
jlehga1/documentai-notebooks
The following code calls the synchronous API and parses the form fields and values.
def process_document_sample(): # Instantiates a client client_options = {"api_endpoint": "{}-documentai.googleapis.com".format(LOCATION)} client = documentai.DocumentProcessorServiceClient(client_options=client_options) # The full resource name of the processor, e.g.: # projects/project-id/locations/location/processor/processor-id # You must create new processors in the Cloud Console first name = f"projects/{PROJECT_ID}/locations/{LOCATION}/processors/{PROCESSOR_ID}" with open(PDF_PATH, "rb") as image: image_content = image.read() # Read the file into memory document = {"content": image_content, "mime_type": "application/pdf"} # Configure the process request request = {"name": name, "document": document} # Recognizes text entities in the PDF document result = client.process_document(request=request) document = result.document entities = document.entities print("Document processing complete.\n\n") # For a full list of Document object attributes, please reference this page: https://googleapis.dev/python/documentai/latest/_modules/google/cloud/documentai_v1beta3/types/document.html#Document types = [] values = [] confidence = [] # Grab each key/value pair and their corresponding confidence scores. for entity in entities: types.append(entity.type_) values.append(entity.mention_text) confidence.append(round(entity.confidence,4)) # Create a Pandas Dataframe to print the values in tabular format. df = pd.DataFrame({'Type': types, 'Value': values, 'Confidence': confidence}) display(df) if result.human_review_operation: print ("Triggered HITL long running operation: {}".format(result.human_review_operation)) return document def get_text(doc_element: dict, document: dict): """ Document AI identifies form fields by their offsets in document text. This function converts offsets to text snippets. """ response = "" # If a text segment spans several lines, it will # be stored in different text segments. for segment in doc_element.text_anchor.text_segments: start_index = ( int(segment.start_index) if segment in doc_element.text_anchor.text_segments else 0 ) end_index = int(segment.end_index) response += document.text[start_index:end_index] return response doc = process_document_sample()
_____no_output_____
Apache-2.0
specialized/specialized_form_parser.ipynb
jlehga1/documentai-notebooks
Draw the bounding boxesWe will now use the spatial data returned by the processor to mark our values on the invoice pdf file that we first converted into a jpg.
JPG_PATH = "../resources/procurement/invoices/invoice.jpg" # Update to path of a jpg of your sample document. document_image = Image.open(JPG_PATH) draw = ImageDraw.Draw(document_image) for entity in doc.entities: # Draw the bounding box around the entities vertices = [] for vertex in entity.page_anchor.page_refs[0].bounding_poly.normalized_vertices: vertices.append({'x': vertex.x * document_image.size[0], 'y': vertex.y * document_image.size[1]}) draw.polygon([ vertices[0]['x'], vertices[0]['y'], vertices[1]['x'], vertices[1]['y'], vertices[2]['x'], vertices[2]['y'], vertices[3]['x'], vertices[3]['y']], outline='blue') document_image
_____no_output_____
Apache-2.0
specialized/specialized_form_parser.ipynb
jlehga1/documentai-notebooks
Human in the loop (HITL) Operation **Only complete this section if a HITL Operation is triggered.**
lro = "LONG_RUNNING_OPERATION" # LRO printed in the previous cell ex. projects/660199673046/locations/us/operations/174674963333130330 client = documentai.DocumentProcessorServiceClient() operation = client._transport.operations_client.get_operation(lro) if operation.done: print("HITL location: {} ".format(str(operation.response.value)[5:-1])) else: print('Waiting on human review.') !gsutil cp "HITL_LOCATION" response.json # Location printed above ex. gs://gcs_bucket/receipt-output/174674963333130330/data-00001-of-00001.json with open("response.json", "r") as file: import json entities = {} data = json.load(file) for entity in data['entities']: if 'mentionText' in entity: entities[entity['type']] = entity['mentionText'] else: entities[entity['type']] = "" for t in entities: print("{} : {}\n ".format(t, entities[t]))
_____no_output_____
Apache-2.0
specialized/specialized_form_parser.ipynb
jlehga1/documentai-notebooks
Notebook which focuses on the randomly generated data sets and the performance comparison of algorithms on it
from IPython.core.display import display, HTML display(HTML('<style>.container {width:100% !important;}</style>')) %matplotlib notebook import matplotlib.pyplot as plt import numpy as np import torch from itertools import product, chain import nmf.mult import nmf.pgrad import nmf.nesterov import nmf_torch.mult import nmf_torch.pgrad import nmf_torch.nesterov import nmf_torch.norms import matplotlib import pickle from performance.performance_eval_func import get_random_lowrank_matrix, get_time_ratio,\ compare_performance, plot_errors_dict,\ torch_algo_wrapper,\ plot_ratios_gpu_algo, plot_ratios_cpu_gpu, plot_ratios_cpu_algo,\ plot_errors_dict, errors_at_time_t_over_inner_dim algo_dict_to_test = { "mult": nmf.mult.factorize_Fnorm, "pgrad": nmf.pgrad.factorize_Fnorm_subproblems, "nesterov": nmf.nesterov.factorize_Fnorm, "mult_torch": torch_algo_wrapper(nmf_torch.mult.factorize_Fnorm, device="cuda"), "pgrad_torch": torch_algo_wrapper(nmf_torch.pgrad.factorize_Fnorm_subproblems, device="cuda"), "nesterov_torch": torch_algo_wrapper(nmf_torch.nesterov.factorize_Fnorm, device="cuda") } f, ax = plt.subplots() plot_errors_dict(errors_over_r_random, ax, log=True, x_lbl="Inner dim", title="site3") f, ax = plt.subplots() plot_errors_dict(errors_over_r_random, ax, log=False, x_lbl="Inner dim", title="site3") shapes = [(5 * a, a) for a in [30, 100, 300, 1000, 3000]] shapes inner_dims_small = [sh[1] // 10 for sh in shapes] inner_dims_small inner_dims_big = [8 * sh[1] // 10 for sh in shapes] inner_dims_big shapes_all = shapes + shapes inner_dims = inner_dims_small + inner_dims_big times = [5, 25, 200, 1200, 8000] times = times + [t * 2 for t in times] print(len(shapes_all)) errors_dict = pickle.load(open("random_data_errors_dict.pkl","rb")) del errors_dict[(3, (150, 30))] errors_dict = {} for inner_dim, shape, t in zip(inner_dims, shapes_all, times): print((inner_dim, shape)) if (inner_dim, shape) in errors_dict.keys(): continue V = get_random_lowrank_matrix(shape[0], inner_dim, shape[1]) + np.random.rand(*shape) * 0.1 W_init = np.random.rand(shape[0], inner_dim) H_init = np.random.rand(inner_dim, shape[1]) errors = compare_performance(V=V, inner_dim=inner_dim, time_limit=t, W_init=W_init, H_init=H_init, algo_dict_to_test=algo_dict_to_test) errors_dict[(inner_dim, shape)] = errors pickle.dump(errors_dict, open("random_data_errors_dict.pkl","wb")) pickle.dump(errors_dict, open("random_data_errors_dict.pkl","wb")) keys = zip(inner_dims, shapes_all) keys = sorted(keys, key=lambda k: k[0]) keys = sorted(keys, key=lambda k: k[1][0]) keys for k in keys: r, shape = k M = np.random.rand(shape[0], r) @ np.random.rand(r, shape[1]) errros_dict_particular_data = errors_dict[k] f, axes = plt.subplots(3, 2, figsize=(8, 7), dpi=100, gridspec_kw=dict(hspace=0.45, top=0.92, bottom=0.08, left=0.08, right=0.99)) f.suptitle("Comparison, time ratio for {}, {:.2f}KB, {:.2f}MB".format(k, M.nbytes / 2**10, M.nbytes / 2**20)) plot_errors_dict(errros_dict_particular_data, axes[0, 0], log=True, title="Objective function", x_lbl="time [s]") plot_ratios_cpu_gpu(errros_dict_particular_data, axes[0, 1]) plot_ratios_cpu_algo(errros_dict_particular_data, axes[1:, 0], selected_algs=["mult", "pgrad", "nesterov"]) plot_ratios_gpu_algo(errros_dict_particular_data, axes[1:, 1], selected_algs=["mult_torch", "pgrad_torch", "nesterov_torch"]) font = {'family' : 'normal', 'weight' : 'normal', 'size' : 14} matplotlib.rc('font', **font) figsize = (9, 10) gridspec_kw = dict(wspace=0.4, hspace=0.9, top=0.85, bottom=0.1, left=0.1, right=0.95) plt.close("all") f, axes1 = plt.subplots(3, 2, figsize=figsize, dpi=100, gridspec_kw=gridspec_kw) f.suptitle("Ratio between time required\nto reach particular cost function value on CPU and on GPU") f, axes2 = plt.subplots(3, 2, figsize=figsize, dpi=100, gridspec_kw=gridspec_kw) f.suptitle("Ratio between time required\nto reach particular cost function value on CPU and on GPU") axes1[0,0].get_shared_y_axes().join(*axes1[0, :], *axes1[1, :], *axes1[2, :]) axes2[0,0].get_shared_y_axes().join(*axes2[0, :], *axes2[1, :], *axes2[2, :]) axes1[2,1].set_axis_off() axes2[2,1].set_axis_off() axes1 = list(axes1.ravel()) axes2 = list(axes2.ravel()) legend_is = False for k, a in zip(keys, chain.from_iterable(zip(axes1, axes2))): print(a) r, shape = k plot_ratios_cpu_gpu(errors_dict[k], a) M = np.random.rand(shape[0], r) @ np.random.rand(r, shape[1]) kb = M.nbytes / 2**10 mb = M.nbytes / 2**20 if mb < 1: size = "{:.1f}KB".format(kb) else: size = "{:.1f}MB".format(mb) a.set_title("Factorization of size {}\nmat. dim. {}, {}".format(k[0], k[1], size)) if legend_is: a.get_legend().remove() else: legend_is = True plt.close("all") f, axes1 = plt.subplots(3, 2, figsize=figsize, dpi=100, gridspec_kw=gridspec_kw) f.suptitle("Ratio between time required to reach a particular"+ "cost \n function value for multiplicative algorithms and gradient algorithms") f, axes2 = plt.subplots(3, 2, figsize=figsize, dpi=100, gridspec_kw=gridspec_kw) f.suptitle("Ratio between time required to reach a particular cost \n function value for projecitve and Nesterov gradient algorithms") axes1 = list(axes1.ravel()) axes2 = list(axes2.ravel()) axes1[-1].set_axis_off() axes2[-1].set_axis_off() # axes1[0].get_shared_y_axes().join(*axes1) axes2[0].get_shared_y_axes().join(*axes2) print(keys) print(len(axes1)) print(len(axes2)) legend_is = False for k, a1, a2 in zip(keys[::2], axes1, axes2): r, shape = k if r != 0.1 * shape[1]: print(k) continue plot_ratios_gpu_algo(errors_dict[k], [a1, a2], selected_algs=["mult_torch", "pgrad_torch", "nesterov_torch"]) M = np.random.rand(shape[0], r) @ np.random.rand(r, shape[1]) kb = M.nbytes / 2**10 mb = M.nbytes / 2**20 if mb < 1: size = "{:.2f}KB".format(kb) else: size = "{:.2f}MB".format(mb) a1.set_title("factorization of size {}\nmat. shape {} {}".format(k[0], k[1], size)) a2.set_title("factorization of size {}\nmat. shape {} {}".format(k[0], k[1], size)) if legend_is: a1.get_legend().remove() a2.get_legend().remove() else: legend_is = True
_____no_output_____
MIT
performance_on_random.ipynb
ninextycode/finalYearProjectNMF
02: Fitting Power Spectrum Models=================================Introduction to the module, beginning with the FOOOF object.
# Import the FOOOF object from fooof import FOOOF # Import utility to download and load example data from fooof.utils.download import load_fooof_data # Download examples data files needed for this example freqs = load_fooof_data('freqs.npy', folder='data') spectrum = load_fooof_data('spectrum.npy', folder='data')
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
FOOOF Object------------At the core of the module, which is object oriented, is the :class:`~fooof.FOOOF` object,which holds relevant data and settings as attributes, and contains methods to run thealgorithm to parameterize neural power spectra.The organization is similar to sklearn:- A model object is initialized, with relevant settings- The model is used to fit the data- Results can be extracted from the object Calculating Power Spectra~~~~~~~~~~~~~~~~~~~~~~~~~The :class:`~fooof.FOOOF` object fits models to power spectra. The module itself does notcompute power spectra, and so computing power spectra needs to be done prior to usingthe FOOOF module.The model is broadly agnostic to exactly how power spectra are computed. Commonmethods, such as Welch's method, can be used to compute the spectrum.If you need a module in Python that has functionality for computing power spectra, try`NeuroDSP `_.Note that FOOOF objects require frequency and power values passed in as inputs tobe in linear spacing. Passing in non-linear spaced data (such logged values) mayproduce erroneous results. Fitting an Example Power Spectrum---------------------------------The following example demonstrates fitting a power spectrum model to a single power spectrum.
# Initialize a FOOOF object fm = FOOOF() # Set the frequency range to fit the model freq_range = [2, 40] # Report: fit the model, print the resulting parameters, and plot the reconstruction fm.report(freqs, spectrum, freq_range)
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
Fitting Models with 'Report'~~~~~~~~~~~~~~~~~~~~~~~~~~~~The above method 'report', is a convenience method that calls a series of methods:- :meth:`~fooof.FOOOF.fit`: fits the power spectrum model- :meth:`~fooof.FOOOF.print_results`: prints out the results- :meth:`~fooof.FOOOF.plot`: plots to data and model fitEach of these methods can also be called individually.
# Alternatively, just fit the model with FOOOF.fit() (without printing anything) fm.fit(freqs, spectrum, freq_range) # After fitting, plotting and parameter fitting can be called independently: # fm.print_results() # fm.plot()
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
Model Parameters~~~~~~~~~~~~~~~~Once the power spectrum model has been calculated, the model fit parameters are storedas object attributes that can be accessed after fitting.Following the sklearn convention, attributes that are fit as a result ofthe model have a trailing underscore, for example:- ``aperiodic_params_``- ``peak_params_``- ``error_``- ``r2_``- ``n_peaks_`` Access model fit parameters from FOOOF object, after fitting:
# Aperiodic parameters print('Aperiodic parameters: \n', fm.aperiodic_params_, '\n') # Peak parameters print('Peak parameters: \n', fm.peak_params_, '\n') # Goodness of fit measures print('Goodness of fit:') print(' Error - ', fm.error_) print(' R^2 - ', fm.r_squared_, '\n') # Check how many peaks were fit print('Number of fit peaks: \n', fm.n_peaks_)
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
Selecting Parameters~~~~~~~~~~~~~~~~~~~~You can also select parameters using the :meth:`~fooof.FOOOF.get_params`method, which can be used to specify which parameters you want to extract.
# Extract a model parameter with `get_params` err = fm.get_params('error') # Extract parameters, indicating sub-selections of parameter exp = fm.get_params('aperiodic_params', 'exponent') cfs = fm.get_params('peak_params', 'CF') # Print out a custom parameter report template = ("With an error level of {error:1.2f}, FOOOF fit an exponent " "of {exponent:1.2f} and peaks of {cfs:s} Hz.") print(template.format(error=err, exponent=exp, cfs=' & '.join(map(str, [round(cf, 2) for cf in cfs]))))
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
For a full description of how you can access data with :meth:`~fooof.FOOOF.get_params`,check the method's documentation.As a reminder, you can access the documentation for a function using '?' in aJupyter notebook (ex: `fm.get_params?`), or more generally with the `help` functionin general Python (ex: `help(get_params)`). Notes on Interpreting Peak Parameters-------------------------------------Peak parameters are labeled as:- CF: center frequency of the extracted peak- PW: power of the peak, over and above the aperiodic component- BW: bandwidth of the extracted peakNote that the peak parameters that are returned are not exactly the same as theparameters of the Gaussians used internally to fit the peaks.Specifically:- CF is the exact same as mean parameter of the Gaussian- PW is the height of the model fit above the aperiodic component [1], which is not necessarily the same as the Gaussian height- BW is 2 * the standard deviation of the Gaussian [2][1] Since the Gaussians are fit together, if any Gaussians overlap,than the actual height of the fit at a given point can only be assessedwhen considering all Gaussians. To be better able to interpret heightsfor single peak fits, we re-define the peak height as above, and label itas 'power', as the units of the input data are expected to be units of power.[2] Gaussian standard deviation is '1 sided', where as the returned BW is '2 sided'. The underlying gaussian parameters are also available from the FOOOF object,in the ``gaussian_params_`` attribute.
# Compare the 'peak_params_' to the underlying gaussian parameters print(' Peak Parameters \t Gaussian Parameters') for peak, gauss in zip(fm.peak_params_, fm.gaussian_params_): print('{:5.2f} {:5.2f} {:5.2f} \t {:5.2f} {:5.2f} {:5.2f}'.format(*peak, *gauss))
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
FOOOFResults~~~~~~~~~~~~There is also a convenience method to return all model fit results::func:`~fooof.FOOOF.get_results`.This method returns all the model fit parameters, including the underlying Gaussianparameters, collected together into a FOOOFResults object.The FOOOFResults object, which in Python terms is a named tuple, is a standard dataobject used with FOOOF to organize and collect parameter data.
# Grab each model fit result with `get_results` to gather all results together # Note that this returns a FOOOFResult object fres = fm.get_results() # You can also unpack all fit parameters when using `get_results` ap_params, peak_params, r_squared, fit_error, gauss_params = fm.get_results() # Print out the FOOOFResults print(fres, '\n') # From FOOOFResults, you can access the different results print('Aperiodic Parameters: \n', fres.aperiodic_params) # Check the r^2 and error of the model fit print('R-squared: \n {:5.4f}'.format(fm.r_squared_)) print('Fit error: \n {:5.4f}'.format(fm.error_))
_____no_output_____
Apache-2.0
doc/auto_tutorials/plot_02-FOOOF.ipynb
varman-m/eeg_notebooks_doc
DiscretisationDiscretisation is the process of transforming continuous variables into discrete variables by creating a set of contiguous intervals that span the range of the variable's values. Discretisation is also called **binning**, where bin is an alternative name for interval. Discretisation helps handle outliers and may improve value spread in skewed variablesDiscretisation helps handle outliers by placing these values into the lower or higher intervals, together with the remaining inlier values of the distribution. Thus, these outlier observations no longer differ from the rest of the values at the tails of the distribution, as they are now all together in the same interval / bucket. In addition, by creating appropriate bins or intervals, discretisation can help spread the values of a skewed variable across a set of bins with equal number of observations. Discretisation approachesThere are several approaches to transform continuous variables into discrete ones. Discretisation methods fall into 2 categories: **supervised and unsupervised**. Unsupervised methods do not use any information, other than the variable distribution, to create the contiguous bins in which the values will be placed. Supervised methods typically use target information in order to create the bins or intervals. Unsupervised discretisation methods- Equal width discretisation- Equal frequency discretisation- K-means discretisation Supervised discretisation methods- Discretisation using decision treesIn this lecture, I will describe **equal width discretisation**. Equal width discretisationEqual width discretisation divides the scope of possible values into N bins of the same width.The width is determined by the range of values in the variable and the number of bins we wish to use to divide the variable:width = (max value - min value) / Nwhere N is the number of bins or intervals.For example if the values of the variable vary between 0 and 100, we create 5 bins like this: width = (100-0) / 5 = 20. The bins thus are 0-20, 20-40, 40-60, 80-100. The first and final bins (0-20 and 80-100) can be expanded to accommodate outliers (that is, values under 0 or greater than 100 would be placed in those bins as well).There is no rule of thumb to define N, that is something to determine experimentally. In this demoWe will learn how to perform equal width binning using the Titanic dataset with- pandas and NumPy- Feature-engine- Scikit-learn
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import KBinsDiscretizer from feature_engine.discretisers import EqualWidthDiscretiser # load the numerical variables of the Titanic Dataset data = pd.read_csv('../titanic.csv', usecols=['age', 'fare', 'survived']) data.head() # Let's separate into train and test set X_train, X_test, y_train, y_test = train_test_split( data[['age', 'fare']], data['survived'], test_size=0.3, random_state=0) X_train.shape, X_test.shape
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
The variables Age and fare contain missing data, that I will fill by extracting a random sample of the variable.
def impute_na(data, variable): df = data.copy() # random sampling df[variable + '_random'] = df[variable] # extract the random sample to fill the na random_sample = X_train[variable].dropna().sample( df[variable].isnull().sum(), random_state=0) # pandas needs to have the same index in order to merge datasets random_sample.index = df[df[variable].isnull()].index df.loc[df[variable].isnull(), variable + '_random'] = random_sample return df[variable + '_random'] # replace NA in both train and test sets X_train['age'] = impute_na(data, 'age') X_test['age'] = impute_na(data, 'age') X_train['fare'] = impute_na(data, 'fare') X_test['fare'] = impute_na(data, 'fare') # let's explore the distribution of age data[['age', 'fare']].hist(bins=30, figsize=(8,4)) plt.show()
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
Equal width discretisation with pandas and NumPyFirst we need to determine the intervals' edges or limits.
# let's capture the range of the variable age age_range = X_train['age'].max() - X_train['age'].min() age_range # let's divide the range into 10 equal width bins age_range / 10
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
The range or width of our intervals will be 7 years.
# now let's capture the lower and upper boundaries min_value = int(np.floor( X_train['age'].min())) max_value = int(np.ceil( X_train['age'].max())) # let's round the bin width inter_value = int(np.round(age_range / 10)) min_value, max_value, inter_value # let's capture the interval limits, so we can pass them to the pandas cut # function to generate the bins intervals = [i for i in range(min_value, max_value+inter_value, inter_value)] intervals # let's make labels to label the different bins labels = ['Bin_' + str(i) for i in range(1, len(intervals))] labels # create binned age / discretise age # create one column with labels X_train['Age_disc_labels'] = pd.cut(x=X_train['age'], bins=intervals, labels=labels, include_lowest=True) # and one with bin boundaries X_train['Age_disc'] = pd.cut(x=X_train['age'], bins=intervals, include_lowest=True) X_train.head(10)
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
We can see in the above output how by discretising using equal width, we placed each Age observation within one interval / bin. For example, age=13 was placed in the 7-14 interval, whereas age 30 was placed into the 28-35 interval.When performing equal width discretisation, we guarantee that the intervals are all of the same lenght, however there won't necessarily be the same number of observations in each of the intervals. See below:
X_train.groupby('Age_disc')['age'].count() X_train.groupby('Age_disc')['age'].count().plot.bar() plt.xticks(rotation=45) plt.ylabel('Number of observations per bin')
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
The majority of people on the Titanic were between 14-42 years of age.Now, we can discretise Age in the test set, using the same interval boundaries that we calculated for the train set:
X_test['Age_disc_labels'] = pd.cut(x=X_test['age'], bins=intervals, labels=labels, include_lowest=True) X_test['Age_disc'] = pd.cut(x=X_test['age'], bins=intervals, include_lowest=True) X_test.head() # if the distributions in train and test set are similar, we should expect similar propotion of # observations in the different intervals in the train and test set # let's see that below t1 = X_train.groupby(['Age_disc'])['age'].count() / len(X_train) t2 = X_test.groupby(['Age_disc'])['age'].count() / len(X_test) tmp = pd.concat([t1, t2], axis=1) tmp.columns = ['train', 'test'] tmp.plot.bar() plt.xticks(rotation=45) plt.ylabel('Number of observations per bin')
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
Equal width discretisation with Feature-Engine
# Let's separate into train and test set X_train, X_test, y_train, y_test = train_test_split( data[['age', 'fare']], data['survived'], test_size=0.3, random_state=0) X_train.shape, X_test.shape # replace NA in both train and test sets X_train['age'] = impute_na(data, 'age') X_test['age'] = impute_na(data, 'age') X_train['fare'] = impute_na(data, 'fare') X_test['fare'] = impute_na(data, 'fare') # with feature engine we can automate the process for many variables # in one line of code disc = EqualWidthDiscretiser(bins=10, variables = ['age', 'fare']) disc.fit(X_train) # in the binner dict, we can see the limits of the intervals. For age # the value increases aproximately 7 years from one bin to the next. # for fare it increases in around 50 dollars from one interval to the # next, but it increases always the same value, aka, same width. disc.binner_dict_ # transform train and text train_t = disc.transform(X_train) test_t = disc.transform(X_test) train_t.head() t1 = train_t.groupby(['age'])['age'].count() / len(train_t) t2 = test_t.groupby(['age'])['age'].count() / len(test_t) tmp = pd.concat([t1, t2], axis=1) tmp.columns = ['train', 'test'] tmp.plot.bar() plt.xticks(rotation=0) plt.ylabel('Number of observations per bin') t1 = train_t.groupby(['fare'])['fare'].count() / len(train_t) t2 = test_t.groupby(['fare'])['fare'].count() / len(test_t) tmp = pd.concat([t1, t2], axis=1) tmp.columns = ['train', 'test'] tmp.plot.bar() plt.xticks(rotation=0) plt.ylabel('Number of observations per bin')
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
We can see quite clearly, that equal width discretisation does not improve the value spread. The original variable Fare was skewed, and the discrete variable is also skewed. Equal width discretisation with Scikit-learn
# Let's separate into train and test set X_train, X_test, y_train, y_test = train_test_split( data[['age', 'fare']], data['survived'], test_size=0.3, random_state=0) X_train.shape, X_test.shape # replace NA in both train and test sets X_train['age'] = impute_na(data, 'age') X_test['age'] = impute_na(data, 'age') X_train['fare'] = impute_na(data, 'fare') X_test['fare'] = impute_na(data, 'fare') disc = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='uniform') disc.fit(X_train[['age', 'fare']]) disc.bin_edges_ train_t = disc.transform(X_train[['age', 'fare']]) train_t = pd.DataFrame(train_t, columns = ['age', 'fare']) train_t.head() test_t = disc.transform(X_test[['age', 'fare']]) test_t = pd.DataFrame(test_t, columns = ['age', 'fare']) t1 = train_t.groupby(['age'])['age'].count() / len(train_t) t2 = test_t.groupby(['age'])['age'].count() / len(test_t) tmp = pd.concat([t1, t2], axis=1) tmp.columns = ['train', 'test'] tmp.plot.bar() plt.xticks(rotation=0) plt.ylabel('Number of observations per bin') t1 = train_t.groupby(['fare'])['fare'].count() / len(train_t) t2 = test_t.groupby(['fare'])['fare'].count() / len(test_t) tmp = pd.concat([t1, t2], axis=1) tmp.columns = ['train', 'test'] tmp.plot.bar() plt.xticks(rotation=0) plt.ylabel('Number of observations per bin')
_____no_output_____
BSD-3-Clause
Section-08-Discretisation/08.01-Equal-width-discretisation.ipynb
cym3509/FeatureEngineering
Obligatory imports
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sklearn import matplotlib %matplotlib inline matplotlib.rcParams['figure.figsize'] = (12,8) matplotlib.rcParams['font.size']=20 matplotlib.rcParams['lines.linewidth']=4 matplotlib.rcParams['xtick.major.size'] = 10 matplotlib.rcParams['ytick.major.size'] = 10 matplotlib.rcParams['xtick.major.width'] = 2 matplotlib.rcParams['ytick.major.width'] = 2
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
We use the MNIST Dataset again
import IPython url = 'http://yann.lecun.com/exdb/mnist/' iframe = '<iframe src=' + url + ' width=80% height=400px></iframe>' IPython.display.HTML(iframe)
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Fetch the data
from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original', data_home='../day4/data/') allimages = mnist.data allimages.shape all_image_labels = mnist.target set(all_image_labels)
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
check out the data
digit1 = mnist.data[0,:].reshape(28,-1) # arr.reshape(4, -1) is equivalent to arr.reshape(4, 7), is arr has size 28 fig, ax = plt.subplots(figsize=(1.5, 1.5)) ax.imshow(digit1, vmin=0, vmax=1)
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Theoretical background**Warning: math ahead** Taking logistic regression a step further: neural networks How (artificial) neural networks predict a label from features?* The *input layer* has **dimention = number of features.*** For each training example, each feature value is "fed" into the input layer. * Each "neuron" in the hidden layer receives a weighted sum of the features: the weight is initialized to a random value in the beginning, and the network "learns" from the datasetsand tunes these weights. Each hidden neuron, based on its input, and an "activation function", e.g.: the logistic function![actfunc](https://upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Activation_tanh.svg/320px-Activation_tanh.svg.png)* The output is again, a weighted sum of the values at each hidden neuron. * There can be *more than one hidden layer*, in which case the output of the first hidden layer becomes the input of the second hidden layer. RegularizationLike Logistic regression and SVM, neural networks also can be improved with regularization.Fot scikit-learn, the relevant tunable parameter is `alpha` (as opposed to `gamma` for LR and SVM). Furthermore, it has default value 0.0001, unlike gamma, for which it is 1. Separate the data into training data and test data
len(allimages)
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Sample the data, 70000 is too many images to handle on a single PC
len(allimages) size_desired_dataset = 2000 sample_idx = np.random.choice(len(allimages), size_desired_dataset) images = allimages[sample_idx, :] image_labels = all_image_labels[sample_idx] set(image_labels) image_labels.shape
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Partition into training and test set *randomly* **As a rule of thumb, 80/20 split between training/test dataset is often recommended.**See below for cross validation and how that changes this thumbrule.
from scipy.stats import itemfreq from sklearn.model_selection import train_test_split training_data, test_data, training_labels, test_labels = train_test_split(images, image_labels, train_size=0.8)
/home/dmanik/venvs/teaching/lib/python3.5/site-packages/sklearn/model_selection/_split.py:2026: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified. FutureWarning)
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
** Importance of normalization** If Feature A is in the range [0,1] and Feature B is in [10000,50000], SVM (in fact, most of the classifiers) will suffer inaccuracy.The solution is to *normalize* (AKA "feature scaling") each feature to the same interval e.g. [0,1] or [-1, 1].**scipy provides a standard function for this:**
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() # Fit only to the training data: IMPORTANT scaler.fit(training_data) from sklearn.neural_network import MLPClassifier clf = MLPClassifier(hidden_layer_sizes=(50,), max_iter = 5000) clf.fit(scaler.transform(training_data), training_labels) clf.score(scaler.transform(training_data), training_labels), clf.score(scaler.transform(test_data), test_labels)
/home/dmanik/venvs/teaching/lib/python3.5/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype uint8 was converted to float64 by StandardScaler. warnings.warn(msg, DataConversionWarning)
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Visualize the hidden layer:
# source: # #http://scikit-learn.org/stable/auto_examples/neural_networks/plot_mnist_filters.html fig, axes = plt.subplots(4, 4, figsize=(15,15)) # use global min / max to ensure all weights are shown on the same scale vmin, vmax = clf.coefs_[0].min(), clf.coefs_[0].max() for coef, ax in zip(clf.coefs_[0].T, axes.ravel()): ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin, vmax=.5 * vmax) ax.set_xticks(()) ax.set_yticks(()) plt.show()
_____no_output_____
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Not bad, but is it better than Logistic regression? Check out with Learning curves:
from sklearn.model_selection import learning_curve import pandas as pd curve = learning_curve(clf, scaler.transform(images), image_labels) train_sizes, train_scores, test_scores = curve train_scores = pd.DataFrame(train_scores) train_scores.loc[:,'train_size'] = train_sizes test_scores = pd.DataFrame(test_scores) test_scores.loc[:,'train_size'] = train_sizes train_scores = pd.melt(train_scores, id_vars=['train_size'], value_name = 'CrossVal score') test_scores = pd.melt(test_scores, id_vars=['train_size'], value_name = 'CrossVal score') matplotlib.rcParams['figure.figsize'] = (12,8) sns.tsplot(train_scores, time = 'train_size', unit='variable', value = 'CrossVal score') sns.tsplot(test_scores, time = 'train_size', unit='variable', value = 'CrossVal score', color='g') plt.ylim(0,1.1)
/home/dmanik/venvs/teaching/lib/python3.5/site-packages/seaborn/timeseries.py:183: UserWarning: The tsplot function is deprecated and will be removed or replaced (in a substantially altered version) in a future release. warnings.warn(msg, UserWarning)
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Not really, we can try to improve it with parameter space search. Parameter space search with `GridSearchCV`
from sklearn.model_selection import GridSearchCV clr = MLPClassifier() clf = GridSearchCV(clr, {'alpha':np.logspace(-8, -1, 2)}) clf.fit(scaler.transform(images), image_labels) clf.best_params_ clf.best_score_ nn_tuned = clf.best_estimator_ nn_tuned.fit(scaler.transform(training_data), training_labels) curve = learning_curve(nn_tuned, scaler.transform(images), image_labels) train_sizes, train_scores, test_scores = curve train_scores = pd.DataFrame(train_scores) train_scores.loc[:,'train_size'] = train_sizes test_scores = pd.DataFrame(test_scores) test_scores.loc[:,'train_size'] = train_sizes train_scores = pd.melt(train_scores, id_vars=['train_size'], value_name = 'CrossVal score') test_scores = pd.melt(test_scores, id_vars=['train_size'], value_name = 'CrossVal score') matplotlib.rcParams['figure.figsize'] = (12,8) sns.tsplot(train_scores, time = 'train_size', unit='variable', value = 'CrossVal score') sns.tsplot(test_scores, time = 'train_size', unit='variable', value = 'CrossVal score', color='g') plt.ylim(0,1.1) plt.legend()
/home/dmanik/venvs/teaching/lib/python3.5/site-packages/seaborn/timeseries.py:183: UserWarning: The tsplot function is deprecated and will be removed or replaced (in a substantially altered version) in a future release. warnings.warn(msg, UserWarning) No handles with labels found to put in legend.
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
The increase in accuracy is miniscule. Multi layered NN's
from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(images) images_normed = scaler.transform(images) clr = MLPClassifier(hidden_layer_sizes=(25,25)) clf = GridSearchCV(clr, {'alpha':np.logspace(-80, -1, 3)}) clf.fit(images_normed, image_labels) clf.best_score_ clf.best_params_ nn_tuned = clf.best_estimator_ nn_tuned.fit(scaler.transform(training_data), training_labels) curve = learning_curve(nn_tuned, images_normed, image_labels) train_sizes, train_scores, test_scores = curve train_scores = pd.DataFrame(train_scores) train_scores.loc[:,'train_size'] = train_sizes test_scores = pd.DataFrame(test_scores) test_scores.loc[:,'train_size'] = train_sizes train_scores = pd.melt(train_scores, id_vars=['train_size'], value_name = 'CrossVal score') test_scores = pd.melt(test_scores, id_vars=['train_size'], value_name = 'CrossVal score') matplotlib.rcParams['figure.figsize'] = (12, 8) sns.tsplot(train_scores, time = 'train_size', unit='variable', value = 'CrossVal score') sns.tsplot(test_scores, time = 'train_size', unit='variable', value = 'CrossVal score', color='g') plt.ylim(0,1.1) plt.legend()
/home/dmanik/venvs/teaching/lib/python3.5/site-packages/seaborn/timeseries.py:183: UserWarning: The tsplot function is deprecated and will be removed or replaced (in a substantially altered version) in a future release. warnings.warn(msg, UserWarning) No handles with labels found to put in legend.
CC-BY-4.0
day5/02-NN.ipynb
JanaLasser/data-science-course
Numerical Methods -- Assignment 5 Problem1 -- Energy density The matter and radiation density of the universe at redshift $z$ is$$\Omega_m(z) = \Omega_{m,0}(1+z)^3$$$$\Omega_r(z) = \Omega_{r,0}(1+z)^4$$where $\Omega_{m,0}=0.315$ and $\Omega_r = 9.28656 \times 10^{-5}$ (a) Plot
%config InlineBackend.figure_format = 'retina' import matplotlib.pyplot as plt import numpy as np z = np.linspace(-1000,4000,10000) O_m0 = 0.315 O_r0 = 9.28656e-5 O_m = O_m0*np.power(z+1,3) O_r = O_r0*np.power(z+1,4) #define where the roots are x1 = -1; x2 = O_m0/O_r0 y1 = O_m0*np.power(x1+1,3) y2 = O_m0*np.power(x2+1,3) x = np.array([x1,x2]) y = np.array([y1,y2]) #plot the results plt.figure(figsize=(8,8)) plt.plot(z,O_m,'-',label="matter density") plt.plot(z,O_r,'-',label="radiation density") plt.plot(x,y,'h',label=r"$z_{eq}$") plt.xlabel("redshift(z)") plt.ylabel("energy density") plt.legend() plt.show()
_____no_output_____
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
(b) Analytical solution An analytical solution can be found by equating the two equations. Since $z$ denotes for the redshift and it has a physical meaning, so it must take a real value for it to have a meaning. Thus\begin{align*}\Omega_m(z) &= \Omega_r(z)\\\Omega_{m,0}(1+z)^3 &= \Omega_{r,0}(1+z)^4\\(1+z)^3(0.315-9.28656 \times 10^{-5} z)&=0\\(1+z)^3 &= 0\\or \ (0.315-9.28656 \times 10^{-5} (z+1))&=0\\\end{align*}$z_1 = -1$ or $z_2 = 3391.0$ (c) Bisection method The bisection method in mathematics is a root-finding method that repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. It is a very simple and robust method, but it is also relatively slow. scipy.optimize.bisect calculates the roots for a given function, but for it to work $f(a)$ and $f(b)$ must take different signs (so that there exists a root $\in [a,b]$).
from scipy.optimize import bisect def f(z): O_m0 = 0.315 O_r0 = 9.28656e-5 O_m = O_m0*np.power(z+1,3) O_r = O_r0*np.power(z+1,4) return O_m -O_r z1 = bisect(f,-1000,0,xtol=1e-10) z2 = bisect(f,0,4000,xtol=1e-10) print "The roots are found to be:",z1,z2
The roots are found to be: -1.00000000003 3390.9987595
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
(d) Secant method The $\textit{secant method}$ uses secant lines to find the root. A secant line is a straight line that intersects two points of a curve. In the secant method, a line is drawn between two points on the continuous function such that it extends and intersects the $x$ axis. A secant line $y$ is drawn from $f(b)$ to $f(a)$ and intersects at point $c$ on the $x$ axis such that$$y = \frac{f(b)-f(a)}{b-a}(c-b)+f(b)$$The solution is therefore$$c = b-f(b)\frac{b-a}{f(b)-f(a)}$$
def secant(f, x0, x1, eps): f_x0 = f(x0) f_x1 = f(x1) iteration_counter = 0 while abs(f_x1) > eps and iteration_counter < 100: try: denominator = float(f_x1 - f_x0)/(x1 - x0) x = x1 - float(f_x1)/denominator except ZeroDivisionError: print "Error! - denominator zero for x = ", x sys.exit(1) # Abort with error x0 = x1 x1 = x f_x0 = f_x1 f_x1 = f(x1) iteration_counter += 1 # Here, either a solution is found, or too many iterations if abs(f_x1) > eps: iteration_counter = -1 return x, iteration_counter #find the roots in the nearby region, with an accuracy of 1e-10 z1 = secant(f,-10,-0.5,1e-10)[0] z2 = secant(f,3000,4000,1e-10)[0] print "The roots are found to be:",z1,z2
The roots are found to be: -0.999466618551 3390.9987595
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
(e) Newton-Raphson method In numerical methods, $\textit{Newton-Raphson method}$ is a method for finding successively better approximations to the roots of a real-valued function. The algorithm is as follows:* Starting with a function $f$ defined over the real number $x$, the function's derivative $f'$, and an initial guess $x_0$ for a root of the fucntion $f$, then a better approximation $x_1$ is:$$x_1 = x_0 -\frac{f(x_0)}{f'(x_0)}$$* The process is then repeated as$$x_{n+1} = x_n-\frac{f(x_n)}{f'(x_n)}$$until a sufficiently satisfactory value is reached.
def fprime(z): O_m0 = 0.315 O_r0 = 9.28656e-5 O_m = O_m0*np.power(z+1,2) O_r = O_r0*np.power(z+1,3) return 3*O_m -4*O_r def Newton(f, dfdx, x, eps): f_value = f(x) iteration_counter = 0 while abs(f_value) > eps and iteration_counter < 100: try: x = x - float(f_value)/dfdx(x) except ZeroDivisionError: print "Error! - derivative zero for x = ", x sys.exit(1) # Abort with error f_value = f(x) iteration_counter += 1 # Here, either a solution is found, or too many iterations if abs(f_value) > eps: iteration_counter = -1 return x, iteration_counter z1 = Newton(f,fprime,0,1e-10)[0] z2 = Newton(f,fprime,3000,1e-10)[0] print "The roots are found to be:",z1,z2
The roots are found to be: -0.9993234602 3390.9987595
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
Now, change the initial guess far from the values obtained from (b). And test how the three algorithms perform respectively.
#test how the bisection method perform import time start1 = time.time() z1 = bisect(f,-1000,1000,xtol=1e-10) end1 = time.time() start2 = time.time() z2 = bisect(f,3000,10000,xtol=1e-10) end2 = time.time() err1 = abs((z1-(-1))/(-1)) err2 = abs((z2-(O_m0/O_r0-1))/(O_m0/O_r0-1)) print "The roots are found to be:",z1,z2 print "With a deviation of:",err1,err2 print "Time used are:",end1-start1,end2-start2 #test how the secant method perform start1 = time.time() z1 = secant(f,-1000,1000,1e-10)[0] end1 = time.time() start2 = time.time() z2 = secant(f,3000,10000,1e-10)[0] end2 = time.time() err1 = abs((z1-(-1))/(-1)) err2 = abs((z2-(O_m0/O_r0-1))/(O_m0/O_r0-1)) print "The roots are found to be:",z1,z2 print "With a deviation of:",err1,err2 print "Time used are:",end1-start1,end2-start2 print "Roots found after",secant(f,-10,-0.5,1e-10)[1],"and",secant(f,3000,4000,1e-10)[1],"loops" #test how the newton-Raphson method perform start1 = time.time() z1 = Newton(f,fprime,-1000,1e-10)[0] end1 = time.time() start2 = time.time() z2 = Newton(f,fprime,10000,1e-10)[0] end2 = time.time() err1 = abs((z1-(-1))/(-1)) err2 = abs((z2-(O_m0/O_r0-1))/(O_m0/O_r0-1)) print "The roots are found to be:",z1,z2 print "With a deviation of:",err1,err2 print "Time used are:",end1-start1,end2-start2 print "Roots found after",Newton(f,fprime,0,1e-10)[1],"and",Newton(f,fprime,3000,1e-10)[1],"loops"
The roots are found to be: -1.00051824126 3390.9987595 With a deviation of: 0.000518241260632 0.0 Time used are: 0.000991821289062 0.000278949737549 Roots found after 18 and 7 loops
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
It is not difficult to find out that tested with the function given, bisection method is the fastest and the most reliable method in finding the first root; however, in determining the second root, both the secant method and Newton's method showed better performance, with zero deviation from the actual value, and a much faster run time. But in general, when dealing with more complicated calculations, bisection method is relatively slow. But within a given tolerance Newton's method and secant method may probably show better performance. Problem 2 -- Potential $\textit{Navarro-Frenk-White}$ and $\textit{Hernquist}$ potential can be expressed as the following equations:$$\Phi_{NFW}(r) = \Phi_0\frac{r_s}{r}\,ln(1+r/r_s)$$$$\Phi_{Hernquist}(r) = -\Phi_0\,\frac{1}{2(1+r/r_s)}$$with $\Phi_0 = 1.659 \times 10^4 \ km^2/s^2$ and $r_s = 15.61 \ kpc$.The apocentre and pericentre can be found by solving the following equation:\begin{align*}E_{tot} &= \frac{1}{2}\left(v_t^2+v_r^2\right)+\Phi\\\end{align*}where $L = J_r=rv_r$ is the angular momentum in the radial direction, and $E_{tot}$ is the total energy of the elliptical orbit and can be found by $(r,v_t,v_r)$ of a given star.Define the residue function$$R\equiv E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$$so that the percenter and apocenter can be found when $R=0$.Then, the radial action $J_r$ is defined as $\textit{(Jason L. Sanders,2015)}$$$J_r = \frac{1}{\pi}\int_{r_p}^{r_a}dr\sqrt{2E-2\Phi-\frac{L^2}{r^2}}$$where $r_p$ is the pericentric radius and $r_a$ is the apocentric radius.
import matplotlib.pyplot as plt import numpy as np from scipy.optimize import newton from scipy.integrate import quad from math import * r = np.array([7.80500, 15.6100,31.2200,78.0500,156.100]) #r in kpc vt = np.array([139.234,125.304,94.6439,84.5818,62.8640]) # vt in km/s vr = np.array([-15.4704,53.7018,-283.932,-44.5818,157.160]) # vr in km/s #NFW profile potential def NFW(r): phi0 = 1.659e4 rs = 15.61 ratio = rs/r return -phi0*ratio*np.log(1+1/ratio) #Hernquist profile potential def H(r): phi0 = 1.659e4 rs = 15.61 ratio = r/rs return -phi0/(2*(1+ratio)) #1st derivative of Hernquist profile potential def H_d(r): phi0 = 1.659e4 rs = 15.61 ratio = r/rs return phi0*0.5/rs*((1+ratio)**(-2)) #1st derivative of NFW profile potential def NFW_d(r): phi0 = 1.659e4 rs = 15.61 ratio = rs/r return -phi0*rs*((-1/r**2)*np.log(1+1/ratio)+1/(r*rs)*(1+1/ratio)**(-1)) #total energy, NFW profile def E_NFW(r,vt,vr): E = 0.5*(vt**2+vr**2)+NFW(r) return E #total energy, Hernquist profile def E_H(r,vt,vr): E = 0.5*(vt**2+vr**2)+H(r) return E #Residue function def Re(r,Energy,momentum,p): return Energy - 0.5*(momentum/r)**2-p #Residue function for NFW profile def R_NFW(r,Energy,momentum): return Energy - 0.5*(momentum/r)**2-NFW(r) #Residue function for Hernquist profile def R_H(r,Energy,momentum): return Energy - 0.5*(momentum/r)**2-H(r) #derivative of residue of NFW profile def R_dNFW(r,Energy,momentum): return Energy*0+momentum**2*r**(-3)-NFW_d(r) #derivative of residue of Hernquist profile def R_dH(r,Energy,momentum): return Energy*0+momentum**2*r**(-3)-H_d(r) #second derivative of residue of Hernquist profile, come handy if the #calculated value for pericentre for Hernquist profile is too far off #from the value calculated for NFW profile def R_ddH(r,Energy,momentum): phi0 = 1.659e4 rs = 15.61 ratio = r/rs return Energy*0-3*momentum**2*r**(-4)+phi0*0.5/rs**2*((1+ratio)**(-3)) #function that defines the radial action def r_actionNFW(r,Energy,momentum): return np.sqrt(2*(Energy-NFW(r))-(momentum/r)**2)/pi def r_actionH(r,Energy,momentum): return np.sqrt(2*(Energy-H(r))-(momentum/r)**2)/pi R1 = np.linspace(7,400,1000) R2 = np.linspace(10,500,1000) R3 = np.linspace(7,600,1000) R4 = np.linspace(50,800,1000) R5 = np.linspace(50,1500,1000) Momentum = r*vt Energy_nfw = E_NFW(r,vt,vr) Energy_h = E_H(r,vt,vr) #plot results for 5 stars #1st star i = 0 R_nfw = Re(R1,Energy_nfw[i],Momentum[i],NFW(R1)) R_h = Re(R1,Energy_h[i],Momentum[i],H(R1)) plt.figure(figsize=(15,10)) plt.plot(R1,R_nfw,ls='-',label="NFW",color='#9370db',lw=2) plt.plot(R1,R_h,ls='--',label="Hernquist",color='salmon',alpha=0.75,lw=2) plt.rc('xtick', labelsize=15) # fontsize of the tick labels plt.rc('ytick', labelsize=15) plt.axhline(y=0,color='#b22222',lw=3) plt.title(r"1st star, $R= E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$",fontsize=20) plt.xlabel("r(kpc)",fontsize=15) plt.ylabel("Residue",fontsize=15) z1 = newton(R_NFW,10,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) z2 = newton(R_NFW,100,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) e1 = R_NFW(z1,Energy_nfw[i],Momentum[i]) e2 = R_NFW(z2,Energy_nfw[i],Momentum[i]) print "The pericentre and apocentre are found to be:",z1,"kpc","and",z2,"kpc","for the NFW profile" plt.plot(z1,e1,marker='d',label='pericentre-NFW') plt.plot(z2,e2,marker='d',label='apocentre-NFW') z3 = newton(R_H,10,args=(Energy_h[i],Momentum[i]),fprime=R_dH) e3 = Re(z1,Energy_h[i],Momentum[i],H(z1)) print "The pericentre is found to be:",z3,"kpc","for the Hernquist profile" plt.plot(z1,e1,marker='o',label='pericentre-H') plt.legend(fontsize=15) plt.show() J_NFW = quad(r_actionNFW,z1,z2,args=(Energy_nfw[i],Momentum[i])) print "The radial action for NFW profile is:",J_NFW[0],"km/s kpc" J_H = quad(r_actionH,z3,np.inf,args=(Energy_h[i],Momentum[i])) print "The radial action for Hernquist profile is:",J_H[0],"km/s kpc" #2nd star i = 1 R_nfw = Re(R2,Energy_nfw[i],Momentum[i],NFW(R2)) R_h = Re(R2,Energy_h[i],Momentum[i],H(R2)) plt.figure(figsize=(15,10)) plt.plot(R2,R_nfw,ls='-',label="NFW",color='#9370db',lw=2) plt.plot(R2,R_h,ls='--',label="Hernquist",color='salmon',alpha=0.75,lw=2) plt.rc('xtick', labelsize=15) # fontsize of the tick labels plt.rc('ytick', labelsize=15) plt.axhline(y=0,color='#b22222',lw=3) plt.title(r"2nd star, $R= E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$",fontsize=20) plt.xlabel("r(kpc)",fontsize=15) plt.ylabel("Residue",fontsize=15) z1 = newton(R_NFW,10,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) z2 = newton(R_NFW,400,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) e1 = R_NFW(z1,Energy_nfw[i],Momentum[i]) e2 = R_NFW(z2,Energy_nfw[i],Momentum[i]) print "The pericentre and apocentre are found to be:",z1,"kpc","and",z2,"kpc","for the NFW profile" plt.plot(z1,e1,marker='d',label='pericentre-NFW') plt.plot(z2,e2,marker='d',label='apocentre-NFW') z3 = newton(R_H,10,args=(Energy_h[i],Momentum[i]),fprime=R_dH) e3 = Re(z1,Energy_h[i],Momentum[i],H(z1)) print "The pericentre is found to be:",z3,"kpc","for the Hernquist profile" plt.plot(z3,e3,marker='o',label='pericentre-H') plt.legend(fontsize=15) plt.show() J_NFW = quad(r_actionNFW,z1,z2,args=(Energy_nfw[i],Momentum[i])) print "The radial action for NFW profile is:",J_NFW[0],"km/s kpc" J_H = quad(r_actionH,z3,np.inf,args=(Energy_h[i],Momentum[i])) print "The radial action for Hernquist profile is:",J_H[0],"km/s kpc" #3rd star i = 2 R_nfw = Re(R3,Energy_nfw[i],Momentum[i],NFW(R3)) R_h = Re(R3,Energy_h[i],Momentum[i],H(R3)) plt.figure(figsize=(15,10)) plt.plot(R3,R_nfw,ls='-',label="NFW",color='#9370db',lw=2) plt.plot(R3,R_h,ls='--',label="Hernquist",color='salmon',alpha=0.75,lw=2) plt.rc('xtick', labelsize=15) # fontsize of the tick labels plt.rc('ytick', labelsize=15) plt.axhline(y=0,color='#b22222',lw=3) plt.title(r"3rd star, $R= E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$",fontsize=20) plt.xlabel("r(kpc)",fontsize=15) plt.ylabel("Residue",fontsize=15) z1 = newton(R_NFW,10,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) e1 = R_NFW(z1,Energy_nfw[i],Momentum[i]) print "The pericentre is found to be:",z1,"kpc","for the NFW profile" plt.plot(z1,e1,marker='d',label='pericentre-NFW') z2 = newton(R_H,10,args=(Energy_h[i],Momentum[i]),fprime=R_dH,fprime2=R_ddH) e2 = R_H(z2,Energy_h[i],Momentum[i]) print "The pericentre is found to be:",z2,"kpc","for the Hernquist profile" plt.plot(z2,e2,marker='o',label='pericentre-H') plt.legend(fontsize=15) plt.show() J_NFW = quad(r_actionNFW,z1,np.inf,args=(Energy_nfw[i],Momentum[i])) print "The radial action for NFW profile is:",J_NFW[0],"km/s kpc" J_H = quad(r_actionH,z2,np.inf,args=(Energy_h[i],Momentum[i])) print "The radial action for Hernquist profile is:",J_H[0],"km/s kpc" #4th star i = 3 R_nfw = Re(R4,Energy_nfw[i],Momentum[i],NFW(R4)) R_h = Re(R4,Energy_h[i],Momentum[i],H(R4)) plt.figure(figsize=(15,10)) plt.plot(R4,R_nfw,ls='-',label="NFW",color='#9370db',lw=2) plt.plot(R4,R_h,ls='--',label="Hernquist",color='salmon',alpha=0.75,lw=2) plt.rc('xtick', labelsize=15) # fontsize of the tick labels plt.rc('ytick', labelsize=15) plt.axhline(y=0,color='#b22222',lw=3) plt.title(r"4th star, $R= E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$",fontsize=20) plt.xlabel("r(kpc)",fontsize=15) plt.ylabel("Residue",fontsize=15) z1 = newton(R_NFW,10,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) z2 = newton(R_NFW,400,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) e1 = R_NFW(z1,Energy_nfw[i],Momentum[i]) e2 = R_NFW(z2,Energy_nfw[i],Momentum[i]) print "The pericentre and apocentre are found to be:",z1,"kpc","and",z2,"kpc","for the NFW profile" plt.plot(z1,e1,marker='d',label='pericentre-NFW') plt.plot(z2,e2,marker='d',label='apocentre-NFW') z3 = newton(R_H,50,args=(Energy_h[i],Momentum[i]),fprime=R_dH,fprime2=R_ddH) e3 = R_H(z3,Energy_h[i],Momentum[i]) print "The pericentre is found to be:",z3,"kpc","for the Hernquist profile" plt.plot(z1,e1,marker='o',label='pericentre-H') plt.legend(fontsize=15) plt.show() J_NFW = quad(r_actionNFW,z1,z2,args=(Energy_nfw[i],Momentum[i])) print "The radial action for NFW profile is:",J_NFW[0],"km/s kpc" J_H = quad(r_actionH,z3,np.inf,args=(Energy_h[i],Momentum[i])) print "The radial action for Hernquist profile is:",J_H[0],"km/s kpc" #5th star i = 4 R_nfw = Re(R5,Energy_nfw[i],Momentum[i],NFW(R5)) R_h = Re(R5,Energy_h[i],Momentum[i],H(R5)) plt.figure(figsize=(15,10)) plt.plot(R5,R_nfw,ls='-',label="NFW",color='#9370db',lw=2) plt.plot(R5,R_h,ls='--',label="Hernquist",color='salmon',alpha=0.75,lw=2) plt.rc('xtick', labelsize=15) # fontsize of the tick labels plt.rc('ytick', labelsize=15) plt.axhline(y=0,color='#b22222',lw=3) plt.title(r"5th star, $R= E_{tot} - \frac{1}{2}\left(\frac{L}{r}\right)^2-\Phi$",fontsize=20) plt.xlabel("r(kpc)",fontsize=15) plt.ylabel("Residue",fontsize=15) z1 = newton(R_NFW,10,args=(Energy_nfw[i],Momentum[i]),fprime=R_dNFW) e1 = R_NFW(z1,Energy_nfw[i],Momentum[i]) print "The pericentre is found to be:",z1,"kpc","for the NFW profile" plt.plot(z1,e1,marker='d',label='pericentre-NFW') z2 = newton(R_H,50,args=(Energy_h[i],Momentum[i]),fprime=R_dH,fprime2=R_ddH) e2 = R_H(z2,Energy_h[i],Momentum[i]) print "The pericentre is found to be:",z2,"kpc","for the Hernquist profile" plt.plot(z1,e1,marker='o',label='pericentre-H') plt.legend(fontsize=15) plt.show() J_NFW = quad(r_actionNFW,z1,np.inf,args=(Energy_nfw[i],Momentum[i])) print "The radial action for NFW profile is:",J_NFW[0],"km/s kpc" J_H = quad(r_actionH,z2,np.inf,args=(Energy_h[i],Momentum[i])) print "The radial action for Hernquist profile is:",J_H[0],"km/s kpc"
The pericentre is found to be: 52.2586723359 kpc for the NFW profile The pericentre is found to be: 55.9497763757 kpc for the Hernquist profile
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
The table below lists all the parameters of the five stars. Problem 3 -- System of equations $$f(x,y) = x^2+y^2-50=0$$$$g(x,y) = x \times y -25 = 0$$ (a) Analytical solution First $f(x,y)-2g(x,y)$,we find:\begin{align*}x^2+y^2-2xy &=0\\(x-y)^2 &= 0\\x&=y\end{align*}Then $f(x,y)+2g(x,y)$,we find:\begin{align*}x^2+y^2+2xy &=100\\(x+y)^2 &= 100\\x,y = 5,5 \ &or -5,-5\end{align*} (b) Newton's method Newton-Raphson method can also be applied to solve multivariate systems. The algorithm is simply as follows:* Suppose we have an N-D multivariate system of the form:\begin{cases}f_1(x_1,...,x_N)=f_1(\mathbf{x})=0\\f_2(x_1,...,x_N)=f_2(\mathbf{x})=0\\...... \\f_N(x_1,...,x_N)=f_N(\mathbf{x})=0\\\end{cases}where we have defined $$\mathbf{x}=[x_1,...,x_N]^T$$Define a vector function$$\mathbf{f}(\mathbf{x})=[f_1(\mathbf{x}),...,f_N(\mathbf{x})]^T$$So that the equation system above can be written as$$\mathbf{f}(\mathbf{x})=\mathbf{0}$$* $\mathbf{J}_{\mathbf{f}}(\mathbf{x})$ is the $\textit{Jacobian matrix}$ over the function vector $\mathbf{f}(\mathbf{x})$ $$\mathbf{J}_{\mathbf{f}}(\mathbf{x})=\begin{bmatrix}\frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_N} \\\vdots & \ddots & \vdots \\\frac{\partial f_N}{\partial x_1} & \dots & \frac{\partial f_N}{\partial x_N}\end{bmatrix}$$* If all equations are linear we have$$\mathbf{f}(\mathbf{x}+\delta \mathbf{x})=\mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x})\delta\mathbf{x}$$* by assuming $\mathbf{f}(\mathbf{x}+\delta \mathbf{x})=0$, we can find the roots as $\mathbf{x}+\delta \mathbf{x}$, where$$\delta \mathbf{x} = -\mathbf{J}(\mathbf{x})^{-1}\mathbf{f}(\mathbf{x})$$* The approximation can be improved iteratively$$\mathbf{x}_{n+1} = \mathbf{x}_n +\delta \mathbf{x}_n = \mathbf{x}_n-\mathbf{J}(\mathbf{x}_n)^{-1}\mathbf{f}(\mathbf{x}_n)$$
from scipy.optimize import fsolve import numpy as np f1 = lambda x: [x[0]**2+x[1]**2-50,x[0]*x[1]-25] #the Jacobian needed to implement Newton's method fd = lambda x: np.array([[2*x[0],2*x[1]],[x[1],x[0]]]).reshape(2,2) #define the domain where we want to find the solution (x,y) a = np.linspace(-10,10,100) b = a #for every point (a,b), pass on to fsolve and append the result #then round the result and see how many pairs of solutions there are i = 0 result = np.array([[5,5]]) #print result for a,b in zip(a,b): x = fsolve(f1,[a,b],fprime=fd) x = np.round(x) result = np.append(result,[x],axis=0) print "The sets of solutions are found to be:",np.unique(result,axis=0)
The sets of solutions are found to be: [[-5. -5.] [ 5. 5.]]
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
From above we learn that the solutions are indeed left with $(x,y) = (5,5)$ or $(x,y) = (-5,-5)$ (c) Convergence
%config InlineBackend.figure_format = 'retina' import numpy as np from scipy.optimize import fsolve import matplotlib.pyplot as plt def f(x, y): return x**2+y**2-50; def g(x, y): return x*y-25 x = np.linspace(-6, 6, 500) @np.vectorize def fy(x): x0 = 0.0 def tmp(y): return f(x, y) y1, = fsolve(tmp, x0) return y1 @np.vectorize def gy(x): x0 = 0.0 def tmp(y): return g(x, y) y1, = fsolve(tmp, x0) return y1 plt.plot(x, fy(x), x, gy(x)) plt.xlabel('x') plt.ylabel('y') plt.rc('xtick', labelsize=10) # fontsize of the tick labels plt.rc('ytick', labelsize=10) plt.legend(['fy', 'gy']) plt.show() #print fy(x) i =1 I = np.array([]) F = np.array([]) G = np.array([]) X_std = np.array([]) Y_std = np.array([]) while i<50: x_result = fsolve(f1,[-100,-100],maxfev=i) f_result = f(x_result[0],x_result[1]) g_result = g(x_result[0],x_result[1]) x1_std = abs(x_result[0]+5.0) x2_std = abs(x_result[1]+5.0) F = np.append(F,f_result) G = np.append(G,g_result) I = np.append(I,i) X_std = np.append(X_std,x1_std) Y_std = np.append(Y_std,x2_std) i+=1 xtol = 1.49012e-08 plt.loglog(I,np.abs(F),I,np.abs(G)) plt.title("converge of f and g") plt.xlabel("iterations") plt.ylabel("function values") plt.legend(['f','g']) plt.show() plt.loglog(I,X_std,I,Y_std) plt.axhline(y=xtol,color='#b22222',lw=3) plt.title(r"$converge \ of \ \Delta_x \ and \ \Delta_y$") plt.xlabel("iterations") plt.ylabel("Deviation values") plt.legend([r'$\Delta x$',r'$\Delta y$','tolerance']) plt.show()
_____no_output_____
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
(d) Maximum iterations Now also apply the Jacobian. The jacobian of the system of equation is simply as follows$$\mathbf{J} = \begin{bmatrix}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}\end{bmatrix}$$$$=\begin{bmatrix}2x & 2y \\y & x\end{bmatrix}$$
fd = lambda x: np.array([[2*x[0],2*x[1]],[x[1],x[0]]]).reshape(2,2) i =1 I = np.array([]) F = np.array([]) G = np.array([]) X_std = np.array([]) Y_std = np.array([]) while i<50: x_result = fsolve(f1,[-100,-100],fprime=fd,maxfev=i) f_result = f(x_result[0],x_result[1]) g_result = g(x_result[0],x_result[1]) x1_std = abs(x_result[0]+5.0) x2_std = abs(x_result[1]+5.0) F = np.append(F,f_result) G = np.append(G,g_result) I = np.append(I,i) X_std = np.append(X_std,x1_std) Y_std = np.append(Y_std,x2_std) i+=1 xtol = 1.49012e-08 plt.loglog(I,np.abs(F),I,np.abs(G)) plt.title("converge of f and g") plt.xlabel("iterations") plt.ylabel("function values") plt.legend(['f','g']) plt.show() plt.loglog(I,X_std,I,Y_std) plt.axhline(y=xtol,color='#b22222',lw=3) plt.title(r"$converge \ of \ \Delta_x \ and \ \Delta_y$") plt.xlabel("iterations") plt.ylabel("Deviation values") plt.legend([r'$\Delta x$',r'$\Delta y$','tolerance']) plt.show()
_____no_output_____
MIT
numerical5.ipynb
fatginger1024/NumericalMethods
Exploratory Data Analysis
from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession from pyspark.sql.types import * from pyspark.sql import functions as F spark = SparkSession.builder.master('local[1]').appName("Jupyter").getOrCreate() sc = spark.sparkContext #test if this works import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy import datetime # the more advanced python visualization library import seaborn as sns # apply style to all the charts sns.set_style('whitegrid') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # create sparksession spark = SparkSession \ .builder \ .appName("Pysparkexample") \ .config("spark.some.config.option", "some-value") \ .getOrCreate()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Load Data
#collisions = spark.read.csv('data/accidents.csv', header='true', inferSchema = True) #collisions.show(2) df_new = spark.read.csv('data/accidents_new.csv', header='true', inferSchema = True)
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Data Perspective_____ * One variable * Numeric variables: * continuous * discrete * Categorical variables: * ordinal * nominal* Multiple variables: * Numeric x Numeric * Categorical x Numeric * Categorical x Categorical____________________ Overview
print('The total number of rows : ', df_new.count(), '\nThe total number of columns :', len(df_new.columns))
The total number of rows : 128647 The total number of columns : 40
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Data SchemaPrint the data schema for our dataset - SAAQ Accident Information
df_new.printSchema() # Create temporary table query with SQL df_new.createOrReplaceTempView('AccidentData') accidents_limit_10 = spark.sql( ''' SELECT * FROM AccidentData LIMIT 10 ''' ).toPandas() accidents_limit_10
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
One Variable__________ a. Numeric - Data TotalsTotals for various accident records
from pyspark.sql import functions as func #df_new.agg(func.sum("NB_BLESSES_VELO").alias('Velo'),func.sum("NB_VICTIMES_MOTO"),func.sum("NB_VEH_IMPLIQUES_ACCDN")).show() df_new.agg(func.sum("NB_VEH_IMPLIQUES_ACCDN").alias('Ttl Cars In Accidents')).show() df_new.agg(func.sum("NB_VICTIMES_TOTAL").alias('Ttl Victims')).show() df_new.agg(func.sum("NB_MORTS").alias('Ttl Deaths')).show() df_new.agg(func.sum("NB_BLESSES_GRAVES").alias('Ttl Severe Injuries')).show() df_new.agg(func.sum("NB_BLESS_LEGERS").alias('Ttl Light Injuries')).show() df_new.agg(func.sum("NB_DECES_PIETON").alias('Ttl Pedestrian Deaths')).show() df_new.agg(func.sum("NB_BLESSES_PIETON").alias('Ttl Pedestrian Injuries')).show() df_new.agg(func.sum("NB_VICTIMES_PIETON").alias('Ttl Pedestrian Victims')).show() df_new.agg(func.sum("NB_DECES_MOTO").alias('Ttl Moto Deaths')).show() df_new.agg(func.sum("NB_BLESSES_MOTO").alias('Ttl Moto Injuries')).show() df_new.agg(func.sum("NB_VICTIMES_MOTO").alias('Ttl Moto Victims')).show() df_new.agg(func.sum("NB_DECES_VELO").alias('Ttl Bike Deaths')).show() df_new.agg(func.sum("NB_BLESSES_VELO").alias('Ttl Bike Injuries')).show() df_new.agg(func.sum("NB_VICTIMES_VELO").alias('Ttl Bike Victims')).show() df_new.agg(func.sum("nb_automobile_camion_leger").alias('Ttl Car - Light Trucks')).show() df_new.agg(func.sum("nb_camionLourd_tractRoutier").alias('Ttl Heavy Truck - Tractor')).show() df_new.agg(func.sum("nb_outil_equipement").alias('Ttl Equipment - Tools')).show() df_new.agg(func.sum("nb_tous_autobus_minibus").alias('Ttl Bus')).show() df_new.agg(func.sum("nb_bicyclette").alias('Ttl Bikes')).show() df_new.agg(func.sum("nb_cyclomoteur").alias('Ttl Motorized Bike')).show() df_new.agg(func.sum("nb_motocyclette").alias('Ttl Motorcycle')).show() df_new.agg(func.sum("nb_taxi").alias('Ttl Taxi')).show() df_new.agg(func.sum("nb_urgence").alias('Ttl Emergency')).show() df_new.agg(func.sum("nb_motoneige").alias('Ttl Snowmobile')).show() df_new.agg(func.sum("nb_VHR").alias('Ttl Motorhome')).show() df_new.agg(func.sum("nb_autres_types").alias('Ttl Other Types')).show() df_new.agg(func.sum("nb_veh_non_precise").alias('Ttl Non Specified Vehicles')).show() df_totals = pd.DataFrame(columns=['Attr','Total']) #df_totals.append({'Attr':'NB_VEH_IMPLIQUES_ACCDN','Total':df_new.agg(func.sum("NB_VEH_IMPLIQUES_ACCDN"))},ignore_index=True) #df_totals
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
b. Categorical GRAVITE - severity of the accident
gravite_levels = spark.sql( ''' SELECT GRAVITE, COUNT(*) as Total FROM AccidentData GROUP BY GRAVITE ORDER BY Total DESC ''' ).toPandas() gravite_levels # Pie Chart fig,ax = plt.subplots(1,1,figsize=(12,6)) wedges, texts, autotexts = ax.pie(gravite_levels['Total'], radius=2, #labeldistance=2, pctdistance=1.1, autopct='%1.2f%%', startangle=90) ax.legend(wedges, gravite_levels['GRAVITE'], title="GRAVITE", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) plt.setp(autotexts, size=12, weight="bold") ax.axis('equal') plt.tight_layout() plt.savefig('figures/gravite_levels.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
METEO - Weather Conditions
meteo_conditions = spark.sql( ''' SELECT METEO, COUNT(*) as Total FROM AccidentData GROUP BY METEO ORDER BY Total DESC ''' ).toPandas() meteo_conditions['METEO'] = meteo_conditions['METEO'].replace( {11:'Clear',12:'Overcast: cloudy/dark',13:'Fog/mist', 14:'Rain/bruine',15:'Heavy rain',16:'Strong wind', 17:'Snow/storm',18:'Blowing snow/blizzard', 19:'Ice',99:'Other..'}) meteo_conditions fig,ax = plt.subplots(1,1,figsize=(10,6)) plt.bar(meteo_conditions['METEO'], meteo_conditions['Total'], align='center', alpha=0.7, width=0.7, color='purple') plt.setp(ax.get_xticklabels(), rotation=30, horizontalalignment='right') fig.tight_layout() plt.savefig('figures/meteo_conditions.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Multiple Variables____________ Numeric X Categorical 1. Accident Victims by Municipality
victims_by_municipality = spark.sql( ''' SELECT MUNCP, SUM(NB_VICTIMES_TOTAL) as Total FROM AccidentData GROUP BY MUNCP ORDER BY Total DESC ''' ).toPandas() victims_by_municipality fig,ax = plt.subplots(1,1,figsize=(10,6)) victims_by_municipality.plot(x = 'MUNCP', y = 'Total', kind = 'barh', color = 'C0', ax = ax, legend = False) ax.set_xlabel('Total Victims', size = 16) ax.set_ylabel('Municipality', size = 16) plt.savefig('figures/victims_by_municipality.png') plt.show() victims_by_region = spark.sql( ''' SELECT MUNCP, SUM(NB_VICTIMES_TOTAL) as Total FROM AccidentData GROUP BY MUNCP ''' ).toPandas() plt.figure(figsize = (10,6)) sns.distplot(np.log(victims_by_region['Total'])) plt.title('Total Victims Histogram by Region', size = 16) plt.ylabel('Density', size = 16) plt.xlabel('Log Total', size = 16) plt.savefig('figures/distplot.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
2. Total Collisions by Day of Week
collisions_by_day = spark.sql( ''' SELECT WEEK_DAY, COUNT(WEEK_DAY) as Number_of_Collisions FROM AccidentData GROUP BY WEEK_DAY ORDER BY Number_of_Collisions DESC ''' ).toPandas() collisions_by_day fig,ax = plt.subplots(1,1,figsize=(10,6)) collisions_by_day.plot(x = 'WEEK_DAY', y = 'Number_of_Collisions', kind = 'barh', color = 'C0', ax = ax, legend = False) ax.set_xlabel('Number_of_Collisions', size = 16) ax.set_ylabel('WEEK_DAY', size = 16) plt.savefig('figures/collisions_by_day.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
"VE", Friday has the highest number of collisions. 3. Top 10 Accidents by street
accidents_by_street = spark.sql( ''' SELECT STREET, COUNT(STREET) as Number_of_Accidents FROM AccidentData GROUP BY STREET ORDER BY Number_of_Accidents DESC LIMIT 10 ''' ).toPandas() fig,ax = plt.subplots(1,1,figsize=(10,6)) #accidents_by_street.plot(x = 'STREET', y = 'Number_of_Accidents', kind = 'barh', color = 'C0', ax = ax, legend = False) sns.barplot(x=accidents_by_street['Number_of_Accidents'], y=accidents_by_street['STREET'], orient='h') ax.set_xlabel('Number of Accidents', size = 16) ax.set_ylabel('Street', size = 16) plt.savefig('figures/accidents_by_street.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Numeric X Numeric Correlation HeatmapIllustrates the corellation between numeric variables of the dataset.
plot_df = spark.sql( ''' SELECT METEO, SURFACE, LIGHT, TYPE_ACCDN, NB_MORTS, NB_BLESSES_GRAVES, NB_VEH_IMPLIQUES_ACCDN, NB_VICTIMES_TOTAL FROM AccidentData ''' ).toPandas() corrmat = plot_df.corr() f, ax = plt.subplots(figsize=(10, 7)) sns.heatmap(corrmat, vmax=.8, square=True) plt.savefig('figures/heatmap.png') plt.show()
_____no_output_____
MIT
code/data_EDA.ipynb
ArwaSheraky/Montreal-Collisions
Hist plot for all values (even though 0 is actually useless)
fig, ax = plt.subplots(figsize=(10,10)) ax.hist(expressions, alpha=0.5, label=expressions.columns) ax.legend()
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Filter out all values that are equal to 0
expressions.value_counts(sort=True)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
===> columns contempt, unkown and NF can be dropped
expressions_drop = expressions.drop(columns=["unknown", "contempt", "NF"]) exp_nan = expressions_drop.replace(0, np.NaN) exp_stacked = exp_nan.stack(dropna=True) exp_unstacked = exp_stacked.reset_index(level=1) expressions_single = exp_unstacked.rename(columns={"level_1": "expression"}).drop(columns=[0]) expressions_single.head()
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Append expressions to expw
expw["expression"] = expressions_single["expression"] expw.head()
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Remove unnecessary columns
expw_minimal = expw.drop(expw.columns[1:-1], axis=1) expw_minimal.loc[:, "Image name"] = data_dir + "/" + expw_minimal["Image name"].astype(str) expw_minimal.shape
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Histogram of expression distribution
x_ticks = [f"{idx} = {expr}, count: {count}" for idx, (expr, count) in enumerate(zip(list(expressions_single.value_counts().index.get_level_values(0)), expressions_single.value_counts().values))] x_ticks ax = expressions_single.value_counts().plot(kind='barh') ax.set_yticklabels(x_ticks)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Create a csv file with all absolute image paths for annotating with FairFace
col_name = "img_path" image_names = expw[["Image name"]] image_names.head() image_names.rename(columns={"Image name": "img_path"}, inplace=True) image_names.loc[:, "img_path"] = data_dir + "/" + image_names["img_path"].astype(str) save_path = "/home/steffi/dev/independent_study/FairFace/expw_image_paths.csv" image_names.to_csv(save_path, index=False)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Filter only img_paths which contain "black", "African", "chinese", "asian"
black = image_names.loc[image_names.img_path.str.contains('(black)'), :] african = image_names.loc[image_names.img_path.str.contains('(African)'), :] asian = image_names.loc[image_names.img_path.str.contains('(asian)'), :] chinese = image_names.loc[image_names.img_path.str.contains('(chinese)'), :] filtered = pd.concat([black, african, asian, chinese])
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Filter and save subgroups Anger
black_angry_annoyed = black.loc[image_names.img_path.str.contains('(angry)|(annoyed)'), :] black_angry_annoyed.to_csv("/home/steffi/dev/independent_study/FairFace/black_angry_annoyed.csv", index=False) black_angry_annoyed.head() african_angry_annoyed = african.loc[image_names.img_path.str.contains('(angry)|(annoyed)'), :] african_angry_annoyed.to_csv("/home/steffi/dev/independent_study/FairFace/african_angry_annoyed.csv", index=False) african_angry_annoyed.shape asian_angry_annoyed = asian.loc[image_names.img_path.str.contains('(angry)|(annoyed)'), :] asian_angry_annoyed asian_angry_annoyed.to_csv("/home/steffi/dev/independent_study/FairFace/asian_angry_annoyed.csv", index=False) chinese_angry_annoyed = chinese.loc[image_names.img_path.str.contains('(angry)|(annoyed)'), :] chinese_angry_annoyed.head() chinese_angry_annoyed.to_csv("/home/steffi/dev/independent_study/FairFace/chinese_angry_annoyed.csv", index=False)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Surprise
black_awe_astound_amazed = black.loc[image_names.img_path.str.contains('(awe)|(astound)|(amazed)'), :] black_awe_astound_amazed black_awe_astound_amazed.to_csv("/home/steffi/dev/independent_study/FairFace/black_awe_astound_amazed.csv", index=False) african_awe = african.loc[image_names.img_path.str.contains('(awe)'), :] african_awe african_awe.to_csv("/home/steffi/dev/independent_study/FairFace/african_awe.csv", index=False) asian_astound = asian.loc[image_names.img_path.str.contains('(astound)'), :] asian_astound.to_csv("/home/steffi/dev/independent_study/FairFace/asian_astound.csv", index=False) asian_astound chinese_astound = chinese.loc[image_names.img_path.str.contains('(astound)'), :] chinese_astound.to_csv("/home/steffi/dev/independent_study/FairFace/chinese_astound.csv", index=False) chinese_astound
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Fear
black_fear = black.loc[image_names.img_path.str.contains('(fear)|(frightened)|(anxious)|(shocked)'), :] black_fear.shape african_fear = african.loc[image_names.img_path.str.contains('(fear)|(frightened)|(anxious)|(shocked)'), :] black_african_fear = pd.concat([african_fear, black_fear]) black_african_fear.shape black_african_fear.to_csv("/home/steffi/dev/independent_study/FairFace/black_african_fear.csv", index=False)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Disgust
black_disgust = black.loc[image_names.img_path.str.contains('(distaste)|(disgust)'), :] african_digsust = african.loc[image_names.img_path.str.contains('(distaste)|(disgust)'), :] african_digsust.shape black_african_disgust = pd.concat([black_disgust, african_digsust]) pd.set_option('display.max_colwidth', -1) black_african_disgust black_african_disgust.to_csv("/home/steffi/dev/independent_study/FairFace/black_african_disgust.csv", index=False) disgust_all = image_names.loc[image_names.img_path.str.contains('(distaste)|(disgust)'), :] disgust_all.shape disgust_all
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
Saving all filtered to csv
filtered_save_path = "/home/steffi/dev/independent_study/FairFace/filtered_expw_image_paths.csv" filtered.to_csv(filtered_save_path, index=False)
_____no_output_____
MIT
notebooks/ExpW EDA.ipynb
StefanieStoppel/InferFace
T M V A_Tutorial_Classification_Tmva_AppTMVA example, for classification with following objectives: * Apply a BDT with TMVA**Author:** Lailin XU This notebook tutorial was automatically generated with ROOTBOOK-izer from the macro found in the ROOT repository on Tuesday, April 27, 2021 at 01:21 AM.
from ROOT import TMVA, TFile, TTree, TCut, TH1F, TCanvas, gROOT, TLegend from subprocess import call from os.path import isfile from array import array gROOT.SetStyle("ATLAS")
Welcome to JupyROOT 6.22/07
CC-BY-4.0
MVA/TMVA_tutorial_classification_tmva_app.py.nbconvert.ipynb
LailinXu/hepstat-tutorial